High-frame rate ultrasound methodologies for cardiac applications - Archive ouverte HAL Accéder directement au contenu
Thèse Année : 2018

High-frame rate ultrasound methodologies for cardiac applications

Méthodologies d'imagerie ultrasonore à haute cadence d'images pour les applications cardiaques

Résumé

Echocardiography is the most widely used imaging modality for assessing cardiac morphology and function. It does provide a non-invasive tool in diagnosis and assessment of heart diseases and it allows, in addition, monitoring the response to the treatment. However, quantifying fast cardiac events remains a challenge when using the current achievable frame rate, especially in applications such as stress-echocardiography. Moreover, this limitation becomes more pronounced in 3D conventional focused imaging due to the time needed to insonify and acquire a full volume. The fact that only ~20 volumes per second can currently be achieved is one of the reasons restricting its common usage in clinical practice. Improvements in this field would allow exploiting the important potential of 3D imaging in providing a full quantification of cardiac deformation.In this context, the aim of this thesis was to develop high frame rate methods and to test their performance in realistic conditions aiming decision making towards clinical translation. To achieve this objective, both in vitro and in vivo experiments were conducted using 2D and 3D imaging. Our first contribution was a 2D comparison between two high frame rate modalities in terms of image quality and motion estimation performance. Motivated by our 2D results but especially by the challenge of implementing MLT in practice, we extended this approach to 3D. We studied the feasibility of 3D MLT in both static and dynamic conditions. Finally, as testing novel approaches in physiological complex flows conditions is a step forward towards clinical translation, our third contribution was to validate 2D and 3D high frame rate modalities on a ring vortex phantom
L'échocardiographie est la modalité d'imagerie la plus utilisée pour évaluer la morphologie et la fonction cardiaque. Il s'agit d'un outil non invasif pour le diagnostic et l'évaluation des maladies cardiaques et il permet en outre de surveiller la réponse au traitement. Cependant, la quantification des événements cardiaques rapides demeure un défi avec la cadence d’imagerie actuellement réalisable, en particulier dans des applications telles que l'échocardiographie d'effort. De plus, cette limitation devient plus prononcée en imagerie 3D conventionnelle focalisée en raison du temps nécessaire pour insonifier et acquérir un volume complet. Le fait que l’on puisse actuellement atteindre au mieux ~20 volumes par seconde est l'une des raisons qui limitent son utilisation courante dans la pratique clinique. Des améliorations dans ce domaine permettraient d'exploiter l'important potentiel de l'imagerie 3D pour la quantification complète de la déformation cardiaque.Dans ce contexte, l'objectif de cette thèse était de développer des méthodes à haute cadence d'images et de tester leur performance dans des conditions réalistes visant la prise de décision pour une transition vers la pratique clinique. Pour atteindre cet objectif, des expériences in vitro et in vivo ont été menées en utilisant l'imagerie 2D et 3D. Notre première contribution a été une comparaison 2D entre deux modalités à haute cadence d'images en termes de qualité d'image et de performance d'estimation de mouvement. Motivés par nos résultats 2D mais surtout par le défi d'implémenter le MLT dans la pratique, nous avons étendu cette approche en 3D. Nous avons étudié la faisabilité de la MLT 3D dans des conditions statiques et dynamiques. Enfin, comme l’évaluation de nouvelles approches dans des conditions physiologiques de flux complexes constitue un pas en avant vers la transition clinique, notre troisième contribution a consisté à valider des modalités 2D et 3D à haut cadence d'images sur un fantôme du vortex
Fichier principal
Vignette du fichier
TH2018BADESCUEMILIA.pdf (12.5 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02079977 , version 1 (26-03-2019)
tel-02079977 , version 2 (22-08-2019)

Identifiants

  • HAL Id : tel-02079977 , version 2

Citer

Emilia Bădescu. High-frame rate ultrasound methodologies for cardiac applications. Medical Imaging. Université de Lyon, 2018. English. ⟨NNT : 2018LYSE1303⟩. ⟨tel-02079977v2⟩
184 Consultations
271 Téléchargements

Partager

Gmail Facebook X LinkedIn More