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Thèse présentée et soutenue à Gif-sur-Yvette, le 12 avril 2019, par

CAMILLE CHAPDELAINE

Composition du Jury :

Jeffrey A. Fessler

Professeur, University of Michigan (EECS) Rapporteur

Nicolas Gac
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List of notations

In this thesis, we use several notations which are summarized here in order to facilitate reading and examination.

- g : the (vectorized) measurements, called the projections. The ith element gi of g corresponds to the projection
at angle φ onto the cell located at position ♣u, vq of the detector.

- f : the (vectorized) volume to reconstruct. The jth element fj of f corresponds to the attenuation coefficient
of voxel j.

- H : the projection matrix. The ideal forward model reads : g ✏Hf .

- HT : the backprojection matrix, which is the transpose ofH .

The variables related to the acquisition are :

- I0 : mean number of photons sent by the source

- Ii : photon-count measured by the detector for ray i

- ri : mean number of background events in measurement i of photon-count

- D : the source-to-detector distance.

- R : the source-to-object distance.

- Nφ : the number of projection angles. The projection angles are uniformly distributed over r0, 2πs.
- Nu and Nv : respectively the number of columns and the number of rows of cells on the detector. The number

of cells of the detector is Nu ✂Nv.

- δu and δv : the sizes of a cell respectively in u and v-directions.

- M : the size of vector g. By definition, we have : M ✏ Nu ✂Nv ✂Nφ.

- Nx, Ny and Nz : the number of voxels respectively in x, y and z-directions.

- δ : the sizes of a voxel in x, y and z-directions. In this thesis, the voxels are considered as cubic of side δ.

- N : the size of vector f . By definition, we have : N ✏ Nx ✂Ny ✂Nz .

Some mathematical notations are :

- p♣ψq : the probability distribution of variable ψ.

- Stg♣.⑤α, βq : generalized Student-t distribution, with shape parameter α and scale parameter β.

- q♣ψq : the approximate probability distribution of variable ψ.

- H♣qq : the entropy of probability distribution q.

- KL♣q⑤⑤pq : the Kullback-Leibler divergence from q to p.
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- Ff : the Fourier transform of f .

- Hf : the Hilbert transform of f .

- diag rxs : the square diagonal matrix whose the diagonal elements are the elements of vector x.

- ⑥y⑥2
V

✏ yTV ✁1y for all y and fixed diagonal matrix V with positive and non-zeros diagonal coefficients.

- txs : the nearest integer to real number x

Other notations used in this thesis are :

- M : the prior model on the volume.

- θ : the hyperparameters of the prior model on the volume.

- U : the usual forward model, with one term of uncertainties on the projections.

- ζi : the total uncertainty on projection i. The vector ζ ✏ ♣ζiqi is size M .

- vζi : the variance of total uncertainty ζi. The vector vζ ✏ ♣vζiqi is size M .

- αζ0 : the shape parameter of the Inverse Gamma prior on the variances vζ of the total uncertainties.

- βζ0 : the scale parameter of the Inverse Gamma prior on the variances vζ of the total uncertainties.

- K : the number of materials in the volume.

- k : the label assigned to voxels in material k. Each material is associated to a class, which is also denoted by k.
By definition, k P t1, . . . ,K✉.

- Rk : the set of voxels in class k.

- mk : the mean of class k. The vectorm ✏ ♣mkqk is size K.

- vk : the variance of class k. The vector v ✏ ♣vkqk is size K.

- m0 : the mean of the Gaussian prior on the means of the classes.

- v0 : the variance of the Gaussian prior on the means of the classes.

- α0 : the shape parameter of the Inverse Gamma prior on the variances of the classes.

- β0 : the scale parameter of the Inverse Gamma prior on the variances of the classes.

- γ0 : Potts coefficient, which tunes the compacity of the classes.

- αk : parameter giving a prior probability eαk to be in class k. The vector α ✏ ♣αkqk is size K.

- S : the error-splitting forward model, which splits the uncertainties on the projections into two terms : the
measurement uncertainties and the linear model uncertainties.

- ǫi : the measurement uncertainty on projection i. The vector ǫ ✏ ♣ǫiqi is size M .

- vǫi : the variance of measurement uncertainty ǫi. The vector vǫ ✏ ♣vǫiqi is size M .

- ξi : the linear model uncertainty on projection i. The vector ξ ✏ ♣ξiqi is size M .

- vξi : the variance of linear model uncertainty ξi. The vector vξ ✏ ♣vξiqi is size M .

- αǫ0 : the shape parameter of the Inverse Gamma prior on the variances vǫ of the measurement uncertainties.

- βǫ0 : the scale parameter of the Inverse Gamma prior on the variances vǫ of the measurement uncertainties.

- αξ0 : the shape parameter of the Inverse Gamma prior on the variances vξ of the linear model uncertainties.

- βξ0 : the scale parameter of the Inverse Gamma prior on the variances vξ of the linear model uncertainties.
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Introduction

SAFRAN is a leading multinational group in the aircraft propulsion and equipments markets. The group inspects
its manufactured aeronautical parts by imaging their interior thanks to Non-Destructive Testing (NDT) techniques.
Among these techniques, 3D X-ray Computed Tomography (CT), using cone-beam acquisition process, is used to
obtain an accurate reconstruction of the whole interior of the parts. Nevertheless, the inspected parts are characterized
by pronounced asymmetries and very absorbing materials, causing many image artifacts in the reconstructions pro-
duced by the tomographs bought by SAFRAN. In order to enhance image quality for NDT of its aeronautical parts by
3D X-ray cone-beam Computed Tomography (CBCT), SAFRAN has wanted to investigate the potential of iterative
reconstruction methods. To this end, the research and technogy center of SAFRAN, Safran Tech, through its Signal
and Information Processing team (TSI : "Traitement du Signal et de l’Information"), has been working with Inverse
Problems Group (GPI) of Signal and Systems Laboratory (L2S) since 2014.

GPI researchers have a long experience in many inverse problems such as CT. The specificity of their works lies
in the use of a Bayesian framework to introduce complex prior information on the quantity to estimate. For a few
years, GPI researchers have conducted several works applying their Bayesian methods to CBCT. Since the inspected
volumes are very large, GPI researchers have also developed skills in high parallel computing on Graphical Processor
Units (GPUs).

Aiming at better imaging aeronautical parts of SAFRAN, this thesis, resulting from the collaboration between
Safran Tech and GPI, proposes iterative reconstruction methods thanks to a Bayesian approach. In particular, the
proposed methods take benefit from the fact that the inspected parts are piecewise-constant and enhance reconstruction
quality by enforcing a Gauss-Markov-Potts prior model on the volume. In addition, the Bayesian approach is also
used to better model the acquisition process, so several uncertainties on the measurements, such as those resulting
from the monochromatic approximation in X-rays’ modelling, can be taken into account.

Since this work deals with huge volumes discretized in 5123, 10243, . . . , voxels, the proposed model-based iter-
ative reconstruction (MBIR) methods are designed to be highly parallelizable on GPU. Furthermore, MBIR methods
very often have parameters which can be difficult to tune. In this thesis, a particular effort is made to propose strategies
to fix these parameters thanks to physical interpretations provided by Bayesian approach.

Chapter 1 of this thesis introduces the reconstruction problem. The acquisition of the measurements, which
are called the projections, is described, as well as the origins of the uncertainties on it. The ill-conditioning of the
reconstruction problem is outlined and illustrated. Due to this ill-conditioning, volume estimation has to be made more
robust, so a regularization is needed. Chapter 2 presents a state-of-the-art on analytical and iterative reconstruction
methods in CT. At the end of this chapter, motivations for choosing Bayesian approach when developing MBIR
methods for the aimed industrial application, are presented.

In all iterative reconstruction methods, the main computational burden lies in repeated projection and backpro-
jection operations which model the attenuation of X-rays through the materials. Chapter 3 presents the implementa-
tion of several projection and backprojection operators (also called projector and backprojector) used in this thesis.
Mathematically, the backprojector is defined as the adjoint of the projector. Nevertheless, in order to alleviate the
computational cost of projection and backprojection operations, not complying with this definition to use so-called
unmatched pairs of projector and backprojector, has become very common in the CT community. Such an unmatched
pair of projector and backprojector (P/BP) is presented. Being aware that the use of an unmatched P/BP pair is a
mathematical approximation, we also investigate the use of a matched pair, which is the Separable Footprint (SF) pair.
For this pair, a new GPU implementation is proposed.

Chapter 4 focuses on the prior model used for SAFRAN’s industrial parts to reconstruct. Since these parts are
piecewise-constant volumes, we propose to use a Gauss-Markov-Potts prior model, which labels each voxel depending
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on the material to which it belongs. Based on this model, a joint reconstruction and segmentation algorithm is derived.
Experiments on simulated and real data show that the proposed algorithm takes advantage from its segmentation step
to enhance reconstruction quality. Comparisons are also made between the uses of unmatched and matched P/BP
pairs.

In X-ray CT, the projections have many uncertainties with different origins. In most iterative reconstruction
methods, these uncertainties are all gathered in only one term in the model for the projections, called the forward
model. Chapter 5 introduces an error-splitting forward model which distinguishes uncertainties called linear model
uncertainties and measurement uncertainties. The use of this new forward model is motivated by adding an error term
in the mean of Poisson statistics of photon-counts, in order to take into account the approximation error induced by
the monochromatic model of X-rays with respect to their actual polychromacy. A general MBIR algorithm using the
error-splitting forward model and valid for any prior model on the volume is then presented. Next, the error-splitting
forward model is combined with Gauss-Markov-Potts prior to reconstruct aeronautical parts of SAFRAN. Compared
to the usual forward model used in chapter 4, experiments show that the error-splitting forward model, combined with
Gauss-Markov-Potts prior, brings more robustness and accuracy to the reconstruction.

At last, chapter 6 addresses the estimation of the uncertainties on the reconstruction. For this purpose, we propose
an algorithm which jointly performs the estimation of the reconstruction and of the uncertainties on it. This algorithm
is an instance of variational Bayesian approach (VBA) which looks for a simple approximation of the posterior
distribution of the unknowns in order to easily estimate the posterior variances. The approximating distribution
is chosen as almost fully factorized and minimizes Kullback-Leibler divergence with respect to the true posterior
distribution of the unknowns. With Gauss-Markov-Potts prior model, the chosen approximating distribution is chosen
to preserve the dependence between the value of a voxel and its label. New updating formulae for VBA using
conditional approximating posterior distribution are proven in chapter 6. In addition, we highlight that the computation
of approximate posterior variances requires one to use a matched P/BP pair in order to apply the algorithm in a
reasonable time. For this purpose, SF pair presented in chapter 3 is efficiently used.

The thesis shows how to take benefit from each part of the reconstruction problem, i.e. : the modelling of
the volume to reconstruct, the modelling of the decrease of X-rays, and the modelling of the uncertainties on the
projections. Chapter 7 presents conclusions, draws perspectives for the industrial use of the proposed methods, and
summarize open problems which have emerged during the three years of PhD studies.
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Chapter 1

X-ray Computed Tomography : an inverse

problem

In this chapter, we present the reconstruction problem in X-ray Computed Tomography (CT). In section 1.1, we first
describe the acquisition process and the ideal physical model used to obtain a virtual reconstruction of the volume
based on the measurements, called the projections of the volume in X-ray CT. In section 1.2, we show that the ideal
physical model suffers from many uncertainties on the projections. In addition, we highlight the ill-posedness of the
reconstruction problem, which hinders the exact estimation of the volume.

1.1 Definition of the reconstruction problem

The goal of X-ray CT is to virtually reconstruct the interior of a volume in order to assess its structure or microstruc-
ture. X-ray CT is used both in medicine on human or other organisms, and in industry on designed industrial parts. In
industry, it is said to be a non-destructive testing (NDT) technique since the inspected part is not altered by the testing
process.

The acquisition process of measurements used in SAFRAN industries is cone-beam and is illustrated in figure 1.1.
The volume is placed between a source and a flat detector. The source sends a cone X-ray beam through the volume,
so the intensities of the rays decrease before reaching the detector. The measurements of the decreased intensities by
the cells of the detector form an image which is called a projection of the volume onto the detector. In order to acquire
several views, the object is rotated around z-axis by a projection angle ♣✁φq as shown in figure 1.1. Projection angles
are commonly uniformly distributed over r0; 2πr. Hence, the measurements are a collection of Nφ projections of the
volume.

The decrease of X-rays’ intensities is dependent on the materials encountered in the volume. For measurement i,
photon-count Ii for ray i is given by Beer-Lambert law [SB93] : in the case of monochromatic rays measured in a
perfectly unnoisy configuration, it reads

Ii ✏ I0 exp

✒
✁
➺
Li

f♣rqdl
✚

(1.1)

where I0 is the mean number of photons sent by the source, and Li is the line followed by ray i when passing through
the volume. Quantity f♣rq, expressed in m✁1, denotes the attenuation coefficient in the volume at point r P R

3.
In order to image the interior of the volume, the reconstruction process consists in estimating f♣rq for all r in the
field-of-view. For this purpose, the recontruction problem can be linearized by estimating f♣rq from

gi ✏ ln

✂
I0

Ii

✡
✏
➺
Li

f♣rqdl (1.2)

instead of Ii.
The number of cells of the detector is denoted by Nu ✂ Nv, which corresponds to the size of each projection.

Typical values for Nu and Nv are 512, 1024 or 2048. Since we have Nφ projections, the number of measurements is

M ✏ Nu ✂Nv ✂Nφ. (1.3)
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Figure 1.1: Cone-beam acquisition process

In order to have a good reconstruction, the number of projections Nφ can be very large : in this thesis, typical values
for Nφ we will consider go from Nφ ✏ 300 to Nφ ✏ 2400. As a result, the number M of collected data can be
very huge and require several Gigabytes of memory storing. Since the inspected volumes are industrial parts and not
human organisms, the problem of reducing the dose is not really considered in NDT. Nevertheless, proposing robust
reconstruction methods, which give good results with a reduced number of projections as with a lot of projections,
can be interesting in order to gain time during the acquisition process and to save memory usage when analyzing the
projections in some post-processing applications.

The field-of-view where the controlled volume lies is discretized in

N ✏ Nx ✂Ny ✂Nz (1.4)

voxels. Like the numberM of measurements,N can be very huge : typical values forN are 5123, 10243 or 20483. At
SAFRAN, some industrial parts are too big to lie in the full field-of-view. In this case, imaging only a small region-
of-interest (ROI) in these parts is difficult, since the projections are impacted by voxels which are out of the ROI. The
problem is that the external voxels contributing to the projections are not the same at all the projection angles. For
this reason, the projections are said to be truncated data. Reconstructing the ROI from these truncated projections is
the challenge undertaken in local tomography [PM17, PDM17]. In this work, we will consider small industrial parts,
so the object entirely lies in the field-of-view.

The attenuation coefficient for voxel j, 1 ↕ j ↕ N , is denoted by fj : analytical equation (1.2) can be expressed
by an algebraic equation with matrix-vector product :

g ✏Hf (1.5)

where g ✏ tgi, 1 ↕ i ↕M✉ and f ✏ tfj , 1 ↕ j ↕ N✉. Matrix H P R
M✂N is the projection matrix. Equivalently,

it is also called the projection operator or the projector. Based on equation (1.2), an interpretation for the projection
matrix coefficients is that Hij corresponds to the length crossed by ray i in voxel j. Since M and N are very
large, the size of matrix H is huge : for instance, if M ✏ 1024 ✂ 1024 ✂ 1500 and N ✏ 10243, the size of H
is M ✂ N ✏ 1.69 ✂ 1018, i.e. several millions of Terabytes. Since a voxel j is crossed by few rays and not all
rays i, it is known that matrix H is sparse. Nevertheless, the number of non-zero coefficients is still very huge, a
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Figure 1.2: Summary of the deviations in the projections with respect to ideal linear projections Hf

fortiori in 3D applications. As a result, the coefficients of H cannot be stored in memory, and accessing to each of
them is an unfeasible task in a reasonable time. Consequently, in practice, only matrix-vector products Hf can be
calculated, by computing relevant coefficients of H on-the-fly, as done for instance in ASTRA toolbox [Ble15]. In
order to accelerate projection operations and to deal with huge volumes, the use of high-parallel computing (HPC)
on Graphical Processor Unit (GPU) [SK10] has become very popular in the last ten years. GPUs are also used to
perform the backprojection operation

b ✏HTg (1.6)

which is represented by the adjoint HT of projector H . Matrix HT is called the backprojection matrix, or, equiv-
alently, the backprojection operator or the backprojector. In iterative reconstruction methods, the applications of
projection and backprojection operators H and HT correspond to the main computational burden. As a conse-
quence, implementing efficient and accurate projector and backprojector on GPU is a key aspect to make iterative
reconstruction methods fast. This topic will be covered in chapter 3.

1.2 Uncertainties and ill-posedness of the reconstruction problem

The forward model given by equation (1.1) (or equivalently by equation (1.5)) is the ideal forward model for X-ray
CT. In practice, it suffers from several uncertainties. First, photons are miscounted by the cells. As a consequence, it
is better to model photon-count Ii by a Poisson process of mean given by Beer-Lambert law [LC�84, KPTF13] :

p♣Ii⑤f , riq ✏ P
✁
I0e

✁rHf s
i � ri

✠
. (1.7)

In this statistics is added a term denoted by ri, which corresponds to the mean number of background events. This term
enables to take into account electronic noise introduced by the detector itself [NDMF�13]. The mean of background
events is precomputed before the acquisition, so it can be included in the linearization of the reconstruction problem
by

gi ✏ ln

✂
I0

Ii ✁ ri

✡
,❅i. (1.8)

Given that the number of photons reaching the detector is large in X-ray CT, a second order Taylor expansion of
Poisson statistics (1.7) of photon-counts can be performed [SB93, TBSH06, TSBH07], leading to the forward model
accounting for uncertainties

g ✏Hf � ζ (1.9)

where uncertainties ζi,❅i, are modeled as Gaussian [SB93, KPTF13]. In appendix A, we show how to derive this
forward model from Poisson statistics (1.7). The proof is similar to the one presented in [SB93]. We give it in
appendix for the sake of comprehensiveness, since we will re-consider the used forward model in chapter 5.
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Analogy of the reconstruction problem
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? ? ? ? 10

12 12 8 8

Figure 1.3: Toy example to illustrate the reconstruction problem

Non-existence of solution

? ? ? ? 10
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? ? ? ? 10
? ? ? ? 10
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Figure 1.4: Illustration of the non-existence of solution

One problem :

? ? ? ? 10
? ? ? ? 10
? ? ? ? 10
? ? ? ? 10

12 12 8 8

Many different solutions :

3 3 2 2 10
3 3 2 2 10
3 3 2 2 10
3 3 2 2 10

12 12 8 8
0 0 2 8 10
0 4 6 0 10
2 8 0 0 10
10 0 0 0 10

12 12 8 8
2 4 3 1 10
4 3 1 2 10
5 2 2 1 10
1 3 2 4 10

12 12 8 8

Figure 1.5: Illustration of the non-uniqueness of the solution

Poisson noise on photon-counts is only one source of uncertainties in X-ray CT. Several other phenomena happen
in practice. In particular, formula (1.7) models X-rays as monochromatic, while they are actually polychromatic.
The polychromacy of X-rays means that photons of different energies will not interact in the same way with a same
material. For instance, some photons scatter in the volume, so they are recorded by the detector in a location differ-
ent from the one given by Beer-Lambert law. This results in artifacts in the reconstruction if not taken into account
[NDMF�13]. Another object-dependent phenomenon is beam-hardening : photons of low energies are absorbed
when they encounter some materials such as metal [GDMJ�16]. Beam-hardening causes strong artifacts in the recon-
struction, which require complex methods in order to reduce it, such as corrections of the projections based on a first
reconstruction [KKF08].

The deviations in real projections g from ideal theoretical projections Hf are summarized in figure 1.2. Like
measurement errors such as Poisson noise or electronic noise in the detector, scattering is a random uncertainty on the
projections, while beam-hardening is a deterministic error which is systematically the same if the scan is repeated.
Nevertheless, scattering and beam-hardening are both object-dependent phenomena which are difficult to model in a
tractable way in 3D X-ray CT.

The presence of uncertainties in projections g makes the estimation of f only based on g unstable, due to the
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Two very close problems :
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Two very different solutions :
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Figure 1.6: Illustration of ill-conditioning

conditioning of the reconstruction problem : for a variation ∆g of data g, the variation ∆f̂ of estimation f̂ is bounded

⑥∆f̂⑥
⑥f̂⑥ ↕ χH

⑥∆g⑥
⑥g⑥ (1.10)

where χH ➙ 0 is the condition number of matrix H . From equation (1.10), we see that small χH ensures that a

small variation ∆g results in a small variation ∆f̂ in volume estimation. In this case, the reconstruction problem
is said to be well-conditioned. Unfortunately, the reconstruction problem is not well-conditioned but ill-conditioned
[Idi08] : because of large χH ✧ 1, we are not sure whether a small variation ∆g will not lead to a large variation

∆f̂ .
This ill-conditioning is one of the reasons for which the reconstruction problem is ill-posed. An inverse problem

is said to be ill-posed if it is not well-posed in Hadamard’s sense. An inverse problem is said to be well-posed if and
only if the three following conditions are met :

- a solution to the problem exists,

- this solution is unique,

- the problem is well-conditioned, i.e. the condition number is small : χH ✦ 1. If the problem is well-
conditioned, the solution changes smoothly with the data according to equation (1.10).

In order to make the reader more familiar with these notions, we show in figure 1.3 a toy example which is an analogy
of the reconstruction problem in X-ray CT. The problem consists in finding the coefficients of one matrix, of which
we only know the sums over each row and each column. The coefficients of the matrix have to be positive integers.
Although it is rather easy to find a solution to the problem in figure 1.3, we may notice in figure 1.4 that, for some
values of the data, it is possible that no solution exists. In addition, as illustrated in figure 1.5, if one solution exists,
then this solution may be not unique. At last, figure 1.6 illustrates the impact of ill-conditioning. In this figure, we see
that the two presented problems are very close, since only two numbers are different in the second problem, compared
to the first. Nevertheless, in the solutions we find, much more than two coefficients are different. This is typically
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an ill-conditioned problem, which shows how an estimation only relying on the data can be unstable. In order to
make the reconstruction problem well-posed, it is necessary to regularize the reconstruction problem by incorporating
prior information on the volume to reconstruct, so the estimation is a tradeoff between the data and the regularization
[Tik63]. We present this notion more precisely in chapter 2.
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Chapter 2

Reconstruction methods in X-ray Computed

Tomography

The first mathematical foundations for X-ray CT were provided by the works of Radon [Rad17]. Analytical recon-
struction methods rely on these mathematical foundations to propose approximate inversion formulae in order to
solve the reconstruction problem [FDK84, SK85, RRT�18]. In industry, the Feldkamp-Davis-Kress (FDK) method
[FDK84] is widely used for NDT but requires a large amount of projections to obtain reconstructions of good quality.
Due to scattering, beam-hardening and other uncertainties in the projections, these reconstructions suffer from many
artifacts which are hard to reduce even with a lot of projections. In order to enhance image quality, model-based
iterative reconstruction (MBIR) methods enforce a prior model M on the volume to reconstruct. This prior model
brings a regularization of the reconstruction problem which leads to a better conditioning and to a more robust esti-
mation with respect to the uncertainties in the projections. In our context, MBIR methods are interesting in order to
inspect industrial parts, since, with same acquisition conditions, they increase the reconstruction quality compared to
analytical reconstruction methods. In addition, they can also obtain good results even when the angle distribution is
limited [Fes00]. In the medical context, MBIR methods are appealing because they enable to reduce the dose while
preserving a good reconstruction quality.

This chapter briefly reviews reconstruction methods in X-ray CT. After having introduced the used geometrical
model in section 2.1, the main mathematical foundations of X-ray CT are presented in section 2.2. Then, section 2.3
focuses on analytical reconstruction methods and section 2.4 on first algebraic reconstruction methods proposed in the
literature [GBH70]. These methods only rely on the projections to perform the reconstruction. In section 2.5, MBIR
methods combines the information brought by the data with a prior model, which leads to enhanced reconstructions
compared to methods presented in sections 2.3 and 2.4. Next, section 2.6 focuses on the case of total variation
(TV) regularization, in order to present several optimization algorithms which have been proposed in the literature.
At the end of the chapter, a summary about the reviewed methods is provided and the chosen approach to develop
reconstruction algorithms for SAFRAN is justified.

2.1 Geometrical model

The used geometrical model is shown in figure 2.1. In this model, the source and the detector are simultaneously
rotated by a projection angle φ around z-axis ♣Lr~zLrqwhile the volume is fixed : this is equivalent to rotate the volume
by an angle ♣✁φq as presented in chapter 1, and is simpler to handle for geometrical calculations. We consider cubic
voxels of side length δ. The volume is discretized into N ✏ Nx ✂ Ny ✂ Nz voxels. Coordinates ♣x, y, zq are given
in the optical frame ♣O, ~xO, ~yO, ~zOq. The position of each voxel is given by the normalized coordinates of its center
♣xe, ye, zeq, 0 ↕ xe ➔ Nx, 0 ↕ ye ➔ Ny, 0 ↕ ze ➔ Nz . The corresponding coordinates in the object frame are✩✫

✪
xv ✏ xe ✂ δ

yv ✏ ye ✂ δ

zv ✏ ze ✂ δ

. (2.1)
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Figure 2.1: Geometrical model

The position of the source S is denoted by ♣xS♣φq, yS♣φq, zS♣φqq. The position of the detector is given by the position
of its center Cd ♣xCd

♣φq, yCd
♣φq, zCd

♣φqq. In the ideal axial cone-beam geometry, the source and the center of the
detector are aligned with the rotation center Lr and lie in the same horizontal plane. In practice, this configuration is
very hard to get and some calibration is required in order to avoid artifacts in the reconstruction [SHH07, KLH�08].
In this work, we assume the geometry is correctly calibrated, so we have :

zCd
♣φq ✏ zS♣φq ✏ zLr ,❅φ. (2.2)

The cells of the detector are all the same size δu ✂ δv. The local geometrical frame of the detector is ♣Od, ~u,~vq.
In this frame, the location of one cell is given by the normalized coordinates of its center ♣ue, veq, 0 ↕ ue ➔ Nu,
0 ↕ ve ➔ Nv. Their unnormalized coordinates are✧

u ✏ ue ✂ δu

v ✏ ve ✂ δv
. (2.3)

In ♣Od, ~u,~vq, the normalized coordinates of the center of the detector are✩✫
✪

uCde
✏ uCd

δu
✏ Nu✁1

2

vCde
✏ vCd

δv
✏ Nv✁1

2

. (2.4)

The coordinates of the rotation center Lr in the optical frame ♣O, ~xO, ~yO, ~zOq are✩✫
✪

xLr ✏ xLreδ ✏ Nx✁1
2

δ

yLr ✏ yLreδ ✏ Ny✁1

2
δ

zLr ✏ zLreδ ✏ Nz✁1
2

δ

. (2.5)

The normalized coordinates of one voxel in the source-detector frame ♣Lr, ~xLr, ~yLr, ~zLrq are denoted by✩✫
✪

x✶e ✏ xe ✁ xLre
y✶e ✏ ye ✁ yLre
z✶e ✏ ze ✁ zLre

. (2.6)
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The source-to-detector distance
⑥ÝÝÑSCd⑥ ✏ D (2.7)

and the source-to-object distance
⑥ÝÝÑSLr⑥ ✏ R (2.8)

give the magnification

Magn ✏ D

R
. (2.9)

With our geometrical model, the coordinates of the source in the optical frame are✩✫
✪

xS♣φq ✏ xLr ✁R cosφ

yS♣φq ✏ yLr ✁R sinφ

zS♣φq ✏ zLr

(2.10)

and the coordinates of the detector are ✩✫
✪

xCd
♣φq ✏ xLr � ♣D ✁Rq cosφ

yCd
♣φq ✏ yLr � ♣D ✁Rq sinφ

zCd
♣φq ✏ zLr

(2.11)

for each projection angle φ. The coordinates of a cell P ♣ue, veq at one projection angle φ in the frame ♣Cd, ~u,~vq are
denoted by ✧

s ✏ sue ✂ δu ✏ ♣ue ✁ uCde
q ✂ δu

t ✏ tve ✂ δv ✏ ♣ve ✁ vCde
q ✂ δv

, (2.12)

where ÝÝÑ
CdP ✏ s~u� t~v. (2.13)

Given that the detector is rotated by φ with respect to the optical frame✧
~u ✏ ✁~xLr sinφ� ~yLr cosφ ✏ ✁~xO sinφ� ~yO cosφ

~v ✏ ~zLr ✏ ~zO
, (2.14)

the coordinates of cell P in the optical frame are✩✫
✪

x♣ue, φq ✏ xLr � ♣D ✁Rq cosφ✁ s sinφ

y♣ue, φq ✏ yLr � ♣D ✁Rq sinφ� s cosφ

z♣veq ✏ zLr � t

. (2.15)

2.2 Mathematical foundations

The position of the source is denoted by S ✏ ~OS. In figure 2.2, the vector ri corresponds to the unit direction vector
of the line Li. From equation (1.5), ideal unnoisy projection can be expressed as the divergent-beam transform of the
volume :

gi ✏
➺
Li

f♣rqdl ✏
➺ �✽
0

f♣S � σriqdσ ✜ Df♣ri,Sq (2.16)

where Df♣ri,Sq denotes the divergent-beam transform of f [SK85]. The X-ray transform (XT) performs the inte-
gration over R [SK85, Rod02] :

X f♣ri,Sq ✏
➺ �✽
✁✽

f♣S � σriqdσ ✏ Df♣ri,Sq �Df♣✁ri,Sq. (2.17)

Since the source is out of the volume, we have f♣S � σriq ✏ 0 for σ ➔ 0. Hence, X f♣ri,Sq is equal to Df♣ri,Sq.
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Figure 2.2: Divergent-beam transform

The historical fundamental transform in X-ray CT is the Radon transform (RT) [Rad17]. It performs integration
of the volume over a hyperplane : for an unit vector r P R

n, the Radon transform is defined as [SK85]

Rf♣r, τq ✜
➺
r✶: ①r✶,r②✏τ

f♣r✶qdr✶,❅τ P R. (2.18)

In 2D, hyperplanes correspond to lines, so the Radon transform is the same as the X-ray transform. For all unit vector
r P R

2, we define an orthogonal unit vector r❑ such that ①r❑, r② ✏ 0. For all τ P R and r P R
2, the Radon transform

performs an integration over a hyperplane which is the set of vectors r✶ such that ①r✶, r② ✏ τ . Hence, the Radon
transform reads [Rod02]

Rf♣r, τq ✏
➺
r✶: ①r✶,r②✏τ

f♣r✶qdr✶ ✏
➺
r✶Pr❑

f♣τr � r✶qdr✶ ✏
➺ �✽

✁✽
f♣τr � σr❑qdσ ✏ X f♣r❑, τrq. (2.19)

On the opposite, in nD, for n → 2, the Radon transform and the X-ray transform are not equal. Indeed, in 3D, the
X-ray transform is an integration over a line, while the Radon transform performs an integration over a plane.

Defining, for all τ P R, S P R
n and r P R

n such that ⑥r⑥ ✏ 1,

Rrf♣τq ✏ Rf♣r, τq, (2.20)

projection-slice theorem 2.2.1, also called the Fourier slice theorem, provides a direct relation between the Fourier
transform of the volume and the Fourier transform of Rrf [Rod02].
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Theorem 2.2.1. Projection-slice theorem :

For f : Rn Ñ R, we have, for all τ̄ P R, S̄ P R
n and r P R

n such that ⑥r⑥ ✏ 1 :

FRrf♣τ̄q ✏ ♣2πqn✁1

2 Ff♣τ̄rq, (2.21)

where

Ff♣S̄q ✏ 1

♣2πqn
2

➺
Rn

f♣r✶q e✁i① ¯S,r✶② dr✶,❅S̄ (2.22)

is the Fourier transform of f .

For the 2D fan-beam case, the Radon transform can be inverted using Radon inversion formula [Rad17, HLN76].
Concerning the divergent-beam transform in 3D, Tuy derived an inversion formula [Tuy83, Rod02], which is valid if
the necessary condition in theorem 2.2.2 is fulfilled.

Theorem 2.2.2. Tuy’s condition [Tuy83]

Divergent-beam transform Df♣.,Sq is invertible from projections acquired along a bounded trajectory of the

source S if every plane crossing the to-be-imaged region-of-interest also crosses the trajectory of S in a non-

tangential way.

As shown in figure 2.2, the trajectory of the source is circular for the axial cone-beam case. Consequently, each
plane of equation z ✘ zLr crossing the field-of-view (for instance z ✏ zLr � 1), does not intercept the trajectory of
the source. Therefore, Tuy’s condition is not satisfied. As a result, only approximate reconstruction can be achieved
in 3D axial cone-beam CT.

2.3 Analytical reconstruction methods

Analytical reconstruction methods are based on the mathematical fundations presented in section 2.3 [Rad17, HLN76,
SK85]. Historically, many analytical methods have been developed for fan-beam CT, illustrated in figure 2.3, in order
to reconstruct a 2D slice of an object. For the 2D fan-beam case, applying Radon inversion formula is a straightforward
way to perform the reconstruction [HLN76]. Nevertheless, for this purpose, using projection-slice theorem 2.2.1 is
also a very simple way, as shown in figure 2.4. Since it requires much less computations than applying Radon inversion
formula [PK83], the procedure illustrated in figure 2.4 has been very popular [Mer76, SWPH81a, SWPH81b]. The
main problem with this method is that the projection-slice theorem gives the Fourier transform of f♣rq on a polar grid,
while, in order to obtain f♣rq sampled on the grid of voxels after having applied the Fourier transform inversion, it is
necessary to have it on a Cartesian grid. Going from polar to Cartesian grid in Fourier domain requires an interpolation
step, as illustrated in figure 2.5. This step is very difficult to perform since imprecisions in the interpolation cause
artifacts in the reconstruction [SWPH81a, SWPH81b, JMNM91].

As an alternative to the projection-slice theorem, the reconstruction for the 2D fan-beam case can be performed
by applying Radon inversion formula [Rad17, HLN76, FDK84] :

f♣x, yq ✏ 1

4π2

➺ 2π

φ✏0

dφ
➺ �✽

s✏✁✽

ds
x cosφ� y sinφ✁ s

❇
❇sg♣s, φq. (2.23)

Defining the function gφ : s ÞÑ g♣s, φq, we see that the integral over s in Radon inversion formula (2.23) is a
convolution, evaluated at ♣x cosφ � y sinφq, between the first derivative of gφ and s ÞÑ 1

s
: this convolution is the

Hilbert transform H of ❇
❇sgφ [Rod02, RRT�18] :

H

✒ ❇
❇sgφ

✚
♣s✶q ✏ 1

π

✒
1

s
✝ ❇
❇sgφ

✚
♣s✶q ✏ 1

π

➺ �✽

s✏✁✽

ds
s✶ ✁ s

❇
❇sgφ♣sq (2.24)

where s✶ ✏ x cosφ � y sinφ in Radon inversion formula (2.23). Going to Fourier domain, Radon inversion formula
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Figure 2.3: Fan-beam CT

(2.23) reads [FDK84]

f♣x, yq ✏ 1

4π2

➺ 2π

φ✏0
dφ

✒
1

s
✝ ❇
❇sg♣s, φq

✚
♣x cosφ� y sinφq

✏ 1

8π3

➺ 2π

φ✏0
dφ

➺ �✽
ω✏✁✽

iω ✂ Fgφ♣ωq ✂ F

✒
s ÞÑ 1

s

✚
♣ωq ✂ exp riω♣x cosφ� y sinφqs dω

✏ 1

8π3

➺ 2π

φ✏0
dφ

➺ �✽
ω✏✁✽

iω ✂ Fgφ♣ωq ✂ ♣✁iπ sign♣ωqq ✂ exp riω♣x cosφ� y sinφqs dω

✏ 1

8π2

➺ 2π

φ✏0
dφ

➺ �✽
ω✏✁✽

⑤ω⑤ ✂ Fgφ♣ωq ✂ exp riω♣x cosφ� y sinφqs dω. (2.25)

Formula (2.25) gives an intuitive interpretation of what Radon inversion formula does. The values of the projections
along each ray are backpropagated and accumulated in each pixel, which corresponds to the backprojection operation.
Before this backpropagation, a ramp filter, of frequency response ω ÞÑ ⑤ω⑤, is applied on each projection [FDK84].
The ideal ramp filter cannot be implemented in practice, so a cutoff frequency ωc needs to be defined [WWH05] :

f♣x, yq ✓ 1

8π2

➺ 2π

φ✏0
dφ

➺ ωc

ω✏✁ωc

⑤ω⑤ ✂ Fgφ♣ωq ✂ exp riω♣x cosφ� y sinφqs dω. (2.26)

Therefore, the application of Radon inversion formula corresponds to a Filtered Back-Projection (FBP).
As mentioned in the previous section, in 3D, the Tuy’s conditions are not satisfied for the cone-beam acquisition

case. Hence, no inversion formula is available. The FDK method [FDK84] performs an approximate inversion by
applying FBP to each row of the projections, as if it were the result of a 2D fan-beam acquisition. By this method,
the middle slice is exactly reconstructed, while the error for the other slices grows as the distance from the middle
slice increases [Lon11]. Short formulae for the FDK method can be found in [Lon11, Chapter 2][RRT�18]. The FDK
method is a very practical and fast cone-beam reconstruction algorithm. For this reason, it is widely used in medicine
and in industry. In particular, the FDK method is implemented in the tomographs bought by SAFRAN. Nevertheless,
since the frequency response of the ramp filter ω ÞÑ ⑤ω⑤ goes to infinity as ω increases, the ramp filter amplifies the
noise. Consequently, the FDK method is not optimal to perform the reconstruction from noisy projections.

Recently, a new analytical method has been proposed, called the backprojection-filtration (BPF) method [RRT�18].
It uses the fact that the ramp filter can be decomposed as a spatial derivative along each row of the projections, followed
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Rrf♣τq ✲ F ✲ FRrf♣τ̄q
❄

Apply projection-slice theorem

❄
Ff♣τ̄rq : Ff sampled on a polar grid

❄
Interpolation

❄
Ff : sampled on a Cartesian grid✛F✁1✛f♣rq

Figure 2.4: Radon transform inversion by the use of projection-slice theorem

Figure 2.5: Interpolation step from polar to Cartesian grid in Fourier domain [Rod02]

by a Hilbert transform. The BPF method reverses the applications of the Hilbert transform and the backprojection
operation in the FDK reconstruction formula. Like FBP, the BPF method is exact in the 2D fan-beam case [RRT�18].
Differently from the FDK method, BPF enables to apply directional filtering according to which backprojected direc-
tion the Hilbert transform is applied [RRT�18]. The main interest of BPF is that it performs better reconstructions of
regions-of-interest than FDK [RRT�18].

2.4 Algebraic reconstruction methods

Algebraic reconstruction methods are based on the discretized formulation of the reconstruction problem presented
in chapter 1. They are called iterative reconstruction methods since they refine the estimation of the volume after
having obtained a first reconstruction. The first algebraic reconstruction methods which have been proposed estimate
the volume which is the most likely to have given the data g. In this sense, they are maximum-likelihood techniques :

f̂ ✏ argmax
f

p♣g⑤fq. (2.27)

Among these maximum-likelihood methods, ART (Algebraic Reconstruction Technique) [GBH70] tries to match the
real and the theoretical projections g and Hf by solving the linear system g ✏ Hf . The estimation procedure
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used in ART considers each ray separately, so one iteration of ART contains M updates of the volume. Due to the
ill-conditioning, it gives poor reconstruction results [Gil72]. After ART, SIRT (Simultaneous Iterative Reconstruction
Technique) has been proposed : it updates the volume considering all the projections simultaneously, leading to en-
hanced reconstruction quality [Gil72]. SART (Simultaneous Algebraic Reconstruction Technique) aims at improving
the convergence speed of SIRT by proposing a different update formula for the volume [AK84].

SART takes into account discretization uncertainties in the discretized formulation of the reconstruction problem

g ✏Hf � ζ. (2.28)

Although forward model (2.28) looks the same as forward model (1.9), its mathematical sense is rather different, since
SART introduces uncertainties ζ to take into account errors inherent to discretization [AK84], while uncertainties ζ in
forward model (1.9) are physically justified by statistical noise [SB93], as explained in chapter 1. As a result, SART
considers that the projections are equally important and performs a least-squares estimation :

f̂ ✏ argmin
f

1

2
⑥g ✁Hf⑥22, (2.29)

which is equivalent to consider uncertainties ζ as Gaussian with same variance vζ . Thanks to the approach provided
in [SB93], we know that uncertainties have different variances

p♣ζi⑤vζiq ✏ N ♣ζi⑤0, vζiq,❅i, (2.30)

where

vζi ✏
Ii

♣Ii ✁ riq2 ,❅i, (2.31)

as shown in appendix A. Consequently, it is more appropriate, from a maximum-likelihood perspective, to perform
weighted least-squares estimation :

f̂ ✏ argmin
f

1

2
⑥g ✁Hf⑥2V ζ

(2.32)

where V ζ ✏ diag rvζs and ⑥y⑥2
V

✏ yTV ✁1y for all y and fixed diagonal matrix V with positive and non-zeros
diagonal coefficients. The derivation of expression (2.31) in [SB93] does not take into account scattering and beam-
hardening. For this reason, expression (2.31) appears as rather suboptimal in order to weight the projections.

2.5 Model-based iterative reconstruction (MBIR) methods

In the algebraic reconstruction methods which have been presented in section 2.4, the estimation of the volume is
only based on the projections. Due to the ill-conditioning, these methods are very sensitive to the noise introduced by
physical uncertainties such as scattering, beam-hardening or cracks in the cells. The estimation needs to be made more
robust by including a prior model on the volume in the reconstruction algorithm [MDD88]. While this is difficult to do
in analytic reconstruction methods, algebraic reconstruction methods provide a natural framework to introduce such
prior, which leads to Model-Based Iterative Reconstruction (MBIR) methods. MBIR methods perform Maximum A
Posteriori (MAP) estimation : they aim at maximizing posterior distribution of the volume p♣f ⑤gq, which is given by
Bayes’ rule :

p♣f ⑤gq ✏ p♣g⑤fqp♣fq
p♣gq (2.33)

where

- p♣g⑤fq is the likelihood,

- p♣fq is the prior distribution of volume f ,

- p♣gq is the evidence.
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Since evidence p♣gq does not depend on the volume, MAP estimation is equivalent to

f̂ ✏ argmin
f

✁ ln♣p♣g⑤fqq ✁ ln♣p♣fqq. (2.34)

Given the likelihood and removing constant terms, this leads to penalized weighted least-squares (PWLS) [SB93,
TSBH07] :

f̂ ✏ argmin
f

1

2
⑥g ✁Hf⑥2V ζ

✁ ln♣p♣fqq. (2.35)

Depending on the physical properties of the volume to reconstruct, many prior models have been proposed, leading
to different MBIR algorithms. A general form for the prior distribution on f is [KPTF13, KRF15, MF15]

p♣fq✾ exp♣✁R♣Dfqq, (2.36)

where R : RÑ R is a convex potential function andD is a linear transform (or a concatenation of linear transforms)
on the volume. Prior p♣fq in (2.36) can be possibly improper (i.e. its integral over RN is�✽), as long as the posterior
distribution remains proper. Given general form (2.36), PWLS reads

f̂ ✏ argmin
f

1

2
⑥g ✁Hf⑥2V ζ

�R♣Dfq. (2.37)

Depending on chosen R and D, optimization (2.37) is more or less difficult to achieve. All possible priors and all
possible ways to solve (2.37) result in a wide variety of MBIR algorithms.

In order to enhance image quality, the prior model very often encourages volumes divided in compact and smooth
regions, which leads to choose an edge-preserving potential R [KRF15]. Many regularizations aim at enforcing
sparsity of the volume inD-transform domain :

R♣Dfq ✏ λ⑥Df⑥qp (2.38)

where 0 ↕ p ↕ 2, 1 ↕ q ↕ 2 and λ ➙ 0. Parameter λ tunes the tradeoff between the data-matching term and the
regularization term. In many cases, optimal λ is difficult to find. As a result, fixing λ requires repeated experiments,
which can be tedious due to the high dimension in 3D CT.

One standard prior model is Total Variation (TV) regularization [SJP�12]. Denoting by ∇ the operator concate-
nating the first-order finite differences ∇ι in each considered direction ι ✏ 1, . . . , I of the 3D space

∇f ✏

☎
✝✝✝✝✝✝✆

∇1f
...

∇ιf
...

∇If

☞
✍✍✍✍✍✍✌
, (2.39)

the anisotropic total variation regularization is given by

R♣Dfq ✏ λ
➳
j

✄
I➳
ι✏1

✞✞✞♣∇ιfqj
✞✞✞
☛
✏ λ⑥∇f⑥1, (2.40)

while the isotropic total variation regularization reads

R♣Dfq ✏ λ
➳
j

❣❢❢❡ I➳
ι✏1

♣∇ιfq2j . (2.41)

In this thesis, we deal with I ✏ 3 directions which correspond to the first-order neighbours. In order to reconstruct
piecewise-constant volumes, Potts model [BVZ01]

R♣Dfq ✏ λ

I➳
ι✏1

⑥∇ιf⑥0 (2.42)
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has also been considered. In this case, reconstruction problem (2.37) has been solved by joint reconstruction and
segmentation algorithms [RR07, SWFU15, SRUW17]. Transform D can be chosen different from the gradient. For
D being the second-order derivative, sparse contours are favoured in the reconstruction. Other prior models focus on
sparsity in a wavelet domain [VGVH�13, NHBF16, WMDG17]. An optimal sparse dictionary representation can be
also pre-learnt [XYM�12, CXLF17, ZRLF18]. The main difficulty of methods based on dictionary-learning is that
the learning dataset has to contain sufficiently varied reconstructions of good quality. In order to reduce the number
of required volumes, patch-based learning has been investigated [ZRLF18].

For a fixed regularization, the reconstruction can be accelerated by dividing the projections into several Ordered
Subsets (OS) [HL94, EF99, KPTF13]. In this case, at each iteration of the reconstruction algorithm, each subset is
considered one after the other. In practice, OS methods show improved convergence speed but their convergence prop-
erties remain uncertain [MF15]. In particular, dealing with too small subsets make the algorithm diverge [KPTF13].
OS strategy can be combined with other optimization techniques such as separable quadratic surrogate [KPTF13] or
Nesterov’s momentum [KRF15].

Parameters p and q tune the sparsity of Df . For p ✏ q and 1 ➔ p ↕ 2, minimization problem (2.37) is convex
and differentiable, which enables to use simple or conjugate gradient descent as reconstruction algorithms [She94].
The sparsity in the transform domain increases as parameter p tends to zero. In this case, performing optimization
(2.37) requires more complex optimization methods since the criterion to minimize in (2.37) is not differentiable for
p ↕ 1. In the next section, we review some of these methods for the case of anisotropic TV regularization.

2.6 MBIR methods with Total Variation (TV) regularization

For TV-penalized weighted least-squares, the criterion to minimize is

J♣fq ✏ 1

2
⑥g ✁Hf⑥2V ζ

� λ⑥∇f⑥1 ✏ Φ♣fq �Ψ♣fq, (2.43)

where V ζ ✏ diag rvζs. Variances vζi ,❅i, are given by (2.31). Φ♣fq is the data-matching term :

Φ♣fq ✏ 1

2
⑥g ✁Hf⑥2V ζ

, (2.44)

and Ψ♣fq is the regularization :
Ψ♣fq ✏ λ⑥∇f⑥1. (2.45)

The difficulty to perform optimization
f̂ ✏ argmin

f
J♣fq (2.46)

is that Ψ♣fq is not differentiable. Hence, gradient descent methods are not applicable. Nevertheless, Ψ♣fq is still con-
vex, which enables to apply several convex optimization algorithms we now describe here. Many of these algorithms
use proximity operators, defined, for a convex function h, by

proxh♣fq ✏ argmin
f

✶

✧
1

2
⑥f ✶ ✁ f⑥22 � h♣f ✶q

✯
. (2.47)

2.6.1 Alternating Direction Method of Multipliers (ADMM)

The idea of Alternating Direction Method of Multipliers (ADMM) [BPC�11, Ess09] is to divide the optimization
problem (2.46) into two simpler sub-problems. This is done by performing a variable-splitting into the expression of
the criterion :

J♣fq ✏ Φ♣fq �Ψ♣fq ✏ Φ♣fq � Ψ̃♣∇fq ✏ Φ♣fq � Ψ̃♣zq (2.48)

where z ✏ ∇f and
Ψ̃♣zq ✏ λ⑥z⑥1. (2.49)
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ADMM solves the reconstruction problem with respect to f and z :

♣f̂ , ẑq ✏ argmin
f ,z

✦
Φ♣fq � Ψ̃♣zq

✮
such that z ✏ ∇f (2.50)

which is equivalent to problem (2.46) thanks to constraint z ✏ ∇f . In order to deal with this constraint, ADMM
introduces the augmented Lagragian :

Lµ♣f , z; bq ✏ Φ♣fq � Ψ̃♣zq � bT ♣∇f ✁ zq � µ

2
⑥∇f ✁ z⑥22 (2.51)

where b is the vector of Lagrange multipliers (or dual variables), and µ → 0 is the penalty parameter [BPC�11].
The augmented Lagrangian is minimized with respect to primal variables ♣f , zq and maximized with respect to dual
variables b. This is summarized by saddle-point primal-dual formulation [BPC�11]

min
f ,z

max
b

Lµ♣f , z; bq. (2.52)

In order to solve (2.52), ADMM performs one primal descent with respect to f and z and one dual ascent with
respect to b, as summarized in algorithm 1. Steps for f and z updates read as one step of alternate minimization
of the augmented Lagrangian in the primal space. If several steps of this alternate minimization are performed, then
algorithm 1 looks like Split-Bregman method (SBM) [GO09, Ess09]. Considering the scaled dual variables

b̃ ✏ b

µ
(2.53)

instead of the unscaled dual variables b, the augmented Lagragian can be rewritten as [BPC�11]

Lµ♣f , z; b̃q ✏ Φ♣fq � Ψ̃♣zq � µ

2
⑥∇f ✁ z � b̃⑥22 ✁

µ

2
⑥b̃⑥22. (2.54)

Solving primal-dual problem (2.52) with respect to ♣f , z; b̃q instead of ♣f , z; bq leads to the scaled formulation of
ADMM given in algorithm 2. In this algorithm, the step for z update uses the proximity operator of 1

µ
Ψ̃ ✏ λ

µ
⑥.⑥1,

which is the soft thresholding operator [BT09] :

✁
prox 1

µ
Ψ̃
♣z̃♣tqq

✠
j
✏ sign♣z̃jqmax

✂
⑤z̃j ⑤ ✁ λ

µ
, 0

✡
,❅j, (2.55)

where
z̃♣tq ✏ ∇f ♣t�1q � b̃♣tq. (2.56)

Algorithm 1 ADMM algorithm [BPC�11]

Initialize f ♣0q, z♣0q (primal variables)
Initialize b♣0q ✏ 0 (dual variable)
for t ✏ 0, . . . , tmax ✁ 1 do

Primal descent : f ♣t�1q ✏ argminf Lµ

✁
f , z♣tq; b♣tq

✠
Primal descent : z♣t�1q ✏ argminz Lµ

✁
f ♣t�1q, z; b♣tq

✠
Dual ascent : b♣t�1q ✏ b♣tq � µ

✁
∇f ♣t�1q ✁ z♣t�1q

✠
end for

As emphasized in the unscaled version of ADMM in algorithm 1, penalty parameter µ → 0 acts as a fixed stepsize
in the dual space. One advantage of ADMM is that the algorithm converges whatever the value of this parameter is
[BPC�11]. In particular, the primal residuals, which, in our case, correspond to

r♣tq ✏ ∇f ♣tq ✁ z♣tq, (2.57)
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Algorithm 2 Scaled ADMM algorithm [BPC�11]

Initialize f ♣0q, z♣0q (primal variables)

Initialize b̃
♣0q ✏ 0 (dual variable)

for t ✏ 0, . . . , tmax ✁ 1 do

Primal descent : f ♣t�1q ✏ argminf

✦
Φ♣fq � µ

2
⑥∇f ✁ z♣tq � b̃♣tq⑥22

✮
Primal descent : z♣t�1q ✏ argminz

✦
Ψ̃♣zq � µ

2
⑥∇f ♣t�1q ✁ z � b̃♣tq⑥22

✮
✏ prox 1

µ
Ψ̃

✁
∇f ♣t�1q � b̃♣tq

✠
Dual ascent : b̃

♣t�1q ✏ b̃♣tq �∇f ♣t�1q ✁ z♣t�1q

end for

converge to zero as t Ñ �✽. Nevertheless, in practice, since a finite number tmax of iterations is performed, one
may want to achieve the convergence as fast as possible in order to be sure that the primal residuals are sufficiently
small at the end of the algorithm, so the constraint ∇f ✏ z is satisfied within a desired tolerance [BPC�11, sec.
3.3.1]. From this perspective, one has to apply a careful selection strategy of µ in order to avoid slow convergence
speed [GTSJ15]. For this purpose, the penalty parameter selection problem is covered in [GTSJ15] but only for the
case of L2-regularization and not for TV. Consequently, finding optimal penalty parameter µ for ADMM in the case
of TV-regularization is a difficult and non-trivial problem.

2.6.2 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

As shown in algorithm 2, ADMM does not need to have Φ or Ψ̃ differentiable. If one of these functions is differ-
entiable, as it is the case for Φ in the TV-penalized weighted least-squares problem (2.43), then it is interesting to
consider the Iterative Shrinkage-Thresholding Algorithm (ISTA) and its fast version, the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [BT09]. ISTA assumes that the gradient of Φ, in criterion (2.43), is LΦ-Lipschitz
continuous

⑥∇Φ♣f1q ✁∇Φ♣f2q⑥2 ↕ LΦ⑥f1 ✁ f2⑥2. (2.58)

In our case, this is true, with LΦ ✏ ⑤⑤⑤HTV ✁1
ζ H⑤⑤⑤2. ⑤⑤⑤.⑤⑤⑤2 denotes Frobenius norm :

⑤⑤⑤A⑤⑤⑤2 ✏ Tr
✏
ATA

✘ 1

2 . (2.59)

Given (2.58), at iteration t, ISTA considers

QL♣f ,f ♣tqq ✏ Φ♣f ♣tqq �∇Φ
✁
f ♣tq

✠T ✁
f ✁ f ♣tq

✠
� L

2
⑥f ✁ f ♣tq⑥22 (2.60)

which is greater than Φ♣fq for L ➙ LΦ [BT09]. Iterate f ♣t�1q of ISTA is computed by

f ♣t�1q ✏ argmin
f

✦
Q̃L♣f ,f ♣tqq

✮
(2.61)

where
Q̃L♣f ,f ♣tqq ✏ QL♣f ,f ♣tqq �Ψ♣fq. (2.62)

Since QL♣f ,f ♣tqq ➙ Φ♣fq for L ➙ LΦ, we have Q̃L♣f ,f ♣tqq ➙ J♣fq. Hence, ISTA can be seen as a majorize-
minimize algorithm. Given that

QL♣f ,f ♣tqq ✏ Φ♣f ♣tqq �∇Φ
✁
f ♣tq

✠T ✁
f ✁ f ♣tq

✠
� L

2

✎✎✎f ✁ f ♣tq✎✎✎2
2

✏ Φ♣f ♣tqq � 2✂ L

2
✂ 1

L
∇Φ

✁
f ♣tq

✠T ✁
f ✁ f ♣tq

✠
� L

2

✎✎✎f ✁ f ♣tq✎✎✎2
2
� L

2

✎✎✎✎ 1L∇Φ
✁
f ♣tq

✠✎✎✎✎2
2

✁ L

2

✎✎✎✎ 1L∇Φ
✁
f ♣tq

✠✎✎✎✎2
2

✏ Φ♣f ♣tqq � L

2

✎✎✎✎f ✁ f ♣tq � 1

L
∇Φ

✁
f ♣tq

✠✎✎✎✎2
2

✁ L

2

✎✎✎✎ 1L∇Φ
✁
f ♣tq

✠✎✎✎✎2
2
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✏ Φ♣f ♣tqq � L

2

✎✎✎✎f ✁
✂
f ♣tq ✁ 1

L
∇Φ

✁
f ♣tq

✠✡✎✎✎✎2
2

✁ L

2

✎✎✎✎ 1L∇Φ
✁
f ♣tq

✠✎✎✎✎2
2

, (2.63)

ISTA iterate can be rewritten, removing constant terms, as

f ♣t�1q ✏ argmin
f

★
L

2

✎✎✎✎f ✁
✂
f ♣tq ✁ 1

L
∇Φ

✁
f ♣tq

✠✡✎✎✎✎2
2

�Ψ♣fq
✰
. (2.64)

Hence, f ♣t�1q in ISTA can be expressed using the proximity operator of Ψ, as done in algorithm 3.

Algorithm 3 Iterative Shrinkage-Thresholding Algorithm (ISTA) [BT09]

Initialize f ♣0q

for t ✏ 0, . . . , tmax ✁ 1 do

f ♣t�1q ✏ prox 1

L
Ψ

✁
f ♣tq ✁ 1

L
∇Φ

✁
f ♣tq

✠✠
end for

The fast version FISTA adds two steps of Nesterov’s acceleration technique [Nes83] to ISTA [BT09, CD15].
FISTA is summarized in algorithm 4. As we see, FISTA is more memory-costly than ISTA since it requires to store
one further volume. The application of the proximity operator of 1

L
Ψ corresponds to a soft thresholding operation

Algorithm 4 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [BT09]

Initialize f ♣0q

Initialize f̃
♣0q ✏ f ♣0q, σ1 ✏ 1

for t ✏ 0, . . . , tmax ✁ 1 do

ISTA step : f ♣t�1q ✏ prox 1

L
Ψ

✁
f̃
♣tq ✁ 1

L
∇Φ

✁
f̃
♣tq
✠✠

Nesterov’s acceleration step : σt�1 ✏ 1
2

✁
1�

❛
1� 4σ2t

✠
Nesterov’s acceleration step : f̃

♣t�1q ✏ f ♣t�1q � σt✁1
σt�1

✁
f ♣t�1q ✁ f ♣tq

✠
end for

in the case of L1-regularization Ψ♣fq ✏ λ⑥f⑥1. With such a regularization, the proximal operator has closed-
form expression given by (2.55). Unfortunately, this is not the case for TV-regularization Ψ♣fq ✏ λ⑥∇f⑥1. As a
result, computing f ♣t�1q requires one to run sub-iterations in FISTA. For this computation, a dual approach has been
proposed for image denoising [KF17]. Nevertheless, this approach would require to store too many variables for our
3D application.

2.6.3 Chambolle-Pock (CP) and Primal-Dual Frank-Wolfe (PDFW) algorithms

If the involved proximal operators have no closed-form expressions in ADMM, ISTA and FISTA, their computation
requires to run subiterations. This can be seen as a drawback since, in doing so, the iterates f ♣tq depend on the number
of subiterations performed at each iteration of the algorithm. In order to avoid subiterations, Chambolle-Pock (CP)
algorithm can be used as an alternative. Like ADMM, CP algorithm is a primal-dual method which alternates one
step of primal descent and one step of dual ascent to solve a saddle-point problem. The difference with ADMM is
that CP algorithm does not consider any Lagrangian or augmented Lagrangian : the saddle-point problem is directly
derived from the minimization problem (2.46). A pillar for this is Fenchel-Legendre transform, defined, for a convex
function h, by [BV04, chap. 3.3]

h✝♣fq ✏ max
f
✶

✥①f ,f ✶② ✁ h♣f ✶q✭. (2.65)

Fenchel-Legendre transform h✝ is also called the conjugate of h. We also define the biconjugate function of h by

h✝✝♣fq ✏ max
f
✶

✥①f ,f ✶② ✁ h✝♣f ✶q✭. (2.66)
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According to Fenchel-Moreau theorem, h✝✝ ✏ h if and only if h is convex and lower-semicontinuous [BL06,
chap. 4.2].

In order to apply Fenchel-Legendre transform and Fenchel-Moreau theorem to the reconstruction problem, we
define

Φ̃♣pq ✏ 1

2
⑥V ✁ 1

2

ζ g ✁ p⑥22 (2.67)

such that

Φ̃

✂
V
✁ 1

2

ζ Hf

✡
✏ Φ♣fq. (2.68)

Φ̃ given by (2.67) and Ψ̃ given by (2.49) are convex and continuous so Fenchel-Moreau theorem can be applied

Φ♣fq ✏ Φ̃♣Hfq ✏ max
p

✧
①V ✁ 1

2

ζ Hf ,p② ✁ Φ̃✝♣pq
✯
✏ max

p

✧
①f ,HTV

✁ 1

2

ζ p② ✁ Φ̃✝♣pq
✯

(2.69)

and
Ψ♣fq ✏ Ψ̃♣∇fq ✏ max

z

✦
①∇f , z② ✁ Ψ̃✝♣zq

✮
✏ max

z

✦
①f ,∇Tz② ✁ Ψ̃✝♣zq

✮
, (2.70)

where ∇T ✏ ✁div [SJP�12]. Replacing Φ and Ψ by (2.69) and (2.70) leads to the saddle-point problem [SJP�12,
OMBF18] :

min
f

J♣fq ✏ min
f

Φ♣fq �Ψ♣fq ✏ min
f

max
p,z

①f ,HTV
✁ 1

2

ζ p�∇Tz② ✁ Φ̃✝♣pq ✁ Ψ̃✝♣zq. (2.71)

Convex conjugates Φ̃✝ and Ψ̃✝ are derived from (2.67) and (2.49) respectively and are given by

Φ̃✝♣pq ✏ 1

2
⑥p� V ✁ 1

2

ζ g⑥22 ✁
1

2
⑥g⑥2V ζ

(2.72)

and [SJP�12, OMBF18]
Ψ̃✝♣zq ✏ iB✽♣λq♣zq (2.73)

where B✽♣λq is the ball of radius λ according to L✽-norm

B✽♣λq ✏ tz : ⑥z⑥✽ ↕ λ✉ ✏ tz : ⑤zj ⑤ ↕ λ,❅j✉ (2.74)

and iB✽♣λq is the indicator function of B✽♣λq [KF17, Pal17]

iB✽♣λq♣zq ✏
✧

0 if z P B✽♣λq
�✽ otherwise

. (2.75)

Given (2.72) and (2.73), the saddle-point problem reads

min
f

max
p,z

①f ,HTV
✁ 1

2

ζ p�∇Tz② ✁ 1

2
⑥p� V ✁ 1

2

ζ g⑥22 �
1

2
⑥g⑥2V ζ

✁ iB✽♣λq♣zq. (2.76)

This problem has been solved by applying an instance of Chambolle-Pock (CP) algorithm [CP11, SJP�12, Pal17].
CP algorithm considers the generic saddle-point problem

min
x

max
y

①x,KTy② �G♣xq ✁ F ✝♣yq (2.77)

where K is a linear continuous operator and G and F ✝ are lower-semicontinuous convex functions [CP11]. Generic
CP algorithm to solve (2.77) is given in algorithm 5 [CP11]. In order to ensure convergence, primal and dual stepsizes
µp and µd in CP algorithm have to be chosen such that [CP11]

❄
µpµd⑤⑤⑤K⑤⑤⑤2 ➔ 1 (2.78)
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Algorithm 5 Generic Chambolle-Pock (CP) algorithm [CP11]

Initialize x♣0q,y♣0q

Initialize x̃♣0q ✏ x♣0q
Choose primal and dual stepsizes µp → 0 and µd → 0 such that

❄
µpµd⑤⑤⑤K⑤⑤⑤2 ➔ 1

Choose over-relaxation parameter σ P r0, 1s
for t ✏ 0, . . . , tmax ✁ 1 do

Dual ascent : y♣t�1q ✏ proxµdF✝
✁
y♣tq � µdKx̃

♣tq
✠

Primal descent : x♣t�1q ✏ proxµpG
�
x♣tq ✁ µpK

Ty♣t�1q
✟

Over-relaxation : x̃♣t�1q ✏ x♣t�1q � σ
�
x♣t�1q ✁ x♣tq✟

end for

where ⑤⑤⑤K⑤⑤⑤2 can be computed using the power method [SJP�12]. Instead of fixed µp, µd and σ, CP algorithm can

use sequences of over-relaxation parameters σ♣tq and primal and dual stepsizes µ♣tqp and µ♣tqd [CP11].
The over-relaxation step in algorithm 5 is optional and can be omitted fixing σ ✏ 0 in order to save memory usage

[ZC08]. With σ ✏ 0, dual ascent and primal descent in algorithm 5 are equivalent to proximal-point steps [ZC08]★
y♣t�1q ✏ argmaxy ①x♣tq,KTy② ✁ F ✝♣yq ✁ 1

2µd
⑥y ✁ y♣tq⑥22

x♣t�1q ✏ argminx ①x,KTy♣tq② �G♣xq � 1
2µp

⑥x✁ x♣tq⑥22
, (2.79)

so new iterates are close to the previous ones. This formulation can be used in order to derive the instance of CP
algorithm for reconstruction problem (2.76) :✩✬✬✬✫

✬✬✬✪
p♣t�1q ✏ argmaxp ①f ♣tq,HTV

✁ 1

2

ζ p② ✁ 1
2
⑥p� V ✁ 1

2

ζ g⑥22 � 1
2
⑥g⑥2
V ζ

✁ 1
2µd

⑥p✁ p♣tq⑥22
z♣t�1q ✏ argmaxz ①f ♣tq,∇Tz② ✁ iB✽♣λq♣zq ✁ 1

2µd
⑥z ✁ z♣tq⑥22

f ♣t�1q ✏ argminf ①f ,HTV
✁ 1

2

ζ p♣t�1q �∇Tz♣t�1q② � 1
2µp

⑥f ✁ f ♣tq⑥22
. (2.80)

In order to compute z♣t�1q, the proximal operator of iB✽♣λq is the projection PB✽♣λq ontoB✽♣λq, which reads [KF17]

PB✽♣λq♣zq ✏ sign ♣zqmin tλ, ⑤z⑤✉ , (2.81)

where sign♣.q and min tλ, .✉ are applied entrywise. Adding over-relaxation step for primal variable f , updates (2.80)
lead to algorithm 6 [SJP�12].

Reminding equation (2.39), the size of the gradient ∇f is I times the size of the volume, where I is the number
of directions in which first-order differences are computed. Hence, in algorithm 6, dual variable z is very memory-
consuming. In order to reduce this memory cost, Primal Dual Frank-Wolfe (PDFW) [OMBF18] algorithm introduces
the auxiliary variable

z̃ ✏ ∇Tz ✏
I➳
ι✏1

∇T
ι zι, (2.82)

and deals with z̃ instead of z. Since z̃ is the size of the volume, PDFW results in memory-efficiency. The proximal-
point step for z in algorithm 6 is replaced by a Frank-Wolfe (FW) step [FW56, OMBF18] :

z♣t�1q
ι ✏ ♣1✁ µ

♣tq
fwqzι � µ

♣tq
fwλ sign

✁
∇ιf̃

♣tq
✠
,❅ι P t1, . . . , I✉ (2.83)

which, thanks to the linearity in zι of (2.83), enables to deal with z̃ instead of z, by accumulating over all ι P
t1, . . . , I✉ [OMBF18] :

z̃♣t�1q ✏ ♣1✁ µ
♣tq
fwqz̃♣tq � µ

♣tq
fwλ

I➳
ι✏1

∇T
ι sign

✁
∇ιf̃

♣tq
✠
. (2.84)

PDFW is summarized in algorithm 7. Choices for sequences of stepsizes
✁
µ
♣tq
p , µ

♣tq
d , µ

♣tq
fw

✠
are given in [OMBF18]. At

the time we present this work, the convergence is only ensured fixing σ ✏ 0. Due to its appealing memory-efficiency,
PDFW will be used in this thesis to compare the proposed methods with TV-regularized weighted least-squares.
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Algorithm 6 Chambolle-Pock (CP) algorithm to solve TV-penalized weighted least-squares [SJP�12]

Initialize f ♣0q

Initialize p♣0q ✏ 0, z♣0q ✏ 0

Initialize f̃
♣0q ✏ f ♣0q

Choose primal and dual stepsizes µp → 0 and µd → 0 such that
❄
µpµd

✞✞✞✞✞
✞✞✞✞✞
✞✞✞✞✞
✄
V
✁ 1

2

ζ H

∇

☛✞✞✞✞✞
✞✞✞✞✞
✞✞✞✞✞
2

➔ 1

Choose over-relaxation parameter σ P r0, 1s
for t ✏ 0, . . . , tmax ✁ 1 do

Dual ascent : p♣t�1q ✏ 1
1�µd

p♣tq � µd
1�µd

V
✁ 1

2

ζ ♣Hf̃ ♣tq ✁ gq
Dual ascent : z♣t�1q ✏ sign

✁
z♣tq � µd∇f̃

♣tq
✠
min

✦
λ,
✞✞✞z♣tq � µd∇f̃

♣tq
✞✞✞✮

Primal descent : f ♣t�1q ✏ f ♣tq ✁ µp

✂
HTV

✁ 1

2

ζ p♣t�1q �∇Tz♣t�1q

✡
Over-relaxation : f̃

♣t�1q ✏ f ♣t�1q � σ
✁
f ♣t�1q ✁ f ♣tq

✠
end for

Algorithm 7 Primal-Dual Frank-Wolfe (PDFW) algorithm [OMBF18]

Initialize f ♣0q

Initialize p♣0q ✏ 0, z̃♣0q ✏ 0

Initialize f̃
♣0q ✏ f ♣0q

Choose primal and dual stepsizes µ♣tqp , µ
♣tq
d , µ

♣tq
fw

Choose over-relaxation parameter σ P r0, 1s
for t ✏ 0, . . . , tmax ✁ 1 do

Dual ascent : p♣t�1q ✏ 1

1�µ
♣tq
d

p♣tq � µ
♣tq
d

1�µ
♣tq
d

V
✁ 1

2

ζ

✁
Hf̃

♣tq ✁ g
✠

Dual ascent by Frank-Wolfe : z̃♣t�1q ✏
✁
1✁ µ

♣tq
fw

✠
z̃♣tq � µ

♣tq
fwλ

➦I
ι✏1∇

T
ι sign

✁
∇ιf̃

♣tq
✠

Primal descent : f ♣t�1q ✏ f ♣tq ✁ µ
♣tq
p

✂
HTV

✁ 1

2

ζ p♣t�1q � z̃♣t�1q

✡
Over-relaxation : f̃

♣t�1q ✏ f ♣t�1q � σ
✁
f ♣t�1q ✁ f ♣tq

✠
end for

2.7 Perspectives to develop MBIR methods for SAFRAN

Due to the presence in its aeronautical parts of very diffusing and absorbing materials such as metal, the projections
acquired at SAFRAN are very noisy, leading to unsatisfactory reconstructions by maximum-likelihood techniques,
which try to match the data too much. In addition, the designed industrial parts often present strong asymmetries,
making the noise not uniformly distributed over all the projection angles. These strong asymmetries advocate for
weighting the data differently according to the projection direction, which is a task difficultly handled by filtered
backprojection methods.

Since SAFRAN designs and manufactures its parts, SAFRAN has the possibility to enhance reconstruction quality
for NDT by taking benefit from the knowledge of its parts, in terms of structure as in terms of shape. For this
purpose, developing MBIR methods for reconstructing parts made by SAFRAN appears as a natural way, since these
methods, as seen in this chapter, have the ability to insert prior information on the inspected volume, as weights for
the projections.

MBIR methods have hyperparameters θ which can be difficult to fix in practice. This is for instance the case of
tradeoff parameter λ in sections 2.5 and 2.6. This parameter often needs to be tuned by repeated experiments. This
can be very long for 3D NDT. In addition, the tuning procedure must be re-done each time the acquisition protocol
is changed. As a consequence, the problem of finding optimal hyperparameters may arise repeatedly and hinder
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the industrialization of proposed MBIR methods. For this reason, in this thesis, we aim at proposing MBIR methods
which, starting from a prior model M, estimate both optimal volume f and hyperparameters θ, by joint maximization
a posteriori (JMAP) :

♣f̂ , θ̂q ✏ argmax
f ,θ

p♣f ,θ⑤g;Mq, (2.85)

where joint posterior of the unknowns ψ ✏ ♣f ,θq is given by Bayes’ rule :

p♣f ,θ⑤g;Mq ✏ p♣g⑤f ,θ;Mqp♣f ⑤θ;Mqp♣θ⑤Mq
p♣g⑤Mq . (2.86)

M

❄

✒✑
✓✏
θ

❄

✛

f✒✑
✓✏

❄

✒✑
✓✏
g

1st level

2nd level

3rd level

Figure 2.6: General hierarchical model to classify reconstruction methods

Figure 2.6 summarizes the general hierarchical model derived from equation (2.86) : data g result from volume f
through projection operation H , while volume f is given by prior model M and its hyperparameters θ. Depending
on which stages of the hierarchical model are considered, reconstruction methods can be divided into three classes :

- first-level methods are maximum-likelihood techniques presented in sections 2.3 and 2.4, which aim to match
theoretical and actual projections : f̂ ✏ argmaxf p♣g⑤f ,θ;Mq,

- second-level methods add prior information but fix hyperparameters : f̂ ✏ argmaxf p♣f ⑤g;θ,Mq,
- third-level methods optimize both the volume and the hyperparameters, leading to joint maximization a poste-

riori : ♣f̂ , θ̂q ✏ argmaxf ,θ p♣f ,θ⑤g;Mq.
Reconstruction methods at each level have their pros and cons. Compared to first-level methods, second-level and

third-level reconstruction methods are robust to uncertainties in the projections and enhance reconstruction quality.
Third-level reconstruction methods optimize the hyperparameters jointly with the volume. Nevertheless, optimizing
θ prevents from using improper priors, i.e., priors for which the integral over RN is not finite. As a result, several
improper strong sparsity-inducing priors, such as anisotropic and isotropic TV (2.41) and (2.40), or Potts model (2.42),
cannot be considered in third-level reconstruction methods : for these priors, the hyperparameters have to be tuned
empirically, which may be difficult. At last, first-level reconstruction methods such as filtered backprojection do not
introduce bias in the estimation and are fast, while MBIR methods are known to be computationally burdensome due
to repeated projection and backprojection operations. In order to alleviate this computational cost, MBIR methods
have to be massively parallelizable on GPUs.
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Chapter 3

Projection and backprojection operators

As we have seen in chapter 2, projection and backprojection operators H and HT are called repeatedly in all MBIR
methods. Since they are very computationally-intensitive, this makes MBIR methods very slow compared to FBP
methods. In order to alleviate their computational cost, it has become common during the last decade to parallelize
existing projection and backprojection algorithms [Sid85, Jos82, DMB04, LFB10, NL15] on GPUs (Graphical Pro-
cessor Units) [SK10]. One GPU can run thousands of threads simultaneously, so GPUs are very interesting devices
for high parallel computing (HPC). The threads of the GPU execute the same code, called the kernel [SK10]. Hence,
parallelizingH (respectivelyHT ) on the GPU consists in transposing the projection (respectively the backprojection)
algorithm into kernels. As a result, the projections of thousands of rays (respectively the backprojections in thousands
of voxels) can be computed at the same time, leading to a significant acceleration of MBIR methods, compared to a
CPU implementation [LFDMY17].

When parallelizing a pair of projector and backprojector (P/BP) on the GPU, it is necessary to make sure that
the final result of the projection of one ray is written by only one thread. Similarly, the backprojection in one voxel
has to be written by only one thread. If this is not the case, this generates writing conflicts between the threads,
so the accumulation of threads’ contributions gives a completely random result [PSL14]. In order to avoid this,
the accumulation can be done using atomic operations [SK10, Chapter 9], so we are sure that only one thread at
a time brings its contribution to the accumulation. Nevertheless, this slows down the projection or backprojection
computation.

Efficient models for projection and backprojection operations are a key aspect to ensure speed and accuracy of
MBIR methods. Unfortunately, an efficient projector H does not necessarily implies that the adjoint backprojector
HT is also efficient. For instance, Siddon’s projector, presented in appendix B.1, is fast [Sid85, JSDS�98, HLY99],
but its adjoint backprojector not, even parallelized on the GPU [PSL14, NL15]. Similarly, while the ray-driven
(RD) projector, presented in section 3.1.1, is very suited to high parallelization, this is not the case for its adjoint
backprojector. The same problem occurs for the voxel-driven (VD) backprojector detailed in section 3.1.2, of which
the adjoint projector is difficult to accelerate on the GPU [DYXW17].

Due to the difficulty to use adjoint projector and backprojector which are both fast, accurate and easily paralleliz-
able on GPUs, it has become very common in the CT community to work with P/BP pairs which are unmatched, i.e.
pairs in which the used backprojector is not the adjoint of the used projector [ZG00]. For instance, in section 3.1,
we present the unmatched ray-driven/voxel-driven (RD/VD) pair, in which the projector is ray-driven (RD) and the
backprojector is voxel-driven (VD). Due to the computational efficiency of both the projector and the backprojector,
this pair implemented on the GPU enables to perform very fast projection and backprojection operations.

Using an unmatched pair can be valid for very simple reconstruction algorithms, such as gradient descent to solve
unregularized least-squares [ZG00]. Nevertheless, it remains a mathematical approximation, since the convergence
proofs of reconstruction algorithms are derived considering a matched pair of projector and backprojector. As a
consequence, an unmatched P/BP pair may lead to suboptimal reconstruction and even hinder the convergence of
complex algorithms such as ADMM or PWLS [ASM16]. In order to ensure the convergence of MBIR methods,
computationally-efficient matched P/BP pairs have been proposed [DMB04, LFB10]. In section 3.2, we focus on
the matched Separable Footprint (SF) pair [LFB10] and present a new GPU implementation. The RD/VD and the
SF pairs are validated and compared in section 3.3, as single modules and in a full iterative reconstruction method
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which is PDFW presented in section 2.6. Perspectives for the new GPU implementation of the SF pair are presented
in section 3.4.

3.1 Unmatched ray-driven/voxel-driven (RD/VD) pair

3.1.1 Ray-driven projector

For each projection angle φ and each cell ♣ue, veq of the detector, the ray-driven (RD) projector traces a ray connecting
the source and the center of the cell, as illustrated in 2D in figure 3.1. In the field-of-view, this ray is regularly
sampled with step δ, which is the side length of the voxels. At each sample point ♣xk, yk, zkq, the value f♣xk, yk, zkq
is calculated by trilinear interpolation. According to the discretization of the integral in Beer-Lambert law

g♣ue, ve, φq ✏
➺
L♣ue,ve,φq

f♣rqdl, (3.1)

the result of this interpolation is added to the projection, multiplied by the sampling stepsize δ :

g♣ue, ve, φq� ✏ δ ✂ r♣1✁ ǫxq♣1✁ ǫyq♣1✁ ǫzqf♣xe, ye, zeq
� ǫx♣1✁ ǫyq♣1✁ ǫzqf♣xe � 1, ye, zeq
� ♣1✁ ǫxqǫy♣1✁ ǫzqf♣xe, ye � 1, zeq
� ǫxǫy♣1✁ ǫzqf♣xe � 1, ye � 1, zeq
� ♣1✁ ǫxq♣1✁ ǫyqǫzf♣xe, ye, ze � 1q
� ǫx♣1✁ ǫyqǫzf♣xe � 1, ye, ze � 1q
� ♣1✁ ǫxqǫyǫzf♣xe, ye � 1, ze � 1q
� ǫxǫyǫzf♣xe � 1, ye � 1, ze � 1qs .

(3.2)

In the trilinear interpolation, ♣ǫx, ǫy, ǫzq P r0, 1s3 are the normalized distances in x, y and z-directions with the nearest
neighbour ♣xe, ye, zeq of the sample point, as shown in figure 3.1. The RD projector is naturally highly-parallelizable
on the GPU, since one ray can simply be handled by one thread. In order to accelerate the computations, the volume
is copied on the texture memory of the GPU [SK10, Chapter 7]. If the volume was simply stored in the global
memory of the GPU, the values of spatially neighbouring voxels would be far from each other : while f♣xe, ye, zeq
and f♣xe � 1, ye, zeq would be placed at neighbouring locations, f♣xe, ye, zeq and f♣xe, ye � 1, zeq would be distant
by Nx, and f♣xe, ye, zeq and f♣xe, ye, ze� 1q by Nx✂Ny. Since Nx and Ny are very large, performing interpolation
(3.2) would result in a high memory traffic in order to read the values of each voxel. On the contrary, the texture
memory stores the volume in a cache such that the accesses to spatially neighbouring voxels are made faster [NVI18,
Section 3.2.11.1]. Since the memory accesses to perform interpolation (3.2) are only spatially local, using the texture
memory results in a reduced memory traffic and the interpolation is done faster. The texture memory has another
advantage, which is that trilinear interpolation (3.2) can be performed by the hardware of the GPU [NVI18, Section
3.2.11.1] : this results in a further acceleration of the calculations, and makes the RD projector very fast.

On the contrary, the adjoint RD backprojector is difficult to parallelize since one thread has to handle one voxel
in order to avoid writing conflicts. In this case, one thread computing the backprojection in one voxel has to find the
rays for which the voxel has contributed to the projections. Then, each of these rays has to be projected to compute
the exact contribution of the voxel. Hence, in the RD backprojector, many threads have to compute the projections
of the same rays, which is very redundant and slow. Therefore, the RD backprojector is very unefficient on the GPU.
In addition, due to the interpolation step, artifacts are visible in the RD backprojection [DMB02, DMB04]. For these
reasons, an unmatched backprojector can be preferred in order to accelerate the calculations [ZG00]. In this thesis,
we choose the voxel-driven backprojector described in section 3.1.2.

3.1.2 Voxel-driven backprojector

For each voxel ♣xe, ye, zeq, the voxel-driven (VD) backprojector traces a ray connecting the source and the center of
the voxel. The projection of this ray is located at a position ♣u♣φ;xe, ye, zeq, v♣φ;xe, ye, zeqq on the detector, as shown
in figure 3.2 in 2D. The value of the projection at this point is calculated by a bilinear interpolation. The projections
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Figure 3.1: Ray-driven projector

Figure 3.2: Voxel-driven backprojector
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are copied on the texture memory of the GPU for local memory accesses. Similarly to the RD projector, the VD
backprojector takes advantage of the texture memory since the bilinear interpolation is done by the hardware. The
result of the interpolation is accumulated in the backprojection. This operation is repeated for each projection angle
φ. The voxel-driven backprojection reads

b♣xe, ye, zeq ✏
➳
φ

ginterp♣u♣φ;xe, ye, zeq, v♣φ;xe, ye, zeq, φq (3.3)

where
ginterp♣u♣φ;xe, ye, zeq, v♣φ;xe, ye, zeq, φq ✏ ♣1✁ ǫuq♣1✁ ǫvqg♣ue, ve, φq

�ǫu♣1✁ ǫvqg♣ue � 1, ve, φq
�♣1✁ ǫuqǫvg♣ue, ve � 1, φq
�ǫuǫvg♣ue � 1, ve � 1, φq.

(3.4)

In the bilinear interpolation, ♣ǫu, ǫvq P r0, 1s2 are the normalized distances in u and v-directions with the nearest
neighbour ♣ue, veq of the projection point ♣u♣φ;xe, ye, zeq, v♣φ;xe, ye, zeqq, as shown in figure 3.2. Like the RD
projector, the VD backprojector is easily highly parallelizable and very fast, while this is not the case for its adjoint
VD projector [DYXW17]. Furthermore, the adjoint VD projector suffers from the same interpolation artifacts as the
RD backprojector [DMB04]. Due to these considerations in terms of image quality and computational speed, in this
work, we use the VD backprojector with the unmatched RD projector described in section 3.1.1.

3.2 Matched Separable Footprint (SF) pair

The Separable Footprint (SF) pair [LFB10] approximates the footprint of a voxel onto the detector as a separable
function with respect to the axial and the transaxial directions. This approximation leads to factorizations of the
computations in the projection and the backprojection formulae, and then to reasonable computation times for both
the projector and the backprojector, even on the CPU. Several separable footprint approximations have been proposed
[LFB10, Lon11].

In the Separable Footprint Trapezoidal-Rectangular (SFTR) pair, the footprint of a voxel is modeled as trape-
zoidal in the transaxial direction, and rectangular in the axial direction [LFB10]. The relevance of this choice is well
illustrated in figures 3.3 and 3.4. It has been shown that the matched distance-driven (DD) pair [DMB02, DMB04]
is a kind of Separable Footprint Rectangular-Rectangular (SFRR) pair, in which the approximating function in the
transaxial direction is rectangular as in the axial direction [Lon11, chap. 3.2.5]. Due to the rectangular approximation
in the transaxial direction, the DD pair is less accurate than the SFTR pair, in particular for projection angles near 45✆.
Another SF pair, the Separable Footprint Trapezoidal-Trapezoidal (SFTT) pair, has also been studied in [LFB10].
This pair is theoretically more precise than the SFTR pair since it models the footprint as trapezoidal both in the
transaxial and axial directions. Nevertheless, it has been shown that this further approximation implies much more
computations than the SFTR pair, without providing significant gain in the reconstruction precision [LFB10]. Table
3.1 shows a comparison of the different SF pairs.

SF P/BP pair Approximation
in the transaxial
direction

Approximation
in the axial
direction

Accuracy Computation speed

SFTR Trapezoidal Rectangular
++ +

SFTT Trapezoidal Trapezoidal +++ –
SFRR Rectangular Rectangular + ++
DD Rectangular Rectangular + ++

Table 3.1: Comparison of SF models in terms of computation speed and accuracy

Despite their advantages, the matched DD and SF pairs require more computations than unmatched P/BP pairs
such as the RD/VD pair. In addition, they are more complicated to parallelize on the GPU [WF11, XML�17,
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Figure 3.3: Trapezoidal shape of the transaxial footprint of a voxel at different projection angles

Figure 3.4: Rectangular shape of the axial footprint of a voxel
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LFDMY17]. As a consequence, their use is still not widespread in the CT community. Nevertheless, they offer
perspectives to increase the accuracy of MBIR methods, as to ensure their convergence. In table 3.1, the SFTR pair
appears as the best tradeoff between accuracy and computation speed. For this reason, in this work, motivated by us-
ing a matched P/BP pair at SAFRAN (for MBIR methods, but perhaps for other applications such as registration), we
focus on the SFTR pair. For the sake of completeness and in order to detail the formulae adapted to our geometrical
model, the SFTR pair originally proposed in [LFB10] and its CPU implementation are fully presented in appendix
B.2. In the following, since we do not discuss the other SF models anymore, we abbreviate the name of the SFTR pair
and simply call it the SF pair.

For this pair, two GPU implementations have been proposed [WF11, XML�17], the one of [XML�17] having
been shown faster than the one of [WF11]. Both these implementations have a CPU-loop on the projection angles,
which computes many intermediate volumes and implies many memory transfers between CPU and GPU. These
memory transfers are known to be the main bottleneck for GPU computing. Moreover, when working on a multi-
GPU implementation of the reconstruction algorithm, the latency due to the high amount of transfers between GPUs
can be hidden by overlapping copies with computations [MWF18]. With the existing GPU implementations of the
SF pair [WF11, XML�17], the CPU-loop hinders to perform these overlaps efficiently, since the copies are only
achievable at the last iteration of the loop [MWF18]. For all these reasons, we proposed in [CGMDP18] a new GPU
implementation of the SF pair where no outer loop is present. This implementation is reviewed in sections 3.2.1
and 3.2.2. The proposed GPU SF backprojector runs only one kernel which is voxel-driven, i.e., one thread updates
one voxel, while the proposed GPU SF projector is ray-driven. In [CGMDP18], the GPU SF projector runs two
independent kernels, each kernel handling rays depending on whether the source is closer to x-axis or y-axis. Dealing
with several kernels is not an easy task for GPU computation optimizations. In section 3.2.3, inspired by the work of
[DH17] for Joseph’s projector [Jos82], we merge the two kernels of the GPU SF projector into only one kernel.

3.2.1 SF projector on the GPU

The SF projection of volume f on cell ♣ue, veq at projection angle φ reads

g♣ue, ve, φq ✏ lθc♣ue, veq
➳
xe,ye

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeq

➳
ze

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq (3.5)

where Ftrans♣ue, φ;xe, yeq is the transaxial footprint and Fax♣ve, φ;xe, ye, zeq the axial footprint of voxel ♣xe, ye, zeq
on cell ♣ue, veq with projection angle φ [LFB10]. Amplitude functions lθc♣ue, veq and lψv

♣φ;xe, yeq are given by the
A2 method described in appendix B.2 [LFB10]. The formulae for the transaxial and the axial footprints, adapted to
our geometrical model, are also given in appendix B.2.

In order to avoid writing conflicts between threads, our GPU implementation of the SF projector is ray-driven, i.e.
one thread computes the SF projection of one ray defined by ♣ue, ve, φq. We follow each ray according to its primary
direction, which is x-axis if the source is closer to x-axis, and y-axis otherwise [XML�17]. Each thread advances
along this primary direction, as illustrated in figure 3.5, and computes the voxels for which the transaxial and the
axial footprints are both non-zero. As for the RD projector, the volume is copied on texture memory to ensure local
memory accesses. Furthermore, variables related to the geometry are copied in constant memory.

Considering rays with primary direction x or y leads to different calculations we need to do separately. For this
reason, in [CGMDP18], our GPU implementation of the SF projector runs two kernels. First kernel proj_x_ker
handles rays with primary direction x, while second kernel proj_y_ker handles rays with primary direction y. Since
they compute disjoint sets of projections, these two kernels are independent. They can be run successively or on two
different GPUs. Nevertheless, having several kernels does not facilitate the developments in order to accelerate the
computations by using multi-streaming or multi-GPU optimizations [SK10, Chapters 10 and 11]. In section 3.2.3, we
go back to this problem and show how to merge these kernels.

For a ray with primary direction x, kernel proj_x_ker performs its main loop over xe, 0 ↕ xe ➔ Nx. For each
xe, the intersecting location ♣xe, ye♣xeqq with the ray is computed similarly to Joseph’s method :

ye♣xeq ✏ 1

δ

✂
yS♣φq � y♣ue, φq ✁ yS♣φq

x♣ue, φq ✁ xS♣φq♣xeδ ✁ xS♣φqq
✡
. (3.6)
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(a)

(b)

Figure 3.5: Voxels considered by the GPU SF projector depending on whether the main direction is x (a) or y (b)
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For current xe, the thread looks the neighbouring pixels of ♣xe, ye♣xeqq in the middle plane, i.e. ye such that

yemin
↕ ye ↕ yemax ,

✧
yemin

✏ tye♣xeqs✁ 1

yemax ✏ tye♣xeqs� 1
, (3.7)

where tye♣xeqs is the nearest integer to ye♣xeq. The bounds for ye, yemin
and yemax , are different from those proposed

in [CGMDP18], which were over-estimated [Jos82, XML�17]. Hence, considering each ye between yemin
and yemax

leads to a small loop of size 3 in kernel proj_x_ker. For rays with primary direction y, the calculations are the same,
except that the roles of x and y are reversed : the main loop is over ye, 0 ↕ xe ➔ Ny, and we have a sub-loop over
xe, xemin

↕ xe ↕ xemax . Here, we see the interest of dealing with rays with different primary directions in different
kernels, in order to avoid divergence between threads.

For each considered ♣xe, yeq (with ye or xe varying in a very little set depending on the executed kernel), the
scaled transaxial footprint

F ✶
trans♣ue, φ;xe, yeq ✏ lψv

♣φ;xe, yeqFtrans♣ue, φ;xe, yeq (3.8)

is computed. Next, each thread finds the indices ze for which Fax♣ve, φ;xe, ye, zeq ✘ 0. Thanks to the rectangular
shape of the axial footprint, these indices are very simple to compute :

zemin
↕ ze ↕ zemax (3.9)

where ★
zemin

✏ tzLre ✁ 0.5� xφeδv
D

♣ve ✁ vCde
✁ 0.5q✉

zemax ✏ rzLre � 0.5� xφeδv
D

♣ve ✁ vCde
� 0.5qs , (3.10)

and

xφe ✏
R

δ
� ♣xe ✁ xLreq cosφ� ♣ye ✁ yLreq sinφ. (3.11)

Knowing the bounds for ze, each thread runs a loop over ze to compute

F ✶
ax♣ve, φ;xe, yeq ✏

zemax➳
ze✏zemin

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq. (3.12)

This loop is very small and is typically size 3. Iteratively, through the double loop over xe and ye, the threads calculate
the sum

g✶♣ue, ve, φq ✏
➳
xe

yemax➳
ye✏yemin

F ✶
trans♣ue, φ;xe, yeqF ✶

ax♣ve, φ;xe, yeq (3.13)

in kernel proj_x_ker, and

g✶♣ue, ve, φq ✏
➳
ye

xemax➳
xe✏xemin

F ✶
trans♣ue, φ;xe, yeqF ✶

ax♣ve, φ;xe, yeq (3.14)

in kernel proj_y_ker. Finally, the thread handling ray ♣ue, ve, φq computes the final value for the projection

g♣ue, ve, φq ✏ lθc♣ue, veqg✶♣ue, ve, φq, (3.15)

which is stored from GPU to CPU. The pseudo code for kernels proj_x_ker and proj_y_ker is given in algorithms
8 and 9.
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Algorithm 8 Kernel proj_x_ker for SF projection on GPU

1: Handle ray ♣ue, ve, φq
2: Initialize the projection : p0 :✏ 0

3: Compute : xSP ✏ x♣ue, φq ✁ xS♣φq and ySP ✏ y♣ue, φq ✁ yS♣φq
4: if ⑤xSP ⑤ ➙ ⑤ySP ⑤ then

5: for xe ✏ 0, . . . , ♣Nx ✁ 1q do

6: Compute ye♣xeq by (3.6)
7: Compute yemin

and yemax by (3.7)
8: for ye ✏ yemin

, . . . , yemax do

9: Compute and sort the projections of ♣xe ✟ 0.5, ye ✟ 0.5q : τ0 ↕ τ1 ↕ τ2 ↕ τ3
10: Compute transaxial footprint Ftrans
11: Compute zemin

and zemax by (3.10)
12: Initialize the sum of the axial footprints : F ✶

ax :✏ 0

13: for ze ✏ zemin
, . . . , zemax do

14: Compute axial footprint Fax
15: if ♣xe ✁ xLreq2 � ♣ye ✁ yLreq2 ↕

�
Nx

2

✟2
then

16: Update : F ✶
ax� ✏ Fax ✂ f♣xe, ye, zeq

17: end if

18: end for

19: Compute amplitude lψv
(A2 method)

20: Update the projection : p0 ✏ lψv
✂ Ftrans ✂ F ✶

ax

21: end for

22: end for

23: end if

24: Compute amplitude lθc (A2 method)
25: Store the projection : g♣ue, ve, φq :✏ lθc ✂ p0

3.2.2 SF backprojector on the GPU

Since the SF projector and backprojector are matched, the SF backprojection for a voxel ♣xe, ye, zeq is

b♣xe, ye, zeq ✏
➳
φ

➳
ue

Ftrans♣ue, φ;xe, yeqlψv
♣φ;xe, yeq

➳
ve

Fax♣ve, φ;xe, ye, zeqlθc♣ue, veqg♣ue, ve, φq. (3.16)

To prevent writing conflicts between threads, we compute b by running a kernel back_ker which is voxel-driven :
one thread calculates the backprojection in one voxel ♣xe, ye, zeq. Kernel back_ker has its main loop over projection
angles φ. For each projection angle, each thread finds cells ♣ue, veq overlapped by the transaxial and axial footprints
of voxel ♣xe, ye, zeq. The ue-coordinates of these cells are given by ordering the projections of the four corners of
pixel ♣xe, yeq in the middle plane [LFB10]. These projections τ0 ↕ τ1 ↕ τ2 ↕ τ3 are computed as explained in
appendix B.2. Hence, the ue-coordinates for which Ftrans♣ue, φ;xe, yeq ✘ 0 are

uemin
↕ ue ↕ uemax ,

✧
uemin

✏ tuCde
✁ 0.5� τ0

δu
✉

uemax ✏ ruCde
� 0.5� τ3

δu
s
. (3.17)

The ve-coordinates for which Fax♣ve, φ;xe, ye, zeq ✘ 0 are

vemin
↕ ve ↕ vemax ,

✧
vemin

✏ tvCde
✁ 0.5� χ0

δv
✉

vemax ✏ rvCde
� 0.5� χ1

δv
s

(3.18)

where χ0 and χ1 are the projections of ♣xe, ye, ze✁0.5q and ♣xe, ye, ze�0.5q respectively [LFB10], and are calculated
as in appendix B.2. Knowing the bounds for ue and ve, the threads run a small double-loop over ue and ve. The size
of this double loop is approximately the same for each voxel [WF11]. Projections g are copied on texture memory.
Because of the separation of the footprint of the voxel with respect to the transaxial and axial directions, the double
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Algorithm 9 Kernel proj_y_ker for SF projection on GPU

1: Handle ray ♣ue, ve, φq
2: Initialize the projection : p0 :✏ 0

3: Compute : xSP ✏ x♣ue, φq ✁ xS♣φq and ySP ✏ y♣ue, φq ✁ yS♣φq
4: if ⑤xSP ⑤ ➔ ⑤ySP ⑤ then

5: for ye ✏ 0, . . . , ♣Ny ✁ 1q do

6: Compute xe♣yeq similarly to (3.6)
7: Compute xemin

and xemax similarly to (3.7)
8: for xe ✏ xemin

, . . . , xemax do

9: Compute and sort the projections of ♣xe ✟ 0.5, ye ✟ 0.5q : τ0 ↕ τ1 ↕ τ2 ↕ τ3
10: Compute transaxial footprint Ftrans
11: Compute zemin

and zemax by (3.10)
12: Initialize the sum of the axial footprints : F ✶

ax :✏ 0

13: for ze ✏ zemin
, . . . , zemax do

14: Compute axial footprint Fax
15: if ♣xe ✁ xLreq2 � ♣ye ✁ yLreq2 ↕

�
Nx

2

✟2
then

16: Update : F ✶
ax� ✏ Fax ✂ f♣xe, ye, zeq

17: end if

18: end for

19: Compute amplitude lψv
(A2 method)

20: Update the projection : p0 ✏ lψv
✂ Ftrans ✂ F ✶

ax

21: end for

22: end for

23: end if

24: Compute amplitude lθc (A2 method)
25: Store the projection : g♣ue, ve, φq :✏ lθc ✂ p0

loop can be done over ue then ve or over ve then ue indifferently. Here, the main loop is over ue : for each ue between
uemin

and uemax , a loop is run over ve, vemin
↕ ve ↕ vemax . Like for the loop over ze in SF projector, this loop is

typically size 3 and calculates

bax♣ue, φ;xe, ye, zeq ✏
vemax➳

ve✏vemin

Fax♣ve, φ;xe, ye, zeqlθc♣ue, veqg♣ue, ve, φq. (3.19)

Hence, the double loop performs the summation

bφ♣φ;xe, ye, zeq ✏
uemax➳

ue✏uemin

Ftrans♣ue, φ;xe, yeqlψv
♣φ;xe, yeqbax♣ue, φ;xe, ye, zeq. (3.20)

Then, the backprojection can be updated

b♣xe, ye, zeq� ✏ bφ♣φ;xe, ye, zeq (3.21)

until all the projection angles have been considered. The pseudo code for kernel back_ker is given in algorithm 10.

3.2.3 Merging the two kernels of the GPU SF projector

In section 3.2.1, the GPU SF projector has two independent kernels which are here run successively. In this section,
inspired by the generalized Joseph’s projector [DH17], we merge kernels proj_x_ker and proj_y_ker into only one
kernel, so GPU computing optimizations are easier to implement. Like proj_x_ker and proj_y_ker, the generalized
kernel for the SF projector, called proj_ker, is ray-driven. Since it does not distinguish rays with primary directions
x or y, kernel proj_ker is branchless.
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Algorithm 10 Kernel back_ker for SF backprojection on GPU

1: Handle voxel ♣xe, ye, zeq
2: Initialize the backprojection : b0 :✏ 0

3: if ♣xe ✁ xLreq2 � ♣ye ✁ yLreq2 ↕
�
Nx

2

✟2
then

4: for φ, projection angle, do

5: Compute and sort the projections of ♣xe ✟ 0.5, ye ✟ 0.5q : τ0 ↕ τ1 ↕ τ2 ↕ τ3
6: Compute amplitude lψv

(A2 method)
7: Compute uemin

and uemax by (3.17)
8: Compute vemin

and vemax by (3.18)
9: for ue ✏ uemin

, . . . , uemax do

10: Initialize the sum of the axial footprints : bax :✏ 0

11: for ve ✏ vemin
, . . . , vemax do

12: Compute amplitude lθc (A2 method)
13: Compute axial footprint Fax and update : bax� ✏ Fax ✂ lθc ✂ g♣ue, ve, φq
14: end for

15: Multiply by the amplitude : bax :✏ bax ✂ lψv
(A2 method)

16: Compute transaxial footprint Ftrans
17: Update : b0� ✏ Ftrans ✂ bax
18: end for

19: end for

20: end if

21: Store the backprojection : b♣xe, ye, zeq :✏ b0

Like [DH17], the generalized SF projector computes the primary direction

d ✏ arg max
ιPt‘x‘,‘y‘✉

t|ι♣ue, φq ✁ ιS♣φq|✉. (3.22)

We define the arithmetic sequences ✧
xe♣ιeq ✏ θ̃x � r̃xιe
ye♣ιeq ✏ θ̃y � r̃yιe

(3.23)

defined for all ιe, 0 ↕ ιe ➔ Nι, where

Nι ✏
✧
Nx if d ✏ ‘x‘

Ny if d ✏ ‘y‘
. (3.24)

For all ιe, 0 ↕ ιe ➔ Nι, we have ✧
xe♣ιe � 1q ✏ xe♣ιeq � r̃x
ye♣ιe � 1q ✏ ye♣ιeq � r̃y

. (3.25)

In (3.23), the common differences and the offsets for sequences xe♣ιeq and ye♣ιeq are defined by✩✬✫
✬✪

r̃x ✏ x♣ue,φq✁xS♣φq
d♣ue,φq✁dS♣φq

r̃y ✏ y♣ue,φq✁yS♣φq
d♣ue,φq✁dS♣φq

(3.26)

and ✩✫
✪

θ̃x ✏ 1
δ
♣xS♣φq ✁ r̃xdS♣φqq

θ̃y ✏ 1
δ
♣yS♣φq ✁ r̃ydS♣φqq

. (3.27)

The key to understand how these definitions enable to merge the two kernels is to see what happens when the primary
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direction is x or y. If x is the primary direction, d ✏ ‘x‘, then✩✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✪

r̃x ✏ x♣ue,φq✁xS♣φq
x♣ue,φq✁xS♣φq

✏ 1

r̃y ✏ y♣ue,φq✁yS♣φq
x♣ue,φq✁xS♣φq

θ̃x ✏ 1
δ
♣xS♣φq ✁ r̃xxS♣φqq ✏ 1

δ
♣xS♣φq ✁ xS♣φqq ✏ 0

θ̃y ✏ 1
δ
♣yS♣φq ✁ r̃yxS♣φqq ✏ 1

δ

✁
yS♣φq ✁ y♣ue,φq✁yS♣φq

x♣ue,φq✁xS♣φq
xS♣φq

✠
. (3.28)

Consequently,
xe♣ιeq ✏ θ̃x � r̃xιe ✏ ιe (3.29)

and

ye♣ιeq ✏ θ̃y � r̃yιe ✏ 1

δ

✂
yS♣φq ✁ y♣ue, φq ✁ yS♣φq

x♣ue, φq ✁ xS♣φqxS♣φq
✡
� y♣ue, φq ✁ yS♣φq
x♣ue, φq ✁ xS♣φq ιe

✏ 1

δ

✂
yS♣φq � y♣ue, φq ✁ yS♣φq

x♣ue, φq ✁ xS♣φq♣ξeδ ✁ xS♣φqq
✡

✏ ye♣xeq (3.30)

according to (3.6) and because xe♣ιeq ✏ ιe if x is the primary direction. Similarly, ye♣ιeq ✏ ιe and xe♣ιeq ✏ xe♣yeq
if y is the primary direction. Hence, for all ιe, 0 ↕ ιe ➔ Nι, pixel ♣xe♣ιeq, ye♣ιeqq corresponds to the intersecting
location with the ray, whatever the primary direction is.

In order to fully merge the two kernels of the SF projector, we now have to find a unified expression for the visited
pixels ♣xe, yeq in the middle plane, independent from primary direction d. If the primary direction is x, according to
the definitions of yemin

and yemax in (3.7), the set of the considered pixels is

X ♣xeq ✏ t♣xe, tye♣xeqs✁ 1q,
♣xe, tye♣xeqsq,
♣xe, tye♣xeqs� 1q✉ (3.31)

and, if y is the primary direction, this set is

Y♣yeq ✏ t♣txe♣yeqs✁ 1, yeq,
♣txe♣yeqs, yeq,
♣txe♣yeqs� 1, yeq✉ . (3.32)

According to (3.26) and to definition (3.22) of primary direction d, one shall notice that✧
r̃x ✏ 1

|r̃y| ➔ 1
if x is the primary direction, (3.33)

and reversely if y is the primary direction. Now, we consider the set

Ξ♣ιeq ✏ t♣txe♣ιeqs✁ r1✁ |r̃x|s, tye♣ιeqs✁ r1✁ |r̃y|sq,
♣txe♣ιeqs, tye♣ιeqsq,
♣txe♣ιeqs� r1✁ |r̃x|s, tye♣ιeqs� r1✁ |r̃y|sq✉ . (3.34)

According to (3.29), (3.30) and (3.33), we see that✧
Ξ♣ιeq ✏ X ♣xeq if x is the primary direction
Ξ♣ιeq ✏ Y♣yeq if y is the primary direction

. (3.35)
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Hence, Ξ♣ιeq is an unified expression of X ♣xeq and Y♣yeq. In the generalized SF projector, the projection is computed
by

g♣ue, ve, φq ✏ lθc♣ue, veq
➳
ιe

➳
♣x✶

e,y
✶
eqPΞ♣ιeq

F ✶
trans♣ue, φ;x✶

e, y
✶
eqF ✶

ax♣ve, φ;x✶
e, y

✶
eq, (3.36)

independently from the primary direction. The main loop of unified kernel proj_ker is over ιe, 0 ↕ ιe ➔ Nι. Indices
xe♣ιeq and ye♣ιeq are initialized to θ̃x and θ̃y respectively, and incremented by r̃x and r̃y at the end of each iteration of
the loop. For each ιe, according to (3.36), the transaxial and axial footprints are computed for each ♣x✶

e, y
✶
eq in Ξ♣ιeq

in an unrolled loop. The pseudo code for unified kernel proj_ker is given in algorithm 11. Since the scaled transaxial
footprint (3.8) is the same for cells in a same column of the detector, it is only computed by threads for which ve ✏ 0.
After the calculation, the scaled transaxial footprint is stored in shared memory, so the other threads can use it. This
optimization can also be made for kernels proj_x_ker and proj_y_ker in algorithms 8 and 9.

Algorithm 11 Unified kernel proj_ker for SF projection on GPU

1: Handle ray ♣ue, ve, φq
2: Create table : F ✶

trans♣ueq in shared memory
3: Compute : xSP ✏ x♣ue, φq ✁ xS♣φq and ySP ✏ y♣ue, φq ✁ yS♣φq
4: if ⑤xSP ⑤ ➙ ⑤ySP ⑤ then

5: Set : r̃x ✏ 1, r̃y ✏ ySP

xSP
, θ̃x ✏ 0, θ̃y ✏ 1

δ
♣yS♣φq ✁ r̃yxS♣φqq and Nι ✏ Nx

6: else

7: Set : r̃x ✏ xSP

ySP
, r̃y ✏ 1, θ̃x ✏ 1

δ
♣xS♣φq ✁ r̃xyS♣φqq, θ̃y ✏ 0 and Nι ✏ Ny

8: end if

9: Initialize : p0 :✏ 0, xe ✏ θ̃x and ye ✏ θ̃y
10: for ι ✏ 0, . . . , ♣Nι ✁ 1q do

11: for each pixel of the middle plane ♣x✶
e, y

✶
eq P Ξ♣ιq (defined by (3.34)), do

12: Compute zemin
and zemax by (3.10)

13: Initialize the sum of the axial footprints : F ✶
ax :✏ 0

14: for z✶e ✏ zemin
, . . . , zemax do

15: Compute axial footprint Fax
16: if ♣x✶

e ✁ xLreq2 � ♣y✶e ✁ yLreq2 ↕
�
Nx

2

✟2
then

17: Update : F ✶
ax� ✏ Fax ✂ f♣x✶

e, y
✶
e, z

✶
eq

18: end if

19: end for

20: if ve ✏ 0 then

21: Compute and sort the projections of ♣x✶
e ✟ 0.5, y✶e ✟ 0.5q : τ0 ↕ τ1 ↕ τ2 ↕ τ3

22: Compute transaxial footprint Ftrans
23: Compute amplitude lψv

(A2 method)
24: Store in shared memory : F ✶

trans♣ueq ✏ lψv
✂ Ftrans

25: end if

26: Update the projection : p0 ✏ F ✶
trans♣ueq ✂ F ✶

ax

27: end for

28: Update : xe� ✏ r̃x and ye� ✏ r̃y
29: end for

30: Compute amplitude lθc (A2 method)
31: Store the projection : g♣ue, ve, φq :✏ lθc ✂ p0

Before dealing with the validation, we shall warn the reader that when r̃x and r̃y are both equal to 1 (i.e. when the
azimuthal angle of the ray is 45or90os), all ♣x✶

e, y
✶
eq P Ξ♣ιeq correspond to the same pixel, which is ♣txe♣ιeqs, tye♣ιeqsq.

In order to avoid to compute the same footprint three times, we add the condition that the sum of the axial footprints
F ✶
ax♣ve, φ;xe, yeq is calculated for pixels

♣txe♣ιeqs✁ r1✁ |r̃x|s, tye♣ιeqs✁ r1✁ |r̃y|sq and ♣txe♣ιeqs� r1✁ |r̃x|s, tye♣ιeqs� r1✁ |r̃y|sq
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Figure 3.6: Modified Shepp-Logan phantom (middle slice)

only if |r̃x| ➔ 1 or |r̃y| ➔ 1. Otherwise, the sum of the axial footprints is set to zero for these two pixels. This is
a precaution in order to be sure to cover all the possible cases. The if-statement taking this condition into acount is
added just before accumulating in F ✶

ax in line 16 of algorithm 11, so the possible divergence caused by this condition
is small. Furthermore, this divergence does not often happen in practice, since, due to numerical approximations,
having r̃x and r̃y both equal to 1 is very unlikely. For this reason, and for the sake of simplicity, the condition does
not appear explicitly in the pseudo code of the kernel in algorithm 11.

3.3 Validation

We now validate the RD/VD and the SF pairs on the GPU. For this purpose, we use modified Shepp-Logan phantom
[SL74], shown in figure 3.6. The field-of-view is sampled into 2563 voxels and is size 6.05✂ 6.05✂ 5.86 mm3. The
source-to-detector distance is D ✏ 230 mm, and the source-to-object distance is R ✏ 98 mm. We use 64 projections
of the volume uniformly distributed over r0, 2πs. The projections are sampled into 2562 pixels. For our tests, we use
one GPU which is Tesla P100-PCIE-12GB.

3.3.1 Projector and backprojector as single modules

First, we show the results of our proposed GPU implementation of the SF pair. We compare the results when the SF
projector has two kernels or only one unified kernel. Like [XML�17], we show in table 3.2 the normalized root mean
square error (NRMSE) with respect to our CPU version, presented in appendix B.2 [LFB10] :

NRMSE ✏

❣❢❢❡ 1

Ny

Ny➳
i✏1

✄
y
♣GPUq
i ✁ y

♣CPUq
i

y
♣CPUq
i

☛2

, (3.37)

where yi denotes the projection or the backprojection for ray or voxel i respectively. As we see in table 3.2, the
NRMSE is very low for both our GPU SF projector and backprojector, so our implementation implies no deviation
with respect to our CPU version. This is visible in figures 3.7, 3.8 and 3.9, where the obtained images look the same.

In particular, the NRMSE is the lowest when using the SF projector with one kernel. This validates our merging
of the two kernels of the GPU SF projector. In addition, we see in table 3.2 that the use of shared memory in kernel
proj_ker in algorithm 11 accelerates the GPU SF projector with one kernel.
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Operator Computation time NRMSE with respect to CPU
SF projector with two kernels 561 ms 0.023 %
SF projector with one kernel (without using shared memory) 563 ms 0.018 %

SF projector with one kernel (using shared memory) 373 ms 0.018 %

SF backprojector (after SF projection with two kernels) 406 ms 0.006 %
SF backprojector (after SF projection with one kernel) 406 ms 0.005 %

Table 3.2: Matched GPU SF projector and backprojector as single modules

Operator Computation time NRMSE with respect to CPU SF pair
RD projector 41 ms 0.043 %
VD backprojector (after RD projection) 21 ms 0.083 %

Table 3.3: Unmatched GPU RD projector and VD backprojector as single modules

The images obtained by the unmatched RD/VD pair in figure 3.10 are similar to the ones obtained by the SF pair.
In table 3.3, the NRMSE with respect to the CPU version of SF pair is very low. As expected, the computation times
for the RD projector and the VD backprojector are much smaller than the ones for the SF pair.

P/BP pair Coupling degree
Unmatched RD/VD pair 1.0040
Matched SF pair on CPU 1.0000

Matched SF pair on GPU, with the projector having two kernels 1.0001
Matched SF pair on GPU, with the projector having one kernel 1.0001

Table 3.4: Coupling degree for the GPU RD/VD pair, the CPU SF pair and the GPU SF pairs

In order to confirm that our GPU implementation of the SF pair is matched, we compute the coupling degree,
defined by [ASM16]

c ✏ ①g,Hf②
①Bg,f② (3.38)

for random projections g and random volume f . In (3.38),H denotes the used projector andB the used backprojector.
For an unmatched pair, B ✘ HT , so c ✘ 1. On the contrary, for a matched pair, B ✏ HT , so c ✏ 1. In practice,
c is never perfectly equal to 1 because of the approximation errors due to the finite precision of the calculations done
by the computer. Nevertheless, measuring the difference between the coupling degree and 1 gives a good idea of
how the used P/BP pair is matched : the smaller this difference is, the better the projector and the backprojector
are coupled [ASM16]. In table 3.4, we show the coupling degree for the different pairs presented in this chapter.
For our CPU implementation of the SF pair described in appendix B.2, the operators are very well coupled since,
using floating-point precision, the coupling degree is 1.0000. Using MATLAB’s long format for display, we saw
that this coupling degree is equal to 1 until the 7th digit. For both of our GPU implementations of the SF pair, the
coupling degree is 1.0001. It is less close to 1 than the CPU version of the pair because, in our GPU implementation,
some factors, which theoretically correspond to the same value, are independently computed by several threads,
leading to slight differences from one thread to another due to numerical errors. For instance, on CPU, the transaxial
footprint Ftrans♣ue, φ;xe, yeq is stored, so the same value is used to compute the backprojection in voxels ♣xe, ye, zeq
and ♣xe, ye, ze � 1q, while, on GPU, the threads associated to voxels ♣xe, ye, zeq and ♣xe, ye, ze � 1q both compute
Ftrans♣ue, φ;xe, yeq independently, and, consequently, are cause of a slight loss in the coupling of the pair compared
to its CPU version. Nevertheless, our GPU SF projector and backprojector are more coupled than the RD projector
and VD backprojector, since, for the unmatched RD/VD pair in table 3.4, the coupling degree has one less non-zero
digit than the one of our GPU SF pair.
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(a) (b)

Figure 3.7: CPU SF projection (a) followed by matched CPU SF backprojection (b)

(a) (b)

Figure 3.8: GPU SF projection with two kernels (a) followed by matched GPU SF backprojection (b)

(a) (b)

Figure 3.9: GPU SF projection with one kernel (a) followed by matched GPU SF backprojection (b)
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(a) (b)

Figure 3.10: GPU RD projection (a) followed by unmatched GPU VD backprojection (b)

3.3.2 Projector and backprojector in a full MBIR method

We now validate the presented P/BP pairs in a full MBIR method. Concerning the SF pair, in the previous section,
our version with one kernel for the projector has given the best NRMSE with respect to the CPU version. In addition,
dealing with only one kernel is easier than dealing with two in order to develop applications on the GPU. Hence, in the
following, we only consider our GPU implementation of the SF pair with one kernel for the projector. We compare
its use with the one of the unmatched RD/VD pair.

In this section, the MBIR method in which we incorporate our GPU implementations of the RD/VD pair and the
SF pair is PDFW [OMBF18], presented in section 2.6. We reconstruct Shepp-Logan phantom, of size 2563 voxels,
from 64 projections with 2562 pixels. The projections are noisy by adding a white Gaussian noise of Signal-to-Noise
Ratio (SNR) equal to 20 db, as shown in figure 3.11. We run 500 iterations of PDFW. Concerning the statistical
weights, we set : V ζ ✏ IM . The selected value for the regularization parameter is λ ✏ 0.5. In order to comply with
the conditions of the convergence theorem presented in [OMBF18], we do not introduce the over-relaxation step in
PDFW. For the same reason, the set of primal and dual stepsizes we choose are the same as the ones denoted by "S1"
in [OMBF18].

P/BP pair Computation time ∆2f ∆2g

Unmatched RD/VD 168.5 s 3.93 % 0.76 %
Matched SF 510.5 s 3.90 % 0.73 %

Table 3.5: Comparison of the results of PDFW with the RD/VD pair and the SF pair

The results of PDFW with the RD/VD pair and the SF pair are shown in figures 3.13 and 3.14 respectively.
Compared to the FDK method [FDK84] in figure 3.12, for both pairs, the reconstruction quality is greatly enhanced
thanks to the regularization. As shown in figures 3.15 and 3.16 by looking at the errors with respect to the original
volume, no difference depending on the used P/BP pair is visible in the reconstructions. Additionally, for the SF pair,
in figures 3.17 and 3.18, we also show the obtained dual variables p and z̃ which appear in PDFW in algorithm 7.
Dual variable p is the size of the projections, while dual variable z̃ is the size of the volume. Interestingly, if we
compare with figures 3.11 and 3.12, and if we do not care about the gray levels, p looks like as it has captured the
noise in the projections, while z̃ seems to have captured the noise in the backprojection. With the unmatched RD/VD
pair, the dual variables we have found are similar to those obtained with the SF pair.

In table 3.5, we evaluate the L2-relative error

∆2f ✏ ⑥f̂ ✁ f0⑥22
⑥f0⑥22

(3.39)
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Figure 3.11: Noisy projection of Shepp-Logan phantom, with
SNR✏ 20 db

Figure 3.12: Reconstruction of Shepp-Logan phantom by the
FDK method [FDK84]

Figure 3.13: Reconstruction of Shepp-Logan phantom by PDFW
[OMBF18] with the unmatched RD/VD pair

Figure 3.14: Reconstruction of Shepp-Logan phantom by PDFW
[OMBF18] with the matched SF pair

Figure 3.15: Difference between the original volume and the re-
construction by PDFW, with the unmatched RD/VD pair

Figure 3.16: Difference between the original volume and the re-
construction by PDFW, with the matched SF pair
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Figure 3.17: Estimated dual variable p (see algorithm 7) in PDFW
[OMBF18] with the matched SF pair. The variable is size of the
projections.

Figure 3.18: Estimated dual variable z̃ (see algorithm 7) in PDFW
[OMBF18] with the matched SF pair. The variable is size of the
volume.

(a) (b)

Figure 3.19: Evolution of the criterion during PDFW (a) with the RD/VD and SF pairs. A zoom on the last iterations is provided in (b).
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(a) (b)

Figure 3.20: Evolution of the Root-Mean Square Difference (RMSD) between the estimate f ♣tq and the real volume during PDFW (a) with the
RD/VD and SF pairs. A zoom on the last iterations is provided in (b).

between the reconstruction f̂ and the real volume f0. We also evaluate the L2-relative error

∆2g ✏ ⑥g ✁Hf̂⑥22
⑥g⑥22

(3.40)

between the actual projections g and the theoretical ones Hf̂ . We see that ∆2f and ∆2g are small with both the
RD/VD and the SF pairs. They are slightly better for the SF pair but the difference with the RD/VD pair is not
very pronounced. This confirms that the reconstructions obtained with the RD/VD and the SF pairs are similar.
Nevertheless, the computation time with the unmatched RD/VD pair is shorter than the one with the matched SF pair.
This is not surprising since, as we have seen in the previous section, the projection and backprojection operators are
faster.

We also analyze the behaviours of PDFW through its iterations depending on the used P/BP pair. Figure 3.19
shows the evolution of the criterion given by equation (2.43). We see it decreases with both of the pairs. Zooming on
the last iterations, the criterion is the lowest with the RD/VD pair. Nevertheless, this does not mean that the RD/VD
pair has better results than the SF pair. Indeed, the criterion is not exactly the same for both pairs, since the used
projectors H in (2.43) are different. In order to check the convergence independently from the used pair, in figure
3.20, we observe the evolution of the Root Mean Square Difference (RMSD)

RMSD ✏
❣❢❢❡ 1

N

N➳
j✏1

✁
f
♣tq
j ✁ f0j

✠2
(3.41)

between the estimate f ♣tq at iteration t and the real volume f0. We see that the RMSD decreases for both pairs.
Zooming on the last iterations, the RMSD with the matched SF pair appears to be slighly lower than the one with the
unmatched RD/VD pair. This confirms that the unmatched pair gives a suboptimal result [ASM16]. Nevertheless, in
our case, as the difference between the RMSD of the pairs is very small, the suboptimality looks very negligible.

Since RMSD is not sensitive to minor localized errors, we deepen the analysis of the obtained reconstructions
by focusing on a small region-of-interest (ROI) Ω in which little details are present. The zooms on this ROI in the
reconstructions obtained with the RD/VD and the SF pairs, as the differences with respect to the original volume, are
shown in figure 3.21. We see that, qualitatively, the reconstructions do no greatly differ. The Relative Mean Absolute
Error (RMAE) computed within the ROI

RMAE ✏ 1

⑤Ω⑤
➳
jPΩ

✞✞✞✞✞ f̂j ✁ f0j

f0j

✞✞✞✞✞ (3.42)
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(a) (b) (c)

(d) (e)

Figure 3.21: Zoom on a region-of-interest with little details for : the real volume (a), the reconstruction by PDFW [OMBF18] with the
unmatched RD/VD pair (b), and the reconstruction by PDFW [OMBF18] with the matched SF pair (c). The differences with respect to the
original volume are shown in (d) for the unmatched RD/VD pair, and in (e) for the matched SF pair.

with respect to the real volume is given in table 3.6 with the RD/VD pair and the SF pair. We see that it is practically
the same with the RD/VD or the SF pair. Hence, the reconstructions obtained with the matched and the unmatched
pairs seem to be equivalent.

P/BP pair RMAE
Unmatched RD/VD 1.12 %
Matched SF 1.10 %

Table 3.6: Relative Mean Absolute Error (RMAE) of PDFW in small region-of-interest Ω, with the RD/VD pair and the SF pair

3.4 Conclusion and perspectives

In this chapter, we have compared an unmatched and a matched pair of projector and backprojector. The unmatched
RD/VD pair is very suited to parallelization on the GPU and is consequently very fast. For the matched SF pair, we
have investigated a new GPU implementation for the SF projector and backprojector which minimizes the memory
transfers compared to its previous GPU implementations [WF11, XML�17]. In particular, we have enhanced our
work presented in [CGMDP18], by merging the two kernels of our GPU SF projector.

We have validated our unmatched and matched pairs as single modules and in a full MBIR method which was
PDFW [OMBF18]. The results we obtained with each pair for the reconstruction of Shepp-Logan phantom were quite
similar. The main difference between the pairs is the computational speed which is greater for the unmatched RD/VD
pair. Nevertheless, we have also identified a small suboptimality for the unmatched RD/VD pair when checking
the convergence to the real phantom. In chapter 4, after having detailed a joint reconstruction and segmentation
algorithm, we will deepen the comparison by analyzing the behaviour of the algorithm with each of the pairs. In
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addition, in chapter 6, we will show how the matched pair can be useful for the estimation of the uncertainties on the
reconstruction, while this task is difficult and weakly reliable with the unmatched pair.

Concerning the implementations of the pairs, the unmatched RD/VD pair has been developed for almost ten years
at L2S [BGMD�15], and fully adapted for volumes of huge size such as 10243 or 20483 voxels, by multi-streaming
and multi-GPUs calculations. For the moment, our GPU implementation of the SF pair is still very recent, and
the computation time is quite long for volumes of great size. For this reason, in this chapter, we have limited our
experiments to relatively small volumes of size 2563 voxels. Accelerating and scaling our implementation for much
larger volumes is the next step of our developments of the SF pair. For this purpose, further optimizations need to be
studied. For instance, our proposed kernels for the GPU SF projector and backprojector do a lot of calculations. As a
result, the number of registers used by the threads is large, which prevents from running many active warps. Hence,
the number of registers needs to be reduced by taking advantage from other types of memory in a GPU, such as the
shared memory. Furthermore, since the amount of memory used by each thread limits the number of active warps
during the execution of the SF projector and backprojector, increasing the number of data processed by one thread
may be a relevant way to reduce the computation time of our implementation. In addition, this would enable to further
leverage the factorizations induced by the SF pair. After having proceeded with these optimizations and adapted the
code for multi-streaming and multi-GPUs computing, comparisons with the previous GPU implementations of the SF
pair [WF11, XML�17] will remain to be done, as further studies of the use of the pair in applications for SAFRAN.
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Chapter 4

Gauss-Markov-Potts prior model for joint

reconstruction and segmentation

Many industrial parts at SAFRAN have in common that they are piecewise-constant (or quasi-piecewise-constant)
volumes. These volumes are composed of several materials, each material filling one or several compact and quasi-
homogeneous regions. Based on this prior information, we aim at proposing a MBIR algorithm in order to reconstruct
such parts for NDT purposes.

Reconstructing piecewise-constant volumes has been widely considered in X-ray CT, for applications such as
industrial inspection [BS11, ZKS�16], or, as a medical example, assessment of bone microstructure [WSRP16].
Intuitively, the piecewise-constant assumption can be introduced in the reconstruction by enforcing a sparse prior on
the gradient of the volume. In this context, TV regularization gives good results. Thanks to the use of the l1-norm, TV
regularization is non-smooth [Nik02], so the boundaries in the reconstruction are sharp, as we have seen in section
3.3. On the contrary, Tikhonov regularization [Tik63] is not a good choice to reconstruct piecewise-constant volumes
since it does not preserve the edges and tends to blur the reconstruction [NNZC08]. Compared to TV prior, a stronger
sparsity for the gradient can be achieved by minimizing its l0-norm : this is the Potts model [SWFU15]. Contrary to the
case of TV, the reconstruction problem with the Potts model is NP-hard [SWFU15]. An algorithm, which is an instance
of ADMM [BPC�11], has been proposed in [SWFU15] in order to solve the reconstruction problem regularized
by the Potts model. The drawback of this algorithm is that the variable-splitting performed in ADMM makes it
very memory-costly. Consequently, its applications are limited to 2D images [SWFU15], or to small 3D volumes
[SRUW17]. Another prior suited to piecewise-constant volumes is sparse Haar transform [WMDG17]. Nevertheless,
Haar transform is difficult to parallelize on the GPU, since computing a multilevel wavelet transformation requires to
store many intermediate results which lead to many memory transactions between the CPU and the GPU [QJ16]. In
addition, the reconstruction algorithm proposed in [WMDG17] has many variables of the size of the volume, which
make it very memory-costly.

A widespread approach to reconstruct piecewise-constant or quasi-piecewise-constant volumes is to perform a
segmentation of the volume jointly with its reconstruction [BS11, SWFU15]. The Discrete Algebraic Reconstruction
Technique (DART) [BS11] is a typical example of this approach, in which a reconstruction step is alternated with
a segmentation step. The specificity of DART is that, knowing the segmentation estimated at the previous iteration,
DART reduces the computational complexity of the reconstruction step by only updating the voxels on the contours
and, inside the regions, a given percentage of randomly selected "free" voxels. The reconstruction step is performed by
applying a least-squares method which is SART [AK84]. An extension of DART to the polychromatic forward model
has been proposed in [SBS18]. The segmentation step in DART is a thresholding algorithm for which the thresholds
are given by the discrete gray values corresponding to each class in the volume. DART assumes that these gray values
are perfectly known, which is never the case in practice. In addition, the reconstruction step in the original DART does
not have regularization : this tends to concentrate the noise on the free voxels. Lastly, the percentage of free voxels
to update is a parameter which is difficult to tune. In order to tackle all these problems, TVR-DART (total-variation-
regularized DART) has been proposed [ZPB16]. As mentioned in the name of the algorithm, this reconstruction step
is regularized by a total variation term [ZPB16]. In TVR-DART, the gray values and the thresholds are automatically
estimated by including Newton’s method steps in the algorithm. Nevertheless, these steps add projection operations to
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the original version of DART. Contrary to DART, all the voxels are updated in the reconstruction step of TVR-DART.
In this chapter, we propose to reconstruct quasi-piecewise-constant volumes by a MBIR method which is a joint

reconstruction and segmentation algorithm based on a Gauss-Markov-Potts prior model. This prior model has shown
its effectiveness in microwave imaging [FDMD05], diffraction imaging [ADMD10] and image restoration [AMD10].
Gauss-Markov-Potts prior model assigns a prior model on the to-be-estimated volume and on the segmentation itself,
which is an advantage compared to DART [BS11] and its derivatives [ZPB16, SBS18]. The prior model on the volume
depends on the segmentation, while the prior on the segmentation is a Potts model which promotes compact regions
in the reconstruction. In addition, since the inspected parts are not exactly piecewise-constant, Gauss-Markov-Potts
prior model allows variability in the classes by introducing variances which are estimated, as are the means of the
classes [AMD10]. Furthermore, our algorithm also optimizes the weights on the projections which are introduced in
order to take into account that the noise is not uniformly distributed over the measurements.

Compared to the previously mentioned algorithms [SWFU15, WMDG17], our proposed method is less memory-
costly, since it has few auxiliary variables which are of large sizes : while the estimated weights are the size of the
projections, the segmentation is the size of the volume but requires less memory to be stored since it corresponds to
labels which are integers. The remainder of this chapter presents all the details of our algorithm and its results on
simulated and real data. In section 4.1, the used forward model is presented. In section 4.2, Gauss-Markov-Potts
prior model for the volume is described. Based on this prior and on the used forward model, in section 4.3, the joint
reconstruction and segmentation algorithm is derived by Joint Maximization A Posteriori (JMAP) estimation. Then,
experimental results in simulation and on real data from SAFRAN are presented. The results are compared to TV-
penalized weighted least-squares solved by PDFW [OMBF18] presented in chapter 2. Conclusion and perspectives
for this work are given in section 4.6.

A first attempt to use Gauss-Markov-Potts prior in 3D X-ray CT for joint reconstruction and segmentation has
been made in [FSVMD07]. Nevertheless, the authors in [FSVMD07] only validate the used pair of projector and
backprojector and do not present results of the algorithm. In addition, the purpose was to reconstruct very little
volumes (typically of size 643 voxels) in microtomography. Due to the little dimensions of the data, it was possible
to perform the segmentation step by a Monte Carlo Markov Chain (MCMC) technique [FSVMD07]. In our industrial
context, this MCMC step is not feasible due to the fact that the inspected volumes are far bigger (typically discretized
into 5123 or 10243 voxels). In order to deal with the huge dimension, we replace this MCMC step by Iterated
Conditional Modes (ICM) algorithm [Bes86], which performs local optimization. Furthermore, in [FSVMD07], the
role of the parameters of the algorithm is not studied : in section 4.3.6, the influence of each parameter is explained,
and clear strategies are provided in order to fix it. At last, in our simulation experiments in section 4.4, we compare
the influence on the algorithm of using a matched or an unmatched pair of projector and backprojector.

4.1 Forward model

The used forward model is denoted by U . As explained in chapter 1, this forward model is linear and takes the
uncertainties into account :

g ✏Hf � ζ (4.1)

and uncertainties ζ are modeled as Gaussian

p♣ζi⑤vζiq ✏ N ♣ζi⑤0, vζiq,❅i P t1, . . . ,M✉ . (4.2)

Expression (2.31) can be used for the variances of the uncertainties vζ ✏ ♣vζiqi. Nevertheless, as pointed out in
section 2.4, scattering and beam-hardening are not taken into account in the derivation of this expression which is
detailed in appendix A. Consequently, expression (2.31) can be used for the variances of the uncertainties can be seen
as suboptimal. For this reason, we choose to estimate vζ jointly with the volume. To do so, we assign a conjugate
Inverse-Gamma prior on variances vζ

p♣vζi ⑤αζ0 , βζ0q ✏ IG♣vζi ⑤αζ0 , βζ0q ✏
β
αζ0

ζ0

Γ♣αζ0q
v
✁αζ0

✁1

ζi
exp

✒
✁βζ0
vζi

✚
, vζi → 0,❅i, (4.3)

where Γ denotes Euler Gamma function, and αζ0 and βζ0 are fixed parameters.
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γ0 ✏ 0.5
γ0 ✏ 0.7 γ0 ✏ 0.8 γ0 ✏ 1.6

Figure 4.1: Potts field z for different values of γ0

4.2 Gauss-Markov-Potts prior model on the volume

Gauss-Markov-Potts prior model enables one to link the gray level fj of a voxel j to the material to which it belongs.
This material is identified by a label zj assigned to voxel j : we set zj ✏ k if voxel j is in material k, k P t1, . . . ,K✉,
where K is the number of materials in the volume. The compacity of a region composed of material k is enforced
thanks to a Potts model for labels z. This model is markovian in the sense that the label of one voxel depends on the
labels of its neighbours : a voxel of which the neighbours are in a same class k has a high probability to be also in this
class. Knowing the labels of the neighbours of a voxel j, the probability for this voxel to be in class k, depending on
the labels in its neighbourhood V♣jq, reads

p♣zj ✏ k⑤zi, i P V♣jq;αk, γ0q✾ exp

✔
✕αk � γ0

➳
iPV♣jq

δ♣k ✁ ziq
✜
✢ , (4.4)

for all k P t1, . . . ,K✉. Hence, the prior for label zj is

p♣zj ⑤zi, i P V♣jq;αk, γ0q✾ exp

✔
✕ K➳
k✏1

αkδ♣zj ✁ kq � γ0
➳

iPV♣jq

δ♣zj ✁ ziq
✜
✢ . (4.5)

In (4.4) and (4.5), singletons’ energies α ✏ ♣αkqk insert a prior knowledge about the probability for voxel j to be in
class k. This probability is given by eαk , so we have the constraint [AMD10]

K➳
k✏1

eαk ✏ 1. (4.6)

Another parameter in (4.4) and (4.5) is γ0, which is called the Potts coefficient or, equivalently, the granularity coeffi-
cient [PDBT13] : it weights the dependence of label zj on the neighbours and, consequently, has a huge influence on
the granularity of the field z. An interesting fact is that there exists a critical value γc for Potts coefficient γ0 so that
the regions are compact if γ0 ➙ γc [Ons44, Hua87]. Figure 4.1 illustrates the influence of γ0 by showing the middle
slices of generated 64 ✂ 64 ✂ 64 Potts fields with K ✏ 5 classes, for different values of γ0. Rather surprisingly, the
granularity of the field sharply changes when we increase γ0 from 0.7 to 0.8, which means that 0.7 ↕ γc ↕ 0.8. The
critical value γc can only be computed for the Ising field case (for which we have K ✏ 2 classes) in 2D [Gio10].

Using Hammersley-Clifford theorem [Bes74], the joint prior distribution for labels z is

p♣z⑤α, γ0q✾ exp

✔
✕ N➳
j✏1

☎
✆ K➳
k✏1

αkδ♣zj ✁ kq � γ0
➳

iPV♣jq

δ♣zj ✁ ziq
☞
✌
✜
✢ (4.7)

The markovian term

Φin♣zq ✏
N➳
j✏1

γ0
➳

iPV♣jq

δ♣zj ✁ ziq (4.8)
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is called the inner energy of Potts field z and is related to its compacity, while the term

Φout♣zq ✏
N➳
j✏1

K➳
k✏1

αkδ♣zj ✁ kq (4.9)

is the outer energy of the field.
In a region exclusively composed of material k, the distribution of gray levels is modeled as Gaussian, with mean

and variance mjk and vjk which depend on the label :

p♣fj ⑤zj ✏ k,mjk, vjkq ✏ N ♣fj ⑤mjk, vjkq . (4.10)

Several choices can be made for mjk and vjk. First, they can be chosen independent from j : this leads to model the
volume as a Mixture of Independent Gaussians (MIG) [FDMD05, ADMD10, AMD10] :✧

mjk ✏ mk

vjk ✏ vk
(MIG). (4.11)

Other Gauss-Markov-Potts prior models have been proposed : in [AMD10], a Markovian Mixture of Gaussians
(MMG) is considered but, compared to the MIG model, it is more costly due to the computation of the contours of
the regions. Recently, another Gauss-Markov-Potts prior model has been presented in order to account for textured
classes [GV17]. Nevertheless, this model is very memory-costly in 3D since it requires to store K textured patches of
the size of the volume. In the following, we only deal with the MIG Gauss-Markov-Potts prior model for the volume.
For this model, the prior distribution of the volume given the labels, the means and the variances of the classes is

p♣f ⑤z,m,vq ✏ ♣2πq✁N
2 det ♣V zq✁1④2 exp

✒
✁1

2
⑥f ✁mz⑥2V z

✚
, (4.12)

where
mzj ✏ mk if zj ✏ k,❅j, (4.13)

V z ✏ diag rvzs, and
vzj ✏ vk if zj ✏ k,❅j. (4.14)

We consider means m and variances v of the classes as unknowns and assign conjugate priors to it. These priors are
respectively Gaussian and Inverse-Gamma :✧

p♣mk⑤m0, v0q ✏ N ♣mk⑤m0, v0q
p♣vk⑤α0, β0q ✏ IG♣vk⑤α0, β0q ,❅k, (4.15)

where m0, v0, α0 and β0 are fixed parameters.

4.3 Joint Maximization A Posteriori (JMAP) algorithm

Figure 4.2 shows the overall hierarchical model when Gauss-Markov-Potts prior is used. Projections g result from
volume f (through projection operator H) and from uncertainties ζ with variances vζ . Volume f is described by its
Gauss-Markov-Potts prior model M with hyperparameters θ ✏ ♣z,m,vq. Labels z are assigned a Potts model with
singletons’ energies α and with granularity coefficient γ0. Meansm of the classes have a Gaussian prior of mean m0

and variance v0, while variances v of the classes have an Inverse-Gamma prior of shape parameter α0 and intensity
parameter β0. Variances vζ of the uncertainties are also assigned an Inverse-Gamma prior of parameters ♣αζ0 , βζ0q
according to forward model U . The unknowns we want to estimate are

ψ ✏ ♣f ,vζ ,θq ✏ ♣f ,vζ , z,m,vq. (4.16)

According to Bayes’ rule, their joint posterior distribution reads

p♣f ,vζ , z,m,v⑤g;U ,Mq✾ p♣g⑤f ,vζqp♣f ⑤z,m,vqp♣vζ ⑤αζ0 , βζ0q
p♣z⑤α; γ0qp♣m⑤m0, v0qp♣v⑤α0, β0q (4.17)
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α

✲

γ0

❄
z✒✑

✓✏

✲

αζ0 , βζ0

❄
vζ✒✑
✓✏

❄

m0, v0

❄
m✒✑
✓✏

❄

α0, β0

❄
v✒✑

✓✏

✛f✒✑
✓✏

ζ✒✑
✓✏

✛
❄
H

g✒✑
✓✏

Figure 4.2: Hierarchical model with Gauss-Markov-Potts prior

where

p♣g⑤f ,vζq✾det ♣V ζq✁1④2 exp

✒
✁1

2
⑥g ✁Hf⑥2V ζ

✚
, (4.18)

p♣f ⑤z,m,vq✾det ♣V zq✁1④2 exp

✒
✁1

2
⑥f ✁mz⑥2V z

✚
, (4.19)

p♣vζ ⑤αζ0 , βζ0q✾ exp

✓
✁

M➳
i✏1

✂
♣αζ0 � 1q ln vζi �

βζ0
vǫi

✡✛
, (4.20)

p♣z⑤α; γ0q✾ exp

✔
✕ N➳
j✏1

☎
✆ K➳
k✏1

αkδ♣zj ✁ kq � γ0
➳

iPV♣jq

δ♣zj ✁ ziq
☞
✌
✜
✢ , (4.21)

p♣m⑤m0, v0q✾v0✁
K
2 exp

✓
✁ 1

2v0

K➳
k✏1

♣mk ✁m0q2
✛
, (4.22)

p♣v⑤α0, β0q✾ exp

✓
✁

K➳
k✏1

✂
♣α0 � 1q ln vk � β0

vk

✡✛
. (4.23)

In order to estimate the unknowns, Monte-Carlo Markov-Chain (MCMC) method by Gibbs sampling can be used
[FDMD05, ADMD10]. Nevertheless, the computational complexity of Gibbs sampling with these priors has been
studied [ZBKT16] and shows that these methods are unaffordable for our application with large 3D volumes. For this
reason, we choose to perform a joint maximization a posteriori (JMAP) :

♣f̂ , v̂ζ , ẑ, m̂, v̂q ✏ argmax
♣f ,vζ ,z,m,vq

tp♣f ,vζ , z,m,v⑤g;U ,Mq✉ . (4.24)

Because the posterior distribution (4.17) is multi-modal, estimation (4.24) is done approximately by the following
alternate optimization algorithm :✩✬✬✬✬✬✬✬✬✬✬✬✫

✬✬✬✬✬✬✬✬✬✬✬✪

f ♣t�1q ✏ argmaxf

✦
p♣f ,v♣tqζ , z♣tq,m♣tq,v♣tq ⑤ g;U ,Mq

✮
(4.25a)

v
♣t�1q
ζ ✏ argmaxvζ

✦
p♣f ♣t�1q,vζ , z

♣tq,m♣tq,v♣tq ⑤ g;U ,Mq
✮

(4.25b)

z♣t�1q ✏ argmaxz

✦
p♣f ♣t�1q,v

♣t�1q
ζ , z,m♣tq,v♣tq ⑤ g;U ,Mq

✮
(4.25c)

m♣t�1q ✏ argmaxm

✦
p♣f ♣t�1q,v

♣t�1q
ζ , z♣t�1q,m,v♣tq ⑤ g;U ,Mq

✮
(4.25d)

v♣t�1q ✏ argmaxv

✦
p♣f ♣t�1q,v

♣t�1q
ζ , z♣t�1q,m♣t�1q,v ⑤ g;U ,Mq

✮
(4.25e)
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Due to the estimation of both the volume and the labels, our algorithm is a joint reconstruction and segmentation
algorithm. The stopping criterion L is derived from the logarithm of the joint posterior distribution (4.17), from
which constants are removed :

L♣f ,vζ , z,m,vq ✏ ✁1

2

M➳
i✏1

♣gi ✁ rHf siq2
vζi

✁ 1

2

M➳
i✏1

ln ♣vζiq ✁
M➳
i✏1

✂
♣αζ0 � 1q ln vζi �

βζ0
vζi

✡

�
N➳
j✏1

☎
✆ K➳
k✏1

✓
αk ✁ 1

2

✄
ln ♣vkq � ♣fj ✁mkq2

vk

☛✛
δ♣zj ✁ kq � γ0

➳
iPV♣jq

δ♣zj ✁ ziq
☞
✌

✁ 1

2v0

K➳
k✏1

♣mk ✁m0q2 ✁
K➳
k✏1

✂
♣α0 � 1q ln vk � β0

vk

✡
. (4.26)

According to Bayes’ rule, each step of the algorithm (4.25) is equivalent to maximizing the conditional distribution of
each unknown given the others. In the following of this section, we detail these steps one after the other. For the sake
of readibility, in each subsection describing the steps of the algorithm, subscripts t, 0 ↕ t ➔ tmax, corresponding to
the iterations of the algorithm, are omitted. Then, in a final subsection, we discuss the initialization and the choice of
the parameters.

4.3.1 Estimation of the volume

The conditional distribution of the volume given the other unknowns reads

p♣f ⑤g,vζ , z,m,v; g,U ,Mq✾p♣g⑤f ,vζqp♣f ⑤z,m,vq

✾ exp

✒
✁1

2
⑥g ✁Hf⑥2V ζ

✁ 1

2
⑥f ✁mz⑥2V z

✚
. (4.27)

Hence, step (4.25a) leads to the minimization of the criterion

Jf ♣fq ✏ 1

2
⑥g ✁Hf⑥2V ζ

� 1

2
⑥f ✁mz⑥2V z . (4.28)

As we see, this minimization is an instance of penalized weighted least-squares presented in chapter 2. The regu-
larization 1

2
⑥f ✁mz⑥2V z , derived from Gauss-Markov-Potts prior model, is very intuitive and can be interpreted :

since the volume is quasi-piecewise-constant, the value of a voxel is a priori approximately equal to the mean of its
material, with a certain tolerance given by the variance of the class.

The optimum of Jf ♣fq

f✝ ✏
✁
HTV ✁1

ζ H � V ✁1
z

✠✁1 ✁
HTV ✁1

ζ g � V ✁1
z mz

✠
(4.29)

cannot be computed exactly due to the inversion of the huge matrix
✁
HTV ✁1

ζ H � V ✁1
z

✠
. As a result, we need to

run an optimization algorithm in order to get an approximation of f✝. Since the data-matching and the regularization
terms in (4.28) are both quadratic, we can apply a simple gradient descent

f ♣n�1q ✏ f ♣nq ✁ µn∇Jf

✁
f ♣nq

✠
(4.30)

where the gradient of the criterion is

∇J♣fq ✏HTV ✁1
ζ ♣Hf ✁ gq � V ✁1

z ♣f ✁mzq (4.31)

and where the stepsize µn → 0 is adapted such that

µn ✏ argmin
µ→0

Jf

✁
f ♣nq ✁ µ∇Jf

✁
f ♣nq

✠✠
✏

⑥∇Jf
✁
f ♣nq

✠
⑥22

∇Jf

✁
f ♣nq

✠T
HTV ✁1

ζ H∇Jf

✁
f ♣nq

✠
� ⑥∇Jf

✁
f ♣nq

✠
⑥2
V z

. (4.32)
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The gradient descent is stopped when n reaches the maximum number of iterations nvol which is fixed by the user for
this descent. Concerning formulae (4.31) and (4.32), they are valid for the case a matched pair is used. If the used
pair is unmatched, the adjoint operator of H is approximated by a backprojector B ✓ HT in order to accelerate the
computations, as seen in chapter 3. Hence, for the case of an unmatched pair, we replaceHT byB in formulae (4.31)
and (4.32), so the gradient is approximately computed by

∇J♣fq ✓ BV ✁1
ζ ♣Hf ✁ gq � V ✁1

z ♣f ✁mzq (4.33)

and the expression of the adapted stepsize is

µn ✓
⑥∇Jf

✁
f ♣nq

✠
⑥22

∇Jf

✁
f ♣nq

✠T
BV ✁1

ζ H∇Jf

✁
f ♣nq

✠
� ⑥∇Jf

✁
f ♣nq

✠
⑥2
V z

. (4.34)

4.3.2 Estimation of the variances of the uncertainties

The conditional distribution of vζ given the other unknowns is fully factorized

p♣vζ ⑤f , z,m,v; g,U ,Mq✾p♣g⑤f ,vζqp♣vζ ⑤αζ0 , βζ0q

✾
➵
i

1

v
1

2

ζi

exp

✂
✁ 1

2vζi
♣gi ✁ rHf siq2

✡
✂
➵
i

1

v
αζ0

�1

ζi

exp

✂
✁βζ0
vζi

✡

✾
➵
i

1

v
αζ0

� 3

2

ζi

exp

✂
✁ 1

vζi

✂
βζ0 �

1

2
♣gi ✁ rHf siq2

✡✡
. (4.35)

Given (4.35), the conditional distribution of vζi is an Inverse-Gamma distribution

p♣vζi ⑤f , z,m,v; g,U ,Mq ✏ IG♣vζi ⑤α̂ζ0i , β̂ζ0i q (4.36)

of which the shape parameter α̂ζ0i and the intensity parameter β̂ζ0i are★
α̂ζ0i ✏ αζ0 � 1

2

β̂ζ0i ✏ βζ0 � 1
2
♣gi ✁ rHf siq2 ,❅i P t1, . . . ,M✉ . (4.37)

This distribution is maximized at

v̂ζi ✏
β̂ζ0i

α̂ζ0i � 1
, (4.38)

which is the update formula for vζi , ❅i P t1, . . . ,M✉, in step (4.25b) of JMAP algorithm.

4.3.3 Estimation of the labels

The conditional distribution of the labels z reads

p♣z⑤,f ,vζ ,m,v; g,U ,Mqq✾p♣f ⑤z,m,vqp♣z⑤γ0,αq

✾ exp

✔
✕ N➳
j✏1

☎
✆ K➳
k✏1

✓
αk ✁ 1

2

✄
ln ♣vkq � ♣fj ✁mkq2

vk

☛✛
δ♣zj ✁ kq � γ0

➳
iPV♣jq

δ♣zj ✁ ziq
☞
✌
✜
✢

✾ exp rE ♣z⑤f ,m,v;α, γ0qs (4.39)

where

E ♣z⑤f ,m,v;α, γ0q ✏
N➳
j✏1

☎
✆ K➳
k✏1

✓
αk ✁ 1

2

✄
ln ♣vkq � ♣fj ✁mkq2

vk

☛✛
δ♣zj ✁ kq � γ0

➳
iPV♣jq

δ♣zj ✁ ziq
☞
✌ (4.40)
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is Potts energy. It can be rewritten as

E ♣z⑤f ,m,v;α, γ0q ✏
N➳
j✏1

☎
✆ K➳
k✏1

αjkδ♣zj ✁ kq � γ0
➳

iPV♣jq

δ♣zj ✁ ziq
☞
✌ (4.41)

where

αjk ✏ αk ✁ 1

2

✄
ln ♣vkq � ♣fj ✁mkq2

vk

☛
,❅j, k. (4.42)

As we see in (4.39), step (4.25c) of JMAP algorithm consists in finding z which maximizes Potts energy. Due to the
Markovian term in (4.41), the exact computation of the optimum of (4.41) is unfeasible [ZBS01]. As a result, we
need to get an approximate solution by applying a segmentation algorithm. Among possible algorithms, simulated
annealing (SA) [GG84] is able to converge to the global optimum, but on the condition that a slow annealing is
performed [HKK�97]. Consequently, SA is too slow for an industrial application. Other algorithms looking for a
global optimum are graph-cut methods [BVZ01], which transform the problem of the maximization of (4.41) in a
problem of maximum flow in a graph. Nevertheless, parallelizing a maximum flow algorithm in order to deal with
huge volumes, as it is our case in 3D CT, is not feasible [GSS82], and prevents from the use of graph-cut methods to
achieve the estimation of z.

Another segmentation method is the Iterated Conditional Modes (ICM) [Bes86] algorithm, which converges fast
and is easily and highly parallelizable. The idea of ICM is to divide the voxels into two disjoint subsets, called ”black”
voxels and ”white” voxels. These subsets are such that the neighbours of a ”white” voxel are only ”black” voxels,
and vice versa. Figure 4.3 illustrates this subdivision in 2D. We denote by zB the labels for ”black” voxels, and by
zW the labels for ”white” voxels. After having done this subdivision, we see that, given the ”white” voxels, ”black”
voxels are independent from each other, and this is the same for ”white” voxels given the ”black” voxels. Since the
subsets are disjoint, we can write Potts energy as a function of zB and zW :

E ♣z⑤f ,m,v;α, γ0q ✏ E ♣zB, zW ⑤f ,m,v;α, γ0q . (4.43)

Hence, Potts energy can be maximized alternately with respect to zB and zW . The labellings for ”white” voxels and
”black” voxels are performed one after the other by alternating maximization. This algorithm is clearly massively
parallelizable since all the ”white” voxels (respectively all the ”black” voxels) in figure 4.3 can be labelled at the same
time. ICM is known to converge to a solution very fast but its disadvantage is that, contrary to SA and graph-cut
methods, this solution is only a local optimum [HD92, HKK�97]. Hence, its initialization is very important. We may
also underline that, in order to make ICM applicable, the neighbourhood V♣jq of every voxel j must be its first-order
neighbourhood, i.e. its six nearest neighbours and only them. If this is not the case, then labels zW (respectively zB)
are not jointly independent anymore. One may note that this constraint on the choice of the neighbourhood is not
necessary in order to apply SA or graph-cut methods. Nevertheless, considering only the first-order neighbours is a
good tradeoff between the computation time and modelling a Markovian field [HKK�97].

Figure 4.3: Division like a chessboard in "white" and "black" voxels, in order to perform the segmentation in JMAP algorithm by ICM. The
division is illustrated in 2D. The figure is inspired from [Aya10, chap. 4.5.2].
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Due to its appealing properties of parallelization, we choose to apply ICM algorithm in order to update the labels
in step (4.25c) of JMAP algorithm. We denote by nseg the number of iterations of ICM performed at each global
iteration of JMAP. Like nvol for the estimation of the volume, this number has to be fixed by the user.

4.3.4 Estimation of the means of the classes

Like for the variances vζ of the uncertainties, the conditional distribution of the means m of the classes is fully
factorized

p♣m⑤f ,vζ , z,v; g,U ,Mq✾p♣f ⑤z,m,vqp♣m⑤m0, v0q

✾ exp
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✛
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✛☛✛
(4.44)

where Rk is the set of voxels in class k, and Nk ✏ ⑤Rk⑤ is the number of voxels in Rk. Hence, the conditional
distribution of mk is a Gaussian

p♣mk⑤f ,vζ , z,v; g,U ,Mq ✏ N ♣m̂0k , v̂0kq (4.45)

of which the mean m̂0k and the variance v̂0k are✩✫
✪ v̂0k ✏

✁
1
v0
� Nk

vk

✠✁1

m̂0k ✏ v̂0k

✁
m0

v0
� 1

vk

➦
jPRk

fj

✠ ,❅k P t1, . . . ,K✉ . (4.46)

A Gaussian distribution is maximized at its mean, so step (4.25d) of JMAP algorithm sets

m̂k ✏ m̂0k ,❅k P t1, . . . ,K✉ . (4.47)

4.3.5 Estimation of the variances of the classes

The conditional distribution of the variances v of the classes is also fully factorized

p♣v⑤f ,vζ , z,m; g,U ,Mq✾p♣f ⑤z,m,vqp♣v⑤α0, β0q

✾ exp

✓
✁1

2

N➳
j✏1

K➳
k✏1

✄
♣fj ✁mkq2

vk

☛
δ♣zj ✁ kq ✁

K➳
k✏1

✂
♣α0 � 1q ln ♣vkq ✁ β0

vk

✡✛
. (4.48)

Hence, the conditional distribution of vk is an Inverse-Gamma distribution

p♣vk⑤f ,vζ , z,m; g,U ,Mq ✏ IG
✁
vk⑤α̂0k , β̂0k

✠
(4.49)

of which the shape parameter α̂0k and the intensity parameter β̂0k are★
α̂0k ✏ α0 � Nk

2

β̂0k ✏ β0 � 1
2

➦
jPRk

♣fj ✁mkq2 ,❅k P t1, . . . ,K✉ . (4.50)

The maximum is reached at

v̂k ✏ β̂0k
α̂0k � 1

, (4.51)

which is the update formula for vk, ❅k P t1, . . . ,K✉, in step (4.25e) of the algorithm.
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4.3.6 Summary of the algorithm and fixation of the parameters

The proposed joint reconstruction and segmentation algorithm is summarized in algorithm 12. Due to the fact that
the joint posterior distribution (4.17) is multimodal, the algorithm is a local optimization algorithm. In addition, we
may underline that it has no convergence guarantee. As a consequence, the initialization is of great importance. The
volume f ♣0q required for the initialization is provided by a FBP method such as FDK [FDK84]. From this initial

reconstruction, the initial variances v♣0q
ζ of the uncertainties are computed using the update formula (4.38) of the

algorithm. The initial volume is segmented in order to obtain the initial labels z♣0q. Based on this initial segmentation,
the initial meansm♣0q and variances v♣0q of the classes are computed.

Algorithm 12 JMAP algorithm with Gauss-Markov-Potts prior

Initialize f ♣0q,v
♣0q
ζ , z♣0q,m♣0q,v♣0q

for t ✏ 0, . . . , tmax ✁ 1 do

1 : Update f by minimizing criterion (4.28) through nvol iterations of gradient descent (4.30)
2 : Update vζ by (4.38)
3 : Update z by maximizing Potts energy (4.40) through nseg iterations of ICM algorithm [Bes86]
4 : Updatem by (4.47)
5 : Update v by (4.51)

end for

Since we apply a local optimization algorithm to update the labels in algorithm 12, the initial segmentation has
to be done very carefully. In our experiments, we have used histogram-based thresholding methods which are Otsu’s
method [Ots79] and a peak-picking method detailed in [KSH01]. These multi-thresholding methods are suited to
get a good initial segmentation since they can handle classes with different variances. This is not the case for other
algorithms such as K-means [Mac67], which we do not recommend to use. Originally developed for K ✏ 2 classes,
Otsu’s method computes an optimal threshold by maximizing the between-class variance [Ots79]. ForK → 2, we rely
on MATLAB implementation, in which the thresholds are calculated by a locally convergent search-based optimiza-
tion. Contrary to Otsu’s method, the peak-picking algorithm given in [KSH01] is designed for multi-thresolding. This
algorithm is an adaptation of a non-parametric clustering method [KNF76]. For each bin in the histogram, we seek
the nearest peak in its neighbourhood : this peak is called the parent-bin of the current bin, which is called a child-bin
of the peak. Each parent-bin and its children are seen as a class, i.e. the voxels in the children-bins of parent-bin k
are assigned the initial class k. When we know the number of classes, each parent-bin is assigned as the child-bin of
a higher parent-bin in its neighbourhood until there are only K parents-bins.

The parameters of the proposed algorithm are quite numerous : K, α, γ0, m0, v0, α0, β0, αζ0 and βζ0 . We fix the
number of classes K to its theoretical value which is known in industry. The initialization can be used to fix several

of the other parameters. In the initial segmentation, we compute the number of voxels N ♣0q
k in each class k. We fix

the singletons’ energies to

αk ✏ ln

✄
N

♣0q
k

N

☛
,❅k P t1, . . . ,K✉ , (4.52)

which complies with constraint (4.6). Hence, the a priori probability for a voxel to be in class k is

pk ✏
N

♣0q
k

N
. (4.53)

For the prior on the means of the classes, parameter m0 is fixed to the approximate median of the gray values,
computed based on the initialization :

m0 ✏ 1

2

✂
max
j
f
♣0q
j �min

j
f
♣0q
j

✡
. (4.54)

Given this value, parameter v0 is fixed sufficiently large such that means of the classes mk can take any value in a
large interval containing the set of possible gray values.
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The Potts coefficient is fixed such that the regions in the volume are compact. Hence, as shown in section 4.2, it
has to be fixed greater than its critical value γc. The calculation of γc requires to know the partition function of the
labels, i.e. the normalizing constant of (4.7) :

Z♣α, γ0q ✏
➳

z✶Pt1,...,N✉K

N➳
j✏1

☎
✆ K➳
k✏1

αkδ♣z✶j ✁ kq � γ0
➳

iPV♣jq

δ♣z✶j ✁ z✶iq
☞
✌, (4.55)

This partition function has only an analytical expression in 2D for the Ising field case for which K ✏ 2, which
enables to estimate the value of γc [Gio10]. In the other cases, the partition function is untractable [MDZ97]. Hence,
the critical value γc cannot be computed in general, whatever the dimension and the value ofK are. In 2D, works have
been done in order to estimate an optimal value of γ0 jointly with the labels, without dealing with the partition function
of z [PDBT13, SSHF16]. Unfortunately, these strategies are computationally costly because they are based on MCMC
methods [PDBT13], or not parallelizable [SSHF16]. As a result, they cannot be used for our 3D application. For this
reason, we fix γ0 to an optimal value which is found empirically.

Concerning parameters ♣α0, β0q for the Inverse-Gamma prior on the variances of the classes, since we want to
reconstruct (quasi-)piecewise-constant objects, they are fixed in order to encourage small vk, 1 ↕ k ↕ K. Figure 4.4
shows the probability density function of Inverse-Gamma distribution for different values of its parameters. We see
that, for α0 → 1 and β0 ➔ 1, small variances are modeled as very likely and high variances as very unlikely, which
is exactly what we want. For α0 ➔ β0 ➔ 1, high variances are modeled as very likely, which does not correspond
to our piecewise-constant prior. For β0 ➔ α0 ➔ 1, small variances are more likely than high variances, but the
probability for high variances is not zero as it is the case for α0 → 1 and β0 ➔ 1. Fixing α0 → β0 → 1 leads to
promote the variances in an interval which does not contain zero. At last, fixing α0 ➔ 1 and β0 → 1 or β0 → α0 → 1

does not correspond at all to what we want, since high variances are modeled as very likely and small variances as
very unlikely. As a conclusion, it appears from figure 4.4 that fixing α0 → 1 and β0 ➔ 1 is the optimal choice for
reconstructing quasi-piecewise-constant volumes.

The route to fix α0 and β0 cannot be the same for parameters αζ0 and βζ0 related to the variances of the un-
certainties on the projections. Indeed, since the derivation of the forward model (4.1) does not take into account
beam-hardening and scattering, we cannot have a particular prior on how large variances vζ are. As a result, these
parameters are fixed empirically based on the different plots presented in figure 4.4. If we know that high scattering
and beam-hardening are present, then it is preferable to model high variances vζ as likely. If, on the contrary, there is
only few scattering, then we can constrain vζi ,❅i, to be in an interval of small variances, as it is the case in plot (e) of
figure 4.4, with αζ0 → βζ0 → 1. Another possibility is, if the noise is very small, to encourage very small vζi ,❅i, by
fixing αζ0 → 1 and βζ0 ➔ 1, as it is the case in plot (c) of figure 4.4.

Other parameters which are hidden are the numbers of subiterations for the estimation of the volume and the
labels, nvol and nseg. These parameters are tuned experimentally. When many beam-hardening and scattering effects
are present, it is preferable to fix nvol and nseg small. With small nseg, we avoid that scattering and beam-hardening
effects contaminate the segmentation because of the compactness constraint enforced by γ0. Similarly, with small
nvol, we avoid to over-trust the data g which are very far from the ideal noiseless projections Hf due to high
absorption and scattering.

4.4 Simulation results

We first test our method in simulation on the Shepp-Logan phantom with the same geometrical configuration used in
section 3.3. The 64 used projections are noisy with a SNR of 20 db. Since the phantom is exactly piecewise-constant,
we can compute the actual number of classes which is, as shown in figure 4.5, K ✏ 5. The values for the parameters
of JMAP are given in table 4.1 and fixed according to the strategies explained in section 4.3.6. We run JMAP during
20 iterations. In each of these iterations, the maximum number of subiterations for the estimation of the volume is
fixed to nvol ✏ 20, while the one for ICM in order to estimate the labels is fixed to nseg ✏ 10. The gradient descent
can be stopped sooner if criterion (4.28) does not change anymore. Similarly, ICM can be stopped before having
performed nseg iterations if Potts energy does not change significantly. In practice, after few global iterations, the
actual number of performed iterations for ICM is 2 or 3.
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(a) α0 ➔ 1, β0 ➔ 1, α0 ➔ β0 (b) α0 ➔ 1, β0 ➔ 1, α0 → β0

(c) α0 → 1, β0 ➔ 1 (d) α0 ➔ 1, β0 → 1

(e) α0 → 1, β0 → 1, α0 → β0 (f) α0 → 1, β0 → 1, α0 ➔ β0

Figure 4.4: Probability density function of IG♣.⑤α0, β0q for several values of ♣α0, β0q
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Parameters K γ0 v0 α0 β0 αζ0 βζ0 nvol nseg
Fixed values 5 6 1 5 0.01 200 1 20 10

Table 4.1: Parameters of JMAP to reconstruct Shepp-Logan phantom

We compare the uses in JMAP of the unmatched RD/VD pair of projector and backprojector (P/BP) and of the
matched SF pair presented in chapter 3. If the used P/BP pair is the SF pair, then the expression (4.32) of the stepsize
in the gradient descent for the estimation of the volume can be simplified

µn ✏ argmin
µ→0

Jf

✁
f ♣n�1q

✠
✏

⑥∇Jf
✁
f ♣nq

✠
⑥22

⑥H∇Jf

✁
f ♣nq

✠
⑥2
V ζ

� ⑥∇Jf
✁
f ♣nq

✠
⑥2
V z

, (4.56)

since the pair is matched. On the contrary, if the used P/BP pair is unmatched such as the RD/VD pair, we have
observed in our experiments that applying formula (4.56) makes the algorithm diverge. In this case, we have found
that it is preferable to apply formula (4.34) in order to compute the optimal stepsize. Compared to the use of formula
(4.56), this adds a backprojection operation at each iteration of the descent. Since one iteration of the descent is
performed nvol ✂ tmax times in JMAP, the number of saved backprojection operations when the used P/BP pair is
matched is high. This is well shown in table 4.2. With the matched SF pair, one iteration of the gradient descent only
requires one backprojection operation, while two backprojections have to be done with the unmatched pair. Hence, if
the gradient descent has nvol ✏ 20 iterations as it is the case in our tests, then we have 20 backprojections with the
matched pair and 40 with the unmatched one. For both pairs, 40 projections are required in each gradient descent,
as one projection to update the variances of the uncertainties by formula (4.38). In total, if we run JMAP algorithm
during 20 global iterations, we need to perform 820 projections whatever the used pair is, but 400 backprojections
instead of 800 if the used P/BP pair is matched. Hence, JMAP algorithm requires to perform 1620 projection and
backprojection operations with an unmatched pair, and only 1220 with a matched one, which corresponds to a saving
of 25 % of P/BP operations.

Used P/BP pair Unmatched RD/VD Matched SF

One iteration of gradient descent to update the volume
Projections 2 2
Backprojections 2 1

Update the volume in nvol ✏ 20 iterations
Projections 40 40
Backprojections 40 20

Update the variances vζ of the uncertainties by (4.38)
Projections 1 1
Backprojections 0 0

tmax ✏ 20 iterations of JMAP algorithm
Projections 820 820
Backprojections 800 400

Total number of projection and backprojection operations in JMAP algorithm 1620 1220

Table 4.2: Comparison of the computational cost of JMAP in terms of projection and backprojection operations, depending on whether the
used P/BP pair is matched or unmatched

Figures 4.7 and 4.8 show the joint reconstructions and segmentations of Shepp-Logan phantom obtained by JMAP,
with the RD/VD pair and the SF pair respectively. As expected, the obtained reconstructions are piecewise-constant,
with compact and homogeneous regions. The reconstructions are near the original phantom, as shown in table 4.3,
with a relative error ∆2f equal to 8.82 % with the unmatched RD/VD pair and 8.81 % with the matched SF pair.
The reconstructions obtained with the different pairs appear very similar, as the segmentations jointly returned by the
algorithm. These segmentations look very near the original one in figure 4.5. In table 4.3, the similarity between the
original and the estimated segmentations is measured by the Rand index [Ran71] : it is approximately 95 % whatever
the used P/BP is. Moreover, the convergence of the algorithm, shown in figure 4.9, does not seem to be impacted
by the mismatching of the projection and backprojection operators, but, once again, this is because we have applied
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(a) (b)

Figure 4.5: Shepp-Logan phantom (a) and its segmentation (b). We see that it contains K ✏ 5 classes.

(a) (b)

Figure 4.6: FDK reconstruction of Shepp-Logan phantom (a) and its segmentation (b) used as initialization of JMAP
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(a) (b)

Figure 4.7: Joint reconstruction (a) and segmentation (b) of Shepp-Logan phantom obtained by JMAP with the unmatched RD/VD pair

(a) (b)

Figure 4.8: Joint reconstruction (a) and segmentation (b) of Shepp-Logan phantom obtained by JMAP with the matched SF pair
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(a) (b)

Figure 4.9: Convergence metrics for JMAP (stopping criterion (a) and RMSD with respect to the real phantom (b)), with the unmatched RD/VD
pair and the matched SF pair

formula (4.32) instead of (4.56) for stepsize µn when the unmatched pair was used. In table 4.3, the computation time
with the matched SF pair is larger than the one with the RD/VD pair, since the SF model is more accurate.

Reconstruction algorithm Computation time ∆2f ∆2g Rand index
PDFW with the unmatched RD/VD pair 168.5 s 3.93 % 0.76 % /
PDFW with the matched SF pair 510.5 s 3.90 % 0.73 % /
JMAP with the unmatched RD/VD pair 584.3 s 8.82 % 0.67 % 94.7 %

JMAP with the matched SF pair 873.1 s 8.81 % 0.66 % 94.7 %

Table 4.3: Comparison of the results of PDFW and JMAP, with the RD/VD pair and the SF pair

We compare our results with TV-regularized least-squares solved by PDFW [OMBF18] presented in chapter 2.
The results obtained by this algorithm are re-shown in figure 4.10. In table 4.3, the computation time is much greater
for JMAP than for PDFW. This is due to the fact that PDFW is mainly composed of projection and backprojection
operations, while, in JMAP, the segmentation step is also computationally demanding. In this work, the segmentation
step is done on the CPU and its parallelization on the GPU is a perspective. In figure 4.11, PDFW appears to
converge to a solution which is a bit closer to the original phantom than the one obtained by JMAP. Nevertheless,
this proximity is only in terms of the RMSD. If we focus on the properties of the estimation, then the solution
obtained by JMAP appears closer to the original phantom. Indeed, if we look at a profile of the phantom as done in
figure 4.12 and if we zoom in the central points, we see that JMAP complies with the piecewise-constant assumption
much more than PDFW. This is not surprising, since TV-regularization in PDFW looks for a solution of which the
gradient has minimum L1-norm, while the piecewise-constant assumption is enforced if we consider the L0-norm
of the gradient [SWFU15, SRUW17]. Nevertheless, as pointed out in the introduction of this chapter, the method
in [SWFU15, SRUW17] requires a lot of memory, contrary to PDFW [OMBF18]. In JMAP, there are two huge
variables which need to be stored in addition to the volume. The first is the variances vζ of the uncertainties which
are the size of the projections, like the dual variable p in PDFW (see algorithm 7). The second huge variable in JMAP
corresponds to the labels z which are the size of the volume but have the advantage to be integers : hence, they require
less memory than the second dual variable in PDFW which is also the size of the volume (see algorithm 7).

As a conclusion of this section, our experiments in simulation have validated our reconstruction algorithm since
reconstructions of good quality have been obtained. The assets of JMAP in terms of memory usage have been
highlighted. The algorithm has also appeared as more computationally costly than other reconstruction algorithms
such as PDFW due to its additional segmentation step. Nevertheless, JMAP has been shown to enforce the piecewise-
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(a) (b)

Figure 4.10: Reconstructions of Shepp-Logan phantom by PDFW [OMBF18] with the unmatched RD/VD pair (a) and the matched SF pair (b)

(a) (b)

Figure 4.11: Comparison of the evolution of the RMSD between JMAP and PDFW, with the unmatched RD/VD pair (a) and the matched SF
pair (b)
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(a) (b)

Figure 4.12: Profile of Shepp-Logan phantom to compare the reconstructions by PDFW and JMAP, with the unmatched RD/VD pair (a) and
with the matched SF pair

constant prior better than PDFW. In the next section, we apply JMAP on real data of SAFRAN. Because our GPU
implementation of the SF pair is still not completely operational and can for the moment only be used to reconstruct
small volumes, and because, we do our experiments only with the RD/VD pair in the following. This use is reasonable
since, thanks to the use of formula (4.32) instead of formula (4.56) for stepsize µn, we have not noticed troubles with
this unmatched pair.

4.5 Results on real data

4.5.1 Evaluation of the accuracy : Image Quality Indicator (IQI) volume

We first evaluate the accuracy of the proposed method on an Image Quality Indicator (IQI) volume [GARC16]. The
field-of-view is sampled into 512✂ 512✂ 256 voxels. In order to reconstruct this volume by JMAP, 300 projections
uniformly distributed over r0, 2πs are used. The detector is sampled into 512 ✂ 256 pixels. The source-to-rotation-
center distance is 975 mm, and the source-to-detector distance is 1300 mm. The IQI volume is a cylindrical plate in
which holes are drilled [GARC16]. It is obliquely positioned in order to minimize the attenuation of X-rays inside
it. From 300 projections, the filtered backprojection [FDK84], which initializes JMAP, is shown in figure 4.13. The
values for the parameters of JMAP are given in table 4.4. The volume is composed of nylon, polytetrafluoroethylene
(PTFE), polyamide and air, hence we fix K ✏ 4. We run JMAP during 50 iterations. Since, for this reconstruction,
each iteration of JMAP contains nvol ✏ 10 subiterations to estimate the volume, we run PDFW with TV-regularization
[OMBF18] during 500 iterations. The reconstruction by PDFW is shown in figure 4.14.

The joint reconstruction and segmentation by JMAP are shown in figure 4.15. The convergence of the stop
criterion is given in figure 4.16. As pointed out in simulation, the computation time for JMAP is larger than the one
for PDFW due to the segmentation step. Like the TV-reconstruction in figure 4.14, the reconstruction by JMAP has
compact and homogeneous regions thanks to the use of Gauss-Markov-Potts prior model. To compare the accuracy
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Parameters K γ0 v0 α0 β0 αζ0 βζ0 nvol nseg
Fixed values 4 3 1 5 0.01 200 1 10 4

Table 4.4: Parameters of JMAP to reconstruct IQI volume

of each reconstruction, we focus on the little holes present in the volume, as shown in figure 4.17. For the two biggest
holes, JMAP reaches the lowest value and is better than FDK and PDFW. Nevertheless, this value is slightly under
the theoretical value of 0 due to the fact that, like in PDFW, no non-negativity constraint is enforced in JMAP. For the
two intermediate holes, TV-reconstruction’s profile goes lower than JMAP. For the two most little holes, the accuracy
is better for JMAP. As noticed in simulation, the reconstruction by JMAP has sharper transitions than PDFW since it
enforces a quasi-piecewise-constant assumption.

Reconstruction algorithm Computation time
PDFW 1180 s

JMAP 3542 s

Table 4.5: Comparison of the computation time between PDFW and JMAP, for the reconstruction from 300 projections of IQI volume

4.5.2 Evaluation on Composite Material with Titanium on the Edges (CMTE)

We evaluate the robustness of our algorithm on challenging data with metal : the inspected volume is made of com-
posite material with titanium on the edges. We denote it by CMTE (Composite Material with Titanium on the Edges).
The field-of-view is sampled into 5123 voxels. The reconstruction is performed with 300 projections uniformly dis-
tributed over r0, 2πs. The detector is sampled into 5122 pixels. The source-to-rotation-center distance is 432 mm, and
the source-to-detector distance is 807 mm. The reconstruction by filtered backprojection is shown in figure 4.18. As
we see, the titanium is cause of many scattering and beam-hardening. The parameters for JMAP are given in table
4.6. The field-of-view is composed of air and of the materials of CMTE which are composite material and titanium
: hence, we fix K ✏ 3. Since there are strong beam-hardening and scattering, we fix αζ0 ➔ βζ0 ➔ 1 as explained in
section 4.3.6.

Parameters K γ0 v0 α0 β0 αζ0 βζ0 nvol nseg
Fixed values 3 3 1 5 0.01 0.01 0.1 2 3

Table 4.6: Parameters of JMAP to reconstruct CMTE

JMAP is run during 50 iterations and the convergence of its criterion is shown in figure 4.21. The results of
JMAP in figure 4.20 are compared with those of PDFW in figure 4.19. For PDFW, we fix λ ✏ 4 and the weights are
added to the data-matching term in order to take into account the pronounced asymmetry of the CMTE volume. The
computation times for PDFW and JMAP are given in table 4.7.

The scattering in CMTE has its values which are near those of the composite material. As a result, in figure 4.20,
JMAP fails in removing this scattering since the segmentation step gives the same label to the scattering and to the
composite material. On the contrary, TV-regularization succeeds in smoothing the scattering. Hence, the first profile
of CMTE we observe in figure 4.22 shows that PDFW obtains sharper transitions than JMAP due to the removing of
the scattering.

The beam-hardening in CMTE is characterized by strong negative values at the extremities of the titanium edges.
These negative values, visible in the second profile of CMTE observed in figure 4.23 for FDK and PDFW recon-
structions, can be very distinguished from the other materials during the segmentation step of JMAP. As a result, the
beam-hardening is assigned the same label as the air. Due to the fact that, according to our Gauss-Markov-Potts prior,
the values of the voxels of this class have to be close to their mean which is approximately zero, JMAP succeeds in
completely erasing the beam-hardening, while artifacts are still present in the reconstruction by PDFW.
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(a) (b)

Figure 4.13: Reconstruction from 300 projections of IQI volume by filtered backprojection [FDK84] (bottom (a) and top (b))

(a) (b)

Figure 4.14: Reconstruction from 300 projections of IQI volume by PDFW [OMBF18] (bottom (a) and top (b))
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(a) (b)

(c) (d)

Figure 4.15: Joint reconstruction (bottom (a) and top (b)) and segmentation (bottom (c) and top (d)) of IQI volume from 300 projections by
JMAP
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Figure 4.16: Convergence of JMAP for the joint reconstruction and segmentation of IQI volume from 300 projections

Figure 4.17: Profiles of the holes of IQI volume for the reconstructions by filtered backprojection [FDK84], PDFW [OMBF18] and JMAP
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Figure 4.18: Reconstruction of CMTE from 300 projections by
filtered backprojection [FDK84]

Figure 4.19: Reconstruction of CMTE from 300 projections by
PDFW [OMBF18]

(a) (b)

Figure 4.20: Joint reconstruction (a) and segmentation (b) of CMTE from 300 projections by JMAP
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Figure 4.21: Convergence of JMAP for the joint reconstruction and segmentation of CMTE from 300 projections

Figure 4.22: First profile of CMTE for each reconstruction by filtered backprojection [FDK84], PDFW [OMBF18] and JMAP

82



Figure 4.23: Second profile of CMTE for each reconstruction by filtered backprojection [FDK84], PDFW [OMBF18] and JMAP
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Reconstruction algorithm Computation time
PDFW 2352 s

JMAP 5074 s

Table 4.7: Comparison of the computation times of PDFW and JMAP, for the reconstruction of CMTE from 300 projections

Figure 4.24: Reconstruction of the metallic part from 500 projections by filtered backprojection [FDK84]

4.5.3 Evaluation on a metallic part

We do further experiments on a metallic part. The field-of-view is sampled into 1024 ✂ 1024 ✂ 1024 voxels1. We
use 500 projections uniformly distributed over r0, 2πs. The detector has 1024 ✂ 1024 cells. The source-to-detector
distance is 1077 mm, and the source-to-object distance is 700 mm. The part is only composed of metal : including
the air, we fix K ✏ 2. Since the volume is very huge and due to the fact that all the steps of our algorithm are still
not parallelized on the GPU, we run JMAP during 20 iterations. The values for the parameters are given in table 4.8.
Once again, we fix αζ0 ➔ βζ0 ➔ 1 to take strong scattering and beam-hardening into account.

Parameters K γ0 v0 α0 β0 αζ0 βζ0 nvol nseg
Fixed values 2 3 1 5 0.01 0.01 0.1 2 2

Table 4.8: Parameters of JMAP to reconstruct the metallic part

As for the CMTE volume, the metal is cause of many scattering and beam-hardening in the filtered backprojection
shown in figure 4.24. The segmentation step in JMAP succeeds in removing these artifacts in the reconstruction shown
in figure 4.25, since the gray values of scattering and beam-hardening are far from the one of the metal. Consequently,
JMAP returns a reconstruction of good quality, for which the piecewise-constant prior has been enforced. Contrary to
the filtered backprojection, the reconstruction by JMAP has sharp transitions between the air and the metal.

The convergence of JMAP is shown in figure 4.26. This reconstruction of a 10243 voxels has taken a long time
which is 1h45, since the segmentation step is performed on the CPU. Parallelizing this step on the GPU (which is
feasible due our choice of ICM as the segmentation algorithm in JMAP) should allow to perform this reconstruction
in less than one hour.

4.6 Conclusion and perspectives

In this chapter, we have presented a joint reconstruction and segmentation algorithm for 3D X-ray CT based on a
Gauss-Markov-Potts prior on the volume, in order to reconstruct quasi-piecewise-constant industrial parts of SAFRAN.
We have made efforts to explain how to correctly tune each parameter. In order to deal with huge volumes, we have
justified our choice for highly-parallelizable ICM algorithm in order to perform the segmentation step. In simulation,
we have shown that the algorithm can be made robust to the use of an unmatched pair of projector and backprojector.
Nevertheless, we have also explained that this mismatching requires to perform much more backprojections than with
a matched pair. We have experimentally shown the convergence of the algorithm. Nevertheless, we have underlined
that the proposed algorithm performs a local optimization. As a result, we have insisted on the importance of its
initialization. In particular, the results obtained by the algorithm are very dependent on the initial segmentation.

1For confidentiality reasons, the metallic part is only partly shown in figures 4.24 and 4.25.
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(a)

(b)

Figure 4.25: Joint reconstruction (a) and segmentation (b) of the metallic part from 500 projections by JMAP

Figure 4.26: Convergence of JMAP for the joint reconstruction and segmentation of the metallic part from 500 projections
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Our experiments on real data of SAFRAN have shown that the algorithm is actually able to enhance the re-
construction and to remove scattering and beam-hardening thanks to the segmentation step. Nevertheless,we have
seen with the CMTE volume that the segmentation can be misestimated if the scattering is too close to a material in
terms of gray values. Otherwise, the algorithm is efficient. Since the titanium is well separated from the scattering
and the composite material in JMAP, a possible way to enhance the reconstruction is to perform the reconstruction
of the composite material by another algorithm (such as PDFW or another), but inserting as prior information that
we know where the titanium is. Since we have shown in our experiments that PDFW can remove the scattering in
the CMTE volume, the knowledge about the position of the titanium should enable to avoid the artifacts due to the
beam-hardening. This idea will be tested in future works.

A perspective to accelerate JMAP is to implement the segmentation step on the GPU as we have seen in our
experiments with the 10243 metallic part. Another way to study is the reconstruction of textured materials such as
woven composite materials. In further experiments, which are not presented in this thesis, we have seen that Gauss-
Markov-Potts prior oversmoothes the weaving. Finding an appropriate prior for these materials remains an open
problem.
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Chapter 5

Error-splitting forward model and its

application with Gauss-Markov-Potts prior

In the previous chapter, as in other MBIR methods (such as the ones presented in chapter 2), we have used the forward
model

g ✏Hf � ζ, (5.1)

where g contains the projections, f is the volume and ζ is a term accounting for the uncertainties on the projections,
as explained in chapter 1. By enforcing a prior model M on the volume to reconstruct, we have seen that MBIR
methods significantly ehance the reconstruction quality, particularly when the number of projections is low [Fes00].
In chapter 2, we have listed many prior models which have been applied in X-ray CT [SJP�12, OMBF18, CMDGP17,
SWFU15, RR07, VGVH�13, WMDG17, XYM�12, ZRLF18]. We have also seen that prior model M very often has
hyperparameters θ which can be difficult to tune. In chapter 4, we have proposed a Bayesian MBIR method which
estimates optimal hyperparameters jointly with the volume

p♣f ,θ⑤Mq ✏ p♣f ⑤θ;Mqp♣θ⑤Mq, (5.2)

as it is done in [CMDGP17, WMDG17].
The reliability of the forward model (5.1), and therefore the accuracy of MBIR methods, depends on the prior

model for uncertainties ζ. To derive the prior for uncertainties ζi for each ray i modeled as monochromatic, we have
shown in chapter 1 that the expression of the Poisson statistics of photon count has been considered as [KPTF13] :

p♣Ii⑤f , riq ✏ P
✁
I0e

✁rHf s
i � ri

✠
, (5.3)

where I0 denotes the mean number of photons sent by the source and ri denotes the mean number of background
events [KPTF13]. These background events can be for instance Compton scatter interactions undergone by X-ray
photons inside the detector [NDMF�13]. As said in chapter 1, the mean number ri of background events is precom-
puted before the acquisition and taken into account in the linearization of the reconstruction problem

gi ✏ ln

✂
I0

Ii ✁ ri

✡
❅i. (5.4)

Given (5.4), we have shown in appendix A that uncertainties ζ are well modeled by a Gaussian distribution

p♣ζi⑤vζiq ✏ N ♣ζi⑤0, vζiq,❅i, (5.5)

thanks to a second order Taylor series expansion of the Poisson statistics (5.3) of photons counts [SB93, TBSH06,
TSBH07]. Inverses of variances vζ weight the data and translate how the actual physical phenomena occuring in
each measurement are far from or near the ideal physics described by Beer-Lambert’s law. These variances can be
pre-computed [TSBH07] or, as we did in chapter 4, optimized during the reconstruction [CMDGP17, WMDG17].

Although the commonly-used forward model (5.1) has given good results in 3D X-ray CT when combined with a
prior model on the volume, the expression of the mean of photon counts in equation (5.3) does not take into account
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all the phenomena involved in 3D X-ray CT. This led us to estimate optimal vζ in chapter 4. As explained in chapter
1, the further phenomena involved in X-ray CT correspond to object-dependent uncertainties, such as scattering
inside the volume, but also absorption of low energy photons occuring in presence of some materials such as metal
[GDMJ�16]. These further phenomena can be taken into account by considering the actual polychromacy of X-rays.
The polychromatic model is obtained by integrating the attenuation term in (5.3) over all the energy spectrum :

p♣Ii⑤f♣Eq, riq ✏ P

✂➺
E

I0♣Eqe✁rHf ♣EqsidE � ri

✡
. (5.6)

Based on this model, MBIR methods aiming at compensating beam-hardening address the reconstruction problem
by estimating the density of material in each voxel, which is part of attenuation coefficients’ expression [JBS15,
MFDA18]. This estimation is preferred to the one of attenuation coefficients because the density of material only
depends on voxel location [JBS15, MFDA18] : hence, the estimation of one reconstruction per energy is avoided.
Nevertheless, the integration in polychromatic model (5.6) hinders the linearization of the reconstruction problem
done for the monochromatic model by formula (1.8). Consequently, the use of polychromatic model (5.6) adds
complexity to MBIR methods which are already computationally-demanding due to projection and backprojection
operations. For this reason, even recently, polychromatic model (5.6) has only been used for 2D reconstruction
problems [JBS15, MFDA18].

In order to tackle this problem and to reconstruct 3D images with a more accurate forward model than (5.1), in
this chapter, we propose to make a tradeoff between the accuracy of polychromatic model (5.6) and the simplicity of
monochromatic model (5.3). Since monochromatic model (5.3) is an approximation of polychromatic model (5.6),
we suggest to add an unknown error term ni in monochromatic model (5.3), which corresponds to the approximation
error with respect to the polychromatic model :

p♣Ii⑤f , ni, riq ✏ P
✁
I0e

✁rHf s
i � ni � ri

✠
,❅i. (5.7)

Furthermore, unknown error ni enables to handle other physical phenomena described in [NDMF�13], which would
be too complex to model in a MBIR method.

Based on expression (5.7), we propose to derive a new linear forward model accounting for uncertainties, different
from (5.1), in order to use it in a full MBIR method, and to compare results with those obtained with the usual forward
model (5.1). In section 5.1, we perform a second order Taylor series expansion from Poisson statistics (5.7), in order
to show that an error-splitting forward model of the form✧

g ✏ g0 � ǫ
g0 ✏Hf � ξ (5.8)

can be used for iterative reconstruction in 3D X-ray CT. Next, we assign different priors to uncertainties ǫ and ξ.
Uncertainties ǫ are called the measurement uncertainties and are modeled as Gaussian, while uncertainties ξ are
called linear model uncertainties and are more difficult to model. In order to introduce robustness with respect to
outliers, we assign a heavy-tailed prior to ξ, which is in this chapter a generalized Student-t distribution [Dum16].
Both priors for ǫ and ξ introduce parameters about which we give strategies to fix them. Then, in section 5.2, we
propose a general MBIR algorithm for maximizing the joint posterior distribution of the unknowns and compare
its cost to Joint Maximization A Posteriori (JMAP) with usual forward model (5.1). To implement this algorithm,
conditional distributions of the unknowns in the error-splitting forward model are derived. The proposed algorithm
is valid for any proper prior model on the volume. In order to reconstruct piecewise-constant parts for SAFRAN, we
propose to combine the error-splitting forward model with Gauss-Markov-Potts prior model on the volume presented
in chapter 4. We show results on real data in section 5.5 and give conclusions in section 5.6. The results compare
the uses of usual forward model (5.1) and of the proposed forward model, with Gauss-Markov-Potts prior model on
the volume. Compared to usual forward model (5.1), we show that, with Gauss-Markov-Potts prior, the use of the
error-splitting forward model leads to more robust and accurate reconstructions.
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5.1 Error-splitting forward model

5.1.1 Derivation of the error-splitting forward model

The photon count Ii measured by the detector for projection i is modeled as a Poisson process of which the statistics
is given by equation (5.7), where ri is the mean of background events (i.e. the dark scan), and ni is the approximation
error induced by monochromatic model (5.3) with respect to polychromatic model (5.6). Contrary to background
events mean ri which is precomputed, error ni is unknown because of its dependance on both the acquisition and
the inspected volume f . Thus, error ni cannot be pre-computed and taken into account in the linearization of the
reconstruction problem in (5.4). From equation (5.7), we have

✁ ln♣p♣Ii⑤f , ni, riqq ✏ ln♣Ii!q � I0e
✁rHf s

i � ni � ri ✁ Ii ln
✁
I0e

✁rHf s
i � ni � ri

✠
. (5.9)

After reparametrization (5.4), a quadratic approximation from second order Taylor series expansion of (5.9) is derived
in appendix C. It leads to

✁ ln♣p♣gi⑤f , ni, riq ✓ ln♣Ii!q � Ii � ni ✁ Ii ln♣Ii � niq � ai

2

✂
gi ✁ rHf si �

bi

ai

✡2

✁ b2i
2ai

(5.10)

where ★
ai ✏ ♣Ii ✁ riq

✁
1✁ Ii♣ri�niq

♣Ii�niq2

✠
bi ✏ ni♣Ii✁riq

Ii�ni

. (5.11)

By denoting

ξi ✏ ✁ bi
ai

✏ ✁ ni♣Ii � niq
♣Ii � niq2 ✁ Ii♣ri � niq (5.12)

and

vǫi ✏
1

ai
,❅i, (5.13)

we have the following expression for the log-likelihood

ln♣p♣g⑤f ,n, rqq ✏ C ✁ 1

2
⑥g ✁Hf ✁ ξ⑥2V ǫ

(5.14)

where V ǫ ✏ diag rvǫs, vǫ ✏ ♣vǫiqi and

C ✏ ✁
M➳
i✏1

✒
ln♣Ii!q � Ii � ni ✁ Ii ln♣Ii � niq ✁ b2i

2ai

✚
. (5.15)

As already mentioned, from a physical standpoint, error ni depends on the inspected volume f . Nevertheless, taking
into account the relationship between ni and f would lead to a non-linear forward model which would be computa-
tionally untractable in 3D. For this reason, from a mathematical standpoint, ni is seen as a variable independent from
f , which only compensates the difference between the polychromatic and the monochromatic models of the rays.
Consequently, since it does not include f , term C given by equation (5.15) can be seen as a constant. Hence, the new
forward model we now derive from the approximate log-likelihood (5.14) is linear. In (5.14), term ξ appears in the
data-fidelity term as a bias which is unknown due to error ni. By introducing intermediate projections

g0i ✏ rHf si � ξi,❅i, (5.16)

we are able to write the new forward model✧
gi ✏ g0i � ǫi where p♣ǫi⑤vǫiq ✏ N ♣ǫi⑤0, vǫiq,
g0i ✏ rHf si � ξi

❅i, (5.17)

which leads to the same log-likelihood than (5.14), up to an additive constant. The vector form of this forward model
is given by equation (5.8) : we see that it splits the uncertainties into two terms : ǫ and ξ. For this reason, we call it
the error-splitting forward model. Since uncertainties ♣ǫiqi are related to measurements gi, we call ǫ the measurement

uncertainties. Concerning uncertainties ♣ξiqi, since it corresponds in (5.14) to a bias between actual and theoretical
projections g andHf , we call ξ the linear model uncertainties.
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5.1.2 Measurement uncertainties

As we have seen in section 5.1.1, the measurement uncertainties ♣ǫiqi in

gi ✏ g0i � ǫi (5.18)

are zero-mean Gaussian :
p♣ǫi⑤vǫiq ✏ N ♣ǫi⑤0, vǫiq,❅i, (5.19)

where vǫi is given by (5.13). We see that vǫi is the inverse of ai which depends on ni in (5.11). Since ni is unknown,
we jointly estimate vǫi with the volume. In order to have analytically tractable update formulae, vǫi is assigned a
conjugate prior which is an Inverse-Gamma distribution, of which the expression has been already seen in chapter 4 :

p♣vǫi ⑤αǫ0 , βǫ0q ✏ IG♣vǫi ⑤αǫ0 , βǫ0q ✏
β
αǫ0
ǫ0

Γ♣αǫ0q
v
✁αǫ0

✁1
ǫi exp

✒
✁βǫ0
vǫi

✚
, vǫi → 0,❅i. (5.20)

Parameters αǫ0 and βǫ0 are fixed. We will discuss about the choice of these parameters in section 5.1.4.

5.1.3 Linear model uncertainties

As we have seen in section 5.1.1, linear model uncertainties ξ are a bias which can be separated from measurement
uncertainties ǫ by introducing intermediate projections

g0 ✏Hf � ξ. (5.21)

From
g ✏ g0 � ǫ, (5.22)

projections g0 appear as the projections unnoisy by the measurement uncertainties. For this reason, we call g0 the
"true" projections. In order to estimate volume f from g0 taking ξ into account, we need to assign a prior to linear
model uncertainties ξ. This is not obvious because, contrary to ǫ, this prior cannot be deduced from the second order
Taylor series expansion derived in section 5.1.1. Since ξ is difficult to physically model due to its high dependency on
the inspected volume, we prefer to assign a heavy-tailed prior to it. The use of a heavy-tailed prior enables to model
that possibly high ξi can be present in projections g0. Consequently, compared, for instance, to a Gaussian prior, it
brings more robustness to the estimation of f from g0.

Among heavy-tailed distributions, zero-mean normal variance mixtures have appealing properties for simple com-
putations in linear inverse problems [DGWMD17]. Among them, generalized Student-t distribution Stg [Dum16]

p♣ξi⑤αξ0 , βξ0q ✏ Stg♣ξi⑤αξ0 , βξ0q,❅i, (5.23)

corresponds to a mixture on the variances between a zero-mean Gaussian and an Inverse-Gamma distributions✧
p♣ξi⑤vξiq ✏ N ♣ξi⑤0, vξiq
p♣vξi ⑤αξ0 , βξ0q ✏ IG♣vξi ⑤αξ0 , βξ0q

,❅i. (5.24)

By introducing hidden variances vξ in the reconstruction problem, generalized Student-t distribution can be easily
dealt with thanks to simple calculations involving normal distribution for ξ and conjugate Inverse-Gamma prior for
vξ. Parameters αξ0 and βξ0 are fixed according to the strategy presented in section 5.1.4.

5.1.4 Fixing the parameters of the error-splitting forward model

From (5.19) and (5.20), since we have assigned a conjugate prior on variances vǫ, the prior for measurement uncer-
tainties is in fact a normal variance mixture✧

p♣ǫi⑤vǫiq ✏ N ♣ǫi⑤0, vǫiq
p♣vǫi ⑤αǫ0 , βǫ0q ✏ IG♣vǫi ⑤αǫ0 , βǫ0q

,❅i, (5.25)
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(a) αξ0 ➔ 1, βξ0 ➔ 1, αξ0 ➔ βξ0 (b) αξ0 ➔ 1, βξ0 ➔ 1, αξ0 → βξ0

(c) αξ0 → 1, βξ0 ➔ 1
(d) αξ0 → 1, βξ0 → 1, αξ0 → βξ0

Figure 5.1: Probability density function of Stg♣.⑤αξ0 , βξ0q for several values of ♣αξ0 , βξ0q

which is a generalized Student-t distribution as for the linear model uncertainties. This is a problem because ǫ has to
be Gaussian according to (5.17). In order to see how to actually assign a Gaussian prior to measurement uncertainties
keeping vǫ unknown, we write the marginal prior of ǫi with respect to vǫi

p♣ǫi⑤αǫ0
, βǫ0q ✏

➺
�✽

0

N ♣ǫi⑤0, vǫiqIG♣vǫi ⑤αǫ0
, βǫ0q dvǫi (5.26)

which reads [DGWMD17]

p♣ǫi⑤αǫ0 , βǫ0q✾
✂
1� ǫ2i

2βǫ0

✡✁♣αǫ0
� 1

2
q

(5.27)

where normalizing constants are omitted. From formula (5.27), we see that, if we fix βǫ0 such that✞✞✞✞ ǫ2iβǫ0
✞✞✞✞ ✦ 1 ❅i, (5.28)

the following approximation holds :

p♣ǫi⑤αǫ0 , βǫ0q ✒✞
✞
✞
✞
ǫ2
i

βǫ0

✞
✞
✞
✞✦1

exp

✒
✁
✂
αǫ0 �

1

2

✡
ǫ2i
2βǫ0

✚
(5.29)

and means that ǫi can actually be modeled as zero-mean Gaussian

p♣ǫi⑤αǫ0 , βǫ0q ✒✞
✞
✞
✞
ǫ2
i

βǫ0

✞
✞
✞
✞✦1

N

✄
ǫi

✞✞✞✞✞0, βǫ0

αǫ0 � 1
2

☛
,❅i. (5.30)
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Figure 5.2: Illustration of the dependence of the Signal-to-Noise Ratio (SNR) on the thickness of the material crossed by the rays

Thus, generalized Student-t distribution is sufficiently flexible to assign Gaussian prior for measurement uncertainties
ǫ and heavy-tailed prior for linear model uncertainties ξ.

For fixed βǫ0 complying with constraint (5.28), we derive in appendix D a formula to automatically set αǫ0 :

αǫ0 ✏M ✂ βǫ0
⑥g⑥22

✂
✁
1� 10

SNR
10

✠
✁ 1

2
, (5.31)

where SNR corresponds to a prior on the Signal-to-Noise Ratio (SNR). In this work, SNR is a parameter which is
fixed manually by the user based on physical intuition. Actually, the SNR for each projection is different depending on
the materials crossed by the rays and on the thickness of these materials. For instance, the SNR in rays going through
air is much higher than the one in rays going through thick materials. As shown in figure 5.2, it is also clear that the
SNR depends on the projection direction : if the projection direction is such that the path of a ray inside the inspected
object is short, then the SNR in this ray is high. On the opposite, if the projection direction is such that this path is
much longer, then the SNR is much lower. Given these observations, one improvement would be to assign a different
SNRi to each ray i (and consequently, based on formula (5.31), a different αǫ0i to each measurement uncertainty
ǫi). Parameter SNRi would be fixed to a more or less high value depending on the length of the path of ray i inside
the object. This length would be approximately computed based on a segmentation of the volume initializing the
reconstruction, obtained as discussed in section 4.3.6. Although this idea seems interesting to test, including it in this
work would complicate the comparison between the usual forward model (5.1) and the proposed error-splitting one,
which is the scope of this chapter. For this reason, this enhancement will be considered in future works.
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Concerning parameters αξ0 and βξ0 for linear model uncertainties, their fixation tunes the tail of the generalized
Student-t distribution in order to introduce robustness as motivated in section 5.1.3. Figure 5.1 shows the probability
density function of Stg♣.⑤αξ0 , βξ0q for different values of αξ0 and βξ0 . We see that generalized Student-t distribution
is heavy-tailed for αξ0 ➔ 1. On the contrary, the tail is short for αξ0 → 1, which is not good to enforce robustness.
Hence, we fix αξ0 ➔ 1. For αξ0 ➔ 1, we see that Stg♣.⑤αξ0 , βξ0q is concentrated around 0 for βξ0 ➔ 1 and αξ0 → βξ0
: this makes this setting appropriate when linear model uncertainties are high in a small number of measurements. In
the other case, fixing αξ0 ➔ βξ0 and βξ0 ➔ 1 makes the tail very heavy : it is more appropriate when linear model
uncertainties are high in all the data. Consequently, we fix βξ0 ➔ αξ0 ➔ 1 when scattering and absorption are low,
and αξ0 ➔ βξ0 ➔ 1 when they are high.

Now we have explained strategies to fix the parameters, we detail in section 5.2 a reconstruction algorithm using
the error-splitting forward model.

5.2 Joint Maximization A Posteriori (JMAP) using the error-splitting forward model

M

❄

✒✑
✓✏
θ

❄
f✒✑

✓✏

H

αξ0 , βξ0

❄

✒✑
✓✏
vξ

❄
ξ✒✑

✓✏

✛
❄

✒✑
✓✏
g0

αǫ0 , βǫ0

❄

✒✑
✓✏
vǫ

❄
ǫ✒✑

✓✏

✛
❄

✒✑
✓✏
g

Figure 5.3: General hierarchical model including the error-splitting forward model

The error-splitting forward model is summarized by equations✧
g ✏ g0 � ǫ
g0 ✏Hf � ξ

. (5.32)

The model developed in section 5.1.1 for splitted uncertainties :✩✬✬✫
✬✬✪

p♣ǫi⑤vǫiq ✏ N ♣ǫi⑤0, vǫiq
p♣vǫi ⑤αǫ0 , βǫ0q ✏ IG♣vǫi ⑤αǫ0 , βǫ0q
p♣ξi⑤vξiq ✏ N ♣ξi⑤0, vξiq
p♣vξi ⑤αξ0 , βξ0q ✏ IG♣vξi ⑤αξ0 , βξ0q

❅i, (5.33)

is denoted by S . We consider a general prior model M on the volume with hyperparameters θ which are estimated
jointly with the other unknowns. Figure 5.3 summarizes the general hierarchical model when the error-splitting for-
ward model is used : data g are the combination of "true" projections g0 and of measurement uncertainties ǫ with
variances vǫ. Projections g0 result from volume f (through projection operationH), and from linear model uncertain-
ties ξ with variances vξ. At last, volume f is described by prior model M with hyperparameters θ. Hyperparameters
θ can be assigned a prior distribution depending on M, while variances vξ and vǫ have Inverse-Gamma priors with
parameters ♣αξ0 , βξ0q and ♣αǫ0 , βǫ0q respectively. The joint posterior distribution of the unknowns is given by Bayes’s

93



rule :

p♣g0,vǫ,f ,vξ,θ⑤g;S,Mq✾ p♣g⑤g0,vǫqp♣g0⑤f ,vξqp♣vǫ⑤αǫ0 , βǫ0q p♣f ⑤θ;Mq p♣vξ⑤αξ0 , βξ0q p♣θ⑤Mq. (5.34)

Similarly to the proposed reconstruction method in chapter 4, we choose to perform a joint maximization a posteriori
(JMAP)

♣ĝ0, v̂ǫ, f̂ , v̂ξ, θ̂q ✏ argmax
♣g

0
,vǫ,f ,vξ,θq

tp♣g0,vǫ,f ,vξ,θ⑤g;S,Mq✉ (5.35)

by an alternate optimization algorithm✩✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✪

g
♣t�1q
0 ✏ argmaxg

0

✦
p♣g0,v♣tqǫ ,f ♣tq,v♣tqξ ,θ♣tq ⑤ g;S,Mq

✮
(5.36a)

v
♣t�1q
ǫ ✏ argmaxvǫ

✦
p♣g♣t�1q

0 ,vǫ,f
♣tq,v

♣tq
ξ ,θ

♣tq ⑤ g;S,Mq
✮

(5.36b)

f ♣t�1q ✏ argmaxf

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ,v

♣tq
ξ ,θ

♣tq ⑤ g;S,Mq
✮

(5.36c)

v
♣t�1q
ξ ✏ argmaxvξ

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ♣t�1q,vξ,θ

♣tq ⑤ g;S,Mq
✮

(5.36d)

θ♣t�1q ✏ argmaxθ

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ♣t�1q,v

♣t�1q
ξ ,θ ⑤ g;S,Mq

✮
(5.36e)

The criterion to maximize is derived from joint posterior distribution (5.34), from which constants are removed :

L ♣g0,vǫ,f ,vξ,θq ✏ ✁1

2
⑥g ✁ g0⑥2V ǫ

✁ 1

2
⑥g0 ✁Hf⑥2V ξ

✁
M➳
i✏1

✒✂
αǫ0 �

3

2

✡
ln ♣vǫiq �

βǫ0
vǫi

✚

� ln ♣p♣f ⑤θ;Mqq ✁
M➳
i✏1

✒✂
αξ0 �

3

2

✡
ln ♣vξiq �

βξ0
vξi

✚
� ln ♣p♣θ⑤Mqq . (5.37)

Like in chapter 4, according to Bayes’s rule, each step of the algorithm is equivalent to maximizing the conditional
distribution of each unknown given the others. In the following of this section, we detail these steps for the general
case with any prior model M on the volume.

5.2.1 Conditional distribution of the "true" projections

According to Bayes’s rule, the conditional distribution of the "true" projections given the other unknowns reads

p♣g0⑤vǫ,f ,vξ,θ; g,S,Mq✾p♣g⑤g0,vǫqp♣g0⑤f ,vξq

✾ exp

✒
✁1

2
⑥g ✁ g0⑥2V ǫ

✁ 1

2
⑥g0 ✁Hf⑥2V ξ

✚
(5.38)

where V ǫ ✏ diag rvǫs and V ξ ✏ diag rvξs. Hence, conditional distribution (5.38) is a Gaussian

p♣g0⑤vǫ,f ,vξ,θ; g,S,Mq ✏ N ♣g0⑤mg0 ,V g0q (5.39)

where ✩✫
✪ V g0 ✏

✁
V ✁1
ǫ � V ✁1

ξ

✠✁1

mg0 ✏ V g0

✁
V ✁1
ǫ g � V ✁1

ξ Hf
✠ . (5.40)

Hence, step (5.36a) sets

ĝ0 ✏mg0 ✏
✁
V ✁1
ǫ � V ✁1

ξ

✠✁1 ✁
V ✁1
ǫ g � V ✁1

ξ Hf
✠

(5.41)

which is simple to compute since V g0 is diagonal.
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5.2.2 Conditional distribution of the variances of the measurement uncertainties

By applying Bayes’s rule, we have

p♣vǫ⑤g0,f ,vξ,θ; g,S,Mq✾p♣g⑤g0,vǫqp♣vǫ⑤αǫ0 , βǫ0q

✾
M➵
i✏1

exp

✒
✁
✂
αǫ0 �

3

2

✡
✁ 1

vǫi

✂
βǫ0 �

1

2
♣gi ✁ g0iq2

✡✚
. (5.42)

Hence, the conditional distribution of the variances of the measurement uncertainties is Inverse-Gamma

p♣vǫi ⑤g0,f ,vξ,θ; g,S,Mq ✏ IG♣vǫi ⑤α̂ǫ0i , β̂ǫ0i q (5.43)

where ★
α̂ǫ0i ✏ αǫ0 � 1

2

β̂ǫ0i ✏ βǫ0 � 1
2
♣gi ✁ g0iq2

,❅i P t1, . . . ,M✉ . (5.44)

So, step (5.36b) sets

v̂ǫi ✏
β̂ǫ0i

α̂ǫ0i � 1
,❅i P t1, . . . ,M✉ . (5.45)

5.2.3 Conditional distribution of the volume

The conditional distribution of the volume given the other unknowns depends on its prior model

p♣f ⑤g0,vǫ,f ,vξ,θ; g,S,Mq✾p♣g0⑤f ,vξqp♣f ⑤θ;Mq

✾ exp

✒
✁1

2
⑥g0 ✁Hf⑥2V ξ

✚
p♣f ⑤θ;Mq (5.46)

So, step (5.36c) consists in minimizing

Jf ♣fq ✏ 1

2
⑥g0 ✁Hf⑥2V ξ

✁ ln ♣p♣f ⑤θ;Mqq (5.47)

by an optimization algorithm which is dependent on the prior model on the volume.

5.2.4 Conditional distribution of the variances of the linear model uncertainties

Thanks to the use of conjugate prior, we have :

p♣vξi ⑤g0,vǫ,f ,θ; g,S,Mq ✏ IG♣vξi ⑤α̂ξ0i , β̂ξ0i q (5.48)

where ★
α̂ξ0i ✏ αξ0 � 1

2

β̂ξ0i ✏ βξ0 � 1
2
♣g0i ✁ rHf siq2

,❅i P t1, . . . ,M✉ . (5.49)

So, step (5.36d) sets

v̂ξi ✏
β̂ξ0i

α̂ξ0i � 1
,❅i P t1, . . . ,M✉ . (5.50)

5.2.5 Conditional distribution of the hyperparameters of the prior model on the volume

The conditional distribution of hyperparameters θ

p♣θ⑤g0,vǫ,f ,vξ, ; g,S,Mq✾p♣f ⑤θ;Mqp♣θ⑤Mq (5.51)

only depends on the prior model on the volume and not on the used forward model.
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Algorithm 13 JMAP algorithm using the error-splitting forward model

Initialize v♣0qǫ , f ♣0q, v♣0qξ and θ♣0q

for t ✏ 0, . . . , tmax ✁ 1 do

1 : Update g0 by (5.41)
2 : Update vǫ by (5.45)
3 : Update f by minimizing criterion (5.47) through nvol iterations of an optimization algorithm
4 : Update vξ by (5.50)
5 : Update θ by maximizing (5.51)

end for

5.2.6 Discussion

The overall algorithm is summarized in algorithm 13. Initial volume f ♣0q is obtained by a filtered backprojection
method such as FDK [FDK84]. On this first reconstruction, initial values θ♣0q of hyperparameters θ can be computed,
as we did in chapter 4 for θ ✏ ♣z,m,vq. "True" projections g0 do not need to be initialized since they are immediately
estimated at the beginning of the algorithm. We use formulae (5.45) and (5.50) in order to initialize vǫ and vξ. Since
the "true" projections cannot be known at initialization, we replace g0 by g andHf respectively :

v̂♣0qǫi ✏
βǫ0 � 1

2

✁
gi ✁

✑
Hf ♣0q

✙
i

✠2
αǫ0 � 1

,❅i P t1, . . . ,M✉ . (5.52)

and

v̂
♣0q
ξi

✏
βξ0 � 1

2

✁
gi ✁

✑
Hf ♣0q

✙
i

✠2
αξ0 � 3

2

,❅i P t1, . . . ,M✉ . (5.53)

Like our joint reconstruction and segmentation method in chapter 4, algorithm 13 has a hidden parameter which is the
number nvol of subiterations to perform in order to update the volume. This parameter is fixed in the same way as the
one explained in section 4.3.6. As already pointed out, the algorithm is applicable with any proper prior model on the
volume. In section 5.4, we combine the error-splitting forward model with Gauss-Markov-Potts prior model on the
volume used in chapter 4, in order to complete the algorithm with explicit updates of volume f and hyperparameters
θ. Before that, we compare the cost of the use of the error-splitting forward model with respect to the usual one.

5.3 Comparison with the usual forward model

With the usual forward model (5.1), total uncertainties ζ are Gaussian, with variances vζ , as explained in chapter 1.
Like in chapter 4, we denote this forward model by U . A conjugate prior can be assigned to vζ , as done in chapter 4
[CMDGP17, WMDG17].

With the usual forward model (5.1), true projections g0 do not appear since the uncertainties are not splitted. To
estimate volume f , variances vζ and hyperparameters θ, their joint posterior distribution

p♣f ,vζ ,θ⑤g;U ,Mq✾ p♣g⑤f ,vζq p♣vζ ⑤Uq p♣f ⑤θ;Mq p♣θ⑤Mq (5.54)

is maximized
♣f̂ , v̂ζ , θ̂q ✏ argmax

♣f ,vζ ,θq
tp♣f ,vζ ,θ⑤g;U ,Mq✉ (5.55)

by the alternate optimization [CMDGP17, WMDG17]✩✬✬✬✬✫
✬✬✬✬✪

f ♣t�1q ✏ argmaxf

✦
p♣f ,v♣tqζ ,θ♣tq⑤g;U ,Mq

✮
(5.56a)

v
♣t�1q
ζ ✏ argmaxvζ

✦
p♣f ♣t�1q,vζ ,θ

♣tq⑤g;U ,Mq
✮

(5.56b)

θ♣t�1q ✏ argmaxθ

✦
p♣f ♣t�1q,v

♣t�1q
ζ ,θ⑤g;U ,Mq

✮
(5.56c)
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In section 5.2, using the error-splitting forward model, step (5.36c) reads

f Ð argmin
f

✧
1

2
⑥g0 ✁Hf⑥2V ξ

✁ ln ♣p♣f ⑤θ;Mqq
✯

(5.57)

while step (5.56a) with usual forward model (5.1) has the form

f Ð argmin
f

✧
1

2
⑥g ✁Hf⑥2V ζ

✁ ln ♣p♣f ⑤θ;Mqq
✯
, (5.58)

so minimization (5.57) can be performed in the same way as (5.58) by replacing g by g0, and vζ by vξ. The update
of hyperparameters θ is done as in section 5.2. Hence, alternate optimizations (5.36) or (5.56) only differ by the
estimation of g0, vǫ and vξ with the error-splitting forward model, and by the estimation of vζ with the usual forward
model. As we have seen in section 5.2, the estimations of g0, vǫ and vξ have a very little computational cost since they
are performed by analytical formulae thanks to the use of conjugate priors. Therefore, especially when a conjugate
prior is assigned to vζ (such as Inverse-Gamma prior as in chapter 4), the cost of one global iteration of JMAP when
using the error-splitting forward model is approximately the same as the one with usual forward model (5.1), for any
prior model on the volume.

One drawback of our error-splitting approach is the memory cost. The error-splitting forward model introduces
variables g0, vǫ and vξ in place of variances vζ in the usual forward model. These variables are all the size of
projections g, which can be very large. In order to save memory usage, one way is to assign only one variance vcellc
to all measurement uncertainties related to cell c of the detector :

vǫi ✏ vcellc , for all ray i hitting cell c, (5.59)

so variances of measurement uncertainties are only size of an image with Nu ✂Nv pixels. This is what we do in our
experiments in section 5.5. By this way, the variances of the measurement uncertainties are made independent from
the projection angle, which is an approximation according to our derivation of the error-splitting forward model in
section 5.1.1. Nevertheless, compared to the case where we have one vǫi per ǫi, we did not notice troubles due to this
memory saving.
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Figure 5.4: Hierarchical model combining the error-splitting forward model and Gauss-Markov-Potts prior on the volume
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5.4 Combination of the error-splitting forward model with Gauss-Markov-Potts

prior on the volume

We now combine our error-splitting forward model with Gauss-Markov-Potts prior presented in chapter 4. Figure 5.4
shows the hierarchical model merging figures 4.2 and 5.3. Given the joint posterior distribution of the unknowns

p ♣g0,vǫ,f ,vξ, z,m,v ⑤ g;S,Mq✾ p♣g⑤g0,vǫqp♣g0⑤f ,vξq p♣vǫ⑤αǫ0 , βǫ0q p♣f ⑤z,m,vq
p♣vξ⑤αξ0 , βξ0q p♣z⑤α; γ0q p♣m⑤m0, v0q p♣v⑤α0, β0q, (5.60)

the joint maximization a posteriori

♣ĝ0, v̂ǫ, f̂ , v̂ξ, ẑ, m̂, v̂q ✏ argmax
♣g

0
,vǫ,f ,vξ,z,m,vq

tp ♣g0,vǫ,f ,vξ, z,m,v ⑤ g;S,Mq✉ , (5.61)

is performed as described in section 5.2 :✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

g
♣t�1q
0 ✏ argmaxg

0

✦
p♣g0,v♣tqǫ ,f ♣tq,v♣tqξ , z♣tq,m♣tq,v♣tq ⑤ g;S,Mq

✮
(5.62a)

v
♣t�1q
ǫ ✏ argmaxvǫ

✦
p♣g♣t�1q

0 ,vǫ,f
♣tq,v

♣tq
ξ , z

♣tq,m♣tq,v♣tq ⑤ g;S,Mq
✮

(5.62b)

f ♣t�1q ✏ argmaxf

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ,v

♣tq
ξ , z

♣tq,m♣tq,v♣tq ⑤ g;S,Mq
✮

(5.62c)

v
♣t�1q
ξ ✏ argmaxvξ

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ♣t�1q,vξ, z

♣tq,m♣tq,v♣tq ⑤ g;S,Mq
✮

(5.62d)

z♣t�1q ✏ argmaxz

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ♣t�1q,v

♣t�1q
ξ , z,m♣tq,v♣tq ⑤ g;S,Mq

✮
(5.62e)

m♣t�1q ✏ argmaxm

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ♣t�1q,v

♣t�1q
ξ , z♣t�1q,m,v♣tq ⑤ g;S,Mq

✮
(5.62f)

v♣t�1q ✏ argmaxv

✦
p♣g♣t�1q

0 ,v
♣t�1q
ǫ ,f ♣t�1q,v

♣t�1q
ξ , z♣t�1q,m♣t�1q,v ⑤ g;S,Mq

✮
(5.62g)

The criterion minimized to update the volume, corresponding to (5.47), is

Jf ♣fq ✏ 1

2
⑥g0 ✁Hf⑥2V ξ

� 1

2
⑥f ✁mz⑥2V z (5.63)

where, like in chapter 4, mzj ✏ mk and vzj ✏ vk if zj ✏ k, and V z ✏ diag rvzs. The minimization is done by a
gradient descent similar to the one presented in section 4.3.1.

For Gauss-Markov-Potts prior model, the hyperparameters are θ ✏ ♣z,m,vq. As we have seen, their update
do not depend on the used forward model. Consequently, z, m and v are updated as done in chapter 4. The labels
are updated by running few iterations of Iterated Conditional Mode (ICM) algorithm [Bes86] which maximizes Potts
energy (4.40). Next, the updating formulae form and v are the same as (4.47) and (4.51) derived in chapter 4 :

m̂k ✏
m0

v0
� 1

vk

➦N
j✏1 fjδ♣zj ✁ kq

1
v0

� Nk

vk

,❅k (5.64)

and

v̂k ✏
β0 � 1

2

➦N
j✏1♣fj ✁mkq2δ♣zj ✁ kq
α0 � Nk

2
� 1

,❅k (5.65)

where Nk is the number of voxels in class k. The full MBIR algorithm combining Gauss-Markov-Potts prior and
the error-splitting forward model is given in algorithm 14 and is simply an instance of algorithm 13. Initial labels
z♣0q, means m♣0q and variances v♣0q are computed as explained in section 4.3.6 with the usual forward model. The
strategies to fix the parameters related to Gauss-Markov-Potts prior : K, γ0, ♣αkqk, m0, v0, α0 and β0, are the same
as presented in section 4.3.6.
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Algorithm 14 JMAP algorithm combining the error-splitting forward model and Gauss-Markov-Potts prior

Initialize v♣0qǫ , f ♣0q, v♣0qξ , z♣0q,m♣0q and v♣0q

for t ✏ 0, . . . , tmax ✁ 1 do

1 : Update g0 by (5.41)
2 : Update vǫ by (5.45)
3 : Update f by minimizing criterion (5.63) through nvol iterations of gradient descent (4.30)
4 : Update vξ by (5.50)
5 : Update z by maximizing Potts energy (4.40) through nseg iterations of ICM algorithm [Bes86]
6 : Updatem by (5.64)
7 : Update v by (5.65)

end for

5.5 Results on real data

We evaluate the error-splitting forward model combined with Gauss-Markov-Potts prior by applying algorithm 14 to
real data. We compare the results with those obtained with usual forward model (5.1). Through the iterations of each
reconstruction algorithm, we observe the evolution of Root Mean Square Difference (RMSD) :

RMSD ✏
❣❢❢❡ 1

N

N➳
j✏1

✁
fj ✁ f✝j

✠2
(5.66)

between estimation f and a reference volume f✝. We run each algorithm during 50 iterations.
The used pair of projector and backprojector is the unmatched RD/VD pair presented in chapter 3. We did not

notice troubles due to the mismatching of the pair, and the algorithm have converged in all the experiments. As in
chapter 4, the segmentation step, corresponding to step 5 of algorithm 14, is performed on the CPU.

5.5.1 Framework for the experiments

In order to use usual forward model (5.1), we need to assign a prior to variances vζ of total uncertainties ζ : to do
simple calculations, we consider a conjugate prior, which is Inverse-Gamma :

p♣vζi ⑤αζ0 , βζ0q ✏ IG♣vζi ⑤αζ0 , βζ0q (5.67)

with parameters ♣αζ0 , βζ0q, as done in chapter 4. With this prior, step (5.56b) presented in section 5.3 is done similarly
to updates (5.36b) and (5.36d). In addition to chapter 4, we see that✧

p♣ζi⑤vζiq ✏ N ♣ζi⑤0, vζiq
p♣vζi ⑤αζ0 , βζ0q ✏ IG♣vζi ⑤αζ0 , βζ0q

, (5.68)

so the distribution of ζi marginalized with respect to vζi is a generalized Student-t. As a result, two ways are possible
to fix αζ0 and βζ0 . One way is to model total uncertainties as Gaussian, and, in this case, parameters αζ0 and βζ0 are
fixed similarly to αǫ0 and βǫ0 in section 5.1.4 for measurement uncertainties ǫ. Another way is to enforce robustness
with respect to outliers in projections g, so a heavy-tailed prior is more appropriate for ζ. In this case, αζ0 and βζ0 are
fixed similarly to αξ0 and βξ0 in section 5.1.4 for linear model uncertainties ξ. This interpretation of αζ0 and βζ0 is a
bit more precise compared to the analysis we made in section 4.3.6.

5.5.2 Evaluation of the accuracy : Image Quality Indicator (IQI) volume

We first evaluate the accuracy of the error-splitting forward model on the Image Quality Indicator (IQI) volume
already used in section 4.5.1 [GARC16]. The field-of-view is sampled into 512✂ 512✂ 256 voxels. We still use 300

projections uniformly distributed over r0, 2πs. The detector is sampled into 512✂ 256 pixels. The source-to-rotation-
center distance is 975 mm, and the source-to-detector distance is 1300 mm. Reference volume is reconstructed from
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(a) (b)

Figure 5.5: Reference for IQI, reconstructed from 2400 projections (algorithm 12 in chapter 4) (bottom (a) and top (b))

2400 projections by algorithm 12 presented in chapter 4, and is shown in figure 5.5. To tune JMAP, we consider
that the SNR is 20 db, which is a realistic value. We set βǫ0 ✏ 1 to ensure that constraint (5.28) is fullfilled. The
parameters of the error-splitting forward model for IQI reconstruction are summarized in table 5.1. They are fixed
according to the strategy explained in section 5.1.4.

Parameters SNR αǫ0 βǫ0 αξ0 βξ0
Values 20 Use (5.31) 1 0.01 0.0001

Table 5.1: Parameters of the error-splitting forward model for IQI reconstruction

In order to compare the tested forward models, the values of the parameters of the Gauss-Markov-Potts prior on
the volume remain the same whatever the forward model is. These values are summarized in table 5.2 and are the
same as the ones used in chapter 4.

Parameters K γ0 v0 α0 β0
Fixed values 4 3 1 5 0.01

Table 5.2: Parameters for Gauss-Markov-Potts prior model on IQI volume

The reconstructions of IQI volume by JMAP with Gauss-Markov-Potts prior are shown in figure 5.6. As we see,
the reconstructions obtained with the different forward models look the same and are similar to the one obtained in
chapter 4 : SSIM indices [WBSS04] computed between these reconstructions are approximately 1. The reconstruc-
tions by JMAP have compact and homogeneous regions thanks to the use of Gauss-Markov-Potts prior model. For
each forward model, the segmentations obtained jointly with the reconstruction are shown in figure 5.7 : as we see,
they are the same. To compare the accuracy of each reconstruction, as in chapter 4, we focus on the little holes of
the volume. We show their profiles in figure 5.8, with the ones of the reference and FDK and TV reconstructions.
FDK and TV reconstructions are respectively given in figures 4.13 and 4.14 in chapter 4. We observe that JMAP
with Gauss-Markov-Potts prior enhances the contrast, making transitions between holes much sharper than FDK and
TV. For the two biggest holes, whatever the used forward model is, JMAP reaches the lowest value and is better than
FDK and TV. Nevertheless, this value is slightly under the theoretical value of 0 due to the fact that no non-negativity
constraint is enforced in our algorithm. For the two intermediate holes, TV-reconstruction’s profile goes lower than
JMAP. For these holes, the profile is the same for JMAP reconstructions whatever the forward model is. For the two
most little holes, the accuracy is quite similar for JMAP with the error-splitting forward model, JMAP with the usual
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Reconstructions from 300 projections of IQI volume by JMAP with Gauss-Markov-Potts prior and : the usual forward model
modelling ζ as heavy-tailed (bottom (a) and top (b)), the usual forward model and modelling ζ as Gaussian (bottom (c) and top (d)), and the
error-splitting forward model (bottom (e) and top (f))
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Segmentations obtained jointly with the reconstruction from 300 projections of IQI volume by JMAP with Gauss-Markov-Potts
prior and : the usual forward model modelling ζ as heavy-tailed (bottom (a) and top (b)), the usual forward model and modelling ζ as Gaussian
(bottom (c) and top (d)), and the error-splitting forward model (bottom (e) and top (f))
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forward model modelling ζ as Gaussian, and TV-reconstruction. The accuracy is lower for JMAP with the usual
forward model modelling ζ as heavy-tailed. Hence, we see that the error-splitting forward model does not imply a
loss of accuracy, and is even better than the usual forward model for a certain set of parameters.

We analyze the convergence of JMAP with each forward model. For the error-splitting forward model, the cri-
terion (5.37) of algorithm 14 converges to a maximum value as shown in figure 5.9. Computation times are given
in table 5.3 : because the error-splitting forward model adds very few operations, the reconstruction times for JMAP
with each forward model are similar and are approximately 30 minutes. For volume update step at each iteration of
JMAP, nvol ✏ 10 sub-iterations are performed. Hence, because PDFW does not have sub-iterations and because we
run JMAP during 50 iterations, TV-reconstruction is obtained in 500 iterations. The reconstruction time for TV is
approximately 20 minutes. The computation time for JMAP is larger than the one for TV due to the segmentation step
done on the CPU. We show the evolution of the RMSD with respect to reference volume in figure 5.10 for TV and
in figure 5.11 for JMAP. Compared to TV, in table 5.3, we see that a lower value for the RMSD is reached for JMAP
with Gauss-Markov-Potts prior, whatever the forward model is. Nevertheless, in figure 5.11, we see that the RMSD
reaches its lowest value with the error-splitting forward model. Thus, for this reconstruction with Gauss-Markov-Potts
prior, JMAP with the error-splitting forward model is more accurate than JMAP with usual forward model (5.1).

Forward model Usual Usual Usual Error-splitting
Prior model TV Gauss-Markov-

Potts
Gauss-Markov-
Potts

Gauss-Markov-
Potts

Algorithm PDFW JMAP-Heavy-
tailed

JMAP-Gaussian JMAP-Error-
splitting

Computation time 1180 s 1876 s 1777 s 1854 s
Final value of RMSD
(/m)

22.10✂ 10✁4 9.09✂ 10✁4 8.86✂ 10✁4 8.78✂ 10
✁4

Table 5.3: Performance comparison on IQI reconstruction from 300 projections, of PDFW and JMAP with Gauss-Markov-Potts prior model
and : the usual forward model modelling ζ as heavy-tailed, the usual forward model modelling ζ as Gaussian, and the error-splitting forward
model

5.5.3 Evaluation of the robustness : Composite Material with Titanium on the Edges (CMTE) and

metallic part

We now evaluate the robustness of the error-splitting forward model on challenging data with metal. First, we test
algorithm 14 on Composite Material with Titanium on the Edges (CMTE) used in chapter 4. The field-of-view is
sampled into 5123 voxels. The reconstruction is performed with 300 projections uniformly distributed over r0, 2πs.
The detector is sampled into 5122 pixels. The source-to-rotation-center distance is 432 mm, and the source-to-detector
distance is 807 mm. Reference volume is reconstructed from 1500 projections by algorithm 12 presented in chapter
4 : it is shown in figure 5.12. As we see, even with a lot of projections, scattering remains around the titanium edges.
This scattering is hard to remove because the values for scattering are near the values for the composite material. The
parameters of the error-splitting forward model are summarized in table 5.4. Because we have a lot of absorption and
scattering due to the presence of titanium, we fix αξ0 ➔ βξ0 ➔ 1, as explained in section 5.1.4. The values of the
parameters for Gauss-Markov-Potts prior model on CMTE volume are presented in table 5.5 and are the same as the
ones used in chapter 4.

Parameters SNR αǫ0 βǫ0 αξ0 βξ0
Values 20 Use (5.31) 1 0.01 0.1

Table 5.4: Parameters of the error-splitting forward model for CMTE reconstruction

Because of high beam-hardening, the number of sub-iterations for volume update in JMAP has to be fixed care-
fully in order to avoid local optima : at each iteration of JMAP, nvol ✏ 2 sub-iterations are performed for volume
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Figure 5.8: Accuracy : profiles of the holes of IQI volume for each reconstruction, with Gauss-Markov-Potts prior for JMAP
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Figure 5.9: Convergence for JMAP with the error-splitting forward model and Gauss-Markov-Potts prior for IQI reconstruction from 300

projections

Figure 5.10: Convergence to the reference volume for IQI reconstruction by PDFW [OMBF18]

Figure 5.11: Convergence to the reference volume for IQI reconstruction by JMAP from 300 projections with Gauss-Markov-Potts prior and :
the usual forward model modelling ζ as heavy-tailed, the usual forward model modelling ζ as Gaussian, and the error-splitting forward model
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Parameters K γ0 v0 α0 β0
Fixed values 3 3 1 5 0.01

Table 5.5: Parameters for Gauss-Markov-Potts prior model on the CMTE volume

Forward model Usual Usual Usual Error-splitting
Prior model TV Gauss-Markov-

Potts
Gauss-Markov-
Potts

Gauss-Markov-
Potts

Algorithm PDFW JMAP-Heavy-
tailed

JMAP-Gaussian JMAP-Error-
splitting

Computation time 2352 s 5074 s 5359 s 5496 s
Final value of RMSD
(/m)

43.383✂ 10✁3 1.765✂ 10
✁3 8.167✂ 10✁3 1.785✂ 10✁3

Table 5.6: Performance comparison on CMTE reconstruction from 300 projections, of TV-PDFW and JMAP with Gauss-Markov-Potts prior
model and : the usual forward model modelling ζ as heavy-tailed, the usual forward model modelling ζ as Gaussian, and the error-splitting
forward model

estimation. We run JMAP during 50 iterations. Hence, TV-reconstruction is obtained in 100 iterations. Joint recon-
structions and segmentations of the CMTE volume by JMAP with Gauss-Markov-Potts prior are shown in figure 5.13.
Figure 5.14 shows the convergence of the criterion of JMAP with the error-splitting forward model. In figure 5.13,
we see that the reconstructions by JMAP still have scattering around the titanium. Because the values for scattering
are very near the values for composite material, scattering is misclassified in the segmentation and is in the same class
as the composite material. With the error-splitting forward model and with the usual forward model modelling ζ as
heavy-tailed, JMAP is very close to the reference. This is not the case with the usual forward model modelling ζ as
Gaussian : the reconstruction has very strong beam-hardening artifacts at the extremities of the titanium. We see in
figure 5.16 that JMAP with the usual forward model modelling ζ as Gaussian diverges far from the reference volume.
Indeed, because the prior on ζ is Gaussian, i.e. short-tailed, the algorithm tries to be too close to the data, which is
not a good point, since high absorption is present in the data due to the titanium edges. The same phenomenon occurs
for TV-reconstruction in which beam-hardening is also present, as shown in the profile in figure 5.17. In table 5.6, we
see that TV-reconstruction reaches a higher value for the RMSD than JMAP.

On the opposite, JMAP with the error-splitting forward model and JMAP with the usual forward model modelling
ζ as heavy-tailed manage to remove beam-hardening artifacts, and, as a result, converge to the reference volume, as
shown by the evolution of the RMSD in figure 5.16. In table 5.6, we see that the final RMSD is practically the same
for these reconstructions.

For the metallic part used in chapter 4, we obtain similar results. The field-of-view is sampled into 10243 voxels1.
We use 500 projections uniformly distributed over r0, 2πs. The detector has 10242 cells. The source-to-detector
distance is 1077 mm, and the source-to-object distance is 700 mm. The reference volume is reconstructed from 1500

projections by algorithm 12 in chapter 4 and shown in figure 5.18. The values for the parameters of the error-splitting
forward model are the same than the ones for the CMTE volume in table 5.4. Those for the parameters of Gauss-
Markov-Potts prior are the same used in chapter 4 and presented in table 4.8. The obtained joint reconstructions and
segmentations are shown in figure 5.19. The reconstruction by JMAP with the error-splitting forward model and with
the usual forward modelling ζ as heavy-tailed are of good quality, while the reconstruction with the usual forward
model modelling ζ as Gaussian has strong scattering. As a result, in figure 5.20, the reconstructions with the error-
splitting forward model and with the usual forward modelling ζ as heavy-tailed converge to the reference volume,
while the reconstruction with the usual forward model modelling ζ as Gaussian diverge. In figure 5.21, we see that
the criterion of JMAP with the error-splitting forward model reaches a maximum value.

From all our experiments reconstructing the CMTE volume and the metallic part with Gauss-Markov-Potts prior,
we can draw the conclusion that JMAP with the error-splitting forward model is as robust as JMAP with the usual

1For confidentiality reasons, the metallic part is only partly shown in figures 5.18 and 5.19.
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Figure 5.12: Reference for CMTE, reconstructed from 1500 projections (algorithm 12 in chapter 4) (middle slice)

forward model modelling ζ as heavy-tailed. The interesting point is that, when evaluating the accuracy on IQI volume
in the previous section, JMAP with the error-splitting forward model obtains the same accuracy than JMAP with
the usual forward model modelling ζ as Gaussian, while the reconstruction is less accurate with heavy-tailed prior
on ζ in the usual forward model. Indeed, because there are not high uncertainties on the projections for IQI volume,
modelling ζ as short-tailed for JMAP with the usual forward model enables to be close to the data, and then to be more
accurate. But, with the CMTE volume and the metallic part, being too close to the data leads to a failure in removing
strong artifacts. For the error-splitting forward model, our better physical modelling leads to the best accuracy for IQI
reconstruction, and, thanks to the heavy-tailed prior on linear model uncertainties, to robustness for the CMTE and
the metallic part reconstructions. Hence, in our experiments with Gauss-Markov-Potts prior, JMAP with the error-
splitting forward model combines accuracy and robustness, while, with the usual forward model, accuracy is only
achieved by modelling ζ as Gaussian, and robustness only by modelling ζ as heavy-tailed.

5.5.4 Discussion

Our experiments have shown that the error-splitting forward model enables one to get robustness with heavy-tailed
prior on linear model uncertainties ξ, and accuracy with short-tailed prior on measurement uncertainties ǫ, while
the usual forward model only enables to get one of these features. These results have been obtained with Gauss-
Markov-Potts prior for industrial quasi-piecewise-constant volumes. Nevertheless, Gauss-Markov-Potts prior fails in
reconstructing texture-rich details such as in woven composite materials. Since our derivation of the error-splitting
forward model in section 5.1.1 is valid for any X-ray CT imaging task, future works will mainly focus on combining
the error-splitting forward model with appropriate priors for textured, or more generally no longer piecewise-constant,
volumes. In particular, a combination with TV-regularization will be interesting to study.

5.6 Conclusion and perspectives

Taking into account the error in the monochromatic model with respect to the polychromatic one, we have included
a noise term in the mean of Poisson statistics of photon-count in 3D X-ray CT. From this addition, we have derived a
new forward model for Model-Based Iterative Reconstruction (MBIR) methods, where two terms of uncertainties are
present instead of one. This error-splitting forward model distinguishes what we called measurement uncertainties
and linear model uncertainties. Measurement uncertainties appeared as Gaussian in our second order Taylor series
expansion of the Poisson log-likelihood, while linear model uncertainties appeared as an unknown bias between
measured and theroretical projections g and Hf . Thanks to the use of generalized Student-t distribution, a heavy-
tailed prior has been assigned to this bias in order to ensure robustness in the reconstruction process. We have given
details about how to fix each parameter of the error-splitting forward model, so each uncertainty was modeled as we
wished.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Joint reconstructions and segmentations (middle slices) from 300 projections of the CMTE volume by JMAP with Gauss-Markov-
Potts prior and : the usual forward model modelling ζ as heavy-tailed (reconstruction (a) and segmentation (b)), the usual forward model
modelling ζ as Gaussian (reconstruction (c) and segmentation (d)), and the error-splitting forward model (reconstruction (e) and segmentation
(f))
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Figure 5.14: Convergence for JMAP with the error-splitting forward model and Gauss-Markov-Potts prior for CMTE reconstruction from 300

projections

Figure 5.15: Convergence to the reference volume for CMTE reconstruction by PDFW [OMBF18]

Figure 5.16: Convergence to the reference volume for CMTE reconstruction by JMAP from 300 projections with Gauss-Markov-Potts prior
and : the usual forward model modelling ζ as heavy-tailed, the usual forward model modelling ζ as Gaussian, and the error-splitting forward
model
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Figure 5.17: Profile of the CMTE volume for each reconstruction, with Gauss-Markov-Potts prior for JMAP

Figure 5.18: Reference for the metallic part, reconstructed from 1500 projections (algorithm 12 in chapter 4)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.19: Joint reconstructions and segmentations from 500 projections of the metallic part by JMAP with Gauss-Markov-Potts prior and
: the usual forward model modelling ζ as heavy-tailed (reconstruction (a) and segmentation (b)), the usual forward model and modelling ζ as
Gaussian (reconstruction (c) and segmentation (d)), and the error-splitting forward model (reconstruction (e) and segmentation (f))
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Figure 5.20: Convergence to the reference volume for the metallic part reconstruction by JMAP from 500 projections with Gauss-Markov-
Potts prior and : the usual forward model modelling ζ as heavy-tailed, the usual forward model modelling ζ as Gaussian, and the error-splitting
forward model

Figure 5.21: Convergence for JMAP with the error-splitting forward model and Gauss-Markov-Potts prior for the reconstruction of the metallic
part from 500 projections
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Compared to the usual forward model, the error-splitting forward model adds very few calculations thanks to
the simplicity of generalized Student-t distribution. We have combined this new forward model and Gauss-Markov-
Potts prior in order to reconstruct piecewise-constant volumes. In our experiments with real data, we have compared
our new forward model with the usual one. Thanks to our better consideration of uncertainty, we have shown that,
with Gauss-Markov-Potts prior, using the error-splitting forward model enables to obtain more accurate and more
robust reconstructions, while only one of these two features is achievable with the usual forward model. Since our
experiments have been done with Gauss-Markov-Potts prior model on the volume, in future works, the emphasis will
be on the impact of the error-splitting forward model combined with other priors.

Particularly in order to tackle the strong scattering around the titanium edges of the CMTE volume, efforts will
also be made to see how to improve the error-splitting forward model. For this purpose, we have emphasized in
section 5.1.4 that a way could be to assign a different prior on the Signal-to-Noise Ratio (SNR) to each measurement
uncertainty. Another possible way is to enhance the modelling of the linear model uncertainties. Indeed, in section
5.1.1, we have noticed that the prior distribution for these uncertainties cannot be deduced from our second-order
Taylor expansion, and generalized Student-t distribution has been chosen due its properties to enforce robustness and
to perform simple calculations. Nevertheless, as shown in figure 5.1, this distribution is over all real numbers, while,
according to equation (5.12), linear model uncertainties are nonpositive, since we have Ii ➙ 0 and ni ➙ 0, for all i.
Consequently, an intuitively better prior on linear model uncertainties would be a heavy-tailed distribution only over
nonpositive real numbers. In this case, a mixture on the variances between a Gaussian and another distribution could
not be used anymore. As a result, a possible difficulty in this improvement for future works could be the increase of
the computational cost.
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Chapter 6

Towards the estimation of the uncertainties on

the reconstruction by Variational Bayesian

Approach

In chapters 4 and 5, we have presented MBIR methods providing reconstructions of enhanced quality compared to
conventional filtered backprojection. These methods have the potential to be advantageously exploited at SAFRAN
in order to better inspect and analyze its manufactured industrial parts. Due to the high dimension and to the fact
that the reconstruction problem is ill-posed, we have seen that the exact estimation of the volume to inspect is not
possible : as a result, our proposed algorithms, like other MBIR methods, only compute an approximate solution
of the reconstruction problem. Consequently, knowing the uncertainties on the reconstructed estimation can be a
desirable tool for NDT in post-reconstruction processing.

In [Fes96], an iterative method is proposed to estimate the uncertainties after the reconstruction has been per-
formed. Nevertheless, its high computational cost makes it only applicable to a few voxels of interest [Fes96]. In
[Per17], a method is detailed in order to compute the confidence regions on the Maximum A Posteriori (MAP) es-
timator, but this procedure is difficult to apply for discrete-continuous channels estimation, as it is our case for joint
reconstruction and segmentation. In this chapter, we propose to compute Posterior Mean (PM) rather than MAP. In
the framework of estimation theory, PM and MAP estimators are defined as the minimizers of distinct cost functions,
as detailed in appendix E. For PM estimator, the uncertainties on the reconstruction correspond to the variances. Our
algorithm estimates these variances jointly with the reconstruction based on variational Bayesian approach (VBA)
[PSC�16].

We first present the principles of VBA. Then, we detail our reconstruction algorithm based on VBA, applied with
a Gauss-Markov-Potts prior on the volume to reconstruct. In order to implement this algorithm, the main difficulty
is the computation of the diagonal coefficients of the posterior covariance matrix, which are linked to projection
and backprojection operators (P/BP) : we solve this issue thanks to the use of a matched pair which is here the
Separable Footprint (SF) pair [LFB10] presented in chapter 3. We present simulation results and compare the obtained
reconstruction with the one given by joint maximization a posteriori (JMAP) detailed in chapter 4. To the best of our
knowledge, this work is the first attempt to apply VBA to a very general 3D inverse problem such as 3D X-ray CT.

6.1 Variational Bayesian Approach

In this chapter, the prior model M on the volume is a Gauss-Markov-Potts prior described in chapter 4. The usual
forward model U with only one term of uncertainties :

g ✏Hf � ζ (6.1)

is considered instead of the error-splitting forward model for the sake of simplicity. We have seen in chapter 4 that
the priors for the variances of the classes and the variances of the uncertainties are Inverse-Gamma distributions :✧

p♣vk⑤α0, β0q ✏ IG♣vk⑤α0, β0q,❅k P t1, . . . ,K✉ ,
p♣vζi ⑤αζ0 , βζ0q ✏ IG♣vζi ⑤αζ0 , βζ0q,❅i P t1, . . . ,M✉ . (6.2)
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In this chapter, we aim at computing the posterior mean. For an Inverse-Gamma distribution IG♣.⑤α, βq, the mean is
not defined for α ➔ 1. In order to avoid this constraint on α0 and αζ0 , we rather consider the inverses of vk and vζi ,
❅k, i, ✩✬✫

✬✪
ρk ✏ 1

vk

ρζi ✏ 1
vζi

. (6.3)

Given that vk and vζi , ❅k, i, are Inverse-Gamma, ρk and ρζi follow a Gamma distribution✧
p♣ρk⑤α0, β0q ✏ G♣ρk⑤α0, β0q,❅k P t1, . . . ,K✉ ,
p♣ρζi ⑤αζ0 , βζ0q ✏ G♣ρζi ⑤αζ0 , βζ0q,❅i P t1, . . . ,M✉ , (6.4)

where

G♣ρ⑤α, βq ✏ βα

Γ♣αqρ
α✁1
ζi

exp r✁βρs ,❅ρ → 0. (6.5)

The rationale for this change of variables is that the mean of a Gamma distribution G♣.⑤α, βq is defined for all α → 0

and β → 0. Hence, we have no constraint on α0 and αζ0 .
After reparametrization (6.3), the unknowns to estimate are

ψ ✏ ♣f ,ρζ , z,m,ρq, (6.6)

of which the posterior distribution is

p♣ψ⑤g;U ,Mq ✏ p♣f ,ρζ , z,m,ρ⑤g;U ,Mq

✏ p♣g⑤f ,ρζqp♣f ⑤z,m,ρqp♣ρζ ⑤αζ0 , βζ0qp♣z⑤α, γ0qp♣m⑤m0, v0qp♣ρ⑤α0, β0q
p♣g⑤U ,Mq . (6.7)

According to chapter 4, we have

p♣g⑤f ,ρζq ✏ ♣2πq✁M
2 det ♣V ζq✁1④2 exp

✒
✁1

2
⑥g ✁Hf⑥2V ζ

✚
, (6.8)

p♣f ⑤z,m,ρq ✏ ♣2πq✁N
2 det ♣V zq✁1④2 exp

✒
✁1

2
⑥f ✁mz⑥2V z

✚
, (6.9)

p♣ρζ ⑤αζ0 , βζ0q ✏
β
αζ0

ζ0

Γ♣αζ0q
exp

✓
M➳
i✏1

♣♣♣αζ0 ✁ 1q ln ρζi ✁ βζ0ρζiq
✛
, (6.10)

p♣z⑤α, γ0q ✏ 1

Z♣α, γ0q exp
✔
✕➳

j

☎
✆ K➳
k✏1

αkδ♣zj ✁ kq � γ0
➳

iPV♣jq

δ♣zj ✁ ziq
☞
✌
✜
✢ (6.11)

p♣m⑤m0, v0q ✏ ♣2πq✁K
2 v0

✁K
2 exp

✓
✁ 1

2v0

K➳
k✏1

♣mk ✁m0q2
✛
, (6.12)

p♣ρ⑤α0, β0q ✏ βα0

0

Γ♣α0q exp
✓
K➳
k✏1

♣♣α0 ✁ 1q ln ρk ✁ β0ρkq
✛
, (6.13)

where vζi ✏ ρ✁1
ζi

, mzj ✏ mk and vzj ✏ ρ✁1
k if zj ✏ k, V z ✏ diag rvzs and V ζ ✏ diag rvζs. The partition function

Z♣α, γ0q of the labels is defined by formula (4.55) in chapter 4.
The posterior distribution (6.7) is too complex to have an analytical expression of its mean. A first way to get

an approximation of the posterior mean is to generate samples of the posterior distribution by MCMC approaches
such as Gibbs sampling [ADMD10, PDBT13, ZBKT16]. But, as said in chapter 4, these approaches are unaffordable
in 3D for our industrial application. A way which seems more tractable in 3D for the calculation of the posterior
mean is Variational Bayesian Approach (VBA), which consists in approximating the true posterior distribution p of

115



the unknowns by a distribution q which is simpler in the sense that the computation of its mean is analytically feasible
[MDA09, PSC�16]. By this way, the mean of q obtained by VBA is known to be a good estimation of the true
posterior mean [GBJ15, PSC�16]. The approximate posterior distribution q is calculated by solving the optimization
problem

min
qPQ

KL♣q♣ψq⑤⑤p♣ψ⑤g;U ,Mqq (6.14)

where Q is a subset of tractable distributions in which we know that we are able to compute the mean. In optimization
problem (6.14), the best approximation of the posterior distribution p♣.⑤g;U ,Mq is defined as the distribution q P Q
which minimizes the Kullback-Leibler divergence [ŠQ06, PSC�16]

KL♣q♣ψq⑤⑤p♣ψ⑤g;U ,Mqq ✏
➺
ψ
q♣ψq ln

✂
q♣ψq

p♣ψ⑤g;U ,Mq
✡
dψ. (6.15)

The Kullback-Leibler divergence has all the properties of a distance, except that it is not symmetric, that is

KL♣q♣ψq⑤⑤p♣ψ⑤g;U ,Mqq ✘ KL♣p♣ψ⑤g;U ,Mq⑤⑤q♣ψqq (6.16)

in general. For this reason, KL♣q♣ψq⑤⑤p♣ψ⑤g;U ,Mqq is not said to be the Kullback-Leibler divergence between
q♣ψq and p♣ψ⑤g;U ,Mqq : in order to take the non-symmetry into account, it is more appropriate to say that
KL♣q♣ψq⑤⑤p♣ψ⑤g;U ,Mqq is the Kullback-Leibler divergence from q♣ψq to p♣ψ⑤g;U ,Mqq [ŠQ06, Section 3.2.2].

More details about the Kullback-Leibler divergence can be found in [ŠQ06, Section 3.2.2]. In this chapter, we
will use that

KL♣q♣ψq⑤⑤p♣ψ⑤g;U ,Mqq ✏ ln ♣p♣g⑤U ,Mqq ✁ F♣q♣ψqq (6.17)

where

F♣q♣ψqq ✏
➺
ψ
q♣ψq ln

✂
p♣g,ψ⑤U ,Mq

q♣ψq
✡
dψ

✏ ✁
➺
ψ
q♣ψq ln ♣q♣ψqq dψ �

➺
ψ
q♣ψq ln ♣p♣g,ψ⑤U ,Mqq dψ (6.18)

is the negative free energy [ŠQ06, AMD10]. The quantity

H♣q♣ψqq ✏ ✁
➺
ψ
q♣ψq ln ♣q♣ψqq dψ. (6.19)

is called the entropy of the approximate posterior distribution q. According to formula (6.17), since the log-evidence
ln ♣p♣g⑤U ,Mqq is a constant, minimizing the Kullback-Leibler divergence is equivalent to maximizing the negative
free energy.

The subset Q in which the approximate distribution must lie is chosen by the user. This subset has to make a
tradeoff between several requirements. As already pointed out, first of all, Q must only contain distributions which
are tractable in order to compute the mean. But, additionally, Q must exclude distributions which would be too gross
approximations of the posterior distribution and which would give a very bad estimation of the posterior mean. Given
these constraints, we describe two possible choices for Q.

6.1.1 Mean Field Approximation

The simplest and the most common choice for Q is the subset of distributions q which are fully factorized in univariate
distributions qj :

q♣ψq ✏
➵
j

qj♣ψjq. (6.20)

Due to the full factorization, the correlations between variables ♣ψjqj are completely neglected in order to get a simple
approximate distribution. As a result, for a variable ψj , the influence of the other variables on ψj is replaced by the
mean of their influence : for this reason, this approximation is called the Mean Field Approximation (MFA) [Zha92].
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Given all the other distributions qj✶ , j✶ ✘ j, the expression of qj which minimizes the Kullback-Leibler divergence
can be derived without the need of theorems of derivation under an integral [ŠQ06, Section 3.3.1]. By introducing
ψ④j which is ψ without its component ψj , and

q④j♣ψ④jq ✏
➵
j✶✘j

qj✶♣ψj✶q, (6.21)

minimizing Kullback-Leibler divergence with respect to qj leads to the expression [ŠQ06, Section 3.3.1]

qj♣ψjq✾ exp
✁
Eq④j ♣ln ♣p♣ψ⑤g;U ,Mqqq

✠
, (6.22)

which is the formula used for qj . We see that, through q④j , this expression depends on the other distributions qj✶ , j✶ ✘ j.
Consequently, in practice, VBA turns into an iterative algorithm in which each qj is updated one after the other using
formula (6.22), until the convergence of the negative free energy is achieved [QJ07, ADMD12, GBJ15, PSC�16].

6.1.2 Partially factorized approximation

By neglecting all the correlations between the variables, the mean field approximation can be too gross in some
cases [PSC�16]. In particular, the experiments we conducted showed that the mean field approximation gives very
bad results for our reconstruction problem with Gauss-Markov-Potts prior. In order to complexify the form of the
approximate distribution, a partial factorization with respect to subvectorsψs ofψ can be chosen [YFCL17, MZCP17]

q♣ψq ✏
➵
s

qs♣ψsq. (6.23)

Using the same proof as in [ŠQ06, Section 3.3.1], the expression of each qs given the others is similar to formula
(6.22). Nevertheless, the partially factorized approach is limited by the size of the subvectors ψs : if these subvectors
are too big, then VBA leads to the computation of covariance matrices which are not attainable due to the high
dimension. In this case, the calculation of these covariance matrices can only be done approximately by specific
strategies, such as Monte Carlo techniques [MZCP17]. In this chapter, we propose to deal with an approximation of
the form

q♣ψq ✏ q♣ψ1,ψ2q ✏
➵
j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q (6.24)

where ψ is divided into subvectors ψ1 and ψ2. These subvectors are the same size and a dependence is preserved
between one scalar component of ψ1 and one scalar component of ψ2. Given the form (6.24) of the approximate
distribution, we need to derive the updating formulae for q1j and q2j . Indeed, due to the dependence between ψ1j and
ψ2j in q1j , the updating formula (6.22), used in the case of the mean field approximation, is not applicable. Inspired
by the proof in [ŠQ06, Section 3.3.1] for the case of mean field approximation, we first write the Kullback-Leibler
divergence

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏
➺
ψ1j

,ψ2j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q ln
�
q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q

✟
dψ1j dψ2j

�
➺
ψ

1④j ,ψ2④j

q1④j♣ψ1④j ⑤ψ2④jqq2④j♣ψ2④jq ln
✁
q1④j♣ψ1j ⑤ψ2j

qq2④j♣ψ2j
q
✠

dψ1④j dψ2④j

✁
➺
ψ1j

,ψ2j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q

✂
✄➺
ψ

1④j ,ψ2④j

q1④j♣ψ1④j ⑤ψ2④jqq2④j♣ψ2④jq ln ♣p♣ψ1,ψ2⑤g;U ,Mqq dψ1④j dψ2④j

☛
dψ1j dψ2j . (6.25)

We denote by

aj ✏
➺
ψ

1④j ,ψ2④j

q1④j♣ψ1④j ⑤ψ2④jqq2④j♣ψ2④jq ln
✁
q1④j♣ψ1j ⑤ψ2j

qq2④j♣ψ2j
q
✠

dψ1④j dψ2④j (6.26)

117



the term in KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq which is independent from q1j and q2j , and we introduce

Eq④1j ,2j
♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq

✏
➺
ψ

1④j ,ψ2④j

q1④j♣ψ1④j ⑤ψ2④jqq2④j♣ψ2④jq ln ♣p♣ψ1,ψ2⑤g;U ,Mqq dψ1④j dψ2④j . (6.27)

Given (6.26) and (6.27), Kullback-Leibler divergence (6.25) reads

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏
➺
ψ1j

,ψ2j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q ln
�
q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q

✟
dψ1j dψ2j

� aj ✁
➺
ψ1j

,ψ2j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j qEq④1j ,2j ♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq dψ1j dψ2j (6.28)

which leads to

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏
➺
ψ1j

,ψ2j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j q ln
�
q1j ♣ψ1j ⑤ψ2j q

✟
dψ1j dψ2j

�
➺
ψ2j

q2j ♣ψ2j q ln
�
q2j ♣ψ2j q

✟
dψ2j

� aj ✁
➺
ψ1j

,ψ2j

q1j ♣ψ1j ⑤ψ2j qq2j ♣ψ2j qEq④1j ,2j ♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq dψ1j dψ2j . (6.29)

First, we focus on the updating formula of q1j . Denoting the entropy of q2j by

H♣q2j q ✏ ✁
➺
ψ2j

q2j ♣ψ2j q ln
�
q2j ♣ψ2j q

✟
dψ2j (6.30)

and introducing

Z1j ♣ψ2j q ✏
➺
ψ1j

exp
✑
Eq④1j ,2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq
✙

dψ1j , (6.31)

equation (6.29) reads

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏ aj ✁H♣q2j q

�
➺
ψ2j

q2j ♣ψ2j q

☎
✝✆➺

ψ1j

q1j ♣ψ1j ⑤ψ2j q ln

☎
✝✆ q1j ♣ψ1j ⑤ψ2j q ✂ 1

Z1j
♣ψ2j

q

1
Z1j

♣ψ2j
q exp

✑
Eq④1j ,2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq
✙
☞
✍✌dψ1j

☞
✍✌dψ2j (6.32)

which leads to

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏ aj ✁H♣q2j q ✁
➺
ψ2j

q2j ♣ψ2j q ln
�
Z1j ♣ψ2j q

✟
dψ2j

�
➺
ψ2j

q2j ♣ψ2j qKL
✂
q1j ♣ψ1j ⑤ψ2j q

✞✞✞✞
✞✞✞✞ 1

Z1j ♣ψ2j q
exp

✑
Eq④1j ,2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq
✙ ✡

dψ2j . (6.33)

Hence, by the same arguments as the ones used in section 6.1.1 for the mean field approximation, the updating formula
for q1j is, dropping the normalizing constant,

q1j ♣ψ1j ⑤ψ2j q✾ exp
✑
Eq④1j ,2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq
✙
. (6.34)

Next, we have to find the updating formula for q2j given the other distributions. From equation (6.29), we have

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏ aj �
➺
ψ2j

q2j ♣ψ2j q ln
�
q2j ♣ψ2j q

✟
dψ2j
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✁
➺
ψ2j

q2j ♣ψ2j q
✓➺

ψ1j

q1j ♣ψ1j ⑤ψ2j qEq④1j ,2j ♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq dψ1j

✁
➺
ψ1j

q1j ♣ψ1j ⑤ψ2j q ln
�
q1j ♣ψ1j ⑤ψ2j q

✟
dψ1j

✛
dψ2j . (6.35)

The entropy of q1j given ψ2j is denoted by

H♣q1j ⑤ψ2j q ✏ ✁
➺
ψ1j

q1j ♣ψ1j ⑤ψ2j q ln
�
q1j ♣ψ1j ⑤ψ2j q

✟
dψ1j . (6.36)

Introducing

Eq④2j
♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq ✏

➺
ψ1j

q1j ♣ψ1j ⑤ψ2j qEq④1j ,2j ♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq dψ1j , (6.37)

we have from (6.35)

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏ aj �
➺
ψ2j

q2j ♣ψ2j q ln
�
q2j ♣ψ2j q

✟
dψ2j

✁
➺
ψ2j

q2j ♣ψ2j q
✑
Eq④2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq �H♣q1j ⑤ψ2j q
✙

dψ2j

✏ aj �
➺
ψ2j

q2j ♣ψ2j q ln
☎
✆ q2j ♣ψ2j q
exp

✑
Eq④2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq �H♣q1j ⑤ψ2j q
✙
☞
✌dψ2j

✏ aj �
➺
ψ2j

q2j ♣ψ2j q ln

☎
✝✆ q2j ♣ψ2j q ✂ 1

Z2j

1
Z2j

exp
✑
Eq④2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq �H♣q1j ⑤ψ2j q
✙
☞
✍✌dψ2j , (6.38)

where

Z2j ✏
➺
ψ2j

exp
✑
Eq④2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq �H♣q1j ⑤ψ2j q
✙

dψ2j (6.39)

is a normalizing constant independent from q2j . Hence, equation (6.38) reads

KL ♣q♣ψ1,ψ2q⑤⑤p♣ψ1,ψ2⑤g;U ,Mqq ✏ aj ✁ ln
�
Z2j

✟
�KL

✂
q2j ♣ψ2j q

✞✞✞✞
✞✞✞✞ 1

Z2j

exp
✑
Eq④2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq �H♣q1j ⑤ψ2j q
✙ ✡

. (6.40)

As a result, the updating formula for q2j given the other distributions is, dropping the normalizing constant,

q2j ♣ψ2j q✾ exp
✑
Eq④2j

♣ln ♣p♣ψ1,ψ2⑤g;U ,Mqqq �H♣q1j ⑤ψ2j q
✙
. (6.41)

As we see, this formula depends on the logarithm of the posterior distribution but also on the entropy of q1j . This
additional term makes formula (6.41) rather different from other updating formulae (6.22) and (6.34) encountered in
VBA.

6.2 Application of VBA to 3D X-ray CT with Gauss-Markov-Potts prior

For our reconstruction problem and with our priors recapped in section 6.1, we choose an approximate posterior
distribution of the form

q♣f ,ρζ , z,m,ρq ✏
N➵
j✏1

qfj ♣fj ⑤zjq ✂
N➵
j✏1

qzj ♣zjq
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✂
M➵
i✏1

qρζi ♣ρζiq ✂
K➵
k✏1

qmk
♣mkq ✂

K➵
k✏1

qρk♣ρkq. (6.42)

As in section 6.1.2, this approximation performs a partial separation, since the dependence between attenuation coef-
ficient fj and label zj is preserved. This approximation has been proposed for the first time in [AMD10] for image
restoration. Nevertheless, in [AMD10], the general updating formulae (6.34) and (6.41) are not derived and the
authors only minimize the Kullback-Leibler divergence expressed with explicit priors.

The details of the calculations to compute the approximate distributions qfj , qzj , qρi , qmk
and qρk are given in

appendix F. These calculations are based on the applications of the updating formula (6.34) for qfj , of the updating
formula (6.41) for qzj , since the separation between the volume f and the labels z is partial. For qζi , qmk

and qvk ,
the separation is full, so we apply the updating formula (6.22) of mean field approximation. After the calculations in
appendix F, we find ✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫

✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

qfj ♣fj ⑤zj ✏ kq ✏ N ♣fj ⑤m̃jk, ṽjkq,❅k

qzj ♣zjq ✏
expr➦K

k✏1♣α̃jk�γ0
➦

iPV♣jq qzi ♣kqqδ♣zj✁kqs➦K
k✏1

exprα̃jk�γ0
➦

iPV♣jq qzi ♣kqs

qρζi ♣ρζiq ✏ G♣ρζi ⑤α̃ζ0i , β̃ζ0i q

qmk
♣mkq ✏ N ♣mk⑤m̃0k , ṽ0kq

qρk♣ρkq ✏ G♣ρk⑤α̃0k , β̃0kq

(6.43)

where qzi♣kq in the expression of qzj ♣kq is the value of qzi♣kq at previous iteration. Denoting✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

qf ♣f ⑤zq ✏
➧N
j✏1 qfj ♣fj ⑤zjq

qz♣zq ✏
➧N
j✏1 qzj ♣zjq

qρζ
♣ρζq ✏

➧M
i✏1 qρζi ♣ρζiq

qm♣mq ✏➧K
k✏1 qmk

♣mkq

qρ♣ρq ✏
➧K
k✏1 qρk♣ρkq

, (6.44)

the VBA algorithm in figure 6.1 gives the order of the updates of the approximate distributions. The distributions of
the variables which are approximated as independent are immediatly replaced by their updates. The first two steps of
the algorithm in figure 6.1 have to be seen as the update of the joint approximate distribution of the volume and the
labels

q
♣tq

f ,z
♣f , zq ✏ q

♣tq

f
♣f ⑤zqq♣tqz ♣zq. (6.45)

For this reason, the update of q♣tqz ♣zq is done using q♣t✁1q

f
♣f ⑤zq.

As shown in equations (6.43), the forms of the approximate distributions do not change through the algorithm.
Consequently, the VBA algorithm turns into iterative updates of the parameters of the distributions in equation (6.43).
The updating formulae involve the digamma function

ψ♣xq ✏ Γ✶♣xq
Γ♣xq ,❅x P R

✝
�, (6.46)
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compute q♣tq
f
♣f ⑤zq according to q♣t✁1q

f
♣f ⑤zq, q♣t✁1q

z ♣zq, q♣t✁1q
ρζ

♣ρζq, q♣t✁1q
m ♣mq, q♣t✁1q

ρ ♣ρq

❄

compute q♣tqz ♣zq according to q♣t✁1q

f
♣f ⑤zq, q♣t✁1q

z ♣zq, q♣t✁1q
ρζ

♣ρζq, q♣t✁1q
m ♣mq, q♣t✁1q

ρ ♣ρq

❄

compute q♣tqρζ
♣ρζq according to q♣tq

f
♣f ⑤zq, q♣tqz ♣zq, q♣t✁1q

m ♣mq, q♣t✁1q
ρ ♣ρq

❄

compute q♣tqm♣mq according to q♣tq
f
♣f ⑤zq, q♣tqz ♣zq, q♣tqρζ

♣ρζq, q♣t✁1q
ρ ♣ρq

❄

compute q♣tqρ ♣ρq according to q♣tq
f
♣f ⑤zq, q♣tqz ♣zq, q♣tqρζ

♣ρζq, q♣tqm♣mq

❄

t :✏ t� 1

❄

Figure 6.1: Iterative algorithm to compute approximating distribution q♣f ,ρζ , z,m,ρq

as several auxiliary variables :✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

m̃j ✏
➦K
k✏1 m̃jkqzj ♣kq

ṽj ✏
➦K
k✏1 ṽjkqzj ♣kq

m̃
♣2q
j ✏ ➦K

k✏1 ♣m̃jk ✁ m̃jq2 qzj ♣kq ✏
➦K
k✏1 m̃

2
jkqzj ♣kq ✁ m̃2

j

ṽ
♣2q
j ✏ ṽj � m̃

♣2q
j

ṽζi ✏
β̃ζ0i
α̃ζ0i

(6.47)

and the diagonal matrix Ṽ ζ ✏ diag rṽζs. At the end of the algorithm, the unknowns are estimated by their expectation
with respect to the approximate distribution q, excepted for the labels which are estimated by maximum a posteriori,
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due to the fact that they are discrete variables :✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

f̂j ✏ Eq♣fjq ✏
➦K
k✏1 Eq♣fj ⑤zj ✏ kqqzj ♣kq ✏

➦K
k✏1 m̃jkqzj ♣kq ✏ m̃j

ρ̂ζi ✏ Eq♣ρζiq ✏
α̃ζ0i

β̃ζ0i

ẑj ✏ argmaxk
✥
qzj ♣kq

✭
m̂k ✏ Eq♣mkq ✏ m̃0k

ρ̂k ✏ Eq♣ρkq ✏ α̃0k

β̃0k

. (6.48)

Concerning the posterior variances, denoted by vf ✏ ♣vfj qj , they are estimated at the end of the VBA algorithm by

v̂fj ✏ Varq♣fjq ✏
K➳
k✏1

Eq♣f2j ⑤zj ✏ kqqzj ♣kq ✁ m̃2
j ✏

K➳
k✏1

♣ṽjk � m̃2
jkqqzj ♣kq ✁ m̃2

j ✏ ṽ
♣2q
j ,❅j. (6.49)

The stopping criterion of the VBA algorithm in figure 6.1 is the negative free energy from which constants are removed
:

L♣q♣f ,ρζ , z,m,ρqq ✏ 1

2

N➳
j✏1

K➳
k✏1

ln ♣ṽjkq qzj ♣kq ✁
N➳
j✏1

K➳
k✏1

qzj ♣kq ln
�
qzj ♣kq

✟

�
M➳
i✏1

✑
ln♣Γ♣α̃ζ0i qq ✁ ln♣β̃ζ0i q � α̃ζ0i ✁

✁
α̃ζ0i ✁ 1

✠
ψ
✁
α̃ζ0i

✠✙

� 1

2

K➳
k✏1

ln ♣ṽ0kq �
K➳
k✏1

✑
ln♣Γ♣α̃0kqq ✁ ln♣β̃0kq � α̃0k ✁ ♣α̃0k ✁ 1qψ ♣α̃0kq

✙

✁ 1

2

M➳
i✏1

✑
ln♣β̃ζ0i q ✁ ψ

✁
α̃ζ0i

✠✙
✁ 1

2
⑥g ✁Hm̃⑥2˜V ζ

✁ 1

2

N➳
j✏1

ṽ
♣2q
j

✑
HT Ṽ

✁1

ζ H
✙
jj

✁ 1

2

N➳
j✏1

K➳
k✏1

✄
α̃0k

β̃0k

✑
ṽjk � ṽ0k � ♣m̃jk ✁ m̃0kq2

✙
� ln♣β̃0kq ✁ ψ♣α̃0kq

☛
qzj ♣kq

�
N➳
j✏1

K➳
k✏1

☎
✆αk � γ0

➳
iPV♣jq

qzi♣kq
☞
✌qzj ♣kq

✁ ♣αζ0 ✁ 1q
M➳
i✏1

♣ln♣β̃ζ0i q ✁ ψ♣α̃ζ0i qq ✁ βζ0

M➳
i✏1

α̃ζ0i

β̃ζ0i

✁ 1

2v0

K➳
k✏1

✁
ṽ0k � ♣m̃0k ✁m0q2

✠
✁ ♣α0 ✁ 1q

K➳
k✏1

♣ln♣β̃0kq ✁ ψ♣α̃0kqq ✁ β0

K➳
k✏1

α̃0k

β̃0k
. (6.50)

The details of the calculations of the stopping criterion (F.65) are given in appendix F. In the following of this section,
we give the updating formulae of the parameters of the approximate distributions. Like in the previous chapters, the
subscripts t, 0 ↕ t ➔ tmax, corresponding to the iterations of the algorithm, are omitted for the sake of readibility.

6.2.1 Approximate distribution for the volume

By applying formula (6.34), we have :

qfj ♣fj ⑤zj ✏ kq ✏ N ♣fj ⑤m̃jk, ṽjkq,❅j,❅k (6.51)
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where ✩✬✬✫
✬✬✪

ṽjk ✏
✂
α̃0k

β̃0k
�
✑
HT Ṽ

✁1

ζ H
✙
jj

✡✁1

m̃jk ✏ m̃j � ṽjk

✂
α̃0k

β̃0k
♣m̃0k ✁ m̃jq �

✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j

✡ (6.52)

6.2.2 Approximate distribution for the labels

By applying formula (6.41), we have :

qzj ♣zjq ✏
exp

✑➦K
k✏1

✁
α̃jk � γ0

➦
iPV♣jq qzi♣kq

✠
δ♣zj ✁ kq

✙
➦K
k✏1 exp

✑
α̃jk � γ0

➦
iPV♣jq qzi♣kq

✙ (6.53)

where qzi♣kq,❅i P V♣jq, is the value of qzi♣kq at the previous iteration of the algorithm presented in figure 6.1. We
have

α̃jk ✏ αk ✁ 1

2

✄
α̃0k

β̃0k

✑
ṽjk � ṽ0k � ♣m̃jk ✁ m̃0kq2

✙
� ln♣β̃0kq ✁ ψ♣α̃0kq

☛
� 1

2
ln ♣ṽjkq

✁ 1

2

✂�
ṽjk � m̃2

jk

✟ ✑
HT Ṽ

✁1

ζ H
✙
jj
✁ 2m̃jk

✂
m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj
�
✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j

✡✡
(6.54)

It is worth to notice that this step does not imply the calculation of the backprojection of the errors and of diagonal

coefficients
✑
HT Ṽ

✁1

ζ H
✙
jj

, for all j, since they have been computed before in order to update the approximate

distribution of the volume, according to the order of the updates shown in figure 6.1.

6.2.3 Approximate distribution of the inverses of the variances of the uncertainties

By applying formula (6.22), we have :
qρζi ♣ρζiq ✏ G♣ρζi ⑤α̃ζ0i , β̃ζ0i q (6.55)

where ★
α̃ζ0i ✏ αζ0 � 1

2

β̃ζ0i ✏ βζ0 � 1
2

✁
♣gi ✁ rHm̃siq2 �

✁
HṼ

♣2q
HT

✠
ii

✠
,❅i P t1, . . . ,M✉. (6.56)

and Ṽ
♣2q ✏ diag

✑
ṽ♣2q

✙
.

6.2.4 Approximate distribution for the means of the classes

By applying formula (6.22), we have :
qmk

♣mkq ✏ N ♣mk⑤m̃0k , ṽ0kq (6.57)

where ✩✬✬✫
✬✬✪

ṽ0k ✏
✂

1
v0

� α̃0k

β̃0k

➦N
j✏1 qzj ♣kq

✡✁1

m̃0k ✏ ṽ0k

✂
m0

v0
� α̃0k

β̃0k

➦N
j✏1 m̃jkqzj ♣kq

✡ (6.58)

6.2.5 Approximate distribution for the inverses of the variances of the classes

By applying formula (6.22), we have :
qρk♣ρkq ✏ G♣ρk⑤α̃0k , β̃0kq (6.59)

where ★
α̃0k ✏ α0 � 1

2

➦N
j✏1 qzj ♣kq

β̃0k ✏ β0 � 1
2

➦N
j✏1

✁
ṽ0k � ṽjk � ♣m̃jk ✁ m̃0kq2

✠
qzj ♣kq

(6.60)
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6.2.6 Summary and initialization of the VBA algorithm

The proposed VBA algorithm is summarized in algorithm 15. The updating formulae are applied according to the

order given in figure 6.1. In particular, for the computation of qzj ♣kq at iteration t, m̃♣t✁1q
jk and ṽ♣t✁1q

jk must be used,

and not m̃♣tq
jk and ṽ♣tqjk , in order to ensure the convergence of the algorithm.

Algorithm 15 VBA algorithm with Gauss-Markov-Potts prior

Initialize m̃♣0q
jk , ṽ

♣0q
jk , qzj ♣kq♣0q, α̃♣0qζ0i , β̃

♣0q
ζ0i
, m̃

♣0q
0k
, ṽ

♣0q
0k
, α̃

♣0q
0k
, β̃

♣0q
0k
,❅j , i , k

for t ✏ 0, . . . , tmax ✁ 1 do

1 : Update m̃jk and ṽjk by (6.52), ❅j , k
2 : Update qzj ♣kq by (6.53), ❅j , k
3 : Update α̃ζ0i and β̃ζ0i by (6.56), ❅i
4 : Update m̃0k and ṽ0k by (6.58), ❅k
5 : Update α̃0k and β̃0k by (6.60), ❅k

end for

Return f̂ , v̂f , ẑ, ρ̂ζ , m̂ and ρ̂ by (6.48) and (6.49)

Since the number of variables is quite high, the initialization of algorithm 15 is not trivial. First, based on an
initial reconstruction f ♣0q obtained by filtered backprojection [FDK84], an initial segmentation z♣0q is performed
by applying a fast method [Ots79, KSH01], as it is done for Joint Maximization A Posteriori (JMAP) in chapter 4.
From this initial segmentation, initial means m♣0q and variances v♣0q of the classes are computed. Then, the means

m̃jk,❅j, k are initialized to f ♣0qj if voxel j is in class k at initialization, and to m♣0q
k otherwise :

m̃
♣0q
jk ✏

★
f
♣0q
j if z♣0qj ✏ k

m
♣0q
k otherwise

(6.61)

Concerning the variances of the approximate distribution of the volume, inspired by their updating formula (6.52), we
initialize ṽjk by :

ṽ
♣0q
jk ✏

✄
1

v
♣0q
k

� αζ0
βζ0

✏
HTH

✘
jj

☛✁1

. (6.62)

The probabilities qzj ♣kq,❅j,❅k, for each voxel to be in each class are initialized by 0 or 1 :

qzj ♣kq♣0q ✏
★

1 if z♣0qj ✏ k

0 otherwise
(6.63)

The approximate distributions of ρζ ,m and ρ are initialized to the conditional distributions given the other unknowns.
These distributions are derived in chapter 4. We set

α̃
♣0q
ζ0i

✏ αζ0 �
1

2
,❅i, (6.64)

β̃
♣0q
ζ0i

✏ βζ0 �
1

2

✁
gi ✁

✑
Hf ♣0q

✙
i

✠2
,❅i, (6.65)

ṽ
♣0q
0k

✏
✄

1

v0
� N

♣0q
k

v
♣0q
k

☛✁1

,❅k, (6.66)

m̃
♣0q
0k

✏ ṽ
♣0q
0k

✄
m0

v0
�N

♣0q
k

m
♣0q
k

v
♣0q
k

☛
,❅k, (6.67)

α̃
♣0q
0k

✏ α0 �
N

♣0q
k

2
,❅k, (6.68)

124



β̃
♣0q
0k

✏ β0 �
N

♣0q
k

2
v
♣0q
k ,❅k, (6.69)

where N ♣0q
k is the number of voxels in class k in the initial segmentation z♣0q.

After these initializations, algorithm 15 can be applied. Nevertheless, for the case of 3D X-ray CT, the algorithm
has an intrinsic difficulty we now describe in the next section.

6.3 Difficulty of implementation : computation of the diagonal coefficients

At one iteration of the algorithm, for any voxel j, the diagonal coefficient used to compute vjk by (6.52) is

dvj ✏
✑
HT Ṽ

✁1

ζ H
✙
jj
✏ ⑥He♣jq⑥2˜V ζ

(6.70)

where e♣jqi ✏ δ♣j✁ iq,❅i. As dv ✏ ♣dvj qj has the size of a volume, formula (6.70) implies to compute N projections,
which is very long, even if the projector implemented on GPU is very fast. We calculated that, if we have to reconstruct
a volume of sizeN ✏ 2563 voxels, and if one projection operation takes only 10 milliseconds, computing all diagonal
coefficients dvj ,❅j, for only one iteration of algorithm 15, would require more than 40 hours. Due to this huge
computational cost, we prefer to consider the algebraic formula :

dvj ✏
✑
HT Ṽ

✁1

ζ H
✙
jj
✏

M➳
i✏1

H2
ij ṽ

✁1
ζi
,❅j. (6.71)

From this formula, diagonal coefficients dv ✏ ♣dvj qj appear to be similar to a backprojection of ṽ✁1
ζ ✏ ♣ṽ✁1

ζi
qi,

except that coefficients Hij are replaced by their squares H2
ij , ❅i, j. Similarly, diagonal coefficients

dζi ✏
✑
HṼ HT

✙
ii
✏

N➳
j✏1

H2
ij ṽj ,❅i, (6.72)

appear like a projection of volume ṽ, with H2
ij instead of Hij . Given formulae (6.71) and (6.72), we implement a

squared-projector H♣2q such that H♣2q
ij ✏ H2

ij ,❅i, j, and a squared-backprojector ♣H♣2qqT , which are projection-like
and backprojection-like operators, in which coefficients Hij are replaced by their squares H2

ij . In order to ensure the
validity of formulae (6.71) and (6.72), and therefore the convergence of our algorithm, we use a matched P/BP pair,
which is here the Separable Footprint (SF) pair [LFB10] described in chapter 3. We recall that the SF projection and
backprojection operations respectively read

g♣ue, ve, φq ✏ gi ✏ rHf si
✏ lθc♣ue, veq

➳
xe

➳
ye

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeq

➳
ze

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq (6.73)

and

b♣xe, ye, zeq ✏ bj ✏
✏
HTg

✘
j

✏
➳
φ

➳
ve

Fax♣ve, φ;xe, ye, zeq
➳
ue

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeqlθc♣ue, veqg♣ue, ve, φq, (6.74)

where Ftrans♣ue, φ;xe, yeq is the trapezoidal transaxial footprint of voxel ♣xe, ye, zeq onto cell ♣ue, veq at projec-
tion angle φ, Fax♣ve, φ;xe, ye, zeq is the rectangular axial footprint, and lθc♣ue, veq and lψv

♣φ;xe, yeq are amplitude
functions [LFB10]. Consequently, for the SF pair, a squared-projection operation is defined as

dζi ✏
✑
H♣2qṽ♣2q

✙
i
✏ dζ♣ue, ve, φq
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Figure 6.2: Diagonal coefficients of HHT . These coefficients
are the size of projections, of which one image is shown.

Figure 6.3: Diagonal coefficients of HTH . These coefficients
are the size of a volume, of which the middle slice is shown.

Figure 6.4: SF projection of a volume fully filled with ones, to
compare to the diagonal coefficients of HHT .

Figure 6.5: SF backprojection of projections fully filled with ones,
to compare to the diagonal coefficients of HTH .
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✏ lθc♣ue, veq2
➳
xe

➳
ye

lψv
♣φ;xe, yeq2Ftrans♣ue, φ;xe, yeq2

➳
ze

Fax♣ve, φ;xe, ye, zeq2ṽ♣2q♣xe, ye, zeq (6.75)

and a squared-backprojection is

dvj ✏
✑
H♣2qT ṽ✁1

ζ

✙
j
✏ dv♣xe, ye, zeq

✏
➳
φ

➳
ve

Fax♣ve, φ;xe, ye, zeq2
➳
ue

lψv
♣φ;xe, yeq2Ftrans♣ue, φ;xe, yeq2lθc♣ue, veq2

1

ṽζ♣ue, ve, φq . (6.76)

Both the squared SF projector and the squared SF backprojector are implemented on the GPU exactly like the SF
projector and the SF backprojector in chapter 3. Thanks to the use of these operators, in one iteration of our algo-
rithm, diagonal coefficients dvj ,❅j, are simultaneously computed by applying ♣H♣2qqT , which is very fast because
it takes the same time as a backprojection, instead of N projections. Similarly, diagonal coefficients dζi ,❅i, are si-
multaneously computed by applying H♣2q, as fast as one projection, instead of M backprojections. Here, we see
the advantage of using a matched P/BP pair, since this fast computation of the diagonal coefficients is not feasible
with an unmatched pair. Figures 6.2 and 6.3 show the diagonal coefficients ofHHT andHTH , computed byH♣2q

and ♣H♣2qqT respectively. The diagonal coefficients of HHT have the size of projections and are shown as it in
figure 6.2, while those of HTH are shown as a volume. Given formula (6.75), the diagonal coefficients of HHT

correspond to the squared projection of a volume fully filled with ones, denoted by 1N :

♣HHT qii ✏
✑
H♣2q

1N

✙
i

✏ lθc♣ue, veq2
➳
xe

➳
ye

lψv
♣φ;xe, yeq2Ftrans♣ue, φ;xe, yeq2

➳
ze

Fax♣ve, φ;xe, ye, zeq2, (6.77)

while, given formula (6.76), the diagonal coefficients of HTH correspond to the squared backprojection of projec-
tions fully filled with ones, denoted by 1M :

♣HTHqjj ✏
✑
H♣2qT

1M

✙
j

✏
➳
φ

➳
ve

Fax♣ve, φ;xe, ye, zeq2
➳
ue

lψv
♣φ;xe, yeq2Ftrans♣ue, φ;xe, yeq2lθc♣ue, veq2. (6.78)

In figures 6.4 and 6.5, we show the results of formulae (6.77) and (6.78) without the squares, i.e. the projection of 1N

rH1N si ✏ lθc♣ue, veq
➳
xe

➳
ye

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeq

➳
ze

Fax♣ve, φ;xe, ye, zeq, (6.79)

and the backprojection of 1M✏
HT

1M

✘
j
✏
➳
φ

➳
ve

Fax♣ve, φ;xe, ye, zeq
➳
ue

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeqlθc♣ue, veq, (6.80)

respectively. Comparing these figures to figures 6.2 and 6.3, we see that the orders of magnitude of the coefficients

of H♣2q
1N and H♣2qT

1M are very different from the ones of H1N and HT
1M , since Hij , which is squared in

H♣2q, approximately corresponds to the length crossed by ray i in voxel j, which is very little. The use of the
squared projector and backprojector is not limited to the application of VBA to 3D CT. These operators can also
be useful to implement regularizers such that the resolution of the obtained penalized-likelihood estimators is nearly
space-invariant, for instance in 3D Positron Emission Tomography (PET) [FR96].

We now apply algorithm 15 to simulated data, and compare the estimated PM with JMAP described in chapter 4.
For our comparisons, JMAP is performed by algorithm 12 and applied with the SF pair.
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(a) (b)

(c) (d)

Figure 6.6: Joint reconstructions and segmentations by JMAP (a-b) and VBA (c-d) algorithms
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Figure 6.7: Probability maps for each voxel to be in each class, estimated by the VBA algorithm
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Figure 6.8: Convergence of the VBA algorithm
Figure 6.9: Variances obtained by the VBA algorithm jointly with
the reconstruction. The variances are shown in logarithmic scale.

6.4 Simulation results

We test algorithm 15 on the Shepp-Logan phantom, already used in chapters 3 and 4. The source-to-detector distance
is 230 mm, and the source-to-object distance is 98 mm. The phantom has K ✏ 5 classes. The field-of-view is size
6.05✂6.05✂5.86 mm3 and is discretized into 2563 voxels. We reconstruct it from 64 projections of size 2562 pixels,
uniformly distributed over r0, 2πs. The projections are noisy with a signal-to-noise ratio equal to 20 db.

Concerning the fixation of the parameters of the VBA algorithm, we use the same strategies as the ones explained
in chapter 4 for α, γ0, m0 and v0. In the experiments we conducted, we saw that the ways to fix ♣αζ0 , βζ0 , α0, β0q for
JMAP lead to very bad results for VBA. This is due to the fact that we do not compute the same estimator, which is
the PM in VBA and the MAP in JMAP. Consequently, the parameters ♣αζ0 , βζ0 , α0, β0q of the VBA algorithm cannot
be tuned in the same way as in JMAP. Experimentally, we found the best results when fixing αζ0 , βζ0 , α0 and β0 near
the Jeffreys prior [Jef46]. Nevertheless, during our experiments, we have noticed that the VBA algorithm is more
sensitive to the choice of the parameters than JMAP. Table 6.1 gives the used values for the parameters, except for m0

and α which are fixed automatically as in chapter 4. For JMAP, the parameters are fixed to the same values used in
section 4.4.

Parameters K γ0 v0 αζ0 βζ0 α0 β0
Values 5 6 1 10✁4 10✁2 10✁6 10✁2

Table 6.1: Parameters for the VBA algorithm

Figure 6.6 shows the reconstructions obtained by JMAP and VBA respectively. Thanks to the use of Gauss-
Markov-Potts prior model, JMAP and VBA reconstructions have compact and well-distinguishable regions. We see
that the reconstruction by VBA has smoother contours than the one by JMAP. Nevertheless, in table 6.2, we see that
the VBA algorithm obtains a higher error ∆2f than JMAP, as a lower Rand index [Ran71]. Indeed, in figure 6.6, we
see that, compared to JMAP, some details are lost by the VBA algorithm. This is due to the factorized form of the
approximate posterior distribution, which overlooks correlations between neighbouring voxels.

The evolution of the stopping criterion (F.65) is shown in figure 6.8. As we see, it increases through the iterations.
As presented in chapter 4, one iteration of JMAP contains 20 sub-iterations for the volume estimation and few sub-
iterations for the segmentation step. The VBA algorithm does not have sub-iterations. Consequently, in table 6.2, the
computation time of the VBA algorithm is much less than the one of JMAP. Nevertheless, our experiments showed
that the VBA algorithm has a high sensitivity to the number of iterations. Indeed, for a too large number of iterations
of VBA, the reconstruction is over-regularized. This is a drawback of the VBA algorithm compared to JMAP. In
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Algorithm Computation time ∆2f ∆2g Rand index
JMAP 873.1 s 8.81 % 0.66 % 94.7 %

VBA 150.0 s 13.5 % 2.67 % 92.8 %

Table 6.2: Comparaison of JMAP and VBA algorithms

addition, the memory cost of the VBA algorithm is much higher than the one of JMAP. This makes it only applicable
to small regions-of-interest (ROI), typically of size 2563. Based on a reconstruction of high quality (for instance,
obtained by JMAP), the reconstruction of a ROI can be performed following the method of [ZNG08], as done for
instance in [LFB10]. Combining this method with the VBA algorithm should enable to estimate the uncertainties in a
ROI. This point will be covered in future works.

By the estimation of qzj ♣kq, for all j P t1, . . . , N✉ and k P t1, . . . ,K✉, the VBA algorithms returns K maps
giving the probability for each voxel to be in each class. These probability maps are shown in figure 6.7. The
variances of the posterior distribution of the volume estimated by VBA are shown in figure 6.9. Unsurprisingly,
the highest variances are on the thinest part of the phantom which is the bone. Nevertheless, the loss of details
in the reconstruction is not highlighted by the posterior variances. This is due to the fact that uncertainties are
under-estimated in VBA when considering Kullback-Leibler divergenceKL♣q⑤⑤pq [GBJ15]. Considering the reversed
Kullback-Leibler divergence KL♣p⑤⑤qq, like in Expectation-Propagation (EP) [Min01, Min05, PSC�16], should lead
to a better estimation of the uncertainties. Nevertheless, minimizing KL♣p⑤⑤qq is more difficult since this divergence
is an integral with respect to p which is unknown. In addition, EP uses an approximate disitribution q which has
the same factorization than the true posterior distribution p. This is not the case for our approximate distribution
(6.42). Consequently, minimizing KL♣p⑤⑤qq instead of KL♣q⑤⑤pq considering our chosen form for q remains an open
problem.

6.5 Conclusion and perspectives

In this chapter, we have presented an application for 3D X-ray CT of variational Bayesian approach (VBA) with
Gauss-Markov-Potts prior model. We have presented new updating formulae for partially factorized approximate
distributions preserving a dependence between variables. By computing the posterior mean (PM) thanks to VBA,
we have been able to jointly perform the reconstruction and the estimation of the posterior variances, which give the
uncertainties on the reconstruction. In order to compute these variances, we have seen that the huge dimension in
3D X-ray CT hinders to easily get diagonal coefficients, due to the fact that projection and backprojection operators
cannot be stored in memory. In order to tackle this problem, we have taken benefit from the use of a matched pair of
projector and backprojector, which was the Separable Footprint (SF) one : based on this pair, we have implemented
"squared" projector and backprojector which have enabled us to compute diagonal coefficients on-the-fly. The GPU
implementation for these squared operators was the same proposed for the SF P/BP pair in chapter 3.

Our tests on simulated data and comparisons with joint maximization a posteriori (JMAP) have shown that VBA
obtains smoother contours than JMAP and converges faster. Although the memory cost of VBA is higher than the
one of JMAP, we have underlined that the algorithm can be applied in order to estimate the uncertainties in a small
region-of-interest (ROI). Nevertheless, our experiments have also highlighted that the estimation of the uncertainties
shall be enhanced. The main part of the future works will focus on developing other variational Bayesian algorithms
in order to get a better estimation of the uncertainties.

Applications of the algorithm to real data also remain to do. Indeed, we have shown that using a matched pair
such as the SF pair detailed in chapter 3 is necessary to apply the VBA algorithm. Consequently, before dealing
with real data of huge size, the GPU implementation of the SF pair have to be fully optimized and adapted to large
volumes as explained in the conclusion of chapter 3. Once this work will be done, experiments on real data will be
performed. These further tests will be an opportunity to find optimal strategies in order to fix the parameters of the
VBA algorithm.
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Chapter 7

Conclusion and perspectives

In this thesis, we have proposed several iterative reconstruction methods in X-ray Computed Tomography (CT), based
on a Bayesian approach, in order to inspect piecewise-constant industrial parts produced by SAFRAN. In order to
model the attenuation of X-rays through the to-be-imaged volume, in chapter 3, we have studied a matched pair
of projector and backprojector (P/BP), which was the Separable Footprint (SF) [LFB10], and an unmatched P/BP
pair, with a ray-driven (RD) projector and a voxel-driven (VD) backprojector. Both these pairs have been validated
on Graphical Processor Unit (GPU) in order to massively parallelize the computations and, therefore, to reconstruct
volume of huge dimensions in reasonable times. In particular, we have proposed a new GPU implementation of the
SF pair in order to minimize the memory transfers between the CPU and the GPU. As our first implementation of
the SF projector run two kernels depending on the main direction of the rays, we have proposed a method in order
to merge these kernels into only one. As pointed out in the conclusion of chapter 3, the perspectives for the GPU
implementation of the SF pair are to adapt it to very large volumes and to compare it with the other existing GPU
implementations [XML�17]. After this work, it will be interesting to compare the effects of using a matched or an
unmatched P/BP pair on real data, and to see if the matched pair brings a gain in precision and robustness.

After the validation of the used P/BP pairs, in chapter 4, a new algorithm for joint reconstruction and segmentation,
based on a Gauss-Markov-Potts prior model on the volume, has been detailed. The algorithm mainly consists in
alternating a reconstruction and a segmentation steps. As advantages compared to other joint reconstruction and
segmentation approaches [BS11, SWFU15, ZPB16], the algorithm estimates the means and the variances of the
classes in a very simple way. In addition, we have underlined that the algorithm has a low memory cost. The
algorithm has been shown to give results of good quality, both in simulation and on real data provided by SAFRAN.
Nevertheless, on challenging data like the Composite Material with Titanium on the Edges (CMTE), we have seen
that the segmentation step fails in removing the scattering due to the titanium, since the attenuation coefficients due to
the scattering are very close to the ones of the composite material. In order to reduce this scattering, in section 4.6, we
have suggested a method which would be interesting to test in future works. Based on a segmentation which enables
to locate the titanium in the field-of-view, an iterative method would be applied in order to reconstruct the composite
material and to avoid artifacts thanks to the knowledge about the position of the titanium. The segmentation would be
provided by the algorithm presented in chapter 4, but it may alternatively be the Computer-Assisted-Design (CAD)
of the part. Nevertheless, using the CAD requires to register it in the field-of-view, which is not easy to do in an
unsupervised way. In any case, another benefit from the segmentation would be to weight the projections depending
on how much there are scattering or absorbing materials in each direction.

Although the proposed algorithm in chapter 4 has many parameters, we have been able to explain the role of each
parameter thanks to our Bayesian approach and to give strategies in order to fix it. Nevertheless, optimally tuning
the number of sub-iterations executed during the reconstruction step and the segmentation step remains difficult and
often requires repeated experiments on challenging data. In addition, the impact of K needs to be deepened in the
perspective of non-destructive testing. Indeed, in this work, K has been fixed to its known theoretical value. Making
this choice, experiments still have to be conducted in order to make sure that, in the case when extra materials
are present, the reconstruction method does not hide it, or, at least, diverges such that we are able to identify that
something is going wrong in the inspected volume. At first sight, a safe way would be to fix K to a far over-estimated
value, but, doing so, we have seen in further experiments (not presented in this thesis) that the quality of the final
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reconstruction is degraded and not better than a filtered backprojection. This is explained by the fact that, when
over-estimating K, the scattering and the beam-hardening can be identified as classes, hence they are not removed
during the segmentation process. Another possible way would be to adapt K to an optimal value estimated during
the execution of the algorithm itself. Nevertheless, given the reconstruction method, this appears difficult to do, and
remains a completely open problem. In any case, the estimation of K will require much more experiments. In order
to save computation time, the segmentation step of the algorithm will have to be parallelized on GPU. Concerning this
point, a valuable point for industrialization and effective use will be to implement the full method on multi-GPU. This
will require to manage the data transfers between GPUs in an effective way, as it is done for instance in [MWF18].

In chapter 4, we have also highlighted that the parameters related to the uncertainties on the projections are not
easy to tune, due to the fact that the forward model used in chapter 4 is derived from a monochromatic model of X-
rays, while they are actually polychromatic. For this reason, in chapter 5, we have inserted an error term in the mean of
the Poisson statistics of photon-counts, standing for the deviation introduced by the monochromatic model of the rays
with respect to the polychromatic one. Following the same route as [SB93], we have derived a new forward model for
X-ray CT, called the error-splitting forward model, since it splits the uncertainties on the projections into two terms.
The first term has appeared as measurement uncertainties which can be well-modeled by a Gaussian distribution. The
second term has been shown as playing the role of a bias in the forward model, hence it has been said to correspond
to linear model uncertainties. In our derivation of the error-splitting forward model, no clear statistics has appeared
for linear model uncertainties, contrary to measurement uncertainties. As a consequence, we have proposed to assign
a heavy-tailed prior on these uncertainties, thanks to the use of the generalized Student-t distribution. The choice
for a heavy-tailed prior has been motivated by the fact that we wanted to enforce robustness with respect to outliers
corresponding to strong scattering and beam-hardening. Based on the error-splitting forward model, we have proposed
a general reconstruction algorithm, applicable with any proper prior model on the volume. Then, we have detailed its
combination with Gauss-Markov-Potts prior. In our experiments on real data of SAFRAN, the error-splitting forward
model with Gauss-Markov-Potts prior has been shown to combine robustness and accuracy, while only one of these
features was achievable with the usual forward model previously used in chapter 4. A perspective for this work is to
use the error-splitting forward model with priors on the volume different from Gauss-Markov-Potts, in order to see if
it brings the same advantages. Since the reconstruction method proposed in chapter 5 is only valid with proper priors
on the volume, it will be also interesting to find a way to combine the error-splitting forward model with improper
priors such as minimum Total Variation (TV) [CP11, OMBF18]. As mentioned in chapter 5, several improvements
of the error-splitting forward model shall be studied, such as enforcing a nonpositivity constraint on linear model
uncertainties, or assigning different priors on measurement uncertainties depending on the signal-to-noise ratio in
each ray. Another way to enhance the reconstruction quality would be to combine the proposed methods with first-
order beam-hardening correction approaches often used in clinical CT as a pre-processing step [GDMJ�16]. Since the
object materials are known, a first-order correction of beam-hardening would consist in correcting the non-linearities
in the data due to the dominant material [BDC76]. Therefore, the methods proposed in this thesis would only have to
remove the second-order effects due to the other materials. Equivalently to water correction in clinical CT, the first-
order correction would require the use of a calibration phantom only made of the dominant material of the inspected
part [KSK06].

Since the reconstruction obtained by an iterative algorithm is only an estimation of the true volume, in chapter
6, we have proposed an algorithm which performs an estimation of the uncertainties on the reconstruction. This
algorithm is an instance of Variational Bayesian Approach (VBA), about which we have given details in chapter 6 and
for which we have derived new updating formulae when the chosen form of the approximate posterior distribution
preserves a dependence between some variables, as it has been the case between the attenuation coefficients and the
labels with Gauss-Markov-Potts prior model on the volume. In order to compute the approximate diagonal coefficients
of the posterior covariance matrix in a reasonable time, we have also highlighted that it is necessary to use a matched
P/BP pair. To this end, we have taken benefit from our GPU implementation of the SF pair presented in chapter
3. In our experiments on simulated data, it has appeared that, although the algorithm gives quite good results, the
uncertainties are under-estimated. In order to improve this estimation, other VBA algorithms, for instance minimizing
the reversed Kullback-Leibler divergence, remain to study.

The presented algorithms in this thesis have focused on reconstructing a particular class of industrial parts which
are quasi-piecewise-constant. These parts are not the only ones made by SAFRAN. Another interesting class is the
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class of woven composite materials, which have not been considered in this thesis. As pointed out at the end of chapter
4, Gauss-Markov-Potts prior is not suited to these parts since it over-smoothes the weaving. Consequently, finding a
tractable prior model for these parts in order to reconstruct it by iterative reconstruction methods is a possible future
work. For this purpose, it will be interesting to re-use the error-splitting forward model in order to gain in precision
and robustness.

At last, we may underline that there are industrial parts at SAFRAN which are too big to entirely lie in the field-
of-view. This is a problem because, in such cases, there is information in the projections which is related to voxels
out of the field-of-view. This problem in CT corresponds to the field of local tomography [PM17, PDM17]. Adapting
the algorithms proposed in this thesis to the context of local tomography in order to apply it on big parts made by
SAFRAN can be studied. Nevertheless, the markovian nature of the prior model on the volume may lead to difficulties
when dealing with the voxels on the border of the field-of-view.
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Appendix A

Derivation of the algebraic forward model used

in X-ray CT

As explained in chapter 1, the Poisson statistics of photon-counts reads

p♣Ii⑤f , riq ✏ P
✁
I0e

✁rHf s
i � ri

✠
(A.1)

where I0 is the mean number of photons sent by the source and ri is the mean number of background events. We have

✁ ln♣p♣Ii⑤f , riqq ✏ ln♣Ii!q � I0e
✁rHf s

i � ri ✁ Ii ln
✁
I0e

✁rHf s
i � ri

✠
. (A.2)

The reconstruction problem is linearized considering

gi ✏ ln

✂
I0

Ii ✁ ri

✡
,❅i. (A.3)

Since many photons reach the detector, we can write a second-order Taylor expansion [SB93] :

I0e
✁rHf s

i � ri ✏ ♣Ii ✁ riq exp rgi ✁ rHf sis � ri

✏ Ii � ♣Ii ✁ riq♣gi ✁ rHf siq �
1

2
♣Ii ✁ riq♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟
. (A.4)

Hence, we have

Ii ln
✁
I0e

✁rHf s
i � ri

✠
✏ Ii ln ♣♣Ii ✁ riq exp rgi ✁ rHf sis � riq

✏ Ii ln

✂
Ii � ♣Ii ✁ riq♣gi ✁ rHf siq �

1

2
♣Ii ✁ riq♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✡

✏ Ii

✒
ln♣Iiq � ln

✂
1� Ii ✁ ri

Ii
♣gi ✁ rHf siq �

1

2

Ii ✁ ri

Ii
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✡✚

✏ Ii

✒
ln♣Iiq � Ii ✁ ri

Ii
♣gi ✁ rHf siq �

1

2

Ii ✁ ri

Ii
♣gi ✁ rHf siq2

✁1

2

✂
Ii ✁ ri

Ii

✡2

♣gi ✁ rHf siq2 � o
�♣gi ✁ rHf siq2

✟✛

✏ Ii

✓
ln♣Iiq � Ii ✁ ri

Ii
♣gi ✁ rHf siq �

1

2

✓
Ii ✁ ri

Ii
✁
✂
Ii ✁ ri

Ii

✡2
✛
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✛

✏ Ii

✒
ln♣Iiq � Ii ✁ ri

Ii
♣gi ✁ rHf siq �

1

2

Ii ✁ ri

Ii

✒
1✁ Ii ✁ ri

Ii

✚
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✚

✏ Ii

✒
ln♣Iiq � Ii ✁ ri

Ii
♣gi ✁ rHf siq �

1

2

♣Ii ✁ riqri
I2i

♣gi ✁ rHf siq2 � o
�♣gi ✁ rHf siq2

✟✚
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✏ Ii ln♣Iiq � ♣Ii ✁ riq♣gi ✁ rHf siq �
1

2

♣Ii ✁ riqri
Ii

♣gi ✁ rHf siq2 � o
�♣gi ✁ rHf siq2

✟
. (A.5)

Gathering (A.2), (A.4) and (A.5), we have a cancellation of first-order terms :

✁ ln♣p♣gi⑤f , riqq ✏ ln♣Ii!q � Ii ✁ Ii ln♣Iiq � r♣Ii ✁ riq ✁ ♣Ii ✁ riqs ♣gi ✁ rHf siq

� 1

2

✒
♣Ii ✁ riq ✁ ♣Ii ✁ riqri

Ii

✚
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟

(A.6)

✏ ln♣Ii!q � Ii ✁ Ii ln♣Iiq � 1

2vζi
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟

(A.7)

where

vζi ✏
✒
♣Ii ✁ riq ✁ ♣Ii ✁ riqri

Ii

✚✁1
✏
✒
♣Ii ✁ riq

✂
1✁ ri

Ii

✡✚✁1
✏ Ii

♣Ii ✁ riq2 . (A.8)

As a result, the log-likelihood for the linearized reconstruction problem reads

ln♣p♣gi⑤f , vζiqq ✓ Ci ✁ 1

2vζi
♣gi ✁ rHf siq2 (A.9)

where
Ci ✏ ✁rln♣Ii!q � Ii ✁ Ii ln♣Iiqs (A.10)

does not include f . Because of the quadratic term in (A.9), forward model

gi ✏ rHf si � ζi with p♣ζi⑤vζiq ✏ N ♣ζi⑤0, vζiq (A.11)

leads to the same log-likelihood, up to an additive constant. Hence, the following vectorized linear forward model
accounting for uncertainties can be used for X-ray CT [SB93] :

g ✏Hf � ζ, (A.12)

where ζ is modeled as Gaussian.
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Appendix B

Projection and backprojection algorithms

Several algorithms have been proposed to compute the projection of a volume [Jos82, Sid85, DMB04, LFB10].
A standard and fast ray-tracing method is Siddon’s method, which follows the ray into the volume and calculates
the intersection length with the encountered voxels. According to the discretization of Beer-Lambert law, for each
pierced voxel, this intersection length is the contribution of the voxel to the projection, i.e. coefficient Hij of the
projection matrix is equal to the intersection length between ray i and voxel j. Therefore, Siddon’s method models
the rays as pencil beams. In Siddon’s method, the intersection length with each of these voxels is calculated very
fast by differentiating pre-calculated coefficients. Fast versions of the method compute these coefficients on-the-
fly [JSDS�98, HLY99], which leads to Siddon-Jacobs-Han’s projector described in section B.1. Nevertheless, this
projector has strong limitations in the context of iterative reconstruction methods. Indeed, to compute the adjoint
Siddon-Jacobs-Han’s backprojection in one voxel, all the rays which have pierced this voxel during the projection
simulation have to be identified. Due to the iterative nature of Siddon-Jacobs-Han’s projector, this is not easy to
do and leads to very intensive calculations which make the adjoint Siddon-Jacobs-Han’s backprojection very slow,
even parallelized on the GPU [NL15]. In order to alleviate this computational cost, the Separable Footprint (SF)
pair [LFB10], described in section B.2, approximates the footprint of a voxel onto the detector in order to make the
calculations efficient both for the projection and the backprojection. For the sake of readability, the used geometrical
model presented in section 2.1 is re-illustrated in figure B.1.

Figure B.1: Geometrical model
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B.1 Fast Siddon’s ray-tracing method

A popular method to compute the radiological path of a ray in a fast way has been introduced by Siddon [Sid85].
We consider a ray i P t1, . . . ,M✉ which is projected on a cell P ♣ue, veq of the detector at projection angle φ. The
coordinates of P in the frame ♣Cd, ~u,~vq are denoted by✧

s ✏ sue ✂ δu ✏ ♣ue ✁ uCde
q ✂ δu

t ✏ tve ✂ δv ✏ ♣ve ✁ vCde
q ✂ δv

, (B.1)

where ÝÝÑ
CdP ✏ s~u� t~v. (B.2)

Given that the detector is rotated by φ with respect to the optical frame✧
~u ✏ ✁~xLr sinφ� ~yLr cosφ ✏ ✁~xO sinφ� ~yO cosφ

~v ✏ ~zLr ✏ ~zO
, (B.3)

the coordinates of cell P in the optical frame are✩✫
✪

x♣ue, φq ✏ xLr � ♣D ✁Rq cosφ✁ s sinφ

y♣ue, φq ✏ yLr � ♣D ✁Rq sinφ� s cosφ

z♣veq ✏ zLr � t

. (B.4)

Given the distance between the source and the cell

L ✏
✁
♣x♣ue, φq ✁ xS♣φqq2 � ♣y♣ue, φq ✁ yS♣φqq2 � ♣z♣veq ✁ zS♣φqq2

✠ 1

2

, (B.5)

the parametric equation of ray i between the source and cell P at projection angle φ is [HLY99]✩✫
✪

x♣λq ✏ xS♣φq � λ
L
♣x♣ue, φq ✁ xS♣φqq

y♣λq ✏ yS♣φq � λ
L
♣y♣ue, φq ✁ yS♣φqq

z♣λq ✏ zS♣φq � λ
L
♣z♣ue, φq ✁ zS♣φqq

, λ P r0, Ls (B.6)

which gives ✩✫
✪

x♣λq ✏ xLr ✁R cosφ� λ
L
♣D cosφ✁ s sinφq

y♣λq ✏ yLr ✁R sinφ� λ
L
♣D sinφ� s cosφq

z♣λq ✏ zLr � λ
L
✂ t

, λ P r0, Ls . (B.7)

For a voxel j with discrete coordinates ♣xe, ye, zeq, Siddon’s method defines three lengths :✩✬✫
✬✪

λx♣xeq ✏ L
x♣ue,φq✁xS♣φq

♣xe ✂ δ ✁ xS♣φqq
λy♣yeq ✏ L

y♣ue,φq✁yS♣φq
♣ye ✂ δ ✁ yS♣φqq

λz♣zeq ✏ L
z♣veq✁zS♣φq

♣ze ✂ δ ✁ zS♣φqq
. (B.8)

Figure B.2 shows a representation of these lengths, in 2D for the sake of readability. With this figure, the intersection
length between ray i and voxel j appears to be [Sid85, JSDS�98, HLY99]

l ✏ 1tλmax♣xe,ye,zeq→λmin♣xe,ye,zeq✉ ♣λmax♣xe, ye, zeq ✁ λmin♣xe, ye, zeqq ✏ Hij (B.9)

where ✩✫
✪

λmin♣xe, ye, zeq ✏ max
✦
0, λ

♣minq
x ♣xeq, λ♣minqy ♣yeq, λ♣minqz ♣zeq

✮
λmax♣xe, ye, zeq ✏ min

✦
L, λ

♣maxq
x ♣xeq, λ♣maxqy ♣yeq, λ♣maxqz ♣zeq

✮ (B.10)
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Figure B.2: Voxel ♣xe, yeq (in 2D) pierced by ray i, with the representation of lengths λx♣xe ✁
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♣minq
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✟
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�
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♣minq
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ye � 1

2

✟✭
λ
♣minq
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✟
, λz

�
ze � 1
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λ
♣maxq
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✥
λx

�
xe ✁ 1

2

✟
, λx

�
xe � 1

2

✟✭
λ
♣maxq
y ♣yeq ✏ max

✥
λy

�
ye ✁ 1

2

✟
, λy

�
ye � 1

2

✟✭
λ
♣maxq
z ♣zeq ✏ max

✥
λz

�
ze ✁ 1

2

✟
, λz

�
ze � 1

2

✟✭
(B.11)

In definition (B.8), one of the denominators can be zero. In this case, we define :

- if x♣ue, φq ✏ xS♣φq then λ♣minq
x ♣xeq ✏ 0 and λ♣maxq

x ♣xeq ✏ L,

- if y♣ue, φq ✏ yS♣φq then λ♣minq
y ♣yeq ✏ 0 and λ♣maxq

y ♣yeq ✏ L,

- if z♣veq ✏ zS♣φq then λ♣minq
z ♣zeq ✏ 0 and λ♣maxq

z ♣zeq ✏ L.

Siddon’s method pre-computes length sequences λx, λy and λz and arrange it in the ascending order [Sid85]. Denoting
‘x‘, ‘y‘ and ‘z‘ by ‘ι‘, one can see the following relation

λι

✂
ιe � 1

2

✡
✁ λι

✂
ιe ✁ 1

2

✡
✏ Lδ

ι♣ue, ve, φq ✁ ιS♣φq ,❅ι, (B.12)

where

ι♣ue, ve, φq ✏
✩✫
✪

x♣ue, φq if ‘ι‘=‘x‘
y♣ue, φq if ‘ι‘=‘y‘
z♣veq if ‘ι‘=‘z‘

. (B.13)
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From relation (B.12), it is clear that if ιS♣φq ↕ ι♣ue, ve, φq then★
λ
♣minq
ι ♣ιeq ✏ λι

�
ιe ✁ 1

2

✟
λ
♣maxq
ι ♣ιeq ✏ λι

�
ιe � 1

2

✟ , (B.14)

otherwise : ★
λ
♣minq
ι ♣ιeq ✏ λι

�
ιe � 1

2

✟
λ
♣maxq
ι ♣ιeq ✏ λι

�
ιe ✁ 1

2

✟ . (B.15)

For ‘ι‘ P t‘x‘, ‘y‘, ‘z‘✉, we can use this fact to compute needed lengths λ♣minqι ♣ιeq and λ♣maxqι ♣ιeq on-the-fly, as done
in [JSDS�98, HLY99], instead of pre-computing length sequences λx, λy and λz .

We denote by Nue,ve,φ the (a priori unknown) number of voxels ♣xen , yen , zenq, n ✏ 1, . . . , Nue,ve,φ, pierced by
the ray. For these voxels, we have the relation

λmin♣xen , yen , zenq ✏ λmax♣xen✁1
, yen✁1

, zen✁1
q,❅n P t2, . . . , Nue,ve,φ✉ . (B.16)

Hence, a dynamic ray-tracing method only needs to get λmax♣xen , yen , zenq in order to compute the intersection
length (B.9), since, as the algorithm considers each pierced voxel one after the other, λmin♣xen , yen , zenq has been
determined before according to relation (B.16) [JSDS�98, HLY99]. In order to get λmax♣xen , yen , zenq, the algorithm
needs to know λ♣maxq♣xenq, λ♣maxq♣yenq and λ♣maxq♣zenq. Based on figure B.2, the computation of λ♣maxq♣ιenq, for
‘ι‘ P t‘x‘, ‘y‘, ‘z‘✉, can be simplified compared to definition (B.11) [JSDS�98, HLY99] :

λ♣maxqι ♣ιenq ✏ max

✧
λι

✂
ιen ✁

1

2

✡
, λι

✂
ιen �

1

2

✡✯
✏
✩✫
✪

λι
�
ιen � 1

2

✟
if ιS♣φq ↕ ι♣ue, ve, φq

λι
�
ιen ✁ 1

2

✟
otherwise

. (B.17)

The selection of the minimum λ
♣maxq
ι ♣ιenq gives λmax♣xen , yen , zenq according to definition (B.10). In addition, the

selection of the minimum λ
♣maxq
ι ♣ιenq gives the coordinates of the following voxel pierced by the ray :

ιen�1
✏

✩✬✫
✬✪

ιen � 1 if λ♣maxqι ♣ιenq ✏ λmax♣xen , yen , zenq and ιS♣φq ↕ ι♣ue, ve, φq
ιen ✁ 1 if λ♣maxqι ♣ιenq ✏ λmax♣xen , yen , zenq and ιS♣φq → ι♣ue, ve, φq
ιen otherwise

, (B.18)

and iterate λ♣maxqι ♣ιenq for the corresponding moving direction ι can be incremented according to relation (B.12) :

λ♣maxqι ♣ιen�1
q ✏

✩✬✫
✬✪

λ
♣maxq
ι ♣ιenq �

✞✞✞ Lδ
ι♣ue,ve,φq✁ιS♣φq

✞✞✞ if λ♣maxqι ♣ιenq ✏ λmax♣xen , yen , zenq

λ
♣maxq
ι ♣ιenq otherwise

. (B.19)

Siddon-Jacobs-Han’s projector based on this dynamic ray-tracing is summarized in algorithm 16. At its initialization,
this algorithm needs

- to know if the ray has crossed the field-of-view,

- to compute the coordinates of the first pierced voxel ♣xe1 , ye1 , ze1q,
- to compute λmin♣xe1 , ye1 , ze1q in order to get the intersection length for ♣xe1 , ye1 , ze1q.

The field-of-view is the cylinder of axis rLrzq and of radius δNx

2
. The ray crosses the field-of-view if there exists λ

such that

♣x♣λq ✁ xLrq2 � ♣y♣λq ✁ yLrq2 ✏
✂
δNx

2

✡2

(B.20)

where x♣λq and y♣λq are given by (B.7). Equation (B.20) reads

Aλλ
2 � 2Bλλ� Cλ ✏ 0 (B.21)
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Algorithm 16 Siddon-Jacobs-Han’s projector [Sid85, JSDS�98, HLY99]

1: for φ, projection angle, do

2: for ue, ve P t0, . . . , Nu ✁ 1✉ ✂ t0, . . . , Nv ✁ 1✉ do

3: Compute ∆λ by (B.23) to know whether the ray has crosses the field-of-view or not
4: Initialize the projection of the ray : g♣ue, ve, φq ✏ 0

5: if ∆λ ➙ 0 then

6: Compute λ♣minqf and λ♣maxqf which are the ordered solutions of (B.21)
7: Compute the first voxel ♣xe1 , ye1 , ze1q pierced by the ray, using (B.26)

8: Set : λmin♣xe1 , ye1 , ze1q ✏ λ
♣minq
f

9: Initialize : ιen :✏ ιe1 ,❅ι P t‘x‘, ‘y‘, ‘z‘✉
10: Compute : λ♣maxqι ♣ιe1q by (B.17), ❅ι P t‘x‘, ‘y‘, ‘z‘✉
11: Initialize : λ♣maxqι ♣ιenq :✏ λ

♣maxq
ι ♣ιe1q, ❅ι P t‘x‘, ‘y‘, ‘z‘✉

12: Initialize : λ♣maxq♣xen , yen , zenq :✏ 0 and λmax♣xen✁1
, yen✁1

, zen✁1
q :✏ λmin♣xe1 , ye1 , ze1q

13: while λ♣maxq♣xen , yen , zenq ↕ λ
♣maxq
f do

14: Compute : λmax♣xen , yen , zenq ✏ min
✦
L, λ

♣maxq
x ♣xenq, λ♣maxqy ♣yenq, λ♣maxqz ♣zenq

✮
15: if λmax♣xen , yen , zenq → λmax♣xen✁1

, yen✁1
, zen✁1

q then

16: Compute the intersection length : l ✏ λmax♣xen , yen , zenq ✁ λmax♣xen✁1
, yen✁1

, zen✁1
q

17: else

18: l ✏ 0

19: end if

20: Update the projection : g♣ue, ve, φq� ✏ l ✂ f♣xen , yen , zenq
21: Compute the coordinates ♣xen�1

, yen�1
, zen�1

q of the next voxel by (B.18)
22: Set : ιen :✏ ιen�1

, ❅ι P t‘x‘, ‘y‘, ‘z‘✉
23: Set : λmax♣xen✁1

, yen✁1
, zen✁1

q :✏ λ♣maxq♣xen , yen , zenq
24: Compute λ♣maxqι ♣ιen�1

q by (B.19), ❅ι P t‘x‘, ‘y‘, ‘z‘✉
25: Set : λ♣maxqι ♣ιenq :✏ λ

♣maxq
ι ♣ιen�1

q, ❅ι P t‘x‘, ‘y‘, ‘z‘✉
26: end while

27: end if

28: end for

29: end for

where ✩✬✬✬✬✬✫
✬✬✬✬✬✪

Aλ ✏ ♣xP✁xSq
2�♣yP✁ySq

2

L2 ✏ D2�s2

L2

Bλ ✏ ♣xS✁xLr q♣xP✁xSq�♣yS✁yLr q♣yP✁ySq
L

✏ ✁RD
L

Cλ ✏ ♣xS ✁ xLrq2 � ♣yS ✁ yLrq2 ✁
�
δNx

2

✟2 ✏ R2 ✁ � δNx

2

✟2
. (B.22)

Hence, the ray crossed the field-of-view if

∆λ ✏ B2
λ ✁AλCλ ➙ 0. (B.23)

The ray enters in the field-of-view at

ιmin ✏ ιS♣φq �
λ
♣minq
f

L
♣ι♣ue, ve, φq ✁ ιS♣φqq (B.24)

and goes out the field-of-view at

ιmax ✏ ιS♣φq �
λ
♣maxq
f

L
♣ι♣ue, ve, φq ✁ ιS♣φqq,❅ι P t‘x‘, ‘y‘, ‘z‘✉ . (B.25)
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These coordinates depend on λ♣minqf and λ♣maxqf which are the ordered solutions of (B.21) defined if ∆λ ➙ 0. The
coordinates of the first voxel pierced by the ray are

ιe1 ✏
✧

t ιmin

δ
✁ 0.5✉ if ιS♣φq ↕ ι♣ue, veφq

r ιmin

δ
� 0.5s otherwise

, (B.26)

and
λmin♣xe1 , ye1 , ze1q ✏ λ

♣minq
f . (B.27)

Moreover, algorithm 16 is stopped when λmax♣xen , yen , zenq has reached its maximum value, i.e. when

λmax♣xen , yen , zenq → λ
♣maxq
f . (B.28)

B.2 Separable Footprint (SF) projector and backprojector

B.2.1 Description of the SF pair

The Separable Footprint (SF) pair of projector and backprojector (P/BP) approximates the footprint of a voxel onto
the detector as a separable function in the transaxial and axial directions. Among possible SF approximations
[LFB10, Lon11], the SFTR pair (Separable Footprint Trapezoidal-Rectangular) models the footprint as trapezoidal
in the transaxial direction, and rectangular in the axial direction [LFB10]. In this section, we detail the SFTR P/BP
pair introduced in [LFB10]. We adapt the calculations to our geometrical model presented in section 2.1. Based on
[LFB10], we also give the pseudo-codes of our CPU implementation of the SFTR projector and backprojector. In the
following, "SFTR pair" is abbreviated by "SF pair", since we do not mention the other SF models.

For a voxel ♣xe, ye, zeq, its trapezoidal transaxial footprint is defined as [LFB10]

etrans♣se, φ;xe, yeq ✏

✩✬✬✫
✬✬✪

se✁τ0
τ1✁τ0

if τ0 ↕ se ➔ τ1

1 if τ1 ↕ se ➔ τ2
τ3✁se
τ3✁τ2

if τ2 ↕ se ➔ τ3

0 otherwise

(B.29)

where τ0 ↕ τ1 ↕ τ2 ↕ τ3 are the ordered projections of the fours corners ♣xe ✟ 0.5, ye ✟ 0.5, 0q of pixel ♣xe, yeq in
the median plane : ✩✬✬✬✬✬✬✬✬✬✬✬✫

✬✬✬✬✬✬✬✬✬✬✬✪

p✁,✁♣xe, yeq ✏ D
δu

yφe�0.5✂♣sinφ✁cosφq
xφe�0.5✂♣✁ cosφ✁sinφq

p�,✁♣xe, yeq ✏ D
δu

yφe�0.5✂♣✁ sinφ✁cosφq
xφe�0.5✂♣cosφ✁sinφq

p✁,�♣xe, yeq ✏ D
δu

yφe�0.5✂♣sinφ�cosφq
xφe�0.5✂♣✁ cosφ�sinφq

p�,�♣xe, yeq ✏ D
δu

yφe�0.5✂♣✁ sinφ�cosφq
xφe�0.5✂♣cosφ�sinφq

(B.30)

where ✩✫
✪

xφe ✏ x✶e cosφ� y✶e sinφ� R
δ

yφe ✏ ✁x✶e sinφ� y✶e cosφ

zφe ✏ z✶e

(B.31)

are the coordinates of the voxel in the rotating frame ♣S, ~xLT
, ~yLT

, ~zLrq. These projections are illustrated in figure
B.3 at different projection angles. The rectangular axial footprint of voxel ♣xe, ye, zeq is [LFB10]

eax♣te, φ;xe, ye, zeq ✏
✧

1 if χ0 ↕ te ↕ χ1

0 otherwise
(B.32)
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where χ0 ↕ χ1 are the projections of ♣xe, ye, ze ✟ 0.5q, as illustrated in figure B.4 :✩✬✫
✬✪

χ0 ✏ D
δv

zφe✁0.5

xφe

χ1 ✏ D
δv

zφe�0.5

xφe

. (B.33)

In order to be more accurate, a trapezoidal shape has also been studied for the axial footprint : nevertheless, it implies
too many calculations for a not significant gain in precision [LFB10].

On the contrary to Siddon-Jacobs-Han’s projector, the SF pair takes into account the finite size of the cells. The
projection of voxel ♣xe, ye, zeq measured by cell ♣ue, veq reads

F ♣ue, ve, φ;xe, ye, zeq ✏

l♣ue, ve, φ;xe, ye, zeq
➩
se

➩
te
h♣sue ✁ se, tve ✁ teqetrans♣se, φ;xe, yeqeax♣te, φ;xe, ye, zeq dse dte

(B.34)

where h♣se, teq is the (shift-invariant) detector blur :

h♣se, teq ✏ 1t✁ 1

2
↕se↕

1

2
✉ ✂ 1t✁ 1

2
↕te↕

1

2
✉ (B.35)

and l♣ue, ve, φ;xe, ye, zeq is an amplitude function [LFB10]. Thanks to the separability in se and te of the detector
blur and of the approximating footprint

e♣se, te, φ;xe, ye, zeq ✓ etrans♣se, φ;xe, yeqeax♣te, φ;xe, ye, zeq, (B.36)

the measured projection of voxel ♣xe, ye, zeq is :

F ♣ue, ve, φ;xe, ye, zeq ✏ l♣ue, ve, φ;xe, ye, zeqFtrans♣ue, φ;xe, yeqFax♣ve, φ;xe, ye, zeq. (B.37)

The blurred transaxial footprint Ftrans♣ue, φ;xe, yeq reads [LFB10]

Ftrans♣ue, φ;xe, yeq ✏
➺ sue�0.5

sue✁0.5

etrans♣se, φ;xe, yeq dse

✏ F
♣01q
trans♣max tsue ✁ 0.5, τ0✉ ,min tsue � 0.5, τ1✉q

� F
♣12q
trans♣max tsue ✁ 0.5, τ1✉ ,min tsue � 0.5, τ2✉q

� F
♣23q
trans♣max tsue ✁ 0.5, τ2✉ ,min tsue � 0.5, τ3✉q (B.38)

where

F
♣01q
trans♣se1 , se2q ✏

1

2

♣se2 ✁ τ0q2 ✁ ♣se1 ✁ τ0q2
τ1 ✁ τ0

✂ 1tse1➔se2✉, (B.39)

F
♣12q
trans♣se1 , se2q ✏ ♣se2 ✁ se1q1tse1➔se2✉, (B.40)

F
♣23q
trans♣se1 , se2q ✏

1

2

♣τ3 ✁ se1q2 ✁ ♣τ3 ✁ se2q2
τ3 ✁ τ2

✂ 1tse1➔se2✉. (B.41)

Similarly, the blurred axial footprint Fax♣ve, φ;xe, ye, zeq reads [LFB10]

Fax♣ve, φ;xe, ye, zeq ✏
➺ tve�0.5

tve✁0.5

eax♣te, φ;xe, ye, zeq dte

✏ F ♣01qax ♣max ttve ✁ 0.5, χ0✉ ,min ttve � 0.5, χ1✉q (B.42)

where
F ♣01qax ♣te1 , te2q ✏ ♣te2 ✁ te1q1tte1➔te2✉. (B.43)
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Figure B.3: Trapezoidal transaxial footprint of a voxel at different projection angles

Figure B.4: Rectangular axial footprint of a voxel
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The blurred transaxial and axial footprints (B.38) and (B.42) are of amplitude 1. Hence, they need to be mul-
tiplied by amplitude function l♣ue, ve, φ;xe, ye, zeq in order to get a correct value for ideal measured projection
F ♣ue, ve, φ;xe, ye, zeq in (B.37). This amplitude function is given by the geometry of the acquisition [LFB10]. Sev-
eral choices are studied in [LFB10], mostly inspired by Joseph’s method [Jos82]. The A1 method considers the
amplitude function [LFB10]

l♣ue, ve, φ;xe, ye, zeq ✏ l1♣ue, ve, φq ✏ lψc
♣ue, φqlθc♣ue, veq (B.44)

where

lψc
♣ue, φq ✏ δ

max t⑤ cosψc♣ue, φq⑤, ⑤ sinψc♣ue, φq⑤✉ (B.45)

and

lθc♣ue, veq ✏
1

⑤ cos θc♣ue, veq⑤ . (B.46)

In (B.45) and (B.46), ψc♣ue, φq and θc♣ue, veq are the azimuthal and the polar angles of the ray connecting the source
to the center of the cell [LFB10]. These angles are illustrated in figures B.5 and B.6 respectively. Based on these
figures, we have

ψc♣ue, φq ✏ φ� arctan

✂
sueδu

D

✡
(B.47)

and

θc♣ue, veq ✏ arctan

☎
✆ tveδv❜

D2 � ♣sueδuq2

☞
✌. (B.48)

Hence, amplitudes (B.45) and (B.46) read

lψc
♣ue, φq ✏

δ

❜
D2 � ♣sueδuq2

max t⑤D cosφ✁ sueδu sinφ⑤, ⑤sueδu cosφ�D sinφ⑤✉ (B.49)

and

lθc♣ue, veq ✏
❞
1� ♣tveδvq2

D2 � ♣sueδuq2
. (B.50)

While the A1 method is ray-driven, the A3 method is voxel-driven since it considers the amplitude [LFB10]

l♣ue, ve, φ;xe, ye, zeq ✏ l3♣φ;xe, ye, zeq ✏ lψv
♣φ;xe, yeqlθv♣φ;xe, ye, zeq (B.51)

where

lψv
♣φ;xe, yeq ✏ δ

max t⑤ cosψv♣φ;xe, yeq⑤, ⑤ sinψv♣φ;xe, yeq⑤✉ (B.52)

and

lθv♣φ;xe, ye, zeq ✏
1

⑤ cos θv♣φ;xe, ye, zeq⑤ . (B.53)

ψv♣φ;xe, yeq and θv♣φ;xe, ye, zeq are the azimuthal and polar angles of the ray connecting the source to the center of
the voxel ♣xe, ye, zeq. These angles are also illustrated in figures B.5 and B.6 :

ψv♣φ;xe, yeq ✏ φ� arctan

✂
yφe
xφe

✡
(B.54)

and

θv♣φ;xe, ye, zeq ✏ arctan

☎
✆ zφe❜

x2φe � y2φe

☞
✌. (B.55)
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Hence,

lψv
♣φ;xe, yeq ✏

δ
❜
x2φe � y2φe

max t⑤xφe cosφ✁ yφe sinφ⑤, ⑤xφe sinφ� yφe cosφ⑤✉
(B.56)

and

lθv♣φ;xe, ye, zeq ✏
❣❢❢❡1� z2φe

x2φe � y2φe
. (B.57)

At last, the A2 method is both ray-driven and voxel-driven, combining parts of the A1 and A3 methods [LFB10]

l♣ue, ve, φ;xe, ye, zeq ✏ l2♣ue, ve, φ;xe, yeq ✏ lψv
♣φ;xe, yeqlθc♣ue, veq, (B.58)

where lψv
♣φ;xe, yeq and lθc♣ue, veq are respectively given by (B.56) and (B.50).

It has been shown that the A1, A2 and A3 methods give the same results in terms of precision [LFB10]. Nev-
ertheless, while the A1 and the A2 methods have the same computation times, the A3 method implies much more
calculations [LFB10]. Since all the three methods give the same results, in this work, we choose to apply the A2
method for the amplitude function, since it is a tradeoff between the A1 and the A3 methods. This choice has also
been made in the GPU implementations of the SF pair [WF11, XML�17]. With this method, the ideally measured
projection (B.37) reads

F ♣ue, ve, φ;xe, ye, zeq ✏ lψv
♣φ;xe, yeqlθc♣ue, veqFtrans♣ue, φ;xe, yeqFax♣ve, φ;xe, ye, zeq. (B.59)

As a result, the expressions for the SF projector and backprojector are [LFB10]

gi ✏ g♣ue, ve, φq ✏ ♣Hfqi ✏
➳
xe

➳
ye

➳
ze

F ♣ue, ve, φ;xe, ye, zeqf♣xe, ye, zeq

✏ lθc♣ue, veq
➳
xe

➳
ye

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeq

➳
ze

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq (B.60)

and

bj ✏ b♣xe, ye, zeq ✏ ♣HTgqj ✏
➳
φ

➳
ue

➳
ve

F ♣ue, ve, φ;xe, ye, zeqg♣ue, ve, φq

✏
➳
φ

➳
ve

Fax♣ve, φ;xe, ye, zeq
➳
ue

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeqlθc♣ue, veqg♣ue, ve, φq. (B.61)

B.2.2 CPU implementation of the SF projector

Thanks to the factorizations induced by the separable footprint approximation, the SF projection of a volume f

g♣ue, ve, φq ✏ lθc♣ue, veq
➳
xe

➳
ye

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeq

➳
ze

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq (B.62)

can be computed very fast on the CPU. The set of relevant voxels contributing to the projection g♣ue, ve, φq are
those for which the transaxial and the axial footprints overlap with cell ♣ue, veq at projection angle φ. Thanks to the
separation in ue and ve, this set is easy to compute.

The CPU implementation of the SF projector has its main loop over projection angles φ [LFB10]. Next, for each
pixel ♣xe, yeq in the middle plane, its four corners ♣xe ✟ 0.5, ye ✟ 0.5q are projected and their projections ordered :
τ0 ↕ τ1 ↕ τ2 ↕ τ3. Knowing τ0 and τ3 gives the cells overlapping with the transaxial footprint, i.e. the cells for
which Ftrans♣ue, φ;xe, yeq ✘ 0. As illustrated in figure B.7, these cells are such that their left side is before τ3

sue ✁ 0.5 ✏ ue ✁ uCde
✁ 0.5 ↕ τ3 ô ue ↕ uCde

� 0.5� τ3 (B.63)

and their right side after τ0

sue � 0.5 ✏ ue ✁ uCde
� 0.5 ➙ τ0 ô ue ➙ uCde

✁ 0.5� τ0. (B.64)
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Figure B.5: Azimuthal angles of the ray connecting the source to the center of a cell ♣ue, veq and of the ray connecting the source to the center
of a voxel ♣xe, ye, zeq

Figure B.6: Polar angles of the ray connecting the source to the center of a cell ♣ue, veq and of the ray connecting the source to the center of a
voxel ♣xe, ye, zeq
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Figure B.7: Different overlaps of the transaxial footprint of a voxel with a cell

Figure B.8: Different overlaps of the axial footprint of a voxel with a cell

Therefore,
Ftrans♣ue, φ;xe, yeq ✘ 0ô uemin

↕ ue ↕ uemax (B.65)

where ✧
uemin

✏ tmax
✥
0, uCde

✁ 0.5� τ0
✭
✉

uemax ✏ rmin
✥
Nu ✁ 1, uCde

� 0.5� τ3
✭
s
. (B.66)

The blurred and scaled transaxial footprint

F ✶
trans♣ue, φ;xe, yeq ✏ lψv

♣φ;xe, yeqFtrans♣ue, φ;xe, yeq,❅ue P tuemin
, . . . , uemax✉ (B.67)

is computed and stored for each ue between uemin
and uemax .

Next, for each ve, indices ze for which Fax♣ve, φ;xe, ye, zeq ✘ 0 are computed. As illustrated in figure B.8, these
ze are such that the bottom of the axial footprint of voxel ♣xe, ye, zeq is under the top of the cell

χ0 ↕ tve � 0.5

ôD

δv

zφe ✁ 0.5

xφe
↕ tve � 0.5

ôzφe ✁ 0.5 ↕ xφe
D
♣tve � 0.5qδv

ôze ↕ zLre
� 0.5� xφe

D
♣tve � 0.5qδv (B.68)

and the top of the footprint is above the bottom of the cell

χ1 ➙ tve ✁ 0.5

ôD

δv

zφe � 0.5

xφe
➙ tve ✁ 0.5

ôzφe � 0.5 ➙ xφe
D
♣tve ✁ 0.5qδv

ôze ➙ zLre
✁ 0.5� xφe

D
♣tve ✁ 0.5qδv. (B.69)
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Hence, for each ve,
Fax♣ve, φ;xe, ye, zeq ✘ 0ô zemin

↕ ze ↕ zemax (B.70)

where ✩✫
✪

zemin
✏ tmax

✥
0, zLre

✁ 0.5� xφe
D
♣tve ✁ 0.5qδv

✭
✉

zemax ✏ rmin
✥
Nz ✁ 1, zLre

� 0.5� xφe
D
♣tve � 0.5qδv

✭
s
. (B.71)

Knowing zemin
and zemax , a small loop over ze is run to compute the sum of the blurred axial footprints

F ✶
ax♣ve, φ;xe, yeq ✏

➳
ze

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq ✏
zemax➳

ze✏zemin

Fax♣ve, φ;xe, ye, zeqf♣xe, ye, zeq. (B.72)

After this loop, the CPU accumulates the products of F ✶
ax♣ve, φ;xe, yeq with F ✶

trans♣ue, φ;xe, yeq, for uemin
↕ ue ↕

uemax :
g✶♣ue, ve, φq� ✏ F ✶

trans♣ue, φ;xe, yeqF ✶
ax♣ve, φ;xe, yeq. (B.73)

where
g✶♣ue, ve, φq ✏

➳
xe

➳
ye

F ✶
trans♣ue, φ;xe, yeqF ✶

ax♣ve, φ;xe, yeq. (B.74)

After having considered all pixels ♣xe, yeq, a final double loop is run over ue and ve in order to scale the projections
according to the A2 method :

g♣ue, ve, φq ✏ lθc♣ue, veqg✶♣ue, ve, φq. (B.75)

This double loop ends the computation of the SF projection on the CPU. The overall algorithm is summarized in
algorithm 17.

B.2.3 CPU implementation of the SF backprojector

The SF backprojection of projections g is the adjoint operation of (B.62)

b♣xe, ye, zeq ✏
➳
φ

➳
ve

Fax♣ve, φ;xe, ye, zeq
➳
ue

lψv
♣φ;xe, yeqFtrans♣ue, φ;xe, yeqlθc♣ue, veqg♣ue, ve, φq. (B.76)

As for the projector, the SF backprojection has its main loop over projection angles φ [LFB10]. First, the projections
are multiplied by the polar amplitude function of the A2 method :

ḡ♣ue, ve, φq ✏ lθc♣ue, veqg♣ue, ve, φq. (B.77)

Similarly to the SF projector, the CPU implementation of the SF backprojector runs a double loop over pixels ♣xe, yeq
in the middle plane, and, for each ue between uemin

and uemax defined by (B.66), the blurred and scaled transaxial
footprint (B.67) is computed and stored. Next, for each ve, the CPU computes and stores :

b̄trans♣ve, φ;xe, yeq ✏
➳
ue

F ✶
trans♣ue, φ;xe, yeqḡ♣ue, ve, φq ✏

uemax➳
ue✏uemin

F ✶
trans♣ue, φ;xe, yeqḡ♣ue, ve, φq. (B.78)

Then, a loop over ze is run. For each ze, we determine indices ve for which the blurred axial footprint is non-zero.
Based on figure B.8, these indices are such that :

tve � 0.5 ➙ χ0 ô ve ➙ vCde
✁ 0.5� χ0 (B.79)

and
tve ✁ 0.5 ➙ χ1 ô ve ↕ vCde

� 0.5� χ1. (B.80)

Hence, for each ze,
Fax♣ve, φ;xe, ye, zeq ✘ 0ô vemin

↕ ve ↕ vemax , (B.81)
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Algorithm 17 SF projection algorithm on the CPU [LFB10]

1: Initialize g♣ue, ve, φq :✏ 0, ❅♣ue, ve, φq
2: for φ, projection angle, do

3: for xe, ye P t0, . . . , ♣Nx ✁ 1q✉ ✂ t0, . . . , ♣Ny ✁ 1q✉ do

4: x✶
e :✏ xe ✁ xLre and y✶

e :✏ ye ✁ yLre

5: if ♣x✶
eq2 � ♣y✶

eq2 ↕
�
Nx

2

✟2
then

6: Rotate : xφe :✏ x✶
e cosφ� y✶

e sinφ� R
δ

and yφe :✏ ✁x✶
e sinφ� y✶

e cosφ

7: Compute lψv
by (B.56) (A2 method)

8: Compute and sort the projections of ♣xe ✟ 0.5, ye ✟ 0.5q by (B.30) : τ0 ↕ τ1 ↕ τ2 ↕ τ3
9: Compute uemin

✏ tmax t0, umin✉✉ and uemax ✏ rmin tNu ✁ 1, umax✉s by (B.66)
10: if umin ↕ Nu ✁ 1 and umax ➙ 0 then

11: for ue ✏ uemin
, . . . , uemax do

12: Ftrans :✏ 0 (initialize the transaxial footprint)
13: se1 :✏ max tsue ✁ 0.5, τ0✉ and se2 :✏ min tsue � 0.5, τ1✉
14: if se1 ➔ se2 then Ftrans� ✏ 0.5✂

✁
♣se2 ✁ τ0q2 ✁ ♣se1 ✁ τ0q2

✠
④ ♣τ1 ✁ τ0q end if

15: se1 :✏ max tsue ✁ 0.5, τ1✉ and se2 :✏ min tsue � 0.5, τ2✉
16: if se1 ➔ se2 then Ftrans� ✏ ♣se2 ✁ se1q end if

17: se1 :✏ max tsue ✁ 0.5, τ2✉ and se2 :✏ min tsue � 0.5, τ3✉
18: if se1 ➔ se2 then Ftrans� ✏ 0.5✂

✁
♣τ3 ✁ se1q2 ✁ ♣τ3 ✁ se2q2

✠
④ ♣τ3 ✁ τ2q end if

19: F ✶
trans♣ue;xe, yeq :✏ lψv

Ftrans
20: end for

21: for ve ✏ 0, . . . , ♣Nv ✁ 1q do

22: Compute zemin
✏ tmax t0, zmin✉✉ and zemax ✏ rmin tNz ✁ 1, zmax✉s by (B.71)

23: if zmin ↕ Nz ✁ 1 and zmax ➙ 0 then

24: F ✶
ax :✏ 0 (initialize the summed axial footprint)

25: for ze ✏ zemin
, . . . , zemax do

26: Compute χ0 and χ1 by (B.33)
27: se1 :✏ max ttve ✁ 0.5, χ0✉ and se2 :✏ min ttve � 0.5, χ1✉
28: if se1 ➔ se2 then

29: F ✶
ax� ✏ ♣se2 ✁ se1q ✂ f♣xe, ye, zeq

30: end if

31: end for

32: for ue ✏ uemin
, . . . , uemax do

33: g♣ue, ve, φq� ✏ F ✶
ax ✂ F ✶

trans♣ue;xe, yeq
34: end for

35: end if

36: end for

37: end if

38: end if

39: end for

40: for ve ✏ 0, . . . , ♣Nv ✁ 1q do

41: for ue ✏ 0, . . . , ♣Nu ✁ 1q do

42: Scale g♣ue, ve, φq by lθc♣ue, veq, given by (B.50) (A2 method)
43: end for

44: end for

45: end for
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where ✩✫
✪

vemin
✏ tmax

✥
0, vCde

✁ 0.5� χ0

✭
✉

vemax ✏ rmin
✥
Nv ✁ 1, vCde

� 0.5� χ1

✭
s
. (B.82)

Running a small loop over ve, vemin
↕ ve ↕ vemax , the backprojection at angle φ

bφ♣xe, ye, zeq ✏
➳
ve

Fax♣ve, φ;xe, ye, zeqb̄trans♣ve, φ;xe, yeq

✏
vemax➳

ve✏vemin

Fax♣ve, φ;xe, ye, zeqb̄trans♣ve, φ;xe, yeq (B.83)

is computed and accumulated into the total backprojection

b♣xe, ye, zeq� ✏ bφ♣xe, ye, zeq. (B.84)

The overall algorithm is given in algorithm 18.

B.3 Projection and backprojection simulations

The simulations compute 64 projections of the Shepp-Logan phantom [SL74] shown in figure 3.6. The source-to-
object distance is 98 mm, while the source-to-detector is 230 mm. The phantom is 5✂ 5✂ 5 mm3 and is sampled into
2563 voxels. The detector has 2562 cells and is 14.2✂ 14.2 mm2. By computing the Normalized Root Mean Square
Error (NRMSE), given by formula (3.37), with respect to analytical projections shown in figure B.9, we compare the
projections obtained by the Siddon-Jacobs-Han’s projector and the SF projector on the CPU, respectively shown in
figures B.10 and B.11.

Projector (on the CPU) Computation time NRMSE with respect to the analytical projections
Siddon-Jacobs-Han’s projector 15.8 s 2.26 %
SF projector 155.1 s 0.71 %

Table B.1: Comparison of the Siddon-Jacobs-Han’s projector and the SF projector on the CPU

Backprojector (on the CPU) Computation time
SF backprojector 118.3 s

Table B.2: Computation time of the SF backprojector on the CPU

Due to the fact that it does not take into account the detector blur, the Siddon-Jacobs-Han’s method presented in
section B.1 returns projections which are very non-smooth. On the contrary, the SF projector gives images of better
quality, which look more similar to the analytical projections. This is confirmed in table B.1, where the NRMSE with
respect to the analytical projections is the lowest for the SF projector. Concerning the computation time, the Siddon-
Jacobs-Han’s projector is faster than the SF projector due to its iterative procedure. Nevertheless, this iterative nature
makes it more sensitive to computational errors. Furthermore, this iterative nature is responsible for the unefficiency
of its adjoint backprojector, even on the GPU [NL15].

The computation time of the SF backprojector on the CPU is given in table B.2 and is rather the same as the SF
projector due to the fact that the operators are coupled. In figure B.12, we see that the obtained SF backprojection
is smooth and does not present artifacts due to possible computational errors or mismatching. Consequently, our
implementation of the SF pair on the CPU is fully validated and can be used as a reference for the validation of the
SF projector and the SF backprojector on the GPU in chapter 3.
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Algorithm 18 SF backprojection algorithm on the CPU [LFB10]

1: Initialize b♣xe, ye, zeq :✏ 0, ❅♣xe, ye, zeq
2: for φ, projection angle, do

3: for ve ✏ 0, . . . , ♣Nv ✁ 1q do

4: for ue ✏ 0, . . . , ♣Nu ✁ 1q do

5: Compute ḡ♣ue, ve, φq by (B.77) (A2 method)
6: end for

7: end for

8: for xe, ye P t0, . . . , ♣Nx ✁ 1q✉ ✂ t0, . . . , ♣Ny ✁ 1q✉ do

9: x✶
e :✏ xe ✁ xLre and y✶

e :✏ ye ✁ yLre

10: if ♣x✶
eq2 � ♣y✶

eq2 ↕
�
Nx

2

✟2
then

11: Rotate : xφe :✏ x✶
e cosφ� y✶

e sinφ� R
δ

and yφe :✏ ✁x✶
e sinφ� y✶

e cosφ

12: Compute lψv
by (B.56) (A2 method)

13: Compute and sort the projections of ♣xe ✟ 0.5, ye ✟ 0.5q by (B.30) : τ0 ↕ τ1 ↕ τ2 ↕ τ3
14: Compute uemin

✏ tmax t0, umin✉✉ and uemax ✏ rmin tNu ✁ 1, umax✉s by (B.66)
15: if umin ↕ Nu ✁ 1 and umax ➙ 0 then

16: for ue ✏ uemin
, . . . , uemax do

17: Ftrans :✏ 0 (initialize the transaxial footprint)
18: se1 :✏ max tsue ✁ 0.5, τ0✉ and se2 :✏ min tsue � 0.5, τ1✉
19: if se1 ➔ se2 then Ftrans� ✏ 0.5✂

✁
♣se2 ✁ τ0q2 ✁ ♣se1 ✁ τ0q2

✠
④ ♣τ1 ✁ τ0q end if

20: se1 :✏ max tsue ✁ 0.5, τ1✉ and se2 :✏ min tsue � 0.5, τ2✉
21: if se1 ➔ se2 then Ftrans� ✏ ♣se2 ✁ se1q end if

22: se1 :✏ max tsue ✁ 0.5, τ2✉ and se2 :✏ min tsue � 0.5, τ3✉
23: if se1 ➔ se2 then Ftrans� ✏ 0.5✂

✁
♣τ3 ✁ se1q2 ✁ ♣τ3 ✁ se2q2

✠
④ ♣τ3 ✁ τ2q end if

24: F ✶
trans♣ue;xe, yeq :✏ lψv

Ftrans
25: end for

26: for ve ✏ 0, . . . , ♣Nv ✁ 1q do

27: Initialize b̄trans♣veq :✏ 0

28: for ue ✏ uemin
, . . . , uemax do

29: b̄trans♣veq� ✏ ḡ♣ue, ve, φq ✂ F ✶
trans♣ue;xe, yeq

30: end for

31: end for

32: for ze ✏ 0, . . . , ♣Nz ✁ 1q do

33: Compute χ0 and χ1 by (B.33)
34: Compute vemin

✏ tmax t0, vmin✉✉ and vemax ✏ rmin tNv ✁ 1, vmax✉s by (B.82)
35: if vmin ↕ Nv ✁ 1 and vmax ➙ 0 then

36: bφ :✏ 0

37: for ve ✏ vemin
, . . . , vemax do

38: se1 :✏ max ttve ✁ 0.5, χ0✉ and se2 :✏ min ttve � 0.5, χ1✉
39: if se1 ➔ se2 then

40: bφ� ✏ ♣se2 ✁ se1q b̄trans♣veq
41: end if

42: end for

43: b♣xe, ye, zeq� ✏ bφ
44: end if

45: end for

46: end if

47: end if

48: end for

49: end for
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Figure B.9: Analytical projections of the Shepp-Logan phantom Figure B.10: Siddon-Jacobs-Han’s projection on the CPU

Figure B.11: SF projection on the CPU Figure B.12: SF backprojection on the CPU
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Appendix C

Derivation of the error-splitting forward model

for X-ray CT

We consider the following Poisson statistics for photon-count

p♣Ii⑤f , ni, riq ✏ P
✁
I0e

✁rHf s
i � ni � ri

✠
(C.1)

where I0 is the mean number of photons sent by source, ri is the mean number of background events and ni is a
noise term involving object-dependent scattering and absorption occuring inside the volume. I0 is known, and ri
is pre-computed, while ni is unknown, due to the fact that it is closely related to the volume. We introduce the
reparametrization

gi ✏ ln

✂
I0

Ii ✁ ri

✡
. (C.2)

The opposite of the log-likelihood is

✁ ln♣p♣Ii⑤f , ni, riqq ✏ ln♣Ii!q � I0e
✁rHf s

i � ni � ri ✁ Ii ln
✁
I0e

✁rHf s
i � ni � ri

✠
. (C.3)

From equation (C.2) and by a second order Taylor series expansion, we have

I0e
✁rHf s

i � ni � ri ✏ ♣Ii ✁ riq exp rgi ✁ rHf sis � ni � ri

✏ Ii � ni � ♣Ii ✁ riq♣gi ✁ rHf siq �
1

2
♣Ii ✁ riq♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟
. (C.4)

Hence

Ii ln
✁
I0e

✁rHf s
i � ni � ri

✠
✏ Ii ln ♣♣Ii ✁ riq exp rgi ✁ rHf sis � ni � riq

✏ Ii ln

✂
Ii � ni � ♣Ii ✁ riq♣gi ✁ rHf siq �

1

2
♣Ii ✁ riq♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✡

✏ Ii

✒
ln♣Ii � niq � ln

✂
1� Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq �

1

2

Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✡✚

✏ Ii

✓
ln♣Ii � niq � Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq �

1

2

Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq2 ✁

1

2

✂
Ii ✁ ri

Ii � ni

✡2

♣gi ✁ rHf siq2

�o �♣gi ✁ rHf siq2
✟✘

✏ Ii

✓
ln♣Ii � niq � Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq �

1

2

✓
Ii ✁ ri

Ii � ni
✁
✂
Ii ✁ ri

Ii � ni

✡2
✛
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✛

✏ Ii

✒
ln♣Ii � niq � Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq �

1

2

Ii ✁ ri

Ii � ni

✒
1✁ Ii ✁ ri

Ii � ni

✚
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✚
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✏ Ii

✒
ln♣Ii � niq � Ii ✁ ri

Ii � ni
♣gi ✁ rHf siq �

1

2

♣Ii ✁ riq♣ni � riq
♣Ii � niq2 ♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟✚

✏ Ii ln♣Ii � niq � Ii♣Ii ✁ riq
Ii � ni

♣gi ✁ rHf siq �
1

2

Ii♣Ii ✁ riq♣ni � riq
♣Ii � niq2 ♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟
. (C.5)

Thus, after reparametrization (C.2), we have for (C.3), by gathering (C.4) and (C.5) :

✁ ln♣p♣gi⑤f , ni, riqq ✏ ln♣Ii!q � Ii � ni ✁ Ii ln♣Ii � niq �
✒
♣Ii ✁ riq ✁ Ii♣Ii ✁ riq

Ii � ni

✚
♣gi ✁ rHf siq

� 1

2

✒
♣Ii ✁ riq ✁ Ii♣Ii ✁ riq♣ni � riq

♣Ii � niq2
✚
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟

✏ ln♣Ii!q � Ii � ni ✁ Ii ln♣Ii � niq � bi♣gi ✁ rHf siq �
ai

2
♣gi ✁ rHf siq2 � o

�♣gi ✁ rHf siq2
✟

(C.6)

where

bi ✏ ♣Ii ✁ riq ✁ Ii♣Ii ✁ riq
Ii � ni

✏ ♣Ii ✁ riq
✒
1✁ Ii

Ii � ni

✚
✏ ni♣Ii ✁ riq

Ii � ni
(C.7)

and

ai ✏ ♣Ii ✁ riq ✁ Ii♣Ii ✁ riq♣ni � riq
♣Ii � niq2 ✏ ♣Ii ✁ riq

✂
1✁ Ii♣ni � riq

♣Ii � niq2
✡
. (C.8)

Hence, from (C.6),

✁ ln♣p♣gi⑤f , ni, riqq ✓ ln♣Ii!q � Ii � ni ✁ Ii ln♣Ii � niq � ai

2

✂
gi ✁ rHf si �

bi

ai

✡2

✁ b2i
2ai

✏ Ci � 1

2vǫi
♣gi ✁ rHf si ✁ ξiq2 (C.9)

where

vǫi ✏
1

ai
(C.10)

and

ξi ✏ ✁ bi
ai
. (C.11)

Term

Ci ✏ ln♣Ii!q � Ii � ni ✁ Ii ln♣Ii � niq ✁ b2i
2ai

(C.12)

does not include f . We have the bias

ξi ✏ ✁ bi
ai

✏ ✁ni♣Ii ✁ riq
Ii � ni

✂ ♣Ii � niq2
♣Ii ✁ riq r♣Ii � niq2 ✁ Ii♣ni � riqs ✏ ✁ ni♣Ii � niq

♣Ii � niq2 ✁ Ii♣ni � riq (C.13)

which we call the linear model uncertainty for projection i.
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Appendix D

Calculations for fixing the parameters of the

error-splitting forward model

We suppose βǫ0 is correctly fixed to comply with constraint (5.28), so measurement uncertainties are actually Gaus-
sian. In order to do simple calculations, we make the assumption that "true" projections g0 and measurement uncer-
tainties ǫ are independent, and we remove the expectations :

⑥g⑥22 ✏ ⑥g0⑥22 � ⑥ǫ⑥22. (D.1)

We define parameter SNR by :

SNR ✏ 10 log

✂⑥g0⑥22
⑥ǫ⑥22

✡
✏ 10 log

✂⑥g⑥22
⑥ǫ⑥22

✁ 1

✡
. (D.2)

Since we approximate ⑥ǫ⑥22 by its expectation, we have

⑥ǫ⑥22 ✓ E
�⑥ǫ⑥22⑤αǫ0 , βǫ0✟ ✏ M➳

i✏1

E
�
ǫ2i ⑤αǫ0 , βǫ0

✟
(D.3)

and

E
�
ǫ2i ⑤αǫ0 , βǫ0

✟ ✏ βǫ0

αǫ0 � 1
2

(D.4)

according to (5.30). Combining equations (D.2) and (D.3), we obtain

αǫ0 ✏M ✂ βǫ0
⑥g⑥22

✂
✁
1� 10

SNR
10

✠
✁ 1

2
, (D.5)

in order to automatically fix αǫ0 with respect to the data and parameter SNR.
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Appendix E

Estimation theory

An estimator ψ̂ of unknownsψ0 is defined as the minimizer of a cost functionC which penalizes the distance between
ψ̂ and ψ0. Since ψ0 is unknown, ψ̂ minimizes this cost in average over ψ0 :

ψ̂ ✏ argmin
ψ

Eψ
0

♣C♣ψ0,ψq⑤gq (E.1)

where the expectation

Eψ
0

♣C♣ψ0,ψq⑤gq ✏
➺
ψ

0

C♣ψ0,ψqp♣ψ0⑤gq dψ0 (E.2)

is computed with respect to the posterior distribution of ψ0 given data g. Depending on the choice of C♣ψ0,ψq,
several estimators ψ̂ are possible.

E.1 Maximum a posteriori

If
C♣ψ0,ψq ✏ 1✁ δ♣ψ0 ✁ψq, (E.3)

where δ denotes the Dirac delta function, then we have :

Eψ
0

♣C♣ψ0,ψq⑤gq ✏ 1✁ Eψ
0

♣δ♣ψ0 ✁ψq⑤gq ✏ 1✁ p♣ψ⑤gq. (E.4)

As a result, ψ̂ corresponds to the maximum a posteriori (MAP) :

ψ̂ ✏ argmin
ψ

t1✁ p♣ψ⑤gq✉ ✏ argmax
ψ

p♣ψ⑤gq (E.5)

E.2 Minimum Mean Square Error

If
C♣ψ0,ψq ✏ ⑥ψ0 ✁ψ⑥22, (E.6)

then the estimator
ψ̂ ✏ argmin

ψ
Eψ

0

♣⑥ψ0 ✁ψ⑥22⑤gq (E.7)

is the Minimum Mean Square Error (MMSE). The derivative of the averaged cost function reads

❇Eψ
0

♣C♣ψ0,ψqq
❇ψ ✏ ❇

❇ψ
✁
⑥ψ⑥22 � Eψ

0

♣⑥ψ0⑥22⑤gq ✁ 2ψTEψ
0

♣ψ0⑤gq
✠
✏ 2✂

✁
ψ ✁ Eψ

0

♣ψ0⑤gq
✠
. (E.8)

Hence, the derivative is zero at
ψ̂ ✏ Eψ

0

♣ψ0⑤gq. (E.9)

Consequently, the MMSE corresponds to the Posterior Mean (PM).
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E.3 Minimum Mean Absolute Error

If
C♣ψ0,ψq ✏ ⑥ψ0 ✁ψ⑥1 ✏

➳
j

⑤ψ0j ✁ ψj ⑤, (E.10)

then the estimator
ψ̂ ✏ argmin

ψ
Eψ

0

♣⑥ψ0 ✁ψ⑥1⑤gq (E.11)

is the Minimum Mean Absolute Error (MMAE). The averaged cost function reads

Eψ
0

♣⑥ψ0 ✁ψ⑥1⑤gq ✏
➳
j

➺ �✽
✁✽

⑤ψ0j ✁ ψj ⑤p♣ψ0j ⑤gq dψ0j

✏
➳
j

✓➺ ψj

✁✽
♣ψ0j ✁ ψjqp♣ψ0j ⑤gq dψ0j ✁

➺ �✽
ψj

♣ψ0j ✁ ψjqp♣ψ0j ⑤gq dψ0j

✛

✏
➳
j

✓
ψj

✄➺ ψj

✁✽
p♣ψ0j ⑤gq dψ0j ✁

➺ �✽
ψj

p♣ψ0j ⑤gq dψ0j

☛

✁
➺ ψj

✁✽
ψ0jp♣ψ0j ⑤gq dψ0j �

➺ �✽
ψj

ψ0jp♣ψ0j ⑤gq dψ0j

✛
. (E.12)

The derivative of the averaged cost function (E.12) is

❇Eψ
0

♣C♣ψ0,ψqq
❇ψj ✏

✄➺ ψj

✁✽
p♣ψ0j ⑤gq dψ0j ✁

➺ �✽
ψj

p♣ψ0j ⑤gq dψ0j

☛

� ψj ♣p♣ψj ⑤gq � p♣ψj ⑤gqq ✁ ψjp♣ψj ⑤gq ✁ ψjp♣ψj ⑤gq

✏
➺ ψj

✁✽
p♣ψ0j ⑤gq dψ0j ✁

➺ �✽
ψj

p♣ψ0j ⑤gq dψ0j . (E.13)

Consequently, the derivative of the averaged cost function is zero at ψ̂ such that

➺ ψ̂j

✁✽
p♣ψ0j ⑤gq dψ0j ✏

➺ �✽
ψ̂j

p♣ψ0j ⑤gq dψ0j ,❅j. (E.14)

Given equation (E.14), we see that the MMAE corresponds to the median of the posterior distribution of ψ. Comput-
ing the median requires to get samples at the tail of the posterior distribution and on its modes. This requires numerous
numerical simulations. On the contrary, in order to compute the posterior mean, only samples on the modes of the
posterior distribution are necessary. These samples are simpler to get thanks to the use of dedicated MCMC algo-
rithms which aim at accelerating the convergence of the generated Markov chain towards the modes of the posterior
distribution [MBBCP14]. Given these points, the MMSE is generally preferred to the MMAE.
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Appendix F

Calculations for Variational Bayesian Approach

In section F.1, we detail the calculations of the approximate distribution

q♣f ,ρζ , z,m,ρq ✏
N➵
j✏1

qfj ♣fj ⑤zjq ✂
N➵
j✏1

qzj ♣zjq

✂
M➵
i✏1

qρζi ♣ρζiq ✂
K➵
k✏1

qmk
♣mkq ✂

K➵
k✏1

qρk♣ρkq. (F.1)

for the VBA algorithm described in chapter 6. Then, in section F.2, we give the calculations of the negative free
energy which is the stopping criterion of the VBA algorithm. We omit subscripts corresponding to the iterations of
the algorithm for the sake of readability. In the calculations, we drop unuseful terms in the expressions of many
logarithms. In order to show these droppings, we use the notation

ln a✾ b

when
ln a ✏ b� C,

where C is a term unuseful for the calculations. We remind the auxiliary variables used in the calculations :✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

m̃j ✏
➦K
k✏1 m̃jkqzj ♣kq

ṽj ✏
➦K
k✏1 ṽjkqzj ♣kq

m̃
♣2q
j ✏ ➦K

k✏1 ♣m̃jk ✁ m̃jq2 qzj ♣kq ✏
➦K
k✏1 m̃

2
jkqzj ♣kq ✁ m̃2

j

ṽ
♣2q
j ✏ ṽj � m̃

♣2q
j

ṽζi ✏
β̃ζ0i
α̃ζ0i

(F.2)

and Ṽ ζ ✏ diag rṽζs.

F.1 Calculations of the approximate distributions

F.1.1 Calculation of the approximate distribution for the volume

We compute qfj ♣fj ⑤zj ✏ kq for fixed j P t1, . . . , N✉ and k P t1, . . . ,K✉. According to Bayes’ rule, we have

ln
�
p♣f ,ρζ , z,m,ρ⑤g;U ,Mq✟✾ ln

�
p
�
g⑤f ,ρζ

✟✟� ln ♣p ♣f ⑤z,m,ρqq . (F.3)
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We drop terms independent from fj and zj and take the expectation with respect to the approximate distribution as
required by formula (6.34). For the first term in (F.3), we have

ln
�
p♣g⑤f ,ρζq

✟ ✏ ✁1

2

M➳
i✏1

ρζi ♣gi ✁ rHf siq2 ✁
M

2
ln♣2πq � 1

2

M➳
i✏1

ln ♣ρζiq

✏ ✁
M➳
i✏1

ρζi
g2i
2
✁ M

2
ln♣2πq � 1

2

M➳
i✏1

ln ♣ρζiq ✁
M➳
i✏1

ρζi
rHf s2i

2
�

M➳
i✏1

ρζigi rHf si

✾✁
M➳
i✏1

ρζi
rHf s2i

2
�

M➳
i✏1

ρζigi rHf si

✾✁ f2j

2

✄
M➳
i✏1

ρζiH
2
ij

☛
� fj

M➳
i✏1

Hijρζi

☎
✝✆gi ✁ N➳

l✏1
l✘j

Hilfl

☞
✍✌

✾✁ f2j

2

✄
M➳
i✏1

ρζiH
2
ij

☛
� fj

M➳
i✏1

Hijρζi

☎
✝✆gi ✁ N➳

l✏1
l✘j

Hil

K➳
k✶✏1

flδ♣zl ✁ k✶q

☞
✍✌. (F.4)

According to section F.1.3,
qρζi ♣ρζiq ✏ G♣ρζi ⑤α̃ζ0i , β̃ζ0i q. (F.5)

Hence, given zj ✏ k, the expectation reads

Eq④fj ,zj

�
ln
�
p♣g⑤f ,ρζq

✟✟✾✁ f2j

2

M➳
i✏1

H2
ij

α̃ζ0i

β̃ζ0i

� fj

M➳
i✏1

Hij

α̃ζ0i

β̃ζ0i

☎
✝✆gi ✁ N➳

l✏1
l✘j

Hilm̃l

☞
✍✌ (F.6)

where
m̃lk✶ ✏ Eqfl

♣fl⑤zj ✏ k✶q. (F.7)

and

m̃l ✏
K➳
k✶✏1

m̃lk✶qzl♣k✶q. (F.8)

Introducing

ṽζi ✏
β̃ζ0i
α̃ζ0i

(F.9)

and Ṽ ζ ✏ diag rṽζs, we have
M➳
i✏1

H2
ij

α̃ζ0i

β̃ζ0i

✏
✑
HT Ṽ

✁1

ζ H
✙
jj
. (F.10)

Consequently, the expectation can be expressed as

Eq④fj ,zj

�
ln
�
p♣g⑤f ,ρζq

✟✟✾✁ f2j

2

✑
HT Ṽ

✁1

ζ H
✙
jj
� fj

✂✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j
� m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj

✡
. (F.11)

We do the same for the second term in (F.3) :

ln ♣p ♣f ⑤z,m,ρqq ✏ ✁1

2

K➳
k✏1

➳
jPRk

ρk♣fj ✁mkq2 ✁ N

2
ln ♣2πq � 1

2

K➳
k✏1

➳
jPRk

ln♣ρkq

✾ ✁ ρk

2
♣fj ✁mkq2✾✁ f2j

2
ρk � fjρkmk. (F.12)
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According to sections F.1.4 and F.1.5, the approximate distributions for the means and the inverses of the variances of
the classes are

qmk
♣mkq ✏ N ♣mk⑤m̃0k , ṽ0kq (F.13)

and
qρk♣ρkq ✏ G♣ρk⑤α̃0k , β̃0kq. (F.14)

Consequently, it leads to

Eq④fj ,zj
♣ln ♣p ♣f ⑤z,m,ρqqq✾ ✁ f2j

2

α̃0k

β̃0k
� fj

α̃0k

β̃0k
m̃0k . (F.15)

Gathering equations (F.11) and (F.15), the approximate distribution for the volume is

qfj ♣fj ⑤zj ✏ kq ✏ N ♣fj ⑤m̃jk, ṽjkq,❅j, k (F.16)

where ✩✬✬✫
✬✬✪

ṽjk ✏
✂
α̃0k

β̃0k
�
✑
HT Ṽ

✁1

ζ H
✙
jj

✡✁1

m̃jk ✏ ṽjk

✂
α̃0k

β̃0k
m̃0k �

✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j
� m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj

✡ . (F.17)

Given that

ṽjkm̃j

✑
HT Ṽ

✁1

ζ H
✙
jj
✏ ṽjkm̃j

✄
1

ṽjk
✁ α̃0k

β̃0k

☛
✏ m̃j ✁ α̃0k

β̃0k
ṽjkm̃j , (F.18)

we obtain the updating formulae for the mean and the variance of qfj ♣.⑤zj ✏ kq :✩✬✬✫
✬✬✪

ṽjk ✏
✂
α̃0k

β̃0k
�
✑
HT Ṽ

✁1

ζ H
✙
jj

✡✁1

m̃jk ✏ m̃j � ṽjk

✂
α̃0k

β̃0k
♣m̃0k ✁ m̃jq �

✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j

✡ . (F.19)

F.1.2 Calculation of the approximate distribution for the labels

We compute qzj for fixed j P t1, . . . , N✉. This approximate distribution is calculated based on the formula (6.41)
proven in section 6.1.2. Since a dependence is preserved between fj and zj in the approximate joint posterior distri-
bution (F.1), qzj appears in the expectation of the log-likelihood ln

�
p♣g⑤f ,ρζq

✟
. For this reason, the log-likelihood is

not dropped in Bayes’ rule

ln
�
p♣f ,ρζ , z,m,ρ⑤g;U ,Mq✟✾ ln

�
p♣g⑤f ,ρζq

✟� ln ♣p ♣f ⑤z,m,ρqq � ln ♣p ♣z⑤α, γ0qq . (F.20)

For the log-likelihood, we keep only the terms dependent on fj :

ln
�
p♣g⑤f ,ρζq

✟✾✁
K➳
k✏1

f2j

2
δ♣zj ✁ kq

✄
M➳
i✏1

ρζiH
2
ij

☛

�
K➳
k✏1

fjδ♣zj ✁ kq
M➳
i✏1

Hijρζi

☎
✝✆gi ✁ N➳

l✏1
l✘j

Hil

K➳
k✶✏1

flδ♣zl ✁ k✶q

☞
✍✌. (F.21)

Hence, according to sections F.1.1 and F.1.3,

Eq④zj

�
ln
�
p♣g⑤f ,ρζq

✟✟

✾✁ 1

2

✑
HT Ṽ

✁1

ζ H
✙
jj

✄
K➳
k✏1

�
ṽjk � m̃2

jk

✟
δ♣zj ✁ kq

☛
�
✄

K➳
k✏1

m̃jkδ♣zj ✁ kq
☛☎✝✆M➳

i✏1

Hij

α̃ζ0i

β̃ζ0i

☎
✝✆gi ✁ N➳

l✏1
l✘j

Hilm̃l

☞
✍✌
☞
✍✌
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✾✁ 1

2

✑
HT Ṽ

✁1

ζ H
✙
jj

✄
K➳
k✏1

�
ṽjk � m̃2

jk

✟
δ♣zj ✁ kq

☛
�
✄

K➳
k✏1

m̃jkδ♣zj ✁ kq
☛✄

M➳
i✏1

Hij

α̃ζ0i

β̃ζ0i

✄
gi ✁

N➳
l✏1

Hilm̃l

☛☛

�
✄

K➳
k✏1

m̃jkδ♣zj ✁ kq
☛
m̃j

✄
M➳
i✏1

H2
ij

α̃ζ0i

β̃ζ0i

☛

✾✁ 1

2

✑
HT Ṽ

✁1

ζ H
✙
jj

✄
K➳
k✏1

�
ṽjk � m̃2

jk

✟
δ♣zj ✁ kq

☛
�
✄

K➳
k✏1

m̃jkδ♣zj ✁ kq
☛✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j

�
✄

K➳
k✏1

m̃jkδ♣zj ✁ kq
☛
m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj

✾
K➳
k✏1

✂
✁1

2

✑
HT Ṽ

✁1

ζ H
✙
jj

�
ṽjk � m̃2

jk

✟� m̃jk

✂✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j
� m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj

✡✡
δ♣zj ✁ kq

✾
✂
✁1

2

✡ K➳
k✏1

✂�
ṽjk � m̃2

jk

✟ ✑
HT Ṽ

✁1

ζ H
✙
jj

✁2m̃jk

✂
m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj
�
✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j

✡✡
δ♣zj ✁ kq. (F.22)

For the second term in (F.20), we have, according to sections F.1.1, F.1.4 and F.1.5,

Eq④zj
♣ln ♣p ♣f ⑤z,m,ρqqq✾ ✁ 1

2

K➳
k✏1

✁
Eqfj qmk

qρk

�
ρk♣fj ✁mkq2⑤zj ✏ k

✟✁ Eqρk
♣ln♣ρkqq

✠
δ♣zj ✁ kq

✾ ✁ 1

2

K➳
k✏1

✁
Eqρk

♣ρkq
✑
Eqfj

�
f2j ⑤zj ✏ k

✟� Eqmk

�
m2
k

✟✁ 2Eqfj ♣fj ⑤zj ✏ kqEqmk
♣mkq

✙
✁ Eqρk

♣ln♣ρkqq
✠
δ♣zj ✁ kq

✾ ✁ 1

2

K➳
k✏1

✄
α̃0k

β̃0k

✑
ṽjk � ṽ0k � ♣m̃jk ✁ m̃0kq2

✙
� ln♣β̃0kq ✁ ψ♣α̃0kq

☛
δ♣zj ✁ kq, (F.23)

where ψ denotes the digamma function :

ψ♣xq ✏ Γ✶♣xq
Γ♣xq ,❅x P R

✝
�. (F.24)

The expectation of the third term in (F.20) is

Eq④zj
♣ln ♣p ♣z⑤α, γ0qqq✾

K➳
k✏1

✔
✕αk � γ0

➳
iPV♣jq

qzi♣kq
✜
✢ δ♣zj ✁ kq (F.25)

where qzi♣kq,❅i P V♣jq, is qzi♣kq computed at the previous iteration of the VBA algorithm. In order to apply the
formula (6.41), we have to compute the entropy of the approximate distribution qfj . Since, according to section F.1.1,

qfj ♣fj ⑤zj ✏ kq ✏ N ♣fj ⑤m̃jk, ṽjkq, (F.26)

the entropy reads

H♣qfj ⑤zj ✏ kq ✏ 1

2
♣1� ln♣2πqq � 1

2
ln ♣ṽjkq . (F.27)

Consequently, removing constant terms, we have

H♣qfj ⑤zjq✾
1

2

K➳
k✏1

ln ♣ṽjkq δ♣zj ✁ kq. (F.28)
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Then, gathering equations (F.22), (F.23), (F.25) and (F.28), we obtain the expression of qzj :

qzj ♣zjq ✏
exp

✑➦K
k✏1

✁
α̃jk � γ0

➦
iPV♣jq qzi♣kq

✠
δ♣zj ✁ kq

✙
➦K
k✏1 exp

✑
α̃jk � γ0

➦
iPV♣jq qzi♣kq

✙ (F.29)

where qzi♣kq,❅i P V♣jq, has been computed at the previous of the algorithm, and

α̃jk ✏ αk ✁ 1

2

✄
α̃0k

β̃0k

✑
ṽjk � ṽ0k � ♣m̃jk ✁ m̃0kq2

✙
� ln♣β̃0kq ✁ ψ♣α̃0kq

☛
� 1

2
ln ♣ṽjkq

✁ 1

2

✂�
ṽjk � m̃2
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✟ ✑
HT Ṽ

✁1

ζ H
✙
jj
✁ 2m̃jk

✂
m̃j

✑
HT Ṽ

✁1

ζ H
✙
jj
�
✑
HT Ṽ

✁1

ζ ♣g ✁Hm̃q
✙
j

✡✡
. (F.30)

F.1.3 Calculation of the approximate distribution for the inverses of the variances of the uncertain-

ties on the projections

Since the inverses of the variances of the uncertainties are completely separated in the chosen form of the approximate
joint posterior distribution (F.1), we apply the formula (6.22) of the mean field approximation. According to Bayes’s
rule,

ln
�
p♣f ,ρζ , z,m,ρ⑤g;U ,Mq✟✾ ln

�
p
�
g⑤f ,ρζ

✟✟� ln
�
p
�
ρζ ⑤αζ0 , βζ0

✟✟
. (F.31)

where

ln
�
p
�
g⑤f ,ρζ

✟✟ ✏ ✁M
2

ln♣2πq � 1

2

M➳
i✏1

ln ♣ρζiq ✁
1

2

M➳
i✏1

ρζi ♣gi ✁ rHf siq2 (F.32)

and

ln
�
p
�
ρζ ⑤αζ0 , βζ0

✟✟✾ M➳
i✏1

r♣αζ0 ✁ 1q ln ♣ρζiq ✁ βζ0ρζis . (F.33)

For fixed i P t1, . . . ,M✉, we have

Eq④ρζi
♣ln �p♣f ,ρζ , z,m,ρ⑤g,Mq✟q✾✂αζ0 ✁ 1
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✡
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2
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✠✚
. (F.34)

Using m̃j and ṽ♣2qj defined in (F.2), the expectation of the first term in (F.33) is
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. (F.35)

Consequently, qρζi is a Gamma distribution

qρζi ♣ρζiq ✏ G♣ρζi ⑤α̃ζ0i , β̃ζ0i q (F.36)
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where ✩✬✫
✬✪
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F.1.4 Calculation of the approximate distribution for the means of the classes

For the means of the classes, we also apply the formula (6.22) of the mean field approximation. We have

ln
�
p♣f ,ρζ , z,m,ρ⑤g;U ,Mq✟✾ ln ♣p♣f ⑤z,m,ρqq � ln ♣p♣m⑤m0, v0qq (F.38)

where, for fixed k P t1, . . . ,K✉,
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according to sections F.1.1 and F.1.5, and

Eq④mk
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2v0
. (F.40)

Consequently, qmk
is a Gaussian distribution

qmk
♣mkq ✏ N ♣mk⑤m̃0k , ṽ0kq (F.41)

where ✩✬✬✬✬✫
✬✬✬✬✪
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F.1.5 Calculation of the approximate distribution for the inverses of the variances of the classes

We also use the updating formula (6.22) of the mean field approximation. Since

ln
�
p♣f ,ρζ , z,m,ρ⑤g;U ,Mq✟✾ ln ♣p♣f ⑤z,m,ρqq � ln ♣p♣ρ⑤α0, β0qq , (F.43)

where, according to sections F.1.1 and F.1.4,
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and
Eq④ρk

♣ln ♣p♣ρk⑤α0, β0qqq✾♣α0 ✁ 1q ln♣ρkq ✁ β0ρk, (F.45)
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the approximate distribution qρk is a Gamma distribution

qρk♣ρkq ✏ G♣ρk⑤α̃0k , β̃0kq (F.46)

where ✩✬✫
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,❅k P t1, . . . ,K✉. (F.47)

F.2 Calculation of the negative free energy

The negative free energy is the stopping criterion of the VBA algorithm. For the approximate joint posterior distribu-
tion (F.1), it reads

F♣q♣f ,ρζ , z,m,ρqq ✏ H♣q♣f ,ρζ , z,m,ρqq
�
➺
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✏ H♣q♣f ,ρζ , z,m,ρqq � Eq

�
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�
p♣g;f ,ρζ , z,m,ρ⑤U ,Mq✟✟ . (F.48)

In the following, we give the expressions of the two terms in formula (F.48).

F.2.1 Calculation of the entropy of the approximate joint posterior distribution

Given the separations in the approximate joint posterior distribution, we have
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where, according to our previous calculations,
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and
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F.2.2 Calculation of the expectation of the log-joint posterior distribution

According to Bayes’ rule
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For the log-likelihood, we have
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where
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ṽ
♣2q
j

✑
HT Ṽ
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Consequently,
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According to our previous calculations, the expressions for the other terms in (F.55) are

Eq ♣ln ♣p♣f ⑤z,m,vqqq ✏ ✁N
2
ln♣2πq

✁ 1

2

N➳
j✏1

K➳
k✏1

✄
α̃0k

β̃0k

✑
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and
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F.2.3 Expression of the negative free energy

Gathering the results of our calculations in sections F.2.1 and F.2.2, we obtain the expression of the negative free
energy
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Dropping the constant terms, the expression of the stopping criterion of the VBA algorithm is
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Titre : Méthodes de reconstruction iteratives en tomographie 3D par rayons X via une approche bayésienne
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Résumé : Dans un contexte industriel, la tomogra-

phie 3D par rayons X vise à imager virtuellement

une pièce afin d’en contrôler l’intérieur. Le volume vir-

tuel de la pièce est obtenu par un algorithme de re-

construction, prenant en entrées les projections de

rayons X qui ont été envoyés à travers la pièce.

Beaucoup d’incertitudes résident dans ces projec-

tions à cause de phénomènes non contrôlés tels que

la diffusion et le durcissement de faisceau, causes

d’artefacts dans les reconstructions conventionnelles

par rétroprojection filtrée. Afin de compenser ces

incertitudes, les méthodes de reconstruction dites

itératives tentent de faire correspondre la reconstruc-

tion à un modèle a priori, ce qui, combiné à l’informa-

tion apportée par les projections, permet d’améliorer

la qualité de reconstruction. Dans ce contexte, cette

thèse propose de nouvelles méthodes de recons-

truction itératives pour le contrôle de pièces pro-

duites par le groupe SAFRAN. Compte tenu de nom-

breuses opérations de projection et de rétroprojection

modélisant le processus d’acquisition, les méthodes

de reconstruction itératives peuvent être accélérées

grâce au calcul parallèle haute performance sur pro-

cesseur graphique (GPU). Dans cette thèse, les

implémentations sur GPU de plusieurs paires de

projecteur-rétroprojecteur sont décrites. En particu-

lier, une nouvelle implémentation pour la paire duale

dite à empreinte séparable est proposée. Beaucoup

de pièces produites par SAFRAN pouvant être vues

comme des volumes constants par morceaux, un

modèle a priori de Gauss-Markov-Potts est introduit, à

partir duquel est déduit un algorithme de reconstruc-

tion et de segmentation conjointes. Cet algorithme re-

pose sur une approche bayésienne permettant d’ex-

pliquer le rôle de chacun des paramètres. Le ca-

ractère polychromatique des rayons X par lequel s’ex-

pliquent la diffusion et le durcissement de faisceau

est pris en compte par l’introduction d’un modèle

direct séparant les incertitudes sur les projections.

Allié à un modèle de Gauss-Markov-Potts sur le vo-

lume, il est montré expérimentalement que ce nou-

veau modèle direct apporte un gain en précision et

en robustesse. Enfin, l’estimation des incertitudes sur

la reconstruction est traitée via l’approche bayésienne

variationnelle. Pour obtenir cette estimation en un

temps de calcul raisonnable, il est montré qu’il est

nécessaire d’utiliser une paire duale de projecteur-

rétroprojecteur.
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Abstract : In industry, 3D X-ray Computed Tomogra-

phy aims at virtually imaging a volume in order to ins-

pect its interior. The virtual volume is obtained thanks

to a reconstruction algorithm based on projections

of X-rays sent through the industrial part to inspect.

In order to compensate uncertainties in the projec-

tions such as scattering or beam-hardening, which

are cause of many artifacts in conventional filtered

backprojection methods, iterative reconstruction me-

thods bring further information by enforcing a prior

model on the volume to reconstruct, and actually en-

hance the reconstruction quality. In this context, this

thesis proposes new iterative reconstruction methods

for the inspection of aeronautical parts made by SA-

FRAN group. In order to alleviate the computational

cost due to repeated projection and backprojection

operations which model the acquisition process, ite-

rative reconstruction methods can take benefit from

the use of high-parallel computing on Graphical Pro-

cessor Unit (GPU). In this thesis, the implementation

on GPU of several pairs of projector and backprojec-

tor is detailed. In particular, a new GPU implementa-

tion of the matched Separable Footprint pair is pro-

posed. Since many of SAFRAN’s industrial parts are

piecewise-constant volumes, a Gauss-Markov-Potts

prior model is introduced, from which a joint recons-

truction and segmentation algorithm is derived. This

algorithm is based on a Bayesian approach which en-

ables to explain the role of each parameter. The ac-

tual polychromacy of X-rays, which is responsible for

scattering and beam-hardening, is taken into account

by proposing an error-splitting forward model. Combi-

ned with Gauss-Markov-Potts prior on the volume, this

new forward model is experimentally shown to bring

more accuracy and robustness. At last, the estimation

of the uncertainties on the reconstruction is investi-

gated by variational Bayesian approach. In order to

have a reasonable computation time, it is highlighted

that the use of a matched pair of projector and back-

projector is necessary.
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