I. Kopriva, J. Royer, N. Thirion-moreau, and P. Comon, Error analysis of low-rank three-way tensor factorization approach to blind source separation, Proceedings of the International Conference on Acoustic Speech and Signal Processing, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00990255

J. B. Lasserre, Moments, positive polynomials and their applications, 2009.
DOI : 10.1142/p665

D. Perrone and P. Favaro, A clearer picture of total variation blind deconvolution, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.6, pp.1041-1055, 2016.

P. Pérez, M. Gangnet, and A. Blake, Poisson image editing, ACM Transactions on Graphics, issue.3, pp.313-318, 2003.

E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J. Numer. Anal, vol.47, pp.867-884, 1992.

J. Royer, N. Thirion-moreau, and P. Comon, A regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3d fluorescence spectroscopy, Eurasip Signal Processing, vol.91, issue.9, pp.253-265, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01126693

Z. Rahman and G. A. Woodell, Retinex processing for automatic image enhancement, Journal of Electronic Imaging, vol.13, pp.100-110, 2004.

J. A. Shohat and J. Tamarkin, The problem of moments, American Mathematical Society Mathematical surveys

X. T. Vu, S. Maire, C. Chaux, and N. Thirion-moreau, A new stochastic algorithm to decompose large nonnegative third order tensors, IEEE Signal Processing Letters, vol.22, issue.10, pp.1713-1717, 2015.

N. Yokoya, T. Yairi, and A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, Eurasip Signal Processing, vol.99, pp.1-10, 2011.

G. Aubert and P. Kornprobst, Mathematical problems in image processing: partial differential equations and the calculus of variations, vol.147, 2006.

M. Bardi, . Crandall, . Evans, P. E. Soner, and . Souganidis, Viscosity solutions and applications. lectures given at the 2nd cime session held in montecatini terme, Lecture Notes in Mathematics, p.1660, 1995.
DOI : 10.1007/bfb0094293

A. Blake, On lightness computation in mondrian world, Central and peripheral mechanisms of colour vision, pp.45-59, 1985.

G. Brelstaff and A. Blake, Computing lightness, Pattern Recognition Letters, vol.5, issue.2, pp.129-138, 1987.

A. Buades, B. Coll, and J. Morel, A non-local algorithm for image denoising, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol.2, pp.60-65, 2005.

A. Buades, B. Coll, and J. Morel, Nonlocal image and movie denoising, International journal of computer vision, vol.76, issue.2, pp.123-139, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00271147

G. Caner and I. Haritaoglu, Shape-dna: Effective character restoration and enhancement for arabic text documents, Pattern Recognition (ICPR), 2010 20th International Conference on, pp.2053-2056, 2010.

K. P. Berthold and . Horn, Determining lightness from an image, Computer graphics and image processing, vol.3, issue.4, pp.277-299, 1974.

Y. Huang, Y. Gao, H. Wang, D. Hao, J. Zhao et al., Enhancement of ultrasonic image based on the multi-scale retinex theory, Recent Advances in Computer Science and Information Engineering, pp.115-120, 2012.

H. Ishii and M. Sato, Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain, Nonlinear Analysis: Theory, Methods & Applications, vol.57, pp.1077-1098, 2004.

W. Jiang, Thresholding and enhancement of text images for character recognition, Acoustics, Speech, and Signal Processing, vol.4, pp.2395-2398, 1995.

W. Jiang, Thresholding and enhancement of text images for character recognition, Acoustics, Speech, and Signal Processing, vol.4, pp.2395-2398, 1995.

Z. Daniel-j-jobson, G. A. Rahman, and . Woodell, A multiscale retinex for bridging the gap between color images and the human observation of scenes, IEEE Transactions on Image processing, vol.6, issue.7, pp.965-976, 1997.

R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, A variational framework for retinex, International Journal of computer vision, vol.52, issue.1, pp.7-23, 2003.

H. Edwin and . Land, The retinex theory of color vision, Scientific American, vol.237, issue.6, pp.108-129, 1977.

H. Edwin, J. Land, and . Mccann, Lightness and retinex theory, Josa, vol.61, issue.1, pp.1-11, 1971.

J. Liang and X. Zhang, Retinex by higher order total variation l?{1} decomposition, Journal of Mathematical Imaging and Vision, vol.52, issue.3, pp.345-355, 2015.
DOI : 10.1007/s10851-015-0568-x

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol.147, 2006.

J. Bergen, P. Anandan, K. Hanna, and R. Hingorani, Hierarchical model-based motion estimation, Computer Vision-ECCV'92, pp.237-252, 1992.

M. Bergounioux and L. Piffet, A second-order model for image denoising. SetValued Var, Anal, vol.18, issue.3-4, pp.277-306, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00440872

K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci, vol.3, issue.3, pp.492-526, 2010.
DOI : 10.1137/090769521

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2010.
DOI : 10.1007/978-0-387-70914-7

V. Caselles, G. Sapiro, and D. H. Chung, Vector median filters, inf-sup operations, and coupled PDE's: theoretical connections, J. Math. Imaging Vis, vol.20, issue.0, pp.109-119
DOI : 10.1109/icip.1999.819573

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis, vol.40, issue.1, pp.120-145, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00490826

Y. Chen, T. Pock, R. Ranftl, and H. Bischof, Revisiting loss-specific training of filter-based MRFs for image restoration, Pattern Recognition, pp.271-281, 2013.

Y. Chen, R. Ranftl, and T. Pock, Insights into analysis operator learning: from patch-based sparse models to higher order MRFs, IEEE Trans. Image Process, vol.23, issue.3, pp.1060-1072, 2014.

F. Demengel, Fonctions à hessien borné, Annales de l'Institut Fourier, vol.34, issue.2, pp.155-190, 1985.
DOI : 10.5802/aif.969

URL : http://archive.numdam.org/article/AIF_1984__34_2_155_0.pdf

F. Demengel and R. Temam, Convex functions of a measure and applications. Indiana Univ, Math. J, vol.33, issue.5, pp.673-709, 1984.

G. Demengel and F. Demengel, Espaces fonctionnels. utilisation dans la résolution des équations aux dérivées partielles, 2012.

I. El-mourabit, M. El-rhabi, A. Hakim, A. Laghrib, and E. Moreau, A new denoising model for multi-frame super-resolution image reconstruction. Signal Process, vol.132, pp.51-65, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01811748

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, Fast and robust multiframe super resolution, IEEE Trans. Image Process, vol.13, issue.10, pp.1327-1344, 2004.
DOI : 10.1109/tip.2004.834669

D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, Medical image registration, Phys. Med. Biol, vol.46, issue.3, p.1, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00615977

R. Jin, S. Zhao, X. Xu, and E. Song, Multiframe super-resolution based on half-quadratic prior with artifacts suppress, J. Vis. Commun. Image Represent, vol.40, pp.656-670, 2016.
DOI : 10.1016/j.jvcir.2016.08.006

A. Laghrib, A. Ghazdali, A. Hakim, and S. Raghay, A multi-frame super-resolution using diffusion registration and a nonlocal variational image restoration, Comput. Math. Appl, vol.72, issue.9, pp.2535-2548, 2016.
DOI : 10.1016/j.camwa.2016.09.013

A. Laghrib, A. Hakim, S. Raghay, A. Laghrib, A. Hakim et al., Robust super resolution of images with non-parametric deformations using an elastic registration, EURASIP J. Image Video Process, vol.2015, issue.1, pp.8897-8907, 2014.

E. S. Lee and M. G. Kang, Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration, IEEE Trans. Image Process, vol.12, issue.7, pp.806-813, 2003.

Y. Li and F. Santosa, A computational algorithm for minimizing total variation in image restoration, IEEE Trans. Image Process, vol.5, issue.6, pp.987-995, 1996.

Q. H. Luong, Advanced Image and Video Resolution Enhancement Techniques Ph, 2009.

M. Lysaker, A. Lundervold, and X. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process, vol.12, issue.12, pp.1579-1590, 2003.

M. Lysaker and X. C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis, vol.66, issue.1, pp.5-18, 2006.

Z. Ma, R. Liao, X. Tao, L. Xu, J. Jia et al., Handling motion blur in multi-frame super-resolution, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.5224-5232, 2015.

P. Milanfar, Super-Resolution Imaging, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00563891

L. Min, X. Yang, and D. Ye, Well-posedness for a fourth order nonlinear equation related to image processing, Nonlinear Anal. Real World Appl, vol.17, pp.192-202, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095027

J. Modersitzki, Numerical Methods for Image Registration, 2003.

J. Morel and G. Yu, Is SIFT scale invariant?, Inverse Prob. Imaging, vol.5, issue.1, pp.115-136, 2011.
DOI : 10.3934/ipi.2011.5.115

URL : https://doi.org/10.3934/ipi.2011.5.115

M. K. Ng, H. Shen, E. Y. Lam, and L. Zhang, A total variation regularization based superresolution reconstruction algorithm for digital video, EURASIP J. Adv. Signal Process, pp.1-16, 2007.

J. Nocedal and S. Wright, Numerical Optimization, 2006.

N. Otsu, A threshold selection method from gray-level histograms, Automatica, vol.11, pp.23-27, 1975.

K. Papafitsoros and C. B. Schönlieb, A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vis, vol.48, issue.2, pp.308-338, 2014.

S. C. Park, M. K. Park, and M. G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Process. Mag, vol.20, issue.3, pp.21-36, 2003.

V. Patanavijit and S. Jitapunkul, A robust iterative multiframe superresolution reconstruction using a Huber Bayesian approach with Huber Tikhonov regularization, International Symposium on Intelligent Signal Processing and Communications, pp.13-16, 2006.
DOI : 10.1109/ispacs.2006.364825

V. S. Prasath and D. Vorotnikov, Weighted and well-balanced anisotropic diffusion scheme for image denoising and restoration, Nonlinear Anal. Real World Appl, vol.17, pp.33-46, 2014.

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, vol.60, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-f

R. R. Schultz, L. Meng, and R. L. Stevenson, Subpixel motion estimation for super-resolution image sequence enhancement, J. Vis. Commun. Image Represent, vol.9, issue.1, pp.38-50, 1998.

H. R. Sheikh, A. C. Bovik, and G. De-veciana, An information fidelity criterion for image quality assessment using natural scene statistics, IEEE Trans. Image Process, vol.14, issue.12, pp.2117-2128, 2005.
DOI : 10.1109/tip.2005.859389

URL : http://users.ece.utexas.edu/~gustavo/papers/SBD05.pdf

P. Milanfar, Super-Resolution Imaging, Digital Imaging and Computer Vision, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00563891

Y. Linwei, A locally adaptive l1-l2 norm for multi-frame super-resolution of images with mixed noise and outliers, Signal Process, vol.105, pp.156-174, 2014.

D. Capel and A. Zisserman, Computer vision applied to super-resolution, IEEE Signal Process. Mag, vol.20, pp.75-86, 2003.
DOI : 10.1109/msp.2003.1203211

M. Protter, M. Elad, H. Takeda, and P. Milanfar, Generalizing the nonlocal-means to super-resolution reconstruction, IEEE Trans. Image Process, vol.18, issue.1, pp.36-51, 2009.
DOI : 10.1109/tip.2008.2008067

R. M. Bahy, G. I. Salama, and T. A. Mahmoud, Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images, Signal Process, vol.103, pp.155-167, 2014.

X. Li, Y. Hu, X. Gao, D. Tao, and B. Ning, A multi-frame image super-resolution method, Signal Process, vol.90, pp.405-414, 2010.
DOI : 10.1016/j.sigpro.2009.05.028

A. Laghrib, A. Hakim, S. Raghay, and M. E. Rhabi, Robust super resolution of images with non-parametric deformations using an elastic registration, Appl. Math. Sci, vol.8, issue.179, pp.8897-8907, 2014.

E. Sardis, A. Voulodimos, V. Anagnostopoulos, C. Lalos, A. Doulamis et al., An industrial video surveillance system for quality assurance of a manufactory assembly, Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments, p.66, 2010.

D. I. Kosmopoulos, N. D. Doulamis, and A. S. Voulodimos, Bayesian filter based behavior recognition in workflows allowing for user feedback, Comput. Vis. Image Underst, vol.116, issue.3, pp.422-434, 2012.
DOI : 10.1016/j.cviu.2011.09.006

K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.4959-4962, 2015.

A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, Super-resolution land cover pattern prediction using a Hopfield neural network, Remote Sens. Environ, vol.79, issue.1, pp.1-14, 2002.

L. Zhang, H. Zhang, H. Shen, and P. Li, A super-resolution reconstruction algorithm for surveillance images, Signal Process, vol.90, pp.848-859, 2010.

F. C. Lin, C. B. Fookes, V. Chandran, and S. Sridharan, Investigation into optical flow super-resolution for surveillance applications, pp.73-78, 2005.

F. Stanco, S. Battiato, and G. Gallo, Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks, 2011.

A. Doulamis, N. Doulamis, C. Ioannidis, C. Chrysouli, N. Grammalidis et al., Ioannides, 5d modelling: an efficient approach for creating spatiotemporal predictive 3d maps of large-scale cultural resources, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci, vol.2, issue.5, p.61, 2015.

J. Yang and T. Huang, Image super-resolution: historical overview and future challenges, Super-Resolution Imag, pp.20-34, 2010.

A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, Super-resolution target identification from remotely sensed images using a hopfield neural network, IEEE Trans. Geosci. Rem. Sens, vol.39, issue.4, pp.781-796, 2001.

S. C. Park, M. K. Park, and M. G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Process. Mag, vol.20, issue.3, pp.21-36, 2003.

R. Y. Tsai and T. S. Huang, Multiframe image restoration and registration, Advances in Computer Vision and Image Processing

S. Borman and R. L. Stevenson, Super-resolution from image sequences-a review, p.374, 1998.
DOI : 10.1109/mwscas.1998.759509

M. Elad and Y. Hel-or, A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur, IEEE Trans. Image Process, vol.10, issue.8, pp.1187-1193, 2001.

N. Nguyen, P. Milanfar, and G. Golub, A computationally efficient superresolution image reconstruction algorithm, IEEE Trans. Image Process, vol.10, issue.4, pp.573-583, 2001.

S. Villena, M. Vega, R. Molina, and A. K. Katsaggelos, Bayesian super-resolution image reconstruction using an l1 prior, Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, pp.152-157, 2009.
DOI : 10.1109/ispa.2009.5297740

S. D. Babacan, R. Molina, and A. K. Katsaggelos, Variational Bayesian super resolution, IEEE Trans. Image Process, vol.20, issue.4, pp.984-999, 2011.
DOI : 10.1109/tip.2010.2080278

URL : http://decsai.ugr.es/vip/files/journals/2011SR.BMK.pdf

O. A. Omer and T. Tanaka, Region-based weighted-norm with adaptive regularization for resolution enhancement, Digital Signal Process, vol.21, issue.4, pp.508-516, 2011.

S. Zhao, H. Liang, and M. Sarem, A generalized detail-preserving super-resolution method, Signal Process, vol.120, pp.156-173, 2016.

S. D. Babacan, R. Molina, and A. K. Katsaggelos, Parameter estimation in tv image restoration using variational distribution approximation, IEEE Trans. Image Process, vol.17, issue.3, pp.326-339, 2008.

A. Panagiotopoulou and V. Anastassopoulos, Regularized super-resolution image reconstruction employing robust error norms, Opt. Eng, vol.48, issue.11, p.117004, 2009.
DOI : 10.1117/1.3265543

URL : http://nemertes.lis.upatras.gr/jspui//bitstream/10889/4839/1/J2.pdf

V. Patanavijit and S. , A robust iterative multiframe super-resolution reconstruction using a Huber Bayesian approach with Huber-Tikhonov regularization, International Symposium on Intelligent Signal Processing and Communications, 2006. ISPACS'06, pp.13-16, 2006.

N. A. El-yamany and P. E. Papamichalis, Robust color image superresolution: an adaptive m-estimation framework, J. Image Video Process, p.16, 2008.

T. Q. Pham, L. V. Vliet, and K. Schutte, Robust super-resolution by minimizing a gaussian-weighted l2 error norm, J. Phys.: Conf. Ser, vol.124, p.12037, 2008.
DOI : 10.1088/1742-6596/124/1/012037

URL : http://iopscience.iop.org/article/10.1088/1742-6596/124/1/012037/pdf

I. E. Mourabit, Signal Processing, vol.132, pp.51-65, 2017.

S. Tourbier, X. Bresson, P. Hagmann, J. Thiran, R. Meuli et al., An efficient total variation algorithm for super-resolution in fetal brain mri with adaptive regularization, NeuroImage, vol.118, pp.584-597, 2015.
DOI : 10.1016/j.neuroimage.2015.06.018

V. Patanavijit and S. , A Lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with Lorentzian-Tikhonov Regularization, EURASIP J. Adv. Signal Process, issue.1, pp.1-21, 2007.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Advances and challenges in superresolution, Int. J. Imag. Syst. Technol, vol.14, issue.2, pp.47-57, 2004.

X. Zeng and L. Yang, A robust multiframe super-resolution algorithm based on halfquadratic estimation with modified btv regularization, Digital Signal Process, vol.23, issue.1, pp.98-109, 2013.

A. Laghrib, A. Hakim, and S. Raghay, A combined total variation and bilateral filter approach for image robust super resolution, EURASIP J. Image Video Process, vol.2015, issue.1, pp.1-10, 2015.

B. J. Maiseli, N. Ally, and H. Gao, A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction method, Signal Process, Image Commun, vol.34, pp.1-13, 2015.

J. Weickert, Anisotropic diffusion in image processing, vol.1, 1998.

J. Weickert, B. T. Romeny, and M. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Trans. Image Process, vol.7, issue.3, pp.398-410, 1998.

J. Weickert and C. Schnörr, A theoretical framework for convex regularizers in pdebased computation of image motion, Int. J. Comput. Vis, vol.45, issue.3, pp.245-264, 2001.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : https://authors.library.caltech.edu/6498/1/PERieeetpami90.pdf

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenom, vol.60, issue.1, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-f

Y. You, W. Xu, A. Tannenbaum, and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, IEEE Trans. Image Process, vol.5, issue.11, pp.1539-1553, 1996.

J. Weickert, Coherence-enhancing diffusion of colour images, Image Vis. Comput, vol.17, issue.3, pp.201-212, 1999.

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol.147, 2006.

M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers et al., Anisotropic Huber-l1 optical flow, vol.1, p.3, 2009.
DOI : 10.5244/c.23.108

A. Marquina and S. J. Osher, Image super-resolution by tv-regularization and Bregman iteration, J. Sci. Comput, vol.37, issue.3, pp.367-382, 2008.
DOI : 10.1007/s10915-008-9214-8

Z. Wang and A. C. Bovik, Mean squared error: love it or leave it? a new look at signal fidelity measures, IEEE Signal Process. Mag, vol.26, issue.1, pp.98-117, 2009.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/tip.2003.819861

URL : http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf

H. Attouch, G. Buttazzo, and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, vol.17, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02072798

J. Weickert, Scale-space properties of nonlinear diffusion filtering with a diffusion tensor, 1994.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2010.
DOI : 10.1007/978-0-387-70914-7

J. T. Schwartz, Nonlinear Functional Analysis, 1969.

J. Aubin, Un théoreme de compacité, C.R. Acad. Sci. Paris, vol.256, issue.24, pp.5042-5044, 1963.

I. E. Mourabit, Signal Processing, vol.132, pp.51-65, 2017.

P. Comon, Independent component analysis, a new concept? Signal Process, vol.36, pp.287-314, 1994.

A. Mansour and C. Jutten, A direct solution for blind separation of sources, IEEE Trans. Signal Process, vol.44, issue.3, pp.746-748, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00802361

A. Taleb and C. Jutten, Entropy optimization, Artif. Neural Netw. ICANN'97, pp.529-534, 1997.

A. Hyvärinen and E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Comput, vol.9, pp.1483-1492, 1997.

D. Pham, Blind separation of instantaneous mixture of sources based on order statistics, IEEE Trans. Signal Process, vol.48, issue.2, pp.363-375, 2000.

A. Belouchrani, K. Abed-meraim, J. Cardoso, and E. Moulines, A blind source separation technique using second-order statistics, IEEE Trans. Signal Process, vol.45, issue.2, pp.434-444, 1997.

J. Pesquet and E. Moreau, Cumulant-based independence measures for linear mixtures, IEEE Trans. Inform. Theory, vol.47, issue.5, pp.1947-1956, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00621746

J. Cardoso, Blind signal separation: statistical principles, Proc. IEEE, vol.86, pp.2009-2025, 1998.

M. Novey and T. Adali, ICA by maximization of nongaussianity using complex functions, Proc. MLSP

D. Pham, Mutual information approach to blind separation of stationary sources, IEEE Trans. Inf. Theory, vol.48, issue.7, pp.1935-1946, 2002.

A. Keziou, H. Fenniri, M. Mohamed, and G. Delaunay, Séparations aveugle de sources par minimisation des ?-divergences, in: XXIIe colloque GRETSI (traitement du signal et des images), Dijon (FRA), 8-11 septembre, GRETSI, 2009.

P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460653

M. E. Rhabi, H. Fenniri, A. Keziou, and E. Moreau, A robust algorithm for convolutive blind source separation in presence of noise, Signal Process, vol.93, issue.4, pp.818-827, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01811756

A. Keziou, H. Fenniri, A. Ghazdali, and E. Moreau, New blind source separation method of independent/dependent sources, Signal Process, vol.104, pp.319-324, 2014.

M. Sahmoudi, H. Snoussi, and M. G. Amin, Robust approach for blind source separation in non-gaussian noise environments, Proceedings of ISCCSP, Marrakesh

A. Belouchrani and A. Cichocki, Robust whitening procedure in blind source separation context, Electron. Lett, vol.36, issue.24, pp.2050-2051, 2000.

A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, vol.8, pp.229-231, 1959.

D. G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, vol.65, issue.1, pp.141-151, 1978.

M. M. Ali, N. N. Mikhail, and M. S. Haq, A class of bivariate distributions including the bivariate logistic, J. Multivar. Anal, vol.8, issue.3, pp.405-412, 1978.

D. Morgenstern, Einfache Beispiele zweidimensionaler Verteilungen, Mitteilungsbl, Math. Statist, vol.8, pp.234-235, 1956.

R. B. Nelsen, An introduction to copulas, Springer Series in Statistics, 2006.

H. Joe, Multivariate models and dependence concepts, Monographs on Statistics and Applied Probability, vol.73, 1997.

H. Akaike, A new look at the statistical model identification, IEEE Trans

. Autom, Control, vol.19, issue.6, pp.716-723, 1974.

G. Schwarz, Estimating the dimension of a model, Ann. Stat, vol.6, issue.2, pp.461-464, 1978.

C. Genest, K. Ghoudi, and L. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, vol.82, issue.3, pp.543-552, 1995.

H. Tsukahara, Semiparametric estimation in copula models, Can. J. Stat, vol.33, issue.3, pp.357-375, 2005.

L. Evans and R. Gariepy, Measure Theory and Fine Properties of Function, Studies in Advanced Mathematics
DOI : 10.1201/9780203747940

A. Cohen, D. Wolfgang, I. Daubechies, and R. Devore, Harmonic analysis of the space BV, Rev. Mat. Iberoamericana, vol.19, issue.1, pp.235-263, 2003.

X. Chen and Y. Fan, Estimation and model selection of semiparametric copulabased multivariate dynamic models under copula misspecification, J. Econometrics, vol.135, issue.1-2, pp.125-154, 2006.

A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis, vol.20, issue.1-2, pp.89-97, 2004.

M. Omelka, I. Gijbels, and N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing, Ann. Statist, vol.37, issue.5B, pp.3023-3058, 2009.

B. W. Silverman, Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, 1986.

J. Cardoso and A. Souloumiac, Blind signal beamforming for non gaussian signals, Proc. IEEE, vol.140, issue.6, pp.362-370, 1993.
DOI : 10.1049/ip-f-2.1993.0054

A. Ghazdali, Signal Processing, vol.131, pp.502-513, 2017.

H. Singh, R. Arter, L. Dodd, P. Langston, E. Lester et al., Modelling subgroup behaviour in crowd dynamics dem simulation, Applied Mathematical Modelling, vol.33, issue.12, pp.4408-4423, 2009.

P. Pcol, S. Pont, . Dal, . Erlicher, . Silvano et al., Modelling crowdstructure interaction, Mécanique and Industries, vol.11, issue.6, pp.495-504, 2010.

J. Bodgi, Pedestrian-structure synchronisation : application to swaying footbridges, 2008.
URL : https://hal.archives-ouvertes.fr/pastel-00004784

B. Kabalan, P. Argoul, and S. Erlicher, Crowd-Structure Interaction in Laterally Vibrating Footbridges: Comparison of Two Fully Coupled Approaches, pp.207-223, 2017.

B. Kabalan, P. Argoul, G. Cumunel, S. Erlicher, and Z. Christoforou, A 2d discrete crowd movement model: pedestrian dynamics -crowd-structure interaction, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01154872

P. Pécol, S. Pont, S. Erlicher, and P. , Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations, Annals of Solid and Structural Mechanics, vol.2, issue.2, pp.69-85, 2011.

P. Pécol, P. Argoul, S. Pont, and S. Erlicher, The non-smooth view for contact dynamics 325 by michel frémond extended to the modelling of crowd movements, Discrete and Continuous Dynamical Systems, vol.1, p.18, 2012.

B. Kabalan, P. Argoul, A. Jebrane, G. Cumunel, and S. Erlicher, A crowd movement model for pedestrian flow through bottlenecks, Annals of Solid and Structural Mechanics, vol.8, issue.1, pp.1-15, 2016.

P. Argoul and B. Kabalan, Pedestrian Trajectories and Collisions in Crowd Motion, pp.79-144, 2017.

B. Maury, Handling congestion in crowd motion modeling, 2011.

B. Maury, A. Rouneff, and F. Santanbrogio, A macroscopic crowd motion model of gradient flow type, Mathematical Models and Methods in Applied Sciences, vol.20, issue.10, pp.1787-1821, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00418511

B. Maury and J. Venel, A mathematical framework for a crowd motion model, Comptes Rendus Mathematique, vol.346, issue.23, pp.1245-1250, 2008.

B. Maury and J. Venel, Handling of Contacts in Crowd Motion Simulations, pp.171-180, 2009.

B. Maury and J. Venel, A discrete contact model for crowd motion, pp.145-168, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00350815

A. Roudneff, Macroscopic modelling of crowd motion, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00678596

S. Faure and B. Maury, Crowd motion from the granular standpoint, Mathematical Models and Methods in Applied Sciences, vol.1
URL : https://hal.archives-ouvertes.fr/hal-01358423

M. Frémond, Springer Series in Solid 350 and Structural Mechanics, 2017.

M. Frémond, Physics Letters A, vol.204, issue.1, pp.33-41, 1995.

F. Caselli and M. Frémond, Collision of three balls on a plane, Computational Mechanics, vol.43, issue.6, pp.743-754, 2009.

S. D. Pont and E. Dimnet, A theory for multiple collisions of rigid solids and numerical simulation of granular flow, International Journal of Solids and Structures, vol.43, issue.20, pp.6100-6114, 2006.

S. D. Pont and E. Dimnet, Theoretical approach to instantaneous collisions and numerical simulation of granular media using the a ? cd 2 method, Communications in Applied 360 Mathematics and Computational Science, vol.3, issue.1, pp.1-24, 2008.

P. Pecol, P. Argoul, S. Pont, S. Erlicher, and ;. Edf-clamart, A new crowd movement modeling for pedestrians who hold hands, XVIIIth Symposium Vibrations, Chocs et Bruit & ASTELAB, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736172

M. Moussad, D. Helbing, and G. Theraulaz, How simple rules determine pedestrian behavior 365 and crowd disasters, Proceedings of the National Academy of Sciences, vol.108, issue.17, pp.6884-6888, 2011.

V. T. Helbing, D. Farkas, and I. , Simulating dynamical features of escape panic, Nature, vol.108, issue.17, pp.6884-6888, 2000.

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E, vol.51, pp.4282-4286, 1995.
DOI : 10.1103/physreve.51.4282

URL : http://arxiv.org/pdf/cond-mat/9805244v1.pdf

D. Helbing, I. Farkas, P. Molnàr, and T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, Pedestrian and Evacuation Dynamics, pp.21-58, 2002.

N. Mahato, A. Klar, and S. Tiwari, Particle methods for multi-group pedestrian flow, Applied 375 Mathematical Modelling, vol.53, pp.447-461, 2018.
DOI : 10.1016/j.apm.2017.08.024

URL : http://arxiv.org/pdf/1607.02326

D. Helbing, A fluid dynamic model for the movement of pedestrians, 1992.

Y. Jiang, R. Guo, F. Tian, and S. Zhou, Macroscopic modeling of pedestrian 380 flow based on a second-order predictive dynamic model, Applied Mathematical Modelling, vol.40, issue.23, pp.9806-9820, 2016.

M. Twarogowska, P. Goatin, and R. Duvigneau, Macroscopic modeling and simulations of room evacuation, Applied Mathematical Modelling, vol.38, issue.24, pp.5781-5795, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00850976

L. Bruno, A. Tosin, P. Tricerri, and F. Venuti, Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications, Applied Mathematical Modelling, vol.35, issue.1, pp.426-445, 2011.

S. Li, P. Zhang, and S. C. Wong, Conservation form of helbing's fluid dynamic traffic flow model, Applied Mathematics and Mechanics, vol.32, issue.9, pp.10483-10494, 2011.

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, vol.36, issue.6, pp.15-22, 2002.

L. Taneja and N. B. Bolia, Network redesign for efficient crowd flow and evacuation, Applied 395 Mathematical Modelling, vol.53, pp.251-266, 2018.
DOI : 10.1016/j.apm.2017.08.030

N. Bellomo, C. Bianca, and V. Coscia, On the modeling of crowd dynamics: An overview and research perspectives, SeMA Journal, vol.54, issue.1, pp.25-46, 2011.

N. B. Marsane and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Mathematical Models and Methods in Applied Sciences, vol.26, issue.06, pp.1051-1093, 2016.

N. Bellomo and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, Mathematical Models and Methods in Applied Sciences, vol.25, issue.13, pp.405-2417, 2015.

A. Elmoussaoui, P. Argoul, M. E. Rhabi, and A. Hakim, Discrete kinetic theory for 2d modeling of a moving crowd: Application to the evacuation of a non-connected bounded domain, Computers and Mathematics with Applicationsdoi
URL : https://hal.archives-ouvertes.fr/hal-01811760

C. Cholet, Chocs de solides rigides, 1998.

C. Cholet, Collisions d'un point et d'un plan, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, vol.328, issue.5, p.80189, 1999.

J. J. Moreau, An introduction to Unilateral Dynamics, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01824568

J. J. Moreau, Unilateral Contact and Dry Friction in Finite Freedom Dynamics, pp.1-82, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01713847

R. Dzonou and M. D. Marques, A sweeping process approach to inelastic contact problems with general inertia operators, European Journal of Mechanics -A/Solids, vol.26, issue.3, pp.420-474, 2007.

M. Kunze and M. D. Marques, An introduction to moreau's sweeping process, Impacts in Mechanical Systems, pp.1-60, 2000.

L. F. Henderson, The statistics of crowd fluids, Nature Research journals, vol.229, p.381383, 1971.

M. Takashi, T. Akiyasu, I. Mayuko, S. Kohta, and U. Daishin, Effects of an Obstacle Position for Pedestrian Evacuation: SF Model Approach, Traffic and Granular Flow '13, pp.163-170, 2015.

E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, 2014.

P. Argoul and B. Kabalan, Pedestrian trajectories and collisions in crowd motion, Collisions Engineering: Theory and Applications, pp.79-144, 2017.

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E, vol.51, pp.4282-4286, 1995.

D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay, Self-organizing pedestrian movement, Environ. Plan. B: Plan. Des, vol.28, pp.361-383, 2001.

R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res, vol.36, issue.6, pp.507-535, 2002.

J. P. Agnelli, F. Colasuonno, and D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Math. Models Methods Appl. Sci, vol.25, issue.01, pp.109-129, 2015.

N. Bellomo, A. Bellouquid, and D. Knopoff, From the microscale to collective crowd dynamics, Multiscale Model. Simul, vol.11, issue.3, pp.943-963, 2013.

N. Bellomo and A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Netw. Heterog. Media, vol.6, issue.3, pp.383-399, 2011.

N. Bellomo and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, Math. Models Methods Appl. Sci, vol.25, issue.13, pp.2417-2437, 2015.

N. Bellomo and A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic to macroscopic, Commun. Math. Sci, vol.13, pp.1649-1664, 2015.

N. Bellomo, Modeling complex living systems, Modeling Complex Living Systems, 2008.

V. V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, 2001.

P. Barbante, A. Frezzotti, and L. Gibelli, A kinetic theory description of liquid menisci at the microscale, Kinet. Relat. Models, vol.8, issue.2, pp.235-254, 2015.

N. Bellomo and A. Bellouquid, Global solution to the cauchy problem for discrete velocity models of vehicular traffic, J. Differential Equations, vol.252, issue.2, pp.1350-1368, 2012.

E. A. , A. Bellouquid, E. D. Angelis, and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach, Math. Models Methods Appl. Sci, vol.22, issue.supp01, p.1140003, 2012.

N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Advances in Fluid-Structure Interaction, vol.141, pp.13-21, 2016.
DOI : 10.1016/j.compfluid.2016.04.022

N. B. , G. Marsane, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci, vol.26, issue.06, pp.1051-1093, 2016.

G. Still, Crowd dynamics, 2000.

J. Geiser, G. Tanogglu, and N. Gücüyenen, Higher order operator splitting methods via zassenhaus product formula: Theory and applications, Comput. Math. Appl, vol.62, issue.4, pp.1994-2015, 2011.
DOI : 10.1016/j.camwa.2011.06.043

URL : https://doi.org/10.1016/j.camwa.2011.06.043

M. Y. Kim and E. Park, An upwind scheme for a nonlinear model in age-structured population dynamics, Comput. Math. Appl, vol.30, issue.8, pp.5-17, 1995.

J. C. Lopez-marcos, An upwind scheme for a nonlinear hyperbolic integro-differential equation with integral boundary condition, Comput. Math. Appl, vol.22, issue.11, pp.15-28, 1991.