L. V. Wang and H. Wu, Biomedical optics: principles and imaging, 2012.

L. Henyey and J. Greenstein, Diffuse radiation in the galaxy, Ann. Astrophys, vol.3, pp.117-137, 1940.

J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, Influence of the scattering phase function on light transport measurements in turbid media performed with small sourcedetector separations, Opt. Lett, vol.21, pp.546-548, 1996.

S. L. Jacques and S. A. Prahl,

F. Laplant, Lasers, spectrographs, and detectors, Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields 1-24, 2010.

P. H. Lambert and P. E. Laurent, Intradermal vaccine delivery: Will new delivery systems transform vaccine administration?, Vaccine, vol.26, pp.3197-3208, 2008.

C. Flach, G. Zhang, and R. Mendelsohn, Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields

P. Matousek, , 2010.

C. Magnain, Modélisation de la couleur de la peau et sa représentation dans les oeuvres d'art, vol.6, 2009.

S. L. Jacques, Optical properties of biological tissues: a review, Phys. Med. Biol, vol.58, p.37, 2013.

T. K. Biswas and T. M. Luu, In vivo MR measurement of refractive index, relative water content and T2 relaxation time of various brain lesions with clinical application to discriminate brain lesions, Internet J. Radiol, vol.13, p.1, 2011.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, Optical properties of skin, subcutaneous, and muscle tissues: a review, J. Innov. Opt. Health Sci, vol.4, pp.9-38, 2011.

G. Zonios and A. Dimou, Light scattering spectroscopy of human skin in vivo, Opt. Express, vol.17, pp.1256-1267, 2009.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm, Phys. Med. Biol, vol.51, p.1479, 2006.

T. Igarashi, K. Nishino, and S. K. Nayar, & others. The appearance of human skin: A survey, Found. Trends® Comput. Graph. Vis, vol.3, pp.1-95, 2007.

G. J. Tearney, Determination of the refractive index of highly scattering human tissue by optical coherence tomography, Opt Lett, vol.20, pp.2258-2260, 1995.

X. Ding and H. ,

J. Q. Lu,

K. M. Jacobs,

. Hu, Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm, J. Opt. Soc. Am. A Opt. Image Sci. Vis, vol.22, pp.1151-1157, 2005.

V. V. Tuchin, Light scattering study of tissues, Phys.-Uspekhi, vol.40, p.495, 1997.

A. Vogel and V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev, vol.103, pp.577-644, 2003.

I. Meglinski and S. Matcher, Analysis of the spatial distribution of detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method, Opt. Spectrosc, vol.91, pp.654-659, 2001.

S. H. Tseng, A. Grant, and A. J. Durkin, In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy, J. Biomed. Opt, vol.13, p.14016, 2008.

S. Lisenko and M. Kugeiko, A method of online quantitative interpretation of diffuse reflection profiles of biological tissues, Opt. Spectrosc, vol.114, pp.251-259, 2013.

T. Lister, P. A. Wright, and P. H. Chappell, Optical properties of human skin, J. Biomed. Opt, vol.17, pp.909011-09090115, 2012.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range, J. Biomed. Opt, vol.11, p.64026, 2006.

B. Roig, Caractérisation de tissus cutanés par spectroscopie bimodale : Réflectance Diffuse et Raman, 2015.

S. L. Jacques, Origins of tissue optical properties in the UVA, visible, and NIR regions, OSA TOPS Adv. Opt. Imaging Photon Migr, vol.2, pp.364-369, 1996.

M. Van-gemert, S. L. Jacques, H. Sterenborg, and W. Star, Skin optics, IEEE Trans. Biomed. Eng, vol.36, pp.1146-1154, 1989.

S. L. Jacques, , 1998.

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis, Biomed. Opt. Express, vol.7, p.1511, 2016.

A. and A. , 3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers, Imaging Med, vol.3, pp.653-674, 2011.

K. Grieve, Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography, Investig. Opthalmology Vis. Sci, vol.45, p.4126, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00533150

M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Anderson, and R. H. Webb, In Vivo Confocal Scanning Laser Microscopy of Human Skin II: Advances in Instrumentation and Comparison With Histology, J. Invest. Dermatol, vol.113, pp.293-303, 1999.

S. González and Z. Tannous, Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma, J. Am. Acad. Dermatol, vol.47, pp.869-874, 2002.

R. Alvarez-román, A. Naik, Y. .. Kalia, H. Fessi, and R. Guy, Visualization of skin penetration using confocal laser scanning microscopy, Eur. J. Pharm. Biopharm, vol.58, pp.301-316, 2004.

M. Wagner, N. P. Ivleva, C. Haisch, R. Niessner, and H. Horn, Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): Investigations on EPS -Matrix, Water Res, vol.43, pp.63-76, 2009.

M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, Principles of twophoton excitation fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug Deliv. Rev, vol.58, pp.788-808, 2006.

B. Weigelin, G. Bakker, and P. Friedl, Third harmonic generation microscopy of cells and tissue organization, J. Cell Sci, vol.129, pp.245-255, 2016.

J. Cheng and X. S. Xie, Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications, J. Phys. Chem. B, vol.108, pp.827-840, 2004.

L. Brancaleon, In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer. Photochem. Photobiol, vol.73, pp.178-183, 2001.

M. Amouroux, Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance, J. Biomed. Opt, vol.14, p.14011, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00397511

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer, The Analyst, vol.132, p.899, 2007.

B. Hallacoglu, Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy, J. Biomed. Opt, vol.17, pp.814061-0814068, 2012.

S. Gioux, First-in-human pilot study of a spatial frequency domain oxygenation imaging system, J. Biomed. Opt, vol.16, pp.86015-086015, 2011.

R. B. Saager, A. Sharif, K. M. Kelly, and A. J. Durkin, In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy, J. Biomed. Opt, vol.21, pp.57001-057001, 2016.

D. Sieno and L. , Time-resolved diffuse optical tomography for non-invasive flap viability assessment: pre-clinical tests on rats, Proc. SPIE, vol.9538, pp.95380-95380, 2015.

F. Bevilacqua, In vivo local determination of tissue optical properties: applications to human brain, Appl. Opt, vol.38, pp.4939-4950, 1999.

B. Montcel, R. Chabrier, and P. Poulet, Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics, Opt. Express, vol.14, pp.12271-12287, 2006.

P. Taroni, Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions, Phys. Med. Biol, vol.50, pp.2469-2488, 2005.

A. Garcia-uribe, In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry, J. Biomed. Opt, vol.16, pp.20501-020501, 2011.

N. Rajaram, Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy, Appl. Opt, vol.49, pp.142-152, 2010.

B. J. Tromberg, Assessing the future of diffuse optical imaging technologies for breast cancer management, Med. Phys, vol.35, pp.2443-2451, 2008.

G. Zonios, Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps< i> In Vivo</i>, Appl. Opt, vol.38, pp.6628-6637, 1999.

D. J. Rohrbach, Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging, Biomed Opt Express, vol.6, pp.1761-1766, 2015.

J. Q. Brown, Optical Spectral Surveillance of Breast Tissue Landscapes for Detection of Residual Disease in Breast Tumor Margins, PLOS ONE, vol.8, pp.1-14, 2013.

L. L. Randeberg, E. B. Roll, L. T. Nilsen, T. Christensen, and L. O. Svaasand, In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index, Acta Paediatr, vol.94, pp.65-71

G. N. Stamatas and N. Kollias, In vivo documentation of cutaneous inflammation using spectral imaging, J. Biomed. Opt, vol.12, pp.51603-051603, 2007.

B. Stam, M. J. Van-gemert, T. G. Van-leeuwen, and M. C. Aalders, 3D finite compartment modeling of formation and healing of bruises may identify methods for age determination of bruises, Med. Biol. Eng. Comput, pp.1-11, 2010.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, Two-layer optical model of skin for early, non-invasive detection of wound development on the diabetic foot, BiOS, vol.755514, p.755514, 2010.

U. Sunar, Light-triggered doxorubicin release quantified by spatial frequency domain imaging and diffuse optical spectroscopy, Cancer Imaging and Therapy JW4A-3, 2016.

A. Mazhar, Spatial frequency domain imaging of port wine stain biochemical composition in response to laser therapy: A pilot study, Lasers Surg. Med, vol.44, pp.611-621

A. Planat-chrétien, Assessment of the status of onchocerciasis worms with DRS: proposal of a standardized measurement protocol, Diffuse Optical Spectroscopy and Imaging VI 104120I, 2017.

S. L. Jacques, Time-resolved reflectance spectroscopy in turbid tissues, Biomed. Eng. IEEE Trans. On, vol.36, pp.1155-1161, 1989.

P. Montcel and B. ,

R. .. Chabrier and . Poulet, Detection of cortical activation with timeresolved diffuse optical methods, Appl. Opt, vol.44, pp.1942-1947, 2005.

A. Liebert, Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons, Appl. Opt, vol.42, pp.5785-5792, 2003.

A. Liebert, Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons, Appl. Opt, vol.43, pp.3037-3047, 2004.

A. Liebert, Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance, Neuroimage, vol.24, pp.426-435, 2005.

D. Contini, Multi-channel time-resolved system for functional near infrared spectroscopy, Opt. Express, vol.14, pp.5418-5432, 2006.

D. Yudovsky and L. Pilon, Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media, Appl. Opt, vol.48, pp.6670-6683, 2009.

A. Kienle, Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source, Phys Med Biol, vol.42, pp.1801-1819, 1997.

D. J. Cuccia, B. J. Frédéric, P. Bevilacqua, A. J. Durkin, and R. Frederick,

. Ayers, Quantitation and mapping of tissue optical properties using modulated imaging, J. Biomed. Opt, vol.14, pp.14-14, 2009.

M. Giessen, A. Van-de, J. P. Gioux, and S. , Real-time, profile-corrected single snapshot imaging of optical properties, Biomed Opt Express, vol.6, pp.4051-4062, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02141695

M. Pilz, S. Honold, and A. Kienle, Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system, J. Biomed. Opt, vol.13, pp.54047-054047, 2008.

A. Kienle, Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue, Appl. Opt, vol.35, pp.2304-2314, 1996.

F. Foschum, M. Jäger, and A. Kienle, Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media, Rev. Sci. Instrum, vol.82, p.103104, 2011.

R. Bolt and J. Bosch, Method for measuring position-dependent volume reflection, Appl. Opt, vol.32, pp.4641-4645, 1993.

D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, In vivo spatial frequency domain spectroscopy of two layer media, J. Biomed. Opt, vol.17, pp.107006-107006, 2012.

B. Yu, Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo, J. Biomed. Opt, vol.13, pp.60505-060505, 2008.

J. Y. Lo, A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes, Opt Express, vol.17, pp.1372-1384, 2009.

O. Senlik and N. M. Jokerst, Concentric Multipixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy, IEEE J. Sel. Top. Quantum Electron, vol.22, pp.7-12, 2016.

M. Shokoufi and F. Golnaraghi, Development of a handheld diffuse optical breast cancer assessment probe, J. Innov. Opt. Health Sci, vol.9, p.1650007, 2016.

S. Dhar, A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays, Biomed. Opt. Express, vol.3, pp.3211-3222, 2012.

S. B. Duun, R. G. Haahr, K. Birkelund, and E. V. Thomsen, A Ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications, Sens. J. IEEE, vol.10, pp.261-268, 2010.

J. Sun, Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements, Appl. Opt, vol.45, pp.8152-8162, 2006.

B. Yu, H. L. Fu, and N. Ramanujam, Instrument independent diffuse reflectance spectroscopy, J. Biomed. Opt, vol.16, pp.11010-011010, 2011.

J. S. Dam, Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths, Appl. Opt, vol.40, pp.1155-1164, 2001.

A. Planat-chretien, STOP: a Spectroscopic Tip Optical Probe for skin complexion characterization, Biomedical Optics, vol.28, 2016.

A. Kim, M. Roy, F. Dadani, and B. C. Wilson, A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients, Opt. Express, vol.18, pp.5580-5594, 2010.

B. Hallacoglu, A. Sassaroli, S. Fantini, and A. M. Troen, Cerebral perfusion and oxygenation are impaired by folate deficiency in rat: Absolute measurements with noninvasive near-infrared spectroscopy, J. Cereb. Blood Flow Metab, vol.31, pp.1482-1492, 2011.

R. A. Schwarz, Prospective evaluation of a portable depth-sensitive optical spectroscopy device to identify oral neoplasia, Biomed Opt Express, vol.2, pp.89-99, 2011.

A. Koenig, B. Roig, J. Le-digabel, G. Josse, and J. Dinten, Accessing deep optical properties of skin using diffuse reflectance spectroscopy, European Conferences on Biomedical Optics 95370E-95370E (International Society for Optics and Photonics, 2015.

S. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, Quantitative spectroscopy of superficial turbid media, Opt. Lett, vol.30, pp.3165-3167, 2005.

S. Andree, J. Helfmann, and I. Gersonde, Determination of chromophore concentrations from spatially resolved skin measurements, European Conference on Biomedical Optics, 2011.

V. Venugopalan, J. S. You, and B. J. Tromberg, Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations, Phys Rev E, vol.58, pp.2395-2407, 1998.

N. Zonios and G. ,

J. .. Bykowski and . Kollias, Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy, J. Invest. Dermatol, vol.117, pp.1452-1457, 2001.

R. B. Saager, In vivo measurements of cutaneous melanin across spatial scales: using multiphoton microscopy and spatial frequency domain spectroscopy, J. Biomed. Opt, vol.20, pp.66005-066005, 2015.

B. Roig, Can diffuse reflectance spectroscopy emphasize skin-collagen alterations due to ageing, ISBS/SICC 2013, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01132033

A. Koenig, Diffuse reflectance spectroscopy: a clinical study of tuberculin skin tests reading, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01132016

S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys, vol.15, pp.1-89, 1943.

S. A. Prahl, Light transport in tissue, 1988.

A. Kienle, Noninvasive determination of the optical properties of two-layered turbid media, Appl Opt, vol.37, pp.779-791, 1998.

S. Bernice, Modeling diffuse reflectance measurements of light scattered by layered tissues, vol.82

L. Wang, S. L. Jacques, and L. Zheng, MCML-Monte Carlo modeling of light transport in multi-layered tissues, Comput. Methods Programs Biomed, vol.47, pp.131-146, 1995.

G. M. Palmer and N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms, Appl. Opt, vol.45, pp.1062-1071, 2006.

Q. Liu and N. Ramanujam, Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media, J. Opt. Soc. Am. A, vol.24, pp.1011-1025, 2007.

F. Bevilacqua and C. Depeursinge, Monte Carlo study of diffuse reflectance at sourcedetector separations close to one transport mean free path, J Opt Soc Am A, vol.16, pp.2935-2945, 1999.

R. Groenhuis, H. A. Ferwerda, and J. J. Bosch, Scattering and absorption of turbid materials determined from reflection measurements, Theory. Appl. Opt, vol.1, pp.2456-2462, 1983.

T. J. Farrell, M. S. Patterson, and B. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Med. Phys, vol.19, p.879, 1992.

A. Kienle and M. S. Patterson, Improved solutions of the steady-state and the timeresolved diffusion equations for reflectance from a semi-infinite turbid medium, J. Opt. Soc. Am. -Opt. Image Sci. Vis, vol.14, pp.246-254

S. A. Carp, S. A. Prahl, and V. Venugopalan, Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media, J. Biomed. Opt, vol.9, pp.632-647, 2004.

I. Seo, C. K. Hayakawa, and V. Venugopalan, Radiative transport in the delta-P1 approximation for semi-infinite turbid media, Med. Phys, vol.35, pp.681-693, 2008.

S. R. Arridge, Optical tomography in medical imaging, Inverse Probl, vol.15, p.41, 1999.

R. Groenhuis, J. J. Bosch, and H. A. Ferwerda, Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration

, Appl. Opt, vol.22, pp.2463-2467, 1983.

W. M. Star, Light dosimetry in vivo, Phys. Med. Biol, vol.42, p.763, 1997.

D. R. Wyman, M. S. Patterson, and B. C. Wilson, Similarity relations for the interaction parameters in radiation transport, Appl Opt, vol.28, pp.5243-5249, 1989.

R. C. Haskell, Boundary conditions for the diffusion equation in radiative transfer, J. Opt. Soc. Am. A, vol.11, pp.2727-2741, 1994.

A. R. Gardner, A. D. Kim, and V. Venugopalan, Radiative transport produced by oblique illumination of turbid media with collimated beams, Phys. Rev. E, vol.87, p.63308, 2013.

R. J. Zemp, Phase-function corrected diffusion model for diffuse reflectance of a pencil beam obliquely incident on a semi-infinite turbid medium, J. Biomed. Opt, vol.18, pp.67005-067005, 2013.

T. J. Farrell and M. S. Patterson, Experimental verification of the effect of refractive index mismatch on the light fluence in a turbid medium, J. Biomed. Opt, vol.6, pp.468-473, 2001.

L. V. Wang and S. L. Jacques, Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory, Comput. Methods Programs Biomed, vol.61, pp.163-170, 2000.

E. L. Hull and T. H. Foster, Steady-state reflectance spectroscopy in the P 3 approximation, JOSA A, vol.18, pp.584-599, 2001.

J. Joseph, W. Wiscombe, and J. Weinman, The delta-Eddington approximation for radiative flux transfer, J. Atmospheric Sci, vol.33, pp.2452-2459, 1976.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, A Monte Carlo model of light propagation in tissue, Dosim. Laser Radiat. Med. Biol, vol.5, pp.102-111, 1989.

Q. Liu and N. Ramanujam, Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra

, Appl Opt, vol.45, pp.4776-4790, 2006.

R. Graaff, Condensed Monte Carlo simulations for the description of light transport, Appl. Opt, vol.32, pp.426-434, 1993.

L. Wang and S. L. Jacques, Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media, JOSA A, vol.10, pp.1746-1752, 1993.

W. Poon, Rapport de stage: Analyse de la peau par approche multicouche, 2016.

L. Wang,

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements, J. Biomed. Opt, vol.15, pp.67006-067006, 2010.

,. K. Karin-terstappen, M. Suurkula, H. Hallberg, and M. B. Ericson, Poor correlation between spectrophotometric intracutaneous analysis and histopathology in melanoma and nonmelanoma lesions, J. Biomed. Opt, vol.18, pp.18-18, 2013.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness, Phys. Med. Biol, vol.47, p.193, 2002.

V. T. Chang and .. , Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy, Neoplasia, vol.11, pp.325-332, 2009.

G. Zonios and A. Dimou, Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties, Opt. Express, vol.14, pp.8661-8674, 2006.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-pecht, A low-light CMOS contact imager with an emission filter for biosensing applications, IEEE Trans. Biomed. Circuits Syst, vol.2, pp.193-203, 2008.

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-pecht, A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons, IEEE Photonics J, vol.6, pp.1-15, 2014.

L. S. Dolci, Point-of-care Parvovirus B19 detection and genotyping based on microfluidics and chemiluminescence contact imaging detection, Int. Workshop On, vol.1, issue.3, 2011.

R. R. Singh, L. Leng, A. Guenther, and R. Genov, A CMOS-microfluidic chemiluminescence contact imaging microsystem, IEEE J. Solid-State Circuits, vol.47, pp.2822-2833, 2012.

X. Huang, A dual-mode large-arrayed CMOS ISFET sensor for accurate and highthroughput pH sensing in biomedical diagnosis, IEEE Trans. Biomed. Eng, vol.62, pp.2224-2233, 2015.

H. Takehara, High coupling efficiency contact imaging system having micro light pipe array for a digital enzyme-linked immunosorbent assay, Biomed. Circuits Syst. Conf. BioCAS, 2015.

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, CMOS spectrally-multiplexed Fret-on-a-Chip for DNA analysis, IEEE Trans. Biomed. Circuits Syst, vol.7, pp.643-654, 2013.

I. Schelkanova, A. Pandya, D. Shah, L. Lilge, and A. Douplik, Diffuse reflectance measurements using lensless CMOS imaging chip, J. Phys. Conf. Ser, vol.541, p.12098, 2014.

I. Schelkanova, A. D. , A. Pandya, G. Saiko, L. Nacy et al., Spatially resolved, diffuse reflectance imaging for subsurface pattern visualization toward development of a lensless imaging platform: phantom experiments, J. Biomed. Opt, vol.21, pp.21-21, 2016.

A. Getman, Crosstalk, color tint and shading correction for small pixel size image sensor, International Image Sensor Workshop, pp.166-169, 2007.

H. Cen, R. Lu, and K. Dolan, Optimization of inverse algorithm for estimating the optical properties of biological materials using spatially-resolved diffuse reflectance, Inverse Probl. Sci. Eng, vol.18, pp.853-872, 2010.

H. S. Cho, Development of a portable digital radiographic system based on FOPcoupled CMOS image sensor and its performance evaluation, IEEE Trans. Nucl. Sci, vol.52, pp.1766-1772, 2005.

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution, Opt Express, vol.18, pp.11181-11191, 2010.

M. Estribeau and P. Magnan, Fast MTF measurement of CMOS imagers using ISO 12333 slanted-edge methodology, p.5251, 2004.

V. Sorgato, ACA-Pro: calibration protocol for quantitative diffuse reflectance spectroscopy. Validation on contact and noncontact probe-and CCD-based systems, J. Biomed. Opt, vol.21, pp.65003-065003, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01973265

H. J. Van-staveren, C. J. Moes, J. Van-marle, S. A. Prahl, and M. J. Van-gemert, Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm, Appl Opt, vol.30, pp.4507-4514, 1991.

W. F. Cheong, S. A. Prahl, and A. J. Welch, A review of the optical properties of biological tissues. Quantum Electron, IEEE J. Of, vol.26, pp.2166-2185, 1990.

F. Foschum, Surface layering effect of diluted Intralipid, 2015.

J. E. Bender, Noninvasive monitoring of tissue hemoglobin using UV-VIS diffuse reflectance spectroscopy: a pilot study, Opt. Express, vol.17, pp.23396-23409, 2009.

T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy, Biomed. Opt. Express, vol.2, pp.901-914, 2011.

P. Nagli?, B. Cugmas, F. Pernu?, B. Likar, and M. Bürmen, Extraction of optical properties in the sub-diffuse regime by spatially resolved reflectance spectroscopy, SPIE BiOS 97061C-97061C, 2016.

P. Rakotomanga, C. Soussen, and W. C. Blondel, Influence of cost functions and optimization methods on solving the inverse problem in spatially resolved diffuse reflectance spectroscopy, Dynamics and Fluctuations in Biomedical Photonics XIV 10063, 100630Y (International Society for Optics and Photonics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01588550

G. Zaccanti, S. D. Bianco, and F. Martelli, Measurements of optical properties of highdensity media, Appl Opt, vol.42, pp.4023-4030, 2003.

V. D. Nguyen, D. J. Faber, E. Pol, . Van-der, T. G. Leeuwen et al., Dependent and multiple scattering in transmission and backscattering optical coherence tomography, Opt Express, vol.21, pp.29145-29156, 2013.

B. Aernouts, R. V. Beers, R. Watté, J. Lammertyn, and W. Saeys, Dependent scattering in Intralipid® phantoms in the 600-1850 nm range, Opt Express, vol.22, pp.6086-6098, 2014.

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms, Appl. Opt, vol.43, pp.1308-1319, 2004.

K. Sung and H. Chen, Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study, J. Biomed. Opt, vol.17, pp.107003-107003, 2012.

L. T. Nieman, M. Jakovljevic, and K. Sokolov, Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues, Opt Express, vol.17, pp.2780-2796, 2009.

R. G. Silfhout and A. S. Van-&amp;-kachatkou, Fibre-optic coupling to high-resolution CCD and CMOS image sensors, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip, vol.597, pp.266-269, 2008.

G. T. Kennedy, Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics, J. Biomed. Opt, vol.22, p.76013, 2017.

B. W. Pogue and M. S. Patterson, Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry, J Biomed Opt, vol.11, p.41102, 2006.

D. M. De-bruin, Optical phantoms of varying geometry based on thin building blocks with controlled optical properties, J. Biomed. Opt, vol.15, pp.25001-025001, 2010.

R. B. Saager, Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging, BiOS 756706-756706 (International Society for Optics and Photonics, 2010.

J. Gage, T. J. Greening, L. M. Raeef-istfan, K. Higgins, D. M. Balachandran et al., Characterization of thin poly(dimethylsiloxane)-based tissuesimulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths, J. Biomed. Opt, vol.19, pp.19-19, 2014.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain, Opt. Lett, vol.30, pp.1354-1356, 2005.

S. Nothelfer, F. Bergmann, A. Liemert, D. Reitzle, and A. Kienle, Spatial frequency domain imaging using an analytical model for separation of surface and volume scattering

, J. Biomed. Opt, vol.24, p.1, 2018.

L. Wang, S. L. Jacques, and L. Zheng, CONV -convolution for responses to a finite diameter photon beam incident on multi-layered tissues, Comput. Methods Programs Biomed, vol.54, pp.141-150, 1997.

R. Reif, Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures, J. Biomed. Opt, vol.13, pp.10502-010502, 2008.

J. Vervandier and S. Gioux, Single snapshot imaging of optical properties, Biomed. Opt. Express, vol.4, p.2938, 2013.

B. Seidenberg, S. S. Rosenak, E. S. Hurwitt, and M. L. Som, Immediate reconstruction of the cervical esophagus by a revascularized isolated jejunal segment, Ann. Surg, vol.149, pp.162-171, 1959.

J. M. Smit, Early reintervention of compromised free flaps improves success rate, Microsurgery, vol.27, pp.612-616, 2007.

T. J. Gal, K. A. Jones, and J. Valentino, Reconstruction of the through-and-through oral cavity defect with the fibula free flap, Otolaryngol. Neck Surg, vol.140, pp.519-525, 2009.

J. C. Yuen and Z. Feng, Monitoring Free Flaps Using the Laser Doppler Flowmeter: FiveYear Experience, Plast. Reconstr. Surg, vol.105, pp.55-61, 2000.

N. Jones, Intraoperative and postoperative monitoring of microsurgical free tissue transfers, Clin Plast Surg, vol.19, pp.783-797, 1992.

P. C. Neugan, Monitoring techniques for the detection of flow failure in the postoperative period, Microsurgery, vol.14, pp.162-164, 1993.

M. Siemionow and E. Arslan, Ischemia/reperfusion injury: A review in relation to free tissue transfers, Microsurgery, vol.24, pp.468-475, 2004.

J. M. Smit, C. J. Zeebregts, R. Acosta, and P. M. Werker, Advancements in free flap monitoring in the last decade: a critical review, Plast. Reconstr. Surg, vol.125, pp.177-185, 2010.

Y. Chen, Z. Shen, Z. Shao, P. Yu, and J. Wu, Free flap monitoring using near-infrared spectroscopy: a systemic review, Ann. Plast. Surg, vol.76, pp.590-597, 2016.

E. B. Wassenaar and J. G. Van-den-brand, Reliability of Near-Infrared Spectroscopy in People With Dark Skin Pigmentation, J. Clin. Monit. Comput, vol.19, pp.195-199, 2005.

R. G. Haahr, An Electronic Patch for Wearable Health Monitoring by Reflectance Pulse Oximetry, Biomed. Circuits Syst. IEEE Trans. On, vol.6, pp.45-53, 2012.

M. Berthelot, G. Yang, and B. Lo, A Self-Calibrated Tissue Viability Sensor for Free Flap Monitoring, IEEE J. Biomed. Health Inform, vol.22, pp.5-14, 2018.

N. D. Futran, B. C. Stack, C. Hollenbeak, and J. E. Scharf, Green light photoplethysmography monitoring of free flaps, Arch. Otolaryngol. Neck Surg, vol.126, pp.659-662, 2000.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, Two-layer optical model of skin for early, non-invasive detection of wound development on the diabetic foot, BiOS, vol.755514, p.755514, 2010.

D. Yudovsky, J. Q. Nguyen, and A. J. Durkin, In vivo spatial frequency domain spectroscopy of two layer media, J. Biomed. Opt, vol.17, pp.107006-107006, 2012.

R. B. Saager, A. Sharif, K. M. Kelly, and A. J. Durkin, In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy, J. Biomed. Opt, vol.21, pp.57001-057001, 2016.

D. Delpy and M. Cope, Quantification in tissue near-infrared spectroscopy, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.352, p.649, 1997.

F. Martelli, Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements, Opt. Lett, vol.29, pp.2037-2039, 2004.

S. Takatani and M. Graham, Theoretical analysis of diffuse reflectance from a twolayer tissue model, IEEE Trans. Biomed. Eng, pp.656-664, 1979.

R. B. Saager, A. Truong, A. J. Durkin, and D. J. Cuccia, Method for depth-resolved quantitation of optical properties in layered media using spatially modulated quantitative spectroscopy, J. Biomed. Opt, vol.16, p.77002, 2011.

S. J. Matcher, M. Cope, and D. T. Delpy, In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with timeresolved spectroscopy, Appl Opt, vol.36, pp.386-396, 1997.

R. B. Saager, A. N. Dang, S. S. Huang, K. M. Kelly, and A. J. Durkin, Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques, Rev. Sci. Instrum, vol.88, p.94302, 2017.

S. Anand and N. Sujatha, Effects of probe placement on tissue oxygenation levels during reflectance measurements for different types of tissues in a clinical setting, BioPhotonics BioPhotonics, vol.1, issue.3, 2015.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements, J. Biomed. Opt, vol.16, p.11012, 2011.

S. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations, J. Biomed. Opt, vol.14, pp.54043-054043, 2009.

K. P. Nadeau, T. B. Rice, A. J. Durkin, and B. J. Tromberg, Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging, J. Biomed. Opt, vol.20, pp.116005-116005, 2015.

S. Gioux, Three-dimensional surface profile intensity correction for spatially modulated imaging, J. Biomed. Opt, vol.14, pp.34045-034045, 2009.

D. Baruch and D. Abookasis, Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination, J. Biomed. Opt, vol.22, p.46007, 2017.

A. Yafi, Postoperative Quantitative Assessment of Reconstructive Tissue Status in a Cutaneous Flap Model Using Spatial Frequency Domain Imaging, Plast. Reconstr. Surg, vol.127, pp.117-130, 2011.

A. Mazhar, B. J. , S. Dell, D. J. Cuccia, S. Gioux et al.,

J. V. Durkin and . Frangioni, Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging, J. Biomed. Opt, vol.15, pp.15-15, 2010.

B. Brendel and T. Nielsen, Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography, J. Biomed. Opt, vol.14, p.34041, 2009.

I. Meglinski and S. Matcher, Computer simulation of the skin reflectance spectra, Comput. Methods Programs Biomed, vol.70, pp.179-186, 2003.

V. Venugopalan, J. S. You, and B. J. Tromberg, Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations, Phys Rev E, vol.58, pp.2395-2407, 1998.

S. Tseng and M. Hou, Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies, J. Biomed. Opt, vol.16, pp.87007-087007, 2011.

Q. Liu and N. Ramanujam, Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra

, Appl Opt, vol.45, pp.4776-4790, 2006.

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-kortum, Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma, Appl. Opt, vol.44, pp.4291-4305, 2005.

L. T. Nieman, M. Jakovljevic, and K. Sokolov, Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues, Opt Express, vol.17, pp.2780-2796, 2009.

K. Sung, Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra, J. Biomed. Opt, vol.19, pp.77002-077002, 2014.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy, Biomed. Opt. Express, vol.5, p.40, 2014.

G. Zonios and A. Dimou, Simple two-layer reflectance model for biological tissue applications: lower absorbing layer, Appl Opt, vol.49, pp.5026-5031, 2010.

O. Senlik and N. M. Jokerst, Concentric Multipixel Silicon Photodiode Array Probes for Spatially Resolved Diffuse Reflectance Spectroscopy, IEEE J. Sel. Top. Quantum Electron, vol.22, pp.7-12, 2016.

I. Schelkanova, A. Pandya, D. Shah, L. Lilge, and A. Douplik, Diffuse reflectance measurements using lensless CMOS imaging chip, J. Phys. Conf. Ser, vol.541, p.12098, 2014.

G. Göbel, J. Kuhn, and J. Fricke, Dependent scattering effects in latex-sphere suspensions and scattering powders, Waves Random Media, vol.5, pp.413-426, 1995.

E. Boelsma, Characterization and Comparison of Reconstructed Skin Models: Morphological and Immunohistochemical Evaluation, Acta Derm Venereol, vol.7

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms, Appl. Opt, vol.43, pp.1308-1319, 2004.

S. Tseng, C. Hayakawa, J. Spanier, and A. J. Durkin, Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations, J. Biomed. Opt, vol.14, pp.54043-054043, 2009.

G. Giovanelli, N. Sinelli, R. Beghi, R. Guidetti, and E. Casiraghi, NIR spectroscopy for the optimization of postharvest apple management, Postharvest Biol. Technol, vol.87, pp.13-20, 2014.

E. Bobelyn, Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance, Postharvest Biol. Technol, vol.55, pp.133-143, 2010.

U. Sunar, Light-triggered doxorubicin release quantified by spatial frequency domain imaging and diffuse optical spectroscopy, Cancer Imaging and Therapy JW4A-3, 2016.

N. Patent-?-petitdidier, A. Koenig, S. ;. Benhamed, A. Koenig, R. Gerbelot et al., « Dispositif de mesure d'un rayonnement rétrodiffusé par un échantillon et procédé de mesure utilisant un tel dispositif, Journal Paper ? Petitdidier, vol.17, issue.11, p.115003, 2018.

. Oral, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau et al., CMOS-based contact imaging system for skin condition diagnosis by spatially resolved diffuse reflectance spectroscopy, p.25

N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux et al., CMOS-based contact imaging system for spatially resolved diffuse reflectance spectroscopy, BIOS, 2018.

N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux et al., Development of a wearable CMOS-based contact imaging system for real-time skin condition diagnosis, European Conferences on Biomedical Optics, p.28

, , 2017.

. Poster, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau et al., Lowcost wearable CMOS-based system for skin condition diagnosis, IFSCC Congress, 2018.