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Abstract

The detailed comprehension of the observed properties of Jets of Young
Stellar Objects requires the construction of models, accounting for the ob-
servations, but allowing us, by the knowledge of the hypotheses under which
those models are constructed, to gain insight into the physical processes re-
sponsible for the observed behaviours. Once such models elaborated, we
need to test their stablity, and to improve the models, when they exhibit

inconsistencies.

In this thesis, we are going to study the stability of solutions for Jets of
Young Stellar Objects, and then to change them, in order to include static
magnetosphere. The approach we employed is to initialize a simulation box
with a semi-analytical solution of a global collimated outflow with non-null
velocities in the magnetosphere, and to test its stablity. Then we modify
accordingly the semi-analytical solution in order to account for a static
magnetosphere. The final state to which the simulation relax is then a
numerically obtained solution for global flow with a dead zone. We obtain
two different solutions, one for a heated, and one for a non heated dead
zone. We discuss the astrophysical implications of the properties of these

solutions.

The plan of this thesis is the following: In the Chapter 1, first we make
an introduction to the theory of star formation, and second, to the theory
and observations of Jets of Young Stellar Objects. In Chapter 2, we dis-
cuss the general framework in which we operate, which are the equations
of ideal Magnetohydrodynamics, and how the collimated outflows of Young
Stellar Objects are studied analytically. In Chapter 3, we discuss the topo-
logical stablity of a solution, describing an axisymmetric, collimated stellar
outflow. In Chapter 4 we obtain a numerical solution for a jet with static
magnetosphere, and discuss how this refers to the observations. In Chapter
5, we compare to the solution, presented in Chapter 4 another solution, in

which the dead zone is heated.
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Résumé

La compréhension détaillée es propriétés observées des jets des objets stel-
laires jeunes nécessite la construction de modeles. Ceux-ci tiennent compte
des observations et nous permettent de mieux comprendre les processus
physiques responsables des phénomeénes observés. Une fois de tels modeles

construits, nous devons tester leur stabilité, et les améliorer.

Dans cette thése, nous étudions la stabilité de solutions de jets d’objets stel-
laires jeunes et les modifier, afin d’en inclure des magnétospheres statiques.
L’approche utilisée est 'initialisation d'une simulation numérique avec une
solution semi-analytique de jet, dont la vitesse d’écoulement dans la mag-
nétosphére est non-nulle. On vérifie aussi la stabilité de cette solution.
Dans un second temps, nous allons modifier la solution semi-analytique
de maniére auto-cohérente afin qu’elle corresponde & un modéle avec une
magnétosphére statique. L’état final vers lequel la simulation converge est
alors une solution, obtenue numériquement, de flot collimaté avec une zone
morte. Nous obtenons deux solutions différentes, une pour une zone morte
chauffée, et une autre pour une zone morte qui n’est pas chauffée. Nous

discutons des implications astrophysiques de ces solutions.

Le plan de cette these est le suivant: dans le Chapitre 1, nous allons tout
d’abord faire une introduction de la théorie de la formation des étoiles, et
ensuite, dans la théorie et des observations des jets des étoiles jeunes. Dans
le Chapitre 2, nous discutons le cadre général dans lequel on se place, a
savoir les équations de la magnétohydrodynamique idéale, et nous discutons
également les procédés analytiques utilisés pour étudier les jets des étoiles
jeunes. Dans le Chapitre 3, nous discutons la stabilité topologique d’une
solution particuliére, qui décrit un vent stellaire collimaté stationnaire et
axisymétrique. Dans le Chapitre 4, nous obtenons une solutions numérique
d’un jet avec une magnétosphere statique. Nous discutons la relation entre
cette nouvelle solution et les observations. Finalement, dans le Chapitre 5,
nous comparons a la solution obtenue dans le Chapitre 4 une autre solution,

dans laquelle la zone morte est chauftée.
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Chapter Abstract

The goal of this thesis is to study models of static magnetospheres in col-
limated outflows from Young Stellar Objetcs. This requires to introduce
first the general context of such a study, by giving an outlook of the current
astrophysical paradigm on star formation, which is the formation of proto-
stellar cores in molecular clouds by gravitational collapse, which is governed
by the interplay of gravitation, magnetic fields and hydrodynamics, and to
describe how collimated outflows — or ‘jets’ — are part of this theory. The
choice we made is to introduce the reader in this framework by starting
with an outlook of this very general topic within Astrophysics, which is
the theory and observations of Young Stellar Objects, and then to discuss
observations and theory of jets. Afterwards, in subsequent chapters, we
will discuss the particular models we studied in order to gain insight into

these phenomena.

1.1 Stellar variability. T Tauri variables as

Young Stellar Objects

1.1.1 T Tauri stars as young stars

Once, the variability of a star was considered to be something unusual.
Stars were considered to be part of the Aristotelean supralunar realm, to
which was attached the notion of perfectness, or interchangeably, the lack

of change. This view was prevalent prior to the advent of modern science
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at the beginning of the 17th century. The first star to be described with
certainty as variable is o Ceti. Although possibly previously identified as a
nova, its periodic variability was discovered by Johannes Holwarda in 1638,
and in 1642 Johannes Hevelius named it “Mira,” meaning “The Wonderful,”
(Hoffleit , 1997) possibly imprinting in this name his fascination for the fact
that some stars undergo changes. Nowadays, it is clear that, in some sense,
every star is variable: stars and their vicinity undergo evolution, and some
of the most beautiful physical theories have been employed in answering
the question of where do stars come from, what they are, and where do
they go. Also, it became clear that the star Mira is part of a class of
variable stars in a latter stage of their evolution — an oscillating red giant
stars — a class of stars named “Mira-type,” after the first discovered of
their kind. Similarly, a class of variable stars discovered by Alfred H. Joy
in 1945, is named after the star that Joy identified as their prototype — the
variable star T Tauri. What Joy pointed out as being characteristic for T
Tauri stars (TTS) is their low luminosity, rapid irregular variations in the
lightcurve, spectral type between F5 and G5, spectra with emission lines
blue-shifted with respect to the absoption lines, and their association with
dark or bright nebulae (Joy, 1945). Later, V. Ambartsumian identified
TTS as Young Stellar Objects (YSOs), i.e. pre-main sequence stars, whose
luminosity is due to gravitational contraction, an identification that will

prove right (e.g. Ray, 2007, and references therein).

The described activity and peculiarities of TTS are nowadays explained by
the presence of accretion disk, outflows such as stellar winds and highly

collimated jets, and magnetic phenomena.

1.1.2 Interstellar clouds and T Tauri stars

As mentioned, TTS are observed close to nebulae, which are known to be
cold molecular clouds, composed mainly of molecular hydrogen. H; is a
homonuclear molecule with no permanent dipole moment and hence is not
interacting with electromagnetic radiation. As the gas is optically thin at

these densities, Hy is not directly observable. Instead, its density is inferred
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from the density of “tracer” molecules, which abundances are supposed to
have fixed values. Different ‘tracer’ molecules are used to track Hy, allowing
the density of the molecular gas to be measured with different precisions,
such as CO and SO. State-of-the-art instruments such as those on the
Herschel Space Observatory, which mission recently ended, observe more
robust tracers, such as HF (Sonnentrucker etal., 2010). Apart Hy, CO, SO
and HF, various other compounds are present in cold molecular clouds,
such as NHj, Polycyclic aromatic hydrocarbons (PAHs) and most notably,
dust. Dust accounts for only 1% of the cloud mass, but is responsible for
the optical thickness of the cloud. The size of dust particles have long been
an open question. Their size has been determined recently by observing
the scattered light of close objects at certain wavelenghts: they were found
to scatter mostly light at 3.6um (phenomenon called “cloudshine” or “core-
shine”, for denser regions), which could be done by dust particles that have
typical sizes of 1um (Paganiet al., 2010). More than 4 000 Giant Molecular
Clouds (GMCs) are found in the Milky Way galaxy, with much more Small
Molecular Clouds (Ray, 2007). Among them, the Taurus-Auriga (GMC),
Ophiucus (SMC) and Orion (GMC) star-forming regions are studied in
greater detail than others. (Hartmann, 2009).

1.1.3 Gravitational collapse of a young star

Stars form in gravitationally bound overdense regions in these clouds, which
can be clumps or prestellar cores (commonly called also “compact sources”).
Clumps are sites of formation of young stellar clusters, such as the Trapez-
ium cluster at the heart of the Orion nebula. Cores are sites of formation
of individual stars or small multiple systems (Ray, 2007, and references
therein). Another interesting feature of the interstellar medium is that it
is structured in filaments. It seems to be ubiquitous as revealed by the
Herschel Space Observatory (Molinari et al., 2010), and clumps and cores
appear along these filaments. This may mean that the molecular clouds
first collapse in filaments before forming compact sources (Molinari et al.,
2010).
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Once the compact source form, various mechanisms may prevent the grav-
itational collapse that will finally lead to the formation of a star. From
theoretical point of view, the maximal mass of a sphere in hydrostatic

equilibrium is

(T/10K)

Mpr = 0.66
b {Pin/(3 x 105 kyem=3K) }/°

M, (L1)

and is called the Bonnort-Ebert mass (7" being the temperature in Kelvin,
P, the thermal pressure and kp Boltzman’s constant). The Bonnort-Ebert
mass’ order of magnitude is 1M, for typical clouds and is comparable to
the Jeans mass (and respectively, the radius of the Bonnort-Ebert sphere
is comparable to the Jeans length: Rpp = 0.486R;, which is the critical
mass above which clouds are subject to fragmentation (McKee & Ostriker ,
2007, and references therein.) When the gravitational collapse starts, the
number density of the newly formed core is neoe = 1072°g.cm™ (for the
Sun, ng = 1lg.cm™3). Material spread at 1ly will collapse to a core with a
diameter of 1 Mkm, and during that phase its temperature will rise from
10%K to 10°K (Ray, 2007, and references therein).

The mass of a core may exceed the Bonnort-Ebert mass, but gravitational
collapse may still be stopped, and various factors are to be taken into ac-
count. The ISM is observed to be turbulent, with turbulent motions being
sometimes supersonic. Observations of spectral lines of molecules such as
CO show that their broadness varies on the observational scale, as expected
from Kolmogorov’s turbulent spectrum. Second, there is observational evi-
dence for the presence of magnetic fields in the ISM such as the polarization
of millimeter emission by aligned dust grains. Their strengths vary from
few uG to few mG (Ray, 2007, and references therein). Cores that have
the Bonnort-Ebert mass, but are supported by magnetic pressure are called

sub-critical. And third, this balance may be modified by rotation.

The Cold neutral medium (CNM) component of the ISM is supposed to be
subcritical or at most critical, thus the magnetic fields are able to stop the

collapse at first. The quantative contribution of the gradient of magnetic
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pressure to the force balance is dependant on the density structure of the
core, hence observational evidence is not conclusive. (McKee & Ostriker,
2007 and references therein). Meanwhile, magnetic fields act directly only
on ionised particles, and ionisation ratio of the ISM is quite low: 1075.
Particles are supposed to be ionised by cosmic rays, and they interact with
neutrals by friction. Depending on the balance of friction and magnetic
forces, ions may be allowed to leak out, and the bulk of the cloud, con-
tained in the neutrals, allowed to collapse. This process is called ambipolar
diffusion, described for the first time by Mestel & Spitzer (1956). The dy-
namics of the magnetic field during the gravitational collapse remain an
open question, with one of the classic problems of the theory of star for-
mation being the fact that the ISM is strongly magnetized, and a star is
weakly magnetized (McKee & Ostriker , 2007).

1.1.4 Evolutionnary sense of protostellar classes

1.1.5 Class 0

The gravitational collapse, when all the envelope is falling onto the star,
continues until n = 1072g.cm ™2 a second core is formed and hydrogen is
ionised (Ray, 2007).

At this moment, 1% of the mass is in the core, and the other part is in the
envelope. The star starts to accrete its spherical envelope: it’s now a Class

0 protostar.

As mentioned, the peculiar activity of a TTS is partly attributed to the
presence of an accretion disk. Observational evidence for the presence of
accretion disks around YSOs are the observed excess in the infrared and
millimeter emission and the fact that the red-shifted part of the emission
lines is blocked. On theoretical grounds, the formation of an accretion disk
is explained by considering the fact that rotation breaks the spherical sym-
metry of the cloud, thus material coming from sufficiently large distances

in the surrounding nebula at the equator from below will have opposite
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momentum flux with respect to material coming from above; this will lead
to the formation of a shock at the equator. Gas passing trough this shock
will see its entropy increases, hence it will loose kinetic energy, i.e. the
infalling gas particles will stay close to the equator, forming a thin disk

(Hartmann, 2009, and references therein).

Once a significant part of the envelope is accreted in the Class 0 phase,
with the accretion rate being highly variable with respect to time, and out-
flow in the form of a massive wind and jets develop.This is observable, for
instance, through the doppler-shifted CO rotationnal line emission (Ray,
2007, and references therein). Class 0 objects are optically invisible, but
observable at far-infrared and millimeter wavelengths (Ray, 2007, and ref-

erences therein).

1.1.6 Class I

When the disk is formed, the protostar enters a new phase, in which it
accretes both from its envelope and disk, with the presence of an outflow.
It’s called a Class I protostar. Such objects are still optically invisible, but
scattered light could be seen in the surrounding nebula (Ray, 2007, and

references therein).

The phase corresponding to Class 0 and I together is sometimes called
“embedded phase.” The embedded phase should last up to 1Myr, according
to theoretical models by Contopoulos & Sauty (2001), Dunham & Vorobyov
(2012). Evans etal. (2009) argue that embedded phase lifetime is 0.44Myr,
by counting Class 0 and I sources in the “cores to disks” (c2d) Spitzer
spectroscopic survey and comparing their number to the number of Class
IT sources (based on the assumption that the lifetime of Class II sources is
taken to be 2Myr). Class 0 and I sources ignite deuterium and the energy
output from deuterium ignition is balancing the gravitational contraction.
This is analoguous to the equilibrium between gravitational contraction
and hydrogen burning of a main sequence star. T Tauri stars have been

identified to have luminosities corresponding to what is predicted for YSOs
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burning only deuterium, who follow an evolutionnary track on the HR
diagram called “birthline”, or “Hayashi track”, situated above the main
sequence. (Stahler, 1998) Once the main accretion phase is over, the stars
stops burning deuterium, and starts burning hydrogen: it has become a
zero-aged main-sequence star (ZAMS). As we already said, Class I stars
accrete from their envelopes, but most importantly, from an accretion disk,
which feature does not exist in Class 0 sources. An important thing to say
is that the important part of the mass is already accreted; the mass of the

envelope Mg < Mg, as opposed to Class 0 sources.

1.1.6.1 The luminosity problem of the embedded (Class 0 & I)
phase

A significant shortcoming of the standard model is the luminosity problem.
Embedded phase lasts at most 1Myr, which requires an accretion rate of
1076 Myyr~!, close to the accretion rate during the runaway collapse of
Shu (1977). This implies luminosities of the order of 7L, higher than the
typically observed 1Ls. The most plausible solution to this problem is that
the accretion rate during the embedded phase is not steady, and that a
significant portion of the mass is accreted during episodic bursts, such as

those observed in FU Ori stars.

Recent physical models including such behaviour can be found in Dun-
ham & Vorobyov (2012), thus making the median accretion rate (hence lu-
minosity) significantly smaller than the needed mean accretion rate. It is
not clear if such scenarii match the observational evidence, since dynamical
properties of outflows and jets of Class 0 objects suggest different timings
for such outbursts, so further observational studies are called for. Part
of the solution of the luminosity problem may be that a more significant
fraction of the accretion energy is carried away by outflows and jets (Mc-

Kee & Ostriker, 2007 and references therein).
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1.1.7 Class II

Once the envelope is accreted and there is an accretion disk, the protostar
is now a Class IT YSO. It is optically visible either as Herbig Ae/Be star
(stars with mass of a several solar masses), either as T Tauri star (1 —
2Mg). A low-mass star in this stage is called a “Classical T Tauri star”
(¢TTS). The disk continues to accrete and the outflow is developped and
potentially observable. (Ray, 2007, and references therein, Hartmann,
2009, and references therein). ¢TTSs exhibit accretion rates of 10~3Mgyr!
(Sauty et al. (2011) and references therein). Outflows in YSOs last at least
10%yr. (Bouvier, Forestini, & Allain, 1997) As the cloud, surrounding the

yvoung stars dissipates with age, evolved young stars are easier to observe.

The models we are going to present in subsequent chapters are concerning
jets from Class II YSOs.

1.1.8 Class III

Class III YSOs, also called “Weak-lined TTS” (wTTS), are even more
evolved protostars, where the disk is cleared from the gas, and the remain-
ing dust is about to be used as a material for planet formation. Some au-
thors identify ¢TTS with fast rotators and wT'TS with slow rotators (Kun-
durthy et al., 2006). Furthermore, Sauty et al. (2011) argue that wTTS
may also have jets, naturally of purely stellar origin, but undetectable with

up-to-date instruments.

Not all stars fall in this classes. For example, the star IM Lup is a transi-
tionnal case between ¢TTS and wT'TS (Giinther et al., 2013a), and MN Lup
lost its disk of hot dust (Glinther etal. , 2013b).
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1.1.9 Attribution of classes according observationnal

criteria

Before it became clear that the numbering of classes has evolutionary sense,
classes were attributed to stars based on characteristics of their spectra.
André, Ward-Thompson, & Barsony (2000) summarize the criteria used for
spectral classification of YSOs. Thus, what is used for the original classifi-
cation is the parameter air, corresponding to the slope of the protostellar
spectral energy distribution in the infrared band (wavelengths in the range
2.2p — 10 — 25u):

d (AFy)

= (1.2)

QIR =
In this classificatoon, aig > 0 corresponds to Class I, —1.5 < ar < 0 cor-
respond to Class II and arg < —1.5 correspond to Class III (André, Ward-
Thompson, & Barsony , 2000)

1.1.10 Summary

The presented picture of stellar formation has two other major shortcom-
ings. Two of them are the angular momentum problem and the magnetic
flux problem: ZAMS stars have much less of the two than an equivalent
mass of ISM. The latter problem is frequently explained in the literature by
a drop of ionisation during the gravitational collapse. As the gravitational
collapse proceeds, the bulk of the cloud decouples from the magnetic field
and the flux is accumulated mainly in the accretion disk. In addition, mag-
netic reconnection or turbulent diffusion may play a positive additional role

to resolve this problem (McKee & Ostriker, 2007 and references therein).

The problem (e.g., Spitzer, 1978) of angular momentum extraction might
be resolved by outflows such as massive stellar winds and jets, that may
have enough angular momentum to torque down the star (e.g. Mestel,
2012 and Matt & Pudritz, 2008a).
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Quantifying this process by models taking into account more aspects of

outflow dynamics is still an open question.
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1.2 Jets of Young Stellar Objects and angu-

lar momentum extraction

1.2.1 Angular momentum in Young Stellar Objects

An important issue arises in the theory of star formation, theory on which
we gave a brief outlook in the previous section, which consist of the fact
that, if a large mass of gas undergoes a gravitational collapse to form a
compact pre-stellar source, and if nothing takes away the angular momen-
tum of the collapsing core, then it should speed-up its rotation. How it
comes that centrifugal forces do not tear apart the forming star during the
core collapse? A ‘break-up speed,’ defined as the rotation velocity at which
the centrifugal force equals the binding gravitational force, causing the ro-
tating body to disintegrate, should be reached if nothing takes away the
angular momentum. The observationnal evidence shows that, first, stars
do form, and second, that the TTS rotate at only 10% of their break-up
speed. (Bouvier, 1990, Edwards, 1993, Vogel & Kuhi, 1981)

This ‘angular momentum puzzle’ is still an open issue in theory of star
formation. It is well established that bodies in different stages of their evo-
lution have different angular momenta. This quantity is indeed measured
in observations. As discussed in Belloche (2013), the specific angular mo-

mentum J/M for dense cores in molecular clouds is J/M = 10*'~%2 ¢cm?s

-1
(Goodman, 1993), a pre-main sequence star has J/M = 107! cm2s™!
(Mathieu, 2004), and the Sun has a J/M = 10®cm?s™" (Pinto ctal.,
2011). This brings out the question to quantify, as much as possible, ob-
servationnaly and theoretically, the mechanisms responsible for this loss of

angular momentum during star formation.

An explanation for angular momentum removal from acreted matter in
in young stars and dispersal of infalling circumstellar envelops comes from
observations and theoretical models of jets of young stellar objects. Another
hypothesis we are not going to explore in this work is involving the magneto-

rotationnal instability (MRI) of Balbus& Hawley (1991). The involved
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explanation is that the angular momentum is extracted by redistributing

it to particles at large disk radii.

1.2.2 From Herbig-Haro objects to jets.

Jets were discovered indirectly, by Herbig (1950) and Haro (1950), who
observed extended diffuse objects, associated with T Tauri stars, and com-
ing in pairs, named subsequently Herbig-Haro (HH) objects, and nowadays
commonly observed in star-forming regions. It was found, in the early
1980s, that these objects are parts of highly collimated bipolar jets of Young
Stellar Objects (Dopita, Evans, & Schwartz, 1982, and later confirmed by
Graham & Elias, 1983, Mundt & Fried, 1983, Reipurth et al., 1986) and is
now a well established fact (Eisloffel, 2000, Ray, 1998, Reipurth & Bally,
2001). As collimated supersonic outflows, jets are likely to carry the angu-
lar momentum needed to be removed from the collapsing young star, and to
test this hypothesis a great number of observations and theoretical models
have been elaborated. Nowadays, jets are observed on a broad range of
wavelenghts, from X-ray to radio (Arce et al., 2006) and on a broad range
of low-mass YSOs at all evolutionnary stages. (Cabrit, 2007) Exception are
the sources earlier than B0, who do not exhibit well collimated outflows.
(Arce et al., 2006)

1.2.3 Propagation scale kinematic properties

Well collimated jets are spectacular cosmic phenomena, spreading on large
distances and moving at supersonic speeds, thus creating shocks in the
interstellar medium. Jets extend on typical linear scales of 0.1 — 1pc and

their typical outflow velocities of 10 — 300 km s™*

. From the previous, we
can deduce propagation timescales for jets, tqy, = 10* — 10%yr. Observed
timescales of jets fall indeed in this range: Arce et al. (2006) point out that

the dynamical timescale of HH211 is 10%yr, and Takahashi& Ho (2012)
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report that the dynamical timescale of the jet of the protostellar core MMS-
6/0OMC-3 is 10%yr, making it the youngest observed molecular outflow

known to date.

Another quantities, used for comparaison between different observations

1

and models, are the momentum rates, typically ~ 107° Mykm s~ yr!, and

the mass loss rates, ~ 1077 M, yr~!, but could be as high as 1078 M yr.
(Arce et al., 2006, Bontemps et al., 1996) For example, from observations
in forbidden emission lines, Bacciotti et al. (2000) deduce a mass loss rate

for DG Tau of Mje, = 2.4 x 1077 Mg yr~".

For Class I objects, measures in optical wavelenghts traced jets out to
0.05pc (10*AU) to the source. The innermost parts of jets oberved in such
detail are traced in the near-IR, as well as in [Fell] lines and Hy, but no
further than 1000AU. (Cabrit, 2007)

Class IT objects provide the strongest constraints, because when we observe
such objects, we are looking mostly at the central driving source at the
outflow, without an absorbing envelop. “Micro-jets” appear in such objects.
They have a typical M of 1078 M, yr~!. (Cabrit, 2007)

It is established, from radio observations, that outflows have an onion-
like kinematic structure. In the interior we have a high-velocity, highly
collimated atomic jet, encompassed by a wide, slow, ovoid Hj cavity. (Agra-
Amboage, 2009, Bacciotti et al., 2000, Beck et al., 2008) It is, however,
the inner streamlines who dominate the emission. (Dougados et al., 2004)
and play a dominant role in the mass an angular momentum transport.
(Coftey, Bacciotti, & Podio , 2008) The high-velocity beam of the DG Tau
U

jet is moving at a velocity of 200km s~
100km s™! (Agra-Amboage et al., 2011)

, and the low velocity beam at

The properties of jets on different scales, i.e. coming from stars with dif-
ferent masses, are strikingly similar. The jets, appearing on massive YSOs
(with luminosities ~ 4L) appear to be scaled-up versions of ~ 1L, jets.

(Cabrit, 2007) There are similarities not only between jets from YSOs of
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different masses, but also between jets from YSOs on different evolution-
nary stages. They have similar properties, with the jet kinematic struc-
ture probably determined in early evolutionary stages. (Nisini, 2009, Pe-
senti etal., 2003) This obviously enables a general theoretical approach on

the problem of describing the dynamics of jets.

We will not focus in this brief outlook on the possible precessions of jets.
Jets propagate along the axis of symmetry of the accretion disk, and their
angles of precession do not exceed 5° on 10yr timescale. (Cabrit, 2007)
Numerical simulations of precessing jets are carried out by Cerqueira & de
Gouveia Dal Pino (2004).

1.2.4 Accretion-ejection correlation

Jets of Young Stellar Objects are commonly observed in our galaxy. Around
400 are catalogued by different authors (Hatchell, Fuller, & Richer, 2007,
Wu, Huang, & He, 1996, Wuetal., 2004). It is well established that out-
flows and specifically jets are related to accretion disks (Cabrit et al. , 1990,
Hartigan, Edwards, & Ghandour, 1995). An indication for this is the fact
that they are observed in star-forming regions, and that high-resolution
images of disks in several jets sources have been obtained with the HST
and instruments with adaptive optics. (McCaughrean et al., 2000, and ref-
erences therein) The direct link between accretion and ejection, in sources
not necessarily accessible by direct imaging, comes from the observation of
the correlation between the bolometric luminosity, in which the accretion
luminosity has a major part, and the outflow rates, force and mechanical

luminosity. (Cabrit & Bertout,, 1992) This correlation can also be explicited

.M
as what part of the accreted mass is taken away by the jet. f = 3 — 0.1

is inferred in both Class 0 and I low-L objects. (Bontemps et al. ' af§96) In
the case of DG Tau, Coffey, Bacciotti, & Podio (2008) report f = 0.07, and
for different YSOs in their sample, f = 0.01 — 0.07. To summarize, var-

ious strong apparent correlations between the observational signatures of
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accretion and the observationnal signatures of outflows have been observed

during the years. (Cabrit & André, 1991, Cabrit et al., 1990)

Another way in which accretion correlates with ejection is the fact that as
accretion rates decrease as the young star evolves, so does outflow activity.
For instance, Class 0 exhibit powerful ejections of matter and all of them
have well collimated jets. The picture is however different at later evolu-
tionnary stages. The correlation between the two phenomena is also statis-
tically quantified. A survey of optical and molecular sources in the Taurus-
Auriga molecular cloud complex, carried out by Gomez, Whitney, & Kenyon
(1997), shows that jets are present in all Class 0 sources, in 60% of Class
I sources, and only 10% of Class II sources. Gomez, Whitney, & Kenyon
(1997) didn’t find any jets in Class III objects.

According to Cabrit (2009), the thurst for this mass low may require a net
energy deposit of 0.3L,.., but due to losses related to dissipation and waves

divergence, much more needs to be injected at the base of the wind.

1.2.5 Dynamics of the collimation

The opening angle of a ballistic hydrodynamic flow is tan Q = %, which cor-
responds, for a temperature of 10*K and typical jet velocities (if 300kms~!
to an full opening angle 6 ~ 4°, which is comparable to observations.
(Cabrit, 2007, Ferreira, 2009) For example, Perrin & Graham (2007) report
an opening angle of 9°, for average radial outflow velocity of 100 kms™!,
again consistent for a ballistic hydrodynamic flow with temperature of 10K

(cs =9.1kms™).

The collimation and ejection speeds vary not only with age, but also with
the masses of the outflows. We indeed expect that there should be a dif-
ference between fully convective T Tauri stars and more massive stars with
fully radiative interiors. The magnetic fields, driving the outflows, are much
smaller in the case of massive YSOs, and as Shepherd etal. (1998) report,

jets from high-mass YSOs are much less collimated with opening angles
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of 30° — 60°. An order-of-magnitude difference in the collimation factors
(defined as the ratio between the width of the outflow to the distance to the
driving source) is reported by Beuther et al. (2002), who give collimation
factors of 1-2 for high mass outflows, while low mass sources have outflows

with collimation factors of up to 10.

Molecular outflows observations, both from low- and high-mass YSO, mostly
CO tracing molecular hydrogen, show that there is a mass-velocity relation,
which could also be used to compare different observations and is relevant
to radiative jets simulations. Explicitly written this relation is a power law:
dd—j\f ox v~ 7 with v from 1 to 3, but up to 10 in some cases, with the steeper
slopes at high velocities. This slope steepens with the mass and the energy

of the flow. (Arce et al., 2006, and references therein)

1.2.6 The jet launching zone
1.2.6.1 Jet launching mechanism

The disk launching mechanism is unclear, but there is a consensus on the
fact that magnetic forces are at the base of the ejection mechanism, together
with thermal and centrifugal forces of the star-disk system. (Arce et al.,
2006, Ferreira, Dougados, & Cabrit , 2006, Konigl & Pudritz , 2000, Shu et al. ,
2000)

The canonical model of Blandford & Payne (1982) introduces the idea of
a magneto-centrifugically driven disk wind. It consists of considering a
disk, with magnetic fieldlines, which could be seen as ‘wires,” rooted in
the disk. Because of the rotation of the whole star-disk system, particles,
seen as ‘beads’, are constrained to move along the almost vertical (but
inclined) magnetic fieldlines, and are ejected by the disk. This ‘bead-on-
a-wire’ analogy is a popular way to explain the launching mechanism of
disk winds. This mechanism has its General-Relativistic generalizations,

aiming to explain activity of active galatic nuclei. A plethora of papers,
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discussing or developping this model are published since then, e.g.: Con-
topoulos & Lovelace (1994), Ferreira (1997), Salmeron, Konigl & Wardle
(2011), Tzeferacos et al. (2009).

Another models, as Sauty & Tsinganos (1994), discuss, among other mod-
els, thermally driven collimated stellar winds. As discussed in §3.5, the
heating needed for the thermal drive could come either from dissipation of
Alfvén waves, produced in the convection zone, could be changed by radia-
tive transfer, or as Matt & Pudritz (2005) suggest, could be deposited by

accretion.

However, the complex morphology of the observed outflows could not be
explained solely by stellar winds or disk winds. As Lee et al. (2000, 2001,
2002) point out, there is evidence that there is a superposition of two
components: a stellar jet and a disk wind. In the optical, the forbidden
emission lines profiles of T'T'S show two velocity components: high-velocity,

identified as a stellar jet and low-velocity, identified as a disk-wind.

Finally, a third class of models consider possible periodic ejections, due to
the interaction of the magnetosphere of an YSO with the unmagnetized
accretion disk. This could be either the X-wind of Shu et al. (1988), (Cai,
2009), the similar ‘ReX’, for ‘Reconnection X-wind’ of Ferreira, Pelletier, & Appl
(2000) or the magnetospheric ejections, described by Zanni (2009).

The need of MHD in order to adequatly describe jet launching and colli-
mation is also well-established. We will remind the basic arguments for the
need of MHD for the study of collimated outflows, and for a more detailed
discussion the reader is referred to lectures by Cabrit (2007) and Tsinganos
(2007).

One obsolete hypothesis on the collimation of outflows is that an isotropic
stellar wind is confined by an a-disk thermal pressure. Barral & Canto
(1981) show that even if this mechanism can produce collimated outflows in
the equatorial plane, where the accretion disk is present, the opening angle
of the emerging flow above the accretion disk will be far too large for the

flow to be considered as a jet. Then, this argument could be extended, and
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the existence of an external pressure agent, above the a-disk, collimating
the flow, could be speculated. This could be either a thermal pressure
of the ambient medium or external magnetic pressure. Both mechanisms
require by far too large thermal energy density, or far too large magnetic

fields, failing to match the observations.

The self-collimation of jets, 7.e. the collimation of the outflow by the YSO’s
own magnetic field, appear to be the process requiring physically plausible
values for the magnetic field. In the case of equipartition of energy at
the flow base, the magnetic fields needed to achieve self-collimation are
of the order of ~ 200mG, orders of magnitude smaller than an external
collimating magnetic field. A magnetic field, producing collimation, could
be nearly isotropic near the stellar surface. In the regime of low plasma
3, the material coming out of the star will travel along magnetic fieldlines
(the inertia of the fluid will not be sufficient to deform the fieldlines and the
magnetic field will keep its near-to-vacuum configuration), until it reaches
the Alfvén surface, where poloidal velocity equals the Alfvén speed. Beyond
the Alfvén surface, the kinetic fluid energy starts to dominate the magnetic
energy density. As a result, the inertia of the fluid deforms the shape of the
magnetic field lines. A strong B, is generated, and strong hoop stresses as
a result, exerting a confining force towards the axis, collimate the magnetic
flux surfaces. However, as Mestel (2012) points out, it is not correct to
think as the magnetic hoop stresses collimating alone the flow, actually the
flow is collimated by the joint action of magnetic hoop stresses and material
stresses. The particularity of the self-collimation we just described is that
this process, as we mentionned, needs orders of magnitude smaller magnetic
field. This is because B, collimates the outflow, and not external magnetic
pressure in the poloidal plane. (Arce et al., 2006, Cabrit, 2007, Ferreira,
2007, Tsinganos, 2007)

To measure the magnetic field, Zeeman splitting measures are commonly
used. (Hartigan, 2009) Magnetic fields tend to remain helical at jet propa-
gation scales, as reported by Chrysostomou, Lucas, & Hough (2007) for the
case of HH 135-136.
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1.2.6.2 Extent of the jet launching zone

Different sizes of the jet-lauching zone put constraints on different out-
flow scenarii. For instance, different sizes of the jet launching zone could
rule out different disk wind scenarii. (Ferreira, Dougados, & Cabrit, 2006)
The size of this zone could be deduced by two ways. By measuring jet
expansion with respect to distance from the central source, and then ex-
trapolating back from the resolved area back to the central source, Harti-
gan, Edwards, & Pierson (2004) found that the jet of HN Tau originate in

less than 5.5 AU from the source.

The second way of determining the extent of the zone is to deduce it from
rotation. As derived by Pelletier & Pudritz (1992), there is a direct link
between the accretion and mass loss rates/total angular momentum and
the ratio of the magnetic lever arm to the footprint radius of the wind,
Mj“ = (-@)2. If the velocity gradients across the axis, observed by Bac-
Myee wo

ciotti et al. (2000) are indeed interpreted as rotation (see §1.2.8 for discus-

sion), Anderson et al. (2003) deduce wy < 3AU for the external part of
the collimated jet of DG Tau.

1.2.7 Future observations of the jet-launching zone

The main difficulty on the observation of the jet lauching zone comes from
the fact that central sources are often heavily embedded, hence we do not
have a clear line of sight to the base of the jet. Besides this fact, the
angular resolution needed to observe the jet launching is very high. At its
most suitable working configuration, at wavelenght A = 7mm and at the
most extended antenna configuration, the synthesized beam of the VLA
observatory (equivalent of point spread function for radio observations) is
40 miliarcseconds, which corresponds, if we look at the Taurus-Auriga or
Ophiucus molecular cloud complexes (d ~ 140pc), to the size of the orbit
of Jupiter (= 5AU) (Wilner & Lay, 2000). The HST/adaptive optics seeing

corresponds to a linear size of 125AU in the Taurus-Auriga complex.
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As we discussed in §1.2.6, the jets are launched at smaller scales, thus with
the advent of the ALMA telescope, with its maximal resolution of 5 miliarc-
seconds, hence ~ 0.7AU at the Taurus-Auriga distance, (Belloche, 2013)
these regions will be resolved. Moreover, as Beuther ¢t al. (2002) point out,
high-angular resolution observations are needed in order to disentangle the
outflow contribution in the overall emission of the observed object from the

emission of the central source.

1.2.8 Observations of rotation

In order to constrain better the jet-launching mechanism, more detailed and
high-resolution observations of jet rotation near the central driving source,
are still needed. Rotation at propagation scales (2x103—10*AU) is observed
by Davis et al. (2000), but this does not put much constraint on the jet
rotation, because the velocity field is ‘contaminated’ by strong interaction
with the environment. It still provides some valuable information on jet
physics. Rotation of outflows is also reported in high-mass YSOs, Herbig
Ae/Be stars, as reported by Klaassen etal. (2013), who detect a rotating
disk wind in the Herbig Ae star HD 163296.

Doppler-shift spectral observations of rotation in low-mass YSO jets need,
first, high spectral resolution, and second, should disentangle effects, due
to rotation, from other systemics, relative orbital motion, effects, induced
on the spectrum by physical processes such as magnetospheric accretion

(Edwards, 1997), among others.

In the early 2000s, Bacciotti et al. (2002) reported for a first time detection,
with the STIS instrument of the HST, of velocity gradient across the jet
axis in the first 110AU from the central driving source. Later, those findings
where confirmed by Coffey et al. (2004). If this gradient is effectively caused
by jet rotation, it results in toroidal velocities of DG Tau fall in the range
6 — 15kms™!, which results in angular momenta by far too large to be
considered are produced by X-winds. Moreover, Coffey ¢t al. (2004) show

that some of the jets, like the jet of RW Aur, are counter-rotating with



Chapter 1. Introduction 44

respect to their accretion disks. Cai (2008) argue that this questions the
interpretation of this velocity gradient as true rotation. On the theoretical
side, Sauty et al. (2012) argue that counter-rotation of jets is possible in
MHD. Moreover, this flip of toroidal velocity, they argue, might be due
to post-ejection shocks, as proposed by Fendt (2011). Soker (2005) claim
that the Bacciotti et al. (2002) and Coffey et al. (2004) papers do not detect
rotation, but that the observed velocity gradient is due to the interaction
of the jet with the surrounding gas. With the advent of high-resolution
instruments as ALMA, we should be able to firmly verify or reject claims
for jet rotation. (Belloche, 2013)
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Chapter Abstract

The goal of this chapter is to list the fundamental equations of Magneto-
hydrodynamics, which is the mathematical framework within which jets of
Young Stellar Objects are studied. As it is well known, proving the ex-
istence of globally-regular, exact solutions of the Navier-Stokes equations,
even without introducing electromagnetic fields, is a formidable, unsolved
problem in Mathematics. However, in some simple cases, when symme-
try considerations and approximations simplify the problem, analytical, or
semi-analytical solutions exist. In this work, we give a brief presentation
of the approaches, used in order to address the problem of studying jets
of YSOs, which consists in making the corresponding hypothesis and ap-
proximations in resolving the set of equations of ideal MHD. By this we
mean that we will remind which conserved quantities exist in the case of
stationary, axisymmetric outflows, and then we will discuss the self-similar
hypothesis, allowing, by physically plausible symmetry considerations, to
reduce the set of partial differential equations of MHD to a set of ordinary
differental equations. Finally, we will discuss a self-similar ansétz, used in
order to obtain, by a proper integration of the differential equation resulting
from the self-similar hypothesis, the values of the relevant physical quan-
tities density, pressure, magnetic and velocity fields. Meanwhile, we also
discuss the velocities at which waves propagate in a MHD system. This is
useful, for instance, if we want to know if a given point within the system

under consideration is influenced by a given boundary condition.

2.1 On the ideal MHD approach for jets of
YSOs

As we discussed in the previous chapter, magnetic fields are supposed to
play a dominant role in the evolution of Young Stellar Objects. Hence,
in order to correctly describe the evolution of matter around an YSO, we

need to study the coupling of matter with the magnetic field. In this work,
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we will operate in the framework of ideal MHD, which means that we are
studying the flow of an perfectly condicting, highly collisionnal inviscid
fluid, with negligible viscosity, and on scales much bigger than the typical
scales involved in the problem. In the case of low densities, the strong
coupling of the magnetic field to matter ensure the validity of the MHD
approximation. Moreover, in MHD we operate with the important basic
parameters such as the temperature T, pressure P, density p, magnetic
field B and velocity field V, which are quantities that could be deduced by
observations of jets of YSOs. We will indeed make a concise verification
that we could operate in the framework of ideal MHD, which concretely
means that we will check that the typical lengths for the systems we are
studying (jets of YSOs) are much larger (a) than the collisional mean free
path of the particles, which in its turn is much larger than (b) the Debye
length. We will verify that (c) the mean collision interval is much longer
than the ion gyration time and the electron gyration time, and finally (d)
we will remind the values of electrical, thermal conductivity and viscosity
in such astrophysical plasmas. The discussion that follows will be similar
to those in Fendt, Camenzind, & Appl (1995), Mestel (2012), Tsinganos
(2007).

(a) In the case of Coulomb scattering by electrons by ions, we have for the

value of the mean free path:

4k%T? T>

Koy B2 —eB e 2l 3 YR 2.1
9r Z2net D Z2n;’ (2.1)

hence a mean collision interval of

Aei
Tei = - 2.2
(vth,)e ( )
. kT .

With (vp)e = e the thermal velocity of the electrons, kp the

Boltzmann’s constant and e the charge of the electron. In the case of

a hot, pure hydrogen (Z=1), tenious plasma, like the matter in the
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solar corona, we have T' ~ 10K and n ~ 10%¢m ™3, which results in:
Aei = 5 x 10%cm = 5000km (2.3)

which is much less than the tenth of the astronomical unit (0.1AU =

1.496 x 107km);

(b) For the validity of the plasma approximation, we also need that enough
electrons are contained within the Debye sphere, i.e. that a given elec-
tron influences not only its closest neighbour, but also a statistically
significant number of charged particles. The Debye length, which is
the radius of the Debye sphere, is the distance over which the in-
fluence of a given charge is screened, i.e. we have effective ‘charge

separation.” This length is given by:

_ [ksT

/T
AD = 47771662 ~ 69 ’n_e‘ (24)

For the same parameters as we used to compute the other lengths,

this yeilds Ap of the order of a ¢cm, much smaller than the mean free
path of Coulomb scattering.

(c) In the simplest approach, the gyrofrequency of a single particle of
ZeB

mqC

charge Ze and mass m, in a uniform magnetic field B is w, =

We have, for ions (with mass Am,) and electrons, respectively:

2_7r_ _ZeB yA

. = 10*~B 2.5
T - Mipt A (2:5)
2 B
o= =2x10"B (2.6)
T MeC

This has to be compared to the mean collision time, which expression

is given in (a):
Tei T%
# s 175B— 51, (2.7)
Te n

if we take the same parameters as above and a magnetic field B ~
1kG. Therefore the Larmor radius r;, < A.;.
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(d) As Tsinganos (2007) reminds, the thermal conductivity is very high

1

X ~ 6 x 108gcm™!s™!, the electrical conductivity is comparable to

that of excellent conductors like copper (wg, = 10%s71), and the

viscosity (1 = 0.1gecm™'s™!) negligible.

In conclusion, with this arguments together, we can argue that the ideal
MHD approximation is a good approximation for the description of the

overall behaviour of stellar outflows.

2.2 Conservation of mass, momentum, en-

ergy and the induction equation

The set of equations of ideal MHD consists of 8 equations, which is required
to obtain a solution giving the 8 MHD quantities, namely density, velocity,
magnetic field, and pressure, which in usual notation are written p, V, B ,

and P, respectively. Those equations are:

ap ,
— - (pV) = 2.8
5 TV (PV)=0 (2.8)

oV 11 1
— V-VV+-— v VP = — 9
at+( ) +p47rBX( xB)+p P Vo (2.9)

oP

Tdt_ij.vp+1“pv.V:H—A (2.10)
g_vx(va):o (2.11)

where H — A is the energy equation source term, representing the volumet-
ric energy gain/loss terms, ® is the gravitational potential of the central
object (& = —GM/r), where M is the mass of the central object, and the
gravitational constant G = 6.67259 x 10~8cm3g='s=2. Units are usually

expressed in CGS system.

The first equation is the mass conservation equation, relying the time

derivative of density with the spatial derivative of the linear momentum.
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The second equation is the momentum equation, relying time derivative of
momentum with the energy flux. The third equation is the energy con-
servation, on which RHS we have the heating/cooling term. Finally, the
last equation in this set is the induction equation, governing the coupling
between the velocity and the magnetic field. This form appears to be useful
for writing down the discretisation of these equations, in order to attempt
a numerical resolution of the set of equations. For more details on this last
point, the reader is referred to Mignone etal. (2007), where is presented
the PLUTO code that we will be using in this work to carry out numerical

simulations.

2.3 Magnetohydrodynamic waves

If we want to study how a particular point in the interior of our MHD
system is affected by another point, or a boundary, we should know if the
information had time the to travel between the two regions in question. In
order to know this, we should know at which velocity a perturbation will
travel across the system. In a pure hydrodynamical system, perturbations

travel at the sound speed:

€ = {f = (2.12)

The picture is a bit more complicated in magnetized fluids. In order to
find modes of propagation of waves in MHD systems (called Magnetosonic
modes), we should look for plane-wave solutions of Egs. (2.8-2.11), i.e. so-
lutions o e!*T=# here k is the wave vector; r the position vector and
w the wave frequency. A detailed derivations of eigenequations of these
modes in given in most MHD textbooks (e.g., Blandford & Thorne, 2012),
so we will directly remind the dispersion relations for the different modes.

A characteristic speed in MHD systems is the Alfvén speed:
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B

Vg =

(2.13)

E

which is the speed of magnetosonic waves, propagating along the magnetic

fieldlines. The full dispersions relations for the magnetosonic modes are:

w

w=Fv, - ki = +v, cos © (2.14)

and

1
w\2 1,, 4c*vicos’ O 2 "

Note that © is the angle between the wave vector k and the unperturbed
magnetic field B, and should not be confused with 6, which is the polar

angle in the spherical coordinate system.

One magnetosonic mode, described by Eq. (2.13) is the Alfvén mode, called
also Intermediate mode. As it can be seen in Eq. (2.13), this mode does not
propagate in directions perpendicular to the magnetic field. In the limiting
case of a wave propagating purely in the direction of B, longitudinal oscil-
lations of the perturbation propagate with the Alfvén speed. The magnetic
field tension (B?/27) acts as a restoring force. This mode does not induce

any pressure or density fluctuations.

The dispersion relations of the two other magnetosonic modes are given
in Eq.(2.15). The mode with the minus sign in Eq. (2.15) is called the
slow magnetosonic mode and the one with the plus sign: fast magnetosonic
mode. Those modes induce a combination of magnetic pressure, magnetic
tension and gas pressure fluctuations. As it can be seen from Eq. (2.15),
the fast magnetosonic wave is fastest when the perturbation is propagating
in direction perpendicular to the magnetic fieldlines. In this case, the fast

mode can be seen as analogous to transverse sound waves, which propagate

2
in gas to which usual pressure P is added the magnetic pressure (§>
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Alfvén mode
Fast magnetosonic mode
Slow magnetosonic mode

FIGURE 2.1: Magnetosonic waves phase velocity (see Egs. 2.13 and

2.15) polar plot (Friedrich diagram). The direction of the magnetic field

B and the wave vector k, as well the angle between them, © are also
plotted. In this sample plot, ¢ = v4/2 and v, = 1.

The three magnetosonic modes are plotted on Fig. 2.1. What will be rel-

evant to discussions in subsequent chapters is the fact that the fast mag-

netosonic waves are the fastest waves. Moreover, this mode is the only

mode that can propagate information in directions, perpendicular to the

magnetic fieldlines. Hence, the maximal speed at which information can

propagate in MHD systems along the flow/magnetic fieldlines is the fast

magnetosonic speed plus the bulk velocity of the flow, and simply the fast

magnetosonic speed for information propagating in direction perpendicular

to the flow/magnetic fieldlines. What we will note is that there is no way

for information to propagate upstream if the flow is superfast (i.e. which

bulk velocity is greater than the local fast speed.)
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2.4 Conserved quantities for steady-state and

axisymmetric solutions

After the very general discussions we had in the two previous sections, we
remind that we are interested in the theoretical modelling of jets. Before
discussing any particular model, we will point out that in ideal MHD, un-
der quite general assumptions, which are stationarity and axisymmetry,
Tsinganos (1981) shows that several quantities are conserved along field-
lines. A direct consequence of the ‘flux freezing’ of ideal MHD is the fact
that the magnetic flux is conserved along a fieldline. This conserved quan-

tity, which is the mass-to-magnetic flux ratio, is noted W 4:

drpV
Ua(a) = —LVp (2.16)
BD
Hence, for a given line we have a given value of ¥ 4, which could be used to
label the fieldline. The two other conserved quantities are the field angular

velocity

1 U, B,
Q =— |V, — 2.17
@)= 5 (%-22), .17

and the total specific angular momentum

4n B,
Bid— e (vd, _ 4) (2.18)
Uy
The combination of Egs. (2.16) and (2.17) gives the velocity field:
V=y (a)E + wa)d (2.19)
= XA 471'/) w ) >

which expression is a generalisation of the Ferrarolaw (1937).

Thus, next to the origin, the second term in the expression will be negligible

compared to the first term: the field will be practically radial. On long
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TABLE 2.1: Coordinate variables description

T Spherical distance from the origin
0 Polar angle; 8§ = 0 at the axis
Pu At (r.,0 = 0) the Alfvén surface crosses the axis
=l Dimensionless distance
Ry =0.108 One stellar radius

R, =1 The Alfvén radius. R, = 9.29R,
w Dimensioneless cylindrical distance; w = (r/R,) sin(6)
z Cylindrical height

(w, 2) The poloidal plane

distances, the second term will dominate the first one: the field will be
practically toroidal and will encompass the flow. Equivalently, this could

be seen as magnetic stress hoop and material stress collimating the flow.

The study of those quantities will be of physical importance. Verifying
that these quantities are conserved along fieldlines will ensure that the
steady state is reached. The interplay of those quantities will enable us to
quantify the angular momentum extraction process. The quantity 7, which

expression is:

_ wBy

. 2
o~ V0w (2.20)

T

is the constant rate of transport of angular momentum across a unit flux
tube (Mestel, 2012).

2.5 The self-similar model

Sauty, Tsinganos, Trussoni et alii study models of non-relativistic flows

from young stellar objects in a series of papers (Tsinganos & Sauty (1992a),
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Tsinganos & Sauty (1992b), Sauty & Tsinganos (1994), Trussoni et al. (1997),
Sauty et al. (1999, 2002, 2004a,b), Sauty et al. (2011)), on which this work
heavily relies. In particular, the solution we are going to study in the next
chapter, and modify in susequent chapters, is first presented in Sauty et al.
(2011).

The self-similar approach consists of supposing that there exist a solution
of separable coordinates of the ideal MHD equations (Eqgs. 2.8-2.11 in this
text), which are already simplified by the assumptions of stationarity and
axisymmetry. If we suppose that the magnetic flux varies with colatitude
as a dipolar field, i.e. ~ sin?(6), where 6 is the polar angle (the notations
we adopt for the various coordinates are described in Table 2.1), and some
a priori unknown radial function G(R), we could write it in the separable

form:

& = — gin’(0), (2.21)
This function G(R) is related (a) to the expansion factor F' = F(R), which
definition we will give, and (b) to the magnetic lever arm for the given

fieldline, which expression we are also going to give now:

(a) The function F(R) is the ‘expansion factor’ of a given fieldline:

IR (2.22)

InG
F:F(R)=2(1 Ly )
For constant F(R) = 2, i.e. G(R) = const., we have purely cylin-
drical fieldlines (all perpendicular to the equator) and F(R) =0, i.e.
G(R) o R corresponds to a purely radial wind solution. Hence, F(R)

and G(R) have geometrical meaning.

(b) If we introduce the magnetic lever arm w, for the given fieldline, we

have

Wy = e (223)
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which allows us to discuss the physical meaning of the involved quan-
tities. G(R), which is the ratio of the cylindrical distance to the
magnetic lever arm:

G(R) = —. (2.24)

The functions F(R) and G(R) are a priori unknown functions and will
be determined once the equations are integrated. Rewriting the ODE,
resulting from the separation of variables, in terms of these functions, makes
it easier to integrate. They are usually called ‘key functions’ Another key
function, which will allow us to compute density, once the equations are
integrated, is the Alfvénic Mach number, i.e. the ratio of the poloidal

velocity to the local Alfvén velocity:

Vi

M=—"—.
By/v/Amp

(2.25)
By rewriting Eq. (2.25) for p, and by making self-consistent hypothesis
for the form of V,, and B,, Sauty & Tsinganos (1994) write density in the

following form:

1

In this equation, as intuitively could be understood by mass conservation
reasoning, density is inversely proportionnal to the square of the Alfvén
Mach number. The term in the parentheses is function of a only, hence
it describes how the density varies from one fieldline to another. This
variation is more or less pronounced if the constant free parameter ¢ is
bigger or smaller. For § = 0 we have a density function depending only
on R. For bigger § we have bigger deviations from spherical symmetry.
As we noted, M?(R) is a priori unknown function, it will be inserted in
the equations, which will be solved for M(R) and the other key functions.

In a similar way, a full ansétz, describing the other quantities, could be
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constructed. We are not going to discuss this in detail, the interested reader
is referred to Sauty & Tsinganos (1994). In terms of the key functions, the

three components of velocity have the following expressions:

2 y
VT:V*_M_ cosf

— = 2.27
G? /1 + da ( )

F M? sinf

TR ; gadliicnlb il
¢ 2 G2 1+ da

(2.28)

VA G? — M? Rsinf

Vi =
*T G2 1-M? 1+ oa

(2.29)

A key function, not introduced to this moment, is the dimensionless ra-
dial pressure distribution II(R), participating in the expression for the gas

pressure:

P = P,(II(1 + ka) + IIy), (2.30)

where the dimensionmess parameter x describes the departure from spher-
ical symmetry for the pressure P. Finally, the expressions of the three

components of the magnetic field are:

B,
B, = G2 ¢0s 9, (2.31)
F1 .
By= —B*gasm 6,and (2.32)
= 2
B, = AL=G pding (2.33)

S Tr*G21 - M2
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2.6 Free parameters and normalized quanti-

ties

The constants p, and V, correspond to the characteristic values of the cor-

1
responding quantities on the Alfvén radius; P, = 5 p.VZ and B2 = 4mp, V2.

In Eq. (2.26) we define the constant free parameter d; « is defined in Eq.
(2.30); X in Eq. (2.29), and describes the rotation of the flow. The last free
parameter of the self-similar model is v, not defined in Egs.( 2.26-2.33),

and its expression is:

s 2GM
= (2.34)

where G is the gravitational constant and M is the mass of the central
object and F, is an arbitrary constant. In this framework, § and k are
deviations from spherical symmetry for the density and pressure, respec-
tively; A is the strength of the magnetic torque at the Alfvén radius R,

and v is the strength of the gravitational potential.

The approach is called semi-analytical, because once the ODEs, represent-
ing the force balance on a fieldline, are rewritten in terms of the key func-
tions, the solution is not given in terms of known analytical functions, but is
determined numerically, which is done in Sauty ¢t al. (2011). A propagation

scale plot of this solution could be seen on Fig. 3.1.

The ODE in question, describing the force balance along a given fieldline
is called the transfield equation, studied for a first time by Grad & Rubin
(1958) and Shafranov (1966), hence also named Grad-Shafranov equation.
In a nutshell, the physical meaning of this is that we have the same physics
on all fieldlines. Once we resolve the transfield equation for one fieldline,
we can apply a scaled-up version of the solution on any other fieldline,
following the ‘recipe’ which is Eq. (2.21). This is why the approach is

called ‘self-similar.
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Chapter Abstract

The goal of this chapter is to study the solution, derived in Sauty et al.
(2011), in particular to determine whether it is structurally stable or not.
First, in this chapter, we make use for a first time of the PLUTO code,
which is a numerical code for modelling of 2.5 dimensions time-dependant
MHD systems. Using a 2.5D approach means that the time evolution/fluxes
in the MHD simulation box are computed in 2D, and the third component
is deduced from conservation arguments. In this chapter, we implement
the solution of Sauty et al. (2011), and set it up as an initial condition in
our MHD simulation box. We find that this solution is topologically stable
and that, globally, the eight MHD quantities keep their initial distributions.
Finally we plot several quantities of physical interest and discuss the results

of the simulation.

3.1 A solution with a particular set of pa-

rameters

Sauty et al. (2011) obtain a particular solution for a jet-like outflow. The
interest of this solution is that it is modelling ¢TTS with low mass accretion
rates. Those stars exhibits ‘micro-jets’, which means that the outflow is not
emanating from the disk or is weakly connected. As a consequence, they
have much lower mass loss rates. Those observed by Agra-Amboage et al.
(2009), Gémez de Castro & Verdugo (2001), St-Onge & Bastien (2008)
have typical M ~ 10~°Mgyr~!). The solution, obtained by Sauty et al.
(2011), which stability we are testing here, fits particularly well the case of

the micro-jet of RY Tau.

From now on, we will call this solution “Cylindrical analytical stellar out-
flow” - CASO and the numerical setup we will use, except if the contrary is

specified, will correspond to this particular set of parameters. An outlook
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Density at large scales

0.01

20

40

30

20

Disk wind

Stellar wind
Last connected line

FIGURE 3.1: On the top panel, density in the poloidal plane normalized
to the density at the Alfvén radius for the solution in Sauty et al. (2011),
which set of free parameters is given in Table 3.1; On the bottom panel,
lines of equal poloidal velocity (grey lines, numbers show the velocity
on the corresponding line, normalized to the Alfvén speed). Two kinds
of fieldlines are visible on this plots.First, fieldlines anchored to the star
(for the stellar wind) and second, fieldlines anchored to the disk. Those
are “disk-wind”-like outflow. Distances are normalized to the Alfvén
radius.
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TABLE 3.1: Numerical values of the free parameters of Sauty et al.
(2011), corresponding to the ansétz in § 2.5.

) K A v
0.0778 0.021 0.775 1.5

of this solution at large (propagation) scales can be found on Figure 3.1.
The first goal of this work is to study the stability of this particular solution
on small scales, i.e. at several stellar radii, where the jet collimation and

initial acceleration take place.

The particular set of free parameters used in Sauty et al. (2011) and Globus

(2011) are shown in Table 3.1.

This particular CASO solution is adapted to study the stellar wind: that
component of the jet which is ejected by the star itself; and the mechanism
by which the star accelerates matter along the fieldlines is thermally driven
pressure gradient. This only corresponds to a star with low mass loss rate,
because for high mass loss rates an unphysically high thermal input is
needed for accelerate an important amount of matter. (Decampli, 1981,
Sauty et al., 2011) The question of the topological stability is not self-
evident, since the flow is not polytropic (see Sauty & Tsinganos (1994),
Sauty et al. (2011)). This is self-consistent with the goal of the study: as we
investigate a thermally-driven stellar outflow, employing a non-polytropic

heating function is essential, as explained in §3.5.

3.2 Initial and boundary conditions for the

time-dependant simulation

In order to study the solution in the close vicinity of the star, where
the initial acceleration and ejection take place, we set up a 2D simula-

m
tion box with size (R €[02:2],60 € [O 'y

tions setup, we follow procedures, similar to those in Gracia et al. (2006)

). For the boundary condi-
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and Matsakos et al. (2008, 2009). On the inner boundary of the box,
which is close to the stellar surface, we initialize a stellar wind outflow,
given by the semi-analytical model of Sauty et al. (2011). We apply the
same procedure on the equator. For the axis, we choose the ‘axisymmet-
ric’ boundary treatment of PLUTO. Now, a problem arises on the outer
boundary. We might use the ‘outflow’ boundary condition in PLUTO,
which copies the value of the last cell in the ghost zone for a given ra-
dial direction, i.e. it is a zero-gradient boundary condition. This is prob-
lematic, since this zero-gradient might generate artificial currents. Linear
extrapolation of the values of the last cells might generate a similar prob-
lem. The solution we adopt is to drastically increase the size of the box,
(R €0.2:2],0¢ [0 : gD N (R € [0.2:340],0 € [0 : gD in order to be
sure that waves, coming out of the surface R = 2 quit definitely this region
and that waves, generated downstream, particulary in the outer bound-
ary at @ = 340, will not propagate back to the central part. This cannot
happen, because, as we will discuss in this section, the outflow is already
superfast in this region, and perturbations cannot travel upstream a super-
fast flow. One particular feature of the simulation box we set up is that as
we want to keep the numerical resolution high in the region R € [0 : 2], we
set up a mesh with 384 pixels, equispaced in the region R € [0 : 2|, and
128 pixels of streched, logarithmic grid in the region R € [2 : 340]. Hence,
we conjecture that we can set up any boundary condition at R = 340, and
information from this boundary will have no time to propagate back to the

central source.

In order to verify the last affirmation, we plot, in Appendix A for this
solution, the changes in all eight MHD quantities between the final and the
initial state. What we see in Appendix A is that the final state is different
from the initial state on isolated regions far from the region (R € [0.2 : 2]
that interests us. Thus, we a posteriori verify that the central region is
causally disconnected from the outer boundary. We have also an a priori
argument that information from the outer boundary cannot travel to the

central source. First, close to the axis, the flow is vertical and information
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cannot travel upstream a superfast flow. In order to verify that the flow is
superfast, we plot the sonic speed (cs, Eq. 2.12) and the Alfvén speed (v,)
close to the axis on Figure 3.2. To plot c,, we first plot P as a function p
and then take the centered derivative (LZZ_P . Then, we could also plot the
fast speed, according to Eq. 2.15, but as could also be seen on Fig. 3.2,
cs K Vg, for R > 0.21, so Eq. 2.15 becomes vy = v,. Indeed, if we plot it,
the graph of v, is identical to v,, except very close to R = 0.2 (the inner
boundary). Hence, we conjecture that the superfast surface, where the
transfield equation changes nature and passes from elliptical to hyperbolical
(Beskin, 2010, Tsinganos, 2007) coincides with the Alfvén surface. The
problem with this argument is that, as Tsinganos (2007) points out, in
the case of self-similar solutions, the sonic speed cannot be readily defined.
This is because of singularities of the type g in the transfield equation.
In order to integrate the transfield equation, some regularity conditions,
selecting only solutions passing smoothly through the Alfvén point, should
be imposed. We are not going to enter into the detail of this integration,
but the point, relevant to this discussion is as those Heyvaerts & Norman
regularity conditions (1989) are imposed at the Alfvén point, so we pretend
that the plot of the sonic speed on Fig. 3.2 in the vicinity of the Alfvén
point should be the actual sonic speed. This cannot be affirmed for points

far from the Alfvén point.

However, unlike slow and Alfvén waves, the fast waves can also propagate
in directions, perpendicular to the magnetic field (e.g., see the Friedrich
diagram on Fig. 2.1). We again conjecture that fast waves, generated at
the outer boundary close to the equator, have no time to propagate back to
the central part, because of the size of the box. In the previous discussions,
we discussed waves, propagating along the radial direction, which means,
when we are close to the axis, and parallel to the equator, when we are close
to the equator. As Tsinganos et al. (1996) discuss, MHD waves preserving
the symetries of the system should have velocity components perpedicular

to the directions of symmetry (¢) and self-similarity (), i.e. along r. Those
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symmetries are supposed to derive the semi-analytical solution, but the self-
similarity condition is relaxed in the numerical setup. But as we are going
to show, the MHD quantities keep their initial distribution, a fortiori the
self-similar condition should also be kept, so interesting us only in waves

propagating along r in the previous analysis will be justified a priori.

3.3 Topological stablity of the solutions

Matsakos et al. (2008, 2009) have found that a large number of self-similar
solutions, obtained by varying the free parameters in the solutions above,
are “topologically stable” at large (propagation) scales. This means that
when we initialize a MHD simulation box with the solution above as an
initial condition, and we let a MHD code compute the time evolution of
this initial condition, the eight MHD physical quantities might keep or not
their initial distribution, but from the initial distribution the quantities
converge to a steady state. This corresponds to the discussed notion of

topological stability.

3.4 Time units

To describe the time evolution, we will prefer to express the time in units
of Alfvén crossing time, i.e. the time needed for a characteristic to cross an
Alfvén distance close to the base of the flow. This time could be related to

the disk rotation time (by reminding the definition of v in eq. 2.34):

i 20 | 2r2
tKep =27 GM = _I/— V2 (31)

As the starred quantities are taken to be unity at the reference radius R,, by

replacing the constants with their numerical values in Eq. (3.1) we obtain
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Comparison of the poloidal speed in the axis and characteristic speeds
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Fi1GURE 3.2: Comparison of the sonic and Alfvén speed with the radial
velocity.

the Keplerian time in units of the Alfvén crossing time for this particular

solution:

_ 272
trcep = 5.92t. = 5.92| 73 (3.2)

*

We stress that we prefer to express time in units of the Alfvén crossing
time, since the CASO solution is a thermally driven outflow and not a

magnetocentrifugically driven disk wind.

3.5 Heating distribution

By writing the expressions for the density (Eq. 2.26) and pressure (Eq.
2.30), under the self-similar hypotheses, we do not make the assumption
that an a priori relation exists between those two quantities. Instead of a

relation of the type P ~ p”, self-similarity puts not necessarily polytropic
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Density contours and fieldlines, initial condition
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FIGURE 3.3: Fieldlines and density contours for the CASO solution.

The bottom panel is a zoom of the top panel, showing closed fieldlines

(in green). Fieldlines in blue are rooted in the star, and describe the

stellar wind and fieldlines in red are anchored in the disk, describing an

outflow from the disk. The last connected line (which for » < 0.85 is
also a “last connected fieldline” is a thick black line).
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Heating distribution

FIGURE 3.4: Heating distribution

constraints on the P — p relation, which relation emerges a posteriori from
the mathematics. With the first law of thermodynamics, we can quantify

the departure from adiabaticity with a flow with the current geometry:

P
H—A:pv-Vh—;v-Vp (3.3)

where the volumetric enthalpy h is a function, obviously independant of

any relation between P and p,

h=———T = ——— (3.4)

with ' the ratio of specific heats in the gas, I' = %’3 and g the mass of the
gas. The resulting heating distribution, computezi from Eq.(3.3), taking
into account Eqgs.(2.26-2.29), is plotted on Fig. 3.4.
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Hence, we have a heating function, suitably distributed in order to satisfy
the energy equation (Eq. 2.10) and maintain the steady state. Most im-
portantly, this heating function is non-polytropic. As Sauty et al. (2002)
argue, this heating function could be of thermal or another origin. One
might argue that such a relation between P and p, computed a posteriori,
is no better than any other relation. For instance, such a relation could be
the polytropic assumption P = p', or the quasi-polytropic relation P = pt,
where I is some constant different from I' = &, which relation corresponds
to a effective heating for values of I'' < T Acbv discussed in Mestel (2012),
it is known since Parker (1963) that a constant I" results in inconsistencies
of the solution near and far from the stellar surface. In the case of the Sun,
adjusting I'” in order to fit the observations at 1AU results in unphysically
high velocities and low densities at the solar surface. Analogically, in the
case of jets, the terminal velocities of the outflow are way smaller than the

observed velocities of the jets.

We are not going to try to disentangle contributions to this heating func-
tion from physically plausible arguments, and we will instead say that the
heating distribution used in these models is the one needed to maintain this
geometry and this geometry is close to the observed geometry of the flow.
The goal of this study will not be to understand the nature of this heating,
but to understand relevant physics in the context of this geometry. A cor-
rect treatment should compute contributions from processes like thermal
conduction in the atmosphere (starting from the important input of heat
at the base), heating from damping of waves from the sub-photospheric
convection, (Decampli, 1981), and to compute the radiative transfer of
energy in the wind by the radiation from the central source. Moreover,

Matt & Pudritz (2005) argue that heat could be deposited by accretion.

In numerical simulations, we are going to set up inital and boundary con-
ditions for all MHD quantities coming from the semi-analytical solution

and in addition to that we will a priori impose the heating function and
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release the constraints on the MHD quantities. We will prove that this

configuration is stable.

3.6 Study of the solution close to the inner
boundary (central object)

The magnetic topology of the Cylindrical Analytical Stellar Outflow (CASO)
contains three distinct regions. First, a polar region with open fieldlines,
rooted at the star, second, a disk region with open fieldlines, rooted in the
disk, and third, a region with closed fieldlines, with both footprints are
rooted in the star. Matter is ejected from the disk in the “disk wind”-like
region and from the star, both in the stellar wind region and the closed-line
region. These three zones meet and the “X-point,” where the last closed
fieldline crosses the equator. This line is connected, at the X-point, with
the “last connected line”, which is the common interface of the three re-
gions: the two open lines regions (the one with the topology of a stellar
wind and the other with a topology of a disk wind) and the other with

closed field lines (see Figure 3.3).

This CASO solution has the disadvantage (as we will explain in §4.1.2)
of having non-zero velocities in the closed fieldlines region (which we call
‘dead zone’ or ‘magnetosphere’ in green on Figure 3.3), and we will modify

this in Chapter 4.

3.7 Initialization of the simulation

As our ultimate goal is to understand the physical characteristics of outflows
with such topologies, the question of what is the topological stability of
these solutions is of crucial importance. In a fashion similar to Matsakos et

al. (2008) and Matsakos et al. (2009), we test the stability of this analytical
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solution by setting it up as an initial condition in a time-dependent MHD

simulation.

To solve the equations of ideal MHD, we make use of the PLUTO code
(Mignone et al., 2007). We perform a 2.5 dimensionnal simulation, which
means that the toroidal vector components of V and B remain axisymmet-
ric; second order time integration is achieved by a Runge-Kutta method and
we also use a linear interpolation in space. The computationally efficient
Lax-Friedrich solver is used, but switching to less diffusive Riemann solvers
does not introduce any significant change to the solution. The V- B =0

requirement is enforced with an eight-wave MHD algorithm.

Naturally, we use spherical coordinates, which allows us to take advantage
of the natural grid cell accumulation near the surface of the central object
(i.e. the inner boundary of our simulation box), which allows for our simu-
lation to achieve better resolution near this inner boundary, where the jet

launching region, which is of particular interest, is situated.

In this scenario, when we initialize the simulation box with the semi-
analytical solution, what we expect for this initial condition is to be an
“educated guess” of the final state. We anticipate such a behaviour because
these solutions were semi-analytically obtained with reasonable approxima-
tions, and we expect them to relax to a final steady state, which will not
differ significantly from the initial one. Our goal is to verify this. We in-
deed obtain a final state very close to the initial one, and we pursue the
simulation until relaxing to a steady state. In order to detect changes, we
will be investigating the relative differences for all MHD quantities between
the final and the initial state, which will enlighten us how the final steady
state differs from the initial educated guess. This is done for this model in

Appendix A, and in subsequent appendices for the other models.

Differences between the initial setup and final state are hardly visible to the
naked eye, so in Appendix A, we plotted the relative differences between

the initial and the final states for all eight MHD quantities.
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FI1GURE 3.5: Contour plot of ¥ 4, for ¢ = 0.0 and ¢ = 50.0t,

First we are going to discuss the conservation (and non-conservation) of «
along fieldlines. At the initial step, the o contours are parallel to fieldlines,
as we discussed above this is because of stationarity and axisymmetry.
Nevertheless, we notice that the last connected line, which has a = 0.9885
tends asymptotically towards the o = 1.0 (¢, the dimensionless magnetic
flux is normalized to its value at the fieldline passing through r = r,). On
the bottom panel of Fig. 3.6 we plot several fieldlines rooted between the
X-point, where the last connected line crosses the equator, and R/R, =
1. What we see is that matter coming the star, travelling along the last
connected line, mixes with matter coming from the equator between the
X-point and Alfvén radius, and flows in the interface between the stellar
wind and the disk wind, which becomes more and more narrow as we go
further from the star. This immediately makes this ‘interface region’ of

particular interest, and we are curious to investigate its stability.
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Contours of equal o

FIGURE 3.6: On the top panel: Contour plot of «, each value labelizing

a fieldline; on the bottom panel: Zoom of the top panel plot, but only

contours between av = 0.9885 (the last connected line) and a = 1.0 (pass-

ing through the reference radius and towards which the last connected
line asymptotically tends) are shown.
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3.8 Outcome of the simulation

As the initial setup evolves for a sufficently long time (until ¢ = 50t, =
8.45tkep), We notice that the flow globally goes to a steady state, but not
everywhere. In order to understand the stability of the solution, we plot,
in Appendix A the relative differences between the final and initial state
of all MHD quantities. We will also discuss the quantities, supposed to be
conserved, as well as the quantities 7, the torque, and the plasma [ param-
eter, which will help us understand the impact of releasing the stationarity
constraint in the problem. Equations 2.16, 2.17, 2.18, respectively for ¥ 4,
Q2 and L, are conserved quantities in the case of stationary, axisymmetric
flows. Although we are not under the hypotheses of a stationary flow, since
the problem is now time-dependant, we find instructive to plot those quan-
tities and to try to quantify the departure from stationarity in the different
parts of the outflow. We remind that in the case of the semi-analytical
solution, the lines of equal ¥4, 2 and L are parallel to the fieldlines, and
because of the existence of those conserved quantities the stationary semi-

analytical solutions were derived.

3.8.1 Mass-to-magnetic flux ratio ¥y

First, we conclude that the stellar wind part of the outflow, for which
description the model is specifically constructed, is going to a steady state.
The ¥ 4 contours in this region of the flow are practically parallel to those

of the initial setup; such is also the case of the disk wind.

Different is the case of the interface region, which fieldlines we plotted in
Fig. 3.6. As it is shown on Fig. 3.6, fieldlines rooted between w = r =
0.841r, and w = r = r, on the equator pratically merge as we go further
from the central driving source. So, matter, ejected from this region on the
equator, goes in a very small flux tube. We argue that this does not affect

the stability of the solution for this reason. Also, we should note that the
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value of W, is very sensitive to changes in the value of the magnetic field,
since the magnetic field is in the denominator of ¥4 and is much smaller
than the numerator. Therefore, other conserved quantities as L, showing

less sensitive behaviour in this zone, might be more relevant to describe it.

The X-point itself is forced to keep its position, since those lines cannot
reconnect because of the fact that we are under the hypotheses of ideal
MHD (up to numerical diffusivity). Even if we are in ideal MHD, we cannot
escape from numerical magnetic diffusivity. Including physical magnetic
diffusivity is out of the scope of this work, but as Fendt (2009) suggests,
magnetic diffusivity might be included in the study of ideal MHD systems.
Such a diffusivity should be enough in order to allow reconnection, and to
gain better insight into the effects of the X-point within the framework of
these models. But this diffusivity should be kept small, in order to keep
the quasi-ideal MHD treatment of the problem, i.e. not to modify the

dynamics of the system, and most importantly, collimation of the outflow.

3.8.2 Specific angular momentum L and torque

We note that the angular momentum L is very close to the initial angu-
lar momentum distribution (Fig. 3.10). This quantity is of important in
our problem since it has direct consequence on observable quantities, as
discussed in §1.2.8. The fact that the contours of L are parallel to the
fieldlines, except in a small zone near the X-point, confirms our conclu-
sion, coming first from the fact that the MHD quantities are not showing
important differences, hence the solution is topologically stable on these
scales, and second, the fact that ¥, and Q show sensitive behaviours in
the interface region shows that it might be a region of transient phenom-
ena. A similar interface region is observed in the recent simulations of
Zanni & Ferreira (2013).

Related to the angular momentum is the torque 7, which expression is

given in Eq. 2.20 and which we plot in Fig. 3.11. This quantity is of central
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importance for this study, since the main physical effect of winds is to
ensure angular momentum extraction and the torque quantifies this process
and the aforementionned graph gives some interesting point of view on the
numerical solution. When we plot the torque for the semi-analytical initial
condition, we see that in this model, the torques of the disk wind, the stellar
wind and the magnetosphere are comparable. The difference between the
axial fieldline, carrying the smallest torque, and the typical torque values
of the disk wind is less than one order of magnitude. Nevertheless, what
is interesting to note, is that the closed fieldlines in the magnetosphere
have the biggest torque. This torque does not extract angular momentum
from the star, since the matter moving along those fieldlines stays in the
magnetosphere and is not taken away. Nevertheless, here is probably the
biggest difference between the semi-analytical solution and the numerical
solution that we obtain in the final state. In the final state of the torque
(red lines on Fig.3.11), we see that the fieldlines with the biggest torque
are now on the other side of the X-point, in the interface region discussed
on Fig. 3.6, instead of being trapped in the closed magnetosphere. As we
discussed for Fig. 3.6, all the outflow from w = r = 0.85r, (the X-point)
and w = r = r, tends towards the flow on the last connected line, on
the interface between the disk wind and the stellar wind. We tentatively
conclude that because of this result of the simulation, this region might be

important for angular momentum extraction.

3.8.3 (), plasma  and T

The other integral, Q, plotted on Fig. 3.9. We have also plotted the contours
of the plasma  parameter, on Fig. 3.8. Again, this is another parameter
hinting for the stablity of the solution. In the disk wind and stellar wind
zones of the solution, the value of the £ field is close to its initial one. In the
interface region, the plasma S is diverging from its initial value, showing
again that the semi-analytical solution is topologically stable almost every-

where, except in this region. Also, we plotted In 3, on Fig. 3.8, where it
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could be seen that in the very close vicinity of the star, the magnetic pres-
sure is much bigger than the kinetic pressure, what is needed for magnetic
braking to operate. The variations of orders of magnitude show how fast
actually the ratio thermal/magnetic pressure is dropping. In the regions
with low beta, the magnetic pressure is dominant and the plasma, ejected
from the star is in forced corotation with the star. The particles are hence
having a larger angular momentum than what should have an uncharged
particle in the gravitational field of the star. Once the particle passes in the
region with high //low magnetic pressure, the inertia of the plasma parti-
cle is much bigger and it carries with it the magnetic field, and also takes
away the angular momentum it extracted from the star before reaching the
isorotation radius. This phenomenon of ‘magnetic braking’ was described

for a first time in the seminal of paper Schatzman (1962).

We are also plotted the temperature 7' = L in the whole domain (Fig.
3.7). In the framework of this model, in Eq. 530, we note that we have the
arbitrary constant P allowing us to callibrate the temperature in such a
way that it matches the observations. This comes from the fact that what
participates in the force balance is the pressure gradient. We can hence add
any scalar constant to the whole pressure field. We use Py = 50P,, which
ensures 0 pressure gradient at the outer part of the domain (R = 340) and
normalizes the § to 1 at R = 1 on the axis. What results is that the ratio
of the temperature at the edge of the jet and temperature at the center is

approximately 5 times.
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FiGURE 3.7: The temperature accross the whole domain. Note that
the temperature is in arbitrary units since Py is an arbitrary integration
constant in Eq. 2.30.
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F1GURE 3.8: The plasma beta is dropping fast as one gets close to the
star.
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FIGURE 3.9: Q for the semi-analytical solution and its evolution to its
final state

L, comparison between initial and final state
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FIGURE 3.10: The angular momentum L is well conserved during the
simulation
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FIGURE 3.11: The torque 7 throughout the simulation
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Chapter Abstract

The goal of this chapter is to describe the approach we used in order to
obtain a solution of a stellar outflow with a static magnetosphere — a ‘dead
zone’. First, we discuss why the matter in the magnetosphere should be
in static equilibrium and how this is treated in an inconsistent way in the
CASO solution, presented in the previous chapter. We also discuss obser-
vations of clouds, around some stars, confined in stellar-sized closed loops.
Then we describe the procedure, we followed in order to obtain such solu-
tions, namely modifying the CASO solution, by introducing a static magne-
tosphere, and discussing the implications of this on other MHD quantities.
Finally, we discuss the outcome of the simulation, by describing the stated
the simulation box converged to, and discussing the physical implications
of this result, notably how the structure of the dead zone corresponds bet-

ter to the observations than the original, non-static magnetosphere of the
CASO solution.

4.1 Introducing a self-consistent dead zone

4.1.1 Need for a more precise study of the close vicin-

ity of the star

As discussed in the previous chapter, semi-analytical solutions obtained
by Sauty & Tsinganos (1994) have been found to be topologically stable
at propagation scales by Matsakos et al. (2008). In the previous chapter
we discussed the topological stability of a particular analytical solution,
obtained in Sauty et al. (2011). The main difference is that here we are
studying the close vicinity of the star, where the accretion-ejection connec-

tion takes place. Unlike the studies of the propagation scales, we resolve
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the magnetosphere: a zone where both footprints of the magnetic field lines

are rooted to the star.

4.1.2 Inconsistency of the analytical solution: why
the magnetosphere should be in static equilib-

rium

An inconsistency of the analytical solution, relevant to the current work,
is the way the magnetosphere is treated. The magnetosphere is the region
of the outflow, where both ends of the magnetic fieldlines are rooted in
the star, i.e. the fieldlines are closed. Hence, matter flowing along the
closed magnetic fieldlines, emanating from the star in a given point in
the magnetosphere, will at some point reach the equator. There it will
meet a plasma flow coming from the southern hemisphere. Plasma coming
from above and from below the equator will have momentum fluxes both
perpendicular to the equator, but in opposite directions. We remind that
we are in regime of low plasma § (8 = {P/ (SWB?))}). Hence the magnetic
energy density will still be much larger than the thermal, so plasma flows
with opposite momentum fluxes, constrained to follow the magnetic field
lines, will be stopped in this collision, i.e. the big magnetic pressure is

holding the gas in hydrostatic equilibrium. (Decampli, 1981)

In a very general context, the condition § < 1 ensures that a static plasma
remains stable (in the case > 1 a static plasma would collapse.) More-
over, once in magneto-hydrostatic equilibrium, the flow will remain in this
state, such any perturbation of the magnetic fieldlines will generate a per-
turbation of the magnetic pressure that will compensate any perturbation
in the thermal pressure, as explained in Mestel (1968). Flows with static
magnetospheres have been investigated by Tsinganos& Low (1989), and
for the first time numerically, in the approximation of an isothermal flow,
by Pneuman & Kopp (1971). The seminal paper of Keppens & Goedbloed

(1999) investigated models with static zones in polytropic outflows.
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In this and the next chapter, we will be investigating flows with static
magnetospheres (dead zones), by modifying the solution presented in the
previous chapter. Hence, we will introduce a static magnetosphere in this
solution, which has non-polytropic heating function (starting from the one
in § 3.5, but accordingly modified, see next paragraph). In the modified
solution, the equator in the magnetosphere will no longer be a sink for

matter, which is rather unphysical.

A point not explored in this work, but for which a perspective is opened by
introducing a self-consistent magnetosphere, is to include accretion in the

simulation box, in particular by adding accretion columns in this region.

4.1.3 Dead zones in observations

4.1.3.1 The case of AB Dor

Indications for the presence of dead zones around stars come from X-ray,
UV and radio observations. First indications that some stars have promi-
nences (hosted by closed magnetic loops) come in the early 1980s with
UV observations of Schroeder (1983). Later, observations of Algol by
Whiteetal. (1986) also suggest the presence of large, hot, closed loop struc-
tures around the variable star. We will focus on a well-studied case, the
variable star AB Dor (=HD 36705). Collier Cameron (1988) explain the
anomalously low rising times of X-ray flares of AB Dor with gas, trapped
in large, hot, closed loop structures in the stellar corona, hosting quies-
cent prominences. Collier Cameron & Robinson (1989a,b) make an exten-
sive study of AB Dor, observing the variable star in H,. Their observa-
tions show prominence-like clouds of mainly neutral hydrogen, spreading
between 3 and 9 stellar radii, orbiting in forced corotation with the star.
They conclude that most probably closed magnetic loops are the confin-

ing agent for these clouds. These slingshots of plasma in suspension over
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the stellar surface are, the observations again show, of stellar size. Col-
lier Cameron & Robinson (1989a,b) attribute the absoption spectra of qui-
escent stellar-sized prominences. For a review of the observations of stars
hosting stellar sized prominences the reader is referred to the article Col-
lier Cameron (1996). Ferreira & Mendoza-Briceno (1997) point out that
such stellar-sized loops do not have solar counterparts. In the case of the
Sun, closed loops have much smaller sizes. This lack of counterpart is
a reason, they argue, that more convincing evidence for the existence of
such loops should be provided. According to Mestel (2012), and references
therein Stix (2004) and Dwivedi (2003), high emission regions in X-ray of
the Sun and late-type young stars are associated with wind zones, whether

coronal hole regions are associated with wind zones.

4.1.3.2 The case of BP Tau

BP Tau is a classical T Tauri star (¢TTS). Spectropolarimetric observations
with the ESPaDOnS instrument at the CFHT and NARVAL instrument at
TBL, carried out by Donati et al. (2008), reveal the existence of a 1.2kG
dipole and 1.6kG octupole. The dipole field is a slithly tilted, strong ax-
isymmetric poloidal field. They also conclude that the magnetosphere of

BP Tau extends to 4 stellar radii.

Sauty et al. (2011) discuss some similarities between the CASO solution and
the structure of the magnetic field around BP Tau. The CASO solution
has B, = 1.82kG, which roughly corresponds to the value of strength of
the dipole of BP Tau. The Alfvén point is situated at w = R = 9.29r,
and the terminal speed is V, = 103kms™! (for the notations refer to Table
2.1). In the case of the CASO solution, the magnetosphere terminates at
the equator at a distance @ = r = 7.97ry, while Donati et al. (2008) point
out that the magnetosphere of BP Tau extends to 4ry. This point will be

relevant in a subsequent discussion.
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4.1.4 Constructing a self-consistent solution with no

mass flux through the equator

We will attempt to obtain a numerical solution, by modifying the existent
solution by suppressing accordingly the mass flux through the equator by

replacing the poloidal velocity field with a null field.

There is no reason for this modified field to be solution of the ideal MHD
equations. Nevertheless, we suppose that this configuration will be close
to a solution, and we will initialize a simulation box with a null poloidal
velocity field and velocity field identical to the CASO solution outside the
dead zone. Our exceptation is that the simulation box will relax to a steady
state with a two-component corona (corona with ‘wind’ zone outside the
magnetosphere and a ‘dead’ zone in the magnetosphere.) An analogical
procedure is followed in Keppens & Goedbloed (1999), who obtain 2.5D
solutions for polytropical models of stellar wind with a dead zone. The
difference with our problem is that we have a non-polytropic heating func-
tion and the different geometry of the flow. Imposing V, = 0 has several
consequences for other MHD quantities and we are going to discuss this in

the next subsection.

4.1.5 Introducing self-consistent boundaries

Setting V., = 0 and Vj = 0, and as we still except stationary (gi = 0) and

axisymmetric (Z- = 0), for the projection along ¢ of Eq. 2.9, we have:
96 P

A

(%%+(V~V)V+%Bx(VxB)+%VP+V<I>)-¢:0 (4.1)

where $ is the unit vector in the azimuthal direction. The Lorentz force
B x (V x B) will be noted Fp. Since the gravity has no component along
¢ and 5% = 0, the first, forth and fifth term in the bracket are evidently

equal to zero. We are left with



Chapter 4. Cold dead zone 87

<(v V)V 4+ %FL) =0 (4.2)

Now, let us look at the ((V - V)V) - @ term:

. oV, Vo0V
(v-viv)- 4= {u T 2%
V¢ 8V¢ V:j,‘/; Vd,Vb (:0‘5(9 )
4.3
+rsin(@) 8¢+ r * i e

The first, second, forth and fifth term of the equation should be equal
to zero because of the static condition of the dead zone. The third term
should be equal to zero because of axisymmetry. Hence, we are left with
the condition that for a static magnetosphere, we need a zero component
of the Lorentz force along ¢. Otherwise, as could be shown by reversing
Eq. 4.2 for (FL)s # 0, and taking into account the exact expression in
Eq. 4.3, this component will accelerate matter in the dead zone. Hence, we

need Ly = 0. The equation

(%B X (V x B)) =0 (4.4)

developped in spherical coordinates is

B Bun 2 B
B¢(——R—BR e )=0 (4.5)

Hence, if we want to keep the V|, = 0 in the dead zone, preventing the
Lorentz force to accelerate the matter in the poloidal place, we should
impose for the toroidal magnetic field component B, = 0, as an initial
and boundary condition in the dead zone. Moreover, in order to prevent

a toroidal magnetic field to form, we should also impose the physically
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plausible condition to have a magnetosphere in solid rotation with its host
star, which will be consistent with the observations of quiescent promi-
nences in stellar coronae, as discussed in §4.1.3. Setting V, = 0 has also
consequences on the heating equation (Eq. 2.10), which LHS terms vanish
because of the stationarity, axisymmetry, and static magnetosphere con-
ditions, and the equation reduces to H — A = 0, in which H — A is the
source term in the heating equation (Eq. 2.10). Thus, to reach a steady
state, the heating must be exactly balanced by a heat loss process (H = A).
Physically, when the plasma is static in the dead zone, we are not able to
transport heat either. In other words, in the heating balance participate
the mechanical energy flux, the conductive flux and the radiative losses.
In order to keep H — A = 0 we suppose that all mechanical energy input
should be radiated away. Conductive cooling is rejected for a mechanism,
assuring the heat/loss balance, since the quasi-isothermal structure of the

stellar coronae, it its vanishing thermal gradient, prohibits heat conduction.

Until now, we discussed the implications of setting a static zone in rotation
with its host star, starting from the V, = 0 condition and the resulting
By =0, H— A =0 and Vj in solid rotation. This is what makes the dead
zone self-consistent. We set up other MHD quantities, such as density and
pressure, to their theoretical values as if there was no dead zone, excepting
this to be an educated guess for their final steady state, which will be
obtained once they relax in a stationary state. On Fig. 4.1 we plot several

quantities at ¢ = 0.

4.2 Initial and boundary conditions, heating

Regarding the simulation box, we are going to use the same mesh as the
one described in §3.2, which we used for the CASO solution. Regarding
the boundaries, we will suppress mass flux in the dead zone, and we will
modify magnetic field, rotation and heating according to the discussion in

the previous section. This means that the heating will be suppressed in
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Density contours and fieldlines, t=0.0
2 T 1

1.5

log(p) —— Dead zone
Stellar wind — Disk wind ——
Last connected line

FIGURE 4.1: Initial setup for the ‘wind’ and ‘dead’ zone configuration.

The top panel shows the geometry of the magnetic field (magnetic field

lines in the stellar wind are in red, disk wind fieldlines are in blue and

magnetosphere fieldlines are in grey) and density contours (in grey). The

bottom panel shows the magnitude of the poloidal velocity, identical to

the analytical solution in the wind zone and set up to zero in the dead
zone.
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—1In(By), t = 0.0

FIGURE 4.2: Toroidal components of the initial condition. The top

panel shows the toroidal magnetic field component, set up to the ana-

lytical one in the wind zone and to 0 in the dead zone. On the bottom

panel, we see the rotationnal velocity, on which we see a dead zone set
up in solid rotation
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H-A

FIGURE 4.3: Heating function for an outflow with a static magneto-
sphere

the dead zone (see Fig. 4.3), so will be the toroidal magnetic field, and
the rotation velocity will correspond to a solid rotation. For a graphic

representation of the initial condition, refer to Figures 4.1 and 4.2.

The heating source term (Fig. 4.3) and the boundary conditions are kept

constant throughout time.



Chapter 4. Cold dead zone 92

4.3 Outcome of the simulation: description

of the final solution

The simulation is ended once the axisymmetric MHD wind is converged
to a state which is considered to be stationary when relative differences in
all eight MHD quantities, in the zone of interest, between two consecutive
timesteps are topped by a small number (typically 10~%). The final dis-
tribution of the quantities shown on Figure 4.1 are shown on Figures 4.4
and 4.5. For the other 7 MHD quantities, the relative differences between
the initial and the final state are given in Appendix B (LHS for the first
part of the simulation, 0.0 < ¢ < 4.0, and RHS for the second part of the
simulation, 4.0 < ¢t < 20.0). We see that the initial configuration for these
quantities is maintained not in the whole dead zone, but only in a helmet-
shaped part of it. The fieldlines of the initial dead zone from the side of
the axis open up and matter is accelerated along them. As a consequence,

the vicinity of the last connected line is emptied.

Globally, the disk wind remains at its place, so does the stellar wind. Sev-
eral fieldlines on the interface between the disk wind and the dead zone
open up; as we continue to treat the part of the boundary where they are
rooted as a dead zone (zero mass flux), the density along the fieldlines pre-
viously in the dead zone drops. The final state could be divided in four
regions, according to whether or not the initial condition is maintained and
how. The first region is the wind zone. We conclude that, globally, the
stellar wind, as well as the disk wind, keep their initial topology and are
not affected, in any significant way, by the introduction of a dead zone.
Second, the initial condition is not maintained all over the dead zone, but
only in a helmet-shaped part of it. In the third part of the field, outside the
helmet but within the initial dead zone, the initially closed fieldlines open
up and matter is accelerated along them. The extension of those fieldlines
outside the dead zone is asymptotically tending towards the last connected

line, thus on the interface between the stellar wind and the disk wind. As
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Density contours and fieldlines, t=4.0
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Density contours and fieldlines, t=4.0
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FIGURE 4.4: Wind and dead zone configuration throughout a poloidal
cross-section; fieldlines and density contours. The bottom figure is a
zoom of the top figure. We see the green fieldlines, describing the new
shape of the dead zone, have a characteristic helmet shape. The initial
position of the last connected line is plotted for clarity.
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FIGURE 4.5: The poloidal velocity remains V, = 0 in the dead zone
as it is initialized; in a region along the opened fieldlines the poloidal
velocity also drops

the boundary conditions are not evolving, but fixed in time, the fieldlines
are rooted to a part of the inner boundary with zero mass flux (between
the top of the helmet and the initial footprint of the last connected line).
As a consequence the fourth region of the field is the one in the vicinity of
the last connected line; the fieldlines opened up during the time evolution

are emptying the vicinity of the last connected line.

As we can see from Figures 4.4 and 4.5, we have indeed a zone in which
the fieldlines are connected to the star, and in which the initial conditions
for B, and V; are maintained. Note the specific shape of the new last
connected line on figure 4.4, reminding a helmet. In this helmet-shaped
zone, the toroidal magnetic field component is kept to 0, and the solid

rotation is maintained, as could be seen on 4.5.

Probably the most important feature of this simulation is the fact that
the zone with closed fieldlines has smaller extent than in the initial setup.

Indeed, if we look at the bottom panel of Fig. 4.4, we see that fieldlines,
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= ln(B¢), t=4.0

—By, t=4.0

FIGURE 4.6: In the helmet-shaped region with closed fieldlines (green
fieldlines on 4.4 the flow remains in solid rotation and satisfies By = 0;
this makes the flow in this zone self-consistent, as explained in §4.1.5
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Density levels in the dead zone

0.4
0.35
0.3
0.25

0.15
0.1
0.05

FIGURE 4.7: Density contour plot in the dead zone. Matter is accumu-
lated near the equator.

rooted at the star, and initially situated within the dead zone (the initial
position of the dead zone is plotted on this figure for clarity), are no longer
closed. The initial position of the last connected line corresponds to a =
0.9885, and in the final state, to & = 1.1411, hence from a dead zone starting
at 6 =~ 42°, to a dead zone starting at 8 ~ 47°. Fieldlines, rooted between
0 = 42° and 6 = 47°, are emptied from matter, since we have suppressed
the outflow at the base, supposing that those fieldlines will remain closed.
On the other boundary, matter is accumulated near the equator, which
could be seen more easily on Figure 4.7. On the other side of the dead
zone, in the region close to the stellar wind, density is lower as compared

to the initial setup. The form of the closed fieldlines, in green of Fig. 4.4,

As we discussed in §4.1.2, in order to maintain plasma in static equilibrium,
we need the magnetic pressure to dominate the thermal pressure. This is
indeed verified on Fig. 4.10, where in black lines are the contours of the
plasma [ parameter, which are also those of the CASO solution, and in red
are the contours of the plasma 3 at the final stage. We can see that this

parameter globally keeps its values throughout the domain, and drops in
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the dead zone, which is convenient in the light of the requirement of low

plasma  for dead zones.

We are also interested in seeing how the specific angular momentum (Fig.
4.9) and the total angular momentum (Fig. 4.8) are modified between the
initial and the final state. First we note that along the fieldlines, rooted
between 6 = 42° and € = 47° at the stellar surface, which open up, we
have a much bigger specific angular momentum. As we maintained fixed
the boundary conditions over there, and we suppressed the mass flux, those
lines are emptied. This is why we plotted the total angular momentum flux,
pL. We see that this quantity is changing slightly, but not significantly
between the initial and the final state of the simulation. We have also
plotted the torque (Eq. 2.20), which represents the constant rate of angular
momentum transport across a unit flux tube. For this simulation, it is

plotted on Fig. 4.11.

In a similar way for the previous solution, we plotted the relative differences
between the final and the initial state for this solution in Appendix B. As
we can see from Fig. B.1, plotting the relative increase of density, we
have a dead zone which is comparatively denser, and as we can see from
Fig. B.3, a bigger pressure in the dead zone. In the self-consistent part of
the dead zone with the helmet form, we have mutual increase of pressure
and drop of density. This means that the resulting dead zone is with higher
temperature than the surrounding flow. As we can see on Fig. 4.5, depicting
the velocity field in the final state, the static condition is maintained in the
dead zone. The requirements, derived in 4.1.5, for a self-consistent dead
zone, are maintained in the helmet-shaped part of the dead zone, as could
be deduced from the fact that in this helmet-shaped part of the dead zone,

the relative changes in By and Vj, (Figures B.9 and B.15) are null.

This helmet-shaped structure, which is similar to the structures observed
in the solar corona in large closed loops, might be modified by the presence

of an accretion disk, which we are not exploring in this work.
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4.4 Physical implications

There are two important conclusions that could be drawn on the outcome
of this simulation. First, the extent and the shape of the dead zone vary
significantly for the given physical conditions. Let us remind that for the
particular set of parameters in Table 3.1, gives a flow with magnetic field
strength at the surface By ~ 1.1kG, (Sauty et al., 2011) compatible with
the observed dipole of BP Tau Bgpra., = 1.2kG of Donatiet al. (2008).
However, the CASO solution predicts a radius of the dead zone of ~ 7.5
stellar radii, while Donati et al. (2008) report a size of the dead zone of ~ 4
stellar radii. We conclude that within the framework of the discussed mod-
els, outflows with inconsistent magnetosphere (the CASO solution, having
a mass flux through the equator), predict twice as large dead zone than
the observed one. When we modify the solution, in order to introduce a
static magnetosphere, the self-consistent dead zone is approximately half
the size than the initial condition. Hence, the dead zone we obtained, de-
limited by the last connected line on Fig. 4.4 is corresponding better to

the observations than the dead zone of the semi-analytical solution.

Next, as we said, the last connected fieldline is not rooted at 6§ = 42° at
the inner boundary, but at 8 = 47°. Sauty et al. (2011) predict a braking

time for such a system

Torake = 2 % 10° yr. (4.6)

The braking time being computed by the following formula: (Sauty ¢t al.,
2011)

2k'MT2 1V t
Torake = ———2 o 4.7
brake 7‘3 A/Iwind QoutV 1 -+ 5aout ( )

with &k the dimensionless inertial constant of the star, and Wg;:
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2 3
\I/out» - % {(1 s 6aout)2 - 1} (48)
Now, as we discussed, the last connected line is not the one with a magnetic
flux of aeut,; = 0.9885, but aguse = 1.1411 (Weue,1 = 1.0073 and Yoy =
1.1661). Straightforwardly, the ratio of braking times Tirake1/Thrakea Of
two winds, with two different values for ag,, but with the same physical

characteristics of the central object, is:

Tbrake,l . \Ijout,l % CYout,2\/ 1 + 6aout,2 (4 9)

Tbrake,2 Qout,14/ 1L o 6aout,1 \110“""2

Hence

Tbrake,2 =0.9974 x Tbrake,l ~ Tbrake,l (410)

Hence, even if the big dead zone of the CASO solution and the smaller self-
consistent one are rooted at different # at the inner boundary, the braking
time is not significantly smaller than in the previous model. That supports
the conclusion that the smaller dead zone is not significantly changing the
overall properties of the solution, but nevertheless its size is in better ac-

cordance with the observations.
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F1GURE 4.8: The total angular momentum L throughout the simulation

t=0 —t=4 ——

FIGURE 4.9: The specific angular momentum £, throughout the simu-
lation
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In g = P/(87B2)
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FI1GURE 4.10: The plasma g throughout the simulation

FIGURE 4.11: The torque 7 throughout the simulation



Chapter 4. Cold dead zone 102

4.5 Towards a fully self-consistent magneto-

sphere

4.5.1 Why the magnetosphere is reshaped during the

simulation?

As we saw in the discussion so far, the magnetosphere is shrinking between
the initial and the final stage of the simulation. This change in shape and
extent could be easily understood as consequence of the the null poloidal
speed that we impose at the beginning of the simulation. Indeed there
is no reason to suppose that the magnetosphere should keep its initial
shape. Its shape is governed by the force balance. Thus, by suppressing
the polidal velocity in the magnetosphere, we are suppressing the inertial
terms in the momentum equation (Eq. 2.9), and those terms are directed
outwards. Hence, by suppressing them, the force balance changes, and
inwards directed terms of the momentum equation, that were previously
balanced by the then suppressed inertial terms, will tend to shrink the
magnetosphere. The new balance is achieved when a pressure gradient,
capable of stopping this shrinking, develops. Indeed, a close inspection
of Fig. B.3 shows that in the reshaped magnetosphere, close to the inner
boundary, the pressure has increased by & 5% and just outside the helmet-
shaped magnetosphere the pressure has dropped by =~ 10%. Hence, the
pressure gradient in that region is steeper than the semi-analytical solution
and is directed inwards. As the acceleration, resulting from the pressure
gradient is always opposite to the pressure gradient | a = —V—P) , this force

is indeed replacing the suppressed intertial terms.

The way the pressure balance is modified is by changing the heating func-
tion, which is the source term of the energy equation (Eq. 2.11.) This
solution, where the heating is turned oft in the magnetosphere, could be

compared to the solution in the next chapter, where the magnetosphere is
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heated. In the case of the heated solution, an even bigger pressure gradient

is indeed created and the magnetosphere shrinks less.

4.5.2 Modifications needed

There remains an inconsistency in the solution we presented so far. Indeed,
some fieldlines open up, as previously discussed, but the boundary condi-
tions we set are fixed in time. Mass flux is suppressed on all fieldlines that
were closed at ¢ = 0.0, no matter if they open up during the simulation or
not. Allowing a mass flux on those lines means that we should also turn
on the heating that we suppressed, because we wanted to suppress the ve-
locities in this region. Hence we need to restore the heating, if we want to

restore the mass flux along those fieldlines.

One possibility in order to decide whether or not to put a mass flux from the
inner boundary and to turn on the heating is to determine if the fieldline is
open or closed. But trace the fieldlines, at each timestep, is computationally
prohibitive. The criterion we are going to use in order to decide if we
are in the helmet-shaped self-consistent magnetosphere, in which we have
to suppress mass flux and turn off heating, or outside it, is whether or
not we are in the region that is in solid rotation and with no toroidal
magnetic field component. As we discussed so far, inside the helmet-shaped
magnetosphere those requirements are fulfilled and they are not fulfilled

outside it.

Hence, we are going to turn off the heating only in the helmet-shaped
part of the flow and we are going to suppress the mass flux only in that
helmet-shaped part of the flow. In practice, the magnetosphere of the semi-
analytical solution was starting at @y, = 41.7°, and for ¢ = 4.0 this angle
increased to to Oy, = 54.9°, hence we are going to suppress the mass flux
only for 6 > 54.9°. Also, we are going to turn off the heating for the
fieldline, for which |Bg| = 0.01B, and all the fieldlines below. At t = 12.0,

we will have a new magnetosphere. What we observe is that this time, some
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TABLE 4.1: Evolution of 0y, during the consecutive readjustments

t elim
0.0 41.7°
4.0 54.9°

9.00 50.43°

14.00 50.10°
20.00 50.17°

fieldlines will close and the extent and size of the magnetosphere will slightly
increase, but will not attain the initial value. Hence, at ¢t = 12.0, we are
going to readjust again heating, so that the whole magnetosphere is heated,
and we will readjust the mass flux, which will be suppressed now from
Oiim = 50.417°. We will re-run the simulation until ¢ = 15.0 and we will find
a new shape of the dead zone and a new 6y, = 52.98°, but the variation will
be less important as compared to the previous step. With this approach,
we are improving, or training the model at each step. The evolution of the
last connected line, determining the size of the magnetosphere, is shown on

Fig. 4.13 and the evolution of 6}, is summarized in Table 4.1

By following this recipe, we are able to decrease the size of the zone which
is not self-consistent, with each step, until we have a solution with an
inconsistent part so small, that we could confidently say that the whole
solution we have obtained is actually self-consistent. For illustration, on
Fig. 4.14 is plotted the poloidal velocity magnitude, and as we can see
V, = 0 only in the helmet-shaped region. On Fig. 4.15 is plotted the
density, so we can compare the density of the final model and the density

of the solution with a static, self-consistent helmet-shaped magnetosphere.
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FIGURE 4.12: The heating function H — A corresponding to the helmet-
shaped magnetosphere
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FIGURE 4.13: Evolution of the size of the magnetosphere on each re-
adjustment step
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FIGURE 4.14: Poloidal velocity magnitude during the simulation

FIGURE 4.15: Density during the simulation
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Chapter Abstract

The goal of this short chapter is to investigate the hypothesis under which
the heating flux in the dead zone is not null. By using the same heating
function as the one used in Chapter 3, we find a solution with a dead zone,
which is larger than the Cold dead zone solution of Chapter 4, but still with
no mass flux through the equator. In all cases, the heating function, used
to ensure the topological stablity of the solution is not imposed a priori, but
emerges as a consequence of the construction of the model, under the hy-
pothesis of self-similarity. Assuming a non-zero heat function is equivalent
to considering that physical processes, responsible for heating/cooling in
the wind are not exactly balanced. Including a full heating is a limit case,
but nevertheless shows that a self-consistent dead zone could also be con-
structed in this case, enabling to study the influence of different heatings

on such outflows.

5.1 Initial and boundary conditions for the

simulation

The initial conditions for this simulation will be the same as those used
in the Cold dead zone solution of Chapter 4. We are plotting this initial
condition on Figures 5.1 and 5.2. The difference with the previous simula-
tion is that we are going to use the same heating, as the one for the CASO
solution of Chapter 3. As we saw in the previous chapter, setting up a
static dead zone, with the requirements to keep this zone static, discussed
in §4.1.5, has the result that when we use this solution as an initial con-
dition for a simulation, and evolve it with time, we obtain a final solution
in which the dead zone is reshaped. Nevertheless, in realistic situations,
the heat distribution might not be the one in which different processes like
radiative cooling/heating by damping of Alfvén waves or heat deposited by

accretion, are not balanced out.
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Density contours and fieldlines, t=0.0
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FIGURE 5.1: Once again, we start from the same initial setup, which

we except is an educated guess for a solution with a dead zone. On the

top panel we have density and fieldlines as well, on the bottom panel
absolute value of the poloidal velocity
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FIGURE 5.2: On the top panel the toroidal component of the magnetic
field and on the bottom panel rotationnal velocity



Chapter 5. Hot dead zone 111

Regarding the simulation box, we will again be using the same mesh, as

the one used for the simulations in Chapters 3 and 4, described in §3.2.

5.2 Outcome of the simulation: description

of the final solution

As we can see from figure 5.3, the final state in this ‘heated dead zone’ solu-
tion is not significantly different from the cold dead zone one. As expected,
matter is accelerated in the whole dead zone, but typical velocities are quite
small and tend to zero towards the equator. Once again, the stellar wind
component is not sensibly modified; the disk wind component is more dis-
torded. The initial dead zone is reshaped again, but this time it has a final
shape which is much closer to the initial one. This solution is similar to
the cold dead zone one in an important aspect: the self-consistent setup,
but this case with a dynamical magnetosphere, but still with no mass flux
through the equator, solid rotation and vanishing toroidal component of
the magnetic field. Indeed, on Fig. 5.3, we see in green the closed field-
lines of this solution. Note the specific form of the last connected line of
this solution, which is almost coincidental to the last connected line of the
CASO solution, used for initial condition. This last connected line has the
same shape as the zone of the toroidal magnetic field, which is kept to 0 by
the time evolution, and the zone in which the solid rotation is maintained
during the simulation (see Fig.5.3). The difference with the previous case is
that matter is not accumulated near the equator. This time, several field-
lines rooted on the star open up, but this time those are fieldlines rooted

in a much smaller area on the inner boundary.

As we have done it for the previous cases, we are plotting the relative
changes in all eight MHD quantities (see Appendix C). First, the pressure

distribution (C.3) is almost identical to the initial distribution. This is
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not a surprise, since the heating/cooling term H — A in the energy equa-
tion (2.11) is computed in order to satisfy this equation. Let us have a
look on the density distribution on Fig. C.1. The density in the heated
dead zone solution is basically dropping by a factor of 2. Again, as in the
Cold dead zone solution, this magnetosphere is hotter than the surrounding
wind. Besides the fact that here the magnetosphere is dynamical, another
important difference between this solution and the Cold dead zone solution
is that jere, the self-consistent dead zone is not varying much in size and
extent, ¢.c. the last closed fieldline is rooted approximately at the same
angle at the inner boundary and the shape of the last closed fieldline is

almost identical to that of the initial condition.

5.3 Conserved quantities

On Figure 5.6 we are plotting the plasma  parameter. As in the case of the
Cold dead zone solution, the low value of this parameter close to the inner
boundary and the equator is maintained to its low levels, as it is required
in order to keep a plasma in static equilibrium. The plasma £ is indeed
increasing as we look above the dead zone, but unlike the previous case,
where fieldlines open up and empty the vicinity of the dead zone, now we
are in a situation where the matter is accelerated and flowing along the last
connected line (note how this time we do not have null velocities on the
interface dead zone/stellar wind), which explains why the thermal pressure

is bigger than the corresponding region.

Concerning ¥4 (Fig. 5.5), the mass-to-magnetic flux ratio, we note again
the sensitive behaviour of this quantity. Nevertheless, ¥, contours are
almost parallel to the fieldlines in the stellar wind part of the solution,
and as we discussed for the two previous solutions, is showing a sensitive

behaviour in the region in the interface of the stellar and the disk wind.
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Density contours and fieldlines, t=50.0
2

log(p) —— Dead zone
Stellar win: Disk wind
Last connected line

|v|, t = 50.0

FIGURE 5.3: The quantities, plotted on Figure 5.1, are shown at their
final state. Note the shape of the last closed fieldline. It will define the
size of the self-consistent dead zone, as in the Cold dead zone solution
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In(—B,), t = 50.0

V,, t =500

0-12
0.1

0.08
0.06
0.04
0.02

-0.02
-0.04

FIGURE 5.4: The same quantities as Figure 5.2 and are plotted here.

We note the characteristic shape of the zone, in which By = 0 and V,,

corresponds to solid rotation, which has the same shape as the form of
the last closed fieldline on Fig. 5.3
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t=0 —— t=50.0 ——

FIGURE 5.5: Contour plot of ¥ 4, for £ = 0.0 and ¢ = 50.0¢,

The specific angular momentum L (5.8) and the total angular momentum
pL (Fig. 5.7) are again quite close to their initial distributions. Similar
effects are those observed in the Cold dead zone solution are also observed
here. As in the Cold dead zone case, lines of equal L are a bit closer to the
axis than in the initial condition. As L increases with 6, this means that
the stellar wind is carrying a slightly bigger angular momentum than the
stellar wind of the CASO solution. Indeed, we see that the last connected
line is at slightly bigger € than at ¢ = 0, but as we showed in the Cold dead
zone case, this is not affecting much the angular momentum flux. We are
also going to plot, as in the case of the Cold dead zone solution, the torque
7 throughout the simulation (Fig. 5.9). We again see that the contours of
equal 7 are not significantly different, in the stellar wind region, than the
torque of the CASO solution. We are going to conclude that this stellar
wind is braking the star the same manner as the stellar wind of the CASO

solution.
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t=0 —— t=50.0 ——

F1GURE 5.6: The plasma £ throughout the simulation

0 0.5 1 1.5 2

t=0 —— t=50.0 ——

FIGURE 5.7: The total angular momentum L throughout the simulation
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0.5

t=0 —— 1=50.0 ——

FIGURE 5.8: The specific angular momentum I throughout the simu-
lation

t=0 —— t=50.0 ——

FI1GURE 5.9: The torque 7 throughout the simulation
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Conclusion

The goal of this thesis was to gain insight in the physical properties YSO
jets with self-consistent magnetospheres. We based this work on previously
obtained semi-analytical solutions, providing the geometrical framework
needed to study YSO jets, and used the semi-analytical solutions as initial
conditions of a numerical simulation box. This solution, on which we ex-
tensively discussed in Chapter 3, is obtained under reasonnable hypotheses,
and was proven, in this work, to be topologically stable. This means that
when introduced in a MHD simulation, all quantities converged to a steady,
stationnary state. The importance of this finding is that by proving that
we have a stable, from MHD point of view solution, we could discuss on the
physical meaning of the potentially observable quantities. The question of
the stability was not trivial, because in order to ensure that the eight MHD
quantities, in the form they were written under the self-similar hypothesis,
are solutions of the equations of ideal MHD we ought to employ a non-
polytropic heating function. We have shown that the three main parts of
the solution: the stellar wind component, the disk wind component and the
magnetosphere with closed fieldlines are structurally stable, that they keep
their positions and properties, but that we should proceed with caution

when discussing the interface region between the stellar and the disk wind.

119



Chapter 6. Conclusion 120

In Chapters 4 and 5, we have explored two different ways of modifying
the semi-analytical solution. This was needed in order to obtain numer-
ical solutions, accounting for a self-consistent magnetosphere, which we
defined as a magnetosphere with no mass flux through the equator, and
by accounting for the consequences of such a constraint, imposed by the
equations of ideal MHD. The employed method is an illustration of the
potential of the combination of analytical and numerical methods for the
study of the astrophysical problem. The mixed approach consists of us-
ing the semi-analytical solution, which topological stability we tested, but
by simply suppressing the mass flux along the closed magnetic fieldlines.
This initial condition was then evolved with the numerical tool, which is
the PLUTO code. We proved that even with the modifications we intro-
duced, the stellar wind component is topologically stable, and also the disk
wind component. In the case of the non heated magnetosphere, which we
introduced in Chapter 4, we have found that initially closed fieldlines, an-
chored close to the stellar wind open up, hence decreasing the extent of the
dead zone as seen from the stellar surface, and that those lines pinch the
magnetosphere, decreasing significantly its size, and giving it a particular
helmet-type structure. We argue that this smaller magnetosphere is in bet-
ter agreement with the observations that the unmodified semi-analytical
solution, as the modified solution predicts a magnetosphere with a typical
size twice as smaller as the unmodified solution for the same strength of
the stellar magnetic field. We presented another solution, in which the stel-
lar and the disk wind are again topologically stable, and in which the size
of the self-consistent magnetosphere is practically the same as the initial
one. This is achieved by restoring the non-polytropic heating in this zone.
By this, we argue, we could model magnetospheres with different sizes for
the same magnetic field. The non heated magnetosphere corresponds to
a case where all the processes, contributing to heating balance out those
who contribute to cooling, and in the case of the heated dead zone where

the heating is much larger than the cooling. Proving that in both cases
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we have topologically stable, self-consistent magnetospheres, which intro-
duction is not dramatically changing the semi-anaytical solution, and hence
astrophysical conclusions are appropriate. This is also a hint that in future,
we could also model intermediate cases, where for example we could model
contributions to heating from different physical processes, and most impor-
tantly, include a more precise model of the disk wind part, by including an
a-disk in the box and model in a more precise way the disk wind part of

the jet.
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Normalized deviations
between the final and initial

state for the CASO solution

A.1 Density

t
Relative differences (p

0
> are plotted on Fig. A.1 and
A2

A.2 Pressure

Plt=5 =
Relative differences =)= Fo=0) are plotted on Fig. A.3 and
Plt=0)
A4
A3 Bp

= 50) — Bg(t = 0)
Br(t =0)

B
Relative differences ( at

) are plotted on Fig. A.5 and
A6
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A.‘4 Be

Relative differences Bt =50) ~ Bole =) are plotted on Fig. A.7 and
By(t =0)

A8

A5 B,

R _ =
Relative differences By(t = 50) — By(t =0

A.10

)) are plotted on Fig. A.9 and

A.6 VR

Relative differences Ve(t = 50) - Vi(t =0) are plotted on Fig. A.11 and
Vr(t =0)

AJ1D

A.7T V

Va(t = 50) — Vy(t = 0)
Va(t =0)

Relative differences (

) are plotted on Fig. A.13 and
A.14

A8 Vo

— 50) — V(= 0)
Vo(t =0)

Va(t
Relative differences ( o

) are plotted on Fig. A.15 and
A.16
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p(t = 50) — p(t =0)

p(t =0)

FIGURE A.1: Relative change in density on the ejection scale

p(t=0)
300 0.06
0.05
250 ] 0.04
200 0.0
x 150 If 8'01
-0.01
Ll : -0.02
50 -0.03
; M -0.04
0 — 18 _0.05

0 50 100 150 200 250 300
w

FIGURE A.2: Relative change in density on the propagation scale
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P(t = 50) — P(t=0)

P(1=0)

7 0.002
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FI1GURE A.3: Relative change in pressure on the ejection scale
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FIGURE A.4: Relative change in pressure on the propagation scale
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Bg(t =0)
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0 05 1
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FIGURE A.5: Relative change in radial magnetic field on the ejection
scale
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0 50 100150200250300350
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FIGURE A.6: Relative change in radial magnetic field on the propaga-
tion scale
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0.3
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0.2
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0.1
0.05

FIGURE A.7: Relative change in longitudinal magnetic field on the ejec-
tion scale
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FIGURE A.8: Relative change in longitudinal magnetic field on the prop-
agation scale
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By(t = 50) — By(t = 0)

By(t = 0)

FIGURE A.9: Relative change in toroidal magnetic field on the ejection
scale
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FIGURE A.10: Relative change in toroidal magnetic field on the propa-
gation scale
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Vi(t = 50) — Va(t = 0)

Vr(t =0)

0.2

0.15

FIGURE A.11: Relative change in radial velocity on the ejection scale
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FIGURE A.12: Relative change in radial velocity on the propagation
scale




Appendix A 151

Vo(t = 50) — V(t = 0)

Vo(t =0)

FIGURE A.13: Relative change in longitudinal velocity on the ejection
scale
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FiGURE A.14: Relative change in longitudinal velocity on the propaga-
tion scale
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FIGURE A.15: Relative change in toroidal velocity on the ejection scale
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FIGURE A.16: Relative change in toroidal velocity on the propagation
scale
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Normalized deviations between
the final and initial state for

the Cold dead zone solution

B.1 Density

Relative differences <p(t =<l plE= O)> and (p(t =20) i 4)> are
p(t =0)

plotted on Fig. B.1 and B.2

B.2 Pressure

Relative differences

Pit=4)—P(t=0) P(t=20) — P(t=4)

and
Pt =10) Pt = 4)

are plotted on Fig. B.3 and B.4

B.3 Bj

Bg(t =4) — Bg(t = 0)) and (BR(t = 20) — Bg(t = 4))
B/{(t — O)
are plotted on Fig. B.5 and B.6

Relative differences
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B.4 By

Relative differences

are plotted on Fig. B.7 and B.8
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are plotted on Fig. B.9 and B.10
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are plotted on Fig. B.13 and B.14
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Relative differences

are plotted on Fig. B.15 and B.16
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pt=4)—p(t=0) p(t=20) — p(t =4)
p(t=0) p(t =4)

FIGURE B.1: Relative change in density on the ejection scale
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FIGURE B.2: Relative change in density on the propagation scale



Appendix B 136

P(t=4) — P(t =0) P(t=20)— P(t = 4)
P(t=0) P(t=4)

2 i I I 2 I I 1 0.2
0.15

1.5 | 1.5 0.1
0.05

N 1 | w1 0

+ -0.05

0.5 | 0.5 | ] -0.1
s -0.15

0 1 1 0 QEL 1 1 -0.2

0 0.5 1 1.5 2 0 0.5 1 1.5 2
w w

FicURE B.3: Relative change in pressure on the ejection scale
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FiGURE B.4: Relative change in pressure on the propagation scale




Appendix B 137

Br(t =4) — B.(t=0) By (t = 20) — B.(t = 4)

B.(t=0) B, (L= 4)

FIGURE B.5: Relative change in radial magnetic field on the ejection

scale
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FIGURE B.6: Relative change in radial magnetic field on the propaga-
tion scale
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F1GURE B.7: Relative change in longitudinal magnetic field on the ejec-
tion scale
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FI1GURE B.8: Relative change in longitudinal magnetic field on the prop-
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FIGURE B.9: Relative change in toroidal magnetic field on the ejection
scale
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FIGURE B.10: Relative change in toroidal magnetic field on the propa-
gation scale
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F1GURE B.11: Relative change in radial velocity on the ejection scale
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FIGURE B.12: Relative change in radial velocity on the propagation
scale
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FIGURE B.13: Relative change in longitudinal velocity on the ejection
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FIGURE B.14: Relative change in longitudinal velocity on the propaga-
tion scale
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FIGURE B.15: Relative change in toroidal velocity on the ejection scale
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scale
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Normalized deviations between
the final and initial state for

the Heated dead zone solution

C.1 Density
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Relative differences (p )) are plotted on Fig. C.1 and C.2
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)> are plotted on Fig. C.5 and
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FI1GURE C.1: Relative change in density on the ejection scale
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FIGURE C.2: Relative change in density on the propagation scale
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FiGUure C.3: Relative change in pressure on the ejection scale

P(t =50) — P(t = 0)
P(t=0)

350
300
250
200
150
100
50
0

0 50 100 150 200 250 300 350
w

FiGure C.4: Relative change in pressure on the propagation scale
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FIGURE C.5: Relative change in radial magnetic field on the ejection
scale
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F1GURE C.6: Relative change in radial magnetic field on the propaga-
tion scale
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Fi1GUure C.7: Relative change in longitudinal magnetic field on the ejec-
tion scale
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FI1GURE C.8: Relative change in longitudinal magnetic field on the prop-
agation scale
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By(t = 50) — By(t = 0)

FIGURE C.9: Relative change in toroidal magnetic field on the ejection
scale
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F1GURE C.10: Relative change in toroidal magnetic field on the propa-
gation scale
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FIGURE C.11: Relative change in radial velocity on the ejection scale
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FI1Gure C.12: Relative change in radial velocity on the propagation
scale
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F1GURE C.13: Relative change in longitudinal velocity on the ejection
scale
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FIGURE C.14: Relative change in longitudinal velocity on the propaga-
tion scale
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Ficure C.16: Relative change in toroidal velocity on the propagation
scale
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