D. Haque, Formation d'une pellicule, vol.267, 2009.

, Le milieu SOBG est inoculé par 10 6 bactéries/ml. La formation de la pellicule s'observe après 48h d'incubation à 28°C sans agitation

, Analyses statistiques L'analyse statistique a été réalisée à l'aide du logiciel Xlstat

F. C. Mcintire, W. H. Peterson, and A. J. Riker, A polysaccharide produced by the crown-gall organism, Journal of Biological Chemistry, vol.143, issue.2, pp.491-496, 1942.

T. Vanden-boom, J. E. Cronan, and J. , Genetics and regulation of bacterial lipid metabolism, Annu Rev Microbiol, vol.43, pp.317-360, 1989.

R. J. Kadner, Cytoplasmic membrane, in Escherichia coli and Salmonella: Cellular and Molecular Biology, pp.58-87, 1996.

N. Ruiz, D. Kahne, and T. J. Silhavy, Transport of lipopolysaccharide across the cell envelope: the long road of discovery, Nat Rev Microbiol, vol.7, issue.9, pp.677-83, 2009.

T. Sato, K. Ito, and T. Yura, Membrane proteins of Escherichia coli K-12: two-dimensional polyacrylamide gel electrophoresis of inner and outer membranes, Eur J Biochem, vol.78, issue.2, pp.557-67, 1977.

M. J. Pallen and N. J. Matzke, From The Origin of Species to the origin of bacterial flagella, Nat Rev Microbiol, vol.4, issue.10, pp.784-90, 2006.

D. S. Cayley, H. J. Guttman, and M. T. Record, Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress, Biophys J, vol.78, issue.4, pp.1748-64, 2000.

L. L. Graham, T. J. Beveridge, and N. Nanninga, Periplasmic space and the concept of the periplasm, Trends Biochem Sci, vol.16, issue.9, pp.328-337, 1991.

J. B. Stock, B. Rauch, and S. Roseman, Periplasmic space in Salmonella typhimurium and Escherichia coli, J Biol Chem, vol.252, issue.21, pp.7850-61, 1977.

J. A. Hobot, Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods, J Bacteriol, vol.160, issue.1, pp.143-52, 1984.

L. M. Van-golde, Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli, Proc Natl Acad Sci U S A, vol.70, issue.5, pp.1368-72, 1973.

K. J. Miller, E. P. Kennedy, and V. N. Reinhold, Osmotic adaptation by gramnegative bacteria: possible role for periplasmic oligosaccharides, Science, vol.231, issue.4733, pp.48-51, 1986.

J. P. Bohin, Osmoregulated periplasmic glucans in Proteobacteria, FEMS Microbiol Lett, vol.186, issue.1, pp.11-20, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00021381

J. P. Bohin and J. M. Lacroix, Osmoregulation in the periplasm, pp.325-341, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00106289

D. E. Goldberg, M. K. Rumley, and E. P. Kennedy, Biosynthesis of membranederived oligosaccharides: a periplasmic phosphoglyceroltransferase, Proc Natl Acad Sci, vol.78, issue.9, pp.5513-5520, 1981.

V. Cogez, Osmoregulated periplasmic glucans of Erwinia chrysanthemi, J Bacteriol, vol.183, issue.10, pp.3127-3160, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00021373

P. Talaga, B. Fournet, and J. P. Bohin, Periplasmic glucans of Pseudomonas syringae pv. syringae, J Bacteriol, vol.176, issue.21, pp.6538-6582, 1994.

M. W. Breedveld and K. J. Miller, Cyclic beta-glucans of members of the family Rhizobiaceae, Microbiol Rev, vol.58, issue.2, pp.145-61, 1994.

D. B. Rolin, Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110, Biochim Biophys Acta, vol.1116, issue.3, pp.215-240, 1992.

P. Talaga, Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans, J Bacteriol, vol.178, issue.8, pp.2263-71, 1996.

W. S. York, A conformational model for cyclic beta-(1-->2)-linked glucans based on NMR analysis of the beta-glucans produced by Xanthomonas campestris, Carbohydr Res, vol.278, issue.2, pp.205-230, 1995.

P. Talaga, Osmoregulated periplasmic glucans of the free-living photosynthetic bacterium Rhodobacter sphaeroides, Eur J Biochem, vol.269, issue.10, pp.2464-72, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00021144

L. Debarbieux, A. Bohin, and J. P. Bohin, Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli, J Bacteriol, vol.179, issue.21, pp.6692-6700, 1997.

A. C. Weissborn and E. P. Kennedy, Biosynthesis of membrane-derived oligosaccharides. Novel glucosyltransferase system from Escherichia coli for the elongation of beta 1----2-linked polyglucose chains, J Biol Chem, vol.259, pp.12644-51, 1920.

I. Loubens, Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae, Mol Microbiol, vol.10, issue.2, pp.329-369, 1993.

Y. Lequette, Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures, J Bacteriol, vol.186, issue.12, pp.3695-702, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021110

B. J. Jackson and E. P. Kennedy, The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase, J Biol Chem, vol.258, issue.4, pp.2394-2402, 1983.

Y. Lequette, Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the membrane-bound and the soluble periplasmic phosphoglycerol transferases are encoded by the same gene. Microbiology, pp.476-83, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00193008

J. M. Lacroix, The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans, J Bacteriol, vol.181, issue.12, pp.3626-3657, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00021112

S. Bontemps-gallo, Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the phosphoethanolamine transferase is encoded by opgE, Biomed Res Int, p.371429, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02133971

J. M. Lacroix, The mdoA locus of Escherichia coli consists of an operon under osmotic control, Mol Microbiol, vol.5, issue.7, pp.1745-53, 1991.

J. M. Lacroix, Molecular cloning and expression of a locus (mdoA) implicated in the biosynthesis of membrane-derived oligosaccharides in Escherichia coli, Mol Microbiol, vol.3, issue.9, pp.1173-82, 1989.

B. Poolman, How do membrane proteins sense water stress? Mol Microbiol, vol.44, pp.889-902, 2002.

A. A. Bhagwat, Further Studies of the Role of Cyclic ?-Glucans in Symbiosis. An ndvC Mutant of Bradyrhizobium japonicumSynthesizes Cyclodecakis-(13)--Glucosyl, Plant Physiology, vol.119, issue.3, pp.1057-1064, 1999.

V. Cogez, The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans, Eur J Biochem, vol.269, issue.10, pp.2473-84, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00021140

R. Chen, Characterization of ndvD, the third gene involved in the synthesis of cyclic beta-(1 --> 3),(1 --> 6)-D-glucans in Bradyrhizobium japonicum, Can J Microbiol, vol.48, issue.11, pp.1008-1024, 2002.

F. Bouchart, Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism. Microbiology, pp.760-767, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00123725

B. Cooper, Proteomic pleiotropy of OpgGH, an operon necessary for efficient growth of Salmonella enterica serovar typhimurium under lowosmotic conditions, J Proteome Res, vol.11, issue.3, pp.1720-1727, 2012.

L. Liu, Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by Salmonella enterica serovar Typhimurium in leafy-green vegetable wash waters and colonization in mice, FEMS Microbiol Lett, vol.292, issue.1, pp.13-20, 2009.

F. Page, Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity, J Bacteriol, vol.183, issue.10, pp.3134-3175, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00021372

W. Ebel, Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli, J Bacteriol, vol.179, issue.21, pp.6858-61, 1997.

W. Fiedler and H. Rotering, Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides, J Biol Chem, vol.263, issue.29, pp.14684-14693, 1988.

A. A. Bhagwat, Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology, pp.229-266, 2009.

L. Liu, Osmoregulated periplasmic glucans synthesis gene family of Shigella flexneri, Arch Microbiol, vol.192, issue.3, pp.167-74, 2010.

T. Dylan, D. R. Helinski, and G. S. Ditta, Hypoosmotic adaptation in Rhizobium meliloti requires beta-(1----2)-glucan, J Bacteriol, vol.172, issue.3, pp.1400-1408, 1990.

S. Rajagopal, Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli, FEMS Microbiol Lett, vol.223, issue.1, pp.25-31, 2003.

F. Bouchart, Impact des mutations OPG chez Erwinia chrysanthemi : Recherche de suppresseurs et analyse protéomique des mutants, 2006.

Y. Lequette, Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa. Microbiology, pp.3255-63, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169032

S. Mahajan-miklos, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model, Cell, vol.96, issue.1, pp.47-56, 1999.

B. Arellano-reynoso, Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival, Nat Immunol, vol.6, issue.6, pp.618-643, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165692

A. Martirosyan, Brucella beta 1,2 cyclic glucan is an activator of human and mouse dendritic cells, PLoS Pathog, vol.8, issue.11, p.1002983, 2012.

V. Puvanesarajah, Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens, J Bacteriol, vol.164, issue.1, pp.102-108, 1985.

G. V. Minsavage, Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host-parasite interactions, Mol Plant Microbe Interact, vol.17, issue.2, pp.152-61, 2004.

G. M. Young and V. L. Miller, Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis, Mol Microbiol, vol.25, issue.2, pp.319-347, 1997.

R. A. Geremia, A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form beta-(1----2) glucan, J Bacteriol, vol.169, issue.2, pp.880-884, 1987.

J. Dunlap, Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic B-glucan synthesis, Mol Plant Microbe Interact, vol.9, issue.7, pp.546-55, 1996.

H. Nothaft, Campylobacter jejuni free oligosaccharides: function and fate. Virulence, vol.1, pp.546-50, 2010.
DOI : 10.4161/viru.1.6.13801

H. Nothaft, Study of free oligosaccharides derived from the bacterial N-glycosylation pathway, Proc Natl Acad Sci, vol.106, issue.35, pp.15019-15043, 2009.

J. E. Mogensen and D. E. Otzen, Interactions between folding factors and bacterial outer membrane proteins, Mol Microbiol, vol.57, issue.2, pp.326-372, 2005.

C. Dartigalongue, D. Missiakas, and S. Raina, Characterization of the Escherichia coli sigma E regulon, J Biol Chem, vol.276, issue.24, pp.20866-75, 2001.

F. Bouchart, The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay, J Bacteriol, vol.192, issue.13, pp.3484-90, 2010.

J. A. Hoch, Two-component and phosphorelay signal transduction, Curr Opin Microbiol, vol.3, issue.2, pp.165-70, 2000.

T. Mizuno, Interaction of OmpR, a positive regulator, with the osmoregulated ompC and ompF genes of Escherichia coli. Studies with wildtype and mutant OmpR proteins, J Biol Chem, vol.263, issue.2, pp.1008-1020, 1988.

D. J. Clarke, The Rcs phosphorelay: more than just a two-component pathway, Future Microbiol, vol.5, issue.8, pp.1173-84, 2010.

H. Szurmant, R. A. White, and J. A. Hoch, Sensor complexes regulating twocomponent signal transduction, Curr Opin Struct Biol, vol.17, issue.6, pp.706-721, 2007.

R. Gao and A. M. Stock, Biological insights from structures of twocomponent proteins, Annu Rev Microbiol, vol.63, pp.133-54, 2009.

A. M. Stock, V. L. Robinson, and P. N. Goudreau, Two-component signal transduction, Annu Rev Biochem, vol.69, pp.183-215, 2000.

T. Mascher, J. D. Helmann, and G. Unden, Stimulus perception in bacterial signal-transducing histidine kinases, Microbiol Mol Biol Rev, vol.70, issue.4, pp.910-948, 2006.

B. L. Taylor and I. B. Zhulin, PAS domains: internal sensors of oxygen, redox potential, and light, Microbiol Mol Biol Rev, vol.63, issue.2, pp.479-506, 1999.

P. N. Goudreau and A. M. Stock, Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling, Curr Opin Microbiol, vol.1, issue.2, pp.160-169, 1998.

S. Djordjevic and A. M. Stock, Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system, J Struct Biol, vol.124, issue.2-3, pp.189-200, 1998.

D. R. Buelow and T. L. Raivio, Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases, Mol Microbiol, vol.75, issue.3, pp.547-66, 2010.

P. Jiang and A. J. Ninfa, Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein, J Bacteriol, vol.181, issue.6, pp.1906-1917, 1999.

A. A. Pioszak, P. Jiang, and A. J. Ninfa, The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module, Biochemistry, vol.39, issue.44, pp.13450-61, 2000.

A. A. Pioszak and A. J. Ninfa, Genetic and biochemical analysis of phosphatase activity of Escherichia coli NRII (NtrB) and its regulation by the PII signal transduction protein, J Bacteriol, vol.185, issue.4, pp.1299-315, 2003.

A. A. Pioszak and A. J. Ninfa, Mutations altering the N-terminal receiver domain of NRI (NtrC) That prevent dephosphorylation by the NRII-PII complex in Escherichia coli, J Bacteriol, vol.186, issue.17, pp.5730-5770, 2004.

D. A. Cano, Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA, Genetics, vol.162, issue.4, pp.1513-1536, 2002.

T. L. Raivio, Tethering of CpxP to the inner membrane prevents spheroplast induction of the cpx envelope stress response, Mol Microbiol, vol.37, issue.5, pp.1186-97, 2000.

T. L. Raivio and T. J. Silhavy, The sigmaE and Cpx regulatory pathways: overlapping but distinct envelope stress responses, Curr Opin Microbiol, vol.2, issue.2, pp.159-65, 1999.

N. Majdalani, Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli, J Bacteriol, vol.187, pp.6770-6778, 2005.

K. Otto and T. J. Silhavy, Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway, Proc Natl Acad Sci, vol.99, issue.4, pp.2287-92, 2002.

S. Shin and C. Park, Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR, J Bacteriol, vol.177, issue.16, pp.4696-702, 1995.

C. Prigent-combaret, Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene, J Bacteriol, vol.183, issue.24, pp.7213-7236, 2001.

S. A. Forst, J. Delgado, and M. Inouye, DNA-binding properties of the transcription activator (OmpR) for the upstream sequences of ompF in Escherichia coli are altered by envZ mutations and medium osmolarity, J Bacteriol, vol.171, issue.6, pp.2949-55, 1989.

A. Khorchid, M. Inouye, and M. Ikura, Structural characterization of Escherichia coli sensor histidine kinase EnvZ: the periplasmic C-terminal core domain is critical for homodimerization, Biochem J, vol.385, pp.255-64, 2005.

T. Mizuno and S. Mizushima, Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes, Mol Microbiol, vol.4, issue.7, pp.1077-82, 1990.

Y. L. Jo, Purification and characterization of the OmpR protein, a positive regulator involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli, J Biol Chem, vol.261, issue.32, pp.15252-15258, 1986.

H. Kawaji, T. Mizuno, and S. Mizushima, Influence of molecular size and osmolarity of sugars and dextrans on the synthesis of outer membrane proteins O-8 and O-9 of Escherichia coli K-12, J Bacteriol, vol.140, issue.3, pp.843-850, 1979.

S. Norioka, Interaction of a transcriptional activator, OmpR, with reciprocally osmoregulated genes, ompF and ompC, of Escherichia coli, J Biol Chem, vol.261, issue.36, pp.17113-17122, 1986.

H. Gerken, MzrA: a novel modulator of the EnvZ/OmpR twocomponent regulon, Mol Microbiol, vol.72, issue.6, pp.1408-1430, 2009.

H. Gerken and R. Misra, MzrA-EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon, J Bacteriol, vol.192, issue.23, pp.6271-6279, 2010.

I. C. Lau-wong, Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli, Mol Microbiol, vol.67, issue.3, pp.516-543, 2008.

J. Mcewen and P. Silverman, Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions, Proc Natl Acad Sci U S A, vol.77, issue.1, pp.513-520, 1980.

T. L. Raivio and T. J. Silhavy, Transduction of envelope stress in Escherichia coli by the Cpx two-component system, J Bacteriol, vol.179, issue.24, pp.7724-7757, 1997.

C. Dorel, P. Lejeune, and A. Rodrigue, The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol, vol.157, pp.306-320, 2006.

T. L. Raivio, S. K. Leblanc, and N. L. Price, The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity, J Bacteriol, vol.195, issue.12, pp.2755-67, 2013.

S. L. Vogt and T. L. Raivio, Just scratching the surface: an expanding view of the Cpx envelope stress response, FEMS Microbiol Lett, vol.326, issue.1, pp.2-11, 2012.

S. Hunke, R. Keller, and V. S. Muller, Signal integration by the Cpx-envelope stress system, FEMS Microbiol Lett, vol.326, issue.1, pp.12-22, 2012.

A. J. Wolfe, Signal integration by the two-component signal transduction response regulator CpxR, J Bacteriol, vol.190, issue.7, pp.2314-2336, 2008.

T. L. Raivio, D. L. Popkin, and T. J. Silhavy, The Cpx envelope stress response is controlled by amplification and feedback inhibition, J Bacteriol, vol.181, issue.17, pp.5263-72, 1999.

D. R. Buelow and T. L. Raivio, Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP, J Bacteriol, vol.187, pp.6622-6652, 2005.

W. B. Snyder, Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway, J Bacteriol, vol.177, issue.15, pp.4216-4239, 1995.

D. D. Sledjeski and S. Gottesman, Osmotic shock induction of capsule synthesis in Escherichia coli K-12, J Bacteriol, vol.178, issue.4, pp.1204-1210, 1996.

J. F. Mariscotti and F. Garcia-del-portillo, Genome expression analyses revealing the modulation of the Salmonella Rcs regulon by the attenuator IgaA, J Bacteriol, vol.191, issue.6, pp.1855-67, 2009.

F. Carballes, Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB, Mol Microbiol, vol.34, issue.3, pp.442-50, 1999.

A. Francez-charlot, RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli, Mol Microbiol, vol.49, issue.3, pp.823-855, 2003.

C. B. Garcia-calderon, Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology, pp.579-88, 2005.

Y. H. Huang, L. Ferrieres, and D. J. Clarke, The role of the Rcs phosphorelay in Enterobacteriaceae, Res Microbiol, vol.157, issue.3, pp.206-218, 2006.

N. Majdalani and S. Gottesman, The Rcs phosphorelay: a complex signal transduction system, Annu Rev Microbiol, vol.59, pp.379-405, 2005.

D. Hagiwara, Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli, J Bacteriol, vol.185, pp.5735-5781, 2003.

Y. Shiba, Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin, J Bacteriol, vol.186, pp.6526-6561, 2004.

Y. Shiba, K. Matsumoto, and H. Hara, DjlA negatively regulates the Rcs signal transduction system in Escherichia coli, Genes Genet Syst, vol.81, issue.1, pp.51-57, 2006.

E. Krin, A. Danchin, and O. Soutourina, RcsB plays a central role in H-NSdependent regulation of motility and acid stress resistance in Escherichia coli, Res Microbiol, vol.161, issue.5, pp.363-71, 2010.

T. Stratmann, RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants, Mol Microbiol, vol.83, issue.6, pp.1109-1132, 2012.

L. Pescaretti-mde, Transcriptional autoregulation of the RcsCDB phosphorelay system in Salmonella enterica serovar Typhimurium. Microbiology, pp.3513-3534, 2010.

P. I. Fields, E. A. Groisman, and F. Heffron, A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells, Science, vol.4894, issue.243, pp.1059-62, 1989.

D. Beier and R. Gross, Regulation of bacterial virulence by two-component systems, Curr Opin Microbiol, vol.9, issue.2, pp.143-52, 2006.

A. Kato, H. Tanabe, and R. Utsumi, Molecular characterization of the PhoPPhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters, J Bacteriol, vol.181, issue.17, pp.5516-5536, 1999.

S. Minagawa, Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli, J Bacteriol, vol.185, issue.13, pp.3696-702, 2003.

E. Choi, E. A. Groisman, and D. Shin, Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake, J Bacteriol, vol.191, issue.23, pp.7174-81, 2009.

A. Llama-palacios, The Erwinia chrysanthemi phoP-phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue, Mol Microbiol, vol.49, issue.2, pp.347-57, 2003.

A. Llama-palacios, E. Lopez-solanilla, and P. Rodriguez-palenzuela, Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes, J Bacteriol, vol.187, issue.6, pp.2157-62, 2005.

B. Venkatesh, The Erwinia chrysanthemi 3937 PhoQ sensor kinase regulates several virulence determinants, J Bacteriol, vol.188, issue.8, pp.3088-98, 2006.

D. Hagiwara, T. Yamashino, and T. Mizuno, A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in ironresponses, Biosci Biotechnol Biochem, vol.68, issue.8, pp.1758-67, 2004.

L. J. Lee, J. A. Barrett, and R. K. Poole, Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc, J Bacteriol, vol.187, issue.3, pp.1124-1158, 2005.

J. C. Perez and E. A. Groisman, Acid pH activation of the PmrA/PmrB twocomponent regulatory system of Salmonella enterica, Mol Microbiol, vol.63, issue.1, pp.283-93, 2007.

M. Merighi, Role of Salmonella enterica serovar Typhimurium twocomponent system PreA/PreB in modulating PmrA-regulated gene transcription, J Bacteriol, vol.188, issue.1, pp.141-150, 2006.

H. Hyytiainen, The PmrA-PmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora, Mol Microbiol, vol.50, issue.3, pp.795-807, 2003.

H. Tomenius, The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract, BMC Microbiol, vol.6, p.27, 2006.

J. P. Zhang and S. Normark, Induction of gene expression in Escherichia coli after pilus-mediated adherence, Science, vol.273, issue.5279, pp.1234-1240, 1996.

K. Lapouge, Gac/Rsm signal transduction pathway of gammaproteobacteria: from RNA recognition to regulation of social behaviour, Mol Microbiol, vol.67, issue.2, pp.241-53, 2008.

A. Lebeau, The GacA global regulator is required for the appropriate expression of Erwinia chrysanthemi 3937 pathogenicity genes during plant infection, Environ Microbiol, vol.10, issue.3, pp.545-59, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01997046

R. G. Chavez, The physiological stimulus for the BarA sensor kinase, J Bacteriol, vol.192, issue.7, pp.2009-2021, 2010.

K. Ishige, A novel device of bacterial signal transducers, EMBO J, vol.13, issue.21, pp.5195-202, 1994.

A. K. Pernestig, O. Melefors, and D. Georgellis, Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli, J Biol Chem, vol.276, issue.1, pp.225-256, 2001.

S. Heeb and D. Haas, Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria, Mol Plant Microbe Interact, vol.14, issue.12, pp.1351-63, 2001.

A. K. Pernestig, The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources, J Bacteriol, vol.185, issue.3, pp.843-53, 2003.

Y. Cui, A. Chatterjee, and A. K. Chatterjee, Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc, Mol Plant Microbe Interact, vol.14, issue.4, pp.516-542, 2001.

M. D. Parkins, H. Ceri, and D. G. Storey, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation, Mol Microbiol, vol.40, issue.5, pp.1215-1241, 2001.

C. Reimmann, The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyrylhomoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase, Mol Microbiol, vol.24, issue.2, pp.309-328, 1997.

M. Castaneda, The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii, J Bacteriol, vol.183, issue.23, pp.6787-93, 2001.

C. A. Whistler, The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5, J Bacteriol, vol.180, issue.24, pp.6635-6676, 1998.

M. Hirsch and T. Elliott, Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli, J Bacteriol, vol.184, issue.18, pp.5077-87, 2002.

S. Mukhopadhyay, Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator, Mol Microbiol, vol.37, issue.2, pp.371-81, 2000.

A. Chatterjee, Y. Cui, and A. K. Chatterjee, RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol, vol.191, issue.14, pp.4582-93, 2009.

E. Sonnleitner and D. Haas, Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species, Appl Microbiol Biotechnol, vol.91, issue.1, pp.63-79, 2011.

S. Yang, Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937), Mol Plant Microbe Interact, vol.21, issue.1, pp.133-175, 2008.

Z. Wei, J. F. Kim, and S. V. Beer, Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS, Mol Plant Microbe Interact, vol.13, issue.11, pp.1251-62, 2000.

Z. M. Wei, B. J. Sneath, and S. V. Beer, Expression of Erwinia amylovora hrp genes in response to environmental stimuli, J Bacteriol, vol.174, issue.6, pp.1875-82, 1992.

Y. Li, The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system, Appl Environ Microbiol, vol.75, issue.5, pp.1223-1231, 2009.

M. N. Yap, C. H. Yang, and A. O. Charkowski, The Response regulator HrpY of Dickeya dadantii 3937 regulates virulence genes not linked to the hrp cluster, Mol Plant Microbe Interact, vol.21, issue.3, pp.304-318, 2008.

C. Grimm, W. Aufsatz, and N. J. Panopoulos, The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit, Mol Microbiol, vol.15, issue.1, pp.155-65, 1995.

J. R. Alfano and A. Collmer, Bacterial Pathogens in Plants: Life up against the Wall, Plant Cell, vol.8, issue.10, pp.1683-1698, 1996.

R. N. Goodman and A. J. Novacky, The hypersensitive reaction in plants to pathogens: a resistance phenomenon, 1994.

R. Caspi, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res, vol.38, pp.473-482, 2010.

S. Iuchi and E. C. Lin, Adaptation of Escherichia coli to respiratory conditions: regulation of gene expression, Cell, vol.66, issue.1, pp.5-7, 1991.

G. Jovanovic, C. Engl, and M. Buck, Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretininduced stress in Escherichia coli, Mol Microbiol, vol.74, issue.1, pp.16-28, 2009.

A. Perrenoud and U. Sauer, Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli, J Bacteriol, vol.187, issue.9, pp.3171-3180, 2005.

K. A. Salmon, Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA, J Biol Chem, vol.280, issue.15, pp.15084-96, 2005.

V. Stewart, Dual interacting two-component regulatory systems mediate nitrate-and nitrite-regulated gene expression in Escherichia coli, Res Microbiol, vol.145, pp.450-454, 1994.

C. Constantinidou, A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth, J Biol Chem, vol.281, issue.8, pp.4802-4817, 2006.

J. R. Kim and K. H. Cho, The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises, Comput Biol Chem, vol.30, issue.6, pp.438-482, 2006.

R. B. Bourret, Protein phosphorylation in chemotaxis and twocomponent regulatory systems of bacteria, J Biol Chem, vol.264, issue.13, pp.7085-7093, 1989.

T. W. Grebe and J. B. Stock, The histidine protein kinase superfamily, Adv Microb Physiol, vol.41, pp.139-227, 1999.

E. J. Capra and M. T. Laub, Evolution of two-component signal transduction systems, Annu Rev Microbiol, vol.66, pp.325-372, 2012.

T. Oshima, Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12, Mol Microbiol, vol.46, issue.1, pp.281-91, 2002.

K. Yamamoto, Functional characterization in vitro of all twocomponent signal transduction systems from Escherichia coli, J Biol Chem, vol.280, issue.2, pp.1448-56, 2005.

L. Zhou, Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems, J Bacteriol, vol.185, issue.16, pp.4956-72, 2003.

E. J. Clarke and C. A. Voigt, Characterization of combinatorial patterns generated by multiple two-component sensors in E. coli that respond to many stimuli, Biotechnol Bioeng, vol.108, issue.3, pp.666-75, 2011.

B. W. Ache and J. M. Young, Olfaction: diverse species, conserved principles, Neuron, vol.48, issue.3, pp.417-447, 2005.

Y. Bar-cohen, Biomimetics--using nature to inspire human innovation, Bioinspir Biomim, vol.1, issue.1, pp.1-12, 2006.

C. E. Winslow, The Families and Genera of the Bacteria: Final Report of the Committee of the Society of American Bacteriologists on Characterization and Classification of Bacterial Types, J Bacteriol, vol.5, issue.3, pp.191-229, 1920.

L. Hauben, Phylogenetic position of phytopathogens within the Enterobacteriaceae, Syst Appl Microbiol, vol.21, issue.3, pp.384-97, 1998.

S. W. Kwon, Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences, Int J Syst Bacteriol, vol.47, issue.4, pp.1061-1068, 1997.

R. Samson, Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov, Int J Syst Evol Microbiol, vol.55, pp.1415-1442, 1953.

M. C. Pérombelon, Potato diseases caused by soft rot erwinias: an overview of pathogenesis, Plant Pathology, vol.51, issue.1, pp.1-12, 2002.

V. Hélias, A. C. Le-roux, and F. Monfort, Potato blackleg in France : incidence of causal Erwinias species and field symptoms expression, 1st International Erwinia workshop, 2006.

D. Costechareyre, Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum, PLoS One, vol.7, issue.1, p.30702, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00665382

D. Costechareyre, Transcriptome of Dickeya dadantii infecting Acyrthosiphon pisum reveals a strong defense against antimicrobial peptides, PLoS One, vol.8, issue.1, p.54118, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00781257

A. M. Grenier, The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid, Appl Environ Microbiol, vol.72, issue.3, pp.1956-65, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00391308

A. O. Charkowski, The Role of Secretion Systems and Small Molecules in Soft-Rot Enterobacteriaceae Pathogenicity, Annual Review of Phytopathology, vol.50, issue.1, pp.425-449, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190826

D. M. Goudeau, The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine, Appl Environ Microbiol, vol.79, issue.1, pp.250-62, 2013.

A. Yamazaki, Commensal effect of pectate lyases secreted from Dickeya dadantii on proliferation of Escherichia coli O157:H7 EDL933 on lettuce leaves, Appl Environ Microbiol, vol.77, issue.1, pp.156-62, 2011.

P. Albersheim, An hypothesis; the same six polysaccharides are components of the primary cell walls of all higher plants, in Pectins and pectinases, pp.47-55, 1996.

N. Hugouvieux-cotte-pattat, Regulation of pectinolysis in Erwinia chrysanthemi, Annu Rev Microbiol, vol.50, pp.213-57, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01997040

F. Laurent, Characterization and overexpression of the pem gene encoding pectin methylesterase of Erwinia chrysanthemi strain 3937, Gene, vol.131, issue.1, pp.17-25, 1993.

V. E. Shevchik and N. Hugouvieux-cotte-pattat, Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937, Mol Microbiol, vol.24, issue.6, pp.1285-301, 1997.

M. Boccara, J. L. Aymeric, and C. Camus, Role of endoglucanases in Erwinia chrysanthemi 3937 virulence on Saintpaulia ionantha, J Bacteriol, vol.176, issue.5, pp.1524-1530, 1994.

S. Zhou, Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B, Appl Environ Microbiol, vol.65, issue.6, pp.2439-2484, 1999.

P. Delepelaire and C. Wandersman, Characterization, localization and transmembrane organization of the three proteins PrtD, PrtE and PrtF necessary for protease secretion by the gram-negative bacterium Erwinia chrysanthemi, Mol Microbiol, vol.5, issue.10, pp.2427-2461, 1991.

N. Blot, The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family, J Biol Chem, vol.277, issue.10, pp.7936-7980, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01759854

G. Condemine and A. Ghazi, Differential regulation of two oligogalacturonate outer membrane channels, KdgN and KdgM, of Dickeya dadantii (Erwinia chrysanthemi), J Bacteriol, vol.189, issue.16, pp.5955-62, 2007.

W. Nasser, V. E. Shevchik, and N. Hugouvieux-cotte-pattat, Analysis of three clustered polygalacturonase genes in Erwinia chrysanthemi 3937 revealed an anti-repressor function for the PecS regulator, Mol Microbiol, vol.34, issue.4, pp.641-50, 1999.

V. E. Shevchik, The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937, J Bacteriol, vol.181, issue.13, pp.3912-3921, 1999.

V. E. Shevchik and N. , Hugouvieux-Cotte-Pattat, PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937, J Bacteriol, vol.185, issue.10, pp.3091-100, 2003.

V. E. Shevchik, Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937, J Bacteriol, vol.181, issue.5, pp.1652-63, 1999.

J. S. Boyer, Growth-induced water potentials originate from wall yielding during growth, J Exp Bot, vol.52, issue.360, pp.1483-1491, 2001.

N. Hugouvieux-cotte-pattat, N. Blot, and S. Reverchon, Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937, Mol Microbiol, vol.41, issue.5, pp.1113-1136, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01997039

N. Hugouvieux-cotte-pattat and S. Reverchon, Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937, Mol Microbiol, vol.41, issue.5, pp.1125-1157, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01997041

V. Lallemand, Dissection des interactions entres les composants du système de sécrétion de type II chez la bactérie phytopathogène Erwinia chrysanthemi (Dickeya dadantii). , in Institut national des sciences appliquées de Lyon, 2010.

W. Nasser, S. Reverchon, and J. Robert-baudouy, Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi, Mol Microbiol, vol.6, issue.2, pp.257-65, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01997056

S. Reverchon, W. Nasser, and J. Robert-baudouy, pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi, Mol Microbiol, vol.11, issue.6, pp.1127-1166, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01997075

S. Reverchon, Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity, J Bacteriol, vol.184, issue.3, pp.654-65, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01997079

F. Hommais, PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937, J Bacteriol, vol.190, issue.22, pp.7508-7530, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01997038

G. Condemine, The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi, Mol Plant Microbe Interact, vol.12, issue.1, pp.45-52, 1999.

G. Gouesbet, Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA, J Bacteriol, vol.178, issue.2, pp.447-55, 1996.

N. Hugouvieux-cotte-pattat, H. Dominguez, and J. Robert-baudouy, Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937, J Bacteriol, vol.174, issue.23, pp.7807-7825, 1992.

E. Lojkowska, Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937, Mol Microbiol, vol.16, issue.6, pp.1183-95, 1995.

L. Nachin and F. Barras, External pH: an environmental signal that helps to rationalize pel gene duplication in Erwinia chrysanthemi, Mol Plant Microbe Interact, vol.13, issue.8, pp.882-888, 2000.

C. Masclaux, N. Hugouvieux-cotte--pattat, and D. Expert, Iron is a triggering factor for differential expression of Erwinia chrysanthemi strain 3937 pectate lyases in pathogenesis of African violets, vol.9, pp.198-205, 1996.

C. Sauvage and D. Expert, Differential regulation by iron of Erwinia chrysanthemi pectate lyases : Pathogenicity of iron transport regulatory (cbr) mutants. Mol. PlantMicrobe Interact, vol.7, pp.71-77, 1994.

M. C. Perombelon and A. Kelman, Ecology of the Soft Rot Erwinias. Annual Review of Phytopathology, vol.18, issue.1, pp.361-387, 1980.

S. Reverchon, The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi, J Bacteriol, vol.179, issue.11, pp.3500-3508, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01997070

W. Nasser, Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules, Mol Microbiol, vol.29, issue.6, pp.1391-405, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01997051

S. Castang, Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone, J Biol Chem, vol.281, issue.40, pp.29972-87, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00315156

S. Reverchon, Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi, Mol Microbiol, vol.29, issue.6, pp.1407-1425, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01997068

W. Nasser, Vfm a new quorum sensing system controls the virulence of Dickeya dadantii, Environ Microbiol, vol.15, issue.3, pp.865-80, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01001772

L. M. Guzman, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J Bacteriol, vol.177, issue.14, pp.4121-4151, 1995.

C. Latasa, Salmonella biofilm development depends on the phosphorylation status of RcsB, J Bacteriol, vol.194, issue.14, pp.3708-3730, 2012.

J. M. Wood, Osmosensing by bacteria: signals and membrane-based sensors, Microbiol Mol Biol Rev, vol.63, issue.1, pp.230-62, 1999.

C. M. Barbieri and A. M. Stock, Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents, Anal Biochem, vol.376, issue.1, pp.73-82, 2008.

R. Gao and A. M. Stock, Probing kinase and phosphatase activities of twocomponent systems in vivo with concentration-dependent phosphorylation profiling, Proc Natl Acad Sci U S A, vol.110, issue.2, pp.672-679, 2013.

D. Wang, Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora, Mol Plant Microbe Interact, vol.25, issue.1, pp.6-17, 2012.

T. Yoshida, Transcription regulation of ompF and ompC by a single transcription factor, OmpR, J Biol Chem, vol.281, issue.25, pp.17114-17137, 2006.

S. Hagenmaier, Y. D. Stierhof, and U. Henning, A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells, J Bacteriol, vol.179, issue.6, pp.2073-2079, 1997.

S. Quan, Genetic selection designed to stabilize proteins uncovers a chaperone called Spy, Nat Struct Mol Biol, vol.18, issue.3, pp.262-271, 2011.

M. N. Yap, Harpin mediates cell aggregation in Erwinia chrysanthemi 3937, J Bacteriol, vol.188, issue.6, pp.2280-2284, 2006.

S. Humphreys, Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium, Infect Immun, vol.72, issue.8, pp.4654-61, 2004.

S. Ayraud, Polyphosphate kinase: a new colonization factor of Helicobacter pylori, FEMS Microbiol Lett, vol.243, issue.1, pp.45-50, 2005.

N. Ogawa, Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features, J Bacteriol, vol.182, issue.23, pp.6687-93, 2000.

J. D. Stumpf and P. L. Foster, Polyphosphate kinase regulates error-prone replication by DNA polymerase IV in Escherichia coli, Mol Microbiol, vol.57, issue.3, pp.751-61, 2005.

J. P. Lechaire, Elemental characterization of microorganism granules by EFTEM in the tube wall of a deep-sea vent invertebrate, Biol Cell, vol.94, pp.243-252, 2002.

R. J. Braun, Two-dimensional electrophoresis of membrane proteins, Anal Bioanal Chem, vol.389, issue.4, pp.1033-1078, 2007.

A. Bohin, GC/MS identification and quantification of constituents of bacterial lipids and glycoconjugates obtained after methanolysis as heptafluorobutyrate derivatives, Anal Biochem, vol.340, issue.2, pp.231-275, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00020840

M. N. Yap, The Erwinia chrysanthemi type III secretion system is required for multicellular behavior, J Bacteriol, vol.187, issue.2, pp.639-687, 2005.

F. Barras, F. Van-gijsegem, and A. K. Chatterjee, Extracellular Enzymes and Pathogenesis of Soft-Rot Erwinia, Annual Review of Phytopathology, vol.32, issue.1, pp.201-234, 1994.

A. Collmer and N. T. Keen, The Role of Pectic Enzymes in Plant Pathogenesis, Annual Review of Phytopathology, vol.24, issue.1, pp.383-409, 1986.

A. Dereeper, Phylogeny.fr: robust phylogenetic analysis for the nonspecialist, Nucleic Acids Res, vol.36, pp.465-474, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

S. Huffer, Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea, Appl Environ Microbiol, vol.77, issue.18, pp.6400-6408, 2011.

B. Aricha, Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae, J Bacteriol, vol.186, issue.14, pp.4638-4682, 2004.

J. L. Brown, Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance, Int J Food Microbiol, vol.37, issue.2-3, pp.163-73, 1997.

T. L. Kieft, Survival and phospholipid Fatty Acid profiles of surface and subsurface bacteria in natural sediment microcosms, Appl Environ Microbiol, vol.63, issue.4, pp.1531-1573, 1997.

R. Mejia, M. C. Gomez-eichelmann, and M. S. Fernandez, Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile, Arch Biochem Biophys, vol.368, issue.1, pp.156-60, 1999.

A. W. Kingston, A sigmaW-dependent stress response in Bacillus subtilis that reduces membrane fluidity, Mol Microbiol, vol.81, issue.1, pp.69-79, 2011.

K. A. Sochacki, Protein diffusion in the periplasm of E. coli under osmotic stress, Biophys J, vol.100, issue.1, pp.22-31, 2011.

S. H. Baer, H. P. Blaschek, and T. L. Smith, Effect of Butanol Challenge and Temperature on Lipid Composition and Membrane Fluidity of ButanolTolerant Clostridium acetobutylicum, Appl Environ Microbiol, vol.53, issue.12, pp.2854-61, 1987.

D. S. Burdette, Physiological function of alcohol dehydrogenases and long-chain (C(30)) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus, Appl Environ Microbiol, vol.68, issue.4, pp.1914-1922, 2002.

J. Ding, Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae, Appl Microbiol Biotechnol, vol.85, issue.2, pp.253-63, 2009.

M. A. Kohanski, Mistranslation of membrane proteins and twocomponent system activation trigger antibiotic-mediated cell death, Cell, vol.135, issue.4, pp.679-90, 2008.

W. Nasser, PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937, Mol Plant Microbe Interact, vol.18, issue.11, pp.1205-1219, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01997057

N. Surgey, J. Robert-baudouy, and G. Condemine, The Erwinia chrysanthemi pecT gene regulates pectinase gene expression, J Bacteriol, vol.178, issue.6, pp.1593-1602, 1996.

S. Bontemps-gallo, Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii, Environ Microbiol, vol.15, issue.3, pp.881-94, 2013.

J. Vieira and J. Messing, The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers, Gene, vol.19, issue.3, pp.259-68, 1982.

V. De-lorenzo and K. N. Timmis, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5-and Tn10-derived minitransposons, Methods Enzymol, vol.235, pp.386-405, 1994.

C. Yanisch-perron, J. Vieira, and J. Messing, Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors, Gene, vol.33, issue.1, pp.103-122, 1985.

G. Bertani, Lysogeny at mid-twentieth century: P1, P2, and other experimental systems, J Bacteriol, vol.186, issue.3, pp.595-600, 2004.

J. H. Miller, A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, 1992.

E. P. Kennedy, Osmotic regulation and the biosynthesis of membranederived oligosaccharides in Escherichia coli, Proc Natl Acad Sci, vol.79, issue.4, pp.1092-1097, 1982.

A. Resibois, phiEC2, a new generalized transducing phage of Erwinia chrysanthemi. Virology, vol.137, pp.102-114, 1984.

D. Hanahan, Studies on Transformation of Escherichia coli with plasmids, J. Mol. Biol, vol.166, pp.557-580, 1983.

J. E. Sambrook, F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

A. Torriani, Alkaline phosphatase subunits and their dimerization in vivo, J Bacteriol, vol.96, issue.4, pp.1200-1207, 1968.

R. G. Spiro, Analysis of sugars found in glycoproteins, Methods in Enzymology, pp.3-26, 1966.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-54, 1976.

F. Moran, S. Nasuno, and M. P. Starr, Extracellular and intracellular polygllacturonic acid trans-eliminases of Erwinia carotovora, Arch Biochem Biophys, vol.123, pp.298-306, 1968.

C. Rouanet and W. Nasser, The PecM protein of the phytopathogenic bacterium Erwinia chrysanthemi, membrane topology and possible involvement in the efflux of the blue pigment indigoidine, J Mol Microbiol Biotechnol, vol.3, issue.2, pp.309-327, 2001.

M. M. Haque, SlyA, a MarR family transcriptional regulator, is essential for virulence in Dickeya dadantii 3937, J Bacteriol, vol.191, issue.17, pp.5409-5427, 2009.