. .. Fields, , vol.1

. .. Cell, 133 5.5.2 Procedure of generation of the electrical pulse

. .. Measurements, 135 5.6.2 Random variables: initial position and orientation

. .. Discussion,

P. Aalto, K. Hämeri, P. Paatero, M. Kulmala, T. Bellander et al., Aerosol particle number concentration measurements in five european cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations, J. Air Waste Manag. Assoc, vol.55, pp.1064-1076, 2005.

M. Abkarian, M. Faivre, R. Horton, K. Smistrup, C. A. Best-popescu et al., Cellular-scale hydrodynamics, Biomed. Mater, vol.3, issue.034011, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01870702

M. Abkarian, M. Faivre, and A. Viallat, Swinging of red blood cells under shear flow, Phys. Rev. Lett, vol.98, p.188302, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01870703

M. Abkarian, L. Lanotte, J. Fromental, S. Mendez, D. A. Fedosov et al., A new look on blood shear thinning, 68th Annual Meeting of the APS Division of Fluid Dynamics, pp.22-24, 2015.

M. Abkarian and A. Viallat, Vesicles and red blood cells in shear flow, Soft Mat, vol.4, pp.653-657, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00321718

C. K. Aidun and J. R. Clausen, Lattice-Boltzmann method for complex flows, Ann. Rev. Fluid Mech, vol.42, pp.439-472, 2010.

C. K. Aidun and J. R. Clausen, Supplementary material: Lattice-Boltzmann method for complex flows. Supplemental Material to, Annu. Rev. Fluid. Mech, vol.42, pp.439-472, 2010.

K. Asami, Characterization of biological cells by dielectric spectroscopy, J. Non-Cryst. Sol, vol.305, pp.268-277, 2002.

K. Asami, Characterization of heterogeneous systems by dielectric spectroscopy, Prog. Polym. Sci, vol.27, pp.1617-1659, 2002.

K. Asami, Effects of membrane disruption on dielectric properties of biological cells, J. Phys. D: Appl. Phys, vol.39, 2006.

K. Asami, Simulation of dielectric spectra of erythrocytes with various shapes, J. Phys. D: Appl. Phys, vol.42, p.135503, 2009.

P. Bagchi, Mesoscale simulation of blood flow in small vessels, Biophys. J, vol.92, pp.1858-1877, 2007.

P. Bagchi, P. C. Johnson, and A. S. Popel, Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow, J. Biomech. Eng, vol.127, issue.4, pp.1070-1080, 2005.

P. Bagchi and R. M. Kalluri, Dynamics of nonspherical capsules in shear flow, Phys. Rev. E, vol.80, 2009.

P. Bagchi and R. M. Kalluri, Rheology of a dilute suspension of liquid-filled elastic capsules, Phys. Rev. E, vol.81, issue.056320, 2010.

P. Bagchi and R. M. Kalluri, Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling, J. Fluid Mech, vol.669, pp.498-526, 2011.

D. Barthès-biesel, Motion of a spherical microcapsule freely suspended in a linear shear flow, J. Fluid Mech, vol.100, issue.4, pp.831-853, 1980.

D. Barthès-biesel, Capsule motion in flow: Deformation and membrane buckling, Comp. Rend. Phys, vol.10, issue.8, pp.764-774, 2009.

D. Barthès-biesel, A. Diaz, and E. Dhenin, Effect of constitutive laws for twodimensional membranes on flow-induced capsule deformation, J. Fluid Mech, vol.460, pp.211-222, 2002.

D. Barthès-biesel and J. M. Rallison, The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech, vol.113, pp.251-267, 1981.

D. Barthès-biesel and H. Sgaier, Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow, J. Fluid Mech, vol.160, pp.119-135, 1985.

J. C. Baygents, N. J. Rivette, and H. A. Stone, Electrohydrodynamic deformation and interaction of drop pairs, J. Fluid Mech, vol.368, pp.359-375, 1998.

J. Beaucourt, F. Rioual, T. Séon, T. Biben, and C. Misbah, Steady to unsteady dynamics of a vesicle in a flow, Phys. Rev. E, vol.69, 2004.

L. I. Berge, T. Jössang, and J. Feder, Off-axis response for particles passing through long apertures in Coulter-type counters, Meas. Sci. Technol, vol.1, pp.471-474, 1990.

T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advectedfield approach, Phys. Rev. E, vol.67, 2003.

G. Boedec, M. Jaeger, and M. Leonetti, Settling of a vesicle in the limit of quasispherical shapes, J. Fluid Mech, vol.690, pp.227-261, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00997678

G. Boedec, M. Leonetti, and M. Jaeger, 3D vesicle dynamics simulations with a linearly triangulated surface, J. Comput. Phys, vol.230, pp.1020-1034, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00717365

M. O. Breitmeyer, E. N. Lightfoot, and W. H. Dennis, Model of red blood cell rotation in the flow toward a cell sizing orifice, Biophys. J, vol.11, pp.146-157, 1971.

J. Charrier, S. Shrivastava, and R. Wu, Free and constrained inflation of elastic membranes in relation to thermoforming non-axisymmetric problems, The Journal of Strain Analysis for Engineering Design, vol.24, issue.2, pp.55-74, 1989.

S. Chen and G. D. Doolen, Lattice-Boltzmann method for fluid flows, Ann. Rev. Fluid Mech, vol.30, pp.329-364, 1998.

S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity, Science, vol.168, pp.977-979, 1970.

C. Chnafa, S. Mendez, and F. Nicoud, Image-based large-eddy simulation in a realistic left heart, Comput. Fluids, vol.94, pp.173-187, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943609

C. Chnafa, S. Mendez, F. Nicoud, R. Moreno, S. Nottin et al., Imagebased patient-specific simulation: a computational modelling of the human left heart haemodynamics, Comput. Meth. Biomech. Biomed. Eng, vol.15, issue.supp1, pp.74-75, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820857

A. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp, vol.22, pp.745-762, 1968.

J. R. Clausen, D. A. Reasor, and C. K. Aidun, The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules, J. Fluid Mech, vol.685, pp.202-234, 2011.

D. Cordasco and P. Bagchi, Orbital drift of capsules and red blood cells in shear flow, Phys. Fluids, p.25, 2013.

D. Cordasco and P. Bagchi, Intermittency and synchronized motion of red blood cell dynamics in shear flow, J. Fluid Mech, vol.759, pp.472-488, 2014.

D. Cordasco, P. Yazdani, and . Bagchi, Comparison of erythrocyte dynamics in shear flow under different stress-free configurations, Phys. Fluids, vol.26, 2014.

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces, Math. Mod. Meth. App. Sc, vol.16, issue.3, pp.415-438, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103198

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Math. Mod. Num. Anal, vol.42, pp.471-492, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297711

W. H. Coulter, Means for counting particles suspended in a fluid, 1953.

W. H. Coulter, High speed blood cell counter and cell size analyzer, Proceedings of the National Electronics Conference, vol.12, pp.1034-1042, 1956.

M. Dao, C. T. Lim, and S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Sol, vol.51, pp.2259-2280, 2003.

A. , D. Biasio, and C. Cametti, Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane, Bioelectrochem, vol.65, pp.163-169, 2005.

A. , D. Biasio, and C. Cametti, Effect of shape on the dielectric properties of biological cell suspensions, Bioelectrochem, vol.71, pp.149-156, 2007.

P. Dimitrakopoulos, Effects of membrane hardness and scaling analysis for capsules in planar extensional flows, J. Fluid Mech, vol.745, pp.487-508, 2014.

R. Dimova, N. Bezlyepkina, M. D. Jordö, R. L. Knorr, K. A. Riske et al., Vesicles in electric fields: Some novel aspects of membrane behavior, Soft Mat, vol.5, pp.3201-3212, 2009.

S. K. Doddi and P. Bagchi, Effect of inertia on the hydrodynamic interaction between two liquid capsules in simple shear flow, Int. J. Multiph. Flow, vol.34, pp.375-392, 2008.

S. K. Doddi and P. Bagchi, Lateral migration of a capsule in a plane Poiseuille flow in a channel, Int. J. Multiph. Flow, vol.34, pp.966-986, 2008.

S. K. Doddi and P. Bagchi, Three-dimensional computational modeling of multiple deformable cells flowing in microvessels, Phys. Rev. E, vol.79, issue.046318, 2009.

W. R. Dodson-iii and P. Dimitrakopoulos, Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes, J. Fluid Mech, vol.641, pp.263-296, 2009.

W. R. Dodson-iii and P. Dimitrakopoulos, Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling, Biophys. J, vol.99, pp.2906-2916, 2010.

P. N. Dooley and N. J. Quinlan, Effect of eddy length scale on mechanical loading of blood cells in turbulent flow, Ann. of Biomed. Eng, vol.37, issue.12, pp.2449-2458, 2009.

V. Doyeux, Y. Guyot, V. Chabannes, C. Prud'homme, and M. Ismail, Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics, J. Comput. Appl. Math, vol.246, pp.251-259, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01345573

J. Dupire, M. Abkarian, and A. Viallat, Chaotic dynamics of red blood cells in a sinusoidal flow, Phys. Rev. Lett, vol.104, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00538828

J. Dupire, M. Abkarian, and A. Viallat, A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01957682

J. Dupire, M. /. Socol, and A. Viallat, Full dynamics of e red blood cell in shear flow, Proc. Natl Acad, vol.109, pp.20808-20813, 2012.

C. Dupont, A. Salsac, B. Barthès-biesel, M. Vidrascu, and P. L. Tallec, Influence of bending resistance on the dynamics of a spherical capsule in shear flow, Phys. Fluids, p.27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01160157

D. Eberly, Least squares fitting of data, Geometric Tools, LLC, 2008.

C. D. Eggleton and A. S. Popel, Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids, vol.10, issue.8, pp.1834-1845, 1998.

E. A. Evans and Y. C. Fung, Improved measurements of the erythrocyte geometry, Microv. Res, vol.4, pp.335-347, 1972.

A. Farutin, T. Biben, and C. Misbah, 3D numerical simulations of vesicle and inextensible capsule dynamics, J. Comput. Phys, vol.275, pp.539-568, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00841996

S. Faure, S. Martin, B. Maury, and T. Takahashi, Towards the simulation of dense suspensions: a numerical tool, ESAIM: Proc, vol.28, pp.55-79, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00590659

D. A. Fedosov, Multiscale Modeling of Blood Flow and Soft Matter, 2010.

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J, vol.98, pp.2215-2225, 2010.

D. A. Fedosov, B. Caswell, A. S. Popel, and G. E. Karniadakis, Blood flow and cell-free layer in microvessels. Microcirc, vol.17, pp.615-628, 2010.

D. A. Fedosov, M. Dao, G. E. Karniadakis, and S. Suresh, Computational biorheology of human blood flow in health and disease, Ann. of Biomed. Eng, vol.42, issue.2, pp.368-387, 2013.

D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, Predicting human blood viscosity in silico, Proc. Natl Acad, vol.108, pp.11772-11777, 2011.

D. A. Fedosov, M. Peltomäki, and G. Gompper, Deformation and dynamics of red blood cells in flow through cylindrical microchannels, Soft Mat, vol.10, pp.4258-4267, 2014.

T. M. Fischer, On the energy dissipation in a tank-treading human red blood cell, Biophys. J, vol.32, pp.863-868, 1980.

T. M. Fischer, Shape memory of human red blood cells, Biophys. J, vol.86, pp.3304-3313, 2004.

T. M. Fischer, Tank-tread frequency of the red cell membrane: Dependence on the viscosity of the suspending medium, Biophys. J, vol.93, pp.2553-2561, 2007.

T. M. Fischer and R. Korzeniewski, Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow: dependence on the viscosity of the suspending medium, J. Fluid Mech, vol.736, pp.351-365, 2013.

T. M. Fischer, M. Stöhr-liesen, and H. Schmid-schönbein, The red cell as a fluid droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow, Science, vol.202, pp.894-896, 1978.

E. Foessel, J. Walter, A. Salsac, and D. Barthès-biesel, Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow, J. Fluid Mech, vol.672, pp.477-486, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02019765

J. B. Freund, The flow of red blood cells through a narrow spleen-like slit, Phys. Fluids, p.25, 2013.

J. B. Freund, Numerical simulation of flowing blood cells, Ann. Rev. Fluid Mech, vol.46, pp.67-95, 2014.

J. B. Freund and M. M. Orescanin, Cellular flow in a small blood vessel, J. Fluid Mech, vol.671, pp.466-490, 2011.

G. Fuhr and P. I. Kuzmin, Behavior of cells in rotating electric fields with account to surface charges and cell structures, Biophys. J, vol.50, pp.789-795, 1986.

Y. C. Fung, Biomechanics-Mechanical properties of living tissues, 1993.

Y. C. Fung, Biomechanics-Circulation, 1997.

R. V. Garimella and B. K. Swartz, Curvature estimation for unstructured triangulations of surfaces, LANL Tech. Rep, 2013.

G. Ghigliotti, T. Biben, and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, J. Fluid Mech, vol.653, pp.489-518, 2010.

H. L. Goldsmith and J. Marlow, Flow behaviour of erythrocytes. I. rotation and deformation in dilute suspensions, Proc. R. Soc. Lond. B, vol.182, pp.351-384, 1972.

M. Gross, T. Krüger, and F. Varnik, Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects, Soft Mat, vol.10, pp.4360-4372, 2014.

J. Guo, T. S. Pui, A. R. Rahman, and Y. Kang, 3D numerical simulation of a Coulter counter array with analysis of electrokinetic forces, Electrophoresis, vol.34, pp.417-424, 2013.

M. R. Hardeman, P. T. Goedhart, J. G. Dobbe, and K. P. Lettinga, Laserassisted optical rotational cell analyser (l.o.r.c.a.); i. a new instrument for measurement of various structural hemorheological parameters, Clin. Hemorheo, vol.14, issue.4, pp.605-618, 1994.

Y. Hayashi, I. Oshige, Y. Katsumoto, S. Omori, A. Yasuda et al., Dielectric inspection of erythrocyte morphology, Phys. Med. Biol, vol.53, pp.2553-2564, 2008.

W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch, vol.28, pp.693-703, 1973.

S. Hénon, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J, vol.76, pp.1145-1151, 1999.

J. M. Higgins, Red blood cell population dynamics, Clin. Lab. Med, vol.35, pp.43-57, 2015.

B. D. Horne, J. L. Anderson, J. M. John, A. Weaver, T. L. Bair et al., Which white blood cell subtypes predict increased cardiovascular risk?, J. Am. Coll. Cardio, vol.45, pp.1638-1643, 2005.

X. Hu, A. Salsac, and D. Barthès-biesel, Flow of a spherical capsule in a pore with circular or square cross-section, J. Fluid Mech, vol.705, pp.176-194, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02019758

X. Hu, B. Sévénié, A. Salsac, E. Leclerc, and B. Barthès-biesel, Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law, Phys. Rev. E, vol.87, p.63008, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02019731

R. L. Iman, Latin Hypercube Sampling. Encyclopedia of Quantitative Risk Analysis and Assessment, 2008.

D. Isèbe and P. Nérin, Numerical simulation of particle dynamics in an orificeelectrode system. Application to counting and sizing by impedance measurement, Int. J. Numer. Meth. Biomed. Eng, vol.29, issue.4, pp.462-475, 2013.

M. Ismail and A. Lefebvre-lepot, A'necklace' model for vesicles simulations in 2D, Int. J. Numer. Meth. Fluids, vol.76, pp.835-854, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00670072

A. V. Jagtiani, J. Zhe, J. Hu, and J. Carletta, Detection and counting of microscale particles and pollen using a multi-aperture Coulter counter, Meas. Sci. Technol, vol.17, pp.1706-1714, 2006.

G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, vol.102, pp.161-179, 1922.

S. Je?ek, K. Saic, and . Segeth, Numerical modeling of the movement of a rigid particle in viscous fluid, App. Math, vol.44, pp.469-479, 1999.

T. B. Jones, Basic theory of dielectrophoresis and electrorotation, IEEE Eng. Med. Biol. Mag, vol.6, pp.33-42, 2003.

M. Junk and R. Illner, A new derivation of Jeffery's equation, J. Math. Fluid Mech, vol.9, pp.455-488, 2007.

H. Kamada, Y. Imai, M. Nakamura, T. Ishikawa, and T. Yamaguchi, Computational analysis on the mechanical interaction between a thrombus and red blood cells: Possible causes of membrane damage of red blood cells at microvessels, Med. Eng. Phys, vol.34, issue.10, pp.1411-1420, 2012.

S. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, J. Fluid Mech, vol.120, pp.27-47, 1982.

S. Kessler, R. Finker, and U. Seifert, Swinging and tumbling of elastic capsules in shear flow, J. Fluid Mech, vol.605, pp.207-226, 2008.

K. Khairy, J. Foo, and J. Howard, Shapes of red blood cells: Comparison of 3D confocal images with the bilayer-couple model, Cell. Mol. Bioeng, vol.1, issue.2-3, pp.173-181, 2008.

T. Klöppel and W. A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes, Biomech. Model. Mechanobiol, vol.10, pp.445-459, 2011.

M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Fluid vesicles in shear flow, Phys. Rev. Lett, vol.77, issue.17, pp.3685-3688, 1996.

T. Krüger, B. Kaoui, and J. Harting, Interplay of inertia and deformability on rheological properties of a suspension of capsules, J. Fluid Mech, vol.751, pp.725-745, 2014.

E. Lac and D. Barthès-biesel, Deformation of a capsule in simple shear flow: Effect of membrane prestress, Phys. Fluids, vol.17, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00014803

E. Lac, D. Barthès-biesel, N. A. Pelekasis, and J. Tsamopoulos, Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling, J. Fluid Mech, vol.516, pp.303-334, 2004.

E. Lac, A. Morel, and D. Barthès-biesel, Hydrodynamic interaction between two identical capsules in simple shear flow, J. Fluid Mech, vol.573, pp.149-169, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172295

G. Lee, C. Chang, S. Huang, and R. Yang, The hydrodynamic focusing effect inside rectangular microchannels, J. Micromech. Microeng, vol.16, pp.1024-1032, 2006.

G. Lenormand, S. Hénon, A. Richet, J. Siméon, and F. Gallet, Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton, Biophys. J, vol.81, pp.43-56, 2001.

X. Li and K. Sarkar, Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane, J. Comput. Phys, vol.227, pp.4998-5018, 2008.

X. Z. Li, D. Barthès-biesel, and A. Helmy, Large deformations and burst of a capsule freely suspended in an elongational flow, J. Fluid Mech, vol.187, pp.179-196, 1988.

Y. Li, E. Jung, W. Lee, H. G. Lee, and J. Kim, Volume preserving immersed boundary methods for two-phase fluid flows, Int. J. Numer. Meth. Fluids, vol.69, pp.842-858, 2012.

G. H. Lim, M. Wortiz, and R. Mukhopadhyay, Stomatocyte-discocyteechinocyte sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane mechanics, Proc. Natl Acad, vol.99, pp.16766-16769, 2002.

G. H. Lim, M. Wortiz, and R. Mukhopadhyay, Red Blood Cell Shapes and Shape Transformations: Newtonian Mechanics of a Composite Membrane, volume Lipid Bilayers and Red Blood Cells of Soft Matter, pp.94-269, 2008.

W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Meth. Fluids, vol.20, pp.1081-1106, 1995.

V. Lleras, Modélisation, analyse et simulation deprobì emes de contact en mécanique des solides et des fluides, 2009.

J. M. López-herrera, A. Popinet, and M. A. Herrada, A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid, J. Comput. Phys, vol.230, pp.1939-1955, 2011.

Z. Y. Luo, L. He, and B. F. Bai, Deformation of spherical compound capsules in simple shear flow, J. Fluid Mech, vol.775, pp.77-104, 2015.

Z. Y. Luo, S. Q. Wang, L. He, F. Xu, and B. F. Bai, Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow, Soft Mat, vol.9, pp.9651-9660, 2013.

M. Macmeccan, J. R. Clausen, G. P. Neitzel, and C. K. Aidun, Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finiteelement method, J. Fluid Mech, vol.618, pp.13-39, 2009.

E. Maitre, Equations de transport, level set et mécanique eulérienne. application au couplage fluide-structure, 2008.

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Math. Comput. Mod, vol.49, pp.2161-2169, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00177593

M. Malandin, N. Maheu, and V. Moureau, Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines, J. Comput. Phys, vol.238, pp.32-47, 2013.

J. L. Mcwhirter, H. Noguchi, and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, Proc. Natl Acad, vol.106, pp.6039-6043, 2009.

J. L. Mcwhirter, H. Noguchi, and G. Gompper, Deformation and clustering of red blood cells in microcapillary flows, Soft Mat, vol.7, pp.10967-10977, 2011.

S. Mendez, C. Chnafa, E. Gibaud, J. Sigüenza, V. Moureau et al., YALES2BIO: a computational fluid dynamics software dedicated to the prediction of blood flows in biomedical devices, 5th International Conference on Biomedical Engineering in Vietnam, IFMBE Proceedings Series, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612345

S. Mendez, E. Gibaud, and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, J. Comput. Phys, vol.256, issue.1, pp.465-483, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00871557

T. Milcent, Une approche eulérienne du couplage fluide-structure, analyse mathématique et applications en biomécanique, 2009.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech. Chem. Biosys, vol.1, issue.3, pp.169-180, 2004.

C. Misbah, Vacillating breathing and tumbling of vesicles under shear flow, Phys. Rev. Lett, vol.96, 2006.

N. Mohandas and E. A. Evans, Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects, Ann. Rev. Biophys. Biomol. Struct, vol.23, pp.787-818, 1994.

V. Moureau, P. Domingo, and L. Vervisch, Design of a massively parallel CFD code for complex geometries, Comp. Rend. Méc, vol.339, issue.2-3, pp.141-148, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01672172

V. Narsimhan, A. Spann, and E. S. Shaqfeh, The mechanism of shape instability for a vesicle in extensional flow, J. Fluid Mech, vol.750, pp.144-190, 2014.

V. Narsimhan, H. Zhao, and E. S. Shaqfeh, Coarse-grained theory to predict the concentration distribution of red blood cells in wall-bounded Couette flow at zero Reynolds number, Phys. Fluids, p.25, 2013.

H. Noguchi and G. Gompper, Fluid vesicles with viscous membranes in shear flow, Phys. Rev. Lett, vol.93, 2004.

H. Noguchi and G. Gompper, Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations, Phys. Rev. E, vol.72, 2005.

H. Noguchi and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl Acad, vol.102, pp.14159-14164, 2005.

H. Noguchi and G. Gompper, Swinging and tumbling of fluid vesicles in shear flow, Phys. Rev. Lett, vol.98, p.128103, 2007.

W. Pan, B. Caswell, and G. E. Karniadakis, A low-dimensional model for the red blood cell, Soft Mat, vol.6, pp.4366-4376, 2010.

Z. Peng, R. J. Asaro, and Q. Zhu, Multiscale simulation of erythrocyte membranes, Phys. Rev. E, vol.81, 2010.

Z. Peng, R. J. Asaro, and Q. Zhu, Multiscale modelling of erythrocytes in Stokes flow, J. Fluid Mech, vol.686, pp.299-337, 2011.

Z. Peng, A. Mashayekh, and Q. Zhu, Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton, J. Fluid Mech, vol.742, pp.96-118, 2014.

C. S. Peskin, The immersed boundary method, Acta Num, vol.11, pp.479-517, 2002.

P. Peterlin, S. Svetina, and B. Zek?, The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer, J. Phys.: Condens. Matter, vol.19, p.136220, 2007.

A. Pinelli, I. Z. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers, J. Comput. Phys, vol.229, pp.9073-9091, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00951516

I. V. Pivkin and G. E. Karniadakis, Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett, vol.101, 2008.

C. Pozrikidis, The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow, J. Fluid Mech, vol.216, pp.231-254, 1990.

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1992.

C. Pozrikidis, Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow, J. Fluid Mech, vol.297, pp.123-152, 1995.

C. Pozrikidis, Effect of membrane bending stiffness on the deformation of capsules in simple shear flow, J. Fluid Mech, vol.440, pp.269-291, 2001.

C. Pozrikidis, Modeling and Simulation of Capsules and Biological Cells, 2003.

C. Pozrikidis, Numerical simulation of the flow-induced deformation of red blood cells, Ann. of Biomed. Eng, vol.31, pp.1194-1205, 2003.

C. Pozrikidis, Axisymmetric motion of a file of red blood cells through capillaries, Phys. Fluids, vol.17, 2005.

A. R. Pries, T. W. Secomb, and P. Gaehtgens, Biophysical aspects of blood flow in the microvasculature, Cardiov. Res, vol.32, pp.654-667, 1996.

Z. Qin, J. Zhe, and G. Wang, Effects of particle's off-axis position, shape, orientation and entry position on resistance changes of micro Coulter counting devices, Meas. Sci. Technol, vol.22, pp.1-10, 2011.

C. Quéguiner and D. Barthès-biesel, Axisymmetric motion of capsules through cylindrical channels, J. Fluid Mech, vol.348, pp.349-376, 1997.

S. Ramanujan and C. Pozrikidis, Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities, J. Fluid Mech, vol.361, pp.117-143, 1998.

D. A. Reasor, J. R. Clausen, and C. K. Aidun, Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow, Int. J. Numer. Meth. Fluids, vol.68, pp.767-781, 2012.

A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the immersed boundary method, J. Comput. Phys, vol.153, pp.509-534, 1999.

R. Roscoe, On the rheology of a suspension of viscoelastic spheres in a viscous liquid, J. Fluid Mech, vol.28, pp.273-293, 1967.

U. Seifert, Morphology and dynamics of vesicles, Current Opinion in Colloid & Interface Science, vol.1, issue.3, pp.350-357, 1996.

U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys, vol.46, issue.1, pp.13-137, 1997.

U. Seifert, Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow, Eur. Phys. J. B, vol.8, pp.405-415, 1999.

U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models, Phys. Rev. A, vol.44, issue.2, pp.1182-1202, 1991.

U. Seifert and R. Lipowsky, Morphology of Vesicles: ch.8 of Handbook of Biological Physics, vol.1, 1995.

L. Shi, T. Pan, and R. Glowinski, Lateral migration and equilibrium shape and position of a single red blood cell in bounded Poiseuille flows, Phys. Rev. E, vol.86, issue.056308, 2012.

J. Sigüenza, Numerical simulation of the red blood cells, 2013.

J. Sigüenza, S. Mendez, and F. Nicoud, Characterisation of a dedicated mechanical model for red blood cells: numerical simulations of optical tweezers experiment, Comput. Meth. Biomech. Biomed. Eng, vol.17, issue.1, pp.28-29, 2014.

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, Strain energy function of red blood cell membranes, Biophys. J, vol.13, pp.245-264, 1973.

J. M. Skotheim and T. W. Secomb, Red blood cells and other nonspherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition, Phys. Rev. Lett, vol.98, issue.078301, 2007.

A. J. Smolen, L. L. Wright, and T. J. Cunningham, Neuron numbers in the superior cervical sympathetic ganglion of the rat: a critical comparison of methods for cell counting, J. Neurocyto, vol.12, pp.739-750, 1983.

R. Specogna and F. Trevisan, A discrete geometric approach to solving time independent schrödinger equation, J. Comput. Phys, vol.230, pp.1370-1381, 2011.

D. Spencer and H. Morgan, Positional dependence of particles in microfludic impedance cytometry, Lab. Chip, vol.11, pp.1234-1239, 2011.

Y. Sui, X. B. Chen, Y. T. Chew, P. Roy, and H. T. Low, Numerical simulation of capsule deformation in simple shear flow, Comput. Fluids, vol.39, pp.242-250, 2010.

Y. Sui, Y. T. Chew, P. Roy, Y. P. Cheng, and H. T. Low, Dynamic motion of red blood cells in simple shear flow, Phys. Fluids, vol.20, 2008.

Y. Sui, H. T. Low, Y. T. Chew, and P. Roy, Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow, Phys. Rev. E, vol.77, 2008.

T. Sun and H. Morgan, Single-cell microfluidic impedance cytometry: a review, Microfluid. Nanofluid, vol.8, pp.423-443, 2010.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomaterialia, vol.1, pp.15-30, 2005.

G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, Biomicrofluid, vol.8, issue.5, pp.1-20, 2014.

G. Tomar, D. Gerlach, G. Biswas, N. Alleborn, A. Sharma et al., Two-phase electrohydrodynamic simulations using a volume-of-fluid approach, J. Comput. Phys, vol.227, pp.1267-1285, 2007.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J. Clin, vol.108, pp.65-87, 2012.

R. Tran-son-tay, S. P. Sutera, and P. R. Rao, Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion, Biophys. J, vol.46, pp.65-72, 1984.

R. Trozzo, G. Boedec, M. Leonetti, and M. Jaeger, Axisymmetric boundary element method for vesicles inacapillary, J. Comput. Phys, vol.289, pp.62-82, 2015.

K. Tsubota, S. Wada, and H. Liu, Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion, Biomech. Model. Mechanobiol, vol.13, issue.4, pp.735-746, 2014.

S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys, vol.100, pp.25-37, 1992.

A. Valero, T. Braschler, and P. Renaud, A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy, Lab. Chip, vol.10, pp.2216-2225, 2010.

B. P. Van-poppel, O. Desjardins, and J. W. Daily, A ghost fluid, level set methodology for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection, J. Comput. Phys, vol.229, pp.7977-7996, 2010.

S. K. Veerapaneni, D. Gueyffier, G. Biros, and D. Zorin, A numerical method for simulating the dynamics of 3d axisymmetric vesicles suspended in viscous flows, J. Comput. Phys, vol.228, pp.7233-7249, 2009.

S. K. Veerapaneni, D. Gueyffier, D. Zorin, and G. Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, J. Comput. Phys, vol.228, pp.2334-2353, 2009.

S. K. Veerapaneni, A. Rahimian, G. Biros, and D. Zorin, A fast algorithm for simulating vesicle flows in three dimensions, J. Comput. Phys, vol.230, pp.5610-5634, 2011.

O. Vizika and D. A. Saville, The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric field, J. Fluid Mech, vol.239, pp.1-21, 1992.

P. M. Vlahovska, R. Serralgracì-a, S. Aranda-espinoza, and R. Dimova, Electrohydrodynamic model of vesicle deformation in alternating electric fields, Biophys. J, vol.96, pp.4789-4803, 2009.

P. M. Vlahovska, Y. Young, G. Danker, and C. Misbah, Dynamics of a nonspherical microcapsule with incompressible interface in shear flow, J. Fluid Mech, vol.678, pp.221-247, 2011.

B. Vozarova, N. Stefan, R. S. Lindsay, A. Saremi, R. E. Pratley et al., High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes, Diabetes, vol.51, pp.1889-1895, 2002.

J. Walter, A. Salsac, and D. Barthès-biesel, Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes, J. Fluid Mech, vol.676, pp.318-347, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02019760

J. Walter, A. Salsac, D. Barthès-biesel, and P. L. Tallec, Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, Int. J. Numer. Meth. Eng, vol.83, pp.829-850, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542306

X. Wang and W. K. Liu, Extended immersed boundary method using FEM and RKPM, Comput. Meth. Appl. Mech. Eng, vol.193, pp.1305-1321, 2004.

J. C. Weaver and Y. A. Chizmadzhev, Theory of electroporation: A review, Bioelectro. Bioenerg, vol.41, pp.135-160, 1996.

J. Wu and C. K. Aidun, A numerical study of the effect of fibre stiffness on the rheology of sheared flexible fibre suspensions, J. Fluid Mech, vol.662, pp.123-133, 2010.

A. Z. Yazdani and P. Bagchi, Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method, Phys. Rev. E, vol.85, issue.056308, 2012.

A. Z. Yazdani and P. Bagchi, Influence of membrane viscosity on capsule dynamics in shear flow, J. Fluid Mech, vol.718, pp.569-595, 2013.

A. Z. Yazdani, R. M. Kalluri, and P. Bagchi, Tank-treading and tumbling frequencies of capsules and red blood cells, Phys. Rev. E, vol.83, issue.046305, 2011.

J. Zhang, P. C. Johnson, and A. S. Popel, Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method, J. Biomech, vol.41, pp.47-55, 2008.

J. Zhang, P. C. Johnson, and A. S. Popel, Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows, Microv. Res, vol.77, pp.265-272, 2009.

H. Zhao, A. H. Isfahani, L. N. Olson, and J. B. Freund, A spectral boundary integral method for flowing blood cells, J. Comput. Phys, vol.229, pp.3726-3744, 2010.

H. Zhao and E. S. Shaqfeh, The dynamics of a vesicle in simple shear flow, J. Fluid Mech, vol.674, pp.578-604, 2011.

H. Zhao and E. S. Shaqfeh, Shear-induced platelet margination in a microchannel, Phys. Rev. E, vol.83, 2011.

H. Zhao and E. S. Shaqfeh, The dynamics of a non-dilute vesicle suspension in a simple shear flow, J. Fluid Mech, vol.725, pp.709-731, 2013.

H. Zhao and E. S. Shaqfeh, The shape stability of a lipid vesicle in a uniaxial extensional flow, J. Fluid Mech, vol.719, pp.345-361, 2013.

H. Zhao, E. S. Shaqfeh, and V. Narsimhan, Shear-induced particle migration and margination in a cellular suspension, Phys. Fluids, vol.24, pp.1-21, 2012.

H. Zhao, A. Spann, and E. S. Shaqfeh, The dynamics of a vesicle in a wallbound shear flow, Phys. Fluids, vol.23, 2011.

M. Zhao and P. Bagchi, Dynamics of microcapsules in oscillating shear flow, Phys. Fluids, vol.23, 2011.

O. Y. Zhong-can and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, vol.39, issue.10, pp.5280-5288, 1989.

L. Zhu, C. Rorai, D. Mitra, and L. Brandt, A microfluidic device to sort capsules by deformability: a numerical study, Soft Mat, vol.10, pp.7705-7713, 2014.