. La, Gouvernement.fr, 2017.

, Climate change 2014 -Mitigation of climate Change-Working group III contribution to the fifth assessment report of the intergovernmental panel on climate change, 2014.

, CO2 Emissions from Fuel Combustion -2016 edition -excerpt -Key Trends, 2016.

, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change, 2013.

J. Oexmann, A. Kather, S. Linnenberg, and U. , Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants, Greenh. Gases Sci. Technol, vol.2, pp.80-98, 2012.

, CO2 capture and storage, a key carbon abatement option, 2008.

S. Nanda, S. N. Reddy, S. K. Mitra, and J. A. Kozinski, The progressive routes for carbon capture and sequestration, Energy Sci. Eng, 2016.

. Davidson, Post-combustion Carbon Capture from Coal Fired Plants -Solvent Scrubbing, IEA Clean Coal Centre, vol.125, 2007.

M. Kanniche, R. Gros-bonnivard, P. Jaud, J. Valle-marcos, J. Amann et al., Precombustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Appl. Therm. Eng, vol.30, pp.53-62, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00442868

A. B. Rao and E. S. Rubin, A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control, Environ. Sci. Technol, vol.36, pp.4467-4475, 2002.

, ROAD CCS non-confidential FEED study report: special report for the Global Carbon Capture and Storage Institute | Global CCS Institute, 2011.

S. Vasudevan, S. Farooq, I. A. Karimi, M. Saeys, M. C. Quah et al., Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes, Energy, vol.103, pp.709-714, 2016.

T. Neveux, Modélisation et optimisation des procédés de captage de CO2 par absorption chimique, 2013.

F. Vega, A. Sanna, B. Navarrete, M. M. Maroto-valer, and V. J. Cortés, Degradation of amine-based solvents in CO2 capture process by chemical absorption, Greenh. Gases Sci. Technol, vol.4, pp.707-733, 2014.

C. Gouedard, D. Picq, F. Launay, and P. Carrette, Amine degradation in CO2 capture. I. A review, Int. J. Greenh. Gas Control, vol.10, pp.244-270, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01502562

G. T. Rochelle, Amine Scrubbing for CO2 Capture, Science, vol.325, pp.1652-1654, 2009.

R. R. Bottoms, Process for separating acidic gases, 1930.

A. L. Kohl and R. Nielsen, Gas Purification, 1997.

B. Baburao, S. Bedell, P. Restrepo, D. Schmidt, C. Schubert et al., Advanced Amine Process Technology Operations and Results from Demonstration Facility at EDF Le Havre, Energy Procedia, vol.63, pp.6173-6187, 2014.

D. Adams, Flue gas treatment for CO2 capture -Profiles, 2010.

A. S. Bhown and B. C. Freeman, Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies, Environ. Sci. Technol, vol.45, pp.8624-8632, 2011.

M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des, vol.89, pp.1609-1624, 2011.

R. M. Cuéllar-franca and A. , Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util, vol.9, pp.82-102, 2015.

, IPCC Carbon dioxide capture and storage, 2005.

G. T. Rochelle, Thermal degradation of amines for CO2 capture, Curr. Opin. Chem. Eng, vol.1, pp.183-190, 2012.

G. Rochelle, E. Chen, S. Freeman, D. Van-wagener, Q. Xu et al., Aqueous piperazine as the new standard for CO2 capture technology, Chem. Eng. J, vol.171, pp.725-733, 2011.

K. A. Hoff, E. F. Silva, I. Kim, A. Grimstvedt, and S. Ma'mun, Solvent development in post combustion CO2 capture-Selection criteria and optimization of solvent performance, Energy Procedia, vol.37, pp.292-299, 2013.

F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto, and M. Onoda, CO2 Capture by Tertiary Amine Absorbents: A Performance Comparison Study, Ind. Eng. Chem. Res, vol.52, pp.8323-8331, 2013.

T. Supap, R. Idem, P. Tontiwachwuthikul, and C. Saiwan, Analysis of Monoethanolamine and Its Oxidative Degradation Products during CO2 Absorption from Flue Gases: A Comparative Study of GC-MS, HPLC-RID, and CE-DAD Analytical Techniques and Possible Optimum Combinations, Ind. Eng. Chem. Res, vol.45, pp.2437-2451, 2006.

H. Lepaumier, E. F. Silva, A. Einbu, A. Grimstvedt, J. N. Knudsen et al., Comparison of MEA degradation in pilot-scale with lab-scale experiments, Energy Procedia, vol.4, pp.1652-1659, 2011.

A. J. Reynolds, T. V. Verheyen, S. B. Adeloju, E. Meuleman, A. Chaffee et al., Chemical Characterization of MEA Degradation in PCC pilot plants operating in Australia, Energy Procedia, vol.37, pp.877-882, 2013.

L. Chahen, T. Huard, L. Cuccia, V. Cuzuel, J. Dugay et al., Comprehensive monitoring of MEA degradation in a post-combustion CO2 capture pilot plant with identification of novel degradation products in gaseous effluents, Int. J. Greenh. Gas Control, vol.51, pp.305-316, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01410521

F. Porcheron, A. Gibert, P. Mougin, and A. Wender, High Throughput Screening of CO2 Solubility in Aqueous Monoamine Solutions, Environ. Sci. Technol, vol.45, pp.2486-2492, 2011.

L. Li, H. Li, O. Namjoshi, Y. Du, and G. T. Rochelle, Absorption rates and CO2 solubility in new piperazine blends, Energy Procedia, vol.37, pp.370-385, 2013.

A. Chakma and A. Meisen, Degradation of aqueous DEA solutions in a heat transfer tube, Can. J. Chem. Eng, vol.65, pp.264-273, 1987.

A. Chakma and A. Meisen, Identification of methyl diethanolamine degradation products by gas chromatography and gas chromatography-mass spectrometry, J. Chromatogr. A, vol.457, pp.82076-82084, 1988.

A. Chakma and A. Meisen, Methyl-diethanolamine degradation -Mechanism and kinetics, Can. J. Chem. Eng, vol.75, pp.861-871, 1997.

T. Wang and K. Jens, A study of Oxidative Degradation of AMP for Post-combustion CO2 Capture, Energy Procedia, pp.102-110, 2012.

S. A. Freeman and G. T. Rochelle, Thermal degradation of piperazine and its structural analogs, Energy Procedia, vol.4, pp.43-50, 2011.

S. A. Freeman, R. Dugas, D. Van-wagener, T. Nguyen, and G. T. Rochelle, Carbon dioxide capture with concentrated, aqueous piperazine, Energy Procedia, vol.1, pp.1489-1496, 2009.

M. E. Boot-handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani et al., Carbon capture and storage update, vol.7, pp.130-189, 2013.

H. Lepaumier, Etude des mécanismes de dégradation des amines utilisées pour le captage du CO2 dans les fumées, 2008.

P. Sigma-aldrich-piperazine and C. , , 2017.

A. Jamal, A. Meisen, and C. J. Lim, Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-II: Experimental results and parameter estimation, Chem. Eng. Sci, vol.61, pp.6590-6603, 2006.

J. Lu, Novel Solvent Characterization for CO2 Capture Final report of Collaboration between EDF, 2015.

T. Chakravarty, U. K. Phukan, and R. H. Weilund, Reaction of Acid Gases with Mixtures of Amines, vol.81, p.4, 1985.

O. F. Dawodu and A. Meisen, Degradation of alkanolamine blends by carbon dioxide, Can. J. Chem. Eng, p.74, 1996.

R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab et al., Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant, Ind. Eng. Chem. Res, vol.45, pp.2414-2420, 2006.

H. Li, Y. L. Moullec, J. Lu, J. Chen, J. C. Marcos et al., Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures, Int. J. Greenh. Gas Control, vol.31, pp.25-32, 2014.

J. Chen, H. Li, Y. L. Moullec, J. Lu, J. C. Marcos et al., Process Simulation for CO2 Capture with the Aqueous Solution of 1-methylpiperazine and its Mixture with Piperazine, Energy Procedia, vol.114, pp.1388-1393, 2017.

M. Ramdin, T. W. De-loos, and T. J. Vlugt, State-of-the-Art of CO2 Capture with Ionic Liquids, Ind. Eng. Chem. Res, vol.51, pp.8149-8177, 2012.

J. F. Brennecke and B. E. Gurkan, Ionic Liquids for CO2 Capture and Emission Reduction, J. Phys. Chem, pp.3459-3464, 2010.

Y. Zhang, X. Ji, Y. Xie, and X. Lu, Screening of conventional ionic liquids for carbon dioxide capture and separation, Appl. Energy, vol.162, pp.1160-1170, 2016.

J. Yang, X. Yu, J. Yan, and S. Tu, CO2 Capture Using Amine Solution Mixed with Ionic Liquid, Ind. Eng. Chem. Res, vol.53, pp.2790-2799, 2014.

A. Ahmady, M. A. Hashim, and M. K. Aroua, Kinetics of Carbon Dioxide absorption into aqueous MDEA + [bmim][BF4] solutions from 303 to 333 K, Chem. Eng. J, pp.317-328, 2012.

W. Li, X. Zhang, B. Lu, C. Sun, S. Li et al., Performance of a hybrid solvent of amino acid and ionic liquid for CO2 capture, Int. J. Greenh. Gas Control, vol.42, pp.400-404, 2015.

N. Brown, ION Novel solvent system for CO2 capture, 2013.

A. L. Lafrate, M. C. Huffman, N. Brown, M. S. Shannon, K. Belmore et al., Accelerated Aging and Qualitative Degradation Pathway Analysis of CO2 Capture Solvents Containing Ionic Liquids, Energy Fuels, vol.26, pp.5345-5349, 2012.

R. J. Perry, T. A. Grocela-rocha, M. J. O'brien, S. Genovese, B. R. Wood et al., Aminosilicone Solvents for CO2 Capture, ChemSusChem, vol.3, pp.919-930, 2010.

R. J. Perry, M. P. Rainka, M. D. Doherty, B. R. Wood, O. Namjoshi et al., Thermal Degradation of Aminosilicone Carbamates, Energy Fuels, 2016.

R. J. Perry, S. E. Genovese, R. L. Farnum, I. Spiry, T. M. Perry et al., A Combined Experimental and Computational Study on Selected Physical Properties of Aminosilicones, Ind. Eng. Chem. Res, vol.53, pp.1334-1341, 2014.

R. J. Perry, 6 -Aminosilicone systems for post-combustion CO2 capture, pp.121-144, 2016.

J. D. Figueroa, T. Fout, S. Plasynski, H. Mcilvried, and R. D. Srivastava, Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenh. Gas Control, vol.2, pp.9-20, 2008.

L. Raynal, P. Alix, P. Bouillon, A. Gomez, M. Le et al., The DMX TM process: An original solution for lowering the cost of postcombustion carbon capture, Energy Procedia, vol.4, pp.779-786, 2011.

J. D. Stephanie and . Freeman, Degradation of aqueous piperazine in carbon dioxide capture, Int. J. Greenh. Gas Control, pp.756-761, 2010.

S. A. Freeman, R. Dugas, D. H. Van-wagener, T. Nguyen, and G. T. Rochelle, Carbon dioxide capture with concentrated, aqueous piperazine, Int. J. Greenh. Gas Control, vol.4, pp.119-124, 2010.

F. Closmann, T. Nguyen, and G. T. Rochelle, MDEA/Piperazine as a solvent for CO2 capture, Energy Procedia, vol.1, pp.1351-1357, 2009.

R. Dugas and G. Rochelle, Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine, Energy Procedia, vol.1, pp.1163-1169, 2009.

Y. Du, L. Li, O. Namjoshi, A. K. Voice, N. A. Fine et al., Aqueous Piperazine/N-(2-Aminoethyl) Piperazine for CO2 Capture, Energy Procedia, vol.37, pp.1621-1638, 2013.

B. Sherman, X. Chen, T. Nguyen, Q. Xu, H. Rafique et al., Carbon Capture with 4 m Piperazine/4 m 2-Methylpiperazine, Energy Procedia, vol.37, pp.436-447, 2013.

Y. Artanto, J. Jansen, P. Pearson, G. Puxty, A. Cottrell et al., Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal-fired power station, Int. J. Greenh. Gas Control, vol.20, pp.189-195, 2014.

S. A. Freeman, Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture, 2011.

, Coal may surpass natural gas as most common electricity generation fuel this winter, Today in Energy -U.S. Energy Information Administration (EIA), 2016.

R. Idem, T. Supap, H. Shi, D. Gelowitz, M. Ball et al., Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants, Int. J. Greenh. Gas Control

O. Miyamoto, C. Maas, T. Tsujiuchi, M. Inui, T. Hirata et al., KM CDR ProcessTM Project Update and the New Novel Solvent Development, Energy Procedia, vol.114, pp.5616-5623, 2017.

A. K. Morken, B. Nenseter, S. Pedersen, M. Chhaganlal, J. K. Feste et al., Emission Results of Amine Plant Operations from MEA Testing at the CO2 Technology Centre Mongstad, Energy Procedia, vol.63, pp.6023-6038, 2014.

P. Bumb, P. E. Patkar, R. Mather, R. Kumar, J. Hall et al., Field Demonstration of Advanced CDRMax Solvent at the US-DOE's National Carbon Capture Centre and the CO2 Technology Centre Mongstad DA, vol.114, pp.1087-1099, 2017.

O. Gorset, J. N. Knudsen, O. M. Bade, and I. Askestad, Results from Testing of Aker Solutions Advanced Amine Solvents at CO2 Technology Centre Mongstad, Energy Procedia, vol.63, pp.6267-6280, 2014.

. Ccst-@-mit, , 2017.

, Projects Database | Global Carbon Capture and Storage Institute, 2017.

A. J. Sexton and G. T. Rochelle, Reaction Products from the Oxidative Degradation of Monoethanolamine, Ind. Eng. Chem. Res, vol.50, pp.667-673, 2011.

A. J. Sexton and G. T. Rochelle, Catalysts and inhibitors for MEA oxidation, Energy Procedia, vol.1, pp.1179-1185, 2009.

T. Supap, R. Idem, P. Tontiwachwuthikul, and C. Saiwan, Kinetics of sulfur dioxide-and oxygeninduced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams, Int. J. Greenh. Gas Control, vol.3, pp.133-142, 2009.

T. Wang and K. Jens, Oxidative Degradation of Aqueous 2-Amino-2-methyl-1-propanol Solvent for Postcombustion CO2 Capture, Ind. Eng. Chem. Res, vol.51, pp.6529-6536, 2012.

H. Lepaumier, D. Picq, and P. Carrette, New Amines for CO2 Capture. II. Oxidative Degradation Mechanisms, Ind. Eng. Chem. Res, vol.48, pp.9068-9075, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00559389

B. Fostås, A. Gangstad, B. Nenseter, S. Pedersen, M. Sjøvoll et al., Effects of NOx in the flue gas degradation of MEA, Energy Procedia, vol.4, pp.1566-1573, 2011.

J. Davis and G. Rochelle, Thermal degradation of monoethanolamine at stripper conditions, Energy Procedia, vol.1, pp.327-333, 2009.

J. D. Davis, Thermal degradation of aqueous amines used for carbon dioxide capture, 2009.

D. Bontemps, F. Chopin, Y. L. Moullec, T. Morand, Y. Zanella et al., LEMEDES-CO2: A Lab for Studying Degradation of Solvents used for CO2 Capture Post-combustion Amine Based Systems, Energy Procedia, vol.63, pp.787-790, 2014.

S. A. Freeman and G. T. Rochelle, Thermal Degradation of Aqueous Piperazine for CO2 Capture: 2. Product Types and Generation Rates, Ind. Eng. Chem. Res, vol.51, pp.7726-7735, 2012.

S. A. Freeman and G. T. Rochelle, Thermal Degradation of Aqueous Piperazine for CO2 Capture. 1. Effect of Process Conditions and Comparison of Thermal Stability of CO2 Capture Amines, Ind. Eng. Chem. Res, vol.51, pp.7719-7725, 2012.

T. Wang and K. Jens, Oxidative degradation of aqueous PZ solution and AMP/PZ blends for postcombustion carbon dioxide capture, Int. J. Greenh. Gas Control, vol.24, pp.98-105, 2014.

M. J. Goldman, N. A. Fine, and G. T. Rochelle, Kinetics of N-Nitrosopiperazine Formation from Nitrite and Piperazine in CO2 Capture, Environ. Sci. Technol, vol.47, pp.3528-3534, 2013.

, Climate Change 2014 -Mitigation of Climate Change -Working Group III Contribution to the Fifth Asseessment Report of the Intergovernmental Panel on Climate Change, 2014.

B. Dutcher, M. Fan, and A. G. Russell, Amine-Based CO2 Capture Technology Development from the Beginning of 2013-A Review, ACS Appl. Mater. Interfaces, vol.7, pp.2137-2148, 2015.

F. A. Chowdhury, H. Okabe, H. Yamada, M. Onoda, and Y. Fujioka, Synthesis and selection of hindered new amine absorbents for CO2 capture, Energy Procedia, vol.4, pp.201-208, 2011.

R. Zhang, Z. Liang, H. Liu, W. Rongwong, X. Luo et al., Study of Formation of Bicarbonate Ions in CO2-Loaded Aqueous Single 1DMA2P and MDEA Tertiary Amines and Blended MEA-1DMA2P and MEA-MDEA Amines for Low Heat of Regeneration, Ind. Eng. Chem. Res, vol.55, pp.3710-3717, 2016.

S. A. Mazari, B. Ali, B. M. Jan, I. M. Saeed, and S. Nizamuddin, An overview of solvent management and emissions of amine-based CO2 capture technology, Int. J. Greenh. Gas Control, vol.34, pp.129-140, 2015.

P. Chandan, L. Richburg, S. Bhatnagar, J. E. Remias, and K. Liu, Impact of fly ash on monoethanolamine degradation during CO2 capture, Int. J. Greenh. Gas Control, vol.25, pp.102-108, 2014.

D. Dux and B. Schallert, Study of Degradation Products at Different MEA Based Capture Pilot Plants, Energy Procedia, vol.86, pp.262-271, 2016.

Q. Huang, J. Thompson, S. Bhatnagar, P. Chandan, J. E. Remias et al., Impact of Flue Gas Contaminants on Monoethanolamine Thermal Degradation, Ind. Eng. Chem. Res, vol.53, pp.553-563, 2014.

G. Léonard, C. Crosset, M. Dumont, and D. Toye, Designing Large-scale CO2 Capture Units with Assessment of Solvent Degradation, Energy Procedia, vol.63, pp.1478-1486, 2014.

G. Léonard, A. Voice, D. Toye, and G. Heyen, Influence of Dissolved Metals and Oxidative Degradation Inhibitors on the Oxidative and Thermal Degradation of Monoethanolamine in Postcombustion CO2 Capture, Ind. Eng. Chem. Res, vol.53, pp.18121-18129, 2014.

L. Dubois and D. Thomas, Study of the Postcombustion CO2 Capture by Absorption into Amine(s) Based Solvents: Application to Cement Flue Gases, Energy Procedia, vol.37, pp.1639-1647, 2013.

H. Lepaumier, D. Picq, and P. Carrette, New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2, Ind. Eng. Chem. Res, vol.48, pp.9061-9067, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00559389

A. Ahmad, P. Priyabrata, A. Sameer, and B. Fawzi, Formation of heat stable salts during thermal degradation of aqueous methyldiethanolamine (MDEA) solvent and corrosion studies with different alloys, Int. J. Curr. Res, vol.6, pp.6582-6587, 2014.

L. Dubois and D. Thomas, Postcombustion CO2 Capture by Chemical Absorption: Screening of Aqueous Amine(s)-based solvents, Energy Procedia, vol.37, pp.1648-1657, 2013.

M. Ashouripashaki, Formation and decomposition of 1-nitrosopiperazine in the CO2 capture process, 2012.

N. A. Fine, M. J. Goldman, P. T. Nielsen, and G. T. Rochelle, Managing n-nitrosopiperazine and dinitrosopiperazine, Energy Procedia, vol.37, pp.273-284, 2013.

T. Carter, National Carbon Capture Center: post-combustion, Presented at the NETL CO2 Capture Technology Meeting, 2012.

, Concentrated piperazine based post-combustion-capture for Australian coal-fired power plants: summary report | Global Carbon Capture and Storage Institute, 2013.

D. Thimsen, A. Maxson, V. Smith, T. Cents, O. Falk-pedersen et al., Results from MEA testing at the CO2 Technology Centre Mongstad. Part I: Post-Combustion CO2 capture testing methodology, Energy Procedia, vol.63, pp.5938-5958, 2014.

J. Wheeldon, National carbon capture center: post-combustion testing, Presented at the NETL CO2 Capture Technology Meeting, vol.29, 2014.

J. Wheeldon, National Carbon Capture Center: post-combustion CO2 capture program, Presented at the NETL CO2 Capture Technology Meeting, 2013.

M. Wilson, P. Tontiwachwuthikul, A. Chakma, R. Idem, A. Veawab et al., Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station, Energy, vol.29, pp.1259-1267, 2004.

A. O. Alawode, Oxidative degradation of piperazine in the absorption of carbon dioxide, 2005.

S. Chi and G. T. Rochelle, Oxidative Degradation of Monoethanolamine, Ind. Eng. Chem. Res, vol.41, pp.4178-4186, 2002.

S. J. Vevelstad, A. Grimstvedt, J. Elnan, E. F. Silva, and H. F. Svendsen, Oxidative degradation of 2-ethanolamine: The effect of oxygen concentration and temperature on product formation, Int. J. Greenh. Gas Control, vol.18, pp.88-100, 2013.

N. S. Matin, J. E. Remias, J. K. Neathery, and K. Liu, Facile Method for Determination of Amine Speciation in CO2 Capture Solutions, Ind. Eng. Chem. Res, vol.51, pp.6613-6618, 2012.

P. T. Nielsen, L. Li, and G. T. Rochelle, Piperazine Degradation in Pilot Plants, Energy Procedia, vol.37, pp.1912-1923, 2013.

F. Bougie and M. C. Iliuta, Stability of aqueous amine solutions to thermal and oxidative degradation in the absence and the presence of CO2, Int. J. Greenh. Gas Control, vol.29, pp.16-21, 2014.

A. J. Reynolds, T. V. Verheyen, S. B. Adeloju, A. L. Chaffee, and E. Meuleman, Evaluation of methods for monitoring MEA degradation during pilot scale post-combustion capture of CO2, Int. J. Greenh. Gas Control, vol.39, pp.407-419, 2015.

S. A. Freeman, X. Chen, T. Nguyen, H. Rafique, Q. Xu et al., Piperazine/Nmethylpiperazine/N,N'-dimethylpiperazine as an Aqueous Solvent for Carbon Dioxide Capture, Oil Gas Sci. Technol. -Rev. D'IFP Energ. Nouv, vol.69, pp.903-914, 2014.

S. Zhou, S. Wang, and C. Chen, Thermal Degradation of Monoethanolamine in CO2 Capture with Acidic Impurities in Flue Gas, Ind. Eng. Chem. Res, vol.51, pp.2539-2547, 2012.

G. Fytianos, R. Callot, H. F. Svendsen, and H. K. Knuutila, Quantitative determination of amines used in post-combustion CO2 capture process by ion chromatography, Int. J. Greenh. Gas Control, vol.42, pp.372-378, 2015.

T. Wang, M. Á. Lopez, S. T. Hagen, and K. J. Jens, Determination of degraded ethanolamines for post-combustion CO 2 capture technology by non-suppressed ion chromatography, Fresen Env. Bull, vol.21, pp.2298-2303, 2012.

S. J. Vevelstad, A. Grimstvedt, H. Knuutila, E. F. Silva, and H. F. Svendsen, Influence of experimental setup on amine degradation, Int. J. Greenh. Gas Control, vol.28, pp.156-167, 2014.

Y. Du, Y. Wang, and G. T. Rochelle, Thermal degradation of novel piperazine-based amine blends for CO2 capture, Int. J. Greenh. Gas Control, vol.49, pp.239-249, 2016.

R. Herráez-hernández, C. Cháfer-pericás, J. Verdú-andrés, and P. , Campíns-Falcó, An evaluation of solid phase microextraction for aliphatic amines using derivatization with 9-fluorenylmethyl chloroformate and liquid chromatography, J. Chromatogr. A, vol.1104, pp.40-46, 2006.

S. Lloret, C. Legua, and P. C. Falco, Preconcentration and dansylation of aliphatic amines using C18 solid-phase packings: Application to the screening analysis in environmental water samples, J. Chromatogr. A, vol.978, pp.1431-1431, 2002.

L. Pan, J. M. Chong, and J. Pawliszyn, Determination of amines in air and water using derivatization combined with solid-phase microextraction, J. Chromatogr. A, vol.773, pp.249-260, 1997.

H. Kataoka, Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis, J. Chromatogr. A, vol.733, pp.726-727, 1996.

J. G. Thompson, S. Bhatnagar, M. Combs, K. Abad, F. Onneweer et al., Pilot testing of a heat integrated 0.7MWe CO2 capture system with twostage air-stripping: Amine degradation and metal accumulation, Int. J. Greenh. Gas Control, vol.64, pp.23-33, 2017.

V. Cuzuel, J. Brunet, A. Rey, J. Dugay, J. Vial et al., Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Targeted Degradation Compounds of Ethanolamine Used in CO2 Capture: Application to Real Samples, Oil Gas Sci. Technol. -Rev
URL : https://hal.archives-ouvertes.fr/hal-01085293

D. Energ, Nouv, vol.69, pp.821-832, 2014.

T. Supap, R. Idem, D. Gelowitz, C. Campbell, and M. Ball, Optimizing method parameters for ion pair-based high performance liquid chromatographic analysis (IP-HPLC) for complex amine blend formulas used in post combustion carbon dioxide capture, Int. J. Greenh. Gas Control, vol.44, pp.66-73, 2016.

T. Wang and K. Jens, Towards an understanding of the oxidative degradation pathways of AMP for post-combustion CO2 capture, Int. J. Greenh. Gas Control, vol.37, pp.354-361, 2015.

S. J. Vevelstad, A. Grimstvedt, A. Einbu, H. Knuutila, E. F. Silva et al., Oxidative degradation of amines using a closed batch system, Int. J. Greenh. Gas Control, vol.18, pp.1-14, 2013.

S. J. Vevelstad, M. T. Johansen, H. Knuutila, and H. F. Svendsen, Oxygen and Temperature Effect on Formation of Degradation Compounds from MEA, Energy Procedia, vol.63, pp.957-975, 2014.

G. Léonard, D. Toye, and G. Heyen, Relevance of accelerated conditions for the study of monoethanolamine degradation in post-combustion CO2 capture, Can. J. Chem. Eng, vol.93, pp.348-355, 2015.

S. A. Mazari, B. S. Ali, B. M. Jan, and I. M. Saeed, Thermal degradation of piperazine and diethanolamine blend for CO2 capture, Int. J. Greenh. Gas Control, vol.47, pp.1-7, 2016.

M. Nainar and A. Veawab, Corrosion in CO2 Capture Process Using Blended Monoethanolamine and Piperazine, Ind. Eng. Chem. Res, vol.48, pp.9299-9306, 2009.

F. Vega, A. Sanna, M. M. Maroto-valer, B. Navarrete, and D. Abad-correa, Study of the MEA degradation in a CO2 capture process based on partial oxy-combustion approach, Int. J. Greenh. Gas Control. 54, Part, vol.1, pp.160-167, 2016.

I. J. Uyanga and R. O. Idem, Studies of SO2-and O2-Induced Degradation of Aqueous MEA during CO2 Capture from Power Plant Flue Gas Streams, Ind. Eng. Chem. Res, vol.46, pp.2558-2566, 2007.

J. G. Thompson, R. Frimpong, J. E. Remias, J. K. Neathery, and K. Liu, Heat Stable Salt Accumulation And Solvent Degradation In A Pilot Scale Co2 Capture Process Using Coal Combustion Flue Gas | AceMap, Aerosol Air Qual. Res, vol.14, pp.550-558, 2014.

T. Supap, R. Idem, and P. Tontiwachwuthikul, Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO2 capture from flue gas streams, Energy Procedia, vol.4, pp.591-598, 2011.

M. S. Azevedo, G. Pirassol, R. Fett, G. A. Micke, L. Vitali et al., Screening and determination of aliphatic organic acids in commercial Brazilian sugarcane spirits employing a new method involving capillary electrophoresis and a semi-permanent adsorbed polymer coating, Food Res. Int, vol.60, pp.123-130, 2014.

H. Hiraoka, E. Ishikuro, and T. Goto, Simultaneous analysis of organic acids and inorganic anions in silage by capillary electrophoresis, Anim. Feed Sci. Technol, vol.161, pp.58-66, 2010.

J. M. Käkölä, R. J. Alén, J. P. Isoaho, and R. B. Matilainen, Determination of low-molecular-mass aliphatic carboxylic acids and inorganic anions from kraft black liquors by ion chromatography, J. Chromatogr. A, vol.1190, pp.150-156, 2008.

P. Kubá?, P. ?ur?, M. Bittová, and F. Foret, Separation of oxalate, formate and glycolate in human body fluid samples by capillary electrophoresis with contactless conductometric detection, J. Chromatogr. A, vol.1325, pp.241-246, 2014.

T. Nogueira and C. L. Lago, Determination of Ca, K, Mg, Na, sulfate, phosphate, formate, acetate, propionate, and glycerol in biodiesel by capillary electrophoresis with capacitively coupled contactless conductivity detection, Microchem. J, vol.99, pp.267-272, 2011.

R. G. Peres, E. P. Moraes, G. A. Micke, F. G. Tonin, M. F. Tavares et al., Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection, Food Control, vol.20, pp.548-552, 2009.

E. L. Silveira, L. B. De-caland, and M. Tubino, Simultaneous quantitative analysis of the acetate, formate, chloride, phosphate and sulfate anions in biodiesel by ion chromatography, Fuel, vol.124, pp.97-101, 2014.

F. A. Vaz, P. A. Silva, L. P. Passos, M. Heller, G. A. Micke et al., Optimisation of a Capillary Zone Electrophoresis Methodology for Simultaneous Analysis of Organic Aliphatic Acids in Extracts of Brachiaria brizantha, Phytochem. Anal, vol.23, pp.569-575, 2012.

A. J. Reynolds, T. V. Verheyen, S. B. Adeloju, A. L. Chaffee, and E. Meuleman, Primary sources and accumulation rates of inorganic anions and dissolved metals in a MEA absorbent during PCC at a brown coal-fired power station, Int. J. Greenh. Gas Control, vol.41, pp.239-248, 2015.

S. J. Vevelstad and H. F. Svendsen, Challenges Related to Analysis of Anions in Degraded Samples from Pilot and Lab Experiments, Energy Procedia, vol.86, pp.181-196, 2016.

D. Bontemps, L. Cuccia, P. Awad, M. Louis-louisy, J. Vial et al., Experimental Approach to Mimic and Study Degradation of Solvents Used for Postcombustion CO2 Capture, Energy Procedia, vol.114, pp.1709-1715, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01740295

N. A. Fine, P. T. Nielsen, and G. T. Rochelle, Decomposition of Nitrosamines in CO2 Capture by Aqueous Piperazine or Monoethanolamine, Environ. Sci. Technol, vol.48, pp.5996-6002, 2014.

B. R. Strazisar, R. R. Anderson, and C. M. White, Degradation Pathways for Monoethanolamine in a CO2 Capture Facility, Energy Fuels, vol.17, pp.1034-1039, 2003.

M. Azzi and K. ,

P. Riley, R. Jackson, A. Rowlands, M. I. Allport, and . Attalla, CO2 Capture MongstadProject A -Establishing sampling and analytical procedures for potentially harmful components from post-combustion amine based CO2 capture. Task 3: Online sampling and Analysis, 2011.

L. Sørensen, K. Zahlsen, A. Hyldbakk, E. F. Silva, and A. M. Booth, Photodegradation in natural waters of nitrosamines and nitramines derived from CO2 capture plant operation, Int. J. Greenh. Gas Control, vol.32, pp.106-114, 2015.

N. Dai and W. A. Mitch, Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO2 Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater, Environ. Sci. Technol, vol.49, pp.8878-8886, 2015.

N. Dai and W. A. Mitch, Effects of Flue Gas Compositions on Nitrosamine and Nitramine Formation in Postcombustion CO2 Capture Systems, Environ. Sci. Technol, vol.48, pp.7519-7526, 2014.

F. Mercader, A. K. Voice, H. Trap, and E. L. Goetheer, Nitrosamine degradation by UV light in post-combustion CO2 capture: Effect of solvent matrix, Energy Procedia, vol.37, pp.701-716, 2013.

N. Dai, A. D. Shah, L. Hu, M. J. Plewa, B. Mckague et al., Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration, Environ. Sci. Technol, vol.46, pp.9793-9801, 2012.

H. Knuutila, H. F. Svendsen, and N. Asif, Destruction of nitrosoamines with UV-light, Energy Procedia, vol.37, 2013.

A. Cousins, S. Huang, A. Cottrell, P. H. Feron, E. Chen et al., Pilot-scale parametric evaluation of concentrated piperazine for CO2 capture at an Australian coal-fired power station, Greenh. Gases Sci. Technol, vol.5, pp.7-16, 2015.

N. A. Fine and G. T. Rochelle, Thermal Decomposition of N-nitrosopiperazine, Energy Procedia, vol.37, pp.1678-1686, 2013.

A. K. Voice, A. Hill, N. A. Fine, and G. T. Rochelle, Nitrosamine formation and mitigation in blended amines for CO2 capture, Int. J. Greenh. Gas Control, vol.39, pp.329-334, 2015.

Z. Wang and W. A. Mitch, Influence of Dissolved Metals on N-Nitrosamine Formation under Amine-based CO2 Capture Conditions, Environ. Sci. Technol, vol.49, pp.11974-11981, 2015.

, Test Method 0011: Sampling for Selected Aldehyde and Ketone Emissions from Stationary Sources, SW-846, 1996.

S. D. Sharma and M. Azzi, A critical review of existing strategies for emission control in the monoethanolamine-based carbon capture process and some recommendations for improved strategies, Fuel, vol.121, pp.178-188, 2014.

Y. Maree, S. Nepstad, and G. De-koeijer, Establishment of Knowledge base for Emission Regulation for the CO2 Technology Centre Mongstad, Energy Procedia, vol.37, pp.6265-6272, 2013.

E. F. Silva and A. M. Booth, Emissions from Postcombustion CO2 Capture Plants, Environ. Sci. Technol, vol.47, pp.659-660, 2013.

J. E. Szulejko and K. Kim, A review of sampling and pretreatment techniques for the collection of airborne amines, TrAC Trends Anal. Chem, vol.57, pp.118-134, 2014.

J. Mertens, J. Knudsen, M. Thielens, and J. Andersen, On-line monitoring and controlling emissions in amine post combustion carbon capture: A field test, Int. J. Greenh. Gas Control, vol.6, pp.2-11, 2012.

G. S. Goff and G. T. Rochelle, Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions, Ind. Eng. Chem. Res, vol.43, pp.6400-6408, 2004.

P. Khakharia, J. Mertens, A. Huizinga, S. De, E. Vroey et al., Online Corrosion Monitoring in a Postcombustion CO2 Capture Pilot Plant and its Relation to Solvent Degradation and Ammonia Emissions, Ind. Eng. Chem. Res, vol.54, pp.5336-5344, 2015.

S. White, D. Angove, M. Azzi, A. Tibbett, I. Campbell et al., An experimental investigation into the atmospheric degradation of piperazine, Atmos. Environ, vol.108, pp.133-139, 2015.

S. M. Fulk and G. T. Rochelle, Quantification of Gas and Aerosol-phase Piperazine Emissions by FTIR Under Variable Bench-scale Absorber Conditions, Energy Procedia, vol.63, pp.871-883, 2014.

E. F. Silva, H. Kolderup, E. Goetheer, K. W. Hjarbo, A. Huizinga et al., Emission studies from a CO2 capture pilot plant, Energy Procedia, vol.37, pp.778-783, 2013.

I. Fraboulet, L. Chahen, F. Lestremau, A. Grimstvedt, B. Schallert et al., Round Robin Tests on Nitrosamines Analysis in the Effluents of a CO2 Capture Pilot Plant, 8th Trondheim Conf. Co2 Capture Transp. Storage, pp.252-261, 2016.
URL : https://hal.archives-ouvertes.fr/ineris-01854251

L. Zhu, G. W. Schade, and C. J. Nielsen, Real-Time Monitoring of Emissions from Monoethanolamine-Based Industrial Scale Carbon Capture Facilities, Environ. Sci. Technol, vol.47, pp.14306-14314, 2013.

J. Mertens, H. Lepaumier, D. Desagher, and M. Thielens, Understanding ethanolamine (MEA) and ammonia emissions from amine based post combustion carbon capture: Lessons learned from field tests, Int. J. Greenh. Gas Control, vol.13, pp.72-77, 2013.

J. G. Thompson, M. Combs, K. Abad, S. Bhatnagar, J. Pelgen et al., Pilot testing of a heat integrated 0.7MWe CO2 capture system with two-stage air-stripping: Emission, Int. J. Greenh. Gas Control, vol.64, pp.267-275, 2017.

D. M. Macbride, C. G. Malone, J. P. Hebb, and E. G. Cravalho, Effect of Temperature Variation on FT-IR Spectrometer Stability, Appl. Spectrosc, vol.51, pp.43-50, 1997.

P. Moser, S. Schmidt, K. Stahl, G. Vorberg, G. A. Lozano et al., Demonstrating Emission Reduction -Results from the Post-combustion Capture Pilot Plant at Niederaussem, Energy Procedia, vol.63, pp.902-910, 2014.

I. Fraboulet, F. Lestremau, J. Poulleau, H. Biaudet, and L. Chahen, Octavius: Establishment of Guidelines and Standard Operating Procedures (SOPs) Regarding Sampling and Analyses for the Monitoring of Pollutants Emitted in CCS Process Liquid and Atmospheric Matrices, Energy Procedia, vol.63, pp.848-862, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01855579

A. Singh and K. Stéphenne, Shell Cansolv CO2 capture technology: Achievement from First Commercial Plant, Energy Procedia, vol.63, pp.1678-1685, 2014.

A. P. Praplan, F. Bianchi, J. Dommen, and U. Baltensperger, Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign, Atmos Meas Tech Discuss, vol.5, pp.2395-2413, 2012.

L. Cuccia, R. Bourdon, J. Dugay, D. Bontemps, P. Carrette et al., Novel approach for the quantitative analysis of MEA degradation products present in gas effluent of CO2 capture process by thermal desorption-gas chromatography-mass spectrometry: Development and validation, Int. J. Greenh. Gas Control, vol.60, pp.110-119, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760665

C. J. Nielsen, B. Anna, C. Dye, M. Graus, M. Karl et al., Atmospheric chemistry of 2-aminoethanol (MEA), Energy Procedia, vol.4, pp.2245-2252, 2011.

A. Rey, C. Gouedard, N. Ledirac, M. Cohen, J. Dugay et al., Amine degradation in CO2 capture. 2. New degradation products of MEA. Pyrazine and alkylpyrazines: Analysis, mechanism of formation and toxicity, Int. J. Greenh. Gas Control, vol.19, pp.576-583, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01502562

Z. Liang, K. Fu, R. Idem, and P. Tontiwachwuthikul, Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents, Chin. J. Chem. Eng, vol.24, pp.278-288, 2016.

C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P. Tontiwachwuthikul et al., Advancement and new perspectives of using formulated reactive amine blends for postcombustion carbon dioxide (CO2) capture technologies, Petroleum

V. Cuzuel, C. Gouedard, L. Cuccia, J. Brunet, A. Rey et al., Amine degradation in CO2 capture. 4. Development of complementary analytical strategies for a comprehensive identification of degradation compounds of MEA, Int. J. Greenh. Gas Control, vol.42, pp.439-453, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01502562

A. Rey, C. Gouedard, N. Ledirac, M. Cohen, J. Dugay et al., Amine degradation in CO2 capture. 2. New degradation products of MEA. Pyrazine and alkylpyrazines: Analysis, mechanism of formation and toxicity, Int. J. Greenh. Gas Control, pp.576-583, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01502562

M. R. Ras, F. Borrull, and R. M. Marcé, Sampling and preconcentration techniques for determination of volatile organic compounds in air samples, TrAC Trends Anal. Chem, vol.28, pp.347-361, 2009.

D. K. Wang and C. C. Austin, Determination of complex mixtures of volatile organic compounds in ambient air: an overview, Anal. Bioanal. Chem, vol.386, pp.1089-1098, 2006.

G. Mangani, A. Berloni, and M. Maione, Cold" solid-phase microextraction method for the determination of volatile halocarbons present in the atmosphere at ultra-trace levels, J. Chromatogr. A, vol.988, pp.167-175, 2003.

J. A. Dziuban, J. Mróz, M. Szczygielska, M. Ma?achowski, A. Górecka-drzazga et al., Portable gas chromatograph with integrated components, Sens. Actuators Phys, vol.115, pp.318-330, 2004.

A. Kieloaho, H. Hellén, H. Hakola, H. E. Manninen, T. Nieminen et al., Gasphase alkylamines in a boreal Scots pine forest air, Atmos. Environ, vol.80, pp.369-377, 2013.

M. Fournier, J. Lesage, C. Ostiguy, and H. V. Tra, Sampling and analytical methodology development for the determination of primary and secondary low molecular weight amines in ambient air, J. Environ. Monit, vol.10, pp.379-386, 2008.

Y. Kim and K. Kim, An accurate and reliable analysis of trimethylamine using thermal desorption and gas chromatography-time of flight mass spectrometry, Anal. Chim. Acta, vol.780, pp.46-54, 2013.

K. Dettmer and W. Engewald, Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds, Anal. Bioanal. Chem, vol.373, pp.490-500, 2002.

E. Woolfenden, Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods, J. Chromatogr. A, vol.1217, pp.2685-2694, 2010.

E. Woolfenden, Monitoring VOCs in Air Using Sorbent Tubes Followed by Thermal DesorptionCapillary GC Analysis: Summary of Data and Practical Guidelines, J. Air Waste Manag. Assoc, vol.47, pp.20-36, 1997.

C. Marlet and G. Lognay, Development and validation by accuracy profile of a method for the analysis of monoterpenes in indoor air by active sampling and thermal desorption-gas chromatography-mass spectrometry, Talanta, vol.82, pp.1230-1239, 2010.

C. Rodríguez-navas, R. Forteza, and V. Cerdà, Implementation and optimisation of a hightemperature loading strategy of liquid standards in the quantification of volatile organic compounds using solid sorbents, J. Sep. Sci, vol.36, pp.503-510, 2013.

Y. M. Kim, S. Harrad, and R. M. Harrison, Concentrations and Sources of VOCs in Urban Domestic and Public Microenvironments, Environ. Sci. Technol, vol.35, pp.997-1004, 2001.

N. Ramírez, R. M. Marcé, and F. Borrull, Development of a thermal desorption-gas chromatography-mass spectrometry method for determining personal care products in air, J. Chromatogr. A, vol.1217, pp.4430-4438, 2010.

P. Bruno, M. Caputi, M. Caselli, G. De-gennaro, and M. De-rienzo, Reliability of a BTEX radial diffusive sampler for thermal desorption: field measurements, Atmos. Environ, vol.39, pp.1347-1355, 2005.

M. Feinberg, Validation des méthodes d'analyse quantitatives au moyen du profil d'exactitude, 2012.

P. Hubert, J. Nguyen-huu, B. Boulanger, E. Chapuzet, P. Chiap et al., Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal-part I, J. Pharm. Biomed. Anal, vol.36, pp.579-586, 2004.

P. Hubert, J. Nguyen-huu, B. Boulanger, E. Chapuzet, P. Chiap et al., Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal -Part II, J. Pharm. Biomed. Anal, vol.45, pp.70-81, 2007.

S. Mompelat, M. Fourmond, M. Laurentie, E. Verdon, D. Hurtaud-pessel et al., Validation of a liquid chromatography-high-resolution mass spectrometry method for the analysis of ceftiofur in poultry muscle, kidneys and plasma: A unique accuracy profile for each and every matrix, J. Chromatogr. A, vol.1407, pp.119-129, 2015.
URL : https://hal.archives-ouvertes.fr/anses-01193147

A. Combes, S. E. Abdellaoui, C. Sarazin, J. Vial, A. Mejean et al., Validation of the analytical procedure for the determination of the neurotoxin ?-Nmethylamino-L-alanine in complex environmental samples, Anal. Chim. Acta, vol.771, pp.42-49, 2013.

, Sigma-Aldrich, Capabilities of the Adsorbent Tube Injector System (ATIS), 2015.

U. S. Epa, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Method TO-17, 1999.

X. Ma, I. Kim, R. Beck, H. Knuutila, and J. Andreassen, Precipitation of Piperazine in Aqueous Piperazine Solutions with and without CO2 Loadings, Ind. Eng. Chem. Res, vol.51, pp.12126-12134, 2012.

A. J. Reynolds, T. V. Verheyen, S. B. Adeloju, A. L. Chaffee, and E. Meuleman, Monoethanolamine Degradation during Pilot-Scale Post-combustion Capture of CO2 from a Brown Coal-Fired Power Station, Energy Fuels, vol.29, pp.7441-7455, 2015.

J. Vial and A. Jardy, Quantitation by Standard Addition, 2009.

L. Cuccia, N. Bekhti, J. Dugay, D. Bontemps, M. Louis-louisy et al., Monitoring of the blend 1-methylpiperazine/piperazine/water for post-combustion CO2 capture. Part 1: identification and quantification of degradation products

S. A. Mazari, B. S. Ali, B. M. Jan, and I. M. Saeed, Degradation study of piperazine, its blends and structural analogs for CO2 capture: A review, Int. J. Greenh. Gas Control, vol.31, pp.214-228, 2014.

H. T. Clarke, H. B. Gillespie, and S. Z. Weisshaus, The Action of Formaldehyde on Amines and Amino Acids1, J. Am. Chem. Soc, vol.55, pp.4571-4587, 1933.

W. Eschweiler, Chem Ber, vol.38, pp.880-892, 1905.

T. Shibamoto, T. Akiyama, M. Sakaguchi, Y. Enomoto, and H. Masuda, A study of pyrazine formation, J. Agric. Food Chem, vol.27, pp.1027-1031, 1979.

C. Gouedard, Novel degradation products of ethanolamine (MEA) in CO2 capture conditions: identification, mechanisms proposal and transposition to other amines, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01081315

H. L. Eirik-falck-da and S. , Understanding 2-Ethanolamine Degradation in Postcombustion CO2 Capture, Ind. Amp Eng. Chem. Res, vol.51, pp.13329-13338, 2012.

P. Zhang, Y. Shi, J. Wei, W. Zhao, and Q. Ye, Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption, J. Environ. Sci, vol.20, pp.60005-60009, 2008.

M. A. Gonzalez-salazar, T. Kirsten, and L. Prchlik, Review of the operational flexibility and emissions of gas-and coal-fired power plants in a future with growing renewables, Renew. Sustain. Energy Rev, 2017.

P. C. Rooney, M. S. Dupart, and T. Bacon, The Role of Oxygen in the Degradation of MEA, DGA, DEA and MDEA, 48th Laurence Reid Gas Cond Conf, pp.335-347, 1998.

A. O. Arduengo, F. P. Gentry, P. K. Taverkere, and H. Simmons, Process for manufacture of imidazoles, pp.6177575-6177576, 2001.

J. H. Lee, S. A. Batterman, C. Jia, S. Chernyak-;-tenax, T. A. Carbopack et al., Ozone Artifacts and Carbonyl Measurements Using Tenax GR, J. Air Waste Manag. Assoc, vol.56, pp.1503-1517, 2006.

L. Cuccia, M. Kanniche, J. Dugay, D. Bontemps, M. Louis-louisy et al., Monitoring of the blend monoethanolamine/methyldiethanolamine/water for post-combustion CO2 capture, Int. J. Greenh. Gas Control
URL : https://hal.archives-ouvertes.fr/hal-02003041

A. Naami, T. Sema, M. Edali, Z. Liang, R. Idem et al., Analysis and predictive correlation of mass transfer coefficient KGav of blended MDEA-MEA for use in postcombustion CO2 capture, Int. J. Greenh. Gas Control, vol.19, pp.3-12, 2013.

N. Chiali-baba-ahmed, F. Dergal, L. Negadi, and I. Mokbel, Measurement and correlation of the (vapor + liquid) equilibria of pure 4-ethylmorpholine, 1,2-dimethylisopropylamine and N,Ndimethylethanolamine, and their binary aqueous solutions, J. Chem. Thermodyn, vol.63, pp.44-51, 2013.

K. Klepá?ová, P. J. Huttenhuis, P. W. Derks, and G. F. Versteeg, Vapor Pressures of Several Commercially Used Alkanolamines, J. Chem. Eng. Data, vol.56, pp.2242-2248, 2011.

A. K. Morken, S. Pedersen, E. R. Kleppe, A. Wisthaler, K. Vernstad et al., Degradation and Emission Results of Amine Plant Operations from MEA Testing at the CO2 Technology Centre Mongstad, Energy Procedia, vol.114, pp.1245-1262, 2017.

H. Gao, Z. Liang, H. Liao, and R. O. Idem, Thermal degradation of aqueous DEEA solution at stripper conditions for post-combustion CO2 capture, Chem. Eng. Sci, vol.135, pp.330-342, 2015.

F. Garcia-ochoa and E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnol. Adv, vol.27, pp.153-176, 2009.

C. Roizard, G. Wild, and J. Charpentier, Absorption avec réaction chimique, Tech. Ing, 1997.

, Résumé Le procédé de captage du CO2 en post-combustion par absorption chimique est aujourd'hui la technologie la plus mature en vue d'une réduction des émissions de CO2 issues de procédés industriels

, Les deux principales limitations de la technologie sont la pénalité énergétique engendrée par le procédé, et la formation de produits de dégradation potentiellement toxiques pour l'Homme et l'environnement

, Cette dégradation du solvant implique un appoint de solvant frais à mesure que le solvant se dégrade, ce qui induit des coûts supplémentaires. Dans le cadre de ce projet de thèse, trois solvants innovants ont été présélectionnés pour leurs bonnes propriétés thermodynamiques de captage : les mélanges 1-méthylpipérazine / pipérazine (1MPZ 30 %/PZ 10 %)

, Ces trois solvants ont été étudiés en termes de stabilité chimique dans des conditions représentatives des conditions industrielles du captage de CO2 en post-combustion sur un dispositif expérimental construit par EDF R&D Chatou. Des modes opératoires similaires, %/PZ 5 %) et méthyldiéthanolamine/monoéthanolamine (MDEA 25 %/MEA 5 %)

%. Procédé, Cette identification des produits de dégradation a été réalisée dans un premier temps à l'aide de la base de données de spectres NIST, ont été mis en oeuvre pour les trois solvants. Des méthodes analytiques complémentaires impliquant les chromatographies liquide et gazeuse ont été développées dans l'objectif de suivre les teneurs en amines constituantes du solvant au cours du temps, et d'identifier et quantifier les potentiels produits de dégradation formés aussi bien dans la phase liquide du solvant que dans les fumées traitées émises

, Les résultats obtenus concernant l'étude du solvant 1MPZ/PZ ont montré la formation de 27

, points et 0,06 points par jour respectivement pour la 1MPZ et la PZ. Les valeurs de taux de charge, permettant d'évaluer l'efficacité de captage du solvant, ont été déterminées et sont de 0,63 pour le solvant riche en CO2 et de 0,28 pour le solvant pauvre en CO2. Concernant l'étude du solvant MDEA/MEA, 22 produits de dégradation ont été identifiés, dont 12 détectés dans la phase liquide du solvant, et 11 émis en phase gazeuse. Aucune baisse significative de la teneur en MDEA n'a été observée, contrairement à la MEA pour laquelle une baisse significative de l'ordre de 0,03 points par jour a été observée. Les taux de charges riche et pauvres ont également été déterminés et sont respectivement de 0,40 et de 0,12. Des mécanismes de formation ont par ailleurs été proposés dans l'objectif d'expliquer la formation des produits formés. L'étude du mélange DMEA/PZ a en revanche montré une perte de 0,4 points par jour par volatilisation. Cette perte importante s, produits de dégradation dont 23 présents dans la phase liquide du solvant, et 14 émis avec les fumées traitées. Un suivi quantitatif des teneurs en 1MPZ et PZ au sein du solvant a par ailleurs été réalisé et a montré une baisse significative des deux amines de l'ordre de 0, vol.2

, le solvant MDEA/MEA semble offrir le meilleur compromis en termes de stabilité chimique et de besoins énergétiques requis pour le procédé. Ce solvant présente des taux de dégradation inférieurs aux mélanges 1MPZ/PZ et DMEA/PZ, et permettrait une réduction de l'énergie au rebouilleur de l'ordre de 10 % par rapport à la MEA 30 %