M. H. Alonso and F. C. Ryckman, Current Concepts in Pediatric Liver Transplant, Semin Liver Dis, vol.18, pp.295-307, 1998.

A. Annoni, A. Cantore, P. Della-valle, K. Goudy, M. Akbarpour et al., Liver gene therapy by lentiviral vectors reverses anti-factor IX pre-existing immunity in haemophilic mice, EMBO Mol Med, vol.5, pp.1684-1697, 2013.

A. Asplund, A. Pradip, M. Giezen, A. Van,-aspegren, H. Choukair et al.,

S. Jacobsson, N. Ghosheh, D. E. Hajjam, S. Holmgren, S. Larsson et al., One Standardized Differentiation Procedure Robustly Generates Homogenous, 2016.

, Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells, Stem Cell Rev and Rep, vol.12, pp.90-104

H. Ban, N. Nishishita, N. Fusaki, T. Tabata, K. Saeki et al., Efficient generation of transgenefree human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors, Proc Natl Acad Sci U S A, vol.108, pp.14234-14239, 2011.

M. Baxter, S. Withey, S. Harrison, C. Segeritz, F. Zhang et al.,

D. T. Gerrard, R. Sison-young, R. Jenkins, J. Henry, A. A. Berry et al.,

S. W. Fenwick, H. Malik, N. R. Kitteringham, C. E. Goldring, K. Piper-hanley et al.,

N. A. Hanley, Phenotypic and functional analyses show stem cell-derived hepatocytelike cells better mimic fetal rather than adult hepatocytes, J Hepatol, vol.62, pp.581-589, 2015.

B. B. Beck, S. Habbig, K. Dittrich, D. Stippel, I. Kaul et al.,

M. Kemper, J. Meyburg, and B. Hoppe, Liver cell transplantation in severe infantile oxalosis-a potential bridging procedure to orthotopic liver transplantation?, Nephrol Dial Transplant, vol.27, pp.2984-2989, 2012.

A. Bedel, M. Taillepierre, V. Guyonnet-duperat, E. Lippert, P. Dubus et al.,

E. Richard, H. De-verneuil, and F. Moreau-gaudry, Metabolic Correction of Congenital Erythropoietic Porphyria with iPSCs Free of Reprogramming Factors, Am J Hum Genet, vol.91, pp.109-121, 2012.

E. J. Bergstralh, C. G. Monico, J. C. Lieske, R. M. Herges, C. B. Langman et al., Transplantation Outcomes in Primary Hyperoxaluria, Am J Transplant, vol.10, pp.2493-2501, 2010.

A. Cantore, M. Ranzani, C. C. Bartholomae, M. Volpin, P. Della-valle et al.,

L. Sergi, P. Gallina, F. Benedicenti, D. Bellinger, R. Raymer et al.,

S. Martin, C. Doglioni, A. D'angelo, T. Vandendriessche, M. K. Chuah et al., Liver-Directed Lentiviral Gene Therapy in a Dog Model of Hemophilia B, Sci Transl Med, vol.7, pp.277-305, 2015.

R. Castello, R. Borzone, S. D'aria, P. Annunziata, P. Piccolo et al., , 2016.

, Gene Ther, vol.23, pp.129-134

M. Cavazzana-calvo and A. Fischer, Gene therapy for severe combined immunodeficiency: are we there yet?, J Clin Invest, vol.117, pp.1456-1465, 2007.

P. Cochat, S. Fargue, and J. Harambat, Primary hyperoxaluria type 1: strategy for organ transplantation. Current Opinion in, Organ Transplantation, vol.15, pp.590-593, 2010.

P. Cochat, S. Hulton, C. Acquaviva, C. J. Danpure, M. Daudon et al., Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment, Nephrol Dial Transplant, vol.27, pp.1729-1736, 2012.

M. Dindo, E. Oppici, D. Dell'orco, R. Montone, and B. Cellini, Correlation between the molecular effects of mutations at the dimer interface of alanine-glyoxylate aminotransferase leading to primary hyperoxaluria type I and the cellular response to vitamin B6, J Inherit Metab Dis, vol.41, pp.263-275, 2018.

P. C. Fineran and E. Charpentier, Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information, Special issue: viruses of microbes, vol.434, pp.202-209, 2012.

T. Fukuda, K. Takayama, M. Hirata, Y. Liu, K. Yanagihara et al., Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions, Experimental Cell Research, vol.352, pp.333-345, 2017.

X. Gao and Y. Liu, A transcriptomic study suggesting human iPSC-derived hepatocytes, 2017.

N. Ghosheh, B. Olsson, J. Edsbagge, B. Küppers-munther, M. Van-giezen et al., Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines, Stem Cells Int, 2016.

F. P. Guengerich, CYTOCHROME P-450 3A4: Regulation and Role in Drug Metabolism, Annual Review of Pharmacology and Toxicology, vol.39, pp.1-17, 1999.

N. R. Hannan, C. Segeritz, T. Touboul, and L. Vallier, Production of hepatocyte like cells from human pluripotent stem cells, Nat Protoc, vol.8, pp.430-437, 2013.

J. Harambat, S. Fargue, C. Acquaviva, M. Gagnadoux, F. Janssen et al., Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome, Kidney International, vol.77, pp.443-449, 2010.

J. Harambat, S. Fargue, J. Bacchetta, C. Acquaviva, and P. Cochat, Primary Hyperoxaluria, Int J Nephrol, 2011.

B. Hoppe, B. B. Beck, and D. Milliner, The Primary Hyperoxalurias, Kidney Int, vol.75, pp.1264-1271, 2009.

J. Jiang, E. C. Salido, C. Guha, X. Wang, R. Moitra et al., Correction of Hyperoxaluria by Liver Repopulation With Hepatocytes in a Mouse Model of Primary Hyperoxaluria Type-1, Transplantation, vol.85, pp.1253-1260, 2008.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, pp.816-821, 2012.

V. Laurent, A. Fraix, T. Montier, S. Cammas-marion, C. Ribault et al., Highly efficient gene transfer into hepatocyte-like HepaRG cells: new means for drug metabolism and toxicity studies, Biotechnol J, vol.5, pp.314-320, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552337

P. C. Lee, B. Truong, A. Vega-crespo, W. B. Gilmore, K. Hermann et al., Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells, Mol Ther Nucleic Acids, vol.5, p.394, 2016.

N. Mesa-torres, C. Yunta, I. Fabelo-rosa, J. M. Gonzalez-rubio, J. M. Sánchez-ruiz et al., The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanine-glyoxylate aminotransferase, Biochemical Journal, vol.462, pp.453-463, 2014.

F. Moreau-gaudry, P. Xia, G. Jiang, N. P. Perelman, G. Bauer et al., High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors, Blood, vol.98, pp.2664-2672, 2001.

C. G. Newstead, Assessment of risk of cancer after renal transplantation, The Lancet, vol.351, pp.610-611, 1998.

T. H. Nguyen, M. Bellodi-privato, D. Aubert, V. Pichard, A. Myara et al., Therapeutic Lentivirus-Mediated Neonatal in Vivo Gene Therapy in Hyperbilirubinemic Gunn Rats, Molecular Therapy, vol.12, pp.852-859, 2005.

T. Ohmori, H. Mizukami, Y. Katakai, S. Kawai, H. Nakamura et al., Safety of intra-articular transplantation of lentivirally transduced, 2018.

K. Okita and S. Yamanaka, Induced pluripotent stem cells: opportunities and challenges, 2011.

, Philos Trans R Soc Lond B Biol Sci, vol.366, pp.2198-2207

F. P. Pankowicz, K. E. Jarrett, W. R. Lagor, and K. Bissig, CRISPR/Cas9: at the cutting edge of hepatology, Gut, vol.66, pp.1329-1340, 2017.

S. T. Rashid, S. Corbineau, N. Hannan, S. J. Marciniak, E. Miranda et al., Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells, J Clin Invest, vol.120, pp.3127-3136, 2010.

E. Richard, E. Robert, M. Cario-andré, C. Ged, F. Géronimi et al., Hematopoietic stem cell gene therapy of murine protoporphyria by methylguanine-DNA-methyltransferase-mediated in vivo drug selection, Gene Therapy, vol.11, pp.1638-1647, 2004.

N. Roy-chowdhury, X. Wang, C. Guha, and J. Roy-chowdhury, Hepatocyte-like cells derived from induced pluripotent stem cells, Hepatol Int, vol.11, pp.54-69, 2017.

E. Salido, M. Rodriguez-pena, A. Santana, S. G. Beattie, H. Petry et al., Phenotypic Correction of a Mouse Model for Primary Hyperoxaluria With Adeno-associated Virus Gene Transfer, Mol Ther, vol.19, pp.870-875, 2011.

E. C. Salido, X. M. Li, Y. Lu, X. Wang, A. Santana et al., Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer, Proc Natl Acad Sci U S A, vol.103, pp.18249-18254, 2006.

A. Santana, E. Salido, A. Torres, and L. J. Shapiro, Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase, Proc Natl Acad Sci U S A, vol.100, pp.7277-7282, 2003.

F. Schmitt, S. Remy, A. Dariel, M. Flageul, V. Pichard et al., Lentiviral Vectors That Express UGT1A1 in Liver and Contain miR-142 Target Sequences Normalize Hyperbilirubinemia in Gunn Rats, Gastroenterology, vol.139, pp.999-1007, 2010.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, pp.861-872, 2007.

K. Takayama, Y. Hagihara, Y. Toba, K. Sekiguchi, F. Sakurai et al., Enrichment of high-functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research, Biomaterials, vol.161, pp.24-32, 2018.

M. Trevisan, G. Desole, G. Costanzi, E. Lavezzo, G. Palù et al., Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells, Int J Mol Sci, vol.18, 2017.

N. Zapata-linares, S. Rodriguez, E. Salido, G. Abizanda, E. Iglesias et al., Generation and characterization of human iPSC lines derived from a Primary Hyperoxaluria Type I patient with p.I244T mutation, Stem Cell Research, vol.16, pp.116-119, 2016.

, Supplemental Figure S3. Representative karyotype analysis of WT-iPSC#1, vol.46

B. Hoppe, B. B. Beck, and D. Milliner, The Primary Hyperoxalurias, Kidney Int, vol.75, pp.1264-1271, 2009.

N. Mesa-torres, C. Yunta, and I. Fabelo-rosa, The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanineglyoxylate aminotransferase, Biochemical Journal, vol.462, pp.453-463, 2014.

P. Cochat, S. Fargue, and J. Harambat, Primary hyperoxaluria type 1: strategy for organ transplantation. Current Opinion in, Organ Transplantation, vol.15, pp.590-593, 2010.

P. J. Mc-kiernan, Recent advances in liver transplantation for metabolic disease, J Inherit Metab Dis, vol.40, pp.491-495, 2017.

J. E. Squires, K. A. Soltys, and P. Mckiernan, Clinical Hepatocyte Transplantation: What Is Next?, Curr Transplant Rep, vol.4, pp.280-289, 2017.

K. Si-tayeb, F. K. Noto, and M. Nagaoka, Highly Efficient Generation of Human Hepatocyte-like Cells from Induced Pluripotent Stem Cells, Hepatology, vol.51, pp.297-305, 2010.

S. T. Rashid, S. Corbineau, and N. Hannan, Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells, J Clin Invest, vol.120, pp.3127-3136, 2010.

N. R. Hannan, C. Segeritz, and T. Touboul, Production of hepatocyte like cells from human pluripotent stem cells, Nat Protoc, vol.8, pp.430-437, 2013.

J. Estève, J. Blouin, and M. Lalanne, AGXT expression rescue in hepatocyte-like cells derived from Primary Hyperoxaluria type 1 induced pluripotent stem cells using liver-specific lentiviral vector, Stem Cell Res Submitted, 2018.

L. Naldini, Ex vivo gene transfer and correction for cell-based therapies, Nat Rev Genet, vol.12, pp.301-315, 2011.

D. Carroll, Genome engineering with targetable nucleases, Annu Rev Biochem, vol.83, pp.409-439, 2014.

J. R. Smith, S. Maguire, and L. A. Davis, Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration, Stem Cells, vol.26, pp.496-504, 2008.

F. Oceguera-yanez, S. Kim, and T. Matsumoto, Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives, Methods, vol.101, pp.43-55, 2016.

A. Asplund, A. Pradip, and . Giezen-m-van, One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells, Stem Cell Rev and Rep, vol.12, pp.90-104, 2016.

P. Mali, L. Yang, and K. M. Esvelt, RNA-Guided Human Genome Engineering via Cas9, Science, vol.339, pp.823-826, 2013.

T. Wang, J. J. Wei, and D. M. Sabatini, Genetic screens in human cells using the CRISPR/Cas9 system, Science, vol.343, pp.80-84, 2014.

M. F. Bolukbasi, A. Gupta, and S. A. Wolfe, Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery, Nature Methods, vol.13, pp.41-50, 2016.

R. J. Samulski, X. Zhu, and X. Xiao, Targeted integration of adeno-associated virus (AAV) into human chromosome 19, EMBO J, vol.10, pp.3941-3950, 1991.

R. C. Dekelver, V. M. Choi, and E. A. Moehle, Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome, Genome Res, vol.20, pp.1133-1142, 2010.

R. Van-rensburg, I. Beyer, and X. Yao, Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells, Gene Ther, vol.20, pp.201-214, 2013.

A. Lombardo, D. Cesana, and P. Genovese, Site-specific integration and tailoring of cassette design for sustainable gene transfer, Nat Methods, vol.8, pp.861-869, 2011.

F. Martin, S. Sánchez-hernández, and A. Gutiérrez-guerrero, Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview, Int J Mol Sci, vol.17, 2016.

M. Baxter, S. Withey, and S. Harrison, Phenotypic and functional analyses show stem cellderived hepatocyte-like cells better mimic fetal rather than adult hepatocytes, J Hepatol, vol.62, pp.581-589, 2015.

F. P. Guengerich, CYTOCHROME P-450 3A4: Regulation and Role in Drug Metabolism, Annual Review of Pharmacology and Toxicology, vol.39, pp.1-17, 1999.

J. F. Waring, R. Ciurlionis, and R. A. Jolly, Isolated human hepatocytes in culture display markedly different gene expression patterns depending on attachment status, Toxicology in Vitro, vol.17, pp.693-701, 2003.

A. Madan, R. A. Graham, and K. M. Carroll, Effects of Prototypical Microsomal Enzyme Inducers on Cytochrome P450 Expression in Cultured Human Hepatocytes, Drug Metab Dispos, vol.31, pp.421-431, 2003.

A. Santana, E. Salido, and A. Torres, Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase, Proc Natl Acad Sci U S A, vol.100, pp.7277-7282, 2003.

L. Ordovás, R. Boon, and M. Pistoni, Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition, Stem Cell Reports, vol.5, pp.918-931, 2015.

E. C. Salido, X. M. Li, and Y. Lu, Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer, Proc Natl Acad Sci, vol.103, pp.18249-18254, 2006.

S. Ramaswamy, N. Tonnu, and T. Menon, Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX, Cell Rep, vol.23, pp.1565-1580, 2018.

C. Lepoutre, Calculs multiples chez un enfant: Infiltration du parenchyme rénal par des dépots cristallins, J Urol, 1925.

P. Cochat, G. P. Rumsby, and . Hyperoxaluria, New England Journal of Medicine, vol.369, pp.649-658, 2013.

H. Bouzidi, A. Majdoub, M. Daudon, and M. F. Najjar, Hyperoxalurie primitive : une revue de la littérature, Néphrologie & Thérapeutique, vol.12, pp.431-436, 2016.

B. Hoppe, B. B. Beck, and D. Milliner, The Primary Hyperoxalurias, Kidney Int, vol.75, pp.1264-1271, 2009.

E. Salido, A. L. Pey, R. Rodriguez, and V. Lorenzo, Primary hyperoxalurias: Disorders of glyoxylate detoxification, Biochimica et Biophysica Acta, pp.1453-1464, 2012.

J. Knight and R. P. Holmes, Mitochondrial Hydroxyproline Metabolism: Implications for Primary Hyperoxaluria, AJN, vol.25, pp.171-175, 2005.

B. Cellini, M. Bertoldi, R. Montioli, A. Paiardini, and C. Borri-voltattorni, Human wild-type alanine: glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications, Biochemical Journal, vol.408, pp.39-50, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478801

C. Martin-higueras, A. Torres, and E. Salido, Molecular therapy of primary hyperoxaluria, J Inherit Metab Dis, vol.40, pp.481-489, 2017.

A. Rokka, Pxmp2 Is a Channel-Forming Protein in Mammalian Peroxisomal Membrane, PLOS ONE, vol.4, p.5090, 2009.

E. Leumann and B. Hoppe, The Primary Hyperoxalurias, JASN, vol.12, 1986.

J. Harambat, S. Fargue, J. Bacchetta, C. Acquaviva, P. P. Cochat et al., Int J Nephrol, 2011.

T. Dhondup, E. C. Lorenz, D. S. Milliner, and J. C. Lieske, Combined Liver-Kidney Transplantation for Primary Hyperoxaluria Type 2: A Case Report, American Journal of Transplantation, vol.18, pp.253-257, 2018.

G. Naderi, A. Latif, F. Tabassomi, and S. T. Esfahani, Failure of isolated kidney transplantation in a pediatric patient with primary hyperoxaluria type 2, Pediatr Transplant, vol.18, pp.69-73, 2014.

G. Rumsby, S. Hulton, and M. P. Adam, Primary Hyperoxaluria Type 2. in GeneReviews®, 1993.

K. Hopp, Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria, J Am Soc Nephrol, vol.26, pp.2559-2570, 2015.

T. J. Riedel, Structural and Biochemical Studies of Human 4-hydroxy-2-oxoglutarate Aldolase: Implications for Hydroxyproline Metabolism in Primary Hyperoxaluria, PLoS One, vol.6, 2011.

T. J. Riedel, 4-Hydroxy-2-oxoglutarate Aldolase Inactivity in Primary Hyperoxaluria Type 3 and Glyoxylate Reductase Inhibition, Biochim Biophys Acta, vol.1822, pp.1544-1552, 2012.

P. Cochat, Epidemiology of primary hyperoxaluria type 1. Société de Néphrologie and the Société de Néphrologie Pédiatrique, Nephrol. Dial. Transplant, vol.10, pp.3-7, 1995.

C. Van-woerden, J. Groothoff, R. Wanders, J. Davin, and F. Wijburg, Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association -European Renal Association, vol.18, pp.273-282, 2003.

J. Harambat, Characteristics and Outcomes of Children with Primary Oxalosis Requiring Renal Replacement Therapy, vol.7, pp.458-465, 2012.

A. Al-eisa, M. Samhan, and M. Naseef, End-stage renal disease in Kuwaiti children: An 8-year experience, Transplantation proceedings, vol.36, pp.1788-91, 2004.

A. Kamoun and R. Lakhoua, End-stage renal disease of the Tunisian child: Epidemiology, etiologies, and outcome, Pediatr. Nephrol, vol.10, pp.479-482, 1996.

N. R. Rhuma, O. A. Fituri, and L. Sabei, Mutational analysis of AGXT gene in Libyan children with primary hyperoxaluria type 1 at Tripoli Children Hospital, Saudi Journal of Kidney Diseases and Transplantation, vol.29, p.30, 2018.

V. Lorenzo, Presentation and role of transplantation in adult patients with type 1 primary hyperoxaluria and the I244T AGXT mutation: Single-center experience, Kidney International, vol.70, pp.1115-1119, 2006.

G. Mandrile, Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type, Kidney International, vol.86, pp.1197-1204, 2014.

S. M. Van-der-hoeven, C. S. Van-woerden, and J. W. Groothoff, Primary hyperoxaluria Type 1, a too often missed diagnosis and potentially treatable cause of end-stage renal disease in adults: results of the Dutch cohort, Nephrol Dial Transplant, vol.27, pp.3855-3862, 2012.

C. S. Woerden and . Van, Primary Hyperoxaluria Remains Undiagnosed in Patients with Hyperoxaluria and Recurrent Urolithiasis, Clinical Chemistry, vol.53, pp.1553-1555, 2007.

M. Marangella, Bony content of oxalate in patients with primary hyperoxaluria or oxalosis-unrelated renal failure, Kidney International, vol.48, pp.182-187, 1995.

C. M. Schnitzler, Skeletal manifestations of primary oxalosis, Pediatr. Nephrol, vol.5, pp.193-199, 1991.

C. Toussaint, Radiological and histological improvement of oxalate osteopathy after combined liver-kidney transplantation in primary hyperoxaluria type 1, Am. J. Kidney Dis, vol.21, pp.54-63, 1993.

P. Cochat, Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment, Nephrol Dial Transplant, vol.27, pp.1729-1736, 2012.

S. E. Berini, Progressive polyradiculoneuropathy due to intraneural oxalate deposition in type 1 primary hyperoxaluria, Muscle Nerve, vol.51, pp.449-454, 2015.

C. J. Danpure and P. R. Jennings, Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I, FEBS Letters, vol.201, pp.20-34, 2001.

N. Kamoda, The organ distribution of human alanine-2-oxoglutarate aminotransferase and alanine-glyoxylate aminotransferase, Biochem Med, pp.25-34, 1980.

E. Oppici, R. Montioli, and B. Cellini, Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview, Biochimica et Biophysica Acta (BBA) -Proteins and Proteomics, vol.1854, pp.1212-1219, 2015.

M. Dindo, E. Oppici, D. Dell&apos;orco, R. Montone, and B. Cellini, Correlation between the molecular effects of mutations at the dimer interface of alanine-glyoxylate aminotransferase leading to primary hyperoxaluria type I and the cellular response to vitamin B<Subscript>6</Subscript>, J Inherit Metab Dis, vol.41, pp.263-275, 2018.

X. Zhang, Crystal Structure of Alanine:Glyoxylate Aminotransferase and the Relationship Between Genotype and Enzymatic Phenotype in Primary Hyperoxaluria Type 1, Journal of Molecular Biology, vol.331, pp.643-652, 2003.

B. Cellini, R. Montioli, E. Oppici, A. Astegno, and C. Borri-voltattorni, The chaperone role of the pyridoxal 5?-phosphate and its implications for rare diseases involving B6-dependent enzymes, Clinical Biochemistry, vol.47, pp.158-165, 2014.

P. A. Huber, Peroxisomal Import of Human Alanine:glyoxylate Aminotransferase Requires Ancillary Targeting Information Remote from Its C Terminus, J. Biol. Chem, vol.280, pp.27111-27120, 2005.

A. Motley, Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1, J Cell Biol, pp.95-109, 1995.

R. Montioli, The N-terminal extension is essential for the formation of the active dimeric structure of liver peroxisomal alanine:glyoxylate aminotransferase, The International Journal of Biochemistry & Cell Biology, vol.44, pp.536-546, 2012.

. Pubchem and . Lysine, Accessed: 9th August 2018) 43. Pubchem. Pyridoxal phosphate anhydrous, p.9, 2018.

P. E. Purdue, Characterization and chromosomal mapping of a genomic clone encoding human alanine:Glyoxylate aminotransferase, Genomics, vol.10, pp.34-42, 1991.

P. E. Purdue, J. Allsop, G. Isaya, L. E. Rosenberg, and C. J. Danpure, Mistargeting of peroxisomal L-alanine:glyoxylate aminotransferase to mitochondria in primary hyperoxaluria patients depends upon activation of a cryptic mitochondrial targeting sequence by a point mutation, Proc Natl Acad Sci U S A, vol.88, pp.10900-10904, 1991.

P. E. Purdue, Y. Takada, and C. J. Danpure, Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1, The Journal of Cell Biology, vol.111, pp.2341-2351, 1990.

C. J. Danpure, P. R. Jennings, P. Fryer, P. E. Purdue, and J. Allsop, Primary hyperoxaluria type 1: genotypic and phenotypic heterogeneity, J. Inherit. Metab. Dis, vol.17, pp.487-499, 1994.

A. C. Tarn, C. Von-schnakenburg, and G. Rumsby, Primary hyperoxaluria type 1: diagnostic relevance of mutations and polymorphisms in the alanine:glyoxylate aminotransferase gene (AGXT), J. Inherit. Metab. Dis, vol.20, pp.689-696, 1997.

M. J. Lumb and C. J. Danpure, Functional Synergism between the Most Common Polymorphism in Human Alanine:Glyoxylate Aminotransferase and Four of the Most Common Disease-causing Mutations, J. Biol. Chem, vol.275, pp.36415-36422, 2000.

B. Cellini, A. Lorenzetto, R. Montioli, E. Oppici, and C. B. Voltattorni, Human liver peroxisomal alanine:glyoxylate aminotransferase: Different stability under chemical stress of the major allele, the minor allele, and its pathogenic G170R variant, Biochimie, vol.92, pp.1801-1811, 2010.

E. D. Hopper, A. M. Pittman, M. C. Fitzgerald, and C. L. Tucker, In Vivo and in Vitro Examination of Stability of Primary Hyperoxaluria-associated Human Alanine:Glyoxylate Aminotransferase, J Biol Chem, vol.283, pp.30493-30502, 2008.

A. L. Pey, E. Salido, and J. M. Sanchez-ruiz, Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria, Amino Acids, vol.41, pp.1233-1245, 2011.

W. Emma and L. , Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene, Human Mutation, vol.30, pp.910-917, 2009.

M. B. Coulter-mackie and Q. Lian, Partial trypsin digestion as an indicator of mis-folding of mutant alanine:glyoxylate aminotransferase and chaperone effects of specific ligands. Study of a spectrum of missense mutants, MGM, vol.94, pp.368-374, 2008.

M. B. Coulter-mackie and Q. Lian, Consequences of missense mutations for dimerization and turnover of alanine:glyoxylate aminotransferase: Study of a spectrum of mutations, MGM, vol.89, pp.349-359, 2006.

R. Montioli, S81L and G170R mutations causing Primary Hyperoxaluria type I in homozygosis and heterozygosis: an example of positive interallelic complementation, Hum Mol Genet, vol.23, pp.5998-6007, 2014.

B. Cellini, R. Montioli, A. Paiardini, A. Lorenzetto, and C. B. Voltattorni, Molecular Insight into the Synergism between the Minor Allele of Human Liver Peroxisomal Alanine:Glyoxylate Aminotransferase and the F152I Mutation, J Biol Chem, vol.284, pp.8349-8358, 2009.

E. Oppici, Biochemical analyses are instrumental in identifying the impact of mutations on holo and/or apo-forms and on the region(s) of alanine:glyoxylate aminotransferase variants associated with Primary Hyperoxaluria Type I, Mol Genet Metab, vol.105, pp.132-140, 2012.

N. Mesa-torres, The Role of Protein Denaturation Energetics and Molecular Chaperones in the Aggregation and Mistargeting of Mutants Causing Primary Hyperoxaluria Type I, PLoS One, vol.8, 2013.

E. Oppici, Crystal structure of the S187F variant of human liver alanine: Aminotransferase associated with primary hyperoxaluria type I and its functional implications, Proteins, vol.81, pp.1457-1465, 2013.

B. Cellini, Molecular defects of the glycine 41 variants of alanine glyoxylate aminotransferase associated with primary hyperoxaluria type I, PNAS, vol.107, pp.2896-2901, 2010.

S. Fargue, J. Lewin, G. Rumsby, and C. J. Danpure, Four of the Most Common Mutations in Primary Hyperoxaluria Type 1 Unmask the Cryptic Mitochondrial Targeting Sequence of Alanine:glyoxylate Aminotransferase Encoded by the Polymorphic Minor Allele, J Biol Chem, vol.288, pp.2475-2484, 2013.

A. Santana, E. Salido, A. Torres, and L. J. Shapiro, Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase, Proc Natl Acad Sci U S A, vol.100, pp.7277-7282, 2003.

E. Oppici, A. Roncador, R. Montioli, S. Bianconi, and B. Cellini, Gly161 mutations associated with Primary Hyperoxaluria Type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase, Biochimica et Biophysica Acta, pp.2277-2288, 2013.

C. J. Danpure, P. Cooper, P. Wise, and P. R. Jennings, An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria, J Cell Biol, vol.108, pp.1345-1352, 1989.

J. C. Lieske, International Registry for Primary Hyperoxaluria, AJN, vol.25, pp.290-296, 2005.

J. Harambat, Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome, Kidney International, vol.77, pp.443-449, 2010.

C. G. Monico, J. B. Olson, and D. S. Milliner, Implications of Genotype and Enzyme Phenotype in Pyridoxine Response of Patients with Type I Primary Hyperoxaluria, AJN, vol.25, pp.183-188, 2005.

G. Rumsby, E. Williams, and M. Coulter-mackie, Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias1, Kidney International, vol.66, pp.959-963, 2004.

Y. Frishberg, Intra-Familial Clinical Heterogeneity: Absence of Genotype-Phenotype Correlation in Primary Hyperoxaluria Type 1 in Israel, AJN, vol.25, pp.269-275, 2005.

V. O. Edvardsson, Hereditary Causes of Kidney Stones and Chronic Kidney Disease, Pediatr Nephrol, vol.28, pp.1923-1942, 2013.

M. Perinpam, Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease, Clinical Biochemistry, vol.50, pp.1014-1019, 2017.

H. Anders, The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury, Kidney International, vol.93, pp.656-669, 2018.

G. Rumsby, T. Weir, and C. T. Samuell, A Semiautomated Alanine: Glyoxylate Aminotransferase Assay for the Tissue Diagnosis of Primary Hyperoxaluria Type 1, Ann Clin Biochem, vol.34, pp.400-404, 1997.

L. Borghi, Urinary Volume, Water and Recurrences in Idiopathic Calcium Nephrolithiasis: A 5-year Randomized Prospective Study, The Journal of Urology, vol.155, pp.839-843, 1996.

P. Sikora, 13C2]oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria, Kidney International, vol.73, pp.1181-1186, 2008.

R. Siener, B. Hoppe, P. Löhr, S. C. Müller, and S. Latz, Metabolic profile and impact of diet in patients with primary hyperoxaluria, Int Urol Nephrol, pp.1-7, 2018.

R. P. Holmes, H. O. Goodman, and D. G. Assimos, Contribution of dietary oxalate to urinary oxalate excretion, Kidney International, vol.59, pp.270-276, 2001.

G. E. Unruh, S. Voss, T. Sauerbruch, and A. Hesse, Dependence of Oxalate Absorption on the Daily Calcium Intake, JASN, vol.15, pp.1567-1573, 2004.

E. Leumann, B. Hoppe, and T. Neuhaus, Management of primary hyperoxaluria: efficacy of oral citrate administration, Pediatr. Nephrol, vol.7, pp.207-211, 1993.

C. Y. Pak, Prevention of Stone Formation and Bone Loss In Absorptive Hypercalciuria by Combined Dietary and Pharmacological Interventions, The Journal of Urology, vol.169, pp.465-469, 2003.

D. J. Zimmermann, S. Voss, G. E. Unruh, and A. Hesse, Importance of Magnesium in Absorption and Excretion of Oxalate, UIN, vol.74, pp.262-267, 2005.

V. Lorenzo, A. Torres, E. Salido, . Primary, and . Hyperoxaluria, Nefrologia, vol.34, pp.398-412, 2014.

D. Gibbs and R. Watts, The action of pyridoxine in primary hyperoxaluria, Clin Sci, pp.277-286, 1970.

R. W. Watts, N. Veall, P. Purkiss, M. A. Mansell, and E. F. Haywood, The effect of Pyridoxine on Oxalate Dynamics in three Cases of Primary Hyperoxaluria (with Glycollic Aciduria), Clinical Science, vol.69, pp.87-90, 1985.

H. Hoyer-kuhn, Vitamin B6 in Primary Hyperoxaluria I: First Prospective Trial after 40 Years of Practice, Clin J Am Soc Nephrol, vol.9, pp.468-477, 2014.

C. G. Monico, S. Rossetti, J. B. Olson, and D. S. Milliner, Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele, Kidney International, vol.67, pp.1704-1709, 2005.

C. S. Woerden, Clinical implications of mutation analysis in primary hyperoxaluria type 1, Kidney International, vol.66, pp.746-752, 2004.

S. Fargue, G. Rumsby, and C. J. Danpure, Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1. Biochimica et Biophysica Acta (BBA) -Molecular Basis of Disease 1832, pp.1776-1783, 2013.

S. Fargue, Effect of conservative treatment on the renal outcome of children with primary hyperoxaluria type 1, Kidney International, vol.76, pp.767-773, 2009.

M. Straub, J. Gschwend, and C. Zorn, Pediatric urolithiasis: the current surgical management, Pediatr Nephrol, vol.25, pp.1239-1244, 2010.

K. Kerbl and R. V. Clayman, Endourologic treatment of nephrocalcinosis, Urology, vol.56, p.508, 2000.

S. A. Boddy, P. G. Duffy, T. M. Barratt, and H. N. Whitfield, Hyperoxaluria and renal calculi in children: the role of extracorporeal shock wave lithotripsy, J R Soc Med, vol.81, pp.604-605, 1988.

F. Illies, K. Bonzel, A. Wingen, K. Latta, and P. F. Hoyer, Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1, Kidney International, vol.70, pp.1642-1648, 2006.

M. Marangella, M. Petrarulo, D. Cosseddu, C. Vitale, and F. Linari, Oxalate balance studies in patients on hemodialysis for type I primary hyperoxaluria, Am. J. Kidney Dis, vol.19, pp.546-553, 1992.

P. Cochat, Primary hyperoxaluria type 1: still challenging!, Pediatr Nephrol, vol.21, pp.1075-1081, 2006.

J. I. Scheinman, J. S. Najarian, and S. M. Mauer, Successful strategies for renal transplantation in primary oxalosis, Kidney Int, vol.25, pp.804-811, 1984.

E. J. Bergstralh, Transplantation outcomes in primary hyperoxaluria, Am. J. Transplant, vol.10, pp.2493-2501, 2010.

A. D. Bello, O. Cointault, A. Delas, and N. Kamar, Recurrence of oxalate nephropathy after isolated kidney transplantation for primary hyperoxaluria type 2, American Journal of Transplantation, vol.18, pp.525-526, 2018.

F. Brinkert, Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth, Transplantation, vol.87, pp.1415-1421, 2009.

M. T. Perera, Pre-emptive liver transplantation for primary hyperoxaluria (PH-I) arrests long-term renal function deterioration, Nephrol. Dial. Transplant, vol.26, pp.354-359, 2011.

N. V. Jamieson, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984-2004, Am. J. Nephrol, vol.25, pp.282-289, 2005.

P. Compagnon, Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: The French Experience, Liver Transplantation, vol.20, pp.1475-1485, 2014.

I. Malla, Two-step transplantation for primary hyperoxaluria: cadaveric liver followed by living donor related kidney transplantation, Pediatr Transplant, vol.13, pp.782-784, 2009.

M. J. Kemper, The role of preemptive liver transplantation in primary hyperoxaluria type 1, Urol Res, vol.33, pp.376-379, 2005.

G. Chen, Left Lateral Sectionectomy of the Native Liver and Combined Living-Related Liver-Kidney Transplantation for Primary Hyperoxaluria Type, Medicine (Baltimore), vol.1, 2015.

D. S. Milliner, P. C. Harris, A. G. Cogal, and J. C. Lieske, Primary Hyperoxaluria Type 1. in GeneReviews®, 2017.

E. Salido, Phenotypic Correction of a Mouse Model for Primary Hyperoxaluria With Adeno-associated Virus Gene Transfer, Mol Ther, vol.19, pp.870-875, 2011.

R. Castello, Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1, Gene Ther, vol.23, pp.129-134, 2016.

M. Borrel, P. M. Maslo, . Bible-du-corps, and . Humain, Le guide santé de référence sur le fonctionnement de votre corps, 2015.

, Thérapie cellulaire. Inserm Available, p.27, 2018.

, Development of a new microfluidic platform in order to study intestinal and hepatic first pass effects, p.8, 2018.

, Anatomie du foie -Cancer du foie, p.8, 2018.

G. J. Logan, G. De-alencastro, I. E. Alexander, and G. C. Yeoh, Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease, The International Journal of Biochemistry & Cell Biology, vol.56, pp.141-152, 2014.

S. J. Forbes, S. Gupta, and A. Dhawan, Cell therapy for liver disease: From liver transplantation to cell factory, Journal of Hepatology, vol.62, pp.157-169, 2015.

E. C. Salido, Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer, Proc Natl Acad Sci U S A, vol.103, pp.18249-18254, 2006.

C. Guha, Feasibility of Hepatocyte Transplantation-Based Therapies for Primary Hyperoxalurias, AJN, vol.25, pp.161-170, 2005.

J. Jiang, Correction of Hyperoxaluria by Liver Repopulation With Hepatocytes in a Mouse Model of Primary Hyperoxaluria Type-1, Transplantation, vol.85, pp.1253-1260, 2008.

B. B. Beck, Liver cell transplantation in severe infantile oxalosis-a potential bridging procedure to orthotopic liver transplantation?, Nephrol Dial Transplant, vol.27, pp.2984-2989, 2012.

A. A. Khan, Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report, Trop Gastroenterol, vol.25, pp.141-143, 2004.

C. M. Habibullah, I. H. Syed, A. Qamar, and Z. Taher-uz, Human fetal hepatocyte transplantation in patients with fulminant hepatic failure, Transplantation, vol.58, pp.951-952, 1994.

M. Baxter, Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes, J Hepatol, vol.62, pp.581-589, 2015.

D. Haridass, Repopulation Efficiencies of Adult Hepatocytes, Fetal Liver Progenitor Cells, and Embryonic Stem Cell-Derived Hepatic Cells in Albumin-Promoter-Enhancer Urokinase-Type Plasminogen Activator Mice, Am J Pathol, vol.175, pp.1483-1492, 2009.

T. G. Bird, S. Lorenzini, and S. J. Forbes, Activation of stem cells in hepatic diseases, Cell Tissue Res, vol.331, pp.283-300, 2008.

J. Li, Human hepatic progenitor cells express hematopoietic cell markers CD45 and CD109, Int J Med Sci, vol.11, pp.65-79, 2014.

K. Yanger, Adult Hepatocytes Are Generated by Self-Duplication Rather than Stem Cell Differentiation, Cell Stem Cell, vol.15, pp.340-349, 2014.

B. D. Tarlow, Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes, Cell Stem Cell, vol.15, pp.605-618, 2014.

P. Huang, Direct Reprogramming of Human Fibroblasts to Functional and Expandable Hepatocytes, Cell Stem Cell, vol.14, pp.370-384, 2014.

Y. Du, Human Hepatocytes with Drug Metabolic Function Induced from Fibroblasts by Lineage Reprogramming, Cell Stem Cell, vol.14, pp.394-403, 2014.

J. Kim, Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts, Sci Rep, vol.5, 2015.

K. Takahashi, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, pp.861-872, 2007.

C. H. Jones, A. Hill, M. Chen, and B. A. Pfeifer, Contemporary Approaches for Nonviral Gene Therapy, Discovery Medicine, vol.19, pp.447-454, 2015.

. Thérapie-génique and . Inserm, , p.27, 2018.

J. Baruteau, S. N. Waddington, I. E. Alexander, and P. Gissen, Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects, J Inherit Metab Dis, vol.40, pp.497-517, 2017.

, Gene Therapy Clinical Trials Worldwide. Available, p.27, 2018.

A. Fischer, S. Hacein-bey-abina, and M. Cavazzana-calvo, Thérapie génique du déficit immunitaire combiné sévère lié à l'X -Efficacité et complications, Med Sci, vol.20, pp.115-117, 2004.

J. Konvalinka, H. Kräusslich, and B. Müller, Retroviral proteases and their roles in virion maturation, Virology, vol.479, issue.480, pp.403-417, 2015.

I. Dufait, Lentiviral Vectors in Immunotherapy, Gene Therapy -Tools and Potential Applications, 2013.

R. Vector and |. , Gene Therapy Review. Available, p.1, 2018.

. The-retroviridae, , 1995.

M. Wayengera, On the general theory of the origins of retroviruses, Theor Biol Med Model, vol.7, p.5, 2010.

R. M. Blaese, T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years, Science, vol.270, pp.475-480, 1995.

M. Cavazzana-calvo, Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease, Science, vol.288, pp.669-672, 2000.

M. Cavazzana-calvo and A. Fischer, Gene therapy for severe combined immunodeficiency: are we there yet?, J Clin Invest, vol.117, pp.1456-1465, 2007.

L. Koontz, Explanatory chapter: introducing exogenous DNA into cells, Meth. Enzymol, vol.529, pp.29-34, 2013.

T. H. Nguyen, Therapeutic Lentivirus-Mediated Neonatal in Vivo Gene Therapy in Hyperbilirubinemic Gunn Rats, Molecular Therapy, vol.12, pp.852-859, 2005.

M. Li, Y. Yuan, B. Hu, and L. Wu, Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease, J. Mol. Neurosci, vol.61, pp.489-497, 2017.

A. W. Nienhuis, C. E. Dunbar, and B. P. Sorrentino, Genotoxicity of retroviral integration in hematopoietic cells, Mol. Ther, vol.13, pp.1031-1049, 2006.

J. Clar, Hepatic lentiviral gene transfer prevents the long-term onset of hepatic tumours of glycogen storage disease type 1a in mice, Hum. Mol. Genet, vol.24, pp.2287-2296, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01350897

F. Urbinati, Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells, Exp. Hematol, vol.43, pp.346-351, 2015.

A. Cantore, Liver-Directed Lentiviral Gene Therapy in a Dog Model of Hemophilia B, Sci Transl Med, vol.7, pp.277-305, 2015.

F. Schmitt, Lentiviral Vectors That Express UGT1A1 in Liver and Contain miR-142 Target Sequences Normalize Hyperbilirubinemia in Gunn Rats, Gastroenterology, vol.139, pp.999-1007, 2010.

J. Birraux, A Step Toward Liver Gene Therapy: Efficient Correction of the Genetic Defect of Hepatocytes Isolated From a Patient With Crigler-Najjar Syndrome Type 1 With Lentiviral Vectors, Transplantation, vol.87, p.1006, 2009.

L. Echevarría, P. Aupy, and A. Goyenvalle, Exon-skipping advances for Duchenne muscular dystrophy, Hum Mol Genet, vol.27, pp.163-172, 2018.

X. He, Functional repair of p53 mutation in colorectal cancer cells using trans-splicing, Oncotarget, vol.6, pp.2034-2045, 2015.

X. He, Trans-splicing repair of mutant p53 suppresses the growth of hepatocellular carcinoma cells in vitro and in vivo, Sci Rep, vol.5, 2015.

B. Tockner, Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations, Gene Therapy, vol.23, pp.775-784, 2016.

R. G. Sinclair, E. L. Jones, and C. P. Gerba, Viruses in recreational water-borne disease outbreaks: a review, J. Appl. Microbiol, vol.107, pp.1769-1780, 2009.

R. Alba, A. Bosch, and M. Chillon, Gutless adenovirus: last-generation adenovirus for gene therapy, Gene Therapy, vol.12, pp.18-27, 2005.

S. Pearson, H. Jia, and K. Kandachi, China approves first gene therapy, Nat. Biotechnol, vol.22, pp.3-4, 2004.

S. Nayak and R. W. Herzog, Progress and Prospects: Immune Responses to Viral Vectors, Gene Ther, vol.17, pp.295-304, 2010.

S. Daya and K. I. Berns, Gene Therapy Using Adeno-Associated Virus Vectors, Clin Microbiol Rev, vol.21, pp.583-593, 2008.

D. Hüser, S. Weger, and R. Heilbronn, Kinetics and Frequency of Adeno-Associated Virus SiteSpecific Integration into Human Chromosome 19 Monitored by Quantitative Real-Time PCR, J Virol, vol.76, pp.7554-7559, 2002.

R. M. Kotin, R. M. Linden, and K. I. Berns, Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination, EMBO J, vol.11, pp.5071-5078, 1992.

K. Hollinger and J. S. Chamberlain, Viral vector-mediated gene therapies, Curr. Opin. Neurol, vol.28, pp.522-527, 2015.

A. S. Wierzbicki and A. Viljoen, Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency, Expert Opin Biol Ther, vol.13, pp.7-10, 2013.

, Children's Medical Research Institute, p.28, 2018.

M. Dasouki, Pompe Disease: Literature Review and Case Series, Neurologic Clinics, vol.32, pp.751-776, 2014.

Y. Frishberg, A. Zeharia, R. Lyakhovetsky, R. Bargal, and R. Belostotsky, Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria, Journal of Medical Genetics, vol.51, pp.526-529, 2014.

C. Martin-higueras, S. Luis-lima, and E. Salido, Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I, Mol Ther, vol.24, pp.719-725, 2016.

C. Dutta, Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1, Mol Ther, vol.24, pp.770-778, 2016.

A. Liebow, An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria, J Am Soc Nephrol, vol.28, pp.494-503, 2017.

, Study of ALN-GO1 in Healthy Adult Subjects and Patients With Primary Hyperoxaluria Type 1 -Full Text View -ClinicalTrials.gov. Available at, p.11, 2018.

, An Extension Study of an Investigational Drug, ALN-GO1, in Patients With Primary Hyperoxaluria Type 1 -No Study Results Posted -ClinicalTrials, p.15, 2018.

, A Study to Evaluate Lumasiran in Children and Adults With Primary Hyperoxaluria Type 1 -Full Text View -ClinicalTrials.gov, p.11, 2018.

M. L. Bobbin and J. J. Rossi, RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise?, Annual Review of Pharmacology and Toxicology, vol.56, pp.103-122, 2016.

C. L. Markert, J. B. Shaklee, and G. S. Whitt, Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation, Science, vol.189, pp.102-114, 1975.

J. R. Doherty and J. L. Cleveland, Targeting lactate metabolism for cancer therapeutics, J. Clin. Invest, vol.123, pp.3685-3692, 2013.

K. Yoshikuni, H. Tagami, M. Yamada, K. Sudo, and T. Kanno, Erythematosquamous Skin Lesions in Hereditary Lactate Dehydrogenase M-Subunit Deficiency, vol.122, pp.1420-1424, 1986.

S. Takayasu, S. Fujiwara, and T. Waki, Hereditary lactate dehydrogenase M-subunit deficiency: Lactate dehydrogenase activity in skin lesions and in hair follicles, Journal of the American Academy of Dermatology, vol.24, pp.339-342, 1991.

T. Kanno, Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy, Clin. Chim. Acta, vol.173, pp.89-98, 1988.

C. Lai, Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria, Molecular Therapy, vol.26, 1983.

J. Knight, R. P. Holmes, S. D. Cramer, T. Takayama, and E. Salido, Hydroxyproline metabolism in mouse models of primary hyperoxaluria, Am J Physiol Renal Physiol, vol.302, pp.688-693, 2012.

, Study of DCR-PHXC-101 in Normal Healthy Volunteers and Patients With Primary Hyperoxaluria -Full Text View -ClinicalTrials.gov. Available at, p.11, 2018.

, Novel Investigational Drug for PH: DCR-PHXC. Dicerna Pharmaceuticals Available at, p.11, 2018.

T. Ohashi, Enzyme replacement therapy for lysosomal storage diseases, Pediatr Endocrinol Rev, vol.10, issue.1, pp.26-34, 2012.

J. L. Landis, H. Hyland, S. J. Kindel, A. Punnoose, and G. C. Geddes, Pompe disease treatment with twice a week high dose alglucoside alfa in a patient with severe dilated cardiomyopathy, Mol Genet Metab Rep, vol.16, pp.1-4, 2018.

N. Mesa-torres, N. Tomic, A. Albert, E. Salido, and A. L. Pey, Molecular Recognition of PTS-1 Cargo Proteins by Pex5p: Implications for Protein Mistargeting in Primary Hyperoxaluria, Biomolecules, vol.5, pp.121-141, 2015.

A. Roncador, Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I, Nanomedicine: Nanotechnology, Biology and Medicine, vol.13, pp.897-907, 2017.

N. Mesa-torres, The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanine-glyoxylate aminotransferase, Biochemical Journal, vol.462, pp.453-463, 2014.

J. Hu, J. Liu, D. Yang, M. L. Yin, and J. , Physiological Roles of Asialoglycoprotein Receptors (ASGPRs) Variants and Recent Advances in Hepatic-Targeted Delivery of Therapeutic Molecules Via ASGPRs, Protein & Peptide Letters, p.14, 2014.

Y. Yabe, M. Nishikawa, A. Tamada, Y. Takakura, and M. Hashida, Targeted Delivery and Improved Therapeutic Potential of Catalase by Chemical Modification: Combination with Superoxide Dismutase Derivatives, J Pharmacol Exp Ther, vol.289, pp.1176-1184, 1999.

S. R. Terlecky and J. I. Koepke, Drug delivery to peroxisomes: Employing unique trafficking mechanisms to target protein therapeutics, Advanced Drug Delivery Reviews, vol.59, pp.739-747, 2007.

J. Liou, Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence, Peptides, vol.37, pp.273-284, 2012.

H. Saibil, Chaperone machines for protein folding, unfolding and disaggregation, Nat Rev Mol Cell Biol, vol.14, pp.630-642, 2013.

A. L. Pey, A. Albert, and E. Salido, Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I, Biomed Res Int, 2013.

F. Madoux, Development of a Phenotypic High-Content Assay to Identify Pharmacoperone Drugs for the Treatment of Primary Hyperoxaluria Type 1 by High-Throughput Screening, ASSAY and Drug Development Technologies, vol.13, pp.16-24, 2015.

S. Hou, Drug Library Screening for the Identification of Ionophores That Correct the Mistrafficking Disorder Associated with Oxalosis Kidney Disease, SLAS DISCOVERY: Advancing Life Sciences R&D, vol.22, pp.887-896, 2017.

N. Miyata, Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1, Proc Natl Acad Sci U S A, vol.111, pp.14406-14411, 2014.

R. Belostotsky, Translation inhibition corrects aberrant localization of mutant alanineglyoxylate aminotransferase: possible therapeutic approach for hyperoxaluria, J Mol Med, vol.96, pp.621-630, 2018.

A. B. Meriin, A Novel Approach to Recovery of Function of Mutant Proteins by Slowing Down Translation, J Biol Chem, vol.287, pp.34264-34272, 2012.

M. J. Allison, K. A. Dawson, W. R. Mayberry, and J. G. Foss, Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract, Arch. Microbiol, vol.141, pp.1-7, 1985.

M. Hatch, A. Gjymishka, E. C. Salido, M. J. Allison, and R. W. Freel, Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter, Am J Physiol Gastrointest Liver Physiol, vol.300, pp.461-469, 2011.

M. Hatch, Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion, Kidney International, vol.69, pp.691-698, 2006.

M. Hatch and R. W. Freel, A Human Strain of Oxalobacter (HC-1) Promotes Enteric Oxalate Secretion in the Small Intestine of Mice and Reduces Urinary Oxalate Excretion, Urolithiasis, vol.41, 2013.

C. S. Stewart, S. H. Duncan, and D. R. Cave, Oxalobacter formigenes and its role in oxalate metabolism in the human gut, FEMS Microbiology Letters, vol.230, pp.1-7, 2004.

J. P. Kelly, G. C. Curhan, D. R. Cave, T. E. Anderson, and D. W. Kaufman, Factors Related to Colonization with Oxalobacter formigenes in U.S. Adults, J Endourol, vol.25, pp.673-679, 2011.

D. W. Kaufman, Oxalobacter formigenes May Reduce the Risk of Calcium Oxalate Kidney Stones, J Am Soc Nephrol, vol.19, pp.1197-1203, 2008.

R. Siener, The role of Oxalobacter formigenes colonization in calcium oxalate stone disease, Kidney International, vol.83, pp.1144-1149, 2013.

C. Kwak, H. K. Kim, E. C. Kim, M. S. Choi, and H. H. Kim, Urinary Oxalate Levels and the Enteric Bacterium Oxalobacter formigenes in Patients with Calcium Oxalate Urolithiasis, European Urology, vol.44, pp.475-481, 2003.

S. A. Troxel, H. Sidhu, P. Kaul, and R. K. Low, Intestinal Oxalobacter formigenes Colonization in Calcium Oxalate Stone Formers and Its Relation to Urinary Oxalate, Journal of Endourology, vol.17, pp.173-176, 2003.

K. Mikami, Association of absence of intestinal oxalate degrading bacteria with urinary calcium oxalate stone formation, International Journal of Urology, vol.10, pp.293-296, 2003.

S. H. Duncan, Oxalobacter formigenes and Its Potential Role in Human Health, Appl Environ Microbiol, vol.68, pp.3841-3847, 2002.

B. Hoppe, Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria, Nephrol Dial Transplant, vol.26, pp.3609-3615, 2011.

D. Milliner, B. Hoppe, and J. Groothoff, A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria, Urolithiasis, vol.46, pp.313-323, 2018.

, A Study to Evaluate the Efficacy and Safety of Oxabact in Patients With Primary Hyperoxaluria -Full Text View -ClinicalTrials, p.20, 2018.

V. J. Just, A Closed Conformation of Bacillus subtilis Oxalate Decarboxylase OxdC Provides Evidence for the True Identity of the Active Site, J. Biol. Chem, vol.279, pp.19867-19874, 2004.

D. Grujic, Hyperoxaluria Is Reduced and Nephrocalcinosis Prevented with an OxalateDegrading Enzyme in Mice with Hyperoxaluria, AJN, vol.29, pp.86-93, 2009.

C. B. Langman, A Double-Blind, Placebo Controlled, Randomized Phase 1 Cross-Over Study with ALLN-177, an Orally Administered Oxalate Degrading Enzyme, AJN, vol.44, pp.150-158, 2016.

, Study of ALLN-177 in Patients Aged 12 Years or Older With Enteric or Primary Hyperoxaluria and Hyperoxalemia -Full Text View -ClinicalTrials, p.15, 2018.

A. Reloxaliase, , p.11, 2018.

C. H. Waddington, The strategy of the genes: a discussion of some aspects of theoretical biology, 1957.

J. B. Gurdon, The Developmental Capacity of Nuclei taken from Intestinal Epithelium Cells of Feeding Tadpoles, Development, vol.10, pp.622-640, 1962.

I. Wilmut, A. E. Schnieke, J. Mcwhir, A. J. Kind, and K. H. Campbell, Viable offspring derived from fetal and adult mammalian cells, Nature, vol.385, pp.810-813, 1997.

R. L. Davis, H. Weintraub, and A. B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, vol.51, pp.987-1000, 1987.

M. Ohnuki and K. Takahashi, Present and future challenges of induced pluripotent stem cells, Phil. Trans. R. Soc. B, vol.370, p.20140367, 2015.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

A. E. Omole and A. O. Fakoya, Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications, PeerJ, vol.6, 2018.

J. A. Thomson, Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, vol.282, pp.1145-1147, 1998.

Z. Wu, Generation of Pig Induced Pluripotent Stem Cells with a Drug-Inducible System, J Mol Cell Biol, vol.1, pp.46-54, 2009.

H. Liu, Generation of Induced Pluripotent Stem Cells from Adult Rhesus Monkey Fibroblasts, Cell Stem Cell, vol.3, pp.587-590, 2008.

T. Aasen, Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes, Nat. Biotechnol, vol.26, pp.1276-1284, 2008.

T. Aoi, Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells, Science, vol.321, pp.699-702, 2008.

J. Hanna, Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes To Pluripotency, Cell, vol.133, pp.250-264, 2008.

M. Stadtfeld, K. Brennand, and K. Hochedlinger, Reprogramming of pancreatic beta cells into induced pluripotent stem cells, Curr. Biol, vol.18, pp.890-894, 2008.

J. B. Kim, Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors, Nature, vol.454, pp.646-650, 2008.

J. Utikal, N. Maherali, W. Kulalert, and K. Hochedlinger, Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells, J. Cell. Sci, vol.122, pp.3502-3510, 2009.

N. Sun, Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.15720-15725, 2009.

K. Okita, T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells, Nature, vol.448, pp.313-317, 2007.

W. E. Lowry, Generation of human induced pluripotent stem cells from dermal fibroblasts, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.2883-2888, 2008.

J. Yu, Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, Science, vol.318, 1917.

J. Nichols, Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4, Cell, vol.95, pp.379-391, 1998.

S. Masui, Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells, Nat. Cell Biol, vol.9, pp.625-635, 2007.

D. J. Rodda, Transcriptional regulation of nanog by OCT4 and SOX2, J. Biol. Chem, vol.280, pp.24731-24737, 2005.

I. Chambers, Nanog safeguards pluripotency and mediates germline development, Nature, vol.450, pp.1230-1234, 2007.

K. Mitsui, The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells, Cell, vol.113, pp.631-642, 2003.

D. T. Dang, J. Pevsner, and V. W. Yang, The biology of the mammalian Krüppel-like family of transcription factors, Int. J. Biochem. Cell Biol, vol.32, pp.1103-1121, 2000.

Y. Nakatake, Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells, Mol. Cell. Biol, vol.26, pp.7772-7782, 2006.

C. V. Dang, The c-Myc target gene network, Semin. Cancer Biol, vol.16, pp.253-264, 2006.

J. M. Lemaitre, R. S. Buckle, and M. Méchali, c-Myc in the control of cell proliferation and embryonic development, Adv. Cancer Res, vol.70, pp.95-144, 1996.

Y. Wang, Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal, Dev. Cell, vol.25, pp.69-80, 2013.

S. Loewer, Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells, Nat. Genet, vol.42, pp.1113-1117, 2010.

K. A. Worringer, The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes, Cell Stem Cell, vol.14, pp.40-52, 2014.

F. Anokye-danso, Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency, Cell Stem Cell, vol.8, pp.376-388, 2011.

H. Hong, Suppression of induced pluripotent stem cell generation by the p53-p21 pathway, Nature, vol.460, pp.1132-1135, 2009.

A. Banito, Senescence impairs successful reprogramming to pluripotent stem cells, Genes Dev, vol.23, pp.2134-2139, 2009.

M. J. Edel, Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1, Genes Dev, vol.24, pp.561-573, 2010.

P. Mali, Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts, Stem Cells, vol.26, 1998.

L. Lapasset, Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state, Genes Dev, vol.25, pp.2248-2253, 2011.

Y. Shi, Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds, Cell Stem Cell, vol.3, pp.568-574, 2008.

D. Huangfu, Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds, Nat. Biotechnol, vol.26, pp.795-797, 2008.

T. Chung, Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells, Stem Cells, vol.28, pp.1848-1855, 2010.

T. Wang, The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner, Cell Stem Cell, vol.9, pp.575-587, 2011.

D. Huangfu, Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2, Nat. Biotechnol, vol.26, pp.1269-1275, 2008.

R. Blelloch, M. Venere, J. Yen, and M. Ramalho-santos, Generation of induced pluripotent stem cells in the absence of drug selection, Cell Stem Cell, vol.1, pp.245-247, 2007.

M. Nakagawa, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts, Nat. Biotechnol, vol.26, pp.101-106, 2008.

I. Rodríguez-pizà, Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions, Stem Cells, vol.28, pp.36-44, 2010.

B. W. Carey, Reprogramming of murine and human somatic cells using a single polycistronic vector, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.157-162, 2009.

C. A. Sommer, Induced pluripotent stem cell generation using a single lentiviral stem cell cassette, Stem Cells, vol.27, pp.543-549, 2009.

F. Soldner, Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors, Cell, vol.136, pp.964-977, 2009.

N. Maherali, A high-efficiency system for the generation and study of human induced pluripotent stem cells, Cell Stem Cell, vol.3, pp.340-345, 2008.

J. Staerk, Reprogramming of peripheral blood cells to induced pluripotent stem cells, Cell Stem Cell, vol.7, pp.20-24, 2010.

J. A. Bernal, RNA-Based Tools for Nuclear Reprogramming and Lineage-Conversion: Towards Clinical Applications, J Cardiovasc Transl Res, vol.6, pp.956-968, 2013.

K. Woltjen, piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells, Nature, vol.458, pp.766-770, 2009.

K. Kaji, Virus free induction of pluripotency and subsequent excision of reprogramming factors, Nature, vol.458, pp.771-775, 2009.

Z. Ivics, P. B. Hackett, R. H. Plasterk, and Z. Izsvák, Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells, Cell, vol.91, pp.501-510, 1997.

M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger, Induced pluripotent stem cells generated without viral integration, Science, vol.322, pp.945-949, 2008.

W. Zhou and C. R. Freed, Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells, Stem Cells, vol.27, pp.2667-2674, 2009.

I. Masaki, Recombinant Sendai virus-mediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system, FASEB J, vol.15, pp.1294-1296, 2001.

Y. Yonemitsu, Efficient gene transfer to airway epithelium using recombinant Sendai virus, Nat. Biotechnol, vol.18, pp.970-973, 2000.

Y. Murakami, Newly-developed Sendai virus vector for retinal gene transfer: reduction of innate immune response via deletion of all envelope-related genes, J Gene Med, vol.10, pp.165-176, 2008.

K. Nishimura, Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming, J. Biol. Chem, vol.286, pp.4760-4771, 2011.

H. Li, A Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus with Efficient Gene Transfer and Expression, J Virol, vol.74, pp.6564-6569, 2000.

R. A. Lamb, D. Kolakofsky, B. N. Fields, D. Knipe, and P. Howley, Paramyxoviridae: the viruses and their replication. in Fields virology, pp.1177-1204, 1996.

M. Inoue, Nontransmissible virus-like particle formation by F-deficient sendai virus is temperature sensitive and reduced by mutations in M and HN proteins, J. Virol, vol.77, pp.3238-3246, 2003.

H. Ban, Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors, Proc Natl Acad Sci U S A, vol.108, pp.14234-14239, 2011.

N. Nishishita, C. Takenaka, N. Fusaki, and S. Kawamata, Generation of human induced pluripotent stem cells from cord blood cells, J Stem Cells, vol.6, pp.101-108, 2011.

T. Seki, S. Yuasa, and K. Fukuda, Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus, Nat Protoc, vol.7, pp.718-728, 2012.

T. Seki, Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells, Cell Stem Cell, vol.7, pp.11-14, 2010.

N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa, Efficient induction of transgenefree human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome, Proc. Jpn. Acad., Ser. B, vol.85, pp.348-362, 2009.

K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, Generation of mouse induced pluripotent stem cells without viral vectors, Science, vol.322, pp.949-953, 2008.

J. Yu, Human induced pluripotent stem cells free of vector and transgene sequences, Science, vol.324, pp.797-801, 2009.

F. Jia, A nonviral minicircle vector for deriving human iPS cells, Nat. Methods, vol.7, pp.197-199, 2010.

K. H. Narsinh, Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors, Nat Protoc, vol.6, pp.78-88, 2011.

T. Roitsch and L. Lehle, Requirements for efficient in vitro transcription and translation: a study using yeast invertase as a probe, Biochim. Biophys. Acta, vol.1009, pp.19-26, 1989.

E. Grudzien-nogalska, Synthetic mRNAs with superior translation and stability properties, Methods Mol. Biol, vol.969, pp.55-72, 2013.

J. Jemielity, Novel 'anti-reverse' cap analogs with superior translational properties, RNA, vol.9, pp.1108-1122, 2003.

K. Karikó, Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability, Mol. Ther, vol.16, pp.1833-1840, 2008.

K. Karikó, M. Buckstein, H. Ni, and D. Weissman, Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA, Immunity, vol.23, pp.165-175, 2005.

V. Hornung, 5'-Triphosphate RNA is the ligand for RIG-I, Science, vol.314, pp.994-997, 2006.

L. Warren, Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell, vol.7, pp.618-630, 2010.

P. K. Mandal and D. J. Rossi, Reprogramming human fibroblasts to pluripotency using modified mRNA, Nat Protoc, vol.8, pp.568-582, 2013.

L. Warren, Y. Ni, J. Wang, and X. Guo, Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA, Sci Rep, vol.2, 2012.

H. Zhou, Generation of induced pluripotent stem cells using recombinant proteins, Cell Stem Cell, vol.4, pp.381-384, 2009.

D. Kim, Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins, Cell Stem Cell, vol.4, pp.472-476, 2009.

H. Hongisto, Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture, Stem Cell Research, vol.8, pp.97-108, 2012.

L. Eiselleova, Comparative study of mouse and human feeder cells for human embryonic stem cells, Int. J. Dev. Biol, vol.52, pp.353-363, 2008.

S. Rottem and M. F. Barile, Beware of mycoplasmas, Trends Biotechnol, vol.11, pp.143-151, 1993.

G. N. Stacey, The development of 'feeder' cells for the preparation of clinical grade hES cell lines: challenges and solutions, J. Biotechnol, vol.125, pp.583-588, 2006.

L. G. Villa-diaz, A. M. Ross, J. Lahann, and P. H. Krebsbach, The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings, Stem Cells, vol.31, pp.1-7, 2013.

B. Lucendo-villarin, H. Rashidi, K. Cameron, and D. C. Hay, Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering, J Mater Chem B Mater Biol Med, vol.4, pp.3433-3442, 2016.

H. K. Kleinman, Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma, Biochemistry, vol.21, pp.6188-6193, 1982.

M. Nagaoka, K. Si-tayeb, T. Akaike, and S. A. Duncan, Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum, BMC Dev. Biol, vol.10, p.60, 2010.

G. Chen, Chemically defined conditions for human iPSC derivation and culture, Nat. Methods, vol.8, pp.424-429, 2011.

D. A. Brafman, Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces, Biomaterials, vol.31, pp.9135-9144, 2010.

L. G. Villa-diaz, Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates, Stem Cells, vol.30, pp.1174-1181, 2012.

R. Bergström, S. Ström, F. Holm, A. Feki, and O. Hovatta, Xeno-free culture of human pluripotent stem cells, Methods Mol. Biol, vol.767, pp.125-136, 2011.

C. Boreström, Footprint-Free Human Induced Pluripotent Stem Cells From Articular Cartilage With Redifferentiation Capacity: A First Step Toward a Clinical-Grade Cell Source, Stem Cells Transl Med, vol.3, pp.433-447, 2014.

A. Asplund, One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells, Stem Cell Rev and Rep, vol.12, pp.90-104, 2016.

, iPSC Nantes -Plate-forme de cellules souches pluripotentes | Biogenouest, p.7, 2018.

. Safe-ips--chu-de-montpellier, , p.7, 2018.

D. Ilic, L. Devito, C. Miere, and S. Codognotto, Human embryonic and induced pluripotent stem cells in clinical trials, Br Med Bull, vol.116, pp.19-27, 2015.

, Cellules souches : un nouvel essai chez l'homme. Available at, p.10, 2018.

D. Normilejul.-30, & Pm, 3:35. First-of-its-kind clinical trial will use reprogrammed adult stem cells to treat Parkinson's, Science | AAAS, p.15, 2018.

P. Knoepfler, Japan conditionally approves new IPS cell-based heart study. The Niche, p.15, 2018.

S. Irion, M. C. Nostro, S. J. Kattman, and G. M. Keller, Directed differentiation of pluripotent stem cells: from developmental biology to therapeutic applications, Cold Spring Harb. Symp. Quant. Biol, vol.73, pp.101-110, 2008.

S. Han, Generation of functional hepatic cells from pluripotent stem cells, J Stem Cell Res Ther Suppl, vol.10, pp.1-7, 2012.

N. R. Hannan, C. Segeritz, T. Touboul, and L. Vallier, Production of hepatocyte like cells from human pluripotent stem cells, Nat Protoc, vol.8, pp.430-437, 2013.

S. T. Rashid, Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells, J Clin Invest, vol.120, pp.3127-3136, 2010.

K. Norrman, A. Strömbeck, H. Semb, and A. Ståhlberg, Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level, Methods, vol.59, pp.59-70, 2013.

S. A. Duncan, Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.7598-7602, 1994.

C. Schmidt, Scatter factor/hepatocyte growth factor is essential for liver development, Nature, vol.373, pp.699-702, 1995.

A. Kamiya, T. Kinoshita, and A. Miyajima, Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways, FEBS Lett, vol.492, pp.90-94, 2001.

R. Gualdi, Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control, Genes Dev, vol.10, pp.1670-1682, 1996.

A. Kamiya, Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer, EMBO J, vol.18, pp.2127-2136, 1999.

S. K. Mallanna and S. A. Duncan, Differentiation of hepatocytes from pluripotent stem cells, Curr Protoc Stem Cell Biol, vol.26, 2013.

K. Si-tayeb, Highly Efficient Generation of Human Hepatocyte-like Cells from Induced Pluripotent Stem Cells, Hepatology, vol.51, pp.297-305, 2010.

T. Takebe, Vascularized and functional human liver from an iPSC-derived organ bud transplant, Nature, vol.499, pp.481-484, 2013.

G. J. Sullivan, Generation of functional human hepatic endoderm from human induced pluripotent stem cells, Hepatology, vol.51, pp.329-335, 2010.

Y. Nagamoto, The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets, Biomaterials, vol.33, pp.4526-4534, 2012.

K. Takayama, 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing, Biomaterials, vol.34, pp.1781-1789, 2013.

S. Asgari, Induced pluripotent stem cells: a new era for hepatology, J. Hepatol, vol.53, pp.738-751, 2010.

T. J. Rowland, Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin, Stem Cells Dev, vol.19, pp.1231-1240, 2010.

R. E. Schwartz, H. E. Fleming, S. R. Khetani, and S. N. Bhatia, Pluripotent stem cell-derived hepatocyte-like cells, Biotechnol. Adv, vol.32, pp.504-513, 2014.

N. Roy-chowdhury, X. Wang, C. Guha, and J. Roy-chowdhury, Hepatocyte-like cells derived from induced pluripotent stem cells, Hepatol Int, vol.11, pp.54-69, 2017.

B. R. Ware, D. R. Berger, and S. R. Khetani, Prediction of Drug-Induced Liver Injury in Micropatterned Co-cultures Containing iPSC-Derived Human Hepatocytes, Toxicol. Sci, vol.145, pp.252-262, 2015.

G. Holmgren, Long-term chronic toxicity testing using human pluripotent stem cellderived hepatocytes, Drug Metab. Dispos, vol.42, pp.1401-1406, 2014.

K. Takayama, Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.16772-16777, 2014.

S. M. Choi, Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells, Hepatology, vol.57, pp.2458-2468, 2013.

S. M. Strittmatter, Old drugs learn new tricks, Nat Med, vol.20, pp.590-591, 2014.

M. A. Cayo, A drug screen using human iPSC-derived hepatocyte-like cells identifies cardiac glycosides as a potential treatment for hypercholesterolemia, Cell Stem Cell, vol.20, 2017.

E. N. Tafaleng, Induced pluripotent stem cells model personalized variations in liver disease resulting from ?1-antitrypsin deficiency, Hepatology, vol.62, pp.147-157, 2015.

T. Peyrard, Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges, Transfus Med Rev, vol.25, pp.206-216, 2011.

M. Turner, Toward the Development of a Global Induced Pluripotent Stem Cell Library, Cell Stem Cell, vol.13, pp.382-384, 2013.

N. Roy-chowdhury, X. Wang, C. Guha, and J. Roy-chowdhury, Hepatocyte-like cells derived from induced pluripotent stem cells, Hepatol Int, vol.11, pp.54-69, 2017.

Y. Chen, Amelioration of Hyperbilirubinemia in Gunn Rats after Transplantation of Human Induced Pluripotent Stem Cell-Derived Hepatocytes, Stem Cell Reports, vol.5, pp.22-30, 2015.

S. Zhang, Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin, Hum Mol Genet, vol.20, pp.3176-3187, 2011.

K. Yusa, Targeted gene correction of ?1-antitrypsin deficiency in induced pluripotent stem cells, Nature, vol.478, pp.391-394, 2011.

Z. Mao, M. Bozzella, A. Seluanov, and V. Gorbunova, DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells, Cell Cycle, vol.7, pp.2902-2906, 2008.

V. Lemarchandel and X. Montagutelli, La recombinaison homologue : de nouvelles perspectives pour la transgenèse chez les mammifères, Médecine sciences [revue papier, vol.6, pp.18-29, 1990.

T. Doetschman, Targetted correction of a mutant HPRT gene in mouse embryonic stem cells, Nature, vol.330, pp.576-578, 1987.

G. Donoho, M. Jasin, and P. Berg, Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells, Mol. Cell. Biol, vol.18, pp.4070-4078, 1998.

M. H. Porteus and D. Baltimore, Chimeric nucleases stimulate gene targeting in human cells, Science, vol.300, p.763, 2003.

L. S. Symington and J. Gautier, Double-strand break end resection and repair pathway choice, Annu. Rev. Genet, vol.45, pp.247-271, 2011.

F. P. Pankowicz, K. E. Jarrett, W. R. Lagor, and K. Bissig, CRISPR/Cas9: at the cutting edge of hepatology, Gut, vol.66, pp.1329-1340, 2017.

B. S. Chevalier, Design, activity, and structure of a highly specific artificial endonuclease, Mol. Cell, vol.10, pp.895-905, 2002.

J. P. Connelly, J. C. Barker, S. Pruett-miller, and M. H. Porteus, Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease, Mol. Ther, vol.18, pp.1103-1110, 2010.

P. Tebas, Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV, N. Engl. J. Med, vol.370, pp.901-910, 2014.

C. Mussolino, T. Mlambo, and T. Cathomen, Proven and novel strategies for efficient editing of the human genome, Curr Opin Pharmacol, vol.24, pp.105-112, 2015.

C. Mussolino and T. Cathomen, TALE nucleases: tailored genome engineering made easy, Curr. Opin. Biotechnol, vol.23, pp.644-650, 2012.

, FDA Grants Cellectis IND Approval for UCART22 in B-ALL | Cellectis. Available at, 2018.

T. Cermak, Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting, Nucleic Acids Res, vol.39, p.82, 2011.

P. C. Fineran and E. Charpentier, Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information, Virology, vol.434, pp.202-209, 2012.

P. Horvath and R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea, Science, vol.327, pp.167-170, 2010.

M. Jinek, A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, pp.816-821, 2012.

J. Pu, D. Frescas, B. Zhang, and J. Feng, Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification, Exp. Biol. Med. (Maywood), vol.240, pp.1065-1070, 2015.

D. H. Haft, J. Selengut, E. F. Mongodin, and K. E. Nelson, A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes, PLoS Comput. Biol, vol.1, p.60, 2005.

C. Anders, O. Niewoehner, A. Duerst, and M. Jinek, Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease, Nature, vol.513, pp.569-573, 2014.

Y. Fu, J. D. Sander, D. Reyon, V. M. Cascio, and J. K. Joung, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol, vol.32, pp.279-284, 2014.

F. A. Ran, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, vol.154, pp.1380-1389, 2013.

S. Xu and Y. K. Gupta, Natural zinc ribbon HNH endonucleases and engineered zinc finger nicking endonuclease, Nucleic Acids Res, vol.41, pp.378-390, 2013.

R. Shah, R. Cosstick, and S. C. West, The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts, EMBO J, vol.16, pp.1464-1472, 1997.

A. Reis, B. Hornblower, B. Robb, and G. Tzertzinis, CRISPR/Cas9 & Targeted Genome Editing: New Era in Molecular Biology, 2014.

Y. Fu, High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol, vol.31, pp.822-826, 2013.

B. Shen, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, vol.11, pp.399-402, 2014.

J. D. Sander and J. K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat. Biotechnol, vol.32, pp.347-355, 2014.

, NY-ESO-1-redirected CRISPR (TCRendo and PD1) Edited T Cells (NYCE T Cells) -Full Text ViewClinicalTrials.gov. Available at, p.26, 2018.

, Study of CRISPR-Cas9 Mediated PD-1 and TCR Gene-knocked Out Mesothelin-directed CAR-T Cells in Patients With Mesothelin Positive Multiple Solid Tumors, p.26, 2018.

, A Safety and Efficacy Study Evaluating CTX001 in Subjects With Transfusion-Dependent ?-Thalassemia -Full Text View -ClinicalTrials.gov. Available at, p.26, 2018.

N. G. Seidah, Z. Awan, M. Chrétien, and M. Mbikay, PCSK9: a key modulator of cardiovascular health, Circ. Res, vol.114, pp.1022-1036, 2014.

X. Wang, CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report, Arterioscler. Thromb. Vasc. Biol, vol.36, pp.783-786, 2016.

F. A. Ran, In vivo genome editing using Staphylococcus aureus Cas9, Nature, vol.520, pp.186-191, 2015.

R. Ibraheim, All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo, Genome Biol, vol.19, p.137, 2018.

K. E. Jarrett, Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease, Sci Rep, vol.7, p.44624, 2017.

L. Zhang, Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I, Sci Rep, vol.6, p.31460, 2016.

F. P. Pankowicz, Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia, Nat Commun, vol.7, p.12642, 2016.

E. P. Papapetrou and A. Schambach, Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy, Mol Ther, vol.24, pp.678-684, 2016.

R. C. Dekelver, Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome, Genome Res, vol.20, pp.1133-1142, 2010.

T. Ogata, T. Kozuka, and T. Kanda, Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA, J. Virol, vol.77, pp.9000-9007, 2003.

F. Oceguera-yanez, Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives, Methods, vol.101, pp.43-55, 2016.

C. Lyu, Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system, Stem Cell Res Ther, vol.9, 2018.

P. C. Lee, Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells, Mol Ther Nucleic Acids, vol.5, p.394, 2016.

Y. Guan, CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse, EMBO Mol Med, vol.8, pp.477-488, 2016.

H. Yin, Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype, Nat. Biotechnol, vol.32, pp.551-553, 2014.

H. Yin, Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo, Nat. Biotechnol, vol.34, pp.328-333, 2016.

L. Omer, CRISPR correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells, Hepatol Commun, vol.1, pp.886-898, 2017.

N. Zapata-linares, Generation and characterization of human iPSC lines derived from a Primary Hyperoxaluria Type I patient with p.I244T mutation, Stem Cell Research, vol.16, pp.116-119, 2016.

T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church, and E. Valen, CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing, Nucleic Acids Res, vol.42, pp.401-407, 2014.

R. Flynn, CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells, Exp Hematol, vol.43, pp.838-848, 2015.

X. Liang, J. Potter, S. Kumar, N. Ravinder, and J. D. Chesnut, Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA, Journal of Biotechnology, vol.241, pp.136-146, 2017.

K. G. Chen, B. S. Mallon, R. D. Mckay, and P. G. Robey, Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics, Cell Stem Cell, vol.14, pp.13-26, 2014.

T. P. Kraehenbuehl, R. Langer, and L. S. Ferreira, Three-dimensional biomaterials for the study of human pluripotent stem cells, Nat. Methods, vol.8, pp.731-736, 2011.

M. Amit, Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells, Stem Cell Rev, vol.6, pp.248-259, 2010.

M. Vosough, Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture, Stem Cells Dev, vol.22, pp.2693-2705, 2013.

U. Weissbein, N. Benvenisty, and U. Ben-david, Genome maintenance in pluripotent stem cells, J Cell Biol, vol.204, pp.153-163, 2014.

U. Weissbein, O. Plotnik, D. Vershkov, and N. Benvenisty, Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells, PLoS Genet, vol.13, 2017.

K. Nishino, Defining hypo-methylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts, PLoS ONE, vol.5, p.13017, 2010.

M. F. Bolukbasi, A. Gupta, and S. A. Wolfe, Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery, Nature Methods, vol.13, pp.41-50, 2016.

E. A. Josephs, Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage, Nucleic Acids Res, vol.43, pp.8924-8941, 2015.

S. Ramakrishna, Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA, Genome Res, vol.24, pp.1020-1027, 2014.

S. Kim, D. Kim, S. W. Cho, J. Kim, and J. Kim, Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res, vol.24, pp.1012-1019, 2014.

I. M. Slaymaker, Rationally engineered Cas9 nucleases with improved specificity, Science, vol.351, pp.84-88, 2016.

R. Daer, C. Barrett, and K. Haynes, Enhancing Cas9 Activity in Heterochromatin, p.228601, 2017.

R. M. Daer, J. P. Cutts, D. A. Brafman, and K. A. Haynes, The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells, ACS Synth Biol, vol.6, pp.428-438, 2017.

H. Tiricz, Relaxed chromatin induced by histone deacetylase inhibitors improves the oligonucleotide-directed gene editing in plant cells, J. Plant Res, vol.131, pp.179-189, 2018.

S. V. Vartak and S. C. Raghavan, Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing, FEBS J, vol.282, pp.4289-4294, 2015.

F. Robert, M. Barbeau, S. Éthier, J. Dostie, and J. Pelletier, Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing, Genome Med, vol.7, 2015.

T. Maruyama, Inhibition of non-homologous end joining increases the efficiency of CRISPR/Cas9-mediated precise, Nat Biotechnol, vol.33, pp.538-542, 2015.

V. T. Chu, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nature Biotechnology, vol.33, pp.543-548, 2015.

J. Renaud, Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases, Cell Reports, vol.14, pp.2263-2272, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371505

Y. Avior, Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes, Hepatology, vol.62, pp.265-278, 2015.

Y. Wang, S. C. Chai, C. T. Brewer, and T. Chen, Pregnane X receptor and drug-induced liver injury, Expert Opin Drug Metab Toxicol, vol.10, pp.1521-1532, 2014.

K. Takayama, Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction, PLoS ONE, vol.6, p.21780, 2011.

K. Takayama, Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4? transduction, Mol. Ther, vol.20, pp.127-137, 2012.

F. Meier, Hepatic differentiation of human iPSCs in different 3D models: A comparative study, Int J Mol Med, vol.40, pp.1759-1771, 2017.

I. Gieseck and R. L. , Maturation of Induced Pluripotent Stem Cell Derived Hepatocytes by 3D-Culture, PLoS One, vol.9, 2014.

K. Stevens, InVERT molding for scalable control of tissue microarchitecture, Nat Commun, vol.4, p.1847, 2013.

M. Kehtari, B. Zeynali, M. Soleimani, M. Kabiri, and E. Seyedjafari, Fabrication of a co-culture micro-bioreactor device for efficient hepatic differentiation of human induced pluripotent stem cells (hiPSCs), Nanomedicine, and Biotechnology, vol.0, pp.1-10, 2018.

T. Yamashita, K. Takayama, F. Sakurai, and H. Mizuguchi, Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells, Biochemical and Biophysical Research Communications, vol.496, pp.1269-1275, 2018.

M. Jaramillo, H. Yeh, M. L. Yarmush, and B. E. Uygun, Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs)

, J Tissue Eng Regen Med, vol.12, pp.1962-1973, 2018.

B. Wang, Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix-A Comparative Analysis of Bioartificial Liver Microenvironments, Stem Cells Transl Med, vol.5, pp.1257-1267, 2016.

T. Takebe, Generation of a vascularized and functional human liver from an iPSCderived organ bud transplant, Nat Protoc, vol.9, pp.396-409, 2014.

Y. Nie, Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells, EBioMedicine, vol.0, 2018.

S. S. Ng, Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold, Biomaterials, vol.182, pp.299-311, 2018.

P. Viswanathan, S. Kapoor, V. Kumaran, B. Joseph, and S. Gupta, Etanercept blocks inflammatory responses orchestrated by TNF-? to promote transplanted cell engraftment and proliferation in rat liver, Hepatology, vol.60, pp.1378-1388, 2014.

R. Bahde, S. Kapoor, P. Viswanathan, H. Spiegel, and S. Gupta, Endothelin-1 receptor A blocker darusentan decreased hepatic changes and improved liver repopulation after cell transplantation in rats, Hepatology, vol.59, pp.1107-1117, 2014.

Y. Enami, Hepatic stellate cells promote hepatocyte engraftment in rat liver after prostaglandin-endoperoxide synthase inhibition, Gastroenterology, vol.136, pp.2356-2364, 2009.

V. Kumaran, B. Joseph, D. Benten, and S. Gupta, Integrin and Extracellular Matrix Interactions Regulate Engraftment of Transplanted Hepatocytes in the Rat Liver, Gastroenterology, vol.129, pp.1643-1653, 2005.

S. Koenig, Regional Transient Portal Ischemia and Irradiation as Preparative Regimen for Hepatocyte Transplantation, Cell Transplant, vol.20, pp.303-312, 2011.

Y. Wu, B. Joseph, E. Berishvili, V. Kumaran, and S. Gupta, Hepatocyte transplantation and drug-induced perturbations in liver cell compartments, Hepatology, vol.47, pp.279-287, 2008.

A. N. Karnezis, M. Dorokhov, M. Grompe, and L. Zhu, Loss of p27Kip1 enhances the transplantation efficiency of hepatocytes transferred into diseased livers, J Clin Invest, vol.108, pp.383-390, 2001.

D. Yimlamai, Hippo Pathway Activity Influences Liver Cell Fate, Cell, vol.157, pp.1324-1338, 2014.

S. Goulinet-mainot, Improved Hepatocyte Engraftment After Portal Vein Occlusion in LDL Receptor-Deficient WHHL Rabbits and Lentiviral-Mediated Phenotypic Correction In Vitro, Cell Med, vol.4, pp.85-98, 2012.

I. Dagher, Efficient hepatocyte engraftment and long-term transgene expression after reversible portal embolization in nonhuman primates, Hepatology, vol.49, pp.950-959, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00326130

J. M. Blouin, . Bernardo-seisdedos, E. Sasso, J. Esteve, C. Ged et al.,

, Missense UROS mutations causing congenital erythropoietic porphyria reduce UROS homeostasis that can be rescued by proteasome inhibition.; Hum Mol Genet, vol.26, pp.1565-1576, 2017.

J. Estève, J. M. Blouin, M. Lalanne, L. Azzi-martin, P. Dubus et al., AGXT expression rescue in hepatocyte-like cells derived from Primary Hyperoxaluria type 1 induced pluripotent stem cells using liver-specific lentiviral vector, 2018.

J. Estève, J. M. Blouin, M. Lalanne, L. Azzi-martin, P. Dubus et al., Targeted gene therapy in human induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using the CRISPR/Cas9 technology

J. Estève, J. M. Blouin, M. Lalanne, L. Azzi-martin, P. Dubus et al.,

F. Bordeaux, J. Poster-estève, J. M. Blouin, M. Lalanne, V. Guyonnet-dupérat et al., Targeted gene editing for phenotypic correction of Primary Hyperoxaluria type 1, Congrès et formations 25th Anniversary Congress of the European Society, vol.17, 2017.

, Concevoir une stratégie de veille : collecter, classer, sauvegarder et diffuser ses données, INGESTEM (Infrastructure nationale d'ingénierie des cellules souches pluripotentes, pp.8-09, 2015.

, L'industrie pharmaceutique : perspectives pour les jeunes chercheurs, pp.3-04, 2015.