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The detailed compréhension of the observed properties of Jets of Young

Stellar Objects requires the construction of models, accounting for the ob

servations, but allowing us, by the knowledge of the hypothèses under which

t.liose models are constructed, to gain insight, into the physical processes re-

sponsible for the observed behaviours. Once sucli models elaborated, we

need to test their stablitv, and to improve the models, wlien t.hey exhibit

inconsistencies.

In this thesis, we are going to studv the stability of solutions for Jets of

Young Stellar Objects, and then to change them, in order to include static

magnetosphere. The approach we employed is to init.ialize a simulation box

with a semi-analytical solution of a global collimated outflow with non-null

velocities in the magnetosphere, and to test its stablitv. Tlien we modifv

accordingly the semi-analytical solution in order to account for a static

magnetosphere. The final state to which the simulation relax is then a

numerically obtained solution for global fiow with a dead zone. We obtain

two different solutions, one for a heated, and one for a non heated dead

zone. We discuss the astrophvsical implications of the properties of these

solutions.

The plan of this thesis is the following: In the Chapter 1, first we make

an introduction to the theorv of star formation, and second, to the theorv

and observations of Jets of Young Stellar Objects. In Chapter 2, we dis

cuss the general framework in which we operate, which are the équations

of idéal Magnetohvdrodynamics, and how the collimated outfiows of Young

Stellar Objects are studied analytically. In Chapter 3, we discuss the topo-

logical stablitv of a solution, describing an axisymmetric, collimated stellar

outflow. In Chapter 4 we obtain a numerical solution for a jet with static

magnetosphere, and discuss how this refers to the observations. In Chapter

5, we compare to the solution, presented in Chapter 4 another solution, in

which the dead zone is heated.
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La compréhension détaillée es propriétés observées des jets des objets stel

laires jeunes nécessite la construction de modèles. Ceux-ci tiennent compte

des observations et nous permettent de mieux comprendre les processus

physiques responsables des phénomènes observés. Une fois de tels modèles

construits, nous devons tester leur stabilité, et les améliorer.

Dans cette thèse, nous étudions la stabilité de solutions de jets d’objets stel

laires jeunes et les modifier, afin d’en inclure des magnétosphères statiques.

L’approche utilisée est l’initialisation d’une simulation numérique avec une

solution semi-analytique de jet, dont la vitesse d’écoulement dans la mag

nétosphère est non-nulle. On vérifie aussi la stabilité de cette solution.

Dans un second temps, nous allons modifier la solution semi-analytique

de manière auto-cohérente afin qu’elle corresponde à un modèle avec une

magnétosphère statique. L’état final vers lequel la simulation converge est

alors une solution, obtenue numériquement, de flot collimaté avec une zone

morte. Nous obtenons deux solutions différentes, une pour une zone morte

chauffée, et une autre pour une zone morte qui n’est pas chauffée. Nous

discutons des implications astrophysiques de ces solutions.

Le plan de cette thèse est le suivant: dans le Chapitre 1, nous allons tout

d’abord faire une introduction de la théorie de la formation des étoiles, et

ensuite, dans la théorie et des observations des jets des étoiles jeunes. Dans

le Chapitre 2, nous discutons le cadre général dans lequel on se place, à

savoir les équations de la magnétohydrodynamique idéale, et nous discutons

également les procédés analytiques utilisés pour étudier les jets des étoiles

jeunes. Dans le Chapitre 3, nous discutons la stabilité topologique d’une

solution particulière, qui décrit un vent stellaire collimaté stationnaire et

axisymétrique. Dans le Chapitre 4, nous obtenons une solutions numérique

d’un jet avec une magnétosphère statique. Nous discutons la relation entre

cette nouvelle solution et les observations. Finalement, dans le Chapitre 5,

nous comparons à la solution obtenue dans le Chapitre 4 une autre solution,

dans laquelle la zone morte est chauffée.
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Chapter Abstract

Tlie goal of this tliesis is t.o study models of static magnetospheres in col-

limated outflows from Young Stellar Objetcs. This requires to introduce

first the general context of such a study, by giving an outlook of the current

astrophysical paradigm on star formation, which is the formation of proto-

stellar cores in molecular clouds by gravitational collapse, which is governed

by the interplay of gravitation, magnetic fields and hydrodynamics, and to

describe how collimated outflows - or ‘jets’ are part of this tlieory. The

choice we made is to introduce the reader in this framework by starting

with an outlook of this very general topic witliin Astrophysics, which is

the tlieory and observations of Young Stellar Objects, and then to discuss

observations and tlieory of jets. Afterwards, in subséquent, chapters, we

will discuss the particular models we studied in order to gain insight. into

these phenomena.

1.1 Stellar variability. T Tauri variables as

Young Stellar Objects

1.1.1 T Tauri stars as young stars

Once, the variability of a star was considered to be something unusual.

Stars were considered to be part of the Arist.otelean supralunar realm, to

which was attached the notion of perfectness, or interchangeably, the lack

of change. This view was prévalent prior to the advent. of modem science
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at the beginning of t.he 17th century. The first star to be described with

certaintv as variable is o Ceti. Although possibly previously identified as a

nova, its periodic variability was discovered by Johannes Holwarda in 1638,

and in 1642 Johannes Hevelius named it “Mira,” meaning “The Wonderful,”

(Hoffleit, 1997) possibly imprinting in this name his fascination for the fact

that some stars undergo changes. Nowadays, it is clear that, in some sense,

every star is variable: stars and their vicinity undergo évolution, and some

of the most beautiful physical théories liave been employed in answering

the question of where do stars corne from, what they are, and where do

t.hey go. Also, it became clear that the star Mira is part of a class of

variable stars in a latter stage of their évolution an oscillating red giant

stars a class of stars named “Mira-type,” after the first discovered of

their kind. Similarly, a class of variable stars discovered by Alfred H. Joy

in 1945, is named after the star that Joy identified as their prototype the

variable star T Tauri. What Joy pointed out as being characteristic for T

Tauri stars (TTS) is their low luminosity, rapid irregular variations in the

lightcurve, spectral type between F5 and G5, spectra with émission lines

blue-shifted with respect to the absoption lines, and their association with

dark or bright nebulae (Joy, 1945). Later, V. Ambartsumian identified

TTS as Young Stellar Objects (YSOs), i.e. pre-main sequence stars, whose

luminosity is due to gravitational contraction, an identification that will

prove riglit (e.g. Ray, 2007, and références therein).

The described activity and peculiarities of TTS are nowadays explained by

the presence of accretion disk, outflows sucli as stellar winds and highly

collimated jets, and magnetic phenomena.

1.1.2 Interstellar clouds and T Tauri stars

As mentioned, TTS are observed close to nebulae, whicli are known to be

cold molecular clouds, composée! mainly of molecular hvdrogen. H2 is a

homonuclear molécule with no permanent dipole moment and hence is not

interacting with electromagnetic radiation. As the gas is optically thin at

these densit.ies, H2 is not directly observable. Instead, its density is inferred
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from the density of “tracer” molécules, which abundances are supposed to

liave fixed values. Different ‘tracer’ molécules are used to track H2, allowing

the density of the moleeular gas to be measured with different précisions,

such as CO and SO. State-of-the-art instruments such as those on the

Herschel Space Observatory, which mission recently ended, observe more

robust tracers, such as HF (Sonnentrucker étal., 2010). Apart, H2, CO, SO

and HF, various other compounds are présent in cold moleeular clouds,

such as NH3, Polycvclic aromatic hvdrocarbons (PAHs) and most notably,

dust. Dust accounts for only 1% of the cloud mass, but is responsible for

the optical thickness of the cloud. The size of dust part.icles hâve long been

an open question. Their size lias been determined recently by observing

the scattered light of close objects at certain wavelenghts: tliey were found

to scatt.er mostly light at 3.6/im (phenomenon called “cloudshine” or “core-

shine”, for denser régions), which could be done by dust particles tliat liave

typical sizes of 1 gm (Paganiet al., 2010). More than 4 000 Giant Moleeular

Clouds (GMCs) are found in the Milky Way galaxy, with much more Small

Moleeular Clouds (Ray, 2007). Among tliem, the Taurus-Auriga (GMC),

Ophiucus (SMC) and Orion (GMC) star-forming régions are studied in

greater detail than otliers. (Hartmann, 2009).

1.1.3 Gravitational collapse of a young star

Stars form in gravitationally bound overdense régions in tliese clouds, which

can be clumps or prest.ellar cores (commonly called also “compact sources”).

Clumps are sites of formation of young stellar clusters, such as the Trapez-

ium cluster at the heart of the Orion nebula. Cores are sites of formation

of individual stars or small multiple Systems (Ray, 2007, and references

therein). Another interesting feature of the interstellar medium is tliat. it

is structured in filaments. It, seems to be ubiquitous as revealed by the

Herschel Space Observatory (Molinari et ai, 2010), and clumps and cores

appear along these filaments. Tliis may mean tliat the moleeular clouds

first collapse in filaments before forming compact sources (Molinari et ai,

2010).
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Once the compact source form, various mechanisms may prevent the grav-

itational collapse that. will finally lead to the formation of a star. From

theoretical point of view, the maximal mass of a sphere in hydrostatic

equilibrium is

Mbe — O.GG
(T/10K)

{Pth/{3 x 10^ kBcm~3K) }
1/2 M0 (1.1)

and is c.alled the Bonnort-Ebert mass (T being the température in Kelvin,

Pth the thermal pressure and kB Boltzman’s constant). The Bonnort-Ebert.

mass’ order of magnitude is 1M0 for typical clouds and is comparable to

the Jeans mass (and respectively, the radius of the Bonnort-Ebert sphere

is comparable to the Jeans length: RBE = 0.486i?j, which is the critical

mass above which clouds are subject. to fragmentation (McKee <C Ostriker,

2007, and référencés therein.) When the gravitational collapse st.arts, the

number density of the newly formed core is ncore = 10~2°g.cm~3 (for the

Sun, n0 = lg.cm-3). Mat.erial spread at. lly will collapse to a core wit.h a

diameter of 1 Mkm, and during that phase its température will rise from

102K to 106K (Ray, 2007, and référencés therein).

The mass of a core may exceed the Bonnort-Ebert mass, but gravitational

collapse may st.ill be stopped, and various factors are to be t.aken into ac-

count. The ISM is observed to be turbulent, wit.h turbulent motions being

somet.imes supersonic. Observations of spectral lines of molécules such as

CO show that tlieir broadness varies on the observational scale, as expected

from Kolmogorov’s turbulent spectrum. Second, tliere is observational évi

dence for the presence of magnet.ic fields in the ISM such as the polarization

of millimet.er émission by aligned dust. grains. Tlieir strengths vary from

few //G to fewr mG (Rav, 2007, and référencés therein). Cores that hâve

the Bonnort.-Ebert. mass, but. are supportée! by magnet.ic pressure are called

sub-crit.ical. And tliird, this balance may be modified by rotation.

The Cold neut.ral medium (CNM) component of the ISM is supposed to be

subcritical or at. most critical, t.lius the magnet.ic fields are able to stop the

collapse at first. The quant.ative contribution of the gradient, of magnet.ic
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pressure t.o the force balance is dépendant, on the density structure of the

core, hence observational evidence is not conclusive. (McKee & Ostriker,

2007 and references therein). Meanwhile, magnetic fields act directly only

on ionised particles, and ionisation ratio of tlie ISM is quite low: 10“6.

Particles are supposed to be ionised by cosmic ravs, and they interact with

neut.rals by friction. Depending on the balance of friction and magnetic

forces, ions may be allowed to leak out, and the bulk of the cloud, con-

tained in the neutrals, allowed to collapse. Tins process is called ambipolar

diffusion, described for the first, time by Mestel & Spitzer (195G). The dy-

namics of the magnetic field during the gravitational collapse remain an

open question, with one of the classic problems of the theorv of star for

mation being the fact, that the ISM is stronglv magnetized, and a star is

w^eakly magnetized (McKee & Ostriker, 2007).

1.1.4 Evolutionnary sense of protostellar classes

1.1.5 Class 0

The gravitational collapse, when ail the envelope is falling onto the star,

continues until n — 10~2g.cm~3 a second core is formed and hydrogen is

ionised (Ray, 2007).

At this moment, 1% of the mass is in the core, and the ot.her part is in the

envelope. The star starts to accrete its spherical envelope: it’s now a Class

0 protostar.

As mentioned, the peculiar activity of a TTS is partly attributed to the

presence of an accret.ion disk. Observational evidence for the presence of

accretion disks around YSOs are the observed excess in the infrared and

millimeter émission and the fact that the red-shifted part of the émission

lines is blocked. On theoretical grounds, the formation of an accretion disk

is explained by considering the fact that rotation breaks the spherical sym-

metry of the cloud, thus material coming from sufficiently large distances

in the surrounding nebula at the equat.or from below will hâve opposite
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momentum flux witli respect to material coming from above; tliis will lead

to the formation of a sliock at the equator. Gas passing trough this shock

will see its entropy increases, hence it will loose kinetic energy, i.e. the

infalling gas particles will stay close to the equator, forming a thin disk

(Hartmann, 2009, and référencés therein).

Once a significant part of the envelope is accreted in the Class 0 phase,

with the accretion rate being highly variable witli respect to time, and out-

flow in the form of a massive wind and jets develop.This is observable, for

instance, through the doppler-shifted CO rotationnal line émission (Ray,

2007, and référencés therein). Class 0 objects are optically invisible, but

observable at far-infrared and millimeter wavelengths (Ray, 2007, and réf

érencés therein).

1.1.6 Class I

When the disk is formed, the protostar enters a new phase, in which it

accretes both from its envelope and disk, with the presence of an outflow.

It’s called a Class I protostar. Such objects are still optically invisible, but

scattered light could be seen in the surrounding nebula (Ray, 2007, and

référencés therein).

The phase corresponding to Class 0 and I together is sometimes called

“embedded phase.” The embedded phase should last up to lMyr, according

to theoretical models by Contopoulos & Sauty (2001), Dunliam & Vorobyov

(2012). Evans étal. (2009) argue that embedded phase lifetime is 0.44Myr,

by counting Class 0 and I sources in the “cores to disks” (c2d) Spitzer

spect-roscopic survev and comparing their number to the number of Class

II sources (based on the assumption that the lifetime of Class II sources is

taken to be 2Myr). Class 0 and I sources ignite deuterium and the energy

output from deuterium ignition is balanc.ing the gravitational contraction.

This is analoguous to the equilibrium between gravitational contraction

and hydrogen burning of a main sequence star. T Tauri stars hâve been

identified to hâve luminosities corresponding to wliat is predicted for YSOs
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burning only deuterium, who follow an evolutionnary track on tlie HR

diagram called “birthline”, or “Hayaslii track”, situated above tlie main

sequence. (Stahler, 1908) Once tlie main accretion phase is over, tlie stars

stops burning deuterium, and starts burning hydrogen: it lias become a

zero-aged main-sequence star (ZAMS). As we already said, Class I stars

accrete from their envelopes, but most importantly, from an accretion disk,

wliich feature does not exist in Class 0 sources. An important thing to say

is that tlie important part of the mass is already accreted; tlie mass of the

envelope Mend <C Mstar, as opposed to Class 0 sources.

1.1.6.1 The luminosity problem of the embedded (Class 0 & I)

phase

A significant shortcoming of the standard model is the luminosity problem.

Embedded phase lasts at. most lMyr, wliich requires an accretion rate of

10~6Moyr-1, close to the accretion rate during the runaway collapse of

Shu (1977). This implies luminosities of the order of 7L0, liigher than the

typically observed IL©. The most plausible solution to this problem is that

the accretion rate during the embedded phase is not steady, and that a

significant portion of the mass is accreted during episodic bursts, such as

those observed in FU Ori stars.

Recent physical models including such behaviour can be found in Dun-

liarn& Vorobyov (2012), thus making the médian accretion rate (hence lu

minosity) significantly smaller than the needed mean accretion rate. It is

not clear if such scenarii match the observational evidence, since dynamical

properties of outflows and jets of Class 0 objects suggest different timings

for such outbursts, so further observational studies are called for. Part

of the solution of the luminosity problem may be that a more significant

fraction of the accretion energy is carried away by outflows and jets (Mc-

Kee& Ostriker, 2007 and references therein).
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1.1.7 Class II

Once the envelope is accreted and there is an accretion disk, the protostar

is now a Class II YSO. It is opticallv visible eit.her as Herbig Ae/Be star

(stars with mass of a several solar masses), eitlier as T Tauri star (1 —

2M0). A low-mass star in this stage is called a “Classical T Tauri star'7

(cTTS). The disk continues to accrete and the outfiow is developped and

potentially observable. (Ray, 2007, and references therein, Hartmann,

2009, and references therein). cTTSs exhibit accretion rates of lO~8M0yr-1

(Sauty et al. (2011) and references therein). Outflows in YSOs last at least.

106vr. (Bouvier, Forestini, & Allain, 1997) As the cloud, surrounding the

young stars dissipâtes with âge, evolved young stars are easier to observe.

The models we are going to présent in subséquent chapters are concerning

jets from Class II YSOs.

1.1.8 Class III

Class III YSOs, also called “Weak-lined TTS” (wTTS), are even more

evolved protostars, where the disk is cleared from the gas, and the remain-

ing dust is about to be used as a material for planet formation. Some au-

thors identifv cTTS with fast rotators and wTTS with slow rotators (Kun-

durthy et al., 2006). Furthermore, Sauty et al. (2011) argue that wTTS

mav also hâve jets, naturallv of purely stellar origin, but undet.ectable with

up-to-date instruments.

Not ail stars fall in this classes. For example, the star IM Lup is a transi-

tionnal case between cTTS and wTTS (Günther étal., 2013a), and MNLup

lost. its disk of hot dust (Günther étal., 2013b).
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1.1.9 Attribution of classes according observâtionnal

criteria

Before it became clear that the numbering of classes lias evolutionary sense,

classes were attributed to stars based on characteristics of their spectra.

André, Ward-Tliompson, &; Barsony (2000) summarize the criteria used for

spectral classification of YSOs. Tlius, what is used for tlie original classifi

cation is the parameter «ni, corresponding to the slope of the protostellar

spectral energv distribution in the infrared band (wavelengths in the range

2.2/.i — 10 — 25/i):

d(XFx)
dX

(1.2)

In this classification, ant > 0 corresponds to Class I, —1.5 < cur < 0 cor

respond to Class II and aiR < —1.5 correspond to Class III (André, Ward-

Tliompson, &; Barsony, 2000)

1.1.10 Summary

The presented picture of stellar formation lias two otlier major shortcom-

ings. Two of them are the angular momentum problem and the magnetic

flux problem: ZAMS stars hâve much less of the two than an équivalent,

mass of ISM. The latter problem is frequently explained in the literature by

a drop of ionisation during the gravit.ational collapse. As the gravitational

collapse proceeds, the bulk of the cloud découplés from the magnetic field

and the flux is accumulated mainly in the accretion disk. In addition, mag

netic reconnection or turbulent diffusion may play a positive additional rôle

to résolve this problem (McKee&; Ostriker, 2007 and référencés therein).

The problem (e.g., Spitzer, 1978) of angular momentum extraction might,

be resolved by outflows such as massive stellar wnnds and jets, that may

hâve enough angular momentum to torque down the star (e.g. Mestel,

2012 and Matt & Pudritz, 2008a).
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Quantifying this process bv models taking into account. more aspects of

outflow dynamics is still an open question.
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1.2 Jets of Young Stellar Objects and angu-

lar momentum extraction

1.2.1 Angular momentum in Young Stellar Objects

An important issue arises in the theory of star formation, tlieory on which

we gave a brief outlook in the previous section, which consist of the fact

that, if a large mass of gas undergoes a gravitât.ional collapse to form a

compact pre-stellar source, and if nothing t.akes away the angular momen

tum of the collapsing core, then it. should speed-up its rotation. How it.

cornes that centrifugal forces do not. t.ear apart the forming star during the

core collapse? A ‘break-up speed,’ defined as the rotation velocity at which

the centrifugal force equals the binding gravitational force, causing the ro-

t.ating body to disintegrate, should be reached if nothing takes away the

angular momentum. The observationnal evidence shows that, first, stars

do form, and second, that the TTS rot.ate at only 10% of their break-up

speed. (Bouvier, 1900, Edwards, 1993, Vogel&Kuhi, 1981)

This ‘angular momentum puzzle’ is still an open issue in theory of star

formation. It, is well established that, bodies in different stages of their évo

lution hâve different angular momenta. This quant.ity is indeed measured

in observations. As discussed in Belloche (2013), the spécifie angular mo

mentum J/M for dense cores in molecular clouds is J/M — io21~22 cm2s-1

(Goodman, 1993), a pre-main sequenee star lias J/M — 1016-17 cm2s-1

(Mathieu, 2004), and the Sun has a J/M = 1015cm2s-1 (Pinto étal.,

2011). This brings out. the question to quantifv, as much as possible, ob-

servationnaly and theoretically, the meehanisms responsible for this loss of

angular momentum during star formation.

An explanation for angular momentum removal from acreted matter in

in young stars and dispersai of infalling circumstellar envelops cornes from

observations and theoretical models of jets of young stellar objects. Another

hypothesis we are not going to explore in this work is involving the magneto-

rotationnal instability (MRI) of Balbus &; Hawley (1991). The involved
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explanation is that the angular momentum is extracted by redistributing

it to particles at large disk radii.

1.2.2 From Herbig-Haro objects to jets.

Jets were discovered indirectly, by Herbig (1950) and Haro (1950), wlio

observed extended diffuse objects, associated wit.h T Tauri stars, and Corn

ing in pairs, named subsequently Herbig-Haro (HH) objects, and nowadays

commonly observed in star-forming régions. It. was found, in the earlv

1980s, that these objects are parts of highly collimated bipolar jets of Young

Stellar Objects (Dopita, Evans, & Schwartz, 1982, and later confirmed by

Graliam & Elias, 1983, Mundt &; Fried, 1983, Reipurth et al., 1980) and is

now a well established fact. (Eislôffel, 2000, Ray, 1998, Reipurth & Bally,

2001). As collimated supersonic outflows, jets are likelv to carry the angu

lar momentum needed to be removed from the collapsing young star, and to

test tins hypot.hesis a great number of observations and theoretical models

hâve been elaborated. Nowadays, jets are observed on a broad range of

wavelenghts, from X-ray to radio (Arce et al., 2000) and on a broad range

of low-mass YSOs at ail evolutionnary stages. (Cabrit, 2007) Exception are

the sources earlier than B0, who do not. exhibit. well collimated outflows.

(Arce et al., 2000)

1.2.3 Propagation scale kinematic properties

Well collimated jets are spectacular cosmic phenomena, spreading on large

distances and moving at supersonic speeds, thus creating shocks in the

interst.ellar medium. Jets extend on typical linear scales of 0.1 — lpc and

their typical outflow velocities of 10 — 300 km s-1. From the previous, we

can deduce propagation timescales for jets, Oyn = 102 — 105yr. Observed

timescales of jets fall indeed in tins range: Arce et al. (2000) point out that

the dynamical timescale of HH 211 is 103vr, and Takahashi & Ho (2012)
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report that, the dynamical timescale of tlie jet of the protostellar core MMS-

6/OMC-3 is 102vr, making it the youngest observed molecular outflow

known to date.

Another quantities, used for comparaison between different observations

and models, are the momentum rates, typicallv ~ 10~5 M0km s-1 vr-1, and

the mass loss rates, ~ 10~7MQyr~1, but could be as high as lO~6M0yr-1.

(Arce et al., 2006, Bontemps et al., 1996) For example, from observations

in forbidden émission lines, Bacciotti et al. (2000) deduce a mass loss rate

for DG Tau of Mjet = 2.4 x 10~7Moyr“1.

For Class I objects, measures in optical wavelenghts traced jets out to

0.05pc (104AU) to the source. The innermost parts of jets oberved in such

detail are traced in the near-IR, as well as in [Fell] lines and H2, but no

further than 1000AU. (Cabrit, 2007)

Class II objects provide the strongest. constraints, because when we observe

such objects, we are looking mostly at the central driving source at the

outflow, without an absorbing envelop. “Micro-jets” appear in such objects.

Tliey hâve a typical M of lO“8M0yr-1. (Cabrit, 2007)

It is established, from radio observations, that outfiows hâve an onion-

like kinematic structure. In the interior we liave a high-velocity, highly

collimated atomic jet, encompassed by a wide, slow, ovoid H2 cavity. (Agra-

Amboage, 2009, Bacciotti et al., 2000, Beck et al., 2008) It is, however,

the inner streamlines who dominate the émission. (Dougados et al., 2004)

and play a dominant rôle in the mass an angular momentum transport.

(Coffey, Bacciotti, & Podio , 2008) The high-velocity beam of the DG Tau

jet is moving at a velocity of 200 km s-1, and the low velocity beam at

100 km s-1 (Agra-Amboage et al., 2011)

The properties of jets on different scales, i.e. coming from stars with dif

ferent masses, are strikingly similar. The jets, appearing on massive YSOs

(with luminosities ~ 4L0) appear to be scaled-up versions of IL0 jets.

(Cabrit, 2007) There are similarities not onlv between jets from YSOs of
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different masses, but also between jets from YSOs on different evolution-

nary stages. Tliey bave similar properties, with the jet kinematic struc

ture probably determined in early evolutionary stages. (Nisini, 2009, Pe-

senti et al., 2003) This obviously enables a general theoret.ical approach on

t.lie problem of describing the dynamics of jets.

We will not focus in tliis brief outlook on the possible precessions of jets.

Jets propagate along the axis of symmetrv of the accret.ion disk, and their

angles of precession do not exceed 5° on 10 vr timescale. (Cabrit, 2007)

Numerical simulations of precessing jets are carried out bv Cerqueira de

Gouveia Dal Pino (2004).

1.2.4 Accretion-ejection corrélation

Jets of Young Stellar Objects are commonly observed in our galaxv. Around

400 are catalogued by different authors (Hatchell, Fuller, & Richer, 2007,

Wu, Huang, He, 1996, WuetaL, 2004). It is well established that out-

flows and specifically jets are related to accret.ion disks (Cabrit et al., 1990,

Hartigan, Edwards, &; Ghandour, 1995). An indication for this is the fact

that t.hey are observed in star-forming régions, and that high-resolution

images of disks in several jets sources bave been obtained with t.lie HST

and instruments with adapt.ive optics. (McCaugbrean et al., 2000, and réf

érencés therein) The direct link between accret.ion and éjection, in sources

not necessarily accessible by direct imaging, cornes from the observation of

the corrélation between the bolometric luminosity, in which the accret.ion

luminosity bas a major part, and the outflow rates, force and mechanical

luminosity. (Cabrit. & Bertout, 1992) Tliis corrélation can also be explicited

as wliat part of the accreted mass is taken awav by the jet. f — ^et =0.1
Â4cc

is inferred in bot.h Class 0 and I low-L objects. (Bontemps et al., 1996) In

t.lie case of DG Tau, Coffev, Bacciott.i, & Podio (2008) report / = 0.07, and

for different YSOs in their sample, / = 0.01 — 0.07. To summarize, var-

ious st.rong apparent corrélations between t.lie observational signatures of
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accretion and the observationnal signatures of outfiows hâve been observed

during tlie years. (Cabrit & André, 1991, Cabrit et al., 1990)

Another way in which accretion correlates with éjection is the fact that as

accretion rates decrease as the young star evolves, so does outflow activity.

For instance, Class 0 exhibit powerful éjections of matter and ail of them

hâve well collimated jets. The picture is however different at later evolu-

tionnary stages. The corrélation bet.ween the two phenomena is also statis-

tically quantified. A survey of optical and molecular sources in the Taurus-

Auriga molecular cloud complex, carried out bv Gomez, Whitney, k Kenyon

(1997), shows that jets are présent, in ail Class 0 sources, in 60% of Class

I sources, and only 10% of Class II sources. Gomez, Whitney, k Kenyon

(1997) didn’t, find any jets in Class III objects.

According to Cabrit (2009), the thurst for tliis mass low mav require a net

energy deposit of 0.3Lacc, but due to losses related to dissipation and waves

divergence, much more needs to be injected at the base of the wind.

1.2.5 Dynamics of the collimation

0 cs
The opening angle of a ballistic hydrodynamic flow is tan - = — which cor-

2 Vj
responds, for a température of 104K and typical jet velocities of 300 km s-1

to an full opening angle 0 æ 4°, which is comparable to observations.

(Cabrit, 2007, Ferreira, 2009) For example, Perrin k Graliam (2007) report

an opening angle of 9°, for average radial outflow velocity of 100 km s-1,

again consistent for a ballistic hydrodynamic flow with température of 104K

(cs = 9.1 km s-1).

The collimation and éjection speeds vary not, only with âge, but also with

the masses of the outfiows. We indeed expect that there should be a dif

férence between fully convective T Tauri stars and more massive stars with

fullv radiative interiors. The magnetic fields, driving the outfiows, are much

smaller in the case of massive YSOs, and as Shepherd étal. (1998) report,

jets from high-mass YSOs are much less collimated with opening angles
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of 30° — 60°. An order-of-magnitude différence in t.he collimation factors

(defined as t.he ratio between t.he widt.h of t.he outflow to t.he distance t.o the

driving source) is reported by Beuther et al. (2002), who give collimation

factors of 1 2 for high mass outflows, while low mass sources hâve outflows

with collimation factors of up to 10.

Molecular outflows observations, bot.h from low- and high-mass YSO, most.lv

CO t.racing molecular hydrogen, show that. there is a mass-velocity relation,

wliich could also be used to compare different observations and is relevant

to radiative jets simulations. Explicit.ly written this relation is a power law:

—— oc u~7 with 7 from 1 to 3, but up to 10 in some cases, wit.h the steeper
dv

slopes at. high velocities. This slope st.eepens wit.h the mass and the energv

of the flow. (Arce et al., 200G, and référencés therein)

1.2.6 The jet launching zone

1.2.6.1 Jet launching mechanism

The disk launching mechanism is unclear, but there is a consensus on the

fact. that magnetic forces are at the base of the éjection mechanism, together

wit.h thermal and centrifugal forces of the star-disk svst.em. (Arce et al.,

2006, Ferreira, Dougados, & Cabrit., 2006, Kônigl & Pudritz, 2000, Shu et al.,

2000)

The canonical model of Blandford & Payne (1982) int.roduces the idea of

a magneto-centrifugically driven disk wind. It. consists of considering a

disk, with magnetic fieldlines, wliich could be seen as ‘wires,’ root.ed in

t.he disk. Because of t.he rotation of t.he wliole star-disk syst.em, part.icles,

seen as ‘beads’, are const.rained to move along the almost vertical (but.

inclined) magnetic fieldlines, and are ejected by the disk. This ‘bead-on-

a-wire’ analogy is a popular way to explain the launching mechanism of

disk winds. This mechanism lias its General-Relativistic generalizations,

aiming to explain activity of active galat.ic nuclei. A plethora of papers,
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discussing or developping this model are published since then, e.g.: Con-

topoulos&Lovelace (1994), Ferreira (1997), Salmeron, Kdnigl & Wardle

(2011), Tzeferacos et al. (2009).

Anot.lier models, as Sauty &; Tsinganos (1994), discuss, among other mod-

els, thermally driven collimated stellar winds. As discussed in §3.5, tlie

heating needed for the thermal drive could corne eitlier from dissipation of

Alfvén waves, produced in the convection zone, could be changed bv radia

tive transfer, or as Matt&Pudritz (2005) suggest, could be deposited by

accretion.

However, the complex morphologv of the observed outfiows could not be

explained solely by stellar winds or disk winds. As Lee et al. (2000, 2001,

2002) point out, t.here is evidence that tliere is a superposition of two

components: a stellar jet and a disk wind. In the optical, the forbidden

émission lines profiles of TTS show two velocity components: high-velocity,

identified as a stellar jet and low-velocity, identified as a disk-wind.

Finally, a third class of models consider possible periodic éjections, due to

the interaction of the magnetosphere of an YSO witli the unmagnetized

accretion disk. This could be eitlier the X-wind of Shu et al. (1988), (Cai,

2009), the similar ‘ReX’, for ‘Reconnection X-wind’ of Ferreira, Pelletier, Appl

(2000) or the magnetospheric éjections, described by Zanni (2009).

The need of MHD in order to adequatly describe jet launcliing and colli

mation is also well-established. We will remind the basic arguments for the

need of MHD for the study of collimated outfiows, and for a more detailed

discussion the reader is referred to lectures by Cabrit, (2007) and Tsinganos

(2007).

One obsolète hypothesis on the collimation of out.flows is that an isotropie

stellar wind is confined by an a-disk thermal pressure. Barrai &Canto

(1981) show that even if this mechanism can produce collimated outfiows in

the équatorial plane, wliere the accretion disk is présent, the opening angle

of the emerging fiow above the accretion disk will be far too large for the

fiow to be considered as a jet. Then, this argument could be ext.ended, and
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t.he existence of an ext.ernal pressure agent, above the a-disk, collimating

the fiow, could be speculated. This could be either a thermal pressure

of the ambient medium or external magnetic, pressure. Bot.h mechanisms

require by far too large thermal energy density, or far too large magnetic

fields, failing to match the observations.

The self-collimation of jets, i.e. the collimation of the out.flow by the YSO’s

own magnetic field, appear to be the process requiring physically plausible

values for the magnetic field. In the case of equipartit.ion of energy at

the flow base, the magnetic fields needed to achieve self-collimation are

of the order of « 200mG, orders of magnitude smaller than an external

collimating magnetic field. A magnetic field, producing collimation, could

be nearly isotropie near the stellar surface. In the régime of low plasma

/3, the material coming out of the star will travel along magnetic fieldlines

(the inert.ia of the fluid will not be sufficient, to deform the fieldlines and the

magnetic field will keep its near-to-vacuum configuration), unt.il it reaches

the Alfvén surface, where poloidal velocity equals the Alfvén speed. Beyond

the Alfvén surface, the kinetic fluid energy start.s to dominat.e the magnetic

energy density. As a resuit, the inert.ia of t.he fluid deforms the shape of the

magnetic field lines. A st.rong B<p is generated, and strong hoop stresses as

a resuit., exert.ing a confining force t.owards the axis, collimat.e the magnetic

flux surfaces. However, as Mestel (2012) points out, it. is not correct to

t.hink as the magnetic hoop stresses collimating alone t.he flow, act.ually the

flow is collimated by t.he joint, action of magnetic hoop stresses and material

stresses. The particularitv of t.he self-collimation we just. desc.ribed is that.

this process, as we mentionned, needs orders of magnitude smaller magnetic

field. This is because B$ collimates t.he out.flow, and not ext.ernal magnetic

pressure in the poloidal plane. (Arce et al., 200G, Cabrit, 2007, Ferreira,

2007, Tsinganos, 2007)

To measure t.he magnetic. field, Zeeman split.t.ing measures are commonlv

used. (Hartigan, 2009) Magnetic fields tend t.o remain helical at. jet propa

gation scales, as reported by Chrysostomou, Lucas, & Hough (2007) for the

case of HH 135-136.
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1.2.6.2 Extent of the jet launching zone

Different sizes of the jet-lauching zone put constraints on different out-

flow scenarii. For instance, different sizes of the jet launching zone could

rule out different disk wind scenarii. (Ferreira, Dougados, & Cabrit, 2006)

The size of this zone could be deduced by two ways. By measuring jet

expansion witli respect t.o distance from the central source, and then ex-

trapolating back from the resolved area back to the central source, Harti-

gan, Edwards, &; Pierson (2004) found that the jet of HN Tau originate in

less tlian 5.5 AU from the source.

The second way of determining the extent of the zone is to deduce it from

rotation. As derived by Pelletier & Pudrit.z (1992), there is a direct link

between the accretion and mass loss rates/total angular momentum and

the ratio of the magnetic lever arm to the footprint radius of the wind,
Met ( ^A \ 2

. = — . If the velocity gradients across the axis, observed by Bac-
Ma.cc ' ^0 '
ciotti et al. (2000) are indeed interpreted as rotation (see §1.2.8 for discus

sion), Anderson et al. (2003) deduce wq < 3 AU for the ext.ernal part of

the collimated jet of DG Tau.

1.2.7 Future observations of the jet-launching zone

The main difficulty on the observation of the jet lauching zone cornes from

the fact that central sources are often heavily embedded, lience we do not

hâve a clear line of sight to the base of the jet. Besides this fact, the

angular resolution needed to observe the jet launching is very liigli. At its

most suitable working configuration, at wavelenght À = 7mm and at the

most ext.ended ant.enna configuration, the synthesized beam of the VLA

observatory (équivalent of point spread function for radio observations) is

40 miliarcseconds, whicli corresponds, if we look at the Taurus-Auriga or

Ophiucus molecular cloud complexes (d æ 140pc), to the size of the orbit

of Jupiter (æ 5AU) (Wilner&Lay, 2000). The HST/adaptive optics seeing

corresponds to a linear size of 125AU in the Taurus-Auriga complex.
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As we discussed in §1.2.6, the jets are launched at smaller scales, thus wit.h

the advent of the ALMA telescope, wit.h its maximal resolution of 5 miliarc-

seconds, hence « 0.7AU at the Taurus-Auriga distance, (Belloche, 2013)

t.hese régions will be resolved. Moreover, as Beuther et al. (2002) point out,

high-angular resolution observations are needed in order to disentangle the

outflow contribution in the overall émission of the observed object. from the

émission of the central source.

1.2.8 Observations of rotation

In order to constrain better the jet-launching mechanism, more detailed and

high-resolution observations of jet rotation near the central driving source,

are still needed. Rotation at propagation scales (2x 103—104AU) is observed

by Davis et al. (2000), but this does not put much constraint on the jet

rotation, because the velocity field is ‘contaminated’ by strong interaction

wit.h the environment. It still provides some valuable information on jet

physics. Rotation of outfiows is also reported in high-mass YSOs, Herbig

Ae/Be stars, as reported by Klaassen et al. (2013), who detect a rotating

disk wind in the Herbig Ae star HD 163296.

Doppler-sliift. spectral observations of rotation in low-mass YSO jets need,

first, high spectral resolution, and second, sliould disentangle effect.s, due

to rotation, from other svst.emics, relative orbital motion, effects, induced

on the spectrum by physical processes such as magnetospheric accret.ion

(Edwards, 1997), among others.

In the earlv 2000s, Baceiott.i et al. (2002) reported for a first time détection,

wit.h the STIS instrument, of the HST, of velocity gradient, across the jet

axis in the first 110AU from the central driving source. Later, those findings

where confirmed by Colley et al. (2004). If this gradient is effectivelv caused

by jet rotation, it result.s in toroidal velocit.ies of DG Tau fall in the range

6 — 15km s-1, which result.s in angular moment.a by far t.oo large to be

considered are produced by X-winds. Moreover, Coffev et al. (2004) show

tliat. some of the jets, like the jet of RW Aur, are counter-rotat.ing wit.h
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respect to their accretion disks. Cai (2008) argue that this questions the

interprétation of this velocity gradient as t.rue rotation. On the theoretical

side, Sauty et al. (2012) argue that counter-rotation of jets is possible in

MHD. Moreover, this fiip of toroidal velocity, they argue, miglit be due

to post-ejection shocks, as proposed by Fendt (2011). Soker (2005) claim

that the Bacciotti et al. (2002) and Coffey et al. (2004) papers do not detect

rotation, but that the observed velocity gradient is due to the interaction

of the jet with the surrounding gas. With the advent, of high-resolution

instruments as ALMA, we sliould be able to firmlv verify or reject daims

for jet rotation. (Belloche, 2013)
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Chapter Abstract

The goal of this chapter is to list. the fundamental équations of Magneto-

hydrodynamics, which is the mathematical framework within which jets of

Young Stellar Objects are studied. As it, is well known, proving the ex

istence of globallv-regular, exact solutions of the Navier-Stokes équations,

even without introducing electromagnetic fields, is a formidable, unsolved

problem in Mathematics. However, in some simple cases, when svmme-

try considérations and approximations simplify the problem, analvtical, or

semi-analytical solutions exist. In this work, we give a brief présentation

of the approaches, used in order to address the problem of studying jets

of YSOs, which consists in making the corresponding hypothesis and ap

proximations in resolving the set of équations of idéal MHD. Bv this we

mean that we will remind which conserved quantities exist in the case of

stationary, axisymmetric outfiows, and then we will discuss the self-similar

hypothesis, allowing, bv physically plausible symmetrv considérations, to

reduce the set of partial difterential équations of MHD to a set of ordinary

differental équations. Finally, we will discuss a self-similar ansâtz, used in

order to obtain, by a proper intégration of the difterential équation result.ing

from the self-similar hypothesis, the values of the relevant physical quan

tities density, pressure, magnetic and velocity fields. Meanwhile, we also

discuss the velocities at which waves propagate in a MHD System. This is

useful, for instance, if we want to know if a given point within the System

under considération is infiuenced by a given boundary condition.

2.1 On the idéal MHD approach for jets of

YSOs

As we discussed in the previous chapter, magnetic fields are supposed to

play a dominant rôle in the évolution of Young Stellar Objects. Hence,

in order to correctly describe the évolution of matter around an YSO, we

need to studv the coupling of matter with the magnetic field. In this work,
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we will operat.e in the framework of idéal MHD, which means that we are

studving the fiow of an perfectly condicting, highly collisionnal inviscid

fiuid, with negligible viscosity, and on scales mucli bigger than the typical

scales involved in the problem. In the case of low densifies, the strong

coupling of the magnetic field to matter ensure the validity of the MHD

approximation. Moreover, in MHD we operat.e with the important basic

paramet.ers such as the température T, pressure P, density p, magnetic

field B and velocity field V, which are quantifies that could be deduced bv

observations of jets of YSOs. We will indeed make a concise vérification

that we could operat.e in the framework of idéal MHD, which concretelv

means that we will check that the typical lengt.hs for the Systems we are

studving (jets of YSOs) are mucli larger (a) than the collisional mean free

pat.h of the part.icles, which in its turn is mucli larger than (b) the Debye

length. We will verify that (c) the mean collision interval is mucli longer

than the ion gyration time and the électron gyration finie, and finally (d)

we will remind the values of elect.rical, thermal conductivity and viscosity

in such astrophysical plasmas. The discussion that follows will be similar

t.o t.hose in Fendt, Camenzind,&Appl (1995), Mestel (2012), Tsinganos

(2007).

(a) In the case of Coulomb scat.tering by électrons by ions, we hâve for the

value of the mean free pat.h:

A,
97rZ2n7;e4

lience a mean collision interval of

4klT2 4 T2
B - 5 x 104

Z2rii ’
(2.1)

7~pi

(vth)<

With (Vth)e =
knT

mf

(2.2)

the thermal velocity of the électrons, hb the

Boltzmann’s constant and e the charge of the électron. In the case of

a hot, pure hydrogen (Z=l), t.enious plasma, like the matter in the
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solar corona, we hâve T ~ 106K and n ~ 108em 3, which results in:

\ei « 5 x 108cm = 5000km (2.3)

which is much less than the tenth of the astronomical unit (0.1AU =

1.496 x 107km);

(b) For the validity of the plasma approximation, we also need tliat enougli

électrons are contained within the Debye sphere, i. e. tliat a given élec

tron influences not only its closest neighbour, but also a statisticallv

significant number of charged particles. The Debye length, which is

the radius of the Debye sphere, is the distance over which the in

fluence of a given charge is screened, i.e. we hâve effective ‘charge

séparation.’ Tliis length is given by:

A"-/iS5“6'VJ (=“)
For the same parameters as we used to compute the other lengths,

tliis yeilds \q of the order of a cm, much smaller than the mean free

path of Coulomb scat.tering.

(c) In the simplest approach, the gyrofrequency of a single particle of
ZcJB

charge Ze and mass mx in a uniform magnetic field B is ujq — .
mxc

We hâve, for ions (wit.li mass Amp) and électrons, respectively:

2tt
— = Ui
T*

ZeD

mpc

104-B
A

(2.5)

27r eB ^ „ 7 ^ ,
— = ue = = 2 x 10'£ 2.6
re mec

Tliis has to be compared to the mean collision time, which expression

is given in (a):
T tI
— « 1.75B— » 1, (2,7)
Te U

if we take the same parameters as above and a magnetic field B ~

1 kG. Therefore the Larmor radius rL <C \ei.
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(d) As Tsinganos (2007) reminds, the thermal conductivitv is very high

X ~ G x 108gcm“1s“1, the electrical conductivity is comparable to

that of excellent conductors like copper (cocu ~ 1016s-1), and the

viscosity (p « 0.1gcm~1s“1) negligible.

In conclusion, witli this arguments together, we can argue that the idéal

MHD approximation is a good approximation for the description of the

overall behaviour of stellar outfiows.

2.2 Conservation of mass, momentum, en-

ergy and the induction équation

The set of équations of idéal MHD consists of 8 équations, whicli is required

to obtain a solution giving the 8 MHD quantifies, namely density, velocity,

magnetic field, and pressure, which in usual notation are written p, V, B ,

and P, respectively. Those équations are:

| + V.(PV) = 0
A + (V • V)V + iAb X (V x B) + -VP = —V3>
dt p 47T p

E- +V VP + rPV V = A
ot

— V X (v X B) = 0
dt K '

(2.8)

(2.9)

(2.10)

(2.11)

where H — A is the energy équation source term, representing the volumét

rie energ\r gain/loss terms, T is the gravitational potential of the central

object (T = — QM.fr), where Ai is the mass of the central object, and the

gravitational constant G = 6.67259 x 10“8cm3g“1s“2. Units are usually

expressed in CGS System.

The first équation is the mass conservation équation, relying the time

dérivative of density with the spatial dérivative of the linear momentum.
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The second équation is the momentum équation, relying time dérivative of

momentum with the energy flux. The third équation is the energy con

servation, on which RHS we hâve the heating/cooling term. Finally, the

last équation in this set is the induction équation, governing the coupling

between the velocity and the magnetic held. This form appears to be useful

for writing down the discrétisation of these équations, in order to attempt

a numerical resolution of the set of équations. For more details on this last

point, the reader is referred to Mignone étal. (2007), wliere is presented

the PLUTO code that we will be using in this work to carry out numerical

simulations.

2.3 Magnetohydrodynamic waves

If we want to study how a particular point in the interior of our MHD

System is affected by another point, or a boundarv, we sliould know if the

information had time the to travel between the two régions in question. In

order to know this, we sliould know at which velocity a perturbation will

travel across the System. In a pure hydrodynamical syst.em, perturbations

travel at the Sound speed:

The picture is a bit more complicated in magnetized fluids. In order to

find modes of propagation of waves in MHD Systems (called Magnetosonic

modes), we sliould look for plane-wave solutions of Eqs. (2.8-2.11), i.e. so

lutions oc eî(k'r-wt), wliere k is the wave vector; r the position vector and

lu the wave frequency. A detailed dérivations of eigenequations of these

modes in given in most MHD textbooks (e.g., Blandford k. Thorne, 2012),

so we will directly remind the dispersion relations for the different modes.

A characteristic speed in MHD Systems is the Alfvén speed:

(2.12)
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B

(2.13)

which is the speed of magnetosonic waves, propagating along the magnetic

fieldlines. The full dispersions relations for the magnetosonic modes are:

Note that 0 is the angle between the wave vector k and the unperturbed

magnetic field B, and sliould not. be confused wit.h 6, which is the polar

angle in the spherical coordinate svstem.

One magnetosonic mode, described by Eq. (2.13) is the Alfvén mode, called

also Intermediate mode. As it can be seen in Eq. (2.13), this mode does not

propagate in directions perpendicular to the magnetic field. In the limiting

case of a wave propagating purely in the direction of B, longitudinal oscil

lations of the perturbation propagate with the Alfvén speed. The magnetic

field tension (B2/27r) acts as a restoring force. This mode does not induce

any pressure or density fluctuations.

The dispersion relations of the two otlier magnetosonic modes are given

in Eq. (2.15). The mode with the minus sign in Eq. (2.15) is called the

slow magnetosonic mode and the one with the plus sign: fast magnetosonic

mode. Tliose modes induce a combination of magnetic pressure, magnetic

tension and gas pressure fluctuations. As it can be seen from Eq. (2.15),

the fast magnetosonic wave is fastest when the perturbation is propagating

in direction perpendicular to the magnetic fieldlines. In this case, the fast

mode can be seen as analogous to transverse sound waves, which propagate

cj — =tva • k; — = ±va cos 0
k

(2.14)

and

(2.15)

in gas to which usual pressure P is added the magnetic pressure



Chapter 2. Equations of Idéal MHD 52

Alfvén mode

Fast magnetosonic mode
Slow magnetosonic mode

Figure 2.1: Magnetosonic waves phase velocity (see Eqs. 2.13 and

2.15) polar plot (Friedrich diagram). The direction of the magnetic field
B and the wave vector k, as well the angle between them, 0 are also

plotted. In this sample plot, cs = va/2 and va — 1.

The three magnetosonic modes are plotted on Fig. 2.1. Wliat will be rel

evant to discussions in subséquent chapters is the fact that the fast mag

netosonic waves are the fastest waves. Moreover, this mode is the only

mode that can propagate information in directions, perpendicular to the

magnetic fieldlines. Hence, the maximal speed at which information can

propagate in MHD Systems along the fiow/magnetic fieldlines is the fast

magnetosonic speed plus the bulk velocity of the flow, and simply the fast

magnetosonic speed for information propagating in direction perpendicular

to the fiow/magnetic fieldlines. Wliat, we will note is that tliere is no way

for information to propagate upstream if tlie flow is superfast (i.e. which

bulk velocity is great.er tlian the local fast speed.)
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2.4 Conserved quantities for steady-state and

axisymmetric solutions

After the very general discussions we liad in the two previous sections, we

remind that we are int.erested in the theoretical modelling of jets. Before

discussing any particular model, we will point out tliat in idéal MHD, un-

der quite general assumptions, which are stationarity and axisymmetry,

Tsinganos (1981) shows that several quantities are conserved along field-

lines. A direct conséquence of the ‘flux freezing’ of idéal MHD is the fact

that the magnetic flux is conserved along a fieldline. This conserved quan-

tity, which is the mass-to-magnetic flux ratio, is noted T4:

47rpVp

Bp
(2.16)

Hence, for a given line we hâve a given value of T,4, which could be used to

label the fieldline. The two otlier conserved quantities are the field angular

velocity

n(a) = —
zu

ÿaBA

4îtp J '

and the total spécifie angular momentum

(2.17)

L(a) — zu(y —*) . (2.18)

The combination of Eqs. (2.16) and (2.17) gives the velocity field:

B

V = T_4(q')- (- wf2(ü:)0, (2.19)
47rp

which expression is a généralisation of the Ferrarolaw (1937).

Tlius, next to the origin, the second term in the expression will be negligible

compared to the first term: the field will be practicallv radial. On long
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Table 2.1: Coordinate variables description

R = r/r*

R0 = 0.108

R.* = 1

r

0

Spherical distance from the origin

Polar angle; 0 = 0 at the axis

At (r*,0 = 0) the Alfvén surface crosses the axis

Dimensionless distance

One stellar radius

(r<7, z)

The Alfvén radius. R* = 9.29i?o

Dimensioneless cylindrical distance; ru = (r/i?*) sin(0)

Cylindrical heiglit

The poloidal plane

distances, the second term will dominate the first one: the held will be

practically toroidal and will encompass the flow. Equivalently, this could

be seen as magnetic stress hoop and material stress collimating the flow.

The study of tliose quantifies will be of physical importance. Verifving

that these quantifies are conservée! along heldlines will ensure that the

steady State is reached. The interplay of tliose quantifies will enable us to

quantify the angular momentum extraction process. The quantity r, wliich

expression is:

is the constant rate of transport of angular momentum across a unit flux

tube (Mestel, 2012).

2.5 The self-similar model

Sauty, Tsinganos, Trussoni et alii study models of non-relativistic flows

from young stellar objects in a sériés of papers (Tsinganos & Sauty (1992a),

(2.20)
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Tsinganos & Saut.y (1992b), Sauty & Tsinganos (1994), Trussoni et al. (1997),

Sauty et al. (1999, 2002, 2004a,b), Sauty et al. (2011)), on which this work

heavily relies. In part.icular, tlie solution we are going to study in t.he next

chapter, and modifv in susequent. chapt.ers, is first presented in Sauty et al.

(2011).

The self-similar approach consists of supposing that there exist a solution

of separable coordinates of the idéal MHD équations (Eqs. 2.8-2.11 in this

text), which are alreadv simplified bv the assumptions of stationarity and

axisymmetry. If we suppose that the magnetic flux varies witli colatitude

as a dipolar field, i.e. ~ sin2(#), where 9 is the polar angle (the notations

we adopt for the various coordinates are described in Table 2.1), and some

a priori unknown radial function G(R), we could write it in the separable

form:

This function G(R) is related (a) to the expansion factor F — F(R), which

définition we will give, and (b) to the magnetic lever arm for the given

heldline, which expression we are also going to give now:

(a) The function F(R.) is the ‘expansion factor’ of a given heldline:

For constant F(R) — 2, i.e. G(R) — const., we hâve purely cylin-

drical fieldlines (ail perpendicular to the equator) and F(R) — 0, i.e.

G (R) oc R corresponds to a purely radial wind solution. Hence, F (R)

and G(R) hâve geometrical meaning.

(b) If we introduce the magnetic lever arm vaa for the given heldline, we

(2.21)

(2.22)

hâve

(2.23)
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whieh allows us to discuss the physical meaning of tlie involved quan

tifies. G{R), which is the ratio of the cylindrical distance to the

magnetic lever arm:

G(R)= —. (2.24)
TUA

The functions F(R) and G(R) are a priori unknown functions and will

be determined once the équations are integrated. Rewriting the ODE,

resulting from the séparation of variables, in t.erms of these functions, makes

it easier to integrate. They are usually called ‘key functions’. Another key

function, which will allow us to compute densitv, once the équations are

integrated, is the Alfvénic Mach number, i.e. the ratio of the poloidal

velocity to the local Alfvén velocity:

M =
Vp

Bp/y/Wp'
(2.25)

By rewriting Eq. (2.25) for p, and by making self-consistent hypothesis

for the form of Vp and Bp, Sauty &; Tsinganos (1994) write densitv in the

following form:

P = P'-jÇpi1 +

In this équation, as intuitively could be understood by mass conservation

reasoning, density is inversely proportionnai to the square of the Alfvén

Mach number. The term in the parenthèses is function of a only, lience

it describes how the density varies from one fieldline to another. This

variation is more or less pronounced if the constant free parameter ô is

bigger or smaller. For 5 = 0 we hâve a density function depending only

on R.. For bigger S we liave bigger déviations from spherical symmetry.

As we noted, M2(R) is a priori unknown function, it will be insert.ed in

the équations, which will be solved for M(R) and the otlier key functions.

In a similar way, a full ansâtz, describing the otlier quantifies, could be
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constructed. We are not going to discuss this in detail, the interested reader

is referred to Sauty & Tsinganos (1994). In terms of the key fonctions, the

three components of velocity liave the following expressions:

M2 cos 9

Vtt+s (2.27)

FM2 sin 9
(2.28)

_ KA G2-M2 P.sm9
* ~ vms (2.29)

A key fonction, not introduced to this moment, is the dimensionless ra

dial pressure distribution 11(7?), participating in the expression for the gas

pressure:

P — .P*(IÏ(1 + kql) + n0), (2.30)

where the dimensionmess parameter k describes the departure from spher-

ical symmetry for the pressure P. Finally, the expressions of the three

components of the magnetic field are:

Br = ^-cos 9, (2.31)

F 1

De = —B* — ^sin#, and (2.32)

D* = 2Rsia9 (2-33)
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2.6 Free parameters and normalized quanti

tés

The constants p* and K correspond to the characteristic values of tlie cor-
l

responding quantities on the Alfvén radius; P* = an<^ =

In Eq. (2.26) we define the constant free paramet.er à'; k is defined in Eq.

(2.30); À in Eq. (2.29), and describes the rotation of the fiow. The last free

parameter of the self-similar model is v, not defined in Eqs.( 2.26-2.33),

and its expression is:

9

V~ =

2ÇM

r*K2
(2.34)

where Q is the gravitational constant and M is the mass of the central

object and P0 is an arbitrary constant. In this framework, à and k are

déviations from spherical symmetry for the densitv and pressure, respec-

tively; À is the strength of the magnetic torque at the Alfvén radius R*,

and v is the strength of the gravitational potential.

The approach is called semi-analytical, because once the ODEs, represent-

ing the force balance on a fieldline, are rewritten in terms of the key func-

tions, the solution is not given in terms of known analytical functions, but is

determined numerically, wliich is done in Sauty et al. (2011). A propagation

scale plot of this solution could be seen on Fig. 3.1.

The ODE in question, describing the force balance along a given fieldline

is called the transfield équation, studied for a first, time by Grad k Rubin

(1958) and Shafranov (1966), hence also named Grad-Shafranov équation.

In a nutshell, the physical meaning of this is that we hâve the same physics

on ail fieldlines. Once we résolve the transfield équation for one fieldline,

we can applv a scaled-up version of the solution on any other fieldline,

following the ‘recipe’ wliich is Eq. (2.21). This is why the approach is

called ‘self-similar.’
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Chapter Abstract

The goal of this chapter is to study the solution, derived in Sauty et al.

(2011), in particular to détermine whether it is structurally stable or not.

First, in this chapter, we make use for a first time of the PLUTO code,

whicli is a numerical code for modelling of 2.5 dimensions time-dependant

MHD Systems. Using a 2.5D approach means tliat the time evolution/fiuxes

in the MHD simulation box are computed in 2D, and the third component

is deduced from conservation arguments. In this chapter, we implement,

the solution of Sauty et al. (2011), and set it up as an initial condition in

our MHD simulation box. We find tliat this solution is topologically stable

and that, globallv, the eight MHD quantities keep tlieir initial distributions.

Finally we plot several quantities of physical interest and discuss the results

of the simulation.

3.1 A solution with a particular set of pa-

rameters

Sauty et al. (2011) obtain a particular solution for a jet-like outflow. The

interest of this solution is that it is modelling cTTS with low mass accretion

rates. Those stars exhibits ‘micro-jets’, which means that the outflow is not

emanating from the disk or is weaklv connected. As a conséquence, they

hâve much lower mass loss rates. Those observée! by Agra-Amboage et al.

(2009), Gomez de Castro Sz Verdugo (2001), St-Onge & Bastien (2008)

hâve typical M ~ 10~9Moyr~1). The solution, obtained by Sauty et al.

(2011), which stability we are testing liere, fits particularly well the case of

the micro-jet of RY Tau.

From now on, we will call this solution “Cylindrical analvtical stellar out

flow” - CASO and the numerical setup we will use, except if the contrary is

specified, will correspond to this particular set of parameters. An outlook
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Density at large scales

r

Fieldlines of t.he stellar wind and the disk wind

0 2 4 6 8 10

zu

Stellar wind Disk wind
Last connected line

Figure 3.1: On the top panel, density in the poloidal plane norinalized

to the density at the Alfvén radius for the solution in Sauty et al. (2011),
which set of free parameters is given in Table 3.1; On the bottorn panel,

lines of equal poloidal velocity (grey lines, numbers show the velocitv

on the corresponding line, normalized to the Alfvén speed). Two kinds
of fieldlines are visible on this plots.First, fieldlines anchored to the star

(for the stellar wind) and second, fieldlines anchored to the disk. Those
are “disk-wind”-like outflow. Distances are normalized to the Alfvén

radius.
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Table 3.1: Numerical values of the free parameters of Sauty et al.

(2011), corresponding to the ansàtz in §2.5.

of this solution at. large (propagation) scales can be found on Figure 3.1.

The first goal of this work is to study the stability of this part.icular solution

on small scales, i.e. at several stellar radii, where the jet collimation and

initial accélération take place.

The particular set of free parameters used in Sauty et al. (2011) and Globus

(2011) are shown in Table 3.1.

This particular CASO solution is adapted to study the stellar wind: that

component of the jet whicli is ejected by the star itself; and the mechanism

bv wliich the star accelerates matter along the fieldlines is thermally driven

pressure gradient. This only corresponds to a star with low mass loss rate,

because for liigli mass loss rates an unphysically high thermal input is

needed for accelerate an important amount. of matter. (Decampli, 1981,

Sauty et al., 2011) The question of the t.opological stability is not self-

evident, since the flow is not polytropic (see Sauty & Tsinganos (1994),

Sauty et al. (2011)). This is self-consistent with the goal of the study: as we

investigate a thermally-driven stellar outflow, emploving a non-polvtropic

heating funct.ion is essential, as explained in §3.5.

3.2 Initial and boundary conditions for the

time-dependant simulation

In order to study the solution in the close vicinity of the star, where

the initial accélération and éjection take place, we set up a 2D simula

tions setup, we follow procedures, similar to t.liose in Gracia et al. (2006)

S k X v

0.0778 0.021 0.775 1.5

For the boundary condi-
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and Matsakoset al. (2008, 2009). On the inner boundary of the box,

which is close to the stellar surface, we initialize a stellar wind outflow,

given bv the semi-analytical model of Sauty et al. (2011). We apply the

same procedure on the equator. For the axis, we clioose the ‘axisymmet-

ric’ boundary treatment of PLUTO. Now, a problem arises on the outer

boundary. We might use the ‘outflow’ boundary condition in PLUTO,

which copies the value of the last cell in the ghost zone for a given ra

dial direction, i.e. it is a zero-gradient boundary condition. Tliis is prob-

lematic, since tliis zero-gradient might generate artificial currents. Linear

extrapolation of the values of the last cells might generate a similar prob

lem. The solution we adopt is to drastically increase the size of the box,
7T

R e [0.2 : 2],0 e 0 °T. , in order to bei^R e [0.2 : 340], 6 6
sure that waves, coming out of the surface R — 2 quit definitely tliis région

and that waves, generated downstream, particulary in the outer bound

ary at R = 340, will not propagate back to the central part. Tliis cannot

happen, because, as we will discuss in tliis section, the outflow is alreadv

superfast. in tliis région, and perturbations cannot travel upstream a super-

fast flow. One particular feature of the simulation box we set up is that as

we want to keep the numerical resolution liigli in the région R, G [0:2), we

set up a mesli witli 384 pixels, equispaced in the région R e [0:2], and

128 pixels of streched, logarithmic grid in the région R, G [2 : 340). Hence,

we conjecture that we can set up any boundary condition at R = 340, and

information from tliis boundary will hâve no time to propagate back to the

central source.

In order to verify the last affirmation, we plot, in Appendix A for tliis

solution, the changes in ail eight MHD quantifies between the final and the

initial state. What we see in Appendix A is that the final State is different

from the initial state on isolated régions far from the région (R. G [0.2 : 2]

that interests us. Thus, we a posteriori verify that the central région is

causallv disconnec.ted from the outer boundary. We hâve also an a priori

argument that information from the outer boundary cannot travel to the

central source. First, close to the axis, the flow is vertical and information
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cannot travel upstream a superfast flow. In order to verify that the flow is

superfast, we plot the sonie speed (ca, Eq. 2.12) and the Alfvén speed (va)

close to the axis on Figure 3.2. To plot cs, we first plot P as a function p
(dP\

and then take the centered dérivative . Then, we could also plot the
\dpj

fast speed, according to Eq. 2.15, but as could also be seen on Fig. 3.2,

c, < Va, for R > 0.21, so Eq. 2.15 becomes Ufast ~ va. Indeed, if we plot it,

the graph of Ufast is identical to va, except very close to R — 0.2 (the inner

boundary). Hence, we conjecture that the superfast surface, where the

transfield équation changes nature and passes from elliptical to hyperbolical

(Beskin, 2010, Tsinganos, 2007) coincides with the Alfvén surface. The

problem with this argument is that, as Tsinganos (2007) points out, in

the case of self-similar solutions, the sonie speed cannot be readily defined.

This is because of singularities of the type - in the transfield équation.

In order to integrate the transfield équation, some regularity conditions,

selecting only solutions passing smoothly through the Alfvén point, sliould

be imposed. We are not going to enter into the detail of this intégration,

but the point, relevant to this discussion is as those Heyvaerts & Norman

regularity conditions (1989) are imposed at the Alfvén point, so we prétend

that the plot of the sonie speed on Fig. 3.2 in the vicinity of the Alfvén

point sliould be the actual sonie speed. This cannot be affirmed for points

far from the Alfvén point.

However, unlike slow and Alfvén waves, the fast waves can also propagate

in directions, perpendicular to the magnetic field (e.g., see the Friedrich

diagram on Fig. 2.1). We again conjecture that fast waves, generated at

the outer boundary close to the equator, hâve no time to propagate back to

the central part, because of the size of the box. In the previous discussions,

we discussed waves, propagating along the radial direction, which means,

wlien we are close to the axis, and parallel to the equator, wlien we are close

to the equator. As Tsinganos et al. (1996) discuss, MHD waves preserving

the symétries of the System sliould hâve velocity components perpedicular

to the directions of symmetry (0) and self-similaritv (6), i.e. along r. Those
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svmmetries are supposed to dérivé the semi-analytical solution, but the self-

similarity condition is relaxed in the numerical setup. But as we are going

to show, the MHD quantities keep their initial distribution, a fortiori the

self-similar condition should also be kept, so interesting us only in waves

propagating along r in the previous analysis will be justified a priori.

3.3 Topological stablity of the solutions

Matsakos et al. (2008, 2009) hâve found that a large number of self-similar

solutions, obtained by varying the free parameters in the solutions above,

are “topologically stable” at large (propagation) scales. This means that

when we initialize a MHD simulation box with the solution above as an

initial condition, and we let a MHD code compute the time évolution of

this initial condition, the eiglit MHD physical quantities might keep or not

their initial distribution, but from the initial distribution the quantities

converge to a steady state. This corresponds to the discussed notion of

topological stability.

3.4 Time units

To describe the time évolution, we will prefer to express the time in units

of Alfvén Crossing time, i.e. the time needed for a cliaracteristic to cross an

Alfvén distance close to the base of the fiow. This time could be related to

the disk rotation time (by reminding the définition of v in eq. 2.34):

As the starred quantities are taken to be unitv at the reference radius /?*, by

replacing the constants with their numerical values in Eq. (3.1) we obtain

(3.1)
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Comparison of the poloidal speed in the axis and characteristic speeds

va VR

Figure 3.2: Comparison of the sonie and Alfvén speed witli the radial

vélocity.

the Keplerian time in units of the Alfvén Crossing time for tins particular

solution:

^Kep = 5.922* = 5.92 (3.2)

We stress tliat we prefer to express time in units of the Alfvén Crossing

time, since the CASO solution is a thermally driven outfiow and not a

magnetocentrifugically driven disk wind.

3.5 Heating distribution

By writing the expressions for the density (Eq. 2.26) and pressure (Eq.

2.30), under the self-similar hypothèses, we do not make the assumption

that an a priori relation exists between tliose two quantities. Instead of a

relation of the type P ~ p7, self-similarity puts not necessarily polvtropic
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Density contours and fieldlines, initial condition

log(p) Last connected line
Stellar wind Disk wind

Density contours and fieldlines, initial condition

UJ

log(p) Last connected line
Stellar wind Disk wind

Dead zone

Figure 3.3: Fieldlines and density contours for the CASO solution.

The bottom panel is a zoom of the top panel, showing closed fieldlines
(in green). Fieldlines in blue are rooted in the star, and describe the

stellar wind and fieldlines in red are anchored in the disk, describing an
outflow from the disk. The last connected line (which for r < 0.85 is

also a “last connected fieldline” is a thick black line).
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Heating distribution
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Figure 3.4: Heating distribution

const.raints on the P — p relation, which relation emerges a posteriori from

the matliematics. With the first law of thermodynamics, we can quantify

the departure from adiabaticity with a fiow with the current geometry:

H - A = pv • V/i - -v • Vp (3.3)

where the volumétrie enthalpy h is a function, obviously indépendant, of

any relation between P and p,

r kB

r — î n

r p

r-17’ (3.4)

Cp
with F the ratio of spécifie beats in the gas, F = — and p the mass of the

cv

gas. The resulting heating distribution, computed from Eq.(3.3), taking

int.o aecount Eqs.(2.26-2.29), is plotted on Fig. 3.4.



Chapter 3. Cylindrical stellar outflow solution 69

Hence, we hâve a heating function, suitably distributed in order to satisfy

the energy équation (Eq. 2.10) and maintain the steadv state. Most. im-

portantlv, this heating function is non-polytropic. As Saut.y et al. (2002)

argue, this heating function could be of thermal or another origin. One

miglit argue that. such a relation between P and p, computed a posteriori,

is no better t.han any other relation. For instance, such a relation could be

the polytropic assumption P = pr, or the quasi-polyt.ropic relation P = pT\

where T'is some constant different from T = —, which relation corresponds
cv

to a effective heating for values of T' < T. As discussed in Mestel (2012),

it is known since Parker (1963) that a constant T' results in inconsistenc.ies

of the solution near and far from the stellar surface. In the case of the Sun,

adjusting T' in order to fit the observations at 1AU results in unphysicallv

higli velocities and low densit.ies at the solar surface. Analogically, in the

case of jets, the terminal velocities of the outflow are way smaller than the

observed velocities of the jets.

We are not going to t.ry to disentangle contributions to this heating func

tion from physicallv plausible arguments, and we will instead sav that the

heating distribution used in these models is the one needed to maintain this

geometry and this geometrv is close to the observed geometry of the fiow.

The goal of this study will not be to understand the nature of this heating,

but to understand relevant phvsics in the context of this geometry. A cor

rect t.reatment should compute contributions from processes like thermal

conduction in the atmosphère (starting from the important input of beat

at the base), heating from damping of waves from the sub-photospheric

convection, (Decampli, 1981), and to compute the radiative transfer of

energy in the wind by the radiation from the central source. Moreover,

Matt &: Pudritz (2005) argue that lieat could be deposited by accretion.

In numerical simulations, we are going to set up inital and boundary con

ditions for ail MHD quantifies coming from the semi-analytical solution

and in addition to that wre will a priori impose the heating function and
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release the constraints on the MHD quantities. We will prove that this

configuration is stable.

3.6 Study of the solution close to the inner

boundary (central object)

The magnet.ic topology of the Cylindrical Analytical Stellar Outflow (CASO)

contains three distinct régions. First, a polar région with open fieldlines,

rooted at the star, second, a disk région with open fieldlines, rooted in the

disk, and tliird, a région with closed fieldlines, with both footprints are

rooted in the star. Matter is ejected from the disk in the “disk wind”-like

région and from the star, both in the stellar wind région and the closed-line

région. Tliese three zones meet and the “X-point,” wliere the last closed

fieldline crosses the equator. This line is connected, at the X-point, with

the “last connected line”, which is the common interface of the three ré

gions: the two open lines régions (the one with the topology of a stellar

wind and the other with a topology of a disk wind) and the otlier with

closed field lines (see Figure 3.3).

This CASO solution lias the disadvantage (as we will explain in §4.1.2)

of having non-zero velocit.ies in the closed fieldlines région (which we call

‘dead zone’ or ‘magnetosphere’ in green on Figure 3.3), and we will modify

this in Chapter 4.

3.7 Initialization of the simulation

As our ultimate goal is to understand the physical characteristics of outflows

with sucli topologies, the question of what is the topological stability of

tliese solutions is of crucial importance. In a fashion similar to Matsakos et

al. (2008) and Matsakos et al. (2000), we test the stability of this analytical
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solution by setting it up as an initial condition in a time-dependent MHD

simulation.

To solve t.he équations of idéal MHD, we make use of the PLUTO code

(Mignone et al, 2007). We perform a 2.5 dimensionnai simulation, winch

means that the toroidal vector components of V and B remain axisymmet-

ric; second order time intégration is achieved by a Runge-Kutta method and

we also use a linear interpolation in space. The computationally efficient

Lax-Friedrich solver is used, but switching to less diffusive Riemann solvers

does not introduce any significant change to the solution. The V • B = 0

requirement is enforced with an eight-wave MHD algorithm.

Naturally, we use spherical coordinates, which allows us to take advantage

of the natural grid cell accumulation near the surface of the central object

(i.e. the inner boundary of our simulation box), which allows for our simu

lation to achieve better resolution near tins inner boundary, where the jet

launching région, which is of particular interest, is situated.

In t.his scénario, when we initialize the simulation box with the semi-

analytical solution, wliat we expect for t.his initial condition is to be an

“educated guess” of the final state. We anticipate such a beliaviour because

t.hese solutions were semi-analyticallv obtained with reasonable approxima-

tions, and we expect them to relax to a final st.eadv state, which will not

differ significantlv from the initial one. Our goal is to verifv t.his. We in-

deed obt.ain a final state very close to the initial one, and we pursue the

simulation unt.il relaxing to a st.eady state. In order to detect. changes, we

will be invest.igat.ing the relative différences for ail MHD quantifies between

t.he final and t.he initial st.at.e, which will enlighten us how t.he final st.eady

state differs from t.he initial educat.ed guess. This is done for t.his model in

Appendix A, and in subséquent appendices for t.he other models.

Différences between t.he initial setup and final st.at.e are liardly visible to the

naked eve, so in Appendix A, we plotted the relative différences between

t.he initial and the final st.ates for ail eiglit. MHD quantifies.
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VA

t = 0 1 = 50

Figure 3.5: Contour plot of T,4, for t = 0.0 and t = 50.OC

First we are going to discuss the conservation (and non-conservation) of a

along fieldlines. At the initial step, the a contours are parallel to fieldlines,

as we discussed above this is because of stationarity and axisymmetry.

Nevertheless, we notice t.hat the last connect.ed line, which lias a = 0.9885

tends asymptotically towards the a = 1.0 (a, the dimensionless magnetic

flux is normalized to its value at the fieldline passing through r = r*). On

the bottom panel of Fig. 3.6 we plot several fieldlines rooted between the

X-point, wliere the last connected line crosses the equator, and R/R* =

1. Wliat. we see is that matter coming the star, travelling along the last

connected line, mixes with matter coming from the equator between the

X-point and Alfvén radius, and fiows in the interface between the stellar

wind and the disk wind, which becomes more and more narrow as we go

further from the star. This immediately makes this ‘interface région’ of

part.icular interest, and we are curious to investigate its stability.
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a, t — 0

Contours of equal a

a, t = 0

w

Contours of equal a

Figure 3.6: On the top panel: Contour plot of a, each value labelizing
a fieldline; on the bottom panel: Zoom of the top panel plot, but only

contours between a = 0.9885 (the last connected line) and a — 1.0 (pass-
ing through the reference radius and towards which the last connected

line asymptotically tends) are shown.
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3.8 Outcome of the simulation

As the initial setup evolves for a sufficently long time (until t = 50£* =

8.45tKeP), we notice that the flow globally goes to a steady State, but not

everywhere. In order to understand the stability of the solution, we plot,

in Appendix A the relative différences between the final and initial State

of ail MHD quantifies. We will also discuss the quantifies, supposed to be

conserved, as well as the quantifies r, the torque, and the plasma (d param-

eter, whicli will lielp us understand the impact of releasing the stationarity

constraint in the problem. Equations 2.1G, 2.17, 2.18, respectively for 4/^,

Q and L, are conserved quantifies in the case of stationary, axisymmetric

flows. Although we are not under the hypothèses of a stationary flow, since

the problem is now time-dependant, we find instructive to plot those quan

tifies and to try to quantify the departure from stationarity in the different

parts of the outflow. We remind that in the case of the semi-analytical

solution, the lines of equal 4',4, Q and L are parallel to the fieldlines, and

because of the existence of those conserved quantifies the stationary semi-

analytical solutions were derived.

3.8.1 Mass-to-magnetic flux ratio 'f/q

First, we conclude that the stellar wind part of the outflow, for which

description the model is specifically constructed, is going to a steady State.

The Ta contours in tliis région of the flow are practically parallel to those

of the initial setup; sucli is also the case of the disk wind.

Different is the case of the interface région, which fieldlines we plot.t.ed in

Fig. 3.6. As it is shown on Fig. 3.6, fieldlines rooted between zu = r —

0.841r* and w = r = r* on the equat.or pratically merge as we go further

from the central driving source. So, matt.er, ejected from tliis région on the

equator, goes in a verv small flux tube. We argue that this does not affect

the stability of the solution for this reason. Also, we should note that the
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value of VA is very sensitive to changes in the value of the magnetic field,

since the magnetic field is in the denominator of Ty4 and is much smaller

than the numerator. Therefore, other conserved quantifies as L, showing

less sensitive behaviour in this zone, might be more relevant to describe it.

The X-point itself is forced to keep its position, since those fines cannot

reconnect because of the fact that we are under the hypothèses of idéal

MHD (up to numerical diffusivity). Even if we are in idéal MHD, we cannot

escape from numerical magnetic diffusivity. Including physical magnetic

diffusivity is out of the scope of this work, but as Fendt (2009) suggests,

magnetic diffusivity might be included in the study of idéal MHD svstems.

Such a diffusivity should be enough in order to allow reconnection, and to

gain better insight into the effeets of the X-point within the framework of

these models. But this diffusivity should be kept small, in order to keep

the quasi-ideal MHD treatment of the problem, i.e. not to modifv the

dvnamics of the System, and most importantlv, collimation of the outfiow.

3.8.2 Spécifie angular momentum L and torque

We note that the angular momentum L is very close to the initial angu

lar momentum distribution (Fig. 3.10). This quantity is of important in

our problem since it lias direct conséquence on observable quantifies, as

discussed in §1.2.8. The fact that the contours of L are parallel to the

fieldlines, except, in a small zone near the X-point, confions our conclu

sion, coming first from the fact that the MHD quantifies are not showing

important différences, lience the solution is topologically stable on these

scales, and second, the fact that and Q show sensitive behaviours in

the interface région shows that it might be a région of transient phenom-

ena. A similar interface région is observed in the recent simulations of

Zanni &; Ferreira (2013).

Related to the angular momentum is the torque r, which expression is

given in Eq. 2.20 and which we plot in Fig. 3.11. This quantity is of central
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importance for this study, since the main physical effect of winds is to

ensure angular momentum extraction and the torque quantifies tliis process

and the aforementionned graph gives some interesting point of view on the

numerical solution. When we plot the torque for the semi-analytical initial

condition, we see that in this model, the torques of the disk wind, the stellar

wind and the magnetosphere are comparable. The différence between the

axial fieldline, carrying the smallest torque, and the typical torque values

of the disk wind is less than one order of magnitude. Nevertheless, wliat

is interesting to note, is that the closed fieldlines in the magnetosphere

hâve the biggest torque. This torque does not. extract angular momentum

from the star, since the matter moving along those fieldlines stays in the

magnetosphere and is not taken away. Nevertheless, liere is probably the

biggest différence between the semi-analytical solution and the numerical

solution that we obtain in the final State. In the final State of the torque

(red fines on Fig. 3.11), we see that the fieldlines wit.li the biggest torque

are now on the other side of the X-point, in the interface région discussed

on Fig. 3.6, instead of being trapped in the closed magnetosphere. As we

discussed for Fig. 3.6, ail the outflow from oo — r — 0.85r* (the X-point)

and w = r — r* tends towards the flow on the last connected line, on

the interface betwTeen the disk wind and the stellar wind. We tentatively

conclude that because of this resuit of the simulation, this région might be

important for angular momentum extraction.

3.8.3 H, plasma fi and T

The other intégral, Q, plot.ted on Fig. 3.9. We hâve also plotted the contours

of the plasma /3 parameter, on Fig. 3.8. Again, this is another parameter

hinting for the stablity of the solution. In the disk wind and stellar wind

zones of the solution, the value of the /3 field is close to its initial one. In the

interface région, the plasma is diverging from its initial value, showing

again that the semi-analytical solution is topologically stable almost every-

where, except. in this région. Also, we plotted ln/3, on Fig. 3.8, where it
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could be seen that in the very close vicinity of the star, the magnetic pres

sure is mucli bigger than the kinetic pressure, what is needed for magnetic

braking to operate. The variations of orders of magnitude show how fast

actually the ratio thermal/magnetic pressure is dropping. In the régions

with low beta, the magnetic pressure is dominant and the plasma, ejected

from the star is in forced corotation with the star. The particles are lience

having a larger angular momentum than what should hâve an uncharged

particle in the gravitational field of the star. Once the particle passes in the

région with liigh /3/low magnetic pressure, the inertia of the plasma parti

cle is much bigger and it carries with it. the magnetic field, and also takes

awav the angular momentum it extracted from the star before reaching the

isorotation radius. This phenomenon of ‘magnetic braking’ was described

for a first time in the séminal of paper Schatzman (19G2).

P

We are also plotted the température T = — in the wliole domain (Fig.

3.7). In the framework of this model, in Eq. 2.30, we note that we hâve the

arbitrary constant Po allowing us to callibrate the température in such a

way that it matches the observations. This cornes from the faet that what

participâtes in the force balance is the pressure gradient. We can hence add

any scalar constant to the wliole pressure field. We use P0 — 50P*, which

ensures 0 pressure gradient at the outer part of the domain (B = 340) and

normalizes the P to 1 at R — 1 on the axis. What results is that the ratio

of the température at the edge of the jet and température at the center is

approximatelv 5 times.
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Figure 3.7: The température accross the whole domain. Note that

the température is in arbitrary units since Pq is an arbitrary intégration

constant in Eq. 2.30.

In /3 = ln { P/ (87rBp) |

Figure 3.8: The plasma beta is dropping fast as one gets close to the
star.
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n

t = 0 1 = 50

Figure 3.9: ü, for the semi-analytical solution and its évolution to its
final state

L, comparison between initial and final state

t = 0 1 = 50

Figure 3.10: The angular momentum L is well conserved during the
simulation
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Figure 3.11: The torque r throughout the simulation
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Chapter Abstract

The goal of this chapter is to describe the approach we used in order to

obtain a solution of a stellar outflow with a static magnetosphere - a ‘dead

zone’. First, we discuss why the matter in the magnetosphere should be

in static equilibrium and how this is treated in an inconsistent way in the

CASO solution, presented in the previous chapter. We also discuss obser

vations of clouds, around some stars, confined in stellar-sized closed loops.

Then we describe the procedure, we followed in order to obtain such solu

tions, namely modifying the CASO solution, by introducing a static magne

tosphere, and discussing the implications of this on other MHD quantities.

Finally, we discuss the outcome of the simulation, by describing the stated

the simulation box converged to, and discussing the physical implications

of this resuit, notably how the structure of the dead zone corresponds bet-

ter to the observations than the original, non-static magnetosphere of the

CASO solution.

4.1 Introducing a self-consistent dead zone

4.1.1 Need for a more précisé study of the close vicin-

ity of the star

As discussed in the previous chapter, semi-analytical solutions obtained

by Sauty & Tsinganos (1994) hâve been found to be topologicallv stable

at propagation scales by Matsakos et al. (2008). In the previous chapter

wre discussed the t.opological stability of a particular analytical solution,

obtained in Sauty ci al. (2011). The main différence is t.liat here we are

studying the close vicinity of the star, wliere the accretion-ejection connec

tion takes place. Unlike the studies of the propagation scales, we résolve
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the magnetosphere: a zone wliere both footprints of the magnetic field lines

are rooted to the star.

4.1.2 Inconsistency of the analytical solution: why

the magnetosphere should be in static equilib-

rium

An inconsistency of the analytical solution, relevant to the current work,

is the wav the magnetosphere is treated. The magnetosphere is the région

of the out.flow, wliere botli ends of the magnetic fieldlines are rooted in

the star, i.e. the fieldlines are closed. Hence, matter flowing along the

closed magnetic fieldlines, emanating from the star in a given point in

the magnetosphere, will at some point reacli the equator. Tliere it will

meet. a plasma flow coming from the Southern hemisphere. Plasma c.oming

from above and from below the equator will hâve momentum fiuxes both

perpendicular to the equator, but in opposite directions. We remind that

we are in régime of low plasma /?(/?= |P/(87rBj)|). Hence the magnetic
energy density will still be much larger than the thermal, so plasma flows

with opposite momentum fiuxes, constrained to follow the magnetic field

lines, will be stopped in this collision, i.e. the big magnetic pressure is

holding the gas in hydrostatic equilibrium. (Decampli, 1981)

In a very general c.ontext, the condition J3 <C 1 ensures that a static plasma

remains stable (in the case /I > 1 a static plasma would collapse.) More-

over, once in magneto-hvdrostatic equilibrium, the flow will remain in this

state, such anv perturbation of the magnetic fieldlines will generate a per

turbation of the magnetic pressure that will compensate anv perturbation

in the thermal pressure, as explained in Mestel (1968). Flows with static

magnetospheres hâve been investigated bv Tsinganos & Low (1989), and

for the first. time numerically, in the approximation of an isothermal flow,

by Pneuman&Kopp (1971). The séminal paper of Keppens & Goedbloed

(1999) investigated models with static zones in polytropic outflows.
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In this and the next chapter, we will be investigating flows with static

magnetospheres (dead zones), by modifying the solution presented in the

previous chapter. Hence, we will introduce a static magnetosphere in this

solution, which lias non-polvt.ropic heating function (starting from the one

in § 3.5, but accordingly modified, see next paragraph). In the modified

solution, the equator in the magnetosphere will no longer be a sink for

matter, which is rather unphysical.

A point not explored in this work, but for which a perspective is opened by

introducing a self-consistent magnetosphere, is to include accret.ion in the

simulation box, in part.icular by adding accretion columns in this région.

4.1.3 Dead zones in observations

4.1.3.1 The case of AB Dor

Indications for the presence of dead zones around stars corne from X-ray,

UV and radio observations. First indications that some stars hâve promi-

nences (hosted by closed magnetic loops) corne in the early 1980s with

UV observations of Schroeder (1983). Later, observations of Algol by

Whiteet al. (1986) also suggest the presence of large, hot, closed loop struc

tures around the variable star. We will focus on a well-studied case, the

variable star AB Dor (=HD 36705). Collier Cameron (1988) explain the

anomalously low rising times of X-rav fiares of AB Dor with gas, trapped

in large, hot, closed loop structures in the stellar corona, liosting quies

cent prominences. Collier Cameron & Robinson (1989a,b) make an exten

sive study of AB Dor, observing the variable star in Ha. Tlieir observa

tions show prominence-like clouds of mainly neutral hydrogen, spreading

between 3 and 9 stellar radii, orbiting in forced corotation with the star.

They conclude that most, probably closed magnetic loops are the confin-

ing agent for tliese clouds. These slingshots of plasma in suspension over
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the stellar surface are, the observations again show, of stellar size. Col

lier Cameron & Robinson (1989a,b) attribute the absopt.ion spect.ra of qui

escent stellar-sized prominences. For a review of the observations of stars

hosting stellar sized prominences the reader is referred to the article Col

lier Cameron (1996). Ferreira Sz Mendoza-Briceno (1997) point out that

such stellar-sized loops do not hâve solar counterparts. In the case of the

Sun, closed loops hâve much smaller sizes. This lack of counterpart is

a reason, they argue, that more convincing evidence for the existence of

such loops should be provided. According to Mestel (2012), and references

therein Stix (2004) and Dwivedi (2003), higli émission régions in X-ray of

the Sun and late-type young stars are associated with wind zones, whether

coronal liole régions are associated with wind zones.

4.1.3.2 The case of BP Tau

BP Tau is a classical T Tauri star (cTTS). Spectropolarimetric observations

with the ESPaDOnS instrument at the CFHT and NARVAL instrument at

TEL, carried out by Donati et al. (2008), reveal the existence of a 1.2kG

dipole and 1.6kG octupole. The dipole field is a slithlv tilt.ed, strong ax-

isvmmetric poloidal field. They also conclude that the magnetosphere of

BP Tau extends to 4 stellar radii.

Sauty et al. (2011) discuss some similarities between the CASO solution and

the structure of the magnetic field around BP Tau. The CASO solution

lias B* = 1.82kG, which roughly corresponds to the value of strength of

the dipole of BP Tau. The Alfvén point is situated at no — B = 9.29r0,

and the terminal speed is V* = lOSkms-1 (for the notations refer to Table

2.1). In the case of the CASO solution, the magnetosphere terminâtes at

the equator at a distance w — r — 7.97r0, while Donati et al. (2008) point

out that the magnetosphere of BP Tau extends to 4r0. This point will be

relevant in a subséquent discussion.
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4.1.4 Constructing a self-consistent solution with no

mass flux through the equator

We will attempt to obtain a numerical solution, by modifying the existent

solution by suppressing accordingly the mass flux through the equator by

replacing the poloidal velocity field with a null field.

Tliere is no reason for this modified field to be solution of the idéal MHD

équations. Nevertheless, we suppose tliat this configuration will be close

to a solution, and we will initialize a simulation box with a null poloidal

velocity field and velocity field ident.ical to the CASO solution outside the

dead zone. Our exceptation is tliat the simulation box will relax to a steadv

stat-e with a two-component, corona (corona with ‘wind’ zone outside the

magnetosphere and a ‘dead’ zone in the magnetosphere.) An analogical

procedure is followed in Keppens&Goedbloed (1999), who obtain 2.5D

solutions for polytropical models of stellar wind with a dead zone. The

différence with our problem is tliat we hâve a non-polvtropic heating func-

tion and the different geomet.ry of the fiow. Imposing Vp = 0 lias several

conséquences for other MHD quantifies and we are going to discuss this in

the next subsection.

4.1.5 Introducing self-consistent boundaries

Setting Vr — 0 and Vq = 0, and as we still except stationary (—• = 0) and

axisymmetric (-- = 0), for the projection along d> of Eq. 2.9, we hâve:

^ + (V V)V + -B x (V X B) + -VP + vA <p = 0 (4.1)

wliere is the unit vect.or in the azimutliai direction. The Lorentz force

B x (V x B) will be noted FL. Since the gravity lias no component along

(j) and J-* = 0, the first, forth and fiftli term in the bracket. are évidently

equal to zéro. We are left with
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(V-V)V + -Fl| - 0 = 0
P

(4.2)

Now, let us look at the ((V • V)V) • </> term:

((v • v)v) 4>=\vrOVt^dVt
dr r d6

V* W* , V*V^VrV^Veœt (0)
(4.3)

rsin($) dcj) r r

The first, second, forth and fiftli term of the équation sliould be equal

to zéro because of the static condition of the dead zone. The third term

sliould be equal to zéro because of axisymmetry. Henc.e, we are left. with

the condition that for a static magnetosphere, we need a zéro component

of the Lorentz force along 4>. Otherwise, as could be sliown by reversing

Eq. 4.2 for (Fl)# ^ 0, and taking into account the exact expression in

Eq. 4.3, this component will accelerate matter in the dead zone. Hence, we

need L# = 0. The équation

Hence, if we want to keep the Vp = 0 in the dead zone, preventing the

Lorentz force to accelerate the matter in the poloidal place, we sliould

impose for the toroidal magnetic field component B$ = 0, as an initial

and boundarv condition in the dead zone. Moreover, in order to prevent

a toroidal magnetic field to form, we should also impose the physically

(4.4)

developped in spherical coordinat-es is

(4.5)
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plausible condition to bave a magnetospliere in solid rotation with its liost

star, whicli will be consistent with the observations of quiescent promi-

nences in stellar coronae, as discussed in §4.1.3. Setting Vp — 0 lias also

conséquences on the heating équation (Eq. 2.10), whieh LHS terms vanish

because of the stat.ionarity, axisymmetry, and static magnetospliere con

ditions, and the équation reduces to H — A = 0, in wliicli H — A is the

source term in the heating équation (Eq. 2.10). Thus, to reach a steady

State, the heating must, be exactly balanced by a beat loss process (H = A).

Physically, when the plasma is static in the dead zone, we are not able to

transport beat eitlier. In otlier words, in the heating balance participate

the mechanical energy flux, the conductive flux and the radiative losses.

In order to keep H — A = 0 we suppose that ail mechanical energv input

should be radiated away. Conductive cooling is rejected for a mechanism,

assuring the heat/loss balance, since the quasi-isothermal structure of the

stellar coronae, it its vanishing thermal gradient, prohibits beat conduction.

Until now, we discussed the implications of setting a static zone in rotation

with its host star, starting from the Vp = 0 condition and the resulting

= 0, H — A = 0 and V# in solid rotation. Tins is wliat makes the dead

zone self-consistent. We set up otlier MHD quantities, such as density and

pressure, to their theoretical values as if tliere was no dead zone, excepting

this to be an educated guess for their final steady State, wliich will be

obtained once they relax in a stationary State. On Fig. 4.1 we plot several

quantities at t = 0.

4.2 Initial and boundary conditions, heating

Regarding the simulation box, we are going to use the same mesli as the

one described in §3.2, wliich we used for the CASO solution. Regarding

the boundaries, we will suppress mass flux in the dead zone, and we will

modify magnetic field, rotation and heating according to the discussion in

the previous section. This means that the heating will be suppressed in
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Density contours and fieldlines, t,=0.0

Last connected line

zu

Figure 4.1: Initial setup for the ‘wind’ and ‘dead’ zone configuration.

The top panel shows the geometry of the magnetic field (magnetic field
lines in the stellar wind arc in red, disk wind fieldlines are in bine and

magnetosphere fieldlines are in grey) and density contours (in grey). The
bottom panel shows the magnitude of the poloidal velocity, identical to
the analytical solution in the wind zone and set up to zéro in the dead

zone.
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Figure 4.2: Toroidal components of the initial condition. The top

panel shows the toroidal magnetic field component, set up to the ana-

lytical one in the wind zone and to 0 in the dead zone. On the bottom

panel, we see the rotationnal velocity, on which we see a dead zone set

up in solid rotation
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Figure 4.3: Heating function for an outflow with a static magneto-

sphere

the dead zone (see Fig. 4.3), so will be tlie toroidal magnetic field, and

the rotation velocity will correspond t.o a solid rotation. For a graphie

représentation of the initial condition, refer to Figures 4.1 and 4.2.

The heating source term (Fig. 4.3) and the boundary conditions are kept

constant throughout time.
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4.3 Outcome of the simulation: description

of the final solution

The simulation is ended once the axisymmetric MHD wind is converged

to a State which is considered to be stationary when relative différences in

ail eight MHD quantities, in the zone of interest, between two consecutive

timesteps are topped by a small number (typically 10“4). The final dis

tribution of the quantities shown on Figure 4.1 are sliown on Figures 4.4

and 4.5. For the otlier 7 MHD quantities, the relative différences between

the initial and the final State are given in Appendix B (LHS for the first

part of the simulation, 0.0 < t < 4.0, and RHS for the second part of the

simulation, 4.0 < t < 20.0). We see that the initial configuration for these

quantities is maintained not in the wliole dead zone, but only in a helmet-

shaped part of it. The fieldlines of the initial dead zone from the side of

the axis open up and matter is accelerated along them. As a conséquence,

the vicinity of the last connected line is emptied.

Globally, the disk wind remains at its place, so does the stellar wind. Sev-

eral fieldlines on the interface between the disk wind and the dead zone

open up; as we continue to t.reat the part of the boundarv where they are

rooted as a dead zone (zéro mass flux), the density along the fieldlines pre-

viously in the dead zone drops. The final State could be divided in four

régions, according to whether or not the initial condition is maintained and

how. The first région is the wind zone. We conclude that, globally, the

stellar wind, as well as the disk wind, keep their initial topology and are

not affected, in any significant. way, by the introduction of a dead zone.

Second, the initial condition is not maintained ail over the dead zone, but

only in a helmet-shaped part of it. In the tliird part of the field, outside the

helmet but within the initial dead zone, the initially closed fieldlines open

up and matter is accelerated along them. The extension of those fieldlines

outside the dead zone is asymptotically tending towards the last connected

line, thus on the interface between the stellar wind and the disk wind. As
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Densit.v contours and fieldlines, t.=4.0
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Figure 4.4: Wind and dead zone configuration throughout a poloidal

cross-section; fieldlines and densitv contours. The bottom figure is a

zoom of the top figure. We see the green fieldlines, describing the new
shape of the dead zone, hâve a characteristic lielmet shape. The initial

position of the last connected line is plotted for clarity.
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Figure 4.5: The poloidal velocity remains Vp = 0 in the dead zone
as it is initialized; in a région along the opened fieldlines the poloidal

velocity also drops

the boundary conditions are not evolving, but fixed in time, the fieldlines

are rooted to a part of the inner boundary witli zéro mass flux (between

the top of the lielmet, and the initial footprint of the last connected line).

As a conséquence the fourth région of the field is the one in the vicinity of

the last connected line; the fieldlines opened up during the time évolution

are emptying the vicinity of the last connected line.

As we can see from Figures 4.4 and 4.5, we hâve indeed a zone in which

the fieldlines are connected to the star, and in which the initial conditions

for Bq and V# are maintained. Note the spécifie shape of the new last

connected line on figure 4.4, reminding a helmet. In this helmet-shaped

zone, the toroidal magnetic field component is kept. to 0, and the solid

rotation is maintained, as could be seen on 4.5.

Probably the most. important feat.ure of tliis simulation is the fact that

the zone witli closed fieldlines lias smaller ext.ent than in the initial setup.

Indeed, if we look at the bottom panel of Fig. 4.4, we see that fieldlines,
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-ln(Bd,), t = 4.0

Figure 4.6: In the helmet-shaped région with closed fieldlines (green

fieldlines on 4.4 the flow remains in solid rotation and satisfies B$ = 0;
this makes the flow in this zone self-consistent, as explained in §4.1.5
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Densitv levels in the dead zone

log(p) Initial last connect.ed line

Figure 4.7: Density contour plot in the dead zone. Matter is accumu-

lated near the equator.

rooted at the star, and initially situated witliin the dead zone (the initial

position of the dead zone is plotted on this figure for clarity), are no longer

closed. The initial position of the last connected line corresponds t.o a =

0.9885, and in the final State, t.o a = 1.1411, hence from a dead zone starting

at 6 ~ 42°, t.o a dead zone starting at 6 æ 47°. Fieldlines, rooted bet.ween

0 = 42° and 0 = 47°, are emptied from matter, since we hâve suppressed

the outflow at the base, supposing tliat those fieldlines will remain closed.

On the other boundary, matter is accumulated near the equator, which

could be seen more easilv on Figure 4.7. On the other side of the dead

zone, in the région close t.o the stellar wind, density is lower as compared

t.o the initial setup. The form of the closed fieldlines, in green of Fig. 4.4,

As we discussed in §4.1.2, in order to maint.ain plasma in static equilibrium,

we need the magnetic pressure to dominat.e the thermal pressure. This is

indeed verified on Fig. 4.10, where in black Unes are the contours of the

plasma fi parameter, which are also those of the CASO solution, and in red

are the contours of the plasma /3 at the final stage. We can see tliat this

parameter globally keeps its values throughout the domain, and drops in
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the dead zone, which is convenient in the light of the requirement of low

plasma (5 for dead zones.

We are also interested in seeing how the spécifie angular momentum (Fig.

4.9) and the total angular momentum (Fig. 4.8) are modified between the

initial and the final state. First we note that along the fieldlines, rooted

between 9 = 42° and 6 = 47° at the stellar surface, which open up, we

hâve a mucli bigger spécifie angular momentum. As we maintained fixed

the boundarv conditions over there, and we suppressed the mass flux, tliose

fines are emptied. Tliis is why we plotted the total angular momentum flux,

pL. We see that tliis quantity is changing slightly, but not significantlv

between the initial and the final state of the simulation. We hâve also

plotted the torque (Eq. 2.20), which représenta the constant rate of angular

momentum transport across a unit flux tube. For tliis simulation, it is

plotted on Fig. 4.11.

In a similar way for the previous solution, we plotted the relative différences

between the final and the initial state for tliis solution in Appendix B. As

we can see from Fig. B.l, plotting the relative increase of densitv, we

hâve a dead zone which is comparativelv denser, and as we can see from

Fig. B.3, a bigger pressure in the dead zone. In the self-consistent part of

the dead zone with the lielmet form, we hâve mutual increase of pressure

and drop of densitv. Tliis means that the resulting dead zone is with liigher

température than the surrounding flow. As we can see on Fig. 4.5, depicting

the velocity field in the final state, the static condition is maintained in the

dead zone. The requirements, derived in 4.1.5, for a self-consistent dead

zone, are maintained in the helmet-shaped part of the dead zone, as could

be deduced from the fact that in tliis helmet-shaped part of the dead zone,

the relative changes in B$ and V# (Figures B.9 and B. 15) are null.

Tliis helmet-shaped structure, which is similar to the structures observed

in the solar corona in large closed loops, might be modified bv the presence

of an accretion disk, which we are not exploring in this work.
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4.4 Physical implications

There are two important conclusions that could be drawn on the outcome

of this simulation. First, the extent and the shape of the dead zone varv

significantly for the given physical conditions. Let us remind that for the

particular set of parameters in Table 3.1, gives a fiow with magnetic field

strength at the surface B0 æ l.lkG, (Sauty et al., 2011) compatible with

the observed dipole of BP Tau Z?BpTau = l-2kG of Donati et al. (2008).

However, the CASO solution predicts a radius of the dead zone of ~ 7.5

stellar radii, wliile Donati et al. (2008) report a size of the dead zone of ~ 4

stellar radii. We conclude that witliin the framework of the discussed mod-

els, outflows with inconsistent magnetosphere (the CASO solution, having

a mass flux through the equator), predict twice as large dead zone than

the observed one. When we modify the solution, in order to introduce a

static magnetosphere, the self-consistent dead zone is approximately lialf

the size than the initial condition. Hence, the dead zone we obt.ained, de-

limited by the last connect.ed line on Fig. 4.4 is corresponding better to

the observations than the dead zone of the semi-analytieal solution.

Next, as we said, the last connectée! fieldline is not rooted at 0 = 42° at

the inner boundary, but at 6 — 47°. Sauty et al. (2011) predict a braking

time for such a System

The braking time being comput.ed by the following formula: (Sauty et a/.,

2011)

Tbrake » 2 x 105 yr. (4.6)

2^brake —
2kMrl *out

(4.7)
x) A7\vind ‘-^out \/l 4 Aûout

with k the dimensionless inertial constant of the star, and Tout
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(4.8)

Now, as we discussed, the last connected line is not. the one with a magnetic

flux of aout,i = 0.9885, but aout,2 = 1.1411 (\k0ut,i = 1-0073 and ^out,2 =

1.1601). Straightforwardly, the ratio of braking times Tbrake,i/^brake,2 of

two winds, with two different values for aout, but with the same phvsical

characteristics of the central object, is:

Hence, even if the big dead zone of the CASO solution and the smaller self-

consistent one are rooted at different 8 at the inner boundary, the braking

time is not significantly smaller than in the previous model. That supports

the conclusion that the smaller dead zone is not significantly changing the

overall properties of the solution, but nevertheless its size is in better ac

cordance with the observations.

(4.9)

Hence

-^brake.2 — 0.9974 X 7"brake,l ~ ^brake.l (4.10)
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Figure 4.8: The total angular momentum L throughout the simulation

L

Figure 4.9: The spécifie angular momentum L throughout the simu
lation
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In/J = P/(8?rBp)

Figure 4.10: The plasma P throughout the simulation
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Figure 4.11: The torque r throughout the simulation
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4.5 Towards a fully self-consistent magneto-

sphere

4.5.1 Why the magnetosphere is reshaped during the

simulation?

As we saw in the discussion so far, the magnetosphere is shrinking between

the initial and the final stage of the simulation. This change in sliape and

extent could be easily understood as conséquence of the the null poloidal

speed that we impose at the beginning of the simulation. Indeed there

is no reason to suppose that the magnetosphere should keep its initial

shape. Its sliape is governed by the force balance. Thus, by suppressing

the polidal velocitv in the magnetosphere, we are suppressing the inertial

t.erms in the momentum équation (Eq. 2.9), and those terms are directed

outwards. Hence, by suppressing tliem, the force balance changes, and

inwards directed terms of the momentum équation, that were previously

balanced by the then suppressed inertial terms, will tend to slirink the

magnetosphere. The new balance is achieved wdien a pressure gradient,

capable of stopping this shrinking, develops. Indeed, a close inspection

of Fig. B.3 shows that in the reshaped magnetosphere, close to the inner

boundary, the pressure lias increased by « 5% and just outside the lielmet-

shaped magnetosphere the pressure lias dropped by « 10%. Hence, the

pressure gradient in that région is steeper tlian the semi-analytical solution

and is directed inwards. As the accélération, resulting from the pressure
VP'

gradient is always opposite to the pressure gradient ( a = ), this force

is indeed replacing the suppressed intertial terms.
P

The way the pressure balance is modified is by clianging the heating func-

t.ion, wliicli is the source term of the energv équation (Eq. 2.11.) This

solution, wliere the heating is turned off in the magnetosphere, could be

compared to the solution in the next. chapter, wliere the magnetosphere is
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heated. In the case of the heated solution, an even bigger pressure gradient

is indeed created and the magnetosphere shrinks less.

4.5.2 Modifications needed

Tliere remains an inconsistency in the solution we presented so far. Indeed,

some fieldlines open up, as previouslv discussed, but the boundary condi

tions we set are fixed in time. Mass flux is suppressed on ail fieldlines tliat

were closed at t = 0.0, no matter if t.hey open up during the simulation or

not. Allowing a mass flux on those lines means that we should also turn

on the heating that we suppressed, because we wanted to suppress the ve-

locit.ies in tins région. Hence we need to restore the heating, if we want to

restore the mass flux along those fieldlines.

One possibility in order to décidé whether or not to put a mass flux from the

inner boundary and to turn on the heating is to détermine if the fieldline is

open or closed. But trace the fieldlines, at each timestep, is computationallv

prohibitive. The criterion we are going to use in order to décidé if we

are in the helmet-shaped self-consistent, magnetosphere, in which we hâve

to suppress mass flux and turn off heating, or outside it, is whether or

not we are in the région that is in solid rotation and with no toroidal

magnetic field component. As we discussed so far, inside the helmet-shaped

magnetosphere those requirements are fulfilled and they are not fulfilled

outside it.

Hence, we are going to turn off the heating only in the helmet-shaped

part of the fiow and we are going to suppress the mass flux only in that

helmet-shaped part of the flow. In practice, the magnetosphere of the semi-

analytical solution was starting at #iim = 41.7°, and for t = 4.0 this angle

increased to to 6\im — 54.9°, hence we are going to suppress the mass flux

only for 6 > 54.9°. Also, we are going to turn off the heating for the

fieldline, for which \B</,\ — 0.01 B* and ail the fieldlines below. At t — 12.0,

we will hâve a new magnetosphere. What. we observe is that this time, some
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Table 4.1: Evolution of #iim during the consecutive readjustments

t #lim

0.0 41.7°

4.0 54.9°

9.00 50.43°

14.00 50.10°

20.00 50.17°

fieldlines will close and the extent and size of the magnetosphere will slightly

increase, but will not attain the initial value. Hence, at. t = 12.0, we are

going t.o readjust again heat.ing, so that the whole magnetosphere is lieated,

and we will readjust the mass flux, whicli will be suppressed now from

d\im — 50.417°. We will re-run the simulation until t = 15.0 and we will fincl

a new sliape of the dead zone and a new #iim = 52.98°, but the variation will

be less important as compared to the previous st.ep. With this approach,

we are improving, or training the model at each step. The évolution of the

last connected line, determining the size of the magnetosphere, is shown on

Fig. 4.13 and the évolution of <9iim is summarized in Table 4.1

By following this recipe, we are able to decrease the size of the zone wliicli

is not self-consistent, with each step, until we hâve a solution with an

inconsistent part so small, that we could confidentlv say that the whole

solution we liave obtained is actually self-consistent. For illustration, on

Fig. 4.14 is plotted the poloidal velocity magnitude, and as we can see

Vp = 0 only in the helmet-shaped région. On Fig. 4.15 is plotted the

density, so we can compare the density of the final model and the density

of the solution with a static, self-consistent helmet-shaped magnetosphere.



Chapter 4. Cold dead zone 105

100

10

0 0.2 0.4 0.6 0.8 1

zu

Figure 4.12: The heating fonction II — A corresponding to the helmet-

shaped magnetosphere

t=0.0 t=9.0 t=20.0

t=4.0 t=14.0

Figure 4.13: Evolution of the size of the magnetosphere on each re-

adjustment step
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Figure 4.14: Poloidal velocity magnitude during the simulation

P

Figure 4.15: Density during the simulation
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Chapter Abstract

The goal of this short chapter is to investigate the hypothesis under which

the heating flux in the dead zone is not null. By using the same heating

function as the one used in Chapter 3, we find a solution with a dead zone,

which is larger than the Cold dead zone solution of Chapter 4, but still with

no mass flux through the equator. In ail cases, the heating function, used

to ensure the topological stablity of the solution is not imposed a priori, but

emerges as a conséquence of the construction of the model, under the hy

pothesis of self-similarity. Assuming a non-zero heat function is équivalent

to considering that physical processes, responsible for heating/cooling in

the wind are not exactly balanced. Including a full heating is a limit case,

but nevertheless shows that a self-consistent dead zone could also be con-

structed in this case, enabling to study the influence of different, heatings

on such outflows.

5.1 Initial and boundary conditions for the

simulation

The initial conditions for this simulation will be the same as tliose used

in the Cold dead zone solution of Chapter 4. We are plot.ting this initial

condition on Figures 5.1 and 5.2. The différence with the previous simula

tion is that we are going to use the same heating, as the one for the CASO

solution of Chapter 3. As we saw in the previous chapter, setting up a

static dead zone, with the requirements to keep this zone static, discussed

in §4.1.5, lias the resuit that when we use this solution as an initial con

dition for a simulation, and evolve it, with time, we obtain a final solution

in which the dead zone is reshaped. Nevertheless, in realistic situations,

the heat distribution might not be the one in which different, processes like

radiative cooling/heating by damping of Alfvén waves or heat deposit.ed by

accretion, are not balanced out.
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Density contours and fieldlines, t=0.0

0 0.5 1 1.5 2

ZD

log(p)
Stellar wind —

Last connected line —

Dead zone
Disk wind

v\j t = 0

Figure 5.1: Once again, we start froin the saine initial setup, wliich
we except is an educated guess for a solution with a dead zone. On the

top panel we hâve density and fieldlines as well, on the bottom panel
absolute value of the poloidal velocity
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ln(-J50), t = 0.0

0 0.5 1 1.5 2

ZD

Figure 5.2: On the top panel the toroidal component of the magnetic

field and on the bottom panel rotationnal velocity
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Regarding the simulation box, we will again i)e using the same mesli, as

t.he one used for the simulations in Cliapters 3 and 4, described in §3.2.

5.2 Outcome of the simulation: description

of the final solution

As we can see from figure 5.3, t.he final state in this ‘heated dead zone’ solu

tion is not. signifieantly different from the cold dead zone one. As expected,

matt.er is accelerat.ed in the whole dead zone, but typical velocities are quite

small and tend to zéro towards the equator. Once again, the stellar wind

component is not sensiblv modified; the disk wind component. is more dis-

torded. The initial dead zone is reshaped again, but this t.ime it. lias a final

shape which is much doser to the initial one. This solution is similar to

the cold dead zone one in an important aspect: the self-consistent. set.up,

but this case with a dynamical magnetosphere, but st.ill wit.h no mass flux

t.lirougli the equator, solid rotation and vanishing toroidal component of

the magnetic field. Indeed, on Fig. 5.3, we see in green the closed field-

lines of this solution. Note the spécifie form of the last. connected line of

this solution, which is almost coincidental to the last connected line of the

CASO solution, used for initial condition. This last connected line lias the

same shape as the zone of the toroidal magnetic field, which is kept to 0 by

the t.ime évolution, and the zone in which t.he solid rotation is maint.ained

during the simulation (see Fig.5.3). The différence with t.he previous case is

that matt.er is not. accumulated near the equator. This t.ime, several field-

lines rooted on t.he star open up, but. this t.ime t.liose are fieldlines root.ed

in a much smaller area on the inner boundary.

As we hâve done it. for t.he previous cases, we are plotting t.he relative

changes in ail eight. MHD quant.it.ies (see Appendix C). First, the pressure

distribution (C.3) is almost. ident.ical t.o the initial distribution. This is
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not a surprise, since the lieating/cooling term H — A in the energy équa

tion (2.11) is computed in order to satisfy tliis équation. Let us hâve a

look on the density distribution on Fig. C.l. The density in the heated

dead zone solution is basically dropping bv a factor of 2. Again, as in the

Cold dead zone solution, tliis magnetosphere is hotter than the surrounding

wind. Besides the fact that here the magnetosphere is dynamical, another

important différence between tliis solution and the Cold dead zone solution

is that jere, the self-consistent dead zone is not varying much in size and

extent, i.e. the last closed fieldline is rooted approximately at the same

angle at the inner boundary and the shape of the last closed fieldline is

almost identical to that of the initial condition.

5.3 Conserved quantities

On Figure 5.G we are plotting the plasma (3 parameter. As in the case of the

Cold dead zone solution, the low value of tliis parameter close to the inner

boundary and the equat.or is maintained to its low levels, as it is required

in order to keep a plasma in static equilibrium. The plasma (3 is indeed

increasing as we look above the dead zone, but unlike the previous case,

wliere fieldlines open up and emptv the vicinity of the dead zone, now we

are in a situation wliere the matter is accelerated and flowing along the last

connected line (note how tliis time we do not hâve null velocities on the

interface dead zone/st.ellar wind), wliicli explains why the thermal pressure

is bigger than the corresponding région.

Concerning (Fig. 5.5), the mass-to-magnetic flux ratio, we note again

the sensitive behaviour of tliis quantity. Nevertheless, contours are

almost parallel to the fieldlines in the st.ellar wind part of the solution,

and as we discussed for the two previous solutions, is showing a sensitive

behaviour in the région in the interface of the stellar and the disk wind.



Chapter 5. Hot dead zone 113

Density contours and fieldlines, t=50.0

log(p)
Stellar wind

Last connected line

Dead zone

Disk wind

v\, t = 50.0

1.2

1

0.8

0.G

0.4

0.2

0

Figure 5.3: The quantities, plotted on Figure 5.1, are shown at their

final state. Note the shape of the last closed fieldline. It will define the

size of the self-consistent dead zone, as in the Cold dead zone solution
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ln(—Bel,), t = 50.0

Figure 5.4: The saine quantities as Figure 5.2 and are plotted liere.

We note the characteristic shape of the zone, in which B$ = 0 and V<p
corresponds to solid rotation, which has the saine shape as the form of

the last closed fieldline on Fig. 5.3
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Va
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t=0 t=50.0

Figure 5.5: Contour plot of T ,4, for t = 0.0 and t = 50.0U

The spécifie angular momentum L (5.8) and the total angular momentum

pL (Fig. 5.7) are again quite close to their initial distributions. Similar

effects are those observed in the Cold dead zone solution are also observed

here. As in the Cold dead zone case, lines of equal L are a bit doser to the

axis than in the initial condition. As L increases with 0, this means t.hat

the stellar wind is carrying a slightly bigger angular momentum than the

stellar wind of the CASO solution. Indeed, we see that the last connected

line is at slightly bigger 0 than at t = 0, but as we showed in the Cold dead

zone case, this is not affecting mucli the angular momentum flux. We are

also going to plot, as in the case of the Cold dead zone solution, the torque

r throughout the simulation (Fig. 5.9). We again see that the contours of

equal r are not significantly different, in the stellar wind région, than the

torque of the CASO solution. We are going to conclude that this stellar

wind is braking the star the same manner as the stellar wind of the CASO

solution.
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Figure 5.6: The plasma f3 throughout the simulation

pL

Figure 5.7: The total angular momentum L throughout the simulation
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Figure 5.

L

8: The spécifié angular momentum L throughout the simu
lation

T

t=0 t=50.0

Figure 5.9: The torque r throughout the simulation



Chapter 6

Conclusion

The goal of this thesis was to gain insight, in the physical properties YSO

jets with self-consistent, magnetospheres. We basée! this work on previously

obt.ained semi-analytical solutions, providing the geometrical framework

needed to studv YSO jets, and used the semi-analytical solutions as initial

conditions of a numerical simulation box. This solution, on whicli we ex-

tensively discussed in Chapter 3, is obtained under reasonnable hypothèses,

and was proven, in this work, to be topologically stable. This means that

when introduced in a MHD simulation, ail quantifies converged to a steadv,

stationnary state. The importance of this finding is that by proving that

we hâve a stable, from MHD point of view solution, we could discuss on the

physical meaning of the potentiallv observable quantifies. The question of

the stability was not trivial, because in order to ensure that the eight MHD

quantifies, in the form they were written under the self-similar hypothesis,

are solutions of the équations of idéal MHD we ought to employ a non-

polytropic heating function. We hâve shown that the three main parts of

the solution: the stellar wind component, the disk wind component and the

magnetosphere with closed fieldlines are structurally stable, that they keep

their positions and properties, but that we sliould proc.eed with caution

when discussing the interface région between the stellar and the disk wind.

119
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In Chapters 4 and 5, we hâve explored two different ways of modifving

the semi-analytical solution. This was needed in order to obtain numer-

ical solutions, accounting for a self-consistent magnetosphere, which we

defined as a magnetosphere witli no mass flux through the equator, and

bv accounting for the conséquences of sucli a constraint, imposed by the

équations of idéal MHD. The employed method is an illustration of the

potential of the combination of analytical and numerical methods for the

study of the astrophysical problem. The mixed approach consists of us-

ing the semi-analytical solution, which topological stability we tested, but

by simply suppressing the mass flux along the closed magnetic fieldlines.

This initial condition was then evolved with the numerical tool, which is

the PLUTO code. We proved that even with the modifications we int.ro-

duced, the stellar wind component is topologicallv stable, and also the disk

wind component. In the case of the non heated magnetosphere, which we

introduced in Chapter 4, we liave found that initially closed fieldlines, an-

chored close to the stellar wind open up, hence decreasing the extent of the

dead zone as seen from the stellar surface, and that tliose Unes pinch the

magnetosphere, decreasing significantly it.s size, and giving it a part.icular

helmet-type structure. We argue that this smaller magnetosphere is in bet.-

t.er agreement with the observations that the unmodified semi-analytical

solution, as the modified solution predicts a magnetosphere with a typical

size t.wice as smaller as the unmodified solution for the same strengt.h of

the stellar magnetic field. We présentée! another solution, in which the stel

lar and the disk wind are again topologically stable, and in which the size

of the self-consistent magnetosphere is practicallv the same as the initial

one. This is achieved by rest.oring the non-polvtropic heat.ing in this zone.

By this, we argue, we could model magnetospheres with different, sizes for

the same magnetic field. The non heated magnetosphere corresponds to

a case where ail the processes, contribut.ing to heat.ing balance out tliose

wlio contribute to cooling, and in the case of the heat.ed dead zone where

the heating is mucli larger than the cooling. Proving that in both cases
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we liave topologically stable, self-consistent magnetospheres, wliich intro

duction is not dramatically clianging the semi-anaytical solution, and hence

astrophysical conclusions are appropriate. This is also a liint that in future,

we could also model intermediate cases, where for example we could model

contributions to heating from different physical processes, and most impor-

tantly, include a more précisé model of the disk wind part, by including an

«-disk in the box and model in a more précisé way the disk wind part of

the jet.
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Normalized déviations

between the final and initial

state for the CASO solution

A.l Density

Relative différences

A.2

(p(t = 50)-p(t = 0)\
V p(t = 0) /

are plotted on Fig. A.l and

A.2 Pressure

Relative différences

A.4

(P(t = 50) - P(t = 0)
v Wt= o)

are plotted on Fig. A.3 and

A.3 Br

\ Bn(t — 0)
Relative différences

A.6

123

are plotted on Fig. A.5 and
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A.4 Be

Relative différences

A.8

/Be(t = 50) - B0(t — 0)

V Bo(t = 0)
are plotted on Fig. A.7 and

A.5 B$

Relative différences

A.10

(B<j>(t - 50) - = 0)

V = 0)
are plotted on Fig. A.9 and

A.6 Vr

Relative différences

A.12

/Vfl(t = 50)-VÆ(t = 0)

V vR(t = o)
are plotted on Fig. A. 11 and

a.7 v*

Relative différences

A.14

fVo(t = 5Q)-Ve(t = 0)
i, V0(t = 0) are plotted on Fig. A.13 and

A.8 V(j)

(vt(t = 50) - Vt(t = 0)
l v4,(t = 0)

Relative différences

A.16

are plotted on Fig. A. 15 and
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Figure A.l: Relative change in density on the éjection scale

p(t = 50) — p(t = 0)

p{t = 0)

Figure A.2: Relative change in density on the propagation scale
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Figure A.3: Relative change in pressure on the éjection scale
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Figure A.4: Relative change in pressure on the propagation scale
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BR(t = 50) - BR(t = 0)
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Figure A.5: Relative change in radial magnetic field on the éjection
scale

BR(t = 50) - BR(t = 0)

BR(t = 0)

Figure A.6: Relative change in radial magnetic field on the propaga
tion scale
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B0{t = 0)

0 0.5 1 1.5 2

w

Figure A.7: Relative change in longitudinal magnetic field on the éjec
tion scale
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Figure A.8: Relative change in longitudinal magnetic field on the prop

agation scale
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Figure A.9:

Figure A. 10
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Figure A. 11: Relative change in radial velocity on the éjection scale
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Figure A. 12: Relative change in radial velocity on the propagation
scale



Appendix A 131

Vo(t = 50) - Vo{t = 0)

Voit = 0)

0.04

0.02

0

-0.02

-0.04
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Figure A. 14: Relative change in longitudinal velocity on the propaga
tion scale
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Figure A. 15: Relative change in toroidal velocity on the éjection scale
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Figure A. 16: Relative change in toroidal velocity on the propagation
scale
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Normalized déviations between

the final and initial state for

the Cold dead zone solution

B.l Density

Relative différences (^^—-)
V Pi* = °) /

plotted on Fig. B.l and B.2

and (p(t = 20) - p{t = i)\
\ P(t = 0) /

are

B.2 Pressure

Relative différences

are plotted on Fig.

P(t - 4) - P{t = 0)

P(t= 0)
B.3 and B.4

and
P(t = 20) - P(t = 4)

P(t = 4)

B.3 BR

ces
4) — Bjijt = 0)~

n„(+

133



Appendix B 134

B.4 e

Relative différences (————^
V Be(t = 0)

are plotted on Fig. B.7 and B.8

and
Be(t = 20) - Be(t = 4)

B0{t = 4)

B.5 B

Relative différences (W = 4)-B<(t = 0)\ (W = 20) -M= 4)
V = 0) \ B$(t = 4)

are plotted on Fig. B.9 and B. 10

B. 6 Vji

Relative différences

are plotted on Fig.

Viijt = 4) — VRjt = 0)

VR{t = 0)
B.11 and B.12

and
VR(t = 20) - VRjt = 4)

VR(t = 4)

B.7 Ve

Relative différences Mand /W = 2^(t = 4)X
l Vi(t = 0) ; V Vo(t = 4) Z

are plotted on Fig. B. 13 and B. 14

B.8 V<j>

Relative différences (———-Il—————1 and
l m = o) J

are plotted on Fig. B.15 and B.1C

(Vpjt = 20) - Vt(t = 4)
V V^t = 4)
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Figure B.l: Relative change in density on the éjection scale

p(t = 4) - p(t = o)

p(t - 0)

p(t = 20) - p(t = 4)

p(t - 4)

N

0.01

0.005

-0.005

-0.01

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

Figure B.2: Relative change in density on the propagation scale
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Figure B.3: Relative change in pressure on the éjection scale
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Figure B.5: Relative change in radial magnetic field on the éjection
scale
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Figure B.6: Relative change in radial magnetic field on the propaga
tion scale
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Figure B.7: Relative change in longitudinal magnetic field on the éjec
tion scale
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Figure B.8: Relative change in longitudinal magnetic field on the prop
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Figure B.9: Relative change in toroidal magnetic field on the éjection
scale
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Figure B.ll: Relative change in radial velocity on the éjection scale
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Figure B. 13: Relative change in longitudinal velocity on the éjection
scale
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Figure B. 14: Relative change in longitudinal velocity on the propaga
tion scale
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Figure B. 15: Relative change in toroidal velocity on the éjection scale
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Normalized déviations between

the final and initial state for

the Heated dead zone solution
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Relative différences ^—211
v p(t = o) ;

are plotted on Fig. C.l and C.2

C.2 Pressure

Relative différences

C.4

/ P(t = 50) — P(t = 0)
l P(t = 0) are plotted on Fig. C.3 and

C.3 BR

\ BR(t — 0)

143

Relative différences

C.6

are plotted on Fig. C.5 and
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C.4 Bq
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are plotted on Fig. C.7 and
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are plotted on Fig. C.9 and
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are plotted on Fig. C.ll and
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are plotted on Fig. C.13 and
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Figure C.l: Relative change in density on the éjection scale
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Figure C.2: Relative change in density on the propagation scale
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Figure C.5: Relative change in radial magnetic field on the éjection
scale
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Figure C.6: Relative change in radial magnetic field on the propaga
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Figure C.9: Relative change in toroidal niagnetic field on the éjection
scale
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Figure C.12: Relative change in radial velocity on the propagation
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Figure C.14: Relative change in longitudinal velocitv on the propaga
tion scale
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Figure C.16: Relative change in toroidal velocity on the propagation
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