. Mev, , p.24

, Mg(4,6 MeV/nucleon)+ nat Cu*1E0

. Pb, , p.25

. Mev,

. Mev/nucleon)+-nat-cu, , pp.1-6

. , MeV/nucleon)+ nat Cu*, pp.1-9

, Distribution angulaire de neutrons (Efaisceau bien supérieure à 10 MeV/nucléon) 32 S(50 MeV/nucleon)+ nat Cu*1E0, vol.10

. Ni, MeV/nucleon)+ nat Nb, vol.74, pp.1-3

, C(95 MeV/nucleon)+ nat Nb*, pp.1-6

, C(95 MeV/nucleon)+ nat C*, pp.1-9

. Bibliographie,

K. Abe, Study of measurement method of high-energy neutrons for ADS, Fifth. Itn. Workshop. On. The. Uti. And .Relia. of. Hig. Pow. Pro. Acc, issue.HPPA5, 2007.

V. E. Aleinikov, Neutron radiation field due to 6.6 MeV/amu 58 Ni ions bombarding a thick Cu target, vol.11, pp.245-248, 1985.

J. Allison, Geant4 developments and applications, vol.53, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00069212

J. Allison, Recent developments in Geant4, Nucl. Instr. And Meth. In Phys. Resear. A, vol.835, pp.186-225, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01412626

S. Agosteo, Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, Nucl. Instr. And Meth. In Phys. Resear. B, vol.217, pp.221-236, 2004.

S. Agostinelli, Geant4-a simulation toolkit, Nucl. Instr. And Meth. In Phys. Resear. A, vol.506, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

F. Atchison, Meeting on targets for neutron beam spallation sources, KFA Jülich Germany, p.34, 1980.

N. Bassler, SHIELD-HIT12A-User's guide, The Institute for Nuclear Research RAS, 2017.

. Usersguide,

G. Battistoni, Proceedings of 11th International Conference on Nuclear Reaction Mechanisms, 2006.

. Bayhurst, Cross sections for (n,xn) reactions between 7.5 and, p.28

. Mev, Phys. Rev. C, vol.12, p.451, 1975.

R. Bedogni, Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers, Nucl. Instr. And Meth. In Phys. Resear. A, vol.681, pp.110-115, 2012.

P. Bem, Conf.on Nucl.Data for Sci. and Technology, vol.2, p.983, 2007.

J. Benlliure, Nuclear Physics A, vol.628, p.458, 1998.

R. Brun, ROOT: An object oriented data analysis framework, Nucl. Instr. And Meth. In Phys. Resear. A, vol.389, pp.81-86, 1997.

T. T. Böhlen, The FLUKA Code: Developments and Challenges for High Energy and Medical Application, Nucl. Dat. Sheet, vol.120, pp.211-214, 2014.

F. Borne, Etude expérimentale de la spallation : distributions angulaires des neutrons produits par des faisceaux de protons (0.8, 1.2 et 1.6 GeV) et de deutons (0.8 et 1.6 GeV), 1998.

A. Boudard, New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles, Phys. Rev. C, vol.87, p.14606, 2013.

. Zran,

H. Bouzomita-zran, Mesure de précision de la décroissance superpermise de 18 Ne, 2015.

M. Cavinato, Monte Carlo calculations of heavy ion cross-sections based on the Boltzmann Master equation theory, Nucl. Phys. A, vol.679, 2001.

M. Cavinato, Monte Carlo calculations using the Boltzmann Master Equation theory of nuclear reactions, Phys. Lett. B, vol.382, 1996.

F. Cerutti, A semiclassical formula for the reaction cross-section of heavy ions, Eur.Phys.J. A, vol.25, p.413, 2005.

F. Cerutti, Low energy nucleus-nucleus reactions: the BME approach and its interface with FLUKA, 11 th, Itern. Conf. On. Nucl. React. Mecha, vol.126, p.507, 2007.

M. B. Chadwick, 1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data, Nucl. Data Sheets, vol.112, p.2887, 2011.

S. Chiba, Nucleon-induced preequilibrium reactions in terms of the quantum molecular dynamics, Phys. Rev. C, vol.53, p.1824, 1996.

S. Chiba, Analysis of proton-induced fragment production cross sections by the quantum molecular dynamics plus statistical decay model, Phys. Rev. C, vol.54, p.285, 1996.

F. Clapier, Neutron dose equivalent dose rates due to Heavy ion beams, Nucl. Instr. And Meth, vol.217, pp.489-494, 1983.

R. Coszach, Neutron-Induced Reactions Contributing to the Background in Gamma-Ray Astrophysical Mission, Physical Review, Part C, Nuclear Physics, vol.61, issue.6, p.64615, 2000.

F. Deak, Neutron emission from 14 N+ 165 Ho at 35 MeV/u, Nucl. Phys. A, vol.464, pp.133-158, 1987.

. De-sûreté-de, , 2002.

C. Divay, Thèse de doctorat : Étude de la fragmentation du 12C pour la hadronthérapie, 2018.

D. Durand, Physics from collisions below 200 MeV/u, Nucl. Phys. A630 52c-66c, 1998.

, The Current Transformer, p.2018

. Enquvist, Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors, Nucl. Instr. And Meth. In Phys. Resear. A, vol.715, pp.79-86, 2013.

M. , Radiological study of the nuclear facility S 3 of SPIRAL2, ARW 2017 Accelerator Reliability Workshop, 2017.

A. Fassò, Proceedings of the "Specialists' Meeting on Shielding Aspects of Accelerators, Targets & Irradiation Facilities, pp.287-304, 1994.

A. Fassò, Proceedings of the Monte Carlo 2000 Conference, p.955, 2000.

A. Ferrari, Proceedings of Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, vol.2, p.424, 1996.

A. Ferrari, FLUKA: a multi-particle transport code, INFN/TC_05/11, 2005.

M. Ferraton, Collisions profondément inélastiques entre ions lourds auprès du Tandem d'Orsay & Spectroscopie des noyaux exotiques riches en neutrons de la couche fp avec le multidétecteur germanium ORGAM, 2011.

G. Folger, The Binary Cascade, J.P. Eur. Phys. J. A, vol.21, p.407, 2004.

C. B. Fulmer, Fast neutron dose equivalent rates in heavy ion target areas, 8 th Inter, Conf. on. Cylc. and their. Appl, 1978.

S. Furihata, The GEM code-A simulation program for the evaporation and the fission process of an excited nucleus, 2001.

A. Gade, Detailed experimental study on intermediate-energy Coulomb excitation of 46Ar, Phys. Rev. C, vol.68, p.14302, 2003.

S. Gibouin, Contribution à l'étude de la production de faisceaux d'ions radioactifs par la méthode ISOL, 2003.

Z. Y. Guo, Thick target fast neutron yields, Nucl. Instr. And Meth, vol.29, pp.500-507, 1987.

L. Heilbronn, Neutron yields from interactions of GCR-like beams in stopping targets, Adv. In. Spac. Resar, vol.17, issue.2, pp.69-76, 1996.

L. Heilbronn, Neutron yields from 435 MeV/nucleon Nb stopping in Nb and 272 MeV/nucleon Nb stopping in Nb and Al, Phys. Rev. C, vol.58, issue.6, 1998.

L. Heilbronn, Production of neutrons from interactions of GCRlike particles, Acta Astro, vol.42, pp.367-373, 1998.

E. Holub, Neutron emission in central heavy-ion collisions of 165 Ho+ 20 Ne at 11, 14.6, and 20.1 MeV/nucleon, Phys. Rev. C, vol.28, issue.1, 1983.

E. L. Hubbard, Neutron production by heavy-ion bombardments, Phys. Rev, vol.118, issue.2, 1960.

M. Honusek, IAEA-18] IAEA, Neutron Dosimetry and Monitoring, Actives Methods of Neutron detection course, Journal of the Korean Physical Society, vol.59, p.1374, 2011.

I. and L. 'hadronthérapie-en-quelques-mots, , 2018.

Y. Iwamoto, Benchmark study of the recent version of the PHITS code, J. Nucl. Sci. Technol, vol.54, pp.617-635, 2017.

Y. Iwamoto, Neutron Energy Spectra And Dose Equivalent Rates From Heavy-ion Reactions Below 20 Mev/u Using The PHITS Code, PAC, 2009.

Y. Iwamoto, Estimating Neutron Dose Equivalent Rates From heavy Ion Reactions around 10 Mev Amu-1 using the PHITS Code, Health Physc, vol.98, issue.4, pp.591-596, 2010.

Y. Iwata, Double-differential cross sections for the neutron production from heavy-ion reactions at energies E/A = 290-600 MeV, Phys. Rev. C, vol.64, p.54609, 2001.

F. James, MINUIT Function Minimization and Error Analysis Reference Manual, 1994.

M. R. James, Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model, Nucl. Instr. And Meth. In Phys. Resear. A, vol.562, pp.819-822, 2006.

A. R. Junghans, Nuclear Physics A, vol.629, p.635, 1998.

E. Kim, Measurements of Neutron Spallation Cross Sections of 12 C and 209 Bi in the 20 MeV to 150 MeV Energy Range, Nucl. Sci.

. Eng, , vol.129, pp.209-223, 1998.

E. Kim, Measurements of activation cross sections on spallation reactions for 59 Co and nat Cu at incident neutron energies of, vol.40

. Mev, Jrn. Of. Nucl. Sci. and. Tech, vol.36, issue.1, 1999.

A. J. Koning, TENDL-2015: TALYS-based evaluated nuclear data library, 2015.

T. Kurosawa, Neutron yields from thick C, Al, Cu, and Pb targets bombarded by 400 MeV/nucleon Ar, Fe, Xe and 800 MeV/nucleon Si ions, Phys. Rev. C, vol.62, p.44615, 2000.

T. Kurosawa, Measurements of Secondary Neutrons Produced from Thick Target Bombarded by High Energy Neon Ions, J. of. Nucl. Sci. and. Tech, vol.36, issue.1, pp.41-53, 1999.

G. Lhersonneau, Neutron yield from 13 C thick target irradiated by protons of intermediate energy, Nucl. Instr. And Meth. In Phys. Resear. A, vol.576, pp.371-379, 2007.

G. Lhersonneau, Neutron yield from carbon, light-and heavywater thick targets irradiated by 40 MeV deuterons, Nucl. Instr. And Meth. In Phys. Resear. A, vol.603, pp.228-235, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00382700

G. Lhersonneau, A facility for fast-neutron irradiations at Jyväskylä and its use for nuclide cross-section measurements in fission, Nucl. Instr. And Meth. In Phys. Resear. A, vol.698, pp.224-233, 2013.

G. Q. Li, Microscopic calculation of in-medium nucleon-nucleon cross sections, Phys. Rev. C, vol.48, p.1702, 1993.

G. Q. Li, Microscopic calculation of in-medium proton-proton cross sections, Phys. Rev. C, vol.49, p.566, 1994.

N. P. Luciano, A High-Energy Neutron Flux Spectra Measurement Method for the Spallation Neutron Source, 2012.

S. Maeda, Fundamental Study on Neutron Spectrum Unfolding using Maximum Entropy and Maximum Likelihood Method, Progress in NUCLEAR SCIENCE and TECHNOLOGY, vol.1, pp.233-236, 2011.

M. Maiti, Angular distribution of neutrons from heavy ion induced reactions in thick targets, Nucl. Instr. And Meth. In Phys. Resear. A, vol.556, pp.577-588, 2006.

M. Majerle, Co and Nb cross-section measured by quasimonoenergetic neutrons from p+7Li reaction in the energy range of 18-36 MeV, Nuclear Physics, Section A, vol.953, p.139, 2016.

T. Malkiewicz, Tools for Physics with LHC and RIB, 2009.

W. Mannhart, Measurement of Neutron Activation Cross Sections in the Energy Range from 8 MeV to 15 MeV, Neutronenphysik Reports, issue.53, 2007.

S. G. Mashnik, Possible Improvements to MCNP6 and its CEM/LAQGSM Events-Generators, 2015.

A. Masuda, Neutron spectral fluence measurements using a Bonner sphere spectrometer in the development of the iBNCT accelerator-based neutron source, Appl. Rad. and Iso, vol.127, pp.47-51, 2017.

M. Matsumoto, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, vol.8, issue.1, pp.3-30, 1998.

W. N. Mcelroy, SAND-II Neutron Flux Spectra Determinations by Multiple Foil Activation Iterative Method. RSIC Computer Code Collection CCC-112, 1969.

H. O. Menlove, ACTIVATION CROSS SECTIONS FOR THE F19(N,2N)F18, NA23(N,2N)NA22, MN55(N,2N)MN54, IN115(N,2N)IN114M, HO165(N,2N)HO164M, IN115(N,N )IN115M, AND AL27, vol.163, p.1308, 1967.

N. V. Mokhov, The Mars code System User's Guide Version 15, 2016.

J. Mooney, Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra, J. Phys. Chem. Lett, issue.4, pp.3316-3318, 2013.

G. Musiol, J. Ranft, R. Reif, and D. Seeliger, KernundElementarteilchenphysik, VEB Deutscher Verlag der Wissenschaften, 1988.

M. Nandy, Measurement and analysis of neutron spectra from a thick Ta target bombarded by 7.2A MeV 16 O ions, Phys. Rev. C, vol.63, p.34610, 2001.

M. Nandy, Estimation of angular distribution of neutron dose using time-of-flight for 19 F + Al system at 110 MeV, Nucl. Instr. And Meth. In Phys. Resear. A, vol.576, pp.380-388, 2007.

M. Nandy, Neutron dose distribution from 12 C induced reactions on Ti and Ag using proton recoil scintillator, Rad. Measur, vol.45, pp.1276-1280, 2010.

K. Niita, Applicability of the QMD model to various nuclear reactions, 12 th Inter. Conf. on. Nucl. react. Mecha, pp.363-370, 2009.

K. Niita, Analysis of the (N,xN') reactions by quantum molecular dynamics plus statistical decay model, Phys. Rev. C, vol.52, issue.5, 1995.

, Evaluation of light output response functions in EJ-309 organic scintillators, Nucl. Instr. And Meth. In Phys. Resear. A, vol.842, pp.20-27, 2017.

C. H. De-novion, Autres utilisations des faisceaux de neutrons en sciences des matériaux, Laboratoire Léon Brillouin-CEA Saclay, 1997.

O. Bank, The JEFF-3.3 Nuclear Data Library, 2017.

T. O'haver, A Pragmatic Introduction to Signal Processing with applications in scientific measurement, 2018.

T. Ogawa, Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model, Nucl. Instr. And Meth. In Phys. Resear. A, vol.723, pp.36-46, 2013.

T. Ogawa, Energy-dependent fragmentation cross sections of relativistic 12C, Phys. Rev. C, vol.92, p.24614, 2015.

S. Paul,

. Mev, MeV/nucleon, Phys. Rev. C, vol.96, issue.8, p.44607, 2017.

N. Pauwels, Experimental determination of neutron spectra produced by bombarding thick targets: Deuterons (100 MeV/u) on 9 Be, deuterons (100 MeV/u) on 238 U and 36 Ar (95 MeV/u) on 12 C, Nucl. Instr. And Meth. In Phys. Resear. B, vol.160, pp.315-327, 2000.
URL : https://hal.archives-ouvertes.fr/in2p3-00015057

N. Pauwels, Étude de la production de neutrons rapides à partir de faisceaux de deutons en vue de la mise en oeuvre de faisceaux d'ions lourds radioactifs, 2000.

V. Pestel, Expérience de décroissance du 11 Li avec émission de neutrons retardés : Calibration et analyse du bruit de fond, 2015.

N. Petoussi-henss, Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures, ICRP Publication, vol.116, issue.2-5, 2010.

C. Pioch, Influence of Bonner sphere response functions above 20

, MeV on unfolded neutron spectra and doses, Radiation Mesurements, vol.45, issue.10, pp.1263-1267, 2000.

P. Tsai, Study of secondary particles produced from heavy-ion interactions, 2015.

P. Tsai, Benchmark of neutron production cross sections with

, Monte Carlo codes, Nucl. Instr. And Meth. In Phys. Resear. B, vol.416, pp.16-29, 2018.

C. Pioch, Influence of Bonner sphere response functions above 20

, MeV on unfolded neutron spectra and doses, Rad. Measur, vol.45, pp.1263-1267, 2010.

C. H. Pyeon, Neutron Spectrum Analyses by Foil Activation Method for High-Energy Proton Beams, Reac. Dos. Sta. of. Art Proc. Of. The. 13 th. Itn. Sym, pp.616-622, 2008.

, RHB : ROOT Histogram Builder, 2012.

D. Rochman, The TENDL library: hope, reality and future, proceedings of the International Conference on Nuclear Data for Science and Technology, 2016.

R. M. Ronningen and I. Remec, Final Report on Benchmarking Heavy Ion Transport Codes FLUKA, 2010.

A. Sardet, Spectres en énergie des neutrons prompts de fission : optimisation du dispositif expérimental et application à l' 238 U, 2015.

T. Sato, Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol, vol.55, pp.684-690, 2018.

T. Sato, Particle and Heavy Ion Transport code System, PHITS, version 2.52, Jrn. Of. Nucl. Sci. and. Tech, vol.50, issue.9, 2013.

T. Sato, Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms, Phys. Med. Biol, vol.55, pp.2235-2246, 2010.

T. Sato, Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms, Phys. Med. Biol, vol.54, 1997.

D. Satoh, SCINFUL-QMD: Monte Carlo Based Computer Code to Calculate Response Function and Detection Efficiency of a Liquid Scintillator for Neutron Energies up to 3 GeV, JAEA-Data/Code, 2006.

D. Satoh, Reevaluation of secondary neutron spectra from thick targets upon heavy-ion bombardment, Nucl. Instr. And Meth. In Phys. Resear. A, vol.583, pp.507-515, 2007.

D. Satoh, Neutron-production Double-differential Cross Sections from Heavy-ion Interactions, Journal of Korean Physical Society, vol.59, issue.2, pp.1741-1744, 2011.

H. R. Schelin, Neutron Production in Heavy-Ion Reactions at 35 and 50 MeV/Nucleon, Nucl. Sci. and. Eng, vol.113, issue.2, pp.184-188, 1993.

S. Sharma, Validation of Spallation models, Jagiellonian university, 2015.

K. Shibata, JENDL-4.0: A new library for nuclear science and engineering, J. Nucl. Sci. Technol, vol.48, p.1, 2011.

N. Shigyo, Measurement of 100-and 290-MeV/A Carbon Incident Neutron Production Cross Sections for Carbon, Nitrogen and Oxygen, Nucl. Dat. Shee, vol.119, pp.303-306, 2014.

K. Shin, Thick-Target Neutron Yield for Charged Particles, Nucl.Sci.Eng, vol.120, issue.40, 1995.

L. Sihver, A comparison of total reaction cross section models used in FLUKA, GEANT4 and PHITS, Aerospace Conference, IEEE, 2012.

L. Sihver, Hybrid Kurotama model" for total reaction cross sections, Nucl. Instr. And Meth. In Phys. Resear. B, vol.334, pp.34-39, 2014.

E. Simeckova, The Measurement of Neutron Activation Cross Section of Co-59 Below 36 MeV, Jrn. Kor. Phys. Soc, vol.59, issue.2, pp.1801-1804, 2011.

J. M. Sisterson, Cross section measurements for neutron-induced reactions off C, Al, SiO2, Si and Au producing relatively short-lived radionuclides at neutron energies between 70 and 160 MeV, Nucl. Instrum. Methods in Physics Res., Sect.B, vol.261, issue.10, p.5, 2007.

V. Suman, Thick target double differential neutron energy distribution from 12 C + 27 Al at 115 MeV, Nucl. Instr. And Meth. In Phys. Resear. A, vol.800, pp.29-33, 2015.

C. Sunil, Neutron yield and dose equivalent from heavy ion interactions on thick target, Nucl. Instr. And Meth. In Phys. Resear. A, vol.534, pp.518-530, 2004.

C. Sunil, Thick target neutron dose evaluation for 19 F + Al system, Rad. Pro. And. Dos, vol.123, issue.3, pp.277-282, 2006.

C. Sunil, Neutron dose equivalent from 100 MeV 19 F projectiles on thick Cu target, Rad. Measur, vol.43, pp.1278-1284, 2008.

C. Sunil, Measurement and analysis of energy and angular distributions of thick target neutron yields from 110 MeV 19 F on 27 Al, Phys. Rev. C, vol.78, p.64607, 2008.

C. Sunil, Directional distribution of the ambient neutron dose equivalent from 145-MeV 19 F projectiles incident on thick Al target, Rad. Pro. And. Dos, vol.143, issue.1, pp.4-11, 2010.

C. Sunil, Neutron ambient dose equivalent from 5 MeV/u 10,11 B, 12,13 C and 16,18 O projectiles incident on a thick Al target, Rad. Measur, vol.47, pp.1035-1043, 2012.

C. Sunil, Thick target neutron yield from 145 MeV 19 F+ 27 Al system, Nucl. Instr. And Meth. In Phys. Resear. A, vol.721, pp.21-25, 2013.

M. Takada, Simulated Neutron Response Functions of PhoswichType Neutron Detector and Thin Organic Liquid Scintillator, Progress in NUCLEAR SCIENCE and TECHNOLOGY, vol.2, pp.274-279, 2011.

M. Takada, Response Functions of Phoswich-Type Neutron Detector for High-Energy Cosmic Ray Neutron Measurement, Nucl. Sci. and. Eng, vol.47, pp.917-931, 1996.

J. Taforeau, Un spectromètre à pixel actifs pour la métrologie des champs neutroniques, 2013.

C. Theis, Interactive three dimensional visualization and creation of geometries for Monte Carlo calculations, Nucl. Instr. And Meth. In Phys. Resear. A, vol.562, pp.827-829, 2006.

J. Thomas, , 2014.

A. Tomanin, Characterization of a cubic EJ-309 liquid scintillator detector, Nucl. Instr. And Meth. In Phys. Resear. A, vol.756, pp.45-54, 2014.

R. K. Tripathi, Accurate universal parameterization of absorption cross sections, Nucl. Instr. And Meth. In Phys. Resear. B, vol.117, pp.347-349, 1996.

R. K. Tripathi, Accurate universal parameterization of absorption cross sections II-neutron absorption cross sections, Nucl. Instr. And Meth. In Phys. Resear. B, vol.129, pp.11-15, 1997.

R. K. Tripathi, Universal Parameterization of Absorption Cross Sections, NASA Technical Papers, vol.3621, 1997.

R. K. Tripathi, Accurate universal parameterization of absorption cross sections III-light systems, Nucl. Instr. And Meth. In Phys. Resear. B, vol.155, pp.349-356, 1999.

M. S. Uddin, Measurements of neutron induced activation of concrete at 64.5 MeV, Annals of Nuclear Energy, vol.36, p.1133, 2009.

Y. Uno, Measurement of the Neutron Activation Cross Sections of 12C, 30Si, 47Ti, 48Ti, 52Cr, 59Co, and 58Ni Between, vol.15, p.40

. Mev, Nucl. Sci. and. Eng, vol.122, issue.2, pp.247-257, 1996.

Y. Uno, Measurements of activation cross sections for the neutron dosimetry at an energy range from 17.5 to 30 MeV by using the 164

. Li, n) quasi-mono-energetic neutron source, 9, Internat.Symposium on Reactor Dosimetry, p.465, 1996.

Y. Uwamino, Measurement of neutron activation cross sections of energy up to 40 MeV using semimonoenergetic p-Be neutrons, Nuclear Science and Engineering, vol.111, p.391, 1992.

S. Valdré, Competition between heavy-ion reaction mechanisms as a function of the system isospin, 2015.

L. R. Veeser, Cross sections for (n,2n) and (n,3n) reactions above

. Mev, Phys. Rev. C, vol.16, p.1792, 1977.

M. Veselský, Nuclear reactions with heavy ions beams, Acta Physica Slovaca, vol.63, issue.1, pp.1-104, 2013.

V. Vlachoudis, FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), 2009.

J. Vrzalová, . Au, . Bi, . Cu, . Fe et al., Studies of (n,xn) cross-sections in Al, Nucl. Instr. And Meth. In Phys. Resear. A, vol.726, pp.84-90, 2009.

V. Wagner, Measurement of neutrons in different Pb/U setups irradiated by relativistic protons and deuterons by means of activation samples, Jrn. Of. Phys, vol.366, p.12047, 2012.

J. Xu, Understanding transport simulations of heavy-ion collisions at 100 and 400 AMeV: Comparison of heavy ion transport codes under controlled conditions, Physical Review C, vol.93, p.44609, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01294648

O. Yordanov, Neutron yields from 1 GeV/nucleon 238 U ion beams on Fe target, Nucl. Instr. And Meth. In Phys. Resear. B, vol.800, pp.863-870, 2005.

M. Zaman, Measurement of cross-sections for 89Y(n,xn) reaction at average neutron energies of 15-36 MeV, Jrn. Of. Rad. And. Nucl. Che, vol.303, p.815, 2015.

M. Zaman, Measurement of activation cross-sections for highenergy neutron-induced reactions of Bi and Pb, European Physical Journal A: Hadrons and Nuclei, vol.51, p.104, 2015.

J. F. Ziegler, SRIM-The stopping and range of Ions in Matter, Nucl. Instr. And Meth. In Phys. Resear. B, vol.268, pp.11-12, 2010.

É. M. Zsolnay and E. J. Szondi, Neutron spectrum determination by multiple foil activation method, Nuclear Training Reactor of the Technical University Budapest, 1982.

, Titre : Émission de neutrons par les réactions d'ions lourds

, Ils sont également utilisés pour diverses applications. Il est nécessaire de caractériser la production des neutrons secondaires dans les accélérateurs afin de garantir un fonctionnement sûr en toutes circonstances. Cependant, les données expérimentales sont très rares voire inexistantes. Pour certaines données, on note des divergences entre différentes publications. Des désaccords sont aussi observés entre les mesures et les calculs. Toutes ces raisons justifient le programme Thick Target Neutron Yields (TTNY) dont l'objectif est de mesurer des spectres doublement différentiels (énergie, angle) des neutrons générés par l, Résumé Les accélérateurs d'ions lourds sont un outil incontournable pour la recherche en physique nucléaire

, Deux techniques de mesure ont été utilisées : Activation et Temps de vol. Cela permet d'avoir une meilleure confiance dans les mesures, MeV/nucléon?Efaisceau?95 MeV/nucléon) sur cibles épaisses ( nat C, nat Cu et nat Nb)

, Ces comparaisons ont permis d'évaluer la qualité des codes dans les énergies étudiées et pour les masses des noyaux explorées, Les mesures sont comparées à des simulations effectuées dans ce travail avec les codes Monte-Carlo les plus utilisés en calcul nucléaires : PHITS (japonais)

, Rendement neutronique, Activation, Temps de, vol.Simulation