R. R. Adharapurapu, F. Jiang, J. F. Bingert, and K. S. Vecchio, Influence of cold work and texture on the high-strain-rate response of Nitinol, Materials Science and Engineering: A 527, vol.20, pp.5255-5267, 2010.

S. Aleksandrovic, M. Stefanovic, D. Adamovic, and V. Lazic, Variation of normal anisotropy ratio r during plastic forming, Strojniski Vestnik, vol.55, pp.392-399, 2009.

T. Alonso, Caracterisation par essais DMA et optimisation du comportement thermomecanique de fils de NiTi-Application a une aiguille medicale deformable, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01213466

V. S. Ananthan and E. O. Hall, Macroscopic aspects of Lüders band deformation in mild steel, Acta Metallurgica Et Materialia 39, vol.12, pp.3153-3160, 1991.

H. Aretz, Numerical analysis of diffuse and localized necking in orthotropic sheet metals, International journal of plasticity, vol.23, pp.798-840, 2007.

D. P. Aun, M. Houmard, M. Mermoux, L. Latu-romain, J. C. Joud et al., Development of a flexible nanocomposite TiO2 film as a protective coating for bioapplications of superelastic NiTi alloys, Applied Surface Science, vol.375, pp.42-49, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01366562

D. P. Aun, I. F. Peixoto, M. Houmard, and V. T. Buono, Enhancement of NiTi superelastic endodontic instruments by TiO2 coating, Materials Science and Engineering C, vol.68, pp.675-680, 2016.

D. Banabic, Plastic Behaviour of Sheet Metal, Sheet Metal Forming Processes, p.301, 2010.

C. Bao, M. Francois, and L. L. Joncour, A Closer Look at the Diffuse and Localised Necking of A Metallic Thin Sheet: Evolution of the Two Bands Pattern, pp.244-260, 2016.

A. Barata-da-rocha, F. Barlat, and J. M. Jalinier, Prediction of the Forming Limit Diagrams of Anisotropic Sheets in Linear and Non-linear Loading, Materials Science and Engineering, vol.68, pp.151-164, 1985.

M. M. Barney, S. W. Xu, . Robertson, R. O. Schroeder, .. R. Ritchie et al., Impact of thermomechanical texture on the superelastic response of Nitinol implants, In: Journal of the mechanical behavior of biomedical materials, vol.4, pp.1431-1440, 2011.

N. J. Bechle and S. Kyriakides, Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states, International Journal of Plasticity, vol.82, pp.1-31, 2016.

N. J. Bibliography-bechle and S. Kyriakides, Localization in NiTi tubes under bending, International Journal of Solids and Structures, vol.51, pp.967-980, 2014.

O. Benafan, S. A. Ii, R. D. Noebe, D. W. Brown, and B. Clausen, An in situ neutron diffraction study of shape setting shape memory NiTi, Acta Materialia, vol.61, pp.3585-3599, 2013.

C. Bonsignore, A Decade of Evolution in Stent Design, Proceedings of the International Conference on Shape memory and Superelastic Technologies, 2004.

T. M. Brill, . Mittelbach, . Assmus, B. Mullner, and . Luthi, Elastic properties of NiTi, In: Journal of Physics: Condensed Matter, vol.3, pp.9621-9627, 1991.

L. C. Brinson, I. Schmidt, and R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy : micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids, vol.52, pp.1549-1571, 2004.

O. Cazacu, B. Plunkett, and F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, International Journal of Plasticity, vol.22, pp.1171-1194, 2006.

L. Chen, W. Wen, and H. Cui, Generalization of Hill's yield criterion to tensioncompression asymmetry materials, Science China Technological Sciences, vol.56, issue.1, pp.89-97, 2013.

A. H. Cottrell and B. A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proceedings of the Physical Society. Section A 62.1, pp.49-62, 1949.

A. Creuziger, L. J. Bartol, K. Gall, and W. C. Crone, Fracture in single crystal NiTi, Journal of the Mechanics and Physics of Solids, vol.56, pp.2896-2905, 2008.

V. Delobelle, ContribuitionsàContribuitions`Contribuitionsà l'´ etude thermomécanique des alliagesàalliages`alliagesà memoire de forme NiTi etàetà la réalisation par soudage e matériaux architecturés NiTi, 2012.

R. Dennis and J. Tu, Development of a localized heat treatment system for shape memory alloy wires using an ytterbium fiber laser, Journal of Materials Processing Technology, vol.199, issue.1-3, pp.245-255, 2008.

T. Duerig and . Pelton, An overview of nitinol medical applications, Materials Science and Engineering: A 273-275, pp.149-160, 1999.

T. W. Duerig, K. N. Melton, C. M. Stöckel, and . Wayman, Engineering Aspects of Shape Memory Alloys, vol.1, pp.3-20, 1990.

C. Elibol and M. F. Wagner, Strain rate effects on the localization of the stressinduced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear, Materials Science and Engineering A, vol.643, pp.194-202, 2015.

D. Favier and L. Orgéas, Stress-induced transformation of a NiTi alloy in isothermal shear, tension and compression, Acta Materialia, vol.46, pp.5579-5591, 1998.

D. Favier, H. Louche, P. Schlosser, L. Orgéas, P. Vacher et al., Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements, Acta Materialia, vol.55, pp.5310-5322, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00336739

D. Favier, Y. Liu, L. Orgéas, A. Sandel, L. Debove et al., Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy, Materials Science and Engineering A, vol.429, issue.2, pp.130-136, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00383401

B. Feng and Q. P. Sun, Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force, Journal of the Mechanics and Physics of Solids, vol.54, pp.1568-1603, 2006.

K. Gall, H. Sehitoglu, Y. I. Chumlyakov, and I. V. Kireeva, Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi, Acta Materialia, vol.47, pp.1203-1217, 1999.

K. Gall, J. Tyber, V. Brice, C. P. Frick, H. J. Maier et al., Tensile deformation of NiTi wires, Journal of Biomedical Materials Research-Part A, vol.75, pp.810-823, 2005.

K. Gall, H. Sehitoglu, Y. I. Chumlyakov, Y. L. Zuev, and I. Karaman, The role of coherent precipitates in martensitic transformations in single crystal and polycrystalline Ti-50.8at%Ni, Scripta Materialia, vol.39, pp.699-705, 1998.

S. Gao and S. Yi, Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys, Materials Science And Engineering A, vol.362, pp.107-111, 2003.

N. P. Gurao and S. Suwas, Deformation behaviour at macro-and nano-length scales: The development of orientation gradients, Materials Letters 99, pp.81-85, 2013.

J. F. Hallai and S. Kyriakides, Underlying material response for Lüders-like instabilities, International Journal of Plasticity, vol.47, pp.1-12, 2013.
DOI : 10.1016/j.ijplas.2012.12.002

R. F. Hamilton, Y. I. Sehitoglu, H. Chumlyakov, and . Maier, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Materialia, vol.52, pp.3383-3402, 2004.

R. Hill, On discontinuous reference plastic states, with special to localized necking in thin sheets, The mathematical theory of plasticity. Trowbridge: Redwood Books Ltd. Chap. XII, vol.1, p.355, 1948.

J. Huang, P. Dong, W. Hao, T. Wang, Y. Xia et al., Biocompatibility of TiO2 and TiO2/heparin coatings on NiTi alloy, Applied Surface Science, vol.313, pp.172-182, 2014.

M. A. Iadicola and J. A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, International Journal of Plasticity, vol.20, pp.577-605, 2004.

H. Inoue, N. Miwa, and N. Inakazu, Texture and shape memory strain in TiNi alloy sheets, Acta Materialia 44, vol.12, pp.4825-4834, 1996.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, vol.56, pp.1078-1113, 2014.

D. Jiang, S. Kyriakides, C. M. Landis, and K. Kazinakis, Modeling of propagation of phase transformation fronts in NiTi under uniaxial tension, European Journal of Mechanics, vol.64, pp.131-142, 2017.

H. Kato and K. Sasaki, Transformation-induced plasticity as the origin of serrated flow in an NiTi shape memory alloy, International Journal of Plasticity, vol.50, pp.37-48, 2013.

A. S. Khan and S. Huang, Continuum theory of plasticity, p.421, 1995.

K. Bibliography-kim and S. Daly, The effect of texture on stress-induced martensite formation in nickeltitanium, Smart Materials and Structures 22, vol.7, p.75012, 2013.

K. F. Kleine and K. G. Watkins, Fiber laser for micro-cutting of metals, Photonics West, p.184, 2003.

S. A. Krishnan, A. Baranwal, A. Moitra, G. Sasikala, S. K. Albert et al., Assessment of deformation field during high strain rate tensile tests of RAFM steel using DIC technique, Procedia Engineering, vol.86, pp.131-138, 2014.

D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, p.435, 2008.

G. Laplanche, T. Birk, S. Schneider, J. Frenzel, and G. Eggeler, Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys, Acta Materialia, vol.127, pp.143-152, 2017.

P. Leo, T. W. Shield, and P. Bruno, Transient Heat Transfer Effects on the Pseudoelastic Behavior of Shape Memory Wires, Acta Metallurgica et Materialia 41, vol.8, pp.2477-2485, 1993.

C. Linardon, . Favier, B. Chagnon, and . Gruez, A conical mandrel tube drawing test designed to assess failure criteria, Journal of Materials Processing Tech. 214, vol.2, pp.347-357, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00936544

C. Linardon, Precision tube drawing for biomedical applications : Theoretical, Numerical and Experimental study Precision Tube Drawing for Biomedical Applications : Theoretical, Numerical and Experimental Study, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00956588

L. Liu, D. B. Li, Y. F. Tong, and Y. F. Zhu, Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents, Applied Physics A: Materials Science and Processing 122, vol.7, pp.1-9, 2016.

X. Liu, Y. Wang, D. Yang, and M. Qi, The effect of ageing treatment on shapesetting and superelasticity of a nitinol stent, Materials Characterization 59, vol.4, pp.402-406, 2008.

Y. Liu, Z. Xie, J. Van-humbeeck, and L. Delaey, Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet, Acta Materialia, vol.47, pp.645-660, 1999.

Y. Liu and H. Xiang, Apparent modulus of elasticity of near-equiatomic NiTi, Journal of Alloys and Compounds, vol.270, pp.154-159, 1998.

Y. Liu and H. Yang, Strain dependence of the ClausiusClapeyron relation for thermoelastic martensitic transformations in NiTi, Smart Materials and Structures 16, vol.1, pp.22-27, 2007.

Y. Liu, The superelastic anisotropy in a NiTi shape memory alloy thin sheet, Acta Materialia, 2015.

S. C. Mao, X. D. Han, Z. Zhang, and M. H. Wu, The nano-and mesoscopic cooperative collective mechanisms of inhomogenous elastic-plastic transitions in polycrystalline TiNi shape memory alloys, Journal of Applied Physics, vol.101, issue.10, 2007.

S. Mao, J. Luo, Z. Zhang, M. Wu, Y. Liu et al., EBSD studies of the stress-induced B2B19 martensitic transformation in NiTi tubes under uniaxial tension and compression, Acta Materialia, vol.58, pp.3357-3366, 2010.

H. Meng, J. Liao, Y. Zhou, and Q. Zhang, Laser micro-processing of cardiovascular stent with fiber laser cutting system, Optics and Laser Technology, vol.41, pp.300-302, 2009.

S. Meschel, J. Pavlu, and P. Nash, The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry, Journal of Alloys and Compounds, vol.509, pp.5256-5262, 2011.

S. Miyazaki and K. Otsuka, Deformation and Transition Behavior Associated with the R-Phase in Ti-Ni Alloys, Metallurgical Transaction A 17, pp.53-63, 1986.

S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki, Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys, Le Journal de Physique Colloques 43.C4, pp.255-260, 1982.
URL : https://hal.archives-ouvertes.fr/jpa-00222148

S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals, Scripta Metallurgica 18, vol.9, pp.883-888, 1984.

S. Miyazaki, K. Otsuka, and Y. Suzuki, Tranformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy, Scripta Metallurgica 15, vol.4, pp.287-292, 1981.

J. Ortín and A. Planes, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations, Thermodynamics of Thermoelastic Martensitic Transformations, vol.8, pp.1433-1441, 1988.

K. Otsuka and X. Ren, Physical metallurgy of TiNi-based shape memory alloys, Progress in Materials Science 50, vol.5, pp.511-678, 2005.

K. Otsuka and K. Shimizu, Pseudoelasticity and shape memory effects in alloys, In: International Metals Reviews, vol.31, pp.93-114, 1986.

K. Otsuka and C. M. Wayman, Shape Memory Materials, p.284, 1998.

J. Otubo, O. Rigo, C. Coelho, P. Neto, and . Mei, The influence of carbon and oxygen content on the martensitic transformation temperatures and enthalpies of NiTi shape memory alloy, Materials Science and Engineering, pp.639-642, 2008.

M. Palengat, . Chagnon, H. Favier, C. Louche, C. Linardon et al., Cold drawing of 316L stainless steel thin-walled tubes : Experiments and finite element analysis, International Journal of Mechanical Sciences, vol.70, pp.69-78, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00936527

A. R. Pelton, B. Clausen, and A. P. Stebner, Situ Neutron Diffraction Studies of Increasing Tension Strains of Superelastic Nitinol, pp.375-386, 2015.

R. Pfeifer, D. Herzog, M. Hustedt, and S. Barcikowski, Pulsed Nd:YAG laser cutting of NiTi shape memory alloysInfluence of process parameters, Journal of Materials Processing Technology, vol.210, pp.1918-1925, 2010.

E. A. Pieczyska, S. P. Gadaj, W. K. Nowacki, and H. Tobushi, Phase-Transformation Fronts Evolution for Stress-and Strain-Controlled Tension Tests in TiNi Shape Memory Alloy, Experimental Mechanics, vol.46, pp.531-542, 2006.

B. Plunkett, O. Cazacu, and F. Barlat, Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, International Journal of Plasticity, vol.24, pp.847-866, 2008.

E. Bibliography-polatidis, N. Zotov, E. Bischoff, and E. J. Mittemeijer, The effect of cyclic tensile loading on the stress-induced transformation mechanism in superelastic NiTi alloys: An in-situ X-ray diffraction study, Scripta Materialia, vol.100, pp.59-62, 2015.

P. Poncin and J. Proft, Stent Tubing: Understanding the Desired Attributes". In: In: Proceedings of ASM Conference on Materials Processes for Medical Devices. September, pp.253-259, 2003.

S. Rajagopalan, A. L. Little, M. A. Bourke, and R. Vaidyanathan, Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometry, Applied Physics Letters, vol.86, pp.1-3, 2005.

B. Reedlunn, C. B. Churchill, E. E. Nelson, J. Shaw, and S. H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, Journal of the Mechanics and Physics of Solids, vol.63, pp.506-537, 2014.

S. W. Robertson, V. Imbeni, H. R. Wenk, and R. O. Ritchie, Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents, Journal of Biomedical Materials Research-Part A, vol.72, issue.2, pp.190-199, 2005.

S. W. Robertson, X. Y. Gong, and R. O. Ritchie, Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol, Journal of Materials Science, vol.41, pp.621-630, 2006.

J. Ryhänen, E. Niemi, W. Serlo, E. Niemela, P. Sandvik et al., Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures, Journal of Biomedical Materials Research, vol.35, pp.451-457, 1997.

J. Ryhänen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemelä et al., In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness, Journal of Biomedical Materials Research, vol.41, pp.481-488, 1998.

J. Savoie, J. J. Jonas, S. R. Macewen, and R. Perrin, Evolution of r-Value During the Tensile Deformation of Aluminium, Textures and Microstructures 23, vol.3, pp.149-171, 1995.

P. Schlosser, Influence des aspects mécaniques et thermiques sur les mécanismes de déformation d'alliages NiTi Influence of thermal and mechanical aspects on deformation behaviour of NiTi alloys, 2008.

P. Sedmak, J. Pilch, L. Heller, J. Kopecek, J. Wright et al., Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load, Science, vol.353, pp.2-28, 2016.

H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, and Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Materials Science and Engineering A, vol.314, issue.2, pp.67-74, 2001.

J. Shaw and S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International Journal of Plasticity, vol.13, pp.837-871, 1998.

J. Shaw and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Materialia, vol.45, pp.683-700, 1997.

J. A. Shaw, S. Kyriakides, P. Sittner, V. Novák, P. Sittner et al., Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, Journal of the Mechanics and Physics of Solids 43, vol.8, pp.475-492, 1995.

A. D. Sotomayor and E. J. Herrera, Permanent elimination of the yield-point phenomenon in AISI 430 stainless steel by skin-pass rolling, Journal of Materials Science, vol.29, pp.5833-5838, 1994.

R. Sowerby and W. Johnson, A Review of Texture and Anisotropy in Relation to Metal Forming R, In: Materials Science and Engineering, vol.20, pp.101-111, 1975.

A. P. Stebner, H. M. Paranjape, B. Clausen, L. C. Brinson, and A. R. Pelton, Situ Neutron Diffraction Studies of Large Monotonic Deformations of Superelastic Nitinol, pp.252-267, 2015.

D. Stoeckel, The Shape Memory Effect-Phenomenon, Alloys, and Applications, Shape Memory Alloys for Power Systems EPRI, pp.1-13, 1995.

Q. P. Sun and Z. Q. Li, Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-From localization to homogeneous deformation, International Journal of Solids and Structures, vol.39, pp.3797-3809, 2002.

S. Suwas and R. K. Ray, Representation of Texture, Crystallographic Texture of Materials. Engineering Materials and Processes, p.260, 2014.

W. Sylwestrowicz and E. O. Hall, The Deformation and Ageing of Mild Steel, Proceedings of the Physical Society of London Section B 64, vol.381, pp.747-753, 1951.

M. F. Wagner, Lattice stability , elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Materialia, vol.56, pp.6232-6245, 2008.

K. Wakashima and T. Mori, Application of continuum dislocation theory to geometry of Lüders front, International Journal of Solids and Structures, vol.8, pp.1043-1050, 1972.

P. Wollants, J. R. Roos, and L. Delaey, Thermally and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics, Progress in Materials Science, vol.37, pp.227-288, 1993.

C. Yu, G. Kang, and Q. Kan, A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals, Journal of the Mechanics and Physics of Solids, vol.82, pp.97-136, 2015.

C. Zhang, C. Yang, D. Ding, S. Qian, and J. Wu, Characteristics of Ti-Ni-Pd shape memory alloy thin films, Materials Characterization, vol.55, pp.340-344, 2005.

L. Zheng, Y. He, and Z. Moumni, Effects of Lüders-like bands on NiTi fatigue behaviors, International Journal of Solids and Structures, vol.83, pp.28-44, 2016.

Y. Bibliography-zheng, F. Jiang, L. Li, H. Yang, and Y. Liu, Effect of ageing treatment on the transformation behaviour of Ti50.9at.% Ni alloy, Acta Materialia, vol.56, pp.736-745, 2008.

N. Zotov, M. Pfund, E. Polatidis, A. F. Mark, and E. J. Mittemeijer, Change of transformation mechanism during pseudoelastic cycling of NiTi shape memory alloys, Materials Science and Engineering A, vol.682, pp.178-191, 2016.