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Title Stereoscopic Observations of Solar Radio Emissions by the S/Waves Instru-
ment onboard the STEREO Spacecraft

Abstract This PhD thesis is primarily dedicated to a study of type III radio bursts
observed by the S/Waves instrument onboard Solar TErrestrial RElations Observa-
tory (STEREQ). These emissions are produced by beams of suprathermal electrons
escaping the corona along open magnetic field lines during increased solar activity.
As fast electrons propagate in the interplanetary (IP) medium, Langmuir waves are
generated at the local electron plasma frequency fp. by a bump-on-tail instability
and can be afterwards converted by a non-linear process into radio emissions at fpe
and/or 2fp: type III radio bursts.

We have developed a goniopolarimetric (GP, also referred to as direction-finding)
inversion using the Singular Value Decomposition (SVD) technique for electric mea-
surements on three non-orthogonal antennas. It allows us to retrieve both wave
vector directions and polarization properties of incident waves. We have also in-
vestigated the influence of extended sources (as a typical feature of type III radio
bursts) on measured spectral matrices. We have found an empirical relation between
apparent source sizes and spectral matrices decomposed by SVD. Abovementioned
techniques have been extensively tested on data obtained by the High Frequency
Receiver (HFR, a part of S/Waves). We have compared flux densities and GP prod-
ucts of several intense radio bursts observed simultaneously by the two STEREO
spacecraft and the Wind spacecraft (using the spin demodulation method for the
GP inversion) during small separation distances with satisfactory results.

We have performed statistical analysis of a large number of type III radio bursts
observed by STEREO between May 2007 and September 2011. Only intense,
simple, and isolated cases have been included in our data set. We have found
that the maximum flux density occurs around 1 MHz. The apparent source size
is very extended (~ 40°) for frequencies above 500 kHz while remaining almost
constant (~ 25°) between 500 kHz and 2 MHz. Calculated positions of radio
sources suggest that scattering of the primary beam pattern plays an important
role in the propagation of type III radio bursts in the IP medium.

Keywords Solar radio emissions — Goniopolarimetric inversion



Nazev Stereoskopickd pozorovani slune¢nich radiovych emisi pfistrojem S/Waves
na druzicich STEREO

Abstrakt Tato dizertacni prace je vénovana studiu sluneénich radiovych emisi typu
III pozorovanych pfistrojem S/Waves na druzicich projektu Solar TErrestrial REla-
tions Observatory (STEREQ). Tyto radiové emise jsou generovany svazky horkych
elektronti unikajicich z korény béhem zvySené slunecni aktivity. Tyto elektronové
svazky excituji v meziplanetarnim prostoru elektrostatické Langmuirovy viny na
lokalni elektronové frekvenci f,e diky ,,bump-on-tail“ nestabilité. Langmuirovy viny
mohou byt konvertovany na radiové emise typu III na frekvenci f,. anebo 2fp..

Za pomoci metody singularniho rozkladu (SVD) jsme vyvinuli goniopolarimetrickou
(GP) inverzi pro méfeni elektrického pole na obecné neortogonalnich anténéch. Tato
inverze nam poskytuje jak smér vinového vektoru tak polariza¢ni vlastnosti prichozi
vlny. RovnéZ jsme prozkoumali vliv velikosti radiovych zdroji (jez jsou typické pro
radiové emise typu III) na spektralni matice. Nalezli jsme empiricky vztah mezi
velikosti zdroje a rozlozenou spektralni matici za pomoci SVD. VySe zminéné metody
byly pouZzity na datech naméFenych vlnovym analyzatorem HFR (High Frequency
Receiver, ¢ast pristroje S/Waves). Porovnali jsme spektralni vykony a vysledky GP
analyzy nékolika intenzivnich radiovych emisi typu III pozorovanych na druzicich
STEREO a Wind (jez pouziva pro GP analyzu spinovou demodulaci) pfi vzajemné
malych vzdélenostech.

Provedli jsme statistickou analyzu velkého mnoZstvi radiovych emisi typu III po-
zorovanych druzicemi STEREO v obdobi od kvétna 2007 do zari 2011. Do naSeho
datového souboru jsme zahrnuli pouze intenzivni, jednoduché a izolované piipady.
Zjistili jsme, Ze maximalni spektralni vykon se vyskytuje na frekvenci okolo 1 MHz.
Velikost zdroji je velmi rozsifend (~ 40°) pro frekvence pod 500 kHz, zatimco
zlistavéa konstantni (~ 25°) mezi 500 kHz a 2 MHz. Nalezené pozice radiovych zdroji
potvrzuji, Ze rozptyl primarniho paprsku hraje dileZitou roli v §ifeni radiovych emisi
typu III v meziplanetarnim prostoru.

Kli¢ova slova Sluneéni radiové emise, Goniopolarimetrie



Titre Etude stéréoscopique des émissions radio solaires avec I'instrument S/WAVES
embarqué sur les sondes STEREO

Résumé Cette thése est principalement consacrée a une étude des sursauts radio
de type III observés par I'instrument S/Waves & bord du satellite Solar TErrestrial
RElations Observatory (STEREQO). Ces émissions sont produites lors de périodes
d’activité solaire accrue par des faisceaux d’électrons suprathermiques s’échappant
de la couronne solaire le long de lignes de champ magnétique ouvertes. Lorsque
des électrons rapides se propagent dans le milieu interplanétaire (IP), des ondes
de Langmuir sont générées a la fréquence plasma locale des électrons fp. par une
instabilité dite «bump-on-taily. Ces instabilités peuvent ensuite étre converties par
un processus non-linéaire en des émissions radio & fp et/ou & 2f,. : les sursauts
radio de type IIL.

Nous avons développé une méthode d’inversion goniopolarimétrique (GP, aussi appe-
lée «direction-finding») en utilisant la technique de décomposition en valeurs singu-
lieres (SVD) appliquée aux mesures des trois antennes électriques non-orthogonales.
Elle nous permet de retrouver la direction du vecteur d’onde des ondes radio de Type
111 ainsi que leur propriétés de polarisation. Nous avons également étudié I'influence
des sources étendues (qui sont caractéristiques des sursauts radio de type III) sur
les matrices spectrales mesurées. Nous avons trouvé une relation empirique entre la
taille des sources apparentes et les matrices spectrales décomposées par SVD. Les
techniques précitées ont été largement testées sur des données obtenues par le rece-
veur haute fréquence (HFR, une composante de I'instrument S/Waves). Nous avons
comparé des densités de flux et des produits GP de plusieurs sursauts radio intenses
observés simultanément par les satellites STEREO et Wind (en utilisant la méthode
de démodulation de spin pour I'inversion GP), lorsque ceux-ci étaient proches, avec
des résultats satisfaisants.

Nous avons réalisé une analyse statistique d’un grand nombre de sursauts radio de
type III observées par STEREO entre mai 2007 et Septembre 2011. Seuls les cas
intenses, simples, et isolés ont été inclus dans notre ensemble de données. Nous
avons constaté que la densité de flux maximale se produit autour de 1 MHz. La
taille apparente de la source est trés étendue (~ 40°) pour les fréquences inférieures
a 500 kHz tout en restant a peu prés constante (~ 25°) entre 500 kHz et 2 MHz. Les
positions calculées des sources radio suggeérent que la diffusion de la configuration
primaire du faisceau joue un roéle important dans la propagation de sursauts radio
de type III dans I’environnement IP.

Mots-clés Sursauts radio solaires, Goniopolarimétrie
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Preface

Figure 1: Artist’s impression of the STEREO spacecraft and the Sun. Adapted
from http://stereo.gsfc.nasa.gov/.

The Sun fascinates mankind since its very beginning. Although our closest star
has been studied for thousands of years, many questions still remain without an-
swers (e.g. the solar dynamo and tachoclines). Our desire for a better understanding
of processes associated with the Sun and new available technologies cause that so-
lar physics experiences a strong development during last decades. Comparing to
other stars the Sun’s proximity to the planet Earth allows us to perform complex
investigations of processes forming the stellar life.

The main goal of this thesis is a study of type III radio bursts using measurements
of the S/Waves instruments onboard the Solar TErrestrial RElations Observatory
(STEREO).



2 Preface

Type III radio bursts belong among the most intense electromagnetic emissions in
the heliosphere and can be observed from tens of kHz up to several GHz on time
scales from seconds up to hours. They are thought to be generated by beams of
suprathermal electrons (~ 0.1c) accelerated near the Sun’s surface streaming out-
ward in the solar corona and in the Interplanetary (IP) medium on the open magnetic
field lines associated with solar flares. This abrupt change of plasma parameters can
lead to generation of electrostatic Langmuir waves at the local plasma frequency f,
which is proportional to the electron density. These waves can be afterward con-
verted into electromagnetic waves either at f, (the fundamental emission, F') or 2f,
(the harmonic emission, H): type III radio bursts. As type III radio burst triggering
electron beams propagate outward from the Sun, emissions are generated at lower
frequencies corresponding to a radial decrease of f,.

The investigation of type III radio bursts is interesting for the scientific community
for several particular reasons. Type III radio bursts provide us with information
on properties of the solar corona and the IP space at inaccessible distances from
the Sun by spaceborne instruments. In a comparison with other electromagnetic
emissions, they have very extended apparent sources, which can be explained by
either properties of an intrinsic beaming pattern or by scattering density fluctuations
of the IP medium. Hence their apparent source sizes can potentially yield important
information about density fluctuations when scattering of a primary beam pattern
is considered. Moreover understanding of generation mechanisms of type III radio
bursts may bring new insights to wave-particle interactions with applications in
laboratory plasmas. Although type III radio bursts have been discovered more than
60 years ago many questions on their properties still remain without answer due
to missing in situ measurements at distances closer to the Sun and difficulties in
proper interpretations of existing observations.

We have studied type III radio bursts using data measured by STEREO which
consists of two identical spacecraft, orbiting the Sun providing us for the first time
with a unique stereoscopic view of the Solar-Terrestrial system (Figure 1). The
STEREO spacecraft have been launched on October 26, 2006 and after series of
highly eccentric Earth orbits followed by close flybys of the moon they escaped into
orbits about the Sun near 1 AU in the ecliptical plane. STEREO-A moves ahead of
the Earth whereas STEREO-B trails behind. The two STEREO separate at ~ 45°
per year with respect to the Sun. In February 2011 the separation angle reached
180° providing us with a 360° view of the Sun for the first time. Below we summarize
the main scientific objectives of STEREO (Kaiser et al., 2008):

e Understanding of the causes and mechanisms of Coronal Mass Ejection (CME)
initiation.
e Characterization of the propagation of CMEs through the heliosphere.

e Discovery of the mechanisms and sites of solar energetic particle acceleration
in the low corona and the IP medium.

e Development of a 3-D, time-dependent model of the magnetic topology, tem-
perature, density and velocity structure of the ambient solar wind.
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While previous solar spacecraft were all spinning stabilized (ISEE-3, Ulysses, Wind,
etc.), STEREOQ is the first three-axis stabilized solar mission. On the top of that
the STEREO/Waves instrument onboard provides us with the Gonipolarimetric
(GP) measurements encompassing both the Direction Finding (DF') and polarization
which is needed for a comprehensive electromagnetic waves analysis. It allows us to
investigate not only flux densities of solar radio emissions but we can localize their
radio sources including apparent source sizes.

For a GP inversion of the STEREO/Waves data we have extended the the Singular
Value Decomposition (SVD) analysis by (Santolik et al., 2003) to electric field mea-
surements performed on generally non-orthogonal antennas. We have studied an im-
pact of extended sources on a polarization ellipsoid geometry. We have found an em-
pirical relation between apparent source sizes and decomposed spectral matrices for
various source shapes and polarization states. The aforementioned method has been
applied on type III radio bursts observed by the High Frequency Receiver (HFR)
which is a part of the S/Waves instrument onboard. We have compared our results
with measurements of the Waves instrument (using a spin modulation methods for
the GP analysis) embarked by the Wind spacecraft during short separation dis-
tances in an early phase of the STEREO mission (May 2007). The obtained GP
products from HFR are planned to be archived in Centre de Données de la Physique
des Plasmas (CDPP) which is the French national data center for natural plasmas
of the solar system (http://cdpp.cesr.fr/).

Using extensive simulations we have investigated the influence of an antenna tilt to
the GP inversion for the future Solar Orbiter mission. We have confirmed that the
GP analysis will be possible by the RPW instrument.

We have performed statistical analysis of 156 simple and isolated type III radio
bursts observed by STEREO between May 2007 and September 2011 The maximum
flux density occurs ~ 1 MHz corresponding to radio sources located at ~ 8 R and
~ 14 Ry from the Sun for the F' and H component, respectively. The apparent
source size is statistically very extended (up to ~ 40°) suggesting that a scattering
of the primary beam pattern is important in the propagation of type III radio bursts
in the IP medium.



4 Preface

Plan of the Thesis

Chapter 1 presents a general introduction to solar physics. We focus on solar
activity and its radio signatures with an emphasis on type III radio bursts.

Chapter 2 contains principles of radio astronomy at kilometric wavelengths and
the SVD inversion of magnetic measurements.

Chapter 3 contains an application of the SVD method to radio sources. It in-
cludes an empirical relation for apparent source sizes, HFR data processing and
comparison between STEREO and Wind measurements.

Chapter 4 is dedicated to a study of solar radio emissions by the S/Waves in-
strument. Three examples of type III radio burst observations are followed by a
statistical survey. We also present a type II radio burst associated with a CME —
CME interaction.

Chapter 5 summarizes our results presented in this thesis.

Appendix A contains four articles related to this thesis. Two of them have
been published in the impacted journals (Journal of Geophysical Research and the
Astrophysical Journal). Coordinate systems used in this thesis are described in
Appendix B.
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Introduction

Contents
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1.3 Typelll RadioBursts .................... 12

This chapter contains a brief introduction to solar physics with a special attention
to type III radio bursts. A short description of the Sun and its atmosphere is followed
by a discussion on the solar activity and its radio signatures. Finally, we summarize
the currently known facts about the type III radio bursts.



1.1 The Sun and the Solar Wind T

1.1 The Sun and the Solar Wind

Figure 1.1: Observation of the Sun in various wavelengths recorded by SDO on
December 7, 2011. Adapted from http://sdo.gsfc.nasa.gov/.

Being the central body of our solar system, the Sun (Figure 1.1) exerts a significant
influence on many aspects of the human environment. A comprehensive investigation
of solar activity variations in the heliosphere are important not only for better
understanding of processes in plasma physics, but also for space weather forecasting
in a vicinity of the planet Earth. Table 1.1 summarizes its basic properties.

Structure of the Sun

The Sun is composed of two global regions: the interior and the solar atmosphere.
These domains have substantially different properties being divided in layers where
both density and temperature change abruptly (Figure 1.2). We may divide the
interior of the Sun into three layers: the core, the radiative zone, and the convective
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Radius re = 696,000 km
Mass Mg = 1.99 x 10%! kg
Luminosity Ly = 3.86 x 102 kW
Magnetic field
general 1074T
protuberance 102 —1072T
sunspot 3x107T
Temperature
core 15,000,000 K
photosphere 5780 K
sunspot 4200 K
chromosphere 800,000 K

Table 1.1: Properties of the Sun. Adapted from Kallenrode (2004).

zone. The extremely dense and hot solar core holds more than half of the Sun’s
mass while filling only about 1.5% of its volume. In this layer a nuclear fusion takes
a place by combining hydrogen nuclei into helium one while releasing vast amount
of energy by a conversion of mass into radiation. The next layer is the radiative
zone where energy is transported by a radiative diffusion: - photons lose their
energy and increase wavelength by a multiple absorption and re-emission. Above
the radiative layer there is the convective layer where the temperature decreases and
energy is transported outward mainly by a convection. A plasma circulation in the
convective layer generates significant magnetic field which may emerge on the Sun’s
surface forming sunspots and solar flares.

Solar Atmosphere

The solar atmosphere consists of the photosphere, chromosphere, transition region,
corona, and solar wind. The photosphere produces most of visible light being al-
most the coolest layer with temperature ~ 6000 K. Periodically large magnetic field
bundles may break up through this layer and create cool, dark regions known as
sunspots. The chromosphere is located above the photosphere being transparent to
most visible radiation. The transition region is characterized by a large gradient
of temperature and density between rather dense and cold chromosphere and hot
and sparse corona. The corona is the part of the solar atmosphere with extremely
high temperatures. A coronal heating mechanism is still under debate, however a
scenario favored today highlights a crucial role of the magnetic field. At a distance
of 0.5 — 1 Ry above the photosphere a topology of magnetic field lines changes
from mostly closed to the open one. Moreover the hydrostatic equilibrium breaks
down and the corona produces a stream of charged particles escaping the upper
atmosphere of the Sun: the solar wind.
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Figure 1.2: Structure of the Sun. Adapted from Kivelson and Russell (1995).

The Solar Wind

The solar wind is an outward flow of hot collisionless plasma (~ 10° K) of Sun’s
origin filling the IP medium. Parker (1958) has proposed a gas dynamic model of
solar wind which remains valid until these days. This model assumes that the outflow
must be steady, spherically symmetric and isothermal. Thereafter an existence of
the solar wind has been confirmed by Soviet spacecraft Luna-1 and Luna-2 in 1959.
We may distinguish two components of the solar wind: the slow solar wind and fast
solar wind. During solar minima the slow solar wind (~ 400 km/s, 1.6 x 10° K)
originates mostly from a region around the solar equator along closed magnetic field
lines and the fast solar wind (~ 800 km/s, 8 x 10° K) streams from coronal holes at
higher latitudes along open magnetic lines. The solar wind is very dynamic medium
reflecting processes occurring in the Sun. Hence during solar maxima the slow solar
wind may originates at higher latitutes and vice versa. As the solar wind is a flow of
collisionless charged particles it carries solar magnetic field frozen into the plasma.
This magnetic field is then curved due to a combined motion of the outflow and
solar sidereal rotation into the Archimedean spiral or hereafter the Parker spiral.
The space filled with the solar wind is called the heliosphere extending up to ~ 200
AU.
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1.2 Solar Activity and its Radio Signatures

As the Sun is an active star it demonstrates its activity in various spatial and tem-
poral scales (Kivelson and Russell, 1995). The most obvious periodic phenomena
is the solar "sunspot" cycle lasting approximately 22 years. The sunspots are dark
regions with temperatures of 2000 K lower than the surroundings, where the mag-
netic field from the convective layer emerge on the Sun’s surface (Table 1.1). The
sunspots usually appear in pairs with opposite polarities at latitudes of ~ 30° both
in the northern and southern hemispheres moving towards the equator where they
disappear. Their number varies in a period of roughly 11 years, but the magnetic
field switches its polarity hence the solar cycle lasts about 22 years (Kallenrode,
2004).

Active regions are located above sunspots and can be observed as bright areas by
X-ray imagers. They can release an energy of 10** J to the IP medium on timescales
from seconds to hours (Lang, 2001). Such eruptions are called the solar flares. The
mechanism of this energy release is related to the reconnection of the magnetic field
lines (Priest, 1984). The magnetic field creates the current sheet which represents an
efficient particle accelerator due to DC electric field and microturbulances (Martens
and Kuin, 1989). The downward moving particles radiate in the hard X-ray spectra,
whereas the particles propagating outward the Sun along open magnetic field lines
may produce intense radio emission.

CMEs are very spectacular events when huge amount of solar mass with a loop-
like structure (its diameter may exceed the solar radius) is released into the IP
medium (Kallenrode, 2004). They are thought to be accelerated by a conversion
of the magnetic energy into the kinetic energy of ejected solar plasma by a sudden
simplification of the magnetic field. CMEs may trigger severe geomagnetic storms
if they are Earth-directed. Therefore their observation is crucial for space weather
forecasting.

Solar Radio Bursts

Solar radio emissions associated with solar flares or CMEs are called solar radio
bursts (Lang, 2001). We may categorize them into five types according to their
spectral features which reflect the generation mechanisms (Figure 1.3).

e Type I Radio Bursts (Noise Storms): are short (~ 1s), narrow-bandwidth
(no frequency drift) emissions usually occurring in large numbers with under-
lying continuum which form noise storms lasting from hours to days. They are
thought to be associated with electrons accelerated to modest energies within
large scale magnetic loops.

e Type IT Radio Bursts: are slow frequency drift emissions usually occurring
in pairs (fundamental and harmonic emissions). They are excited by fast
electrons accelerated on shock fronts of propagating CMEs.

e Type IIl Radio Bursts: are fast frequency drift emissions occurring sin-
gularly, in groups, or storms. They are triggered by beams of suprathermal
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electrons propagating in the IP medium associated with solar flares.

e Type IV Radio Bursts: are broad-band continuum radiations. They are
thought to be generated by energetic electrons trapped within magnetic clouds.

e Type V Radio Bursts: are smooth and short lived (1 — 3 minutes) con-
tinua following some type III radio bursts with opposite sense of polarization
compering to the associated type III radio bursts.

Therefore solar radio bursts provide us with important diagnostics of processes oc-
curring in the corona and the IP medium.
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Figure 1.3: Spectral signatures of type I — V solar radio bursts. Adapted from
Lang (2001).
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1.3 Type III Radio Bursts
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Figure 1.4: An intense type III radio burst recorded from 22:53 to 23:09 UT on
the 8 May, 2007: a) the electric field spectral density, b) the coherence, c) the polar
angle 6, d) the azimuthal angle ¢ , e) the apparent source size v for STEREO-A.
Adapted from Krupar et al. (2012).

Type III radio bursts (Figure 1.4) are consequence of suprathermal electrons
(~ 0.14c) accelerated near the Sun’s surface during solar flares and belong among
the most intense electromagnetic emissions observed in the heliosphere ( Wild, 1950,
Dulk et al., 1987). Type Ill-generating electron beams propagate outward the Sun
along an open magnetic field line in the corona and the IP medium at large distances
beyond 1 AU where suprathermal electrons can be detected in situ by spacecraft.
These electron beams produce a bump-on-tail instability. This abrupt change of
plasma parameters can lead to generation of electrostatic Langmuir waves at the
local plasma frequency f, which is proportional to the local electron density as
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fpe(kHz) ~ 94y/n(cm=3). Since electron beams propagate outward from the Sun,
these emissions are generated at lower frequencies corresponding to a decreasing
of fpe. Langmuir waves can be afterward converted by nonlinear interactions into
electromagnetic waves: type III radio bursts at fp. (the fundamental emission, F') or
2f, (the harmonic emission, H). This conversion involves the wave-wave interactions
of Langmuir (L and L'), ion-acoustic (S) and electromagnetic (T") waves ( Ginzburg
and Zhelezniakov, 1958):

L_)T(fpe>:ts
L—L'+S
L4 B — T2

However principles of the conversion has been formulated more than 50 years ago it
is still not clear how electron beams can preserve the bump-on-tail instability over
distances beyond 1 AU (Sturrock, 1964) and several theories remain under debate
(Melrose, 1980, Cairns and Robinson, 1995, Abalde et al., 1998).

Type III radio bursts can be observed from metric (or even shorter) to kilometric
wavelengths (Reiner et al., 2000). Multipoint observations of type III radio bursts
using GP measurements have already been obtained by spinning spacecraft ( Gurnett
et al., 1978, Manning and Fainberg, 1980, Hoang et al., 1981) and recently also by
STEREO which is three-axis stabilized (Reiner et al., 2009, Krupar et al., 2010,
2012, Martinez-Oliveros et al., 2012).

The flux density of type III radio bursts may vary over six orders of magnitude
(Dulk, 2000). Weber (1978) has found in data from the IMP-6 spacecraft (30 kHz
— 10 MHz) that the maximum flux density occurs at ~ 1 MHz. This result has
been recently confirmed by Bonnin (2008) based on joint observations performed by
the Ulysses and Wind spacecraft.

Although coronal type III radio bursts (f ~ 200 MHz) can have up to 35% of the
circular polarization being always the o-mode, type V radio burst extensions exhibit
the opposite sense (Dulk and Suzuki, 1980). Nevertheless the degree of polarization
of type III radio bursts at long wavelengths (f ~ 1 MHz) is negligible (Dulk, 2000).
In a comparison with other electromagnetic emissions, sources of type III radio
bursts are apparently extended (Steinberg et al., 1984, 1985, Bonnin et al., 2008),
which can be explained by either properties of an intrinsic beaming pattern or scat-
tering by density fluctuations in the IP medium. Propagation of type III radio
bursts is affected both by refraction in density gradients and by scattering by inho-
mogeneities in the solar wind. It results in the shifted position of a source location
and enlargement of the source size. Thejappa et al. (2007) have performed extensive
simulations to study the effects of refraction and scattering at f = 120 kHz suggest-
ing the latter is responsible for very extended sources of type III radio bursts.
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Radio Wave Measurements in Space
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The first part of this chapter is dedicated to the principles of radio astronomy
at long wavelengths. The second part deals with the SVD inversion of a magnetic
spectral matrix whose application will be extended to electric measurements in the
following chapter.
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2.1 Radio Astronomy at Kilometric Wavelengths

Measurements of solar radio emissions at kilometric wavelenghts from ground based
observatories are limited by the ionospheric cut-off (typically at 10 MHz) and terres-
trial radio frequency interferences. Therefore we need instruments in space despite
their high requirements on design (e.g. low mass, small size, low power consump-
tion, immunity to vibration and radiation, etc.). Since the magnetic field is fainter
by a factor of the speed of light than the electric field component, very efficient
preamplifiers are needed in this frequency range for measuring the magnetic compo-
nent. We will thus focus on electric antennas only in this section. Spacecraft may
embark electric monopole or dipole antennas. Two non-collinear monopoles form a
dipole. A monopole located perpendicular to an infinite flat conducting surface is
the equivalent of a dipole. Hence we consider as an approximation that a monopole
placed on a spacecraft body with a conductive surface (however, neither infinite nor
planar) behaves as a dipole.

2.1.1 Short Electric Dipole

If the wavelength A of an electromagnetic wave is significantly larger comparing
to the length of a dipole antenna h (i.e. A/10 > h) used to observe it, we can
assume that the electric field of an incident wave E is spatially homogeneous along
an antenna itself ( Kraus, 1966). This frequency range is called the quasi-static range
or the short dipole range and an incoming electromagnetic wave induces a voltage
Vi at antenna feeds:

Vi =E-hg (2.1)

where E is the electric field of the wave and hy, represents an effective antenna vector
(Schelkunoff, 1952).

2.1.2 GP Measurement Expressions

The main goal of a GP analysis is to retrieve flux, polarization state and direction of
arrival of an incident electromagnetic wave. In order to perform the GP analysis we
need to measure both auto- and cross-correlations between three antennas resulting
in a correlation matrix:

Py = (07, (2.2)

where Vj is a vector of complex amplitudes of induced voltages, indices i and j
represent three antennas, (...) means averaging over a time interval much longer
than the observed wave period and * corresponds to complex conjugacy. Ladreiter
et al. (1995) have derived a relation between measured correlation P;; and properties
of an incident electromagnetic wave considering non-orthogonal antennas:

Z() Ghihj Sg

Py="2

[(1+Q)A;A; — U(A;B; + A;B;) +
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A = —sinfcosf cos(¢p — ¢x) + cos by sin 0, (2.4)

Bk = —gin 9k sin(cb = ¢k) (25)

The right hand side of equation (2.3) contains the impedance of free space (Zy); the
parameters of the electrical antennas: effective lengths (hy), directions (6y and ¢x)
and gain (G); and incident wave properties: the k-vector directions (6 and ¢), the
Stokes parameters (Kraus, 1966): the energy flux Sy, the linear polarization degrees
Q@ and U, and the circular polarization degree V. A, and By represent projections of
the effective antenna vector on the wave plane axes. We may thus have up to nine
measurements for a determination of six unknown wave parameters (four Stokes
parameters and two angles defining a wave vector direction).

2.1.3 Spin Demodulation GP

The basic idea of spin demodulation GP is very simple: when a spinning antenna
points toward a source, the smallest signal is measured (Lecacheuz, 1978). This spin
modulation method has been used onboard e.g. Hawkeye 1, IMP 8 and HELIOS 2
spacecraft (Kurth et al., 1975, Gurnett et al., 1978). In case of a spinning spacecraft
with two antennas (one axial and one equatorial) we can sum their responses with
a phase shift (¢.e. antenna switching) in order to obtain an additional inclined syn-
thetic antenna (Manning and Fainberg, 1980). This technique has been implemented
onboard ISEE-3, Wind and Ulysses (Stone et al., 1992, Bougeret et al., 1995). Spin-
ning spacecraft do not provide reasonable GP results on timescales shorter than
their spin period.

2.1.4 Instantaneous GP

For instantaneous GP we need three spatially fixed non-coplanar antennas and a
multi-channel receiver which retrieve both auto- and cross-correlations. Two-channel
receivers have been used onboard e.g. Cassini (Gurnett et al., 2004) and STEREO
(Bougeret et al., 2008, Cecconi et al., 2008). These receivers provide us with four in-
dependent measurements (two auto-correlations between two antennas and real and
imaginary parts of the cross-correlation) per one measurement, i.e. instantaneously.
Hence we need three measurements to build a spectral matrix containing the whole
GP information. Lecacheuz (1978) has found a solution for an ideal case of an or-
thogonal triad of antennas. However, effective parameters of antennas never achieve
this condition due to their electromagnetic coupling with a spacecraft body. Hence
Ladreiter et al. (1995) proposed a GP inversion taking into account real antenna
specifications based on a lest-square model fitting using SVD. Vogl et al. (2004) has
adopted a Powell minimization algorithm for a GP inversion. Cecconi and Zarka
(2005) have developed analytical inversions for the GP data. Martinez-Oliveros
et al. (2012) have recently developed a simple eigenvalue decomposition technique
for determination of source direction dedicated for the STEREQO spacecraft.
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2.1.5 Influence of Extended Sources

Cecconi (2007) has studied a correlation response to an extended source measured
on three-axis stabilized spacecraft. The following equations represent an extension
of equations (2.3) — (2.5) taking into account an extended source:

Zo Ghih; S, I I
py < BOS T o) (an sac, (1~ 3))
. F2 s FZ
+(U = lV) AiBj? o (U+'LV) AjBi7
1 s+T 1 3+ T
+(1-Q) (AiAj= [T1 -T2+ g co +B;Bj= (I + 3"
2 4 2 4
I, T3+1I4
+CZC] (? - 4 ))] ) (26)
Cx = sinbjsinbcos(¢ — ¢r) + cos by cos b, (2.7)
1 L 1 — cos(ky)
k e == 2,
L) 1 —cosy /0 sin(k0s) 40 k(1 —cosy)’ (28)
3 1 7 tan2 @', \ /2
b S . 1— M - ’ ’ 9.
Te(v) 5T c037/0 ( . ) sin(k6),)db),, (2.9)
. In2 i tan?00,\ . . .
Fk(’)’) = m/o exp <— ln(2) tan2'y ) Sln(kgM)dBM (210)

The angular half aperture of the source (vy) as seen by the spacecraft is contained in
the Iy coefficients. The shape of the source (see Figure 2.1), that reflects a radial
cut of a source brightness distribution, is considered to be either uniform (equation
(2.8): model 2.1a), spherical (equation (2.9): model 2.1b) or Gaussian (equation
(2.10): model 2.1c).

2.2 Singular Value Decomposition of the Magnetic
Spectral Matrix

The SVD method is an efficient tool for a wave analysis of multi-component mea-
surements of the magnetic field with a point source (Santolik et al., 2003). We define
a Hermitian spectral matrix S’ij composed from magnetic complex amplitudes By,
(in a given orthogonal frame) at a given frequency obtained by the multidimensional
spectral analysis (Priestley, 1989):

~

Sy = (BiB}) (2.11)
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Figure 2.1: Radial cuts of three source brightness distributions: (a) uniform
source, (b) spherical source, and (c) Gaussian source. Adapted from Cecconi
(2007).

From the S matrix we calculate the A matrix by separating its real and imaginary
parts:

Su Re(SIZ) ’Re(5'13)
Re(Slz) 522 RB(SQ3)
Re(Sm) RB(S23) 533

A= 0 —Im(Si2) —Im(Sis) (212)
Im(Slg) 0 "‘Im(SQS)
Im(Slg) Im(Szd) 0

Applying SVD on this special real form of the complex spectral matrix we obtain
real matrices U, W and VT (Golub and Van Loan, 1996):

A=U-W.VT (2.13)

The matrix U is a 6 x 3 matrix with orthonormal columns used in the decomposi-
tion of A with columns in the system of principal polarization axes. The diagonal
nonnegative 3 x 3 matrix W contains three singular values. Direction of polarization
axes are in rows of the 3 x 3 matrix VT (Santolik et al., 2003). For further descrip-
tion it is convenient to order columns of these matrices into an ascending order of
singular values wgg:

Un U Uss
(szi gzz giz W11 0 0 Vin Vo Va
A= U U U, 0 wyp 0 Vig Vaa Vag ) (2-14)
H g 43 0 0 wss Vis Vag Vi
Usi Usz Uss
Usi Usz Uss

where the condition wy; < wye < wss is fulfilled. As W is diagonal we will denote
its components as w;, wsy, and ws.
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2.2.1 Polarization Ellipsoid Geometry
Lengths

The diagonal nonnegative matrix W in equation (2.14) contains three singular val-
ues that represent relative lengths of the axes of the polarization ellipsoid. These
singular values reveal magnetic field variances along axes of the polarization ellip-
soid. Therefore we can calculate planarity F' of polarization of the magnetic field
by comparing amplitudes of the smallest and the largest singular values (Santolik

et al., 2003):
F=1- \/'LU]/U):;. (215)

In a case of a monochromatic plane wave F' = 1, i.e. the polarization ellipsoid
degenerates to an ellipse, while for F' = 0 it becomes a sphere. Ratio of the middle
and the largest components of W yields information on ellipticity L, of polarization
of the wave magnetic field (Santolik et al., 2003):

L, = wy/ws. (2.16)

Additionally, we can define the sense of elliptical polarization h in the direction of
—X axis (direction Sun — spacecraft in Radial-Tangential-Normal (RTN) coordinates,
see Appendix B.3) as:

h = Asy/|Asal. (2.17)
The right-handed sense of polarization is represented as h = 1, while the left-handed
one as h = —1.

Directions

SVD provides us with three characteristic directions of the polarization ellipsoid in
the rows of the VT matrix: the wave vector, minor polarization axis, and major
polarization axis directions. These three directions are mutually orthogonal. The
wave vector direction k = k/|k| is in the row that corresponds to wy, i.e. to the
shortest axis of the polarization ellipsoid:

Via
k=] Va |. (2.18)
Va1

In a similar way we can retrieve the direction of the major polarization axis (a) as
the row that corresponds to ws, i.e. the largest axis of the polarization ellipsoid:

Vi3
Vi3

The direction of the minor polarization axis (b) is in the row that corresponds to
wo, i.e. the middle axis of the polarization ellipsoid:

Via
b= Vi |. | (2.20)
Vaa
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For description of directions we define the colatitude § and azimuth ¢ as:
6 = arctan(y/ K2 + K2/k3) for k3 > 0,

6 = m — arctan(y/ k% + Kk3/k3) for k3 <0,
¢ = arctan(ka /K1), (2.21)

where k1, K9, and k3 are the components of the vector k. Hence 6 ranges between 0°
and 180° while ¢ varies from —90° to 90° Directions of a and b are defined likewise.

2.2.2 Triangulation

Aforementioned determination of the wave vector direction x allows us to estimate
a source location if an electromagnetic emission is observed by two (or more) space-
craft. This process is called triangulation and the source location can be found as
an intersection of lines Lo and Ly in three dimensional space:

LA = PA + tAK,A, (222)

LB = PB + tBK‘,B, (223)

where Py denotes spacecraft position vector, Ky represents a wave vector direction
and ¢, is a free parameter. Two lines may intersect in one point only if they lie
in the same plane. However, we may consider the intersection to be the closest
point between two lines which can be estimated as a mean distance between pa
(the closest point on line A) and pg (the closest point on line B) calculated from
following equations:

Pap =Pp — Pa, (2.24)
M = kB X Ka, (2.25)

R =Pag xM, (2.26)
tar=R-kp, (2:27)

tgr =R -Ka, (2.28)

PA = Pa +tarka, (2.29)
P = P +iBikB. (230)

2.2.3 Stokes Parameters

In order to obtain Stokes parameters I, @, U, and V we need to transform a spectral
matrix into a matrix in the primary axial system (i.e. the polarization plane): The
6 x 3 matrix Ry, represents the spectral matrix A in this system with separated
real and imaginary parts:

3
Ry =Y  WylUmiVim for k=1,2,3 and 1 =1,2,3 (2.31)

m=1
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6

R =Y  WulUmiVim_st—3 for k=4,5,6 and | = 1,2,3, (2.32)

m=4

The matrix Ry, allows us to directly calculate Stokes parameters that provide alter-
native description of the polarization state of the generally complex vector B. This
approach can be efficient for ground based observations of electric waves as each of
the above parameters is connected to a sum or difference of the measurable quantity.
The polarization ellipse (see Figure 2.2) can be determined by its major and minor
polarization axes, its orientation in space, and the sense of rotation in a given fixed
(x, y) basis.

AY

Q
v X

Figure 2.2: The polarization ellipse geometry in a primary axes system retrieved
by SVD.

The first Stokes parameter [ is defined as:
F=IBLR + By (2.33)
The I represents flux density and can be calculated from the matrix Ry;:
I = Roy + Ras. (2.34)

The Stokes parameter ) describes the preponderance of linear horizontal over linear
vertical polarization:

|BI‘2 — |By|2
o e P\ 2.
°=B.PT1B,P B
The () can be retrieved from the matrix Ry:
Bo — B (2.36)

B R33 + Ry’
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As the matrix Ry is in the primary axial system, the x basis is identical with the
direction of the major polarization axis a (Figure 2.2). Therefore @) retrieved by
SVD ranges from 0 to 1 instead of a general case when it varies between —1 to 1.
The Stokes parameter U describes the preponderance of skew polarization:

2R(B,B*
_ _WB.B) (2.37)
| Bz|? + | By[?
The U can be also calculated from the matrix Ry, as:
= 2.38
Rs3 + Ry ( )

In a case of the SVD inversion the parameter U is null as both axes of the polarization
ellipse a and b correspond to the fixed (x, y) basis. Hence the contribution of skew
polarization dismisses in this frame (Figure 2.2). Finally the parameter V' denotes
the preponderance of right circularly polarized over the left one:

23(B,B})

— e 2.
B+ 1B, L
We can retrieve V from the matrix Ry;:
2Rs3
=" 2.40
R33 + Ras ( )

2.2.4 Estimators of the Degree of Polarization

The degree of polarization describes a quantity of an electromagnetic wave which
is polarized and can be estimated by several ways. For instance we can directly
calculate it from Stokes parameters:

p=VE TV (241)

Alternatively we can also define the two dimensional degree of polarization in the
polarization plane (Santolik et al., 2002):

R3; + R3, + 2| Ry
=4[22 2 =~ 1. 2.42
< \/ Rs3 + Ry (242)




Chapter 3

The SVD Method for Electric Radio
Measurements
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First we extent a direct application of SVD to electric field measurements in a
case of radio waves. Then results of simulated data are presented (a source size
estimation and influence of antenna tilt angle). We describe HFR data processing.
As a test of our method we compare STEREO and Wind measurements.
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3.1 SVD of the Electric Spectral Matrix

The SVD method can directly solve a problem of GP inversion for magnetic field
measurements (Santolik et al., 2003). We have extended its application to electric
field measurements of radio waves when observed far from their propagation cutoff
(Krupar et al., 2010, 2012). In this case, electric field fluctuations E are perpendic-
ular to the wave vector direction k:

E-k =0. (3.1)

This condition is fulfilled when a wave frequency f is significantly larger than the
local electron plasma frequency f,. We can thus rewrite definition of the spectral
matrix S from equation (2.11) to:

Si; = (BEY), (3.2)
where Ej, represents a complex vector of electric field fluctuations in a given orthog-

onal system. Equations (2.12) — (2.42) are then valid for electric field fluctuations
as well.

3.2 The SVD Analysis of Simulated Data
3.2.1 Empirical Relation for the Source Size

Source Size
1.0 T

(Uniform Brightness Source Profile)

0.8 7

» 061 =
g L -
g'_ L |
0.4 B 7

0.2 i ]

0-0 L 2 1 L L 1 L L i L " 1

0 20 40 60 80
Source Half Width Angle y (deg)

Figure 3.1: The ratio of the smallest and largest components of the diagonal
matrix W (w;/w3) as a function of the apparent source size (). A uniform
brightness of the source and an unpolarized emission have been assumed. Adapted
from Krupar et al. (2012).



28 The SVD Method for Electric Radio Measurements

Type III radio bursts at kilometric wavelengths have typically low degree of po-
larization and very extended sources (see chapter ?7). In an ideal case of wave with
a point source w; = 0, whereas for wave coming from all directions simultaneously
all singular values are equal: w; = wy = ws. Therefore we have assumed that in-
formation about the apparent source size 7 is hidden in the ratio w,/ws. Figure
3.1 shows wy /w3 vs v (Krupar et al., 2010, 2012). Equations (2.6 — 2.10) have been
used for modeling spectral matrices with different . Afterwards we have applied
the SVD inversion and retrieved w; /ws assuming unpolarized waves (Q = 0, U = 0,
and V = 0) and a uniform source shape. For a point source (y = 0°) the polarization
ellipsoid changes to an ellipse, while for very extended source (v = 90°) the polar-
ization ellipsoid becomes a sphere. This empirical relation allows us to estimate ~y
for unpolarized emissions with uniform source shapes from the ratio w; /ws obtained
by SVD.

In the same manner we have performed extensive simulations with various initial
parameters. We have modeled spectral matrices with different source shapes, various
types and degrees of polarization. This degree of polarization has been calculated
as a normalization of Stokes parameters (i.e. 100% polarized wave corresponds to
V@Q?*+U?+ V2 = 1, whereas 10% polarized wave represents /Q? + U2 + V2 =
0.1). Figure 3.2 shows w; /ws vs «y for three source shapes (in columns: uniform,
spherical and Gaussian) and five degrees of polarization (in rows: 100%, 30%, 10%,
1% and 0%). Three types of polarization have been investigated: the linear polariza-
tion (dashed line: 100%: Q = v/2/2, U = v/2/2, V = 0), the right-handed circular
polarization (dotted line: 100%: @ =0, U = 0, V = 1) and the elliptical polariza-
tion (dashed dotted line: 100%: Q = v/3/3, U = v/3/3, V = 1/3/3). Solid lines
in the last row denote unpolarized emissions. When the degree of polarization is
appreciable (>10%), v is related to w; /w; and the degree and type of polarization.
However this dependence dismisses when the degree of polarization is negligible.
Differences between particular source shapes are minor. We can efficiently describe
empirical relations for unpolarized emissions (the last row of Figure 3.2) as a 4th
order polynomial regression with the independent variable as the square root of

wy Jws:
w w wr\® wy\?
7(°)=ao+a1,/—1+a2<—1> + a3 <,/—1> +a4<—1) : (3.3)
W3 Wy w3 w3

where a; are coeflicients given in Table 3.1.

3.2.2 Error Analysis of the GP Inversion
Wave Vector Direction

Using equations (2.6 — 2.10) we have performed an error analysis taking into ac-
count inaccuracies of the effective antenna directions (2°) and lengths (3%) and an
uncertainty on the receiver gain (0.5 dB). These error amplitudes correspond to
properties of the S/Waves HFR receiver which has been used for a confirmation of
validity of the SVD as a method for GP inversion of extended radio sources (Section
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Figure 3.2: The ratio of the smallest and largest components of the diagonal
matrix W as a function of the apparent source size () with the assumption of no
error of the measurements. Results for uniform, spherical and Gaussian bright-
ness source profiles are shown in the left, middle, and right columns,respectively.
Degree of polarization is 100% (the first row), 30% (the second row), 10% (the
third row), 1% (the fourth row) and 0% (the last row). The type of polarization
has been considered to be linear (dotted lines), circular (dashed lines), or elliptical
(dash-dotted lines). In case of an unpolarized emission a solid line has been used.
Adapted from Krupar et al. (2012).

3.4.2). We have simulated antenna directions with normal distributions of abso-
lute deviations centered on the nominal direction with sigma of 2°, and uniform
distributions of azimuth. We have also applied the Gaussian noise with a standard
deviation of 3% on antenna lengths. We have considered an uncertainty on the
receiver gain as another source of an error by applying the Gaussian noise on the
final auto/cross-correlation products (normal distributions of the uncertainties in
dB centered at 0 dB). This way we have simulated an angle difference between an
input k-vector direction and an output one obtained by SVD as a function of the
apparent source size with an assumption of the errors mentioned above (Figure 3.3).
As the apparent source size v becomes larger, the uncertainty of estimation of the
k-vector direction increases (Krupar et al., 2012).

100%

30%

10%

1%
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ay Uniform Spherical Gaussian

ag 0.20 -0.01 -0.42
a 75.51 90.35 60.30
ay 32.70 2.86 -80.3
as -67.62 -12.85 240.53
a4 48.79 9.61 -129.53

Table 3.1: Coefficients of a polynomial regression for a case of an unpolarized
wave for equation (3.3). Adapted from Krupar et al. (2012).

Source Size

We have also investigated an angle difference between an input v and an output one
obtained by SVD vs an input 7 (Figure 3.5). For small sources (v < 5°) the empirical
relation overestimates the source size v whereas it underestimates the source size
for very large sources (y > 60°). Regarding Figures 3.3 and 3.5 we conclude that
an uncertainty on the receiver gain has the largest influence affecting our analysis.
Therefore we have considered it to be a main source of errors in the GP analysis
(Krupar et al., 2012).

3.2.3 Influence of the Antenna Tilt

The techniques developed for S/Waves can also be applied to other instruments
onboard three-axis stabilized spacecraft. Especially the Radio and Plasma Wave
(RPW) instrument for Solar Orbiter (Maksimovic et al., 2007) for which we need to
evaluate if we can do GP even if the chosen antenna configuration is inappropriate.
Solar Orbiter is an M-class mission in the European Space Agency (ESA) Science
Programme Cosmic Vision 2015 — 2025 which will have an orbit with a perihelion
as low as 0.28 AU. The RPW instrument will provide new insights into both the
micro-scale wave phenomena and IP emissions produced by energetic electrons and
shocks.(Boudjada et al., 2005). Due to high requirements on the low frequency
electric field measurements demanding equal illuminations of the three antennas
(each 5 m), the latter will be coplanar, limiting thus the possibilities of the GP
inversion (see Section 2.1.4). An electric coupling with the spacecraft body and
thermal bending will result in their tilted directions with respect to the antenna
plane. Their effective parameters have been investigated considering various antenna
placements on the spacecraft body (Rucker et al., 2011, Sampl et al., 2011). The
electric coupling with the spacecraft body will result in tilted effective antenna
directions of ~ 20° towards the Sun. The influence of thermal bending will be
minor ranging between ~ 2° and ~ 5° in the opposite direction when 70 — 100
cm bending at the top of the antennas has been considered. We thus expect the
effective antennas directions to be tilted towards the Sun of 15° — 18°.

We discuss a possible accuracy of the GP inversion with respect to this tilt angle
considering uncertainties of the effective antenna parameters (Krupar et al., 2011).
Using equations (2.6 — 2.10) we have modeled spectral matrices that represent an
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Figure 3.3: An average angle difference between an input k-vector direction and
the obtained one by SVD as a function of the apparent source size vy is represented
by a solid line, a dashed line is the average plus its standard deviation. First panel:
an inaccuracy of effective antenna directions of 2°; Second panel: an inaccuracy
of effective antenna lengths of 3%; Last panel: an uncertainty on the receiver gain
of 0.5 dB. Adapted from Krupar et al. (2012).

unpolarized wave (Stokes parameters: @ = 0, U = 0, and V = 0) propagating from
a point source located on the Sun (an apparent source size: v = 0°, a wave vector
direction x: # = 90°, and ¢ = 0°). We have considered effective antenna lengths to
be equal (h; = hy = h3), while effective antenna directions are varying with respect
to the tilt angle (& = 0°, & = —125°, and & = 125°; ¢ = { = (3 €< 90°,65° >).
( is the colatitude from the X axis and & the azimuth from the Z axis. Various
simulations have been performed for each set of parameters considering different
sources of errors. The wave vector directions k have been estimated by the SVD
method.

Figure 3.5a shows mean deviations of the wave vector directions x from from the Sun
direction as a function of the tilt angle (. We have modeled normal distributions of
lengths centered on the nominal lengths h; with sigma(h;)/h; = 0.01,0.03, and 0.05
(dotted, dashed, and solid line, respectively). We have also performed an error
analysis for uncertainty of the effective antenna direction (Figure 3.5b). In this case
normal distributions of absolute deviations centered on the nominal directions with
sigma(h;)/h; = 0.01,0.03, and 0.05 (dotted, dashed, and solid line, respectively)



32 The SVD Method for Electric Radio Measurements
Error on Source Size Ay (Uniform Source Profile)
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Figure 3.4: An average angle difference between an input  and the obtained
one by SVD as a function of the apparent source size v is represented by a solid
line, a dashed line is the average plus/minus its standard deviation. First row:
an inaccuracy of effective antenna directions of 2°; Second row: an inaccuracy of
effective antenna lengths of 3%; Third row: an uncertainty on the receiver gain of
0.5 dB. Adapted from Krupar et al. (2012).

and uniform distributions of the azimuth angles have been considered.

We have found that the effective antenna tilt angle of at least 5° — 10° is needed for
obtaining the GP accuracy better than 10° (Krupar et al., 2011). It has been shown
by Rucker et al. (2011) that the tilt of 15° — 18° towards the Sun should occur
for the effective antenna directions because of the combined effects of the spacecraft
body and the antenna thermal bending. We have demonstrated that GP should
thus be possible with RPW onboard Solar Orbiter.

3.3 HFR (S/Waves) Data Processing

This Section describes methods for converting measured voltages by HFR (a part of
S/Waves) into the waves parameters.
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Figure 3.5: The average difference between input and output wave vector direc-
tion as a function of antenna tilt angle (. Adapted from Krupar et al. (2011).

Source Data Set

The HFR is a dual-channel receiver (connected to two antennas at one time) operat-
ing in the frequency range 125 kHz — 16.025 MHz with a 25 kHz effective bandwidth
(Bougeret et al., 2008). HFR has instantaneous GP capabilities (see Section 2.1.4
for details) between 125 kHz and 1975 kHz allowing us to retrieve the direction of
arrival of an incoming electromagnetic wave, its flux and its polarization properties
(Cecconi et al., 2008). HFR consists of two receivers: HFR1 (125 kHz — 1975 kHz,
38 frequency channels) and HFR2 (2025 kHz — 16.025 MHz, 281 frequency chan-
nels). HFRI1 provides us with auto- and cross-correlation on all antennas (three
monopoles), while HFR2 retrieves only two auto-correlations (one monopole and
one dipole) most of the time since May 2007.

The three monopole antenna elements (6 meters long), made from Beryllium Copper,
are used by S/Waves to measure the electric field of radio waves (Bale et al., 2008).
The effective length of antenna is only about 1 meter (Rucker et al., 2005, Macher
et al., 2007, Oswald et al., 2009, Zaslavsky et al., 2011). Figure 3.6 shows their
accommodation on the spacecraft bodies.
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STEREO-B STEREO-A
Xse Yo

hy

hz

Observer facing the Sun (hidden by the Earth)

Figure 3.6: Antenna configurations in the spacecraft frame. Adapted from
http://typhon.obspm.fr/stereo/antenna.php. Credits: B. Cecconi, LESIA,
Observatoire de Paris

HFR1

For HFR1 three successive measurements with antenna switching are needed to
obtain complete GP information, hence we are interested in a mode when the in-
strument is rapidly (each 200 ms) switching between these channel/antenna config-
urations:

e ANTI12 = Channel 1: +X/Channel 2: =Y
e ANT21 = Channel 1: =Y/Channel 2: +Z
e ANTI11 = Channel 1: +X/Channel 2: +Z

Each channel /antenna configuration provides two real auto-correlations from two an-
tennas and one complex cross-correlation of the voltages induced by the wave electric
field between these antennas (Bale et al., 2008). From three quasi-instantaneously
acquired measurements we can build a spectral matrix that yields the GP informa-
tion (Lecacheuz, 1978, Bale et al., 2008).

We use calibrated (V?/Hz at preamplifier) level 2 data archived at the CDPP website
(http://cdpp.cesr.fr/). For ANT12, ANT21, and ANT11, one data record (for
each channel/antenna configuration) consists of four values:

e AUTO1: Auto-correlation Channel 1 (V2/Hz)
e AUTO2: Auto-correlation Channel 2 (V2/Hz)
e CROSR: Normalized Cross-correlation (real part)

e CROSI: Normalized Cross-correlation (imaginary part)
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HFR2

HFR2 provides us with only two auto-correlations from one dipole (X—Y) and one
monopole (—Z):

e ANT31 = Channel 1: X—Y/Channel 2: -7

We use calibrated data from the CDPP as in the case of HFR1. For ANT31, one
data record consists of two values:

e AUTO1: Auto-correlation Channel 1 (V?/Hz)
e AUTO2: Auto-correlation Channel 2 (V?/Hz)

As no cross-correlations are measured, we use HFR2 data only for estimation of the
flux density.

3.3.1 Background Removal

Prior to data processing we need to subtract background levels from the data in order
to improve the Signal-to-Noise Ratio (SNR). These background levels consist of the
receiver noise V.2, ., the Quasi-Thermal Noise (QTN), and the radio background of

galaxy. A major contribution below 500 kHz is the QTN generated by the ambient
plasma (Meyer-Vernet and Perche, 1989):

5 Nel

Ve EHITT=—= 3.4
QTN falph ( )

where n, and T, are the local electron density (cm™3) and temperature (K), f is
frequency (Hz), and [,;, the physical length (m) of the antenna. On the other hand
the galactic background V:alaxy has larger influence for higher frequencies (Novaco
and Brown, 1978).

As it is difficult to distinguish particular contributions of V2., Viry, and V23,
we have estimated a receiver background level as a median value over one day of the
given auto-correlation for each channel/antenna configuration separately, e.g. for

the configuration 12 on the channel 1:
BKG1,; = median|AUTO115). (3.5)
We subtract this background level from a signal:
AUTO1,, = AUTOL,, — BKGly (3.6)

If a signal is below the background, we set the result to zero. This approach is
efficient when the instrument measures background values most of the day which is
a case the HFR data. However another treatment is needed when this assumption
is invalid, e.g. during long lasting type III radio burst storms.
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Spectral Matrix

From three successive measurements of HFR1 (the ANT12, ANT21, ANT11 config-
urations) we can build the 3 x 3 spectral matrix:

Py Py Py
Pj=| Py Pn Py |. (3.7)
Pry Pjy Py

Components of P;; are calculated from corresponding auto- and cross-correlations:

= A(ﬁ\(im;fllﬁ(jlu (3.8)
By = AU/:F/0121-;AU?’OQ12 59)
Py = AUTO2, ;Am“ (3.10)
Piy = (CROSRy +1CROSI,) \/;J/T\oiumﬁo/zm (3.11)
Py =(CROSR11+zCROSIu)\/Aﬁ/mllAljmll (3.12)
Py = (CROSRHHCROSIm)ﬁﬁ&mmﬁ@m, (3.13)

where 1 represents square root of —1. The P;; matrix is in V2/Hz calculated in the
antenna frame (see Figure 3.6).

3.3.2 Effective Antenna Parameters

Although we use three orthogonal antennas, their effective antenna directions ((eq
and &) and lengths (L) are different from the physical ones ((on, &ph, and Iyp)
due to their electric coupling with the spacecraft body. These parameters can be
modeled by computer simulations, estimated by rheometric measurements (Macher
et al., 2007, Rucker et al., 2005, Oswald et al., 2009) or obtained by an in-flight
calibration.

The effective antenna directions used in this thesis have been obtained by obser-
vations of the non-thermal Auroral Kilometric Radiation (AKR) during STEREO-B
roll maneuvers (Panchenko et al., 2010, Krupar et al., 2012). As no AKR has been
surveyed by STEREO-A, the effective directions have been assumed to be the same.

The galactic background, as a nearly stable isotropic source, allows us to deter-
mine reduced effective antenna lengths (Manning and Dulk, 2001, Zaslavsky et al.,
2011):

Z

Z. % Z. Lest, (3.14)

heff =
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where Z, and Z, represent the antenna impedance and the stray impedance, respec-
tively (Zouganelis et al., 2010, Zaslavsky et al., 2011). The physical and effective
antenna parameters are summarized in Table 3.2. For description of antenna direc-

X Y Z

on () 6.00 600  6.00
gp., (°)  125.26 125.26 125.26
5p.‘ (°)  -120.00 120.00  0.00
(m) 146 185 1.14
(°)  119.00 11510 123.70
(°) -135.10 124.80 13.40

ff
ff
éeff

Table 3.2: Physical and effective antenna parameters (Panchenko et al., 2010,
Zaslavsky et al., 2011, Krupar et al., 2012).

tions we use a spherical coordinate system, where ( is the colatitude from the +X
axis and & the azimuth from the —Z axis. As the short dipole approximation is valid
as long as the wavelength is much larger than the antenna length, these parameters
have been used for HFR1 only (Kraus and Marhefka, 2002, Schelkunoff , 1952). For
frequencies above 2 MHz (HFR2) we have performed the same analysis as Zaslavsky
et al. (2011) in order to obtain accurate reduced effective antenna lengths her as
a function of frequency (see Figures 3.7 and 3.8). These parameters have been re-
trieved by comparing the lowest 1% of the data observed within one day (January

13, 2007) and the modeled galactic background V3. (Novaco and Brown, 1978).

Transformation of the Measured Voltages into the Electric Field

For HFR1 we transform the spectral matrix P containing measured voltages (V?/Hz)
on the antennas into an electric field (V2/m?/Hz) in the spacecraft coordinate system
(Bale et al., 2008):

C=M, -P-M,", (3.15)

where M, has been calculated from:

hX cos (% hXsin(XsinéX —hksin( ¥ cos&X
M, ! = | hi; cos 3& hYs sin gf/fsmfg;f —h}fff sin (¥ o COS g; (3.16)
Z YA cZ  _pZ
hZ.cos(% hZsin(4siné  —hZ sin(Z cos&

Thereafter the C matrix can be transformed into the specific coordinate system
(Appendix B):
S=F.-C-FT, (3.17)

where the F matrix has been obtained from the website of the Space Radiation
Lab at California Institute of Technology (http://www.srl.caltech.edu/STEREQ/
docs/pointing.html).

Finally the S matrix contains an electric field (V?/m?/Hz) in the given coordinate
system that is suitable for further wave analysis. From the matrix S we can calculate
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Figure 3.7: Reduced effective antenna lengths of X—Y dipole (in blue) and Z
monopole (in red) for STEREO-A vs frequency obtained from measurements on
January 13, 2007. A black dotted line separates frequency coverage of HFR1 (< 2
MHz) and HFR2 (> 2 MHz). A dashed red line indicates a heg of Z monopole
used for HFR1 data where the short dipole approximation remains valid. For more
details of this analysis see Zaslavsky et al. (2011).

sum of power spectral densities of electric field fluctuations (V2/m?/Hz):
3
Eym = Z Sis- (3.18)
1=1

For HFR2 (ANT31) we calculate EZ;;,, as a sum of the dipole and monopole auto-
correlations divided by their reduced effective lengths:

,  AUTOly, AUTO?2

SUM = RXY + A (3.19)

The reduced effective antenna parameters k%’ and hXY have been retrived from
Figures 3.7 and 3.8.
From EZ2;,,; we can derive the flux density S in Solar Flux Units (1 sfu=10"%2
W2/m?/Hz) as:
22 2
S = &XEM’ (3.20)
Zo
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Figure 8.8: Reduced effective antenna lengths of X—Y dipole (in blue) and Z
monopole (in red) for STEREO-B vs frequency obtained from measurements on
January 13, 2007. A black dotted line separates frequency coverage of HFR1 (< 2
MHz) and HFR2 (> 2 MHz). A dashed red line indicates a heg of Z monopole
used for HFR1 data where the short dipole approximation remains valid. For more
details of this analysis see Zaslavsky et al. (2011).

where Zy = +/ji0/co = 1207 denotes the impedance of vacuum.

3.4 S/Waves (STEREO) and Waves ( Wind) Inter-

calibration

3.4.1 Flux Density

In order to intercalibrate the HFR1 receivers on-board STEREO, we have investi-
gated six intense type III radio bursts observed during May 2007 after the instru-
ments started to operate in the GP mode while separation distances between two
STEREO were below 0.2 AU (a separation angle of 12°). We have compared peak
fluxes from all frequency channels separately. Since the separation angles between
STEREO A/B varied between 6.5° and 11°, radio sources cannot be located by a
triangulation. Hence we have applied a correction of the radiation intensity (1/R?)
for the slightly different distances of the two spacecraft from the Sun.
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Figure 3.9: Relative intensities between STEREO-A and STEREO-B as a func-
tion of the intensity of STEREO-A for six type III radio bursts observed during
May 2007. Dashed line represents a median value of the relative intensities. The
error bar indicates the 25% and 75% quartiles. We have added a correction of the
radiation intensity for the slightly different distances of the two spacecraft from
the Sun.

Figure 3.9 shows the relative intensities between STEREO-A and STEREO-B as
a function of the intensity measured on STEREO-A in sfu. Dashed line represents
a median value of the relative intensities. Although data points are quite scattered,
the median value exhibits at ~ 1. We have thus concluded that both receivers are
well intercalibrated and can provide an additional input for the GP analysis when
one compares an estimated source position and a relative intensity between two
spacecraft.

Figure 3.10 displays relative intensities for STEREO-A/ Wind and STEREO-
B/ Wind for peak fluxes on close frequency bands as a function of the intensity mea-
sured on Wind in sfu. Dotted and dashed lines indicate median values of STEREO-
A/ Wind and STEREO-B/ Wind, respectively. Our results show that differences in
the intensity between STEREO and Wind are minor. Although receivers on-board
STEREO and Wind use different methods, the obtained flux densities are compara-
ble during short separation distances. Our results suggest that both HFR1 on-board
STEREO-A and STEREO-B are well calibrated with effective antenna lengths given
in Table 3.2.

However that this latter conclusion is valid only for signal above the typical galactic
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Figure 8.10: Relative intensities STEREO-A/Wind and STEREO-B/Wind as
a function of the intensity of Wind for six type III radio bursts observed during
May 2007. Dotted and dashed lines indicate median values of STEREO-A/ Wind
and STEREO-B/ Wind, respectively. The error bars indicate the 25% and 75%
quartiles. We have added a correction of the radiation intensity for the slightly
different distances of the two spacecraft from the Sun.

background levels, such as it is the case for type III radio bursts. For weak signal,
the receiver fine calibration still needs to be improved at the time of the writing of
this thesis.

3.4.2 GP Products

As an experimental confirmation of validity of the SVD method for extended radio
sources we present an analysis of one type III radio burst from May 8, 2007 observed
simultaneously by STEREO and Wind during short separation distances. To de-
fine the spacecraft positions for this event the Heliocentric Earth Ecliptic (HEE)
coordinate system has been used (see Appendix B.1):

e STEREO-A: [0.96,0.08, 0.00)tzx AU
e Wind: [0.99,0.00,0.00]yge AU

¢ STEREO-B: [1.05,—0.04, —0.01]ygs AU
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That day all spacecraft observed an intense type III radio burst from 22:53 to 23:09
UT. It has been the first intense type III radio burst recorded after STEREO started
to operate in the GP mode.
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v (deg)
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Figure 3.11: Analysis of measurements recorded from 22:53 to 23:09 UT on the 8
May, 2007: the electric field spectral density, the polar angle , the azimuthal angle
¢ (in the RTN coordinate system) and the apparent source size v for STEREO-A
(925 kHz), Wind (916 kHz) and STEREO-B (925 kHz). Dashed lines represent the
direction to the Sun. Dotted lines indicate values corresponding to the maximum
flux at the given spacecraft. Adapted from Krupar et al. (2012).

Figure 3.11 shows type III radio burst recorded at the 925 kHz (916 kHz for

Wind) frequency channel from both STEREO and Wind. The STEREO error bars
have been retrieved from Figures 3.3 and 3.5 with an uncertainty of the receiver
gain of 0.5 dB (see chapters 3.2.2 and 3.2.2 for details) whereas the Wind error bars
correspond to the standard deviation of 2°. The second and the third row display
the polar angle § and the azimuth angle ¢, respectively. Dashed lines represent
the direction to the Sun. The last row displays the apparent source v with the
assumption of a uniform source brightness distribution. Dotted lines indicate values
corresponding to peak fluxes at the given spacecraft. We have achieved a good
agreement between the results from STEREO and Wind: the apparent source size
7 is ~ 20° on all three spacecraft although it has been estimated by different method
in the case of Wind. Figure 3.12 shows same data but without a background removal
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Figure 8.12: Analysis of measurements recorded from 22:53 to 23:09 UT on the 8
May, 2007: the electric field spectral density, the polar angle 6, the azimuthal angle
¢ (in the RTN coordinate system) and the apparent source size y for STEREO-A
(925 kHz), Wind (916 kHz) and STEREO-B (925 kHz). Dashed lines represent the
direction to the Sun. Dotted lines indicate values corresponding to the maximum
flux at the given spacecraft. We have not performed any background subtraction
in equation (3.6).

(Section 3.3.1, equation 3.6). By a comparison with Figure 3.11 it can be seen that
results of the GP analysis for peak fluxes are identical.

We have performed the same analysis of several type III radio bursts observed
in May 2007, when separation angles between all spacecraft were below 12°. Table
3.3 summarizes results suggesting that SVD can be generally used for estimation of
the apparent source sizes.
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TimesrerEO-A fsrereo (kHz)  fwing (kHz)  vsterEO-A (°) YWing (°) 7stereo-B (°)
2007-05-08T23:07 225 224 35.67 41.30 49.06
2007-05-08T22:58 625 624 17.28 24.30 22.68
2007-05-08T22:57 925 916 18.28 22.50 20.20
2007-05-15T15:46 225 224 52.12 39.10 57.18
2007-05-15T'15:39 625 624 21.16 25.30 11.75
2007-05-15T15:37 925 916 24.33 23.90 24 .41
2007-05-19T13:11 225 224 35.07 33.90 25.13
2007-05-19T12:57 625 624 24.69 24.90 14.10
2007-05-19T'12:56 925 916 17.09 23.80 23.47
2007-05-22T'14:37 225 224 42.58 49.00 43.09
2007-05-22T14:31 625 624 24.74 24.50 16.71
2007-05-22T14:30 925 916 19.57 23.70 14.51
2007-05-23T07:35 225 224 44.91 34.90 37.43
2007-05-23T07:23 625 624 23.54 23.70 22.73
2007-05-23T07:22 925 916 21.03 19.90 11.78
2007-05-30T20:44 225 224 45.94 45.40 50.13
2007-05-30T20:36 625 624 21.51 28.20 17.73
2007-05-30T20:34 925 916 19.96 24.00 11.67

Table 3.3: Apparent source sizes y calculated for six intense type III radio bursts from May 2007 during peak fluxes. The
first column corresponds to peak fluxes observed by STEREO-A. Adapted from Krupar et al. (2012). The VOTable (the Virtual
Observatory format, for more details see http://www.ivoa.net/Documents/VOTable/) version of this table can be found as a
supplementary material of Krupar et al. (2012).




Chapter 4

Solar Radio Bursts Observed by
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In this chapter we summarize our observations of solar radio emissions by the
S/Waves instrument. First we present an analysis of three type III radio bursts to
demonstrate a benefit of a stereoscopic capability of STEREO. Then we provide
results of a statistical survey of 156 events. In the end we discuss a type II radio
burst triggered by a CME — CME interaction including a comparison with White-

Light (WL) observations.
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4.1 Type III Radio Bursts: Case Studies

We present three observations of type Il radio bursts as examples from a statistical
study discussed in Section 4.2. We have selected only events from May 2009 when
the separation angle between the two STEREO spacecraft exceeded 90° which is
ideal for triangulation of radio sources. Although it was a period of a low solar
activity several type III emissions have been detected.

4.1.1 Event 1: 2009-05-01 08:55 — 09:40
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Figure 4.1: Analysis of measurements recorded from 08:55 to 09:40 UT on May
1, 2009: dynamic spectra for STEREO-A (panel a) and STEREO-B (panel b).

We present an observation of a type III radio burst on May 1, 2009 which has
been linked to a B2.2 solar flare which started at 08:54 UT reaching maximum at
08:58 UT. For this association we have used data base of solar events compiled by
the Lockheed Martin Solar and Astrophysics Laboratory (http://www.lmsal.com/
solarsoft/latest_events_archive.html). The flare site was at S05°W89° in the
HEEQ coordinate system (Appendix B.2).

During this event STEREO-A was located 47.7° west from a Sun-Earth line at
0.96 AU from the Sun whereas STEREO-B was at 46.9° east and 1.01 AU from the
Sun. Figure 4.1 contains the flux density S from STEREO-A and STEREO-B. Both
STEREOQ detected a simple and isolated type III radio burst with a starting time
of about 8:56 UT (STEREO-A) and 8:58 UT (STEREO-B). Figure 4.2 shows peak
fluxes as a function of frequency for STEREO-A and STEREO-B. The flux density
measured at STEREO-A is larger of two orders of magnitude than at STEREO-
B suggesting an importance of the beaming effects (Bonnin et al., 2008). A high
frequency cutoff of ~ 10 MHz appears at the latter spacecraft while the maximum
flux density occurs at ~ 500 kHz at both spacecraft.

We have performed a triangulation of radio sources (for details see Section 2.2.2)
using wave vector directions during peak fluxes in the Heliocentric Earth Equato-
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rial (HEEQ) coordinates (Figure 4.3). Results of the triangulation confirm an as-
sumption that suprathermal electrons triggering the type III burst propagate along
the Parker spiral. Source regions of higher frequencies are located closer to the Sun
as it can be expected. We have included circles around three intersections (425 kHz,
1175 kHz, and 1875 kHz) denoting error bars of the triangulation. Their diameters
correspond to a projections of points pa and pp in the XY/XZ planes (Section
2.2.2). In the case of XY (Figure 4.3a) we have achieved a very good agreement
as differences between pa and pg are negligible. However these differences are sig-
nificantly larger (~ 20x) in the XZ plane (Figure 4.3b). It demonstrates that a
separation angle between the two STEREQ plays a crucial role in a localization of
radio sources. Best results can be obtained for values ranging from 60° to 120°.

We conclude that calculated radio sources are located closer to STEREO-A being
in agreement with location of the solar flare site (S05°W89°), detected lower signal
at STEREO-B (Figure 4.2), and an observed difference of onset times between two
spacecraft (Figure 4.1).
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Figure 4.2: Analysis of measurements recorded from 08:55 to 09:40 UT on May
1, 2009: flux density (peak flux values) vs frequency for STEREO-A (on the left)
and STEREO-B (on the right).
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4.1.2 Event 2: 2009-05-02 19:30 — 20:20
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Figure 4.4: Analysis of measurements recorded from 19:30 to 20:20 UT on May
2, 2009: dynamic spectra for STEREO-A (panel a) and STEREO-B (panel b).
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Figure 4.5: Image of the Sun’s surface obtained by the SECCHI instrument
(EUVI 171) on-board STEREO-A at 19:33 UT on May 2, 2009.

This type III radio burst occured on May 2, 2009 at around 19:30 UT. STEREO-A
was at 47.8° west from a Sun-Earth line at 0.95 AU from the Sun while STEREO-B
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was located 46.9° east at 1.02 AU from the Sun. Figure 4.4 shows flux density S
from STEREO-A and STEREO-B when an intense type III radio burst has been
detected at around 19:30 UT. Both spacecraft observed the emission at the same
time suggesting that radio sources are located roughly between them. A solar flare
triggering this emission has been located on the far side of the Sun from a view of
the Earth. Hence we cannot retrieve its intensity and an exact location as spacecraft
embarking X-ray imagers orbit the Earth. The solar flare has been observed on the
west limb of the Sun close to the equator by EUVI/Sun Earth Connection Coronal
and Heliospheric Investigation (SECCHI) (Howard et al., 2008) on-board STEREO-
A (Figure 4.5). Figure 4.6 displays peak fluxes vs frequency for STEREO-A and
STEREO-B. The maximum flux density at STEREO-B occurs at ~ 1.5 MHz. In a
case of STEREO-A we observe the maximum flux at the lowest frequency channel
which is .
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Figure 4.6: Analysis of measurements recorded from 19:30 to 20:20 UT on May
2, 2009: flux density (peak flux values) vs frequency for STEREO-A (on the left)
and STEREO-B (on the right).

Figure 4.7 shows positions of radio sources calculated by the triangulation (Sec-
tion 2.2.2). Our results confirm that the triggering solar flare is located on the
far side of the Sun from a perspective of the Earth being in agreement with the
EUVI/SECCHI observation (Figure 4.5). As frequency increases radio sources are
located further from the Sun. We have also calculated apparent source sizes assum-
ing a Gaussian source brightness distribution (Krupar et al., 2012). Ellipsis around
two intersections (225 kHz, and 1925 kHz) represent these apparent source sizes as
seen from both spacecraft (STEREO-A: 725 = 17°/71925 = 19° and STEREO-B:
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Y25 = 35°/71925 = 14°). As apparent sources of type III radio bursts are very
extended, scattering by density fluctuations blurs actual radio sources.

4.1.3 Event 3: 2009-05-06 11:30 — 12:20
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Figure 4.8: Analysis of measurements recorded from 11:30 to 12:20 UT on May
6, 2009: dynamic spectra for STEREO-A (panel a) and STEREO-B (panel b).
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Figure 4.9: Analysis of measurements recorded from 11:30 to 12:20 UT on May
6, 2009: flux density (peak flux values) vs frequency for STEREO-A (on the left)
and STEREO-B (on the right).
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A faint A3.8 X-ray flare located at N20°E65° triggered a type III radio bursts ob-
served by the two STEREOQ spacecraft on May 6, 2009. During this event STEREO-
A was at 48.2° west from a Sun-Earth line at 0.96 AU from the Sun whereas
STEREO-B was located at 46.9° east and 1.02 AU from the Sun. Figure 4.8 show
the flux density S from STEREO-A and STEREO-B. This type III radio burst was
observed about one minute earlier at STEREO-B than at STEREO-A. Figure 4.9
displays peak fluxes as a function of frequency for STEREO-A (on the left) and
STEREO-B (on the right). A signal detected at STEREO-B is about 100x larger
than at STEREO-A. The maximum flux density at both spacecraft occurs at ~ 1.5
MHz.

Figure 4.10 shows radio sources determined by triangulation (Section 2.2.2) lo-
cated closer to STEREO-B. It is in agreement with position of the solar flare site
(N20°E65°), detected lower signal at STEREO-A (Figure 4.9), and an observed dif-
ference of onset times between two spacecraft (Figure 4.8). Triangulation error bars
and apparent source sizes are about the same as at two previous events (Figures 4.3
and 4.7) and thus not shown here.

This type III radio burst has been also observed by Nancay Decameter Ar-
ray (DAM) and Nangay Radioheliograph (NRT) in France (geographical longitude
2° east, latitude 47° north). DAM operates in the 10 — 80 MHz frequency range and
consists of two antenna arrays with a 4000 m? effective aperture each (Lecacheuz,
2000). NRT is composed of 44 antennas of size ranging from 2 — 10 meters spread
over two arms (east-west and north-south). NRT provides us with two dimensional
images of the Sun in the EW and NS directions at 150 and 432 MHz (Kerdraon
and Delouis, 1997). Figure 4.11 shows the type III radio detected by DAM and
NRT at 11:37 UT. We have observed an ionospheric frequency cutoff at ~ 20 MHz
(top panel of Figure 4.11). Results of NRT 150 MHz measurements indicate that
the source region of this radio emission is located on the northeast side of the Sun
(second and third panels of Figure 4.11) being in agreement with positions of radio
sources obtained by the triangulation. Last two panels of Figure 4.11 suggest a high
frequency cutoff occurring between 150 MHz and 432 MHz since no emission has
been observed at 432 MHz.
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Figure 4.11: Analysis of measurements recorded from 11:00 to 12:00 UT on
May 6, 2009: power spectrum from DAM, contour plots of EW and NS brightness
distributions from NRT at 150 MHz and 432 MHz (the normalization is made
on the maximum intensity in one day, contour levels are then chosen in order to
distinguish the quiet sun from intense bursts). Adapted from http://secchirh.
obspm.fr/survey.php?hour=1100&dayofyear=20090506&composite=3.
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4.2 Type III Radio Bursts: Statistical Results

We have manually selected 156 time-frequency intervals when type III radio bursts
have been observed by STEREO/Waves between May 2007 and September 2011.
The separation angle between spacecraft in the ecliptic plane ranged between 7°
(May 2007) and 180° (February 2011). We have included only simple and isolated
events (by a visual inspection) when flux density was intense enough for the GP
analysis. In order to improve a signal-to-noise ratio we have subtracted receiver
background levels from the data before we performed our analysis. These levels
have been calculated as median values over one day of the given auto-correlation
for each channel/antenna configuration separately (see Section 3.3.1). Finally, we
have excluded data points when the difference between maximum and minimum
flux density has not exceeded a threshold of 5 dB in the selected time interval for
each frequency channel separately. We have investigated only values corresponding
to peak fluxes.

Table 4.1 summarizes type III radio bursts included in our statistical survey. The

STEREO-A events 128
STEREO-B events 125
STEREO-A and STEREO-B 97

STEREO-A and not STEREO-B 31
STEREO-B and not STEREO-A 28
Total number of events 156

Table 4.1: Number of type III radio bursts included in the statistical survey.

number of radio bursts detected at STEREO-A, and at STEREO-B are in the first
and second row, respectively. The third row contains a count of simultaneously
observed events. The fourth and fifth rows show events that have been observed
only by one spacecraft. The total number of type III radio bursts in our survey is
in the last row.

The topmost panel of Figure 4.12 displays the histogram of the observed type
III radio bursts vs time at STEREO-A (red line) and STEREO-B (blue line).
The bottom panel is the separation angle between STEREO-A and STEREO-B.
Although the Sun exhibited an increased activity in 2011 we do not have many
events from this period since we include only simple and isolated emissions.

4.2.1 Source Size, Wave Vector Direction, and Polarization

Figure 4.13 summarizes GP results of type III radio bursts during peak fluxes for
each frequency channel separately between 125 and 1975 kHz. The topmost panel
contains median values of the apparent source size 7 vs frequency. We have used the
GP inversion described in Section 3.2.1 with an assumption of a Gaussian source
brightness distribution (Krupar et al., 2012). The apparent source size v is very
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Figure 4.12: The topmost panel is histogram of observed type III radio bursts at
STEREO-A (red line) and STEREO-B (blue line) between May 2007 and Septem-
ber 2011. The lower panel displays a separation angle between STEREO-A and
STEREO-B.

extended (~ 40°) for low frequencies (< 500 kHz), while remaining almost con-
stant between 500 kHz and 2 MHz (~ 25°). It confirms that type III radio bursts
have apparently extended sources which can be explained by either properties of an
intrinsic beaming pattern and scattering by density fluctuations in the solar wind.
We need extensive modeling of refraction and scattering to explain our observations.
Thejappa et al. (2007) have already performed this modeling for emissions at 120
kHz.

Statistical results on the absolute values of polar angle || and azimuthal angle |¢| are
shown in the second and third panels, respectively (calculated in RTN coordinates,
see Appendix B.3 for details). Deviations of wave vectors « from the Sun — spacecraft
line for the lowest frequencies occur to be about twice larger in the ecliptic plane
(|¢| ~ 40°) than in the directions perpendicular to it (|6] ~ 20°). It confirms that
electrons triggering type III bursts statistically propagate along the Parker spiral in
the ecliptic.

The fourth panel of Figure 4.13 is the median value of the 2D degree of polarization
in the polarization plane C. The 2D degree of polarization is very low (~ 0.1) being
in agreement with previous observations at long wavelengths when type III radio
bursts have very low degree of polarization (Dulk, 2000). A slight increase of C' at low
frequencies (< 400 kHz) can be explained by a larger error of the k-vector direction
estimation in this frequency range (where sources are apparently very extended, see
Figure 3.5) as the source position and its polarization are determined simultaneously.
However one should note that low values of C being ~ 0.1 are probably linked to
the noise. Therefore we can conclude that observed type III radio bursts are nearly
unpolarized.
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Figure 4.13: Results of the GP inversion at STEREO-A and STEREO-B for
156 type III radio bursts. The topmost row displays the apparent source sizes y
vs frequency. The second row shows deviations of the wave vector from the from
the Sun-spacecraft line vs frequency in the ecliptic plane. The third row contains
deviations of the wave vector from the from the Sun-spacecraft line vs frequency
in the plane perpendicular to the ecliptic one. The last row shows 2D degree of
polarization in the polarization plane vs frequency. Solid line are medians and
dotted lines represent 25% and 75% quartiles.

4.2.2 Flux Density

First we have identified frequencies corresponding to the maximum flux density for
each type III radio burst separately. Table 4.2 contains statistical properties of these
maximal frequencies.

We have investigated median values of the flux density S vs frequency between 125
kHz and 16 MHz (Figure 4.14). As the distribution of S at a given frequency has
a log-normal character, we have used median values instead of mean ones. The
maximum flux density (3 x 1071® W/m?/Hz or 3 x 10* sfu) occurs at ~ 1 MHz on
both spacecraft. Bonnin (2008) has also found maximum around 1 MHz from the
Wind and Ulysses combined observations.

In order to explain this maximum we have used a simple model of the beam electron
density npeam as a function of radial distance from the Sun r:

Nbeam = T, (4.1)
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STEREO-A STEREO-B

Mean (kHz) 1505 1435
STD (kHz) 1837 1539
Median (kHz) 925 925
25% quartile (kHz) 525 625
75% quartile (kHz) 2125 1775

Table 4.2: Statistical properties of maximal frequencies of type III radio bursts
included in the survey.

where « and /8 are parameters of the fit. Initially we have assumed that the flux
density S is proportional to the quasilinear relaxation growth rate of Langmuir waves
v being proportional to npeam//Ne(r) (Drummond and Pines, 1962, Vedenov et al.,
1962, Kontar, 2001):

Nbeam () _ arP '
\/ne(T) \/ne(r)

The electron density n. has been retrieved from the model of Sittler and
Guhathakurta (1999) and is presented in Figure 4.15. We have used a gradient-
expansion algorithm to compute a non-linear least squares fit in order to obtain
parameters o and A for both spacecraft: asrpreo—a = 3.222 X 1075, BsrEREO-A =
—1.458, agTErEO-B = 2.187 X 10_15, and Bstereo-B = —1.456 (yellow dashed line
in Figure 4.14). Our results suggest as § ~ —1.5 that electron beams expand in the
IP medium sub-radially.

We now perform the same kind of analysis but assuming a different dependance of
the radio flux in the form:

S oy, (4.2)

B
§ o Moeam(™) _ ar” (4.3)

ne(r)  me(r)
We obtain these coefficients: asterEo-a = 1.246 x 107!, Bsrereo-a = —3.026,
asTEREO-B = 8.741 x 107!, and Bsrereo-B = —3.024. This assumption provides

us with a better agreement with the observed S (green dashed line in Figure 4.14).
In this case electron beams expand in the IP medium super-radially. One should
note that both approaches are very simplified omitting many physical processes such
as an efficiency of Langmuir and radio waves conversion, volume of source regions,
scattering of radio beams by density fluctuations etc. Nevertheless these results
deserve a further investigation.

Indeed we have also used the electron density model of the solar wind (Sittler and
Guhathakurta, 1999) to determine distances of radio sources from the Sun of type II1I
radio bursts (Figure 4.15). Frequency of 1 MHz corresponds to a radio source located
at ~ 8 Ry and ~ 14 Ry from the Sun for the F' and H component, respectively.
The plasma density n(r) in the corona decreases faster than r~2, but starting from

around ~ 8 R, it decreases as r~2. As the plasma density decreases faster than
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Figure 4.14: Flux density vs frequency at STEREO-A and STEREO-B for 156
type I radio bursts. Solid lines are the medians of the flux for each frequency
and dotted lines represent 25% and 75% quartiles. Black crosses on the top denote
median and 25% quartile/75% quartile of the maximal frequency from Table 4.2.
Yellow and green dashed lines represent results of fitting from equation 4.2 and
4.3, respectively.

r~2, the energy density of Langmuir waves will be growing with distance, but as
the density starts to decrease as r—2, the beam continue to spread due to velocity
dispersion, we have this maximum.
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Figure 4.15: Electron density model for average solar wind parameters adapted
from Sittler and Guhathakurta (1999). A green region indicates frequencies where
the HFR instrument (STEREO/Waves) provides us with the GP data while in
a yellow region we can retrieve information on wave intensity only. Red and
blue dashed lines indicate radial distances from the Sun where electron density
corresponds to a plasma frequency of 1 MHz and 500 kHz, respectively.

4.3 Type II Radio Burst triggered by a CME-CME
Interaction

As another illustration of the GP techniques developed for S/WAVES we present
here the observations of Type II Radio Burst triggered by a CME-CME interac-
tion. Between July 31 and August 2, 2010 the Sun exhibited an increased activity
by releasing several CMEs (Temmer et al., 2012, Schrijver and Title, 2011, Liu
et al., 2012). On August 1, 2010 two CMEs have been observed by coronographs
Cor2/SECCHI on-board STEREO (Howard et al., 2008). The slower one erupted
at ~2:48 UT while the faster CME followed at ~7:48 UT. The average velocities of
the slow and fast CMEs have been derived from Cor2 observations to be 730 km s~!
and 1138 km s~1, respectively.

Their interaction resulted in a type II radio burst at ~ 9:00 UT observed by
the two STEREQO spacecraft and Wind spacecraft. This process has been already
described as "CME cannibalism" ( Gopalswamy et al., 2001). Martinez Oliveros et al.
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(2012) have performed the GP analysis of this type II radio burst. An accurate time-
of-flight examination are in agreement with calculated positions of radio sources.
These results have been compared with WL images obtained by Cor2/SECCHI.

Figure 4.16 show two consecutive Cor2/SECCHI/STEREO-B images with over-
plotted positions of radio sources obtained by GP analysis the STEREO-B/Waves
data. Martinez Oliveros et al. (2012) suggest that the type II radio burst is a conse-
quence of the CME — CME interaction. Positions of radio sources obtained by the
triangulation confirm their relationship with the CME — CME interaction. More
details can be found in Appendix A.3.
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Figure 4.16: Two consecutive Cor2/SECCHI/STEREO-B images from 09:09 UT and 10:09 UT on August 1, 2010. GP results
of type II radio burst from STEREO-B/WAVES are overplotted in colors. The solid white line in panel b represents the contour
of CME. Adapted from Martinez Oliveros et al. (2012).



Chapter 5

Conclusions and Perspectives

In this thesis we have focused on stereoscopic observations of solar radio emissions
by the STEREO spacecraft. Our results have been partly published in two scientific
journals and two conference proceedings (see Appendix A).

In Chapter 3 we have developed a GP inversion using the SVD technique ded-
icated for electric measurements on three non-orthogonal antennas performed by
three-axis stabilized spacecraft. This inversion may retrieve both wave vector di-
rections and polarization properties of incident waves if observed far from their
propagation cut-off.

We have investigated an influence of extended sources on a polarization ellipsoid
geometry. Using extensive simulations of electromagnetic emissions with various
senses, and degrees of polarization, and source shapes we have derived an empirical
relation between apparent source sizes and spectral matrices decomposed by SVD.
We have shown that it is not necessary to distinguish the type of polarization to
calculate apparent source sizes for emissions with a polarized part below 10% . An
error analysis considering receiver inaccuracies has been performed.
Abovementioned methods have been applied to measurements of STEREO which
is the first three-axis stabilized spacecraft dedicated to solar observations. We have
processed the STEREO /Waves/HFR data in order to confirm a validity of our meth-
ods. Several intense type III radio bursts observed by the two STEREO and Wind
spacecraft have been used for an intercalibration during a period of short separation
distances between these spacecraft (May 2007). Results of these joint observations
suggest that the GP inversion can be applied on the HFR data. We also conclude
that both HFR are well calibrated for intense signals while one should be cautious
in a case of weak emissions.

This GP inversion can be also implemented on the RPW instrument onboard the
future Solar Orbiter spacecraft which, as STEREQ, will be also three-axis stabilized.
Three electric antennas of Solar Orbiter are designed to be mounted on booms in a
perpendicular plane to the spacecraft — Sun axis. Due to their coupling with the
spacecraft body effective directions will be slightly tilted towards the Sun. We have
investigated a possible accuracy of the GP inversion with respect to this tilt angle
and expected uncertainties of the effective antenna parameters. We conclude that
the GP analysis will be possible with the RPW instrument.

65
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In Chapter 4 we present results of analysis solar radio emissions observed by
STEREQ. We have shown three examples of observations of type III radio bursts
from May 2009 when the separation angle between the two STEREO was ~ 90° that
allows us to accurately triangulate radio sources. We have found that calculated
position of radio sources, relative intensities between the spacecraft, initial flare
sites, and differences in onset times are in agreement. We have shown that the
triangulation requires the separation angle between the spacecraft being 60° — 120°
(event 1). Although calculated apparent source sizes are very extended our results
indicate that electrons responsible for type III radio bursts propagate along the
Parker spiral (event 2). We have also demonstrated that STEREO can be used
for stereoscopic investigations of radio sources even if they are located on the far
side of the Sun from the Earth’s perspective (Event 2). We have also compared
STEREO/Waves observations with ground-based measurements of DAM and NRT
in Nangay (event 3).

The natural future extension of this work would be to simulate in details and com-
pare to the STEREO observations the propagation of type III radio emissions in
the interplanetary medium using (1) an initial radio beam emissions at f, or 2fp,
(2) global 3D simulations of the heliospheric density (Odstrcil and Pizzo, 2009, Ri-
ley et al., 2001), and (3) radio scattering and density fluctuations ( Thejappa et al.,
2007).

We have performed a statistical survey of isolated 156 type III radio bursts observed
by STEREO between May 2007 and September 2011. Statistical results on appar-
ent source sizes which are very extended suggest effects of scattering by density
fluctuations in the solar wind. Absolute values of deviations of wave vectors from
the Sun — spacecraft line confirm that electrons responsible for type III radio bursts
statistically propagate along the Parker spiral in the ecliptic plane. The 2D degree
of polarization is very low being in agreement with previous observations of type
I1I radio bursts at long wavelengths. Statistically type III radio bursts exhibit a
maximum flux density at ~ 1 MHz. According to electron density models in the
solar wind, this frequency corresponds to a radio source located at ~ 8 Ry and
~ 14 Rg from the Sun for fundamental and harmonic component of type III radio
bursts, respectively. Although we have used a very simple model of the electron
beam density to interpret the maximum at ~ 1 MHz, we have obtained reasonable
results comparable to our observations. We have shown that this maximum is most
likely due to the competing effect between the Langmuir waves growth rate and
the expansion effects and is related therefore to the respective radial gradients of
Npeam (r) and ne(r). However we plan to perform extensive simulations of the res-
onant interaction of an electron beam with Langmuir waves to thoroughly explain
this maximum.

Abovementioned results on type III radio bursts are planned to be extended and
published in a journal.
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Abstract. The S/WAVES instrument onboard the STEREO spacecraft measures electromagnetic waves in the solar wind. This
unique project allows us to investigate properties of type III and type II radio bursts related to solar flares and propagation of
coronal mass ejections (CMEs) in the interplanetary medium, respectively. We have focused on the High Frequency Receiver
(HFR; a part of the STEREO/WAVES instrument) which covers the frequency range 125 kHz ~ 16.025 MHz. We present first
results of a goniopolarimetric inversion for an extended source using the Singular Value Decomposition technique (SVD). We
show a joint observation (including the WIND spacecraft) of the single type III radio burst connected with the X flare as a
preliminary example of estimation of the apparent source size and its position.

Keywords: S/WAVES Instrument, Solar Radio Emissions, Singular Value Decomposition technique
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INTRODUCTION

STEREO (Solar TErrestrial RElations Observatory) is
the third mission in NASA’s Solar Terrestrial Probes pro-
gram [1]. It consists of two nearly identical spacecraft
— one ahead of the Earth in its orbit, and the other
one trailing behind. STEREO provides the first stereo-
scopic measurements of the Sun and the properties of
its coronal mass ejections (CMEs). Each spacecraft is
three axis stabilized and embarking four scientific instru-
ments: Sun Earth Connection Coronal and Heliospheric
Investigation (SECCHI), STEREO/WAVES (SWAVES),
In-situ Measurements of Particles and CME Transients
(IMPACT) and PLAsma and SupraThermal Ion Compo-
sition (PLASTIC). In this paper we discuss the calibra-
tion of the STEREO/WAVES High Frequency Receivers
(HFR) [2]. One of the primary S/WAVES science goals is
to make remote and in-situ measurements that may pro-
vide a deeper and more comprehensive understanding of
the mechanisms that generate type 111 solar radio bursts.
These bursts, which belong among the most intense ra-
dio emissions in the heliosphere 3], are produced by en-
ergetic electrons accelerated respectively by interplane-
tary CME driven shocks and by solar flares. The esti-
mation of apparent source sizes is of prime importance
of the type III radio bursts [4]. These source sizes could
yield valuable information on the interplanetary density
fluctuations taking into account the scattering of the pri-
mary radio beam pattern. In order to retrieve goniopo-
larimetric properties of the radio sources (e.g. their po-
larization, k-vector direction, estimation of the apparent

284

source size) we have to measure accurately the auto- and
cross-correlations of the voltages induced by the incident
wave electric field, on three quasi-orthogonal antennas
[5,6,7,8].

The STEREOQ/WAVES instrument is composed of four
radio receivers or modules:

+ The Low Frequency Receiver (LFR):
2.5 ~ 160 kHz

« The High Frequency Receiver (HFR):
125 kHz ~ 16.025 MHz

« The Fixed Frequency Receiver (FFR):
30.025 or 32.025 MHz

« The Time Domain Sampler (TDS):
measurements of the Langmuir waves

The LFR and HFR receivers have goniopolarimetric ca-
pabilities. HFR is more suitable for the analysis of the
type III radio bursts observations. We present prelimi-
nary results of a joint observation of a type III radio burst
by the WIND spacecraft, located approximately between
STEREO-A & STEREO-B, and the two latter. WIND is
equipped with the WAVES/WIND instrument [9] which
is well-calibrated and has the goniopolarimetric capabil-
ities using the spacecraft spin modulation (spin period =~
3s)[10].



HFR RECEIVER

Three monopole antenna elements (6 meters long
each), made from Beryllium — Copper, are used by
the S/WAVES instrument to measure the electric field
of radio waves [11]. The effective length of antenna
can be modeled [12, 13, 14] and as a result of these
models, it is estimated to be about 1 meter. The HFR
is a dual sweeping receiver operating in the frequency
range 125 kHz ~ 16.025 MHz with a 25 kHz effective
bandwidth. This duality is necessary for processing
auto- and cross-correlations products that are needed for
goniopolarimetric measurements. In direction finding
mode (see [2] for more details) signals from the Ex and
Ey antennas are processed by channel 1. Channel 2 is
dedicated to the Ey and Ez antennas. The HFR provides
a total dynamic range of 80 dB and its sensitivity at
the preamplifier input is 6 nV/Hz!/2. Various antenna
configurations are available by command. HFR can be
switched to use either two pseudo-dipoles (Ey/Ex or
Ey/Ez) or monopoles (Ex, Ey or Ez). For this study we
are interested in a mode which is a three-step sequence
combining successively the three monopoles (Ex — Ey,
Ey — Ez and Ex — Ez). Exhaustive ground calibrations
have been performed for HFR in order to convert binary
telemetry data into physical parameters measured by the
Sensors.

ESTIMATION OF THE APPARENT
SOURCE SIZE OF THE TYPE III RADIO
BURST

In this section we perform a direction finding analysis. In
order to validate our method we compare the STEREO
WAVES observations to those obtained by the WIND
spacecraft, as was done recently by Reiner et al. [15].
Cecconi [16] introduced an equation connecting a
modeled spectral matrix (that we will compare with the
matrix measured by the HFR) with parameters of the an-
tennas configurations (lengths, directions and gains) and
initial wave properties (k-vector directions, energy flux,
Stokes parameters and source angular radius). The shape
of the source is considered to be either uniform, radial
or Gaussian. We have considered a very small fraction of
the polarized part (~ 0.1 %) and a uniform source. We
have applied the Singular Value Decomposition method
(SVD)[17] on the modeled matrix K, in order to obtain a
relation for the estimation of the apparent source size:

M

Using simulated data we have found an empirical rela-
tion between the apparent source size and a ratio of the

A=U-W.VT
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smallest and largest components of the diagonal matrix
W (see Figure 1).
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FIGURE 1. The empirical relation between the apparent
source size and a ratio of the smallest and largest components
of the diagonal matrix W.

We have compared above empirical relation applied
on the corrected S/WAVES data with the WIND space-
craft. Figure 2 shows the first preliminary results of
a joint observation of the single type III radio burst
(15:35—15:55 UT on the 15 May 2007). The separation
angle of the STEREO spacecraft was about 8 degrees
only. WIND was located roughly between them, close
to the Lagrangian point (L;). Hence, all the spacecraft
should detect almost the same emission. The type III
radio burst was probably connected with the X flare
located on the Sun at longitude -50 eastward and lat-
itude +9 northward (NOAA number 10956) in HEE
coordinates (where zero corresponds to the center of
the Sun, the X axis is pointing to the Earth and the
Z axis is perpendicular to the Earth’s ecliptic plane
pointing to the North). The Solar Geophysical Database
(http://sgd.ngdc.noaa.gov/sgd/jsp/solarindex.jsp) ~ has
been used. We have processed the frequency channel
425 kHz (bandwidth: 25 kHz) on STEREO and 428 kHz
(bandwidth: 3 kHz) on WIND. From the Solar wind
density model [18] this frequency channels are related to
a source region of the solar burst to be approximately at
15 Solar radii from the Sun (considering a fundamental
emission at the local plasma frequency) or at 30 Solar
radii (for the second harmonic). The topmost panels
contain electric field spectral densities from STEREO-A
& STEREO-B in mV?/m?/Hz, whereas for WIND the
signal is in Solar Flux Units (1 sfu=10"2> W?/m?/Hz
at the Earth). We can distinguish an intense peak corre-
sponding the type III radio burst at about the same time.
The angular and polarization properties measured by
WIND were determined using a technique dedicated to
a spinning spacecraft [19], whereas the SVD has been
applied on the STEREO data [17].
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FIGURE 2. From 15:35 to 15:55 UT on the 15 May 2007, the electric field spectral density for STEREO-A (425 kHz), WIND
(428 kHz) and STEREO-B (425 kHz), colatitude, elongation and apparent source size.

The second panels show colatitudes in the spacecraft
frames (begin is in the the spacecraft, the X axis is point-
ing to the Sun and the Z axis is perpendicular to the
Earth’s ecliptic plane pointing to the North) being mostly
between 80 and 90 degrees. This corresponds to propa-
gation of the bursts from the northern hemisphere. Elon-
gations measured by all spacecraft vary between 0 and
-15 degrees eastward. We have estimated the apparent
source size from STEREO-A & STEREO-B to be about
25 degrees during maximum flux considering a uniform
source. Globally the source sizes we retrieve for the
STEREOQ spacecraft compare well with those obtained
from the WIND spacecraft.

SUMMARY AND CONCLUDING
REMARKS

A case study of a single type III radio bursts observation
has been presented. The STEREO data have been used to
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test the empirical relation, between the apparent source
size and singular values of the measured spectral matrix,
previously identified by analysis of simulated spectral
matrices. The results were found to be consistent with the
WIND measurements. This method can be used either
for statistical studies if robust and fast data processing is
needed or for estimation of initial values for a standard
non-linear y? method.
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AN INFLUENCE OF ANTENNA TILT ANGLE TO
THE RPW/SOLAR ORBITER DIRECTION
FINDING

V. Krupar*, M. Maksimovic!, O. Santolik?, and B. Cecconi'

Extended Abstract

Solar Orbiter is an M-class mission in the ESA Science Programme Cosmic Vi-
sion 2015 — 2025 having an orbit with perihelion as low as 0.28 AU. The Radio
Plasma Waves (RPW) Analyzer on board will provide new insights into the micro-
scale phenomenon, the propagation modes of the radio waves and the localization of
their source regions. The three electric antennas (each 5 meters long) are designed
to be mounted on booms in a perpendicular plane to the spacecraft-Sun axis. Ef-
fective antenna lengths and directions are different from the physical ones due to
their coupling with the spacecraft body. These parameters have been investigated
considering various antenna placements on the spacecraft body [Rucker et al., this
issue]. Results indicate that all effective antenna directions will be slightly tilted
towards the Sun.

This paper discusses a possible accuracy of the Direction Finding (DF) with
respect to this tilt angle and uncertainties of the. effective antenna parameters.
We have modeled spectral matrices that represent an unpolarized wave (Stokes
parameters: @ =0, U =0, and V = 0) propagating from a point source located on
the Sun (an apparent source size: y = 0°, a wave vector direction: § = 90°, and ¢ =
90°) as modeled by Cecconi [2007]. Effective antenna lengths have been assumed to
be equal (h; = ha = h3), while effective antenna directions are varying with respect
to the tilt angle (£; = 0°, &, = —125°, and &3 = 125°; {1 = {2 = (3 = 90° —65°). We
have performed various simulations for each set of parameters considering different
sources of errors. The wave vector directions have been calculated using the Singular
Value Decomposition method [Santolik et al., 2003; Krupar et al., 2010]. Figure 1a
displays a mean difference in estimation of the wave vector directions (deviations
from the Sun direction) as a function of the tilt angle (. We have used normal
distributions of lengths centered on the nominal lengths h; with sigma(h;)/h; =
0.01,0.03, and 0.05 (dotted, dashed, and solid line, respectively). An error analysis
for uncertainty of the effective antenna direction is contained in Figure 1b. We
have considered normal distributions of absolute deviations centered on the nominal

* Faculty of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic

t LESIA, Observatoire de Paris, UMR CNRS 8109, 92195 Meudon, France

Y Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, 14131 Prague 4, Czech
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Figure 1: The average difference between input and output wave vector direction as a function
of antenna tilt angle (.

directions, with sigma(h;)/h; = 0.01,0.03, and 0.05 (dotted, dashed, and solid line,
respectively) and uniform distributions of azimuth.

Our results indicate that we need the effective antenna tilt angle of at least
5° — 10° to obtain the DF accuracy better than 10° with reasonable experimental
uncertainties.
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THE 2010 AUGUST 01 TYPE II BURST: A CME-CME INTERACTION, AND ITS RADIO AND
WHITE-LIGHT MANIFESTATIONS
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ABSTRACT
We present observational results of a type II burst associated with-a CME - CME interaction observed

in the radio and white-light wavelength range.

We applied radio direction-finding techniques to

observations from the STEREO and Wind spacecraft, the results of which were interpreted using
white-light coronagraphic measurements for context. The results of the multiple radio-direction finding
techniques applied were found to be consistent both with each other and with those derived from the
white-light observations of coronal mass ejections (CMEs).The results suggest that the Type II burst
radio emission is causally related to the CMEs interaction.

Keywords: solar-terrestrial relations — Sun: coronal mass ejections (CMEs) — Sun: radio radiation,

1. INTRODUCTION

Over periods of increased solar activity, several coro-
nal mass ejections (CMEs) can be launched by the same
or nearby active regions (Gopalswamy et al. 2005). Dur-
ing these times of high activity, one or more of these
CMEs may interact while propagating through the in-
terplanetary medium. Almost a decade after the rst ob-
servations of CME - associated shock regions (Burlaga
et al. 1987), CME—-CME interactions were observed, at
long wavelengths and in white-light coronagraphic im-
ages, by Gopalswamy et al. (2001, 2002) and Gopal-
swamy (2004). The radio observations were obtained
by the Radio and Plasma Wave Experiment (WAVES,
Bougeret et al. 1995) on board the Wind spacecraft,
while the white-light observations were obtained by the
Large Angle and Spectroscopic Coronagraph (Brueckner
et al. 1995) on board the Solar and Heliospheric Observa-
tory mission. Based on the observational characteristics
of the CMEs from white-light coronagraph and radio ob-
servations, Gopalswamy (2004) concluded that the type
11 radio emission is enhanced and modified due to the in-
teraction between two CMEs. Gopalswamy et al. (2001)
suggested that the observed radio enhancements result
from the increased density in the upstream medium that
reduces the Alfvén speed, thereby increasing the Mach
number of the shock. This is in agreement with results
from numerical simulations, confirming that the radio en-
hancement was likely to be produced at the interaction
region shock (e.g., Vandas and Odstrcil 2004). Gopal-
swamy et al. (2001) also mentioned additional possibil-
ities for electron acceleration, such as reconnection be-
tween the two CMEs (see also Gopalswamy 2004).

White-light (WL) imagers such as those on board
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the Solar TErrestrial RElations Observatory (STEREO,;
Kaiser et al. 2008) allow us to observe CMEs out to
~1 AU with the Sun—Earth Connection Coronal and He-
liospheric Investigation (SECCHI; Howard et al. 2008).
The Corl and Cor2 coronagraphs, along with the helio-
spheric imagers (HI1 and HI2) on board, observe CMEs
at visible wavelengths as they propagate through the he-
liosphere. Coronograph observations typically reveal the
three part configuration of CMEs: the bright, dense core
that is thought to be the erupting filament; the dark, low
density cavity surrounding the core; and the bright front,
or the leading edge.

The stereoscopic observations of the STEREO mission
allow us to determine the location of different CME fea-
tures in three dimensions (e.g., Frazin et al. 2009; As-
chwanden and Wiilser 2011; Liu et al. 2009, 2010; Moran
et al. 2010). A similar approach can be used to de-
termine the position of radio sources in what is called
radio direction-finding. Several direction-finding tech-
niques have been implemented using observations made
either by spinning spacecraft like Wind (e.g., Fainberg
et al. 1972; Reiner et al. 1998) or three-axis stabilized
spacecraft such as STEREO or Cassini (e.g., Cecconi
et al. 2008; Santolik et al. 2003). The stereoscopic ca-
pability of STEREO/WAVES (Bougeret et al. 2008) can
be used to triangulate the three dimensional position of
a radio source at a particular frequency, provided both
spacecraft observe the same source quasi-simultaneously.
This process can be repeated for different frequencies.
This technique has been applied with great success in
the past in the study of type III emission (Gurnett et al.
1978; Reiner et al. 2009) but rarely in the study of type
II bursts. Several successful campaigns were undertaken
using a combination of spacecraft, such as Helios, Ulysses
and Wind (e.g., Baumback et al. 1976; Reiner et al.
1995), demonstrating the success of direction-finding, by
mapping the path of accelerated electrons during type
IIT bursts.

In this paper we study the relationship between the
interaction of two CMEs and the location of the as-
sociated radio sources during an event which occurred
on 2010 August 1. We made use of three space-based
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instruments with direction-finding capabilities, namely
STEREO/WAVES experiments (Kaiser et al. 2008; Bale
et al. 2008) and Wind, along with white-light data from
the SECCHI suite onboard STEREO.

2. OBSERVATIONS AND ANALYSIS

The period 2010 July 31 to August 2 was character-
ized by increased solar activity, exhibiting small flares,
filament eruptions and coronal mass ejections (Schrijver
and Title 2011; Temmer et al. 2011; Liu et al. 2011).
Of particular interest here is the time during which two
CMEs (one slow(CME1), erupted at 02:00UT and one
fast(CME2), erupted at 07:00UT) interacted with each
other, resulting in a low frequency type II radio burst
observed on 2010 August 1 at about 09:00 UT). The two
CMEs in question can be seen in Figure 1 (left panels
- Cor2 A, right panels - Cor2 B). Each row corresponds
to a time either before (top and middle rows) or during
(bottom rows) the interaction period. -
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Figure 1. White-light observations of the two CMEs labeled as
CME1 and CME2 at three different times during the evolution of
the event. The interaction between the CMEs is clearly seen in the
bottom frames.

From these white-light observations, we determined
the velocity and time of interaction of the expand-
ing CMEs. An elongation map was constructed from
running-difference images of Cor2 and HI1 along the

ecliptic plane of STEREQO-A and - B, as described in Liu
et al. (2010). The filamentary structures in the elon-
gation map (Figure 2) are the propagating CMEs ob-
served in the period 2010 August 1-3. Figure 2 shows a
fast CME (CME2) that intersects and overtakes a slow
CME launched earlier (CMEL1); the region of interaction
is shown by a dashed box. The average speed of the fast
CME, derived from Cor2 observations is ~1138 kms™!
with a liftoff time of ~07:48 UT from the Sun. The liftoff
time of the slow CME was calculated to be 02:48 UT with
an average propagation velocity of 730 kms~! in Cor2
(Temmer et al. 2011; Liu et al. 2011).

STEREC B

Elongation (°)

LB i B B i e ) 2 e

Aug 1 Aug 2
Day of 2010
Figure 2. Time-—clongation maps constructed from running-

difference images of Cor2 and HI1 along the ecliptic plane for
STEREO A and B. The dashed box shows the interaction region
between the two CMEs labeled CME1 and CME2.

Unfortunately, the STEREO-B Corl and HI1 had a
data gap of about 18 hours starting at 9:20 UT, which
restricted our analysis. It is important to mention that
the speed estimates presented above were obtained using
an algorithm that fits the distance with a linear model.
These results were then compared to the speed derived
from adjacent distances with a three-point Lagrangian
interpolation, obtaining similar results. From the La-
grangian algorithm, it is possible to derive the error of
the computation giving + 315 kms~! and + 206 kms~!
for the fast and slow CMEs, respectively. It should be
noted that such large errors are present in all methods
that measure distances and are not only present in the
triangulation method used in this study.

2.1. Radio emission
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The type II radio burst of interest and its modification
by CME interaction is shown in Figure 3. This event was
detected simultaneously by both STEREQO and Wind
spacecraft. The radio emission was characterized by a
slow drifting feature, first observed by STEREO-B at
about 9:10 UT and ending around 11:30 UT. The drift
velocity observed by Wind/WAVES, starts at 2000 kHz
and ends at about 700 kHz.

As Figure 3 shows, the drifting feature in the radio
spectra appears to split into two bands at about 9:50 UT.
This may be related to the properties of the ambient
plasma or, as we show here, the signatures of two in-
teracting CMEs. We fit the STEREO/WAVES radio
spectra to determine the propagation velocity and the
distance at which the emission could be produced, as-
suming an interplanetary density model (Leblanc et al.
1998). The radio spectrum was divided in two regions,
termed upper and lower branches following the observed
division in the spectrogram. Table 1 shows the radial
distance to the Sun derived from the model. From the
model the drift velocity was calculated (Table 1), reveal-
ing that the lower branch has a higher drift velocity, indi-
cating that this part of the type II radio emission was as-
sociated with the fast CME (CME2). The upper branch
demonstrated a slower drift velocity which is consistent
with original velocity of the first and slower CME, indi-
cating that this was the signature of the slow CME or
merged CME front.

Distance (AU)

Branch | STEREO-A | STEREO-B
Lower | 0.025-0.033 | 0.022-0.036
Upper | 0.025-0.027 | 0.025-0.027

Velocity (kms~!)

Branch | STEREO-A | STEREO-B

Lower 1370 1600

Upper 290 400
Table 1

Estimated radial distances to the Sun and drift velocities derived
from Leblanc et al. (1998) density model for both branches in the
radio spectra and for each STEREO spacecraft.

Since the velocities are determined using an interplan-
etary density model, the results are highly sensitive to
any change of the 1 AU electron density (in the model)
used for this computation. An uncertainty estimate of
100-200 kms~—! was obtained by calculating the speed
using the Leblanc et al. (1998) density model for variety
of ambient electron density values which range from 4 to
7 cm~3 (as observed in in situ data 4 days after the event
by Wind). These velocities are comparable to the prop-
agation velocities derived from Cor2 observations within
the errors of the measurements, suggesting that the split
branches observed at 09:50 UT in radio spectra are the
signatures of the two interacting CMEs.

2.1.1. Direction-finding

This event was observed by three spacecraft which,
with radio direction-finding capabilities, gives a unique
opportunity to study and locate the region or regions
responsible for the radio emission in the interplanetary
medium. There are different techniques that allow us

to determine the distance at which the emission was pro-
duced relative to the observer. Some of these make use of
electron density models, as demonstrated in the previous
section, which provide a direct correlation between the
observed frequency and the distance (height) at which
they occur (e.g., Leblanc et al. 1998; Reiner et al. 2007).
However, these techniques do not take into account in-
homogeneities that may occur in both the interplanetary
space and/or the ejected material. Also, the propaga-
tion direction cannot be determined by a density model.
Other “direction-finding” techniques, which locate the
region of emission by triangulating the position of the
radio source at distances of ~0.1-0.5 AU, have been de-
veloped during the last four decades (e.g., Fainberg et al.
1972; Cecconi et al. 2008; Santolik et al. 2003; Martinez-
Oliveros et al. 2012).

We applied eigenvector and singular value decomposi-
tion algorithms (Martinez-Oliveros et al. 2012; Santolik
et al. 2003, respectively) to determine the arrival direc-
tion of radio waves in the frequency range of the High
Frequency Receiver 1 instrument onboard STEREQ. For
Wind /WAVES data, a modulation technique was applied
to retrieve the radio waves’ direction of arrival (Fainberg
et al. 1972) in the range of the Radio Receiver Band 2.
The direction of arrival was then characterized by unitary
vectors, defined by the azimuths and elevations found by
the direction-finding procedure for all observations in the
time range. The spatial positions of the radio sources
in interplanetary space were found using a geometrical
triangulation algorithm based on Liu et al. (2010). For
simplicity, we will refer to the combined direction-finding
and triangulation techniques as “direction-finding”.

In order to determine the location of the type II ra-
dio burst relative to the CMEs, white-light images from
SECCHI were used. Data from the Cor2 instrument on
board STEREO B prior to and at the time of the radio
burst were used to compare the projected radio direction-
finding results (see Figure 4). This type of comparison
has been applied before in the study of type II bursts
(e.g., Wagner 1982). The results of our analysis suggest
a close relationship between CME - CME interaction re-
gion and the type II radio burst. This agrees with the
findings of Gopalswamy et al. (2001) who reported a sim-
ilar result for a different event.

The dual views of the STEREQO spacecraft were ex-
ploited to identify the location of the radio burst in 3D
space, relative to the CME structure. Figure 5 shows the
front of the CME in heliographic coordinates obtained
using the SolarSoft package suite (Freeland and Handy
1998). The three dimensional locations of two CMEs
are shown in Figure 5: the position of the slow CME
launched at about 02:00 UT is shown as yellow dots,
while the position of the fast CME launched at approxi-
mately 07:00 UT is represented by blue and green dots.
Two evolutionary times are shown, 09:00 and 10:00 UT,
as during this period the interaction between the two
CMEs occurred, with the fast CME overtaking the slow
one slightly after 09:00 UT (see Figure 2). Note that
these three-dimensional observations, shown in Figure 5,
are projected on the ecliptic plane.

Figure 5 (left) shows the triangulated position of the
radio source for the three combinations of STEREO-A, -
B and Wind spacecraft at the time of the most prominent
peaks in the radio flux for three frequencies (925, 975,
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Figure 3. STEREO-A , STEREO-B and Wind dynamic spectra of the 2010 August 1 type II burst from 09:00 UT to 12:00 UT. The
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emission measured in arbitrary units.

and 1025 kHz®, see Figure 6).

The apparent misalignment between the triangulated
locations from different spacecraft can be explained by
understanding that the triangulation algorithm searches
for the position in space where the vectors intersect. This
intersection does not necessarily occur -at the front of the
emitting region, or its centroid (Figure 5, right frame).
Here, it is likely that the source observed is highly ex-
tended and complex. Therefore, each spacecraft identi-
fied different regions of the extended source (blue dashed
ellipse) due to, e.g. the structure of the region and the
surrounding local plasma density. Another possible ex-
planation for the apparent discrepancy is that a dense
region was located somewhere between the type II radio
source and STEREO-A. This region could scatter the ra-
dio waves, leading to an apparent shift of the line-of-sight
source position.

2.1.2. Time-of-flight analysis

We examined the timing of the radio profiles at the
three spacecraft as a control technique to validate the lo-
cations and results determined by direction-finding. We
do this by first computing the distance to each spacecraft
from the extrapolated locations. Then, times of flight for
each spacecraft are computed assuming that the radio
emission travels in a straight line from the source cen-
troid to the spacecraft at a constant velocity (the speed

6 For context, the Parker spiral is plotted in Figure 5 and was
calculated using the formula ¢ = ¢o — (©@/Vsw)r, where 7, is
the radial distance to the Sun, ¢g is an arbitrary angle, 8¢ is the
rotational velocity of the Sun (2 kms™!), and Vsw is the solar wind
velocity (400 kms™1).

of light). The difference between these two times is com-
pared with the time shift between radio flux profiles at
the three spacecraft (see Figure 6) to determine whether
they are consistent with the source locations found using
the direction-finding method. This “time-of-flight anal-
ysis” assumes that the onsets of the signals at the two
spacecraft are the signature of radio emission simultane-
ously emitted from a single compact source. The limita-
tions of this “time-of-flight” analysis are in the temporal
resolution of the measurements and errors inherent in the
assumptions of compactness and simultaneity.

We find that the time shift (delay) computed from the
direction-finding results ranges from ~2 minutes at the
lowest frequencies decreasing to &1 minute at the high-
est, while the observed delay between the peaks of the
emission received by STEREO-A and - B ranges from ~1
to 0 minute, respectively. In our analysis we also make
use of Wind data. Comparing the times of arrivals at
the Wind and the STEREO spacecraft computed from
the direction-finding results, we find an average time de-
lay between 5.2 minutes and ~1 minute, while the ob-
served time delay between the radio signatures is about
~2 minutes. We found that the direction-finding and
the time-of-flight analysis results are consistent within
the errors inherent to both techniques. The geometrical
configuration suggested by the time-of-flight analysis is
consistent to the one obtained by the direction-finding,
in which Wind is located closer to the radio source that
either of the STEREO spacecraft, and also that the radio
source is located almost at the same distance from each
STEREO spacecraft.
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Figure 4. STEREO-B observation of the 2010 August 1
CME from Cor2 at two representative times of type II
radio burst, 09:09 UT and 10:09 UT, with line-of-sight
direction-finding results from STEREO-B/WAVES overplot-
ted in color, where color represents different frequencies. The
solid white line in lower panel shows the contour of the ex-
panding CME.

3. CONCLUSIONS

During 2010 July 31-August 2 a series of CMEs and
their associated type II and type III radio bursts were
observed. In particular, an interplanetary type II burst
was detected by instruments onboard the STEREO and
Wind spacecraft on 2010 August 1 at about 09:00 UT.
The close timing between the type II radio burst and the
interaction of two coronal mass ejections suggests that
the radio emission is a consequence of this interaction.
A similar event was analyzed previously by Gopalswamy
et al. (2001), who concluded that the interaction between
slow CME and a fast one resulted in the enhancement of
the radio emission during the transit of the fast CME
shock front through the core of the slow CME.

Using white-light and radio observations we estimated

the propagation velocities of the two CMEs. We
found that the velocities derived from radio observa-
tions are comparable to the propagation velocities de-
rived from coronagraph observations. This suggests that
the branches in the radio spectra, observed at 09:50 UT,
are the signatures of the two interacting CMEs. Using
the density model of Leblanc et al. (1998) we also es-
timated the distance at which the radio emission was
produced, was between 0.025 and 0.043 AU. This is in
agreement with the radio direction-finding results, which
give a distance about 0.01-0.05 AU. From white-light
observations, we determined that the shock front prop-
agated ~20° east of the Sun—Earth line (i.e. between
STEREO-B and Wind), which is about the same angu-
lar separation derived by the direction-finding technique.
The obtained propagation direction is in agreement with
finding of Temmer et al. (2011) and Liu et al. (2011).

We successfully applied three radio direction-finding
techniques (Fainberg et al. 1972; Santolik et al. 2003;
Martinez-Oliveros et al. 2012) to the 2010 August 1 type
II radio burst and determined the direction of arrival of
the radio emission. The data analysis shows that the
radio sources locations are spread over a large area cov-
ering about 4°, suggesting that the radio source has an
extended and complex structure in nature, perhaps com-
posed of multiple radio emitting regions which may have
a common origin. We found good consistency between
the triangulated white-light positions and the Wind -
STEREO-B triangulated positions. Using STEREO-A,
we found a discrepancy that can be explained by the com-
plexity of the source and the surrounding material. Since
neither the emitting region nor the medium are homoge-
nous, it is possible that the radio source was partially
occulted in the direction of STEREO-A by a dense solar
wind region. This may explain the relatively low power
observed in the STEREO-A spectrogram and can also ac-
count for scattering of radio waves, which consequently
will shift the apparent position of the radio source.

By comparing these positions with white-light features
in the STEREO coronagraph data and their derived po-
sitions as described in Section 2.1.1, we found that the
radio emission is the result of the interaction between
two expanding CMEs. Figure 4 shows that the positions
derived from the direction-finding match the features ob-
served in the coronagraph images, suggesting the relation
between the type II radio emission and the interaction
region of two expanding CMEs.

Radio direction-finding has proven to be a powerful
technique in the study of CMEs and associated type II ra-
dio bursts. By using these techniques, it is possible to de-
termine the heliographic distance of a radio source, which
is independent of any density model. In general, the lim-
itation of these techniques is given by the frequency of
observations and the properties of the radio emission re-
gion. In the case of metric wavelengths this error can
be about 1° in azimuth and elevation. Nevertheless,our
study shows that with good observations, the techniques
give results that can be directly compared with observa-
tions at other wavelengths and show the likely emission
region. The application of radio direction-finding meth-
ods to data acquired by future missions, such as Solar
Probe Plus and Solar Orbiter, will prove to be crucial in
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Figure 5. Left: location of the geometrically triangulated positions of the radio sources in interplanetary space for all operational
frequencies as seen from the top. The Parker spiral is plotted in gray for context. Right: radio emission scenario, showing the
possible emission region as an extended source propagating between STEREO-B and Wind. The dots represent positions of the
two associated coronal mass ejections at different times. The red symbols show the intersection between line-of-sight vectors
from the spacecraft represented by the arrows. These are results projected on the ecliptic plane. The overall regions where the
direction-nding positions are located are represented by the color shaded areas. The dashed ellipse shows the area covering all

direction results.
our understanding of CMEs and type II radio bursts.
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[1] Type III radio bursts are intense solar radio emissions generated by beams of energetic
electrons injected into the interplanetary medium. They can be routinely observed by the
S/Waves instruments on-board the STEREO (Solar Terrestrial Relation Observatory)
spacecraft. We describe goniopolarimetric (GP) inversion of a signal measured on
non-orthogonal antennas using the Singular Value Decomposition (SVD) technique.

This wave propagation analysis can be applied to spectral matrices built from
measurements by the High Frequency Receiver (HFR; a part of the S/Waves experiment).
We have found an empirical relation between the decomposed spectral matrices and
apparent source sizes for waves with a low degree of polarization. Simulations of
electromagnetic emissions with various senses and degrees of polarization, and source
shapes show that SVD gives us reasonable results with respect to the polarization ellipsoid
geometry. An error analysis considering inaccuracies of HFR has been performed in
order to test the validity of the k-vector direction estimation and the obtained empirical
relation. We present a joint observation of a type III radio burst by the STEREO and
Wind spacecraft during small separation distances. We obtain consistent results for the
k-vector direction and apparent source size using different analysis methods for the
measurements of the STEREO and Wind spacecraft. We demonstrate that SVD can be an
effective tool for the wave analysis of radio emissions measured on non-orthogonal

antennas even with very extended sources.

Citation: Krupar, V., O. Santolik, B. Cecconi, M. Maksimovic, X. Bonnin, M. Panchenko, and A. Zaslavsky (2012),
Goniopolarimetric inversion using SVD: An application to type III radio bursts observed by STEREO, J. Geophys. Res., 117,

A06101, doi:10.1029/2011JA017333.

1. Introduction

[2] Type III radio bursts are among the most intense
electromagnetic emissions in the heliosphere [Wild, 1950] .
They are generated by beams of suprathermal electrons
(~0.1c) accelerated near the Sun’s surface and streaming
outward along the open magnetic field lines and connected
with solar flares and/or coronal mass ejections (CMEs)
driven shocks. The electron beams, when they pass through
the medium along the Parker spiral magnetic field lines,
produce locally a bump-on-tail instability in the local
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electron distribution function. This change of plasma para-
meters can lead to generation of electrostatic Langmuir
waves at the local plasma frequency f,, which can be after-
wards converted by a nonlinear conversion into electro-
magnetic waves: type III radio bursts. This conversion
involves interaction with low frequency plasma waves and/
or scattering at ion density fluctuations resulting in radio
bursts at f, (fundamental emission) and/or 2f, (harmonic
emission) beamed tangent to the Parker spiral. Although a
basis of this conversion has been formulated by Ginzburg
and Zhelezniakov [1958], the whole process is still not
well understood and several theories remain under debate,
e.g., stochastic-growth theory (SGT) [Cairns and Robinson,
1995]. As electron beams propagate outward from the Sun,
these emissions are generated at lower frequencies
corresponding to a decreasing of f, which is related to the
local plasma density: f,(kHz) = 9/n(cm=3). Type III radio
bursts display- maximal flux density approximately at
1 MHz [Weber, 1978]. In comparison with other electro-
magnetic emissions, their sources are apparently extended
[Steinberg et al., 1984, 1985; Bonnin et al., 2008], which
can be explained by either properties of an intrinsic beaming
pattern and/or scattering by density fluctuations of the inter-
planetary medium. Hence an estimation of their apparent
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source size could yield important information about density
fluctuations in the solar wind. Although coronal type III radio
bursts (f ~ 200 MHz) can have up to 35% of the circular
polarization, the degree of polarization of type III radio bursts
at long wavelengths (f~ 1 MHz) is negligible [Dulk, 2000].
Multipoint observations of type III radio bursts using
goniopolarimetric (GP, also referred to as direction-finding)
products have already been obtained by spinning spacecraft
[Gurnett et al., 1978; Manning and Fainberg, 1980; Hoang
et al., 1981]. This paper presents general GP methods for
three axis stabilized spacecraft.

[3] For determining the wave vector (k) directions and
polarization parameters we need instruments allowing
multicomponent measurements of auto-correlations and
cross-correlations of the voltages induced by the wave
electric and/or magnetic field. These instruments provide us
with the GP data, which can be used for advanced analysis
of an incoming wave [Lecacheux, 1978; Ladreiter et al.,
1995; Cecconi et al., 2008]. With such data we are able to
compose an orthogonal spectral matrix Sj; containing the
information about the incident wave:

sy = (B} ), (1)

where Ej is a vector of complex amplitudes, indices i and j
represent three Cartesian components, () means time aver-
aging on a time_ interval much longer than the observed
wave period and " corresponds to a complex conjugate. The
Singular Value Decomposition (SVD) is an efficient tool for
wave analysis [Santolik et al., 2003] that can be directly
utilized on a 6 x 3 matrix A containing separated real and
imaginary parts of a 3 x 3 complex spectral matrix S;;:

Sn Re(S12)  Re(S13)
Re(S12) Sx Re(S2)
4= | Re(Si3)  Re(Sz3) S33 @)
- 0 =Im(S12) —Im(Si3) |’
Im(Slz) 0 —Im(S23)
Im(S|3) Im(S23) 0

Applying SVD on this special real form of the complex
spectral matrix we obtain real matrices U, W and v

A=U-W-VT, (3)

The SVD inversion retrieves information about the axis
directions/lengths of the polarization ellipsoid (the wave
vector direction/ellipticity) and estimators of the planarity of
polarization. The U matrix is a 6 x 3 matrix with ortho-
normal columns used in the decomposition of A. Polariza-
tion properties and estimation of an angular source size are
defined by the matrix W, which is a diagonal matrix 3 x 3
of three positive or null singular values that represent the
ax1$ lengths of the polarization ellipsoid. The 3 x 3 matrix
V7 with orthonormal rows contains directions of the axes of
the polarization ellipsoid. This method was originally
designed for 3 x 3 magnetic spectral matrices by assuming
that B - k = 0 [Santolik et al., 2003]. It can also be used for
electric spectral matrices if the condition E - k = 0 is ful-
filled, which is the case of radio waves when observed far
from their propagation mode cutoff.
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[4] The influence of extended sources on the measured
spectral matrix, which are typical for type III radio bursts at
long wavelengths, has been efficiently described by Cecconi
[2007] in equations (4)—~(10):

ZoGhih;S, I T
ry =25 (014 0) (a2 + i (11 - 3))
+ (U - iV)(A B,rz) + (U+iV)<AjBi%>
r;+T
L= Q)(A,-A,-- (r, s ')
2 4
1 I;+T I F} + T
+BBZ<F|+ 7} ) CC( - ))J 4)
Ay = —sin 0y cos 0 cos(¢p — @) + cos by sin 6, 5)
By = —sin 6 sin(¢ — ¢), (6)
Cy = sin 6 sin 0 cos (¢ — ¢y ) + cos b cos 8, (7)
(- / sin(kOy )8y = —ED. ()
Y =T " cosy MIEIM = (1 = cosv)’
3 1 i tan263,\ /2
by _ oL _ M e . ,
i =31= s /0 (1 tanZ'y) sin (k0is)d0is, (9)
2 [? a0\ .
Ti(v) = 1 —cos'y/o exp(—ln(Z) tan27> sin (k6 )d0 .
(10)
[s] The P; matrix on the left hand side of equation (4)

represents a modeled spectral matrix that we will compare
with the matrix measured by the instrument. P;; is generally
a non-orthogonal matrix unlike S;; defined in equation (1).
The right hand side of equation (4) contains the impedance
of free space (Zp); parameters of the electrical antennas:
effective lengths (%), directions (6; and ¢) and gain (G);
and incident wave properties: the k-vector directions (6 and ¢),
the Stokes parameters (the energy flux: Sp; the linear
polarization degrees: Q and U; and the circular polarization
degree: V) [Kraus, 1966] and the angular half aperture of
the source (7), as seen by a spacecraft and contained in the
T coefficients. The shape of the source (see Figure 1), that
reflects a radial cut of a source brightness distribution, is
considered to be either uniform (equation (8): model 1a),
spherical (equation (9): model 1b) or Gaussian (equation (10):
model 1c).

[6] In this paper we present results of a GP inversion using
the SVD technique considering extended sources of solar
radio emissions. In section 2 we describe an empirical rela-
tionship between a decomposed spectral matrix and the
apparent source size in more detail regarding features of type
111 radio bursts at long wavelengths. An extensive applica-
tion of SVD to simulated data with various properties of a
source is shown in section 3. Section 4 contains an appli-
cation of SVD on a single type III radio burst observed by
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Figure 1. Radial cuts of three source brightness distributions: (a) uniform source, (b) spherical source,
and (c) Gaussian source (adapted from Cecconi [2007]).

the Solar Terrestrial Relation Observatory (STEREO) and
Wind spacecraft during small separation distances. We show
that results obtained from Wind using different techniques
(designed for spinning spacecraft) are consistent with the
results of the SVD analysis of STEREO data. Finally we
discuss an application of the SVD method for the radio
emissions with extended sources.

2. Determination of the Source Direction,
Coherence and Apparent Size

[7] As already mentioned above, SVD is an efficient
method for a wave analysis of multicomponent measure-
ments of the magnetic field with a point source [Santolik
et al., 2003]. SVD can also be applied to the electric field
of radio emissions by assuming E-k = 0. Contrary to the
three-axial search-coil magnetometers, effective antenna
directions and lengths are different from the physical ones
due to their electric coupling with the spacecraft body.
Therefore one has to perform a transformation from the
antenna frame into the orthonormal spacecraft system before
we apply SVD (see section 4 for details). SVD provides us
with a unity vector x = k/|Kk| contained in a column of the
VT matrix that corresponds to the minimum of the matrix W
of singular values. In other words, SVD yields the direction
where E has the minimum of its variance. For the GP analysis
of the solar radio emissions we define the angles 6 and ¢:

0= arctan(\/nf +n27/n3) for k3 >0,
0 =m— arctan(s/n% + /e%/fcg) for k3 <0,

¢ = arctan(k2 /K1),

(11)

where &, Ky, and k3 are the components of the vector k. As
an estimator of the wave polarization we use coherence in the
polarization plane calculated by SVD. A spectral matrix is
transformed into the polarization plane where we obtain
coherence by comparing auto- and cross-spectra products:
|R12|/+v/R11R22, where Ry, and Ry, are the autopower spectra
in the polarization plane, and R, their cross-power spectrum.
A zero coherence implies that Stokes parameters O, U, and V'
are null. We expect a very low degree of polarization in the

case of type III radio bursts. Information about the apparent
source size is hidden in the W matrix containing the axis
lengths of the polarization ellipsoid. In an ideal case of an
unpolarized radio wave with a point source, the minimum
value of W (w)) should be zero. Because of the diffusion in
the solar wind, the observed radio signal is a superimposition
of radio waves spread over a wide apparent source size. The
ratio wy/w; (w3 is the maximum of W) is then nonzero and
can yield information about the apparent source size.
Figure 2 shows w;/w; as a function of the apparent source
size «v. We have used equations (4)—(10) for modeling spec-
tral matrices that well reflect properties of type Il radio
bursts at long wavelengths. We have assumed an unpolarized
emission (Q = 0, U =0, V= 0). The shape of the source is
considered to be uniform. For a point source (y = 0°) the
polarization ellipsoid changes to an ellipse contained in a
single plane and the ratio of its smallest and largest axis of the
ellipsoid (w,/ws) is zero. On the other hand, the polarization

Source Size (Uniform Brightness Source Profile)
1.0 : : ' '
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Figure 2. The ratio of the smallest and largest components
of the diagonal matrix W (w,/w3) as a function of the apparent
source size (). A uniform brightness of the source and an
unpolarized emission have been assumed.
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Figure 3. The ratio of the smallest and largest components of the diagonal matrix W as a function of the
apparent source size (y) with the assumption of no error of the measurements. Results for (left) uniform,
(middle) spherical and (right) Gaussian brightness source profiles are shown. Degree of polarization is
100% (the first row), 30% (the second row), 10% (the third row), 1% (the fourth row) and 0% (the last
row). The type of polarization has been considered to be linear (dotted lines), circular (dashed lines), or
elliptical (dash-dotted lines). In case of an unpolarized emission a solid line has been used.

ellipsoid of emissions propagating from an half plane
(v =90°) becomes a sphere: w;/w; = 1.

3. Tests With Simulated Data

[8] Extensive simulations have been performed in order to
validate the SVD method for estimating the apparent source
size. Equations (4)-(10) have been used for modeling spec-
tral matrices with various types and degrees of polarization
computed by decreasing the normalization coefficient of
the Stokes parameters (i.e., 100% polarized wave corre-

sponds to 1/Q? + U? + V2 = 1, while 30% corresponds to
VO? + U? 4+ V2 = 0.3, etc.). The SVD analysis has been

applied on these simulated matrices. Figure 3 shows w;/w;
for three shapes of the source (in columns: uniform,
spherical and Gaussian) and five degrees of polarization (in
rows: 100%, 30%, 10%, 1% and 0%) as a function of the
apparent source size. We have investigated three possible
types of polarization: the linear polarization (dashed line:

100%: Q =+/2/2, U =+/2/2, V = 0), the right-handed

circular polarization (dotted line: 100%: Q = 0, U = 0,
¥V = 1) and the elliptical polarization (dashed dotted line:
100%: Q = v/3/3, U = /3/3, V = 1/3/3). A solid line in
the last row refers to unpolarized emissions. When the
degree of polarization is significant (>10%), the estimated
apparent source size depends on the type of polarization.
This dependence disappears if the degree of polarization is
negligible. Deviations between particular source shapes are
minor.

[s] The obtained empirical formulas can also be effi-
ciently described as a 4th order polynomial regression with
the independent variable as the square root of w;/ws:

° w1 w1 w1 3 wy 2
1) =ao+a/—+a|—|+ta(/—) ta|—],
w3 w3 w3 w3
(12)

where a; are coefficients given in Table 1 for a case of an
unpolarized wave that corresponds to the last row of
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Table 1. Coefficients of a Polynomial Regression for a Case of an
Unpolarized Wave for Equation (12)

ax Uniform Spherical Gaussian
ap 0.20 —0.01 —0.42
a 75.51 90.35 60.30
a 32.70 2.86 —-80.3
ay —67.62 —12.85 240.53
a, 48.79 9.61 —129.53

Figure 3. Equation (12) has been used to determine - in the
following section.

4. Analysis of a Single Type III Radio Burst
Observed Simultaneously by STEREO and Wind

[10] STEREO are two nearly identical spacecraft dedi-
cated to stereoscopic investigation of solar processes with
varying separation angles with respect to the Sun in the
ecliptic plane [Kaiser et al., 2008]. Whereas STEREO-A
moves ahead of the Earth in its orbit, STEREO-B trails
behind. Both spacecraft are three axis stabilized and
embarking the S/Waves instrument [Bougeret et al., 2008].
The High Frequency Receiver (HFR, a part of S/Waves)
provides us with GP data between 125 kHz and 1975 kHz in
38 separated bands with a 25 kHz effective bandwidth. This
frequency range is well adapted to interplanetary type III
radio bursts observations. HFR is a sweeping receiver with
two channels from which auto- and cross-correlations are
produced a posteriori. Its time resolution is about 30 s per
sweep between all frequencies and antenna configurations.
Three mutually orthogonal monopole antenna elements
(each 6 meters in length) form the sensor part of the S/Waves
instrument [Bale et al., 2008]. The effective antenna lengths
and directions are different from the physical ones and can
be modeled by computer simulations, estimated by rheo-
metric measurements [Macher et al., 2007; Rucker et al.,
2005; Oswald et al., 2009], or obtained by an in-flight cal-
ibration. We use the in-flight calibration using observations
of the Auroral Kilometric Radiation (AKR) by STEREO-B
(M. Panchenko, unpublished data, 2010). These directions
are slightly different from the the w/base caps (Graz) effec-
tive antenna directions (see bottom row of Bale et al. [2008,
Figure 14]). The used antenna directions can be found in the
auxiliary material of this article.' As no AKR has been
observed by STEREO-A during the calibration period, the
effective antenna directions are assumed to be the same. The
galactic background radiation has been used to determine
the effective antenna lengths [Zaslavsky et al., 2011].

[11] In order to validate our GP technique, we have com-
pared the STEREO observations with those obtained by
Wind (located in the solar wind). Indeed this latter spacecraft
which is now operating for more than 15 years can be con-
sidered to be well calibrated. The Waves instrument on-
board Wind provides us with GP data in a frequency range
from 20 up to 1040 kHz with a 3 kHz effective bandwidth
[Bougeret et al., 1995]. For the GP analysis with Wind/
Waves specific methods have been developed for spinning

' Auxiliary material data sets are available at ftp:/ftp.agu.org/apend/ja/
2011ja017333. Other auxiliary material files are in the HTML.
doi:10.1029/2011JA017333.

KRUPAR ET AL.: TECHNIQUE

A06101

spacecraft [Manning and Fainberg, 1980; Hoang et al.,
1981]. These techniques provide highly accurate GP mea-
surements using the spacecraft spin demodulation. We have
considered the standard deviation of the Wind GP data to be
2° for the k-vector direction as well as for the apparent
source size 7y (S. Hoang, personal communication, 2010).

[12] Figures 4 and 5 show results from STEREO-A and
STEREO-B, respectively. A separation angle of STEREO-A
and STEREO-B with Earth was 4.83° and 2.30° in the
ecliptic plane. Both spacecraft observed an intense type III
radio burst from 22:53 to 23:09 UT on May 8, 2007. It was a
first intense type III radio burst recorded after both STEREO
started to operate in the GP mode. To define the spacecraft
positions we have used the Heliocentric Earth Ecliptic
(HEE) coordinate system, which is centered on the Sun,
X being the Sun-Earth line and Z pointing toward the
North pole of the ecliptic. STEREO-A was located at
[0.96, 0.08, 0.00]yeg AU, whereas STEREO-B was at
[1.05, —0.04, —0.01],g AU. Figures 4a and Sa display the
intensity of electric field fluctuations in Solar Flux Units
(1 sfu = 1072 W%m?Hz). An intensity threshold of
5 x 10 sfu has been applied to the following figures in
order to suppress background and to have a good signal to
noise ratio for the GP analysis. Figures 4b and 5b show the
coherency in the plane of polarization calculated by the
SVD. For direction finding analysis we have used Radial-
Tangential-Normal (RTN) coordinates: the X axis points
from the spacecraft to Sun center, the Y axis is the cross
product of the solar rotational axis and X, and lies in the
solar equatorial plane (toward the West limb). The observed
type III radio burst propagates roughly in the ecliptic plane
(6 =90°), as can be seen in Figures 4c and Sc containing the
polar angle 6. The azimuthal angle ¢ is displayed in
Figures 4d and 5d. The estimated apparent source size 7 is
contained in the Figures 4e and Se. Figure 6 shows the same
event recorded at the 925 kHz (916 kHz for Wind) fre-
quency channel from both STEREO and Wind (located at
[0.99, 0.00, 0.00]yge AU, i.e., roughly between the two
STEREO). The plotted error bars for STEREO are obtained
from Figures 7 and 8 with a receiver gain of 0.5 dB error
(see Appendix A). The plotted error bars of the Wind GP
data correspond to the standard deviation of 2°. Second and
third rows contain the polar angle 6 and the azimuth angle
¢, respectively. Dashed lines represent the direction to the
Sun. The last row contains the apparent source y with the
assumption of a uniform source brightness distribution.
Dotted lines indicate values corresponding to the maximum
flux at the given spacecraft. As can be seen in Figure 6, we
have achieved a good agreement between STEREO and
Wind: the estimated apparent source size vy is ~ 20° on all
three spacecraft. Table 2 contains results of the same
analysis applied on intense type III radio bursts observed in
May 2007, when separation angles between all spacecraft
were below 12°.

5. Discussion and Conclusion

[13] The two STEREO spacecraft provide a great oppor-
tunity for stereoscopic observations of solar radio emissions
at long wavelengths. The Wind spacecraft, located roughly
between them, is ideal for complementary measurements.
The S/Waves instruments on-board STEREO provide GP
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Figure 4. From 22:53 to 23:09 UT on 8 May 2007: (a) the electric field spectral density, (b) the
coherence, (c) the polar angle 6, (d) the azimuthal angle ¢, and (e) the apparent source size 7 for

STEREO-A.

data that allow to retrieve the k-vector direction and polari-
zation properties. An analysis of three type III radio bursts
recorded by both STEREO and Wind, and using different
methods than in this paper, has been done by Reiner et al.
[2009]. Preliminary results of an application of SVD to
measurements of emissions with very extended sources has
been recently published by Krupar et al. [2010]. Results of a
triangulation of radio sources can be also compared with the
coronagraph images [Howard et al., 2008; Martinez
Oliveros et al., 2012). A combination of a suitable separa-
tion angle between two spacecraft (a triangulation works
best for 40°—60°) and the increased solar activity (when
more phenomena may be observed) will be reached in 2014.
GP capabilities of STEREO may improve our understanding
of generation mechanisms of type II and type III radio
bursts.

[14] The main result of the paper is the GP inversion
using SVD of a signal measured on non-orthogonal antennas
with a focus on investigating type III radio bursts at long

wavelengths, which have very extended sources and a low
degree of polarization. This is the first time that such a
technique is applied for a three axis stabilized spacecraft. In
section 2 we have obtained an empirical relation between the
decomposed spectral matrices, that contains lengths of the
polarization ellipsis, and the apparent source sizes for unpo-
larized emissions with a uniform source shape (Figure 2). For
a point source (y = 0°) the polarization ellipsoid degenerates
to an ellipse (w,/ws = 0), whereas for a very extended source
(y=90°) it becomes a sphere (w/w; = 1).

[15] An extensive study of various types and degrees of
polarization has been performed in section 3. A uniform,
spherical and Gaussian source profiles have been considered
(Figure 3). We have shown that the empirical relations for
these particular shapes of source brightness are similar. If the
degree of polarization is below 10% then the differences
between the various types of polarization vanish. Otherwise
one has to identify the type of polarization in order to apply
the appropriate empirical relation.
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Figure 5. From 22:53 to 23:09 UT on-8 May 2007: (a) the electric field spectral density, (b) the
coherence, (c) the polar angle 6, (d) the azimuthal angle ¢, and (e) the apparent source size -y for

STEREO-B.

[16] As an example we present an observation of a type III
radio burst obtained simultaneously by the two STEREO
and Wind spacecraft during small separation distances.
Figures 4b and 5b which display the coherency show that the
observed type I1I radio burst has almost no polarized part, as
expected at these wavelengths. The type III radio burst
propagates roughly in the ecliptic plane (6 = 90°, see
Figures 4c and 5c) and eastward from the Sun (¢ > 0°)
accordingly to the Parker spiral geometry (see Figures 4d
and 5d). For higher frequencies the radio source is located
roughly in the Sun direction, whereas the source moves
eastward as the frequency decreases (see Figures 4d and 5d).
Scattering effects due to density fluctuations of the solar
wind are more significant for lower frequencies. The
apparent source sizes vary between 20° and 40° on both
spacecraft (see Figures 4e and 5e) with a slight increase of
gamma for lower frequencies. The time and frequency center
core of the burst has smaller 7 than its surrounding.

[17] Figure 6 shows results for the same event from the
925 kHz (916 kHz for Wind) frequency channel. Errors
induced by the uncertainty on the HFR receiver gain have
been taken into account (see Appendix A). We can distin-
guish an intense peak at 22:58 (the first row of Figure 6).
The measured fluxes are about the same for both STEREO.
We obtain a better agreement in k-vector directions at both
frequency channels between Wind and STEREO-B, within
their respective error bars, than between STEREO-A and
Wind. The apparent source size is shown in the last row.
Although a Gaussian source shape would probably better
reflect real observations, the parameter y from Wind has
been obtained from previously processed data considering a
uniform source shape (S. Hoang, personal communication,
2010). During the maximum of intensity the source size
calculated by SVD on STEREO is about the same
(7y925 ~ 20°) as on Wind which is using a different method
dedicated for spinning spacecraft. The best agreement
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Figure 6. From 22:53 to 23:09 UT on 8 May 2007: the electric field spectral density, the polar angle 6,
the azimuthal angle ¢ (in the RTN coordinate system) and the apparent source size 7y for STEREO-A
(925 kHz), Wind (916 kHz) and STEREO-B (925 kHz). Dashed lines represent the direction to the
Sun. Dotted lines indicate values corresponding to the maximum flux at the given spacecraft.

Table 2. Apparent Source Sizes  Calculated for Six Intense Type III Radio Bursts From May 2007 During Peak Fluxes®

Timesrereo - A fsrereo (kHz) fwina (kHz) YsTEREO - A (deg) Ywina (deg) Ystereo - B (deg)
2007-05-08T23:07:47.459 225 224 35.67 41.30 49.06
2007-05-08T22:58:10.809 625 624 17.28 24.30 22.68
2007-05-08T22:57:20.523 925 916 18.28 22.50 20.20
2007-05-15T15:46:29.454 225 224 5212 39.10 57.18
2007-05-15T15:39:30.276 625 624 21.16 25.30 11.75
2007-05-15T15:37:49.166 925 916 2433 23.90 2441
2007-05-19T13:11:22.259 225 224 35.07 33.90 25.13
2007-05-19T12:57:26.010 625 624 24.69 24.90 14.10
2007-05-19T12:56:37.721 925 916 17.09 23.80 23.47
2007-05-22T14:37:42.407 225 224 42.58 49.00 43.09
2007-05-22T14:31:38.545 625 624 24.74 24.50 16.71
2007-05-22T14:30:47.751 925 916 19.57 23.70 14.51
2007-05-23T07:35:03.647 225 224 4491 34.90 37.43
2007-05-23T07:23:39.854 625 624 23.54 23.70 22.73
2007-05-23T07:22:51.070 925 916 21.03 19.90 11.78
2007-05-30T20:44:02.645 225 224 45.94 45.40 50.13
2007-05-30T20:36:13.137 625 624 21.51 28.20 17.73
2007-05-30T20:34:30.031 925 916 19.96 24.00 11.67

*The first column corresponds to peak fluxes observed by STEREO-A. A VOTable formatted version is available in the auxiliary material (see Data Set S1).
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Figure 7. An average angle difference between an input k-vector direction and the obtained one by SVD
as a function of the apparent source size - is represented by a solid line, a dashed line is the average plus
its standard deviation. (top) An inaccuracy of effective antenna directions of 2°; (middle) an inaccuracy of
effective antenna lengths of 3%; (bottom) an uncertainty on the receiver gain of 0.5 dB.

between STEREO and Wind is achieved during a peak flux
since the polarization is nearly zero (an initial assumption of
the empirical relation in this paper) and the signal-to-noise
ratio is relatively high. It confirms the validity of our
empirical relation for estimating the apparent source size.
Other case studies of joint STEREO and Wind observations
with small separation distances give similar results (see
Table 2). We have obtained a better agreement for the first
three events. One should note here that the effective band-
width of both STEREO is 25 kHz whereas Wind has 3 kHz
only. It indicates that the SVD method we use and the
empirically derived relations can be used for type III radio
bursts GP observations. This method can either be used for
statistical studies where one needs a robust and fast data
processing or for the estimation of initial values that can be
used for a more complete GP method using a standard non-
linear X fitting.

[18] Our study leads us to the following conclusions:
1. We have demonstrated that the SVD allows to directly
retrieve the k-vector direction from electric field measure-
ments in the case of type III radio bursts. 2. We have found
the empirical relation between the decomposed spectral
matrices and the apparent source sizes for unpolarized radio
emissions with a special focus on type III radio bursts
observed by STEREO; 3. Other possible degrees and types

of polarization have been also studied with our method and
we have shown that below 10% of polarized part it is not
necessary to distinguish the type of polarization; 4. Finally
one should note that such GP method will also be imple-
mented on the Radio Plasma Waves instrument [Boudjada
et al., 2005] on-board the Solar Orbiter spacecraft which,
as STEREO, will be three-axis stabilized.

Appendix A: Error Analysis on the Estimation
of the Wave Vector Direction and Apparent Size

[19] We have investigated the influence of several possi-
ble errors that can affect the current GP inversion applied to
Type I1I bursts. We have performed an error analysis taking
into account inaccuracies of the effective antenna directions
(2°) and lengths (3%) and an uncertainty on the receiver gain
(0.5 dB). The amplitudes of these errors correspond to
values estimated from properties of the S/Waves HFR
receiver which has been used in section 4 for a demonstra-
tion of our analysis. We have simulated antenna directions
with normal distributions of absolute deviations centered on
the nominal direction with sigma of 2°, and uniform dis-
tributions of azimuth. We have also applied the Gaussian
noise with a standard deviation of 3% on antenna lengths. As
another source of an error an uncertainty on the receiver gain
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Figure 8. An average angle difference between an input -y and the obtained one by SVD as a function of
the apparent source size « is represented by a solid line, a dashed line is the average plus/minus its stan-
dard deviation. First row: an inaccuracy of effective antenna directions of 2°; Second row: an inaccuracy
of effective antenna lengths of 3%; Third row: an uncertainty on the receiver gain of 0.5 dB.

has been considered when we have applied the Gaussian
noise on the final auto/cross-correlation products (normal
distributions of the uncertainties in dB centered at 0 dB).
Figure 7 shows an angle difference between an input k-vector
direction and an output one obtained by SVD as a function
of the apparent source size with an assumption of the errors
mentioned above. As + is larger the uncertainty of estima-
tion of the Kk -vector direction increases, as it has been
expected. Figure 8 contains an angle difference between an
input y and an output one obtained by SVD (the empirical
relation) as a function of the apparent source size. For small
sources (y < 5°) the empirical relation overestimates the
source size. On the other hand, the empirical relation
underestimates the source size for large sources (y > 60°).
Regarding Figures 7 and 8 we conclude that the largest
influence that can affect our measurements is an uncertainty
on the receiver gain. Therefore it has been considered as a
main source of errors in the paper.
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B.1 Heliocentric Earth Ecliptic (HEE)

In this coordinate system the X axis points from the Sun’s center to the planet Earth
while Z being the north pole of the ecliptic plane.

B.2 Heliocentric Earth Equatorial (HEEQ)

The Z axis denotes the solar rotation axis, and the X axis is in the plane containing
the Z axis and Earth. When converted to longitude and latitude, this is known as
Stonyhurst heliographic coordinates (Cortie, 1897).

B.3 Radial-Tangential-Normal (RTN)

The X axis points from Sun’s center to the spacecraft, and the Y axis is the cross
product of the solar rotational axis and X lying in the solar equatorial plane towards
the West limb.
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