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Préambule

Ce manuscrit contient le résumé d’une partie de mes activités de recherche depuis mon arrivée à
l’Institut de Mathématiques de Toulouse (IMT) de l’université Toulouse III - Paul Sabatier, en 2013.
En particulier les articles issus de ma thèse de doctorat ((xii) à (xvi) ci-dessous) ne sont pas présentés
dans ce mémoire; je ferai néanmoins référence à certains résultats qu’ils contiennent dans le corps du
texte. La suite du présent document sera rédigée en langue anglaise.

Ce manuscrit vise à présenter succinctement les résultats et les idées principales contenus dans
les articles (i) à (xi) ci-dessous. Plus précisément, le chapitre I concerne les études de stabilité en
mécanique des fluides (viii) et (xi) ; le chapitre II expose les nouvelles approches pour la détection
d’inclusions en 2D développées dans (vii) et (ix) ; le chapitre III étudie le problème inverse d’obstacle
couplé avec une reconstruction de données, analysé dans (i) et (iv), ou lorsque l’obstacle possède une
couche mince, détaillé dans (x) ; le chapitre IV se concentre sur les travaux (ii) et (vi) concernant la
construction et l’analyse de conditions d’impédance généralisée pour des problèmes issus de la médecine
et de la mécanique du solide ; le chapitre V présente les premiers résultats démontrés dans (iii)
d’un projet en cours concernant l’étude de sensibilité pour des problèmes de contact ; le chapitre VI
synthétise l’article (v) sur la répartition optimale de ressources dans un contexte de dynamique des
populations.

Les articles (iv) et (ix) ont été réalisés dans le cadre de la thèse de Matías Godoy que j’ai co-
encadrée avec Carlos Conca de l’université du Chili entre 2013 et 2016.

Prépublications

(i) F. Caubet, M. Dambrine et H. Harbrecht. A new method for the data completion problem and
application to obstacle detection. Soumis.

Publications dans des revues internationales à comité de lecture

(ii) F. Caubet, D. Kateb et F. Le Louër. Shape sensitivity analysis for elastic structures with gene-
ralized impedance boundary conditions of the Wentzell type – Application to minimization of
the compliance. J. of Elasticity, à paraître, 2018.

(iii) S. Adly, L. Bourdin et F. Caubet. On a decomposition formula for the proximal operator of the
sum of two convex functions. J. of Convex Anal., à paraître, 2018.
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(iv) F. Caubet, J. Dardé et M. Godoy. On the data completion problem and the inverse obstacle
problem with partial Cauchy data for Laplace’s equation. ESAIM Control Optim. Calc. Var., à
paraître, 2017.

(v) F. Caubet, T. Deheuvels et Y. Privat. Optimal location of resources for biased movement of
species: the 1D case. SIAM J. Appl. Math., 77(6):1876–1903, 2017.

(vi) F. Caubet, H. Haddar, J.-R. Li et D. V. Nguyen. New transmission condition accounting for
diffusion anisotropy in thin layers applied to diffusion MRI. ESAIM Math. Model. Numer. Anal.,
51(4):1279–1301, 2017.

(vii) P. Bonnelie, L. Bourdin, F. Caubet et O. Ruatta. Flip procedure in geometric approximation
of multiple-component shapes – application to multiple-inclusion detection. SMAI J. Comput.
Math., 2:255–276, 2016.

(viii) M. Badra, F. Caubet et J. Dardé. Stability estimates for Navier-Stokes equations and application
to inverse problems. Discrete Contin. Dyn. Syst. Ser. B, 21(8):2379–2407, 2016.

(ix) F. Caubet, C. Conca et M. Godoy. On the detection of several obstacles in 2D Stokes flow: topolo-
gical sensitivity and combination with shape derivatives. Inverse Probl. Imaging, 10(2):327–367,
2016.

(x) F. Caubet, M. Dambrine et D. Kateb. Shape optimization methods for the inverse obstacle
problem with generalized impedance boundary conditions. Inverse Problems, 29(11):115011, 26,
2013.

(xi) F. Caubet et M. Dambrine. Stability of critical shapes for the drag minimization problem in
Stokes flow. J. Math. Pures Appl. (9), 100(3):327–346, 2013.

(xii) F. Caubet. Instability of an Inverse Problem for the Stationary Navier-Stokes Equations. SIAM
J. Control Optim., 51(4):2949–2975, 2013.

(xiii) F. Caubet, M. Dambrine, D. Kateb et C. Z. Timimoun. A Kohn-Vogelius formulation to detect
an obstacle immersed in a fluid. Inverse Probl. Imaging, 7(1):123–157, 2013.

(xiv) F. Caubet et M. Dambrine. Localization of small obstacles in Stokes flow. Inverse Problems,
28(10):105007, 31, 2012.

(xv) M. Badra, F. Caubet et M. Dambrine. Detecting an obstacle immersed in a fluid by shape
optimization methods. Math. Models Methods Appl. Sci., 21(10):2069–2101, 2011.

Actes de conférences
(xvi) F. Caubet. Detecting an obstacle immersed in a fluid (the Stokes case). Eleventh Intern. Conf.

Zaragoza-Pau on Applied Math. and Stat., vol. 37 of Monogr. Mat. García Galdeano, p. 91–101,
2012.
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General introduction

This manuscript deals with two main mathematical areas: shape optimization and inverse pro-
blems. It presents a summary of my contributions about these themes on some partial differential
equations (PDE) and underlines the fields of possible applications of the results.

This work was motivated by the following main questions:
— how to justify theoretically the efficiency of a numerical method or the need of regula-

rization to solve a problem?
— how to solve numerically the inverse obstacle problem according to the physical context?
— how to model mathematically a shape optimization problem in several fields of applica-

tions?
This introduction aims at exploring the main ideas and at giving an overview of the main topics

which will be treated in this manuscript. Each part and each notion is detailed hereafter in the
corresponding chapter.

(In)stability for problems arising in fluid mechanics

In order to study the efficiency of a numerical method, for a (shape) optimization problem
or for an inverse problem such as the well-known Cauchy problem, it is mandatory to understand the
(in)stability of the considered problem.

Indeed this preliminary theoretical study enables to build a suitable algorithm in order to nume-
rically solve a problem. For instance, in finite dimension, it is well-known that one can easily find the
minimum of a smooth functional such that the Hessian is positive-definite. Conversely some regulari-
zation methods are needed in order to solve a linear problem of the form Au = b, where A is a matrix
of size d× d and b a vector of Rd, if the matrix A is ill-conditioned. In an infinite dimension context,
technical tools are used in order to study the (in)stability of a problem even if one can expect the
same kind of results.

Keeping this in mind, we use a second order shape sensitivity analysis in order to prove the
stability of the drag minimization problem for the Stokes equations. Here stability means that
a critical shape is, under some conditions, a local strict minimum. The main difficulty is to overcome
the so-called two norms discrepancy problem: the coercivity norm is weaker than the differentiability
norm. To do this we study precisely the second order shape derivative of the energy functional: we first
compute the shape Hessian using the so-called Hadamard’s formula, then we prove its coerciveness
and finally we obtain the stability of the minimization problem by constructing appropriate modulus
of continuity and perturbation fields, see Theorem I.1.6.
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General introduction

In an inverse problem context, we prove the instability of the Cauchy problem for the Stokes
and Navier-Stokes equations. Using new Carleman inequalities, we obtain a log type estimate which
quantifies the well-known associated unique continuation result. Especially, for boundary observations,
we obtain new stability estimates which only depend on the data, that is on the Cauchy pair (Diri-
chlet and Neumann boundary conditions), see Theorem I.2.4. Then we apply it to obtain a stability
inequality for the identification of Robin parameter and to obtain the rate of convergence of some
numerical methods of reconstruction of the solution of the Stokes equations from partial boundary
measurements.

These two theoretical analyses of stability are detailed in Chapter I which summarizes my ar-
ticles [33, 86].

The inverse obstacle problem: new approaches and new models

Inverse problems arise in many application fields such as medical issues as well as other imaging
problems, location of immersed objects, finding cracks within materials, identification in growth pro-
cesses, etc. A well-known inverse problem is the so-called inverse obstacle problem which consists
in recovering an unknown inclusion in a known domain from boundary measurements. As most of the
inverse problems, this problem is known to be unstable and some regularization methods are needed
to numerically solve it.

Several methods exist in order to reconstruct the inclusions. Among these methods, the shape
optimization approach is an efficient way to consider such a problem. A difficulty is to reconstruct at
the same time the number of obstacles, their locations and their shapes. Indeed, for instance, a classical
geometrical shape optimization approach enables to detect the shape if the number of inclusions is
known while a topological shape optimization approach is efficient to find the number of obstacles but
is often not accurate to reconstruct the shapes.

The existing literature contains several methods in order to overcome this difficulty, with its advan-
tages and its drawbacks for each of them, depending on the context. We have explored two methods
in order to deal with this problem of finding both the number of obstacles and their shapes,
in the two-dimensional case. The first one is a blending method which couples the topological gradient
and the shape gradient. Even if the main objective is to obtain an efficient numerical reconstruction
of the unknown obstacle(s), this approach needs a technical theoretical part. Indeed one difficulty
is to rigorously obtain the expression of the topological gradient of the considered functional (see
Theorem II.1.3), considering the two dimensional Stokes equations and taking into account the Stokes
paradox. The second one uses a Bézier parametrization of the inclusion and a procedure in order to
modify the topology of the domain in a geometrical shape optimization algorithm. The key point
is the representation of the boundary using the control polygons which seems to be well-suited in
order to numerically deal with this problem. We performed this method in the classical Laplace’s
equation (see Figure II.2.10). These two methods are described in Chapter II which corresponds to
my papers [56, 84].

Beyond the methods of resolution of the inverse obstacle problem, an important issue concerns
the model inspired by the physical context. If the computation of the solution obviously depends
on the considered PDE, the techniques strongly depend on the data, especially on the domain of
measurements, or on the characteristics of the inclusions as, e.g., if the obstacle has a membrane or
some defects.

Considering the context of electrical impedance tomography, we aim at studying these two problems.
Firstly, assuming that the measurements are done only on a part of the exterior boundary, that is
in the case of partial Cauchy data (which is physically relevant), we study the so-called data
completion problem in order to solve the initial inverse obstacle problem. Indeed, to implement
a shape optimization algorithm, we complete first the data in order to obtain a well-posed (shape)
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functional. Thus, after obtaining several theoretical results concerning the data completion problem,
we implement two numerical methods in order to numerically solve the inverse obstacle problem
coupled with the problem of recovering the data on an unaccessible part of the boundary: the first
one is a classical gradient method recovering both the data and the inclusion (see Figure III.1.4),
the second one uses an efficient Newton approach combined with a trial method (see Figure III.1.6).
Secondly, if the inclusion has a thin layer, such as a rough boundary, one can model it using some
nonclassical boundary conditions. Precisely, in the context of Laplace’s equation, we consider the
so-called Wentzell boundary conditions on the obstacle. Since these second order conditions
are imposed on the unknown boundary, we differentiate them with respect to the shape in order to
implement a shape optimization algorithm. The proof of the existence and the computation of the
shape derivative contain theoretical difficulties in this context, see Propositions III.2.2 and III.2.3.
Then we solve the inverse obstacle problem using a classical gradient method for instance. These two
studies are explained in Chapter III which exposes my works [87, 88, 90].

Mathematical modeling: asymptotic expansions, contact pro-
blems and population dynamics

Shape optimization can be used in several topics, for several contexts of applications such as in
medicine, in fluid mechanics, in solid mechanics, in biology, etc. One challenge, before solving a concrete
problem, is to find a good model, in the sense that the considered model has to be realistic but
also mathematically tractable. The following problems are linked with shape optimization tools,
even if it is not always in the classical sense.

As mentioned above, an interesting case is to deal with domains with a thin layer, such as a
membrane of a cell or a corroded object. It is interesting to obtain a model without this thin layer
but which takes it into account, especially for a numerical point of view, in order not to have to
finely mesh the thin layer. If the Wentzell boundary conditions are well-known concerning Laplace’s
equation, the derivation of some Generalized Impedance Boundary Conditions (GIBC) for others PDE
is still a mathematical challenge.

We focus on the derivations of GIBC in two contexts. Firstly, in a medicine context, we consider the
so-called Bloch-Torrey equation, used to deal with the diffusion Magnetic Resonance Imaging (dMRI).
Hence, in order to take into account the anisotropic behavior of the exchanges in the membrane of a
human cell, we use an asymptotic expansion with two scales of diffusion in the membrane.
However the formal derivation of boundary conditions leads to some unstable results: then we correct
the conditions in order to obtain a coherent model, see Equations (IV.1.16). Secondly, we focus on the
linear elasticity model and on the optimal design problem of finding the structure that minimizes
the compliance, taking into account that (a part of) this structure is corroded. Then, using an
asymptotic expansion, we obtain GIBC that we then differentiate with respect to the shape in order
to implement a shape optimization algorithm that minimizes the cost functional, see Theorem IV.2.4.
These two asymptotic analyses and the computation of the shape gradient of the compliance in the
context of GIBC of order two are treated in Chapter IV which presents my articles [92, 93].

Concerning the solid mechanics applications, an important emerging field, especially in a shape
optimization point of view, is the contact problems. Several models can be considered in order to
characterize the contact between two solids that touch each other. Particularly one can take into
account some friction effects that can be modeled by the so-called Tresca’s conditions.

With the perspective to study the (shape) sensitivity of the Tresca problem, we use the variational
inequalities theory. Indeed this sensitivity analysis goes through the study of parametrized variational
inequalities of the second kind. Especially we can express the corresponding solution as the proximal
operator of the sum of two proper, lower semicontinuous and convex functions. Hence, in order to
differentiate this solution with respect to the parameter, we introduce and study a new operator, which
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is an extension of the classical proximal operator. It enables particularly to obtain a decomposition
formula of the proximal operator of the sum of two functions, see Theorem V.2.6. This first
step in the shape sensitivity analysis is exposed in Chapter V which synthesizes my paper [6].

Finally we focus on a biological problem, arising in population dynamics. The question is to study
the equilibrium state of a diffusive-logistic equation with Robin boundary conditions. The main concern
is to find an optimal location of ressources in order to maximize the survival ability of a species.

Chapter VI gives an abstract of my work [91]: it deals with the modeling and the resolution of
this problem, in the one dimensional case. This optimal design problem is modeled with the help of
an extremal indefinite weight linear eigenvalue problem and the aim is to minimize the positive
principal eigenvalue with respect to the weight, under constraints motivated by some biological
issues. Due to the Robin boundary conditions and to the drift term, we use appropriate unimodal
rearrangements in order to solve this problem by computing the optimality conditions. We then obtain
the optimal configurations which depend on the value of the Robin coefficient, see Theorem VI.2.6.
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Notations

General notations

d : natural number, dimension of the space of work (d = 2, 3)
I : identity matrix of size d× d
I := t (1, . . . , 1), unit vector of size d

supp : support of a function
Ω : non-empty bounded connected smooth open set of Rd
ω : non-empty bounded smooth open set strictly included in Ω

∂Ω, ∂ω : boundary of Ω, boundary of ω
|Ω|, |ω| := Ld(Ω),Ld(ω), the Lebesgue measure of Ω and of ω (volume of Ω and ω)

n : exterior unit normal of the considered domain
∂nu : normal derivative of a function u

Functional spaces

Ck : space of functions with k continuous derivatives
Lp : classical Lebesgue space

Wm,p : classical Sobolev space
Hm := Wm,2

Ck,Lp, etc. : vectorial functions spaces
L2

0(Ω) :=
{
p ∈ L2(Ω);

∫
Ω p = 0

}
|·|Hm(Ω) : semi-norm Hm(Ω)

Fluid mechanics: Stokes and Navier-Stokes equations

ν : non-negative constant which represents the kinematic viscosity of the fluid
(u, p) : couple velocity/pressure, solution of the considered PDE (Stokes, Navier-Stokes)
D(u) := 1

2 (∇u+ t∇u), symmetrized gradient of u
σ(u, p) := ν(∇u+ t∇u)− pI, stress tensor
(E,P ) : fundamental solution of the Stokes system in R2
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Solid mechanics: linear elasticity equations

u : solution of the linear elasticity equations
D(u) := 1

2 (∇u+ t∇u), symmetrized gradient of u
µe, λe : non-negative constants, the Lamé coefficients of the given material
Ae : elasticity tensor defined for any symmetric matrix ξ by Ae ξ := 2µe ξ+λe Tr(ξ) I
Te(u) := AeD(u)n, stress tensor

Shape optimization, functionals, differential operators

d0 : non-negative real number
Ωd0 : smooth open set such that

{
x∈Ω; d(x, ∂Ω)> d0

2
}
⊂Ωd0⊂

{
x∈Ω; d(x, ∂Ω)> d0

3
}

O : set of admissible shapes
U : set of admissible perturbations (supported in Ωd0)
J : energy functional (drag, compliance)
J : least squares functional
K : Kohn-Vogelius functional
H : mean curvature of a domain
b : signed distance to a boundary of a domain

∇τ ,divτ ,∆τ : classical tangential differential operators

Inverse problems, asymptotic analysis, convex analysis

Γobs : non-empty open subset of ∂Ω (domain of observations or of measurements)
Γina : open subset of ∂Ω such that ∂Ω = Γobs ∪ Γina (inaccessible domain)

(gN, gD) : Cauchy data on Γobs
ε : positif real number, regularization parameter
η : positif real number, thickness of the considered thin layer
[·] : jump relative to the direction n through an interface
〈·〉 : average through an interface
H : a general Hilbert space

Γ0(H) := {f : H→ R ∪ {+∞} , proper, lower semi-continuous and convex}
proxf := (I + ∂f)−1, proximal operator of f ∈ Γ0(H)
Fix(A) := {x ∈ H; x ∈ A(x)}, set of fixed points of a set-valued map A : H ⇒ H
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Chapter I

Studies of stability in fluid mechanics

This chapter focuses on the notion of stability of a problem and summarizes the two following
articles:

[86] F. Caubet and M. Dambrine. Stability of critical shapes for the drag minimization problem
in Stokes flow. J. Math. Pures Appl. (9), 100(3):327–346, 2013;

[33] M. Badra, F. Caubet and J. Dardé. Stability estimates for Navier-Stokes equations and ap-
plication to inverse problems. Discrete Contin. Dyn. Syst. Ser. B, 21(8):2379–2407, 2016.

The notion of stability is very important since it enables especially to characterize the efficiency of
a numerical method in order to solve a problem. It is well-known that one can expect to obtain an
efficient reconstruction of the solution of a stable problem whereas a regularization method should be
used in order to numerically solve an unstable problem.

In an optimization problem, the study of the stability consists in knowing if a critical point of a
functional is a local strict minimizer. This is particularly crucial in order to make numerical simu-
lations: as already mentioned, if the problem is unstable, regularization is required in the numerical
minimization of the functional (see, e.g., the book of Engl et al. [125] or the articles [8, 89, 100]).
Usually, the question of stability is dealt with the second order derivative of the functional at a cri-
tical point. In finite dimension, the knowledge of the sign of the Hessian enables to fully answer the
question of stability using Taylor-Young expansion. However, in shape optimization or in infinite di-
mension, the two norms discrepancy problem can occur: the coercivity norm is often weaker than the
differentiability norm. Let us refer to the paper [117] by Descloux for a concrete example of such a
situation known as the magnetic shaping problem: on this example, the coercivity at a critical point
holds in the H1/2 norm while the differentiability holds in C2 topology. Since the quantity o(‖·‖2C2) is
not smaller than C ‖·‖2H1/2 , the classical argument using the Taylor-Young formula does not insure that
this critical point is a local strict minimum. A method to overcome this problem is given by Dambrine
et al. in [107, 111] in the case of Poisson’s equation and of a strictly and uniformly elliptic operator
for a shape optimization problem. The key is a precise estimate of the variations of the second order
shape derivative of the functional with respect to the coercivity and differentiability norms around a
critical shape.

In an other context, the inverse problems are well-known to be usually ill-posed in the sense
that the solution does not depend continuously on the data, that is especially on the measurements.
However, using Carleman estimates, one can obtain stability estimates which are usually of log type
(or log-log type in the case of the inverse obstacle problem, see for instance the work of Ballerini [35]).
These estimates firstly characterize the ill-posedness (showing that the inverse problem is typically
exponentially ill-posed) and secondly enable to obtain several properties such as the uniqueness of the
solution, some stability inequalities for the problem of recovering some boundary coefficients or the
rate of convergence of some reconstructions methods. One challenge in the obtention of such estimates
is to fit with a unique continuation result which implies, roughly speaking, that if some specified
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measurements are null (such as some Cauchy data), then the solution is equal to zero. For instance,
in a fluid mechanics context, Fabre and Lebeau prove in [127] that under some observations (that
we specified below) the uniqueness of the solution of the Navier-Stokes system occurs. Nevertheless a
previous recent stability result (see [60, Theorem 1.4] by Boulakia et al.) does not depend exclusively
on the needed observations and then does not fit the Fabre and Lebeau’s Theorem, as underlined by
the authors themselves.

The aim of this chapter is to prove the stability of a shape optimization problem (see
Section I.1) and the instability of an inverse problem (see Section I.2), for vectorial
problems in the context of fluid mechanics. Section I.1 aims at presenting the extension of
the results of Dambrine et al. [107, 111] for the Stokes system: we obtain the stability of the drag
minimization problem dealing with the two norms discrepancy problem explained above. Section I.2
presents an improvement of the results of Boulakia et al. [60]: establishing new Carleman estimates,
we obtain new stability inequalities characterizing Fabre and Lebeau’s unique continuation result and
we present some applications of such a result.

I.1 Stability of optimal shapes

This section is devoted to the study of the stability of critical shapes for the drag minimization
problem in Stokes flow. This work was done in collaboration with Marc Dambrine (university of Pau)
and is published in Journal de Mathématiques Pures et Appliquées (see [86], 20 pages).

I.1.1 A stability result for drag minimization

In fluid mechanics, the study of the minimization of the drag of a body in a fluid (i.e. the computa-
tion of optimal profiles) is a very popular problem. A typical application is the study of the geometry
of blunt bodies in flow at low Reynolds numbers (see, e.g., [198]). In this study, the parameter is the
shape of the body immersed in the fluid and we are interested in studying the stability of this shape
optimization problem. The used strategy is the following.

A first step is to prove the existence of second order shape derivatives. It is classically obtained
through an implicit function theorem: this is due to Simon [206] for Stokes equations and to Bello
et al. [42, 43] for the Navier-Stokes equations.

In a second step we obtain the Euler-Lagrange equation, then we compute the shape Hessian.
These shape derivatives of the drag (at least at the first order) was computed by some authors (see for
instance [206] for the Stokes equations and [41, 43] for the Navier-Stokes equations). However, in this
work, we need a different expression of the shape Hessian. Then we use the Euler-Lagrange equations
and some computations to derive a sufficient condition of positivity of the shape Hessian computed
at a critical shape.

In a third step, we prove the stability of the minimization. As mentioned above, the two norms
discrepancy problem occurs: the coercivity norm H1/2 is weaker than the differentiability norm C2,1.
Following the previous works of Dambrine et al. in [107, 111], we obtain the main result of this work
which is a stability result for the drag minimization problem: it claims that a critical shape can be a
local strict minimum if a given criterion is satisfied.

Finally, in a fourth and last step, we derive a precise version of the minimality inequality: we
provide a lower bound of the variations of the drag in term of a geometrical quantity following some
ideas introduced by Fusco et al. [3, 137].
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I.1.1.1 The considered problem

The drag functional. Let Ω be a bounded and connected open subset of Rd (with d = 2 or d = 3)
containing a Newtonian and incompressible fluid with a constant coefficient of kinematic viscosity
ν > 0. We assume that Ω is smooth (at least with a C2,1 boundary). Let d0 > 0 fixed (large). We
define the set of admissible shapes by

O :=
{
ω ⊂ Ω open set with a C2,1 boundary such that d(x, ∂Ω) > d0, ∀x ∈ ω

and such that Ω\ω is connected
}

and we consider ω ∈ O.

Let us consider g ∈ C2,α(∂Ω), with α ∈ (0, 1), satisfying the compatibility condition
∫
∂Ω
g · n = 0

and the unique solution (u, p) ∈ C2,α(Ω\ω)×
[
C1,α(Ω\ω) ∩ L2

0(Ω\ω)
]
of

−ν∆u+∇p = 0 in Ω\ω,
divu = 0 in Ω\ω,

u = g on ∂Ω,
u = 0 on ∂ω.

(I.1.1)

The existence and uniqueness of the solution of such a problem is classical (see, e.g., the book of
Galdi [138, Theorems IV.7.1 and IV.7.2]). The energy dissipated by the fluid is given by

J(ω) := 1
2

∫
Ω\ω

ν |D(u)|2 ,

where D(u) := 1
2
(
∇u+ t∇u

)
. The drag minimization problem is to minimize J over all subdomains ω

of Ω with a given measure M > 0:

ω∗ := argmin {J(ω); ω ∈ O such that |ω| = M} .

We also define the stress tensor as σ(u, p) := ν (∇u+ t∇u)− p I.

Admissible deformations. Let us define some admissible deformations of the domain ω ∈ O we
use in this work. Since we want to perturb only ω (and not Ω which is fixed), we define Ωd0 an open
set with a C∞ boundary and such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

We then consider a diffeomorphism

Θ ∈ U :=
{
θ ∈ C2,1(Rd); θ ≡ I in Rd\Ωd0

}
.

The principle of Hadamard’s approach is to consider here the flow ΦΘ,t of an adequate autonomous
vector field

V Θ ∈ U :=
{
V ∈ C2,1(Rd); supp (V ) ⊂ Ωd0

}
,

i.e. the solution of {
∂tΦ = V Θ(Φ),

Φ(0,x) = x,

such that V Θ is a (normal) vector field defining a path t ∈ [0, 1] 7→ ωt := ΦΘ,t(ω) in Ωd0 within
domains connecting ω0 = ω and ω1 = Θ(ω). This enables especially to classically characterize the
shape derivative of (u, p) and to compute the shape derivatives of J in a perturbation direction V Θ
using the Hadamard’s formula (see, e.g., [152, Theorem 5.2.2]). In the following we will use the
notation V instead of V Θ.
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I.1.1.2 Coercivity of the shape Hessian

We assume the existence of a critical shape ω∗ ∈ O with a C4,α boundary. Let V ∈ U be a
normal perturbation which is divergence free (in order to preserve the volume of ω∗). We recall
that the existence of the second order shape derivatives is proved in some previous works (see for
instance [32, 89, 206] for the Stokes case and [42, 83] for the Navier-Stokes case).

Remark I.1.1. The fact that we have to impose a C4,α regularity of the boundary of the initial shape
(whereas we can work with shapes with a C2,1 boundary in order to have the twice differentiability
with respect to the domain) comes to the fact that we consider normal perturbations (so we loose one
rank of regularity) which are divergence free (which imposes the lost of an additional derivative by
construction): see [107, Section 2.1].

Firstly, Simon proves in [206, Theorem 3] that

DJ(ω∗) · V = −1
2

∫
∂ω∗

ν |∂nu|2 (V · n).

Since we work under the constraint of constant volume and since ω∗ is a critical point, there exists
Λ0 ∈ R such that DJ(ω∗) ·V +Λ0 DV(ω∗) ·V = 0 for any perturbation V (where V(ω∗) is the volume
of ω∗). Hence, for all V ∈ U ,

−1
2

∫
∂ω∗

ν |∂nu|2 (V · n) + Λ0

∫
∂ω∗

V · n = 0,

and then we obtain the Euler-Lagrange equation satisfied at the critical shape: there exists Λ ∈ R
such that

|∂nu|2 = 2
ν

Λ0 =: Λ. (I.1.2)

Notice that this result is also proved in [206, Theorem 7] in a different way.
Secondly, using the classical shape calculus, we prove that

D2J(ω∗) · V · V = 2
∫
∂ω∗

u′ · (σ(u′, p′)n)− 1
2

∫
∂ω∗

ν∇(|D(u)|2) · V (V · n), (I.1.3)

where the couple (u, p) ∈ C2,α(Ω\ω∗) ×
[
C1,α(Ω\ω∗) ∩ L2

0(Ω\ω∗)
]
solves (I.1.1) (with ω = ω∗) and

the couple (u′, p′) ∈ C2,α(Ω\ω∗)×
[
C1,α(Ω\ω∗) ∩ L2

0(Ω\ω∗)
]
solves

−ν∆u′ +∇p′ = 0 in Ω\ω∗,
divu′ = 0 in Ω\ω∗,

u′ = 0 on ∂Ω,
u′ = −∂nu(V · n) on ∂ω∗.

(I.1.4)

In order to prove the coerciveness of the shape Hessian, we claim the two following results.

Lemma I.1.2. We consider Ω and ω two Lipschitz open sets of Rd such that ω ⊂⊂ Ω and Ω\ω is
connected. For h ∈ H1/2(∂ω), let us define the following Steklov-Poincaré operator:

DN : H1/2(∂ω) −→ H−1/2(∂ω)
h 7−→ σ(U , P )n,

where (U , P ) ∈ H1(Ω\ω)× L2(Ω\ω) solves
−div (σ(U , P )) = 0 in Ω\ω,

divU = 0 in Ω\ω,
U = 0 on ∂Ω,
U = h on ∂ω.
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Then there exists a constant C depending on Ω and ω such that

〈DN(h) , h〉H−1/2(∂ω),H1/2(∂ω) ≥ C ‖h‖
2
H1/2(∂ω) . (I.1.5)

Lemma I.1.3. It holds

ν∇
(
|D(u)|2

)
· n = 4

(
ν(d− 1)HΛ + ν tbF b +∇τp · b

)
on ∂ω∗, (I.1.6)

where b is the projection of ∂nu on the tangential space of ∂ω∗ and F is the second fundamental form
of the surface ∂ω∗.

Then, considering Problem (I.1.4) solved by the shape derivative (u′, p′) and noticing that, since
divu′ = 0,

−ν∆u′ +∇p′ = −div (νD(u′)) +∇p′ = −div (σ(u′, p′)),

and that u′ = −∂nu (V · n) on ∂ω∗, we get∫
∂ω∗

u′ · (σ(u′, p′)n) =
∫
∂ω∗

∂nu(V · n)DN(∂nu(V · n)).

Hence there exists a constant C > 0 such that

2
∫
∂ω∗

u′ · (σ(u′, p′)n) ≥ C ‖∂nu (V · n)‖2H1/2(∂ω∗) = C Λ ‖V · n‖2H1/2(∂ω∗) . (I.1.7)

We used the coercivity of the operator DN (given by (I.1.5) in Lemma I.1.2) and the Euler-Lagrange
equation |∂nu|2 = Λ according to (I.1.2).

Finally, gathering (I.1.3), (I.1.7) and (I.1.6), we obtain

D2J(ω∗) · V · V ≥ CΛ ‖V · n‖2H1/2(∂ω∗) − 2
∫
∂ω∗

(
ν(d− 1)HΛ + ν tbF b +∇τp · b

)
(V · n)2.

Hence, using the regularity of ∂ω∗ and of the solution u, the quantity

ν(d− 1)HΛ + ν tbF b +∇τp · b

belongs to L∞(∂ω∗) and the second term behaves like ‖V · n‖2L2(∂ω∗). Thus a natural assumption is
that the shape Hessian is coercive in the H1/2(∂ω∗) sense. This is the case if

ν(d− 1)HΛ + ν tbF b +∇τp · b < 0 on ∂ω∗. (I.1.8)

Note that this condition couples geometrical effect with the solution itself. In practice, the condi-
tion (I.1.8) cannot easily be tested theoretically since it couples the curvature of the object with
derivatives of the flow. It might be tested numerically, however it will requires a curved mesh for the
surface and the fluid domain and high order elements to catch the desired effects of curvature and the
derivatives of the couple (u, p). Such a precise computation requires specific numerical attention.

Theorem I.1.4. Let us assume that Estimate (I.1.8) is satisfied. Then there exists a constant C > 0
such that, for all V ∈ U with divV = 0,

D2J(ω∗) · V · V ≥ C ‖V · n‖2H1/2(∂ω∗) .
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I.1.1.3 Stability of the drag minimization problem and accurate stability estimate

In this section, the shape Hessian is assumed to be coercive at ω∗ in the following sense: for any V
in the tangent space defined by the constraints that is with∫

∂ω∗
V · n = 0,

it holds
D2J(ω∗) · V · V ≥ C ‖V · n‖2H1/2(∂ω∗) . (I.1.9)

The following main result of this section states the stability of the drag minimization problem.

Theorem I.1.5. If ω∗ is a critical shape for J where (I.1.9) holds, there exists η > 0 such that, for
all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η, |Θ(ω∗)| = |ω∗| and Θ 6= I,

J(Θ(ω∗)) > J(ω∗).

Let us define, for t ∈ [0, 1],

j(t) := J(ωt) := 1
2

∫
Ω\ωt

ν |D(ut)|2 ,

where (ut, pt) ∈ C2,α(Ω\ωt) ×
[
C1,α(Ω\ωt) ∩ L2

0(Ω\ωt)
]
is the solution of the following perturbed

problem: 
−ν∆ut +∇pt = 0 in Ω\ωt,

divut = 0 in Ω\ωt,
ut = g on ∂Ω,
ut = 0 on ∂ωt.

with ωt := ΦΘ,t(ω). Then, by the order two Taylor expansion

J(ω) = j(1) = j(0) +
∫ 1

0
(1− s)j′′(s)ds = J(ω∗) +

∫ 1

0
(1− s)j′′(s)ds,

Theorem I.1.5 is a direct consequence of the following theorem (and of the assumption of the H1/2

coercivity (I.1.9) of the shape Hessian). Notice that we have j′′(0) = D2J(ω∗) · V · V .

Theorem I.1.6. There exist η0 > 0 and a function w : (0, η0)→ R with lim
r↘0

w(r) = 0 (which depends

only on Ω, ω∗ and the data) such that, for all η ∈ (0, η0) and for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η

and |Θ(ω∗)| = |ω∗|, there exists a divergence free vector field V ∈ U whose the flow Φt defines a path
(ωt := Φt(ω∗))t∈[0,1] between ω∗ and Θ(ω∗), such that, for all t ∈ [0, 1], the following estimate holds:

|j′′(t)− j′′(0)| ≤ w(η) ‖V · n‖2H1/2(∂ω∗) .

Indeed we obtain Theorem I.1.5 by noticing that there is a non-negative η such that w(η) ≤ C/2, so
that

J(ω) ≥ J(ω∗) +
C

4 ‖V · n‖
2
H1/2(∂ω∗) > J(ω∗). (I.1.10)

Finally, in order to obtain a stability estimate, we use the following purely geometrical result which
gives the existence of a constant C > 0 (depending only on the domains) such that

|Ω∆Θ(ω∗)| ≤ C‖V · n‖L1(∂ω∗),

14
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for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η and |Θ(ω∗)| = |ω∗| and with divV = 0. Moreover, Cauchy-
Schwarz inequality provides

‖V · n‖L1(∂ω∗) ≤ |∂ω∗|1/2‖V · n‖L2(∂ω∗) ≤ |∂ω∗|1/2‖V · n‖H1/2(∂ω∗),

so that our previous stability estimates (I.1.10) provides the existence of a non-negative real η and of
a constant C such that, for any diffeomorphism Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η and |Θ(ω∗)| = |ω∗|,
it holds

J(ω) ≥ J(ω∗) +
C

4 ‖V · n‖
2
H1/2(∂ω∗) ≥ J(ω∗) + C |ω∗∆Θ(ω∗)|2 .

Hence we have shown the following accurate estimate.

Theorem I.1.7. If ω∗ is a critical shape for J where (I.1.9) holds, there exist η > 0 and C > 0
depending only on Ω and ω∗ such that, for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η, |Θ(ω∗)| = |ω∗|
and Θ 6= I,

J(Θ(ω∗)) > J(ω∗) + C |ω∗∆Θ(ω∗)|2 .

Let us make a final comment: this result can be understood as a quantitative estimate of the
deviation from minimality for sets close to ω∗ in a strong sense (here the C2,α norm). Then the
present work corresponds to the first step in extending to the drag functional ideas and results on
isoperimetric problems, see [3]. In a second step, using additional regularity properties provided by
the perimeter, Acerbi et al. manage to extend this result on smooth domains to less regular sets.

I.1.2 Perspectives

We first notice that this work can be adapted to other classical boundary conditions. This could
be interested in order to deal with more specific physical applications.

Moreover this may be extended to the case where the fluid motion is assumed to be governed by
the (stationary) Navier-Stokes equations (using the same assumptions and notations than above)

−ν∆u+∇uu+∇p = 0 in Ω\ω,
divu = 0 in Ω\ω,

u = g on ∂Ω,
u = 0 on ∂ω.

The adaptation is far to be trivial and the most difficult part in order to obtain analogous results
seems to be the coercivity of the shape Hessian. Indeed Bello et al. prove in [41, Theorem 5] that

DJ(ω∗) · V =
∫
∂ω∗

ν (∂nw − ∂nu) · ∂nu (V · n),

where (w, π) solves the following adjoint problem
−ν∆w + t∇uw −∇wu+∇π = −2ν∆u in Ω\ω∗,

divw = 0 in Ω\ω∗,
w = 0 on ∂Ω,
w = 0 on ∂ω∗.

As previously, since we work under the constraint of constant volume and since ω∗ is a critical point,
there exists Λ0 ∈ R such that DJ(ω∗) · V + Λ0 DV(ω∗) · V = 0 for all V ∈ U , i.e.,∫

∂ω∗
ν (∂nw − ∂nu) · ∂nu (V · n) + Λ0

∫
∂ω∗

V · n = 0,
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Chapter I. Studies of stability in fluid mechanics

and we obtain the Euler-Lagrange equation satisfied at the critical shape: there exists Λ ∈ R such
that

|∂nu|2 − ∂nw · ∂nu = Λ0

ν
=: Λ.

Then we obtain, after lengthly computations, the following expression for the shape Hessian of the
drag

D2J(ω∗) · V · V = 2
∫
∂ω∗

u′ · (σ(u′, p′)n)− 1
2

∫
∂ω∗

ν∇(|D(u)|2) · V (V · n)

+ 1
2

∫
∂ω∗

ν (D(u′) :D(w)) (V · n) + 1
2

∫
∂ω∗

ν (D(u) :D(w′)) (V · n)

+ 1
2

∫
∂ω∗

ν∇ (D(u) :D(w)) · V (V · n),

where (u′, p′) and (w′, π′) denote respectively the shape derivatives of (u, p) and (w, π). Even if some
terms could be treated as the Stokes case (see the expression of the shape Hessian (I.1.3)), the stability
result seems to be hardly tractable following the same strategy than above. We expect to conclude
using some recent results of Dambrine et al. in [109] where the authors identify structural hypotheses
on the Hessian of a shape functional in order that critical stable domains (i.e. such that the first order
derivative vanishes and the second order one is positive) are local minima for smooth perturbations.

Finally one can mention that it should be possible to adapt these results to unbounded domain.
However, due to the approach using derivatives, removing the regularity assumptions on the boundary
and the deformations seems out of reach without new ideas.

I.2 Instability of an inverse problem

This part focuses on the instability of an inverse problem, that is the data completion problem
for the Stokes and Navier-Stokes equations, and more precisely on the derivation of some stability
estimates for this problem. This work was done in collaboration with Mehdi Badra and Jérémi Dardé
(University Paul Sabatier – Toulouse III) and is published in Discrete and Continuous Dynamical
Systems - Series B (see [33], 29 pages).

I.2.1 Stability estimates for data completion problem

The data completion problem, or more generally recovering the solution of a partial differential
equation from (boundary or distributed) measurements, finds several applications in various areas.
For instance, this enables to reconstruct boundary coefficients containing the properties of a material
immersed in a fluid. Even if these inverse problems are well-known to be unstable, one can expect to
obtain some stability estimates which firstly characterize the (exponential) ill-posedness and secondly
enable to obtain several properties such as the uniqueness of the solution of the inverse problem.

We focus on the fluid mechanics context. Hence, considering the classical Navier-Stokes equations
in a bounded domain, Fabre and Lebeau prove in [127] that if one has some additional observation,
such as the value of the velocity in a non-empty (and arbitrary small) open subset of the considered
domain or the value of the Cauchy data (i.e. the Dirichlet and the Neumann boundary conditions)
on a non-empty open subset of the boundary of the domain, then the corresponding pair velocity-
pressure is unique. One of the difficulty is to obtain a stability inequality expressing the (conditional)
continuous dependence of the solution with respect to the data and to some norms of the above
mentioned observations.

To do this, we present new global Carleman inequalities for Stokes and Oseen equations with
non-homogeneous boundary conditions. These estimates lead to log type stability inequalities for the
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problem of recovering the solution of the Stokes and Navier-Stokes equations from both boundary and
distributed observations. These inequalities fit the well-known unique continuation result of Fabre and
Lebeau [127]: the distributed observation only depends on interior measurement of the velocity, and
the boundary observation only depends on the trace of the velocity and of the Cauchy stress tensor
measurements.

Notice that quantitative results for unique continuation are classically obtained thanks to Carleman
inequalities and three-spheres inequalities. We refer to the topical review of Alessandrini et al. [12] and
to the references therein for elliptic cases; see also the works of Le Rousseau et al. in [171]. However
there is not so much results available on quantitative uniqueness for systems. About Stokes system
we mention the works of Boulakia et al. in [59, 60] for stability estimates and of Ballerini in [35, 36]
and Lin et al. in [173] for some other connected results.

I.2.1.1 Carleman inequalities

Let Ω be a non-empty bounded open subset of Rd (with d = 2 or d = 3) of class C2, ω be a
non-empty bounded open subset such that ω ⊂⊂ Ω and ψ : Ω→ R be a function satisfying

ψ ∈ C2(Ω;R); ψ > c0 and |∇ψ| > 0 in Ω\ω; ψ = c0 on ∂Ω,

for some positive constant c0 > 0. For the existence of such a function see for instance [136] or [214,
Appendix III].

The main useful result is a Carleman inequality for the non homogeneous Oseen equations{
−ν∆v + (z1 · ∇)v + (v · ∇) z2 +∇p = f in Ω,

div v = d in Ω. (I.2.1)

To obtain it, we first prove a Carleman inequality for a pair velocity-pressure in H2
0(Ω) × H1

0(Ω) for
the Stokes equations and then we use a domain extension argument to recover the non-homogeneous
case. Above and in the following, ν > 0 is a constant which represents the kinematic viscosity of the
fluid, f ∈ L2(Ω) and d ∈ H1(Ω). Moreover we assume that

z1 ∈ L∞(Ω) and z2 ∈W1,r(Ω) with
{
r > 2 if d = 2,
r = 3 if d = 3, (I.2.2)

and we use the following notation for the particular constant:

m̃(z1, z2) := max
{

1 , ‖z1‖L∞(Ω) , ‖∇z2‖Lr(Ω)

}
.

Theorem I.2.1. There exist C > 0, ĉ > 0 and ŝ > 1 such that for all z1 ∈ L∞(Ω), z2 ∈W1,r(Ω),
for all λ ≥ λ̂ := m̃(z1, z2)ĉ and for all s ≥ ŝ, every solution (v, p) ∈ H2(Ω)×H1(Ω) of System (I.2.1)
satisfies∫

Ω

(
|∇v|2 + seλψ|curl v|2 + s2λ2e2λψ|v|2

)
e2seλψ ≤ C

(∫
Ω

(s−1λ−2e−λψ|∇d|2 + λ−2|f |2)e2seλψ

+
∫
ω

s3λ2e3λψ|v|2e2seλψ + e2seλc0
(
‖v‖2H2(Ω) + ‖p‖2H1(Ω)

))
and∫

Ω
seλψ|p− d|2e2seλψ ≤ C

(∫
ω

(s3λ2e3λψ|v|2 + seλψ|p− d|2)e2seλψ

+
∫

Ω
(s−1λ−2e−λψ|∇d|2 + λ−2|f |2)e2seλψ + e2seλc0

(
‖v‖2H2(Ω) + ‖p‖2H1(Ω)

))
.
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Chapter I. Studies of stability in fluid mechanics

I.2.1.2 Stability inequalities

We use the Carleman inequalities given in the previous Theorem I.2.1 to obtain several stability
estimates for both distributed and boundary observation. We first prove a Hölder type interior esti-
mates and a global log type estimates for a distributed observation. Then we use an extension of the
domain procedure to obtain a global log type estimates for a boundary observation.

Using the same assumptions and notations than in Section I.2.1.1, we consider a pair velocity-
pressure (v, p) ∈ H2(Ω)× H1(Ω) solution of the linearized Navier-Stokes equations (I.2.1). We recall
that if z1 and z2 are two solutions of the Navier-Stokes equations, then their difference v = z1 − z2
verifies (I.2.1). Moreover, n is the outward unit normal to ∂Ω which is assumed to be of class C2

and the stress tensor is defined by σ(u, p) := 2νD(u) − p I, where D(u) := 1
2 (∇u+ t∇u) is the

symmetrized gradient.
The pair (v, p) is not completely determined by System (I.2.1). However, if we have some additional

observation, such as the value of the velocity v in a non-empty (and arbitrary small) open subset ω ⊂ Ω,
namely

v = vobs in ω, (I.2.3)
or the value of the Cauchy data (v, σ(v, p)n) on a non-empty open subset Γobs of ∂Ω, namely{

v = gD on Γobs,
σ(v, p)n = gN on Γobs,

(I.2.4)

then Fabre and Lebeau’s Theorem guarantees the uniqueness of the corresponding pair (v, p) (see [127]).
Nevertheless, as previously mentioned, the related stability inequality expressing the (conditional)
continuous dependence of (v, p) with respect to ‖f‖L2(Ω), ‖d‖H1(Ω) and to some norm ‖(v, p)‖obs (cor-
responding to one of the above mentioned observation) was not yet proved for system (I.2.1). Indeed,
up to my knowledge, the most recent result quantifying the Fabre and Lebeau’s unique continuation
theorem in the Stokes case was the following one given in [60, Theorem 1.4] by Boulakia et al.

Theorem I.2.2 (Boulakia et al. in [60]). Assume that Ω is of class C∞. There exists η0 > 0 such
that for all η > η0, there exists C > 0 such that, for all solution (v, p) ∈ H2(Ω)×H2(Ω) of the Stokes
equations {

−ν∆v +∇p = 0 in Ω,
div v = 0 in Ω,

we have
‖v‖H1(Ω) + ‖p‖H1(Ω) ≤ C

‖v‖H2(Ω) + ‖p‖H2(Ω)(
ln
(
η
‖v‖H2(Ω) + ‖p‖H2(Ω)

‖v‖H1(ω) + ‖p‖H1(ω)

))1/2

and

‖v‖H1(Ω) + ‖p‖H1(Ω) ≤ C
‖v‖H2(Ω) + ‖p‖H2(Ω)(

ln
(
η

‖v‖H2(Ω) + ‖p‖H2(Ω)

‖v‖L2(Γobs) + ‖ ∂v∂n‖L2(Γobs) + ‖p‖L2(Γobs) + ‖ ∂p∂n‖L2(Γobs)

))1/2 .

As underlined by the authors themselves, this result does not depend exclusively on the needed
observations (I.2.3) or (I.2.4) and then does not fit the Fabre and Lebeau’s Theorem. The first main
results claimed below are stability inequalities for the Oseen equations (I.2.1) which are quantified
versions of Fabre and Lebeau’s uniqueness Theorem (see Theorem I.2.3 below) and, in this sense,
improve the previous work of Boulakia et al.

We introduce a constant K ≥ ee which satisfies:

max
{

1 , ‖z1‖L∞(Ω) , ‖∇z2‖Lr(Ω)

}
≤ ln(lnK). (I.2.5)
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Theorem I.2.3. Assume (I.2.2) and (I.2.5) and that (v, p) ∈ H2(Ω)×H1(Ω) is a solution of the Oseen
equations (I.2.1). There exists C > 0 such that, for any M > 0 such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ M ,
the following estimates hold:

‖v‖L2(Ω) ≤ CK
M

ln
(

1 + M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

) (I.2.6)

and

‖v‖L2(Ω) ≤ CK
M

ln
(

1 + M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖H3/2(Γobs) + ‖σ(v, p)n‖H1/2(Γobs)

) . (I.2.7)

Moreover we have

‖curl v‖(L2(Ω))2d−3 + ‖p− div v‖L2(Ω)

≤ CK M(
ln
(

1 + M

‖f‖L2(Ω)+ ‖d‖H1(Ω)+ ‖v‖H3/2(Γobs)+ ‖σ(v, p)n‖H1/2(Γobs)

))1/2 . (I.2.8)

The above theorem allows us to obtain stability estimates for the Navier-Stokes equations. Let us
consider two couples (zi, πi) ∈ H2(Ω)×H1(Ω), i = 1, 2, that satisfy{

−ν∆zi + (zi · ∇) zi +∇πi = f in Ω,
div zi = d in Ω. (I.2.9)

Note that the H2 regularity of z1, z2 implies (I.2.2). Then the following theorem is a simple conse-
quence of Theorem I.2.3 applied to the pair (v , p) := (z1 − z2 , π1 − π2) which is solution of the
linearized Navier-Stokes equations:

−ν∆v + (z1 · ∇)v + (v · ∇) z2 +∇p = 0 in Ω,
div v = 0 in Ω,

v = z1 − z2 on Γobs,
σ(v, p)n = σ(z1, π1)n− σ(z2, π2)n on Γobs.

Hence, using (I.2.6), (I.2.7) and (I.2.8), we obtain the following estimates.

Theorem I.2.4. Assume that (zi, πi) ∈ H2(Ω) × H1(Ω), i = 1, 2, are two solutions of (I.2.9) which
satisfy (I.2.5) for some K > ee. Then there exists C > 0 such that, for any M > 0 such that
‖z1 − z2‖H2(Ω) + ‖π1 − π2‖H1(Ω) ≤M , the following estimates hold:

‖z1 − z2‖L2(Ω) ≤ CK
M

ln
(

1 + M

‖z1 − z2‖L2(ω)

)
and

‖z1 − z2‖L2(Ω) ≤ CK
M

ln
(

1 + M

‖z1 − z2‖H3/2(Γobs) + ‖σ(z1, π1)n− σ(z2, π2)n‖H1/2(Γobs)

) .
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Moreover we have

‖curl (z1 − z2)‖(L2(Ω))2d−3 + ‖π1 − π2‖L2(Ω)

≤ CK M(
ln
(

1 + M

‖z1 − z2‖H3/2(Γobs)+ ‖σ(z1, π1)n− σ(z2, π2)n‖H1/2(Γobs)

))1/2 .

To conclude this part, let us stress that these stability estimates respect the well-known unique
continuation result of Fabre and Lebeau since the observation in ω only concerns the velocity, and since
the observation on Γobs only concerns v Γobs and σ(v, p)n Γobs

. Indeed Fabre and Lebeau’s Theorem
states that every velocity v solution of{

−∆v +∇p = 0 in Ω,
div v = 0 in Ω, (I.2.10)

which is identically zero in ω must be zero in Ω (and then p is constant, see [127, Proposition 1.1] for
precise statements). Particularly, no information is required on p to obtain this result. Moreover, as a
direct consequence of the above mentioned uniqueness result, we can easily deduce that, if a smooth
solution (v, p) of System (I.2.10) satisfies v = 0 and σ(v, p)n = 0 on Γobs, then, v = 0 and p = 0 in Ω.
Therefore inequalities (I.2.6), (I.2.7) and (I.2.8) are quantifications of Fabre and Lebeau’s uniqueness
theorem.

I.2.2 Two applications

Additionally to the quantification aspect of the unique continuation result, we can deduce from
the above theorems some results on parameter identification problems as well as some error estimates
for numerical reconstruction methods.

We use the same assumptions and notations than above.

I.2.2.1 Parameter identification

We obtain stability inequalities for the problem of recovering Navier or Robin boundary coefficients.
For this, we assume that Γobs and Γ0 are two non-empty open subsets of ∂Ω such that Γobs ∩ Γ0 = ∅
and we consider on Γ0 a non penetration condition given by z · n = 0 and a friction law given
by 2ν [D(z)n]τ + αz = 0 (where the subscript τ denotes the tangential component). The aim is to
reconstruct the unknown friction coefficient α from given Cauchy data on Γobs. Thus we consider two
solutions (zi, πi) ∈ H2(Ω)×H1(Ω) (i = 1, 2) of the Navier-Stokes equations (I.2.9), associated to two
friction coefficients αi ∈ H1/2(Γ0) ∩ L∞(Γ0) (i = 1, 2) in the Navier type boundary conditions on Γ0
given by: {

zi · n = 0 on Γ0,
2ν [D(zi)n]τ + αizi = 0 on Γ0.

(I.2.11)

We also consider the reconstruction of the Robin coefficient, still denoted α, in the case of the classical
Robin boundary conditions on Γ0 given by:

σ(zi, πi)n + αizi = 0 on Γ0. (I.2.12)

Notice that the H1/2(Γ0)-regularity of αi is necessary to have a H2(Ω) × H1(Ω)-regularity of the
solutions.
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Theorem I.2.5. Let αi ∈ H1/2(Γ0) ∩ L∞(Γ0), i = 1, 2 be two given coefficients. Let us consider
two pairs (zi, πi) ∈ H2(Ω) × H1(Ω), i = 1, 2, solution of the Navier-Stokes equations (I.2.9) with the
boundary conditions (I.2.11) or (I.2.12) which satisfy (I.2.5) for some K ≥ ee. Let

N := {x ∈ Γ0 , z1(x) = 0 and z2(x) = 0} ,

let us assume that K is a compact subset of Γ0\N with a non-empty interior and let m > 0 be a
constant such that max(|z1| , |z2|) ≥ m on K. Then there exists C > 0 such that, for any M > 0 such
that ‖z1 − z2‖H2(Ω) + ‖π1 − π2‖H1(Ω) ≤M , the following inequality holds:

‖α1 − α2‖L2(K)

≤ CK

m

M(
ln
(

1 + M

‖z1 − z2‖H3/2(Γobs)+ ‖σ(z1, π1)n− σ(z2, π2)n‖H1/2(Γobs)

))1/4 . (I.2.13)

Here, the constant C does not depend only on the geometry but also on ‖αi‖L∞(Γ0), for i = 1, 2.

Remark I.2.6. We stress the fact that the previous estimate (I.2.13) depends on the solutions z1
and z2 through the choice of the compact set K and the constant m. To complete this result, it would
be interesting to obtain a quantitative estimate of the vanishing rate of z, like what is done in [13] in
the case of Laplace’s equation.

Remark I.2.7. Note that the assumptions of Theorem I.2.5 guarantee that z1, z1 are continuous.
Then if K exists, the constant m > 0 exists and depends on z1, z1 on K. The existence of K is known
in the case of Robin boundary conditions (I.2.12) if z1 (or z2) is not identically equal to zero in Ω. It
is an easy consequence of Fabre and Lebeau’s theorem. But in the case of Navier conditions (I.2.11)
and if one of the zi is not trivial, the existence of a non-empty open subset of Γ0 on which z1 and z2
both vanish is a difficult issue. Indeed it reduces to study the existence of a non trivial vector field v
solution to an homogeneous Oseen equation and such that v = ∂nv = 0 on a non-empty open subset
of Γ0. The difficulty relies on the fact that, unlike the Robin case, no additional information on the
pressure is available.

Remark I.2.8. We can obtain a better estimate assuming more regularity on the solution (v, p).
More precisely, for k ≥ 2 and n ∈ N, assume that (v, p) ∈ Hk(Ω)×Hk−1(Ω), k ≥ 2 and αi ∈ Hn(K),
i = 1, 2. Then, using an interpolation argument, we can obtain the existence of C > 0 such that, for
any M > 0 and N > 0 such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ M and ‖v‖Hk(Ω) + ‖p‖Hk−1(Ω) ≤ N and for
all θ ∈ [0, 1],

‖α1 − α2‖Hθn(K)

≤
(
CK
m N

)1−θ ‖α1 − α2‖θHn(K)(
ln
(

1 + M

‖v1 − v2‖H3/2(Γobs) + ‖σ(v1, p1)n− σ(v2, p2)n‖H1/2(Γobs)

)) (2k−3)(1−θ)
2k

.

For k = 3 and θ = n = 0, we then obtain a result similar to the one presented in [59, Theorem 4.3].

To conclude this part, let us underline that Theorem I.2.5, which completes the previous results
given by Boulakia et al in [59, 60], finds applications in the modeling of biological problems as blood
flow in the cardiovascular system (see [191] and [216]) or airflow in the lungs (see [34]). For Laplace’s
equation, these kind of stability estimates for the Robin coefficient have been widely studied: see for
instance the works of Chaabane et al. in [94, 95], Alessandrini et al. in [11], Sincich in [207], Bellassoued
et al. in [40] and Cheng et al. in [96].
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I.2.2.2 Rate of convergence for numerical reconstruction methods

Finally we present another application of our stability estimates in the context of numerical re-
construction methods. More precisely we focus on the stable reconstruction of the solution of a data
completion problem (also known as Cauchy problem) for the Stokes equations: for given Cauchy
data (gN, gD) ∈ H1/2(Γobs)×H3/2(Γobs), we search (v, p) ∈ H2(Ω)×H1(Ω) solution of the following
system {

−ν∆v +∇p = f in Ω,
div v = 0 in Ω, (I.2.14)

and such that
v = gD and σ(v, p)n = gN on Γobs.

Estimates (I.2.7) and (I.2.8) imply the uniqueness of the solution of the data completion problem.
However there exists Cauchy data (gN, gD) for which it does not admit any solution. Hence regu-
larization methods are needed to stably reconstruct (v, p) from the couple (gN, gD). We study two
standard regularization methods: a quasi-reversibility regularization and a penalized Kohn-Vogelius
regularization.

In the quasi-reversibility method, we consider, for ε > 0, the following variational problem: find
a pair (vε, pε) ∈ H2(Ω) × H1(Ω) such that vε = gD on Γobs, σ(vε, pε)n = gN on Γobs, and for all
couple (w, q) ∈ H2(Ω)×H1(Ω) such that w = 0 and σ(w, q)n = 0 on Γobs, we have∫

Ω
(−ν∆vε +∇pε) · (−ν∆w +∇q) +

(
div(vε),div(w)

)
H1(Ω)

+ ε(vε,w)H2(Ω) + ε(pε, q)H1(Ω) =
∫

Ω
f · (−ν∆w +∇q). (I.2.15)

Let Γina := ∂Ω\Γobs. The penalized Kohn-Vogelius approach that we consider here consists in,
for ε > 0, defining the functional Kε : H1/2(Γina)×H3/2(Γina)→ R given by

Kε(ϕ,ψ) := |vgD
ϕ − v

gN
ψ |

2
H2(Ω) + |vgD

ϕ − v
gN
ψ |

2
H1(Ω)

+ ε‖(vgD
ϕ , pgD

ϕ )‖2H2(Ω)×H1(Ω) + ε‖(vgN
ψ , pgN

ψ )‖2H2(Ω)×H1(Ω),

where | · |H1(Ω) := ‖∇(·)‖L2(Ω) and | · |H2(Ω) :=
∥∥∇2(·)

∥∥
L2(Ω) are the respective H1 and H2-seminorms

and where (vgD
ϕ , pgD

ϕ ) ∈ H2(Ω)× H1(Ω) and (vgN
ψ , pgN

ψ ) ∈ H2(Ω)× H1(Ω) are the respective solutions
of the following problems

−ν∆vgD
ϕ +∇pgD

ϕ = f in Ω,
div vgD

ϕ = 0 in Ω,
vgD
ϕ = gD on Γobs,

σ(vgD
ϕ , pgD

ϕ )n = ϕ on Γina,

and


−ν∆vgN

ψ +∇pgN
ψ = f in Ω,

div vgN
ψ = 0 in Ω,

σ(vgN
ψ , pgN

ψ )n = gN on Γobs,

vgN
ψ = ψ on Γina.

Then we define
(vε, pε) := (vgD

ϕ∗ε
, pgN
ψ∗ε

)

where (ϕ∗ε,ψ
∗
ε) ∈ H1/2(Γina)×H3/2(Γina) is such that

Kε(ϕ∗ε,ψ
∗
ε) = inf

(ϕ,ψ)∈H1/2(Γina)×H3/2(Γina)
Kε(ϕ,ψ). (I.2.16)

For this second method, we specify that we assume Γobs ∩ Γina = ∅, for instance Γobs could be one of
the connected components of ∂Ω.
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For any Cauchy pair (gN, gD) ∈ H1/2(Γobs) × H3/2(Γobs), both the quasi-reversibility problem
(I.2.15) and the Kohn-Vogelius minimization problem (I.2.16) admit a unique solution (vε, pε). Mo-
reover, if the initial data completion problem admits a solution (v, p), we prove that vε converges
to v strongly in H2(Ω) and pε converges to p strongly in H1(Ω). Furthermore the previous stability
estimates provide the rate of convergence of both methods (for a survey on the connection between
stability estimates and rates of convergence of regularization methods, we refer to [164]) as claimed
by the following result.

Theorem I.2.9. For any M > 0 such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ M , where (v, p) is the exact
solution (which is assumed to exist) of the data completion problem (I.2.14), we have the following
error estimates for both quasi-reversibility method and penalized Kohn-Vogelius method:

‖vε − v‖L2(Ω) ≤
M

ln(1 + M√
ε
)
, ‖vε − v‖H1(Ω) ≤

M(
ln(1 + M√

ε
)
)1/2

and

‖pε − p‖L2(Ω) ≤
M(

ln(1 + M√
ε
)
)1/2 .

Let us conclude this part by giving a sketch of the proof of this result. The main idea is to obtain
suitable bounds and to use the estimates (I.2.7) and (I.2.8)

The proof for the quasi-reversibility method is based on the fact that (u , q) := (vε− v , pε− p) is
such that u = 0 and σ(u, q)n = 0 on Γobs and that one can prove that the following estimates hold

‖(u, q)‖H2(Ω)×H1(Ω) ≤ ‖(v, p)‖H2(Ω)×H1(Ω),

‖ − ν∆u+∇q‖L2(Ω) ≤
√
ε‖(v, p)‖H2(Ω)×H1(Ω),

‖div(u)‖L2(Ω) ≤
√
ε‖(v, p)‖H2(Ω)×H1(Ω).

Hence, applying estimates (I.2.7) and (I.2.8), we directly obtain the result.

Concerning the penalized Kohn-Vogelius method, we first note that, using the definition of (ϕ∗ε,ψ
∗
ε),

Kε(ϕ∗ε,ψ
∗
ε) ≤ Kε(σ(v, p)n Γina

,v Γina) = 2 ε‖(v, p)‖2H2(Ω)×H1(Ω),

which implies
|vε − vψ∗ε |

2
H2(Ω) + |vε − vψ∗ε |

2
H1(Ω) ≤ 2 ε‖(v, p)‖2H2(Ω)×H1(Ω)

and
‖vε − v‖H2(Ω) ≤ C(v, p),

where C(v, p) is a constant depending only on ‖(v, p)‖H2(Ω)×H1(Ω). Thus, using the two previous
inequalities, we obtain

‖σ(vε, pε)n− gN‖H1/2(Γobs) = ‖σ(vϕ∗ε , pψ∗ε )n− σ(vψ∗ε , pψ∗ε )n‖H1/2(Γobs)

≤ |vε − vψ∗ε |H2(Ω) + |vε − vψ∗ε |H1(Ω) ≤
√
εC(v, p),

where C(v, p) is another constant depending only on ‖(v, p)‖H2(Ω)×H1(Ω). Hence, applying again esti-
mates (I.2.7) and (I.2.8), we conclude.
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I.2.3 Perspectives

All the previous results, for both the linear and nonlinear cases, concern the stationary case.
A natural extension is to study the non-stationary case: for T > 0, we consider a pair velocity-
pressure (v, p) ∈ L2 (0, T ; H2(Ω)

)
×L2 (0, T ; H1(Ω)

)
solution of the following linearized Navier-Stokes

equations: {
∂tv − ν∆v + (z1 · ∇)v + (v · ∇) z2 +∇p = f in ΩT ,

div v = d in ΩT ,
(I.2.17)

where

ΩT := Ω× (0, T ), f ∈ L2(ΩT ) and d ∈ H1,1/2(ΩT ) := L2 (0, T ; H1(Ω)
)
∩H1/2 (0, T ; L2(Ω)

)
,

and
z1 ∈ L∞(ΩT ) and z2 ∈ L∞

(
0, T ; W1,r(Ω)

)
with

{
r > 2 if d = 2,
r = 3 if d = 3.

We expect to obtain Carleman inequalities for the non-homogeneous Oseen equations through Car-
leman inequalities for a pair velocity-pressure in L2 (0, T ; H2

0(Ω)
)
× L2 (0, T ; H1

0(Ω)
)
and the use of a

domain extension argument to recover the non-homogeneous case (in the same spirit as what is done
in the stationary case).

To be more precise, we could introduce some suitable functions α(t,x) and ϕ(t,x) and, using the
following notations

α̂(t) := min
x∈Ω

α(t,x), m̃(z1, z2) := max
{

1, ‖z1‖L∞(ΩT ) , ‖∇z2‖L∞(0,T ;Lr(Ω))

}
and ωT := σ×(0, T ),

we expect to prove a Carleman inequality for the Oseen equations:{
∂tv − ν∆v + (z1 · ∇)v + (v · ∇) z2 +∇p = f in ΩT ,

div v = d in ΩT ,
(I.2.18)

that is the existence of C > 0, ĉ > 0 and ŝ > 1 such that for all z1 ∈ L∞(ΩT ), z2 ∈ L∞
(
0, T ; W1,r(Ω)

)
,

for all λ ≥ λ̂ := m̃(z1, z2)ĉ and for all s ≥ ŝ := ĉ (Tm + Tm−1/ε), every solution (v, p) of (I.2.18)
which belongs to L2 (0, T ; H2(Ω)

)
× L2 (0, T ; H1(Ω)

)
satisfies∫

ΩT

(
|∇v|2 + sϕ|curl v|2 + s2λ2ϕ2|v|2

)
e2sαdxdt

≤ C
(∫

ΩT
(s−1λ−2ϕ−1|∇d|2 + λ−2|f |2)e2sαdxdt+

∫
ωT

s3λ2ϕ3|v|2e2sαdxdt

+λ−2
∫ T

0

(
‖∂tv‖2L2(Ω) + ‖v‖2H2(Ω) + ‖p‖2H1(Ω)

)
e2sα̂dt

)

and∫
ΩT

sϕ|p− d|2e2sαdxdt

≤ C
(∫

ωT

(s3λ2ϕ3|v|2 + sϕ|p− d|2)e2sαdxdt+
∫

ΩT
(s−1λ−2ϕ−1|∇d|2 + λ−2|f |2)e2sαdxdt

+λ−2
∫ T

0

(
‖∂tv‖2L2(Ω) + ‖v‖2H2(Ω) + ‖p‖2H1(Ω)

)
e2sα̂dt

)
.
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Then we expect to prove the existence of C > 0, c∗ > 0 (which depends particularly on z1 and z2)
and λ̂ > 1 such that, for all λ ≥ λ̂,

‖v‖L2(Ω×(ε,T−ε))

≤ C
ee
c∗λ(1+1/(Tε))

(
‖v‖H2,1(ΩT )+‖p‖L2(0,T ;H1(Ω))

)
ln

(
1 +

‖v‖H2,1(ΩT ) + ‖p‖L2(0,T ;H1(Ω)

‖f‖L2(ΩT ) + ‖∇d‖L2(Ω) + ‖v‖H3/2,3/4(Γobs,T) + ‖σ (v, p) n‖H1/2,1/4(Γobs,T)

)

and

‖curl v‖L2(Ω×(ε,T−ε)) + ‖p− div v‖L2(Ω×(ε,T−ε))

≤ C
ee
c∗λ(1+1/(Tε)) (‖v‖H2,1(ΩT ) + ‖p‖L2(0,T ;H1(Ω))

)(
ln
(

1 +
‖v‖H2,1(ΩT ) + ‖p‖L2(0,T ;H1(Ω)

‖f‖L2(ΩT ) + ‖∇d‖L2(Ω) + ‖v‖H3/2,3/4(Γobs,T ) + ‖σ (v, p) n‖H1/2,1/4(Γobs,T )

))1/2 ,

where Γobs,T := Γobs × (0, T ).
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Chapter II

Some new approaches for the detection of
immersed objects in 2D

The works exposed in the second part of the previous chapter (see Section I.2) quantify the
instability of an inverse problem, that is the reconstruction of the solution of a PDE from Cauchy
data. In my PhD thesis [82] (see also my previous works [32, 81, 83, 89]), we proved that the inverse
obstacle problem, for the Stokes and Navier-Stokes equations, is ill-posed. This is proved through a
local regularity argument showing that the Riesz operator associated to the shape Hessian of the
considered shape functional (a least squares functional or a Kohn-Vogelius functional) is compact.
This theoretical result explains why we need to use a regularization method in order to numerically
reconstruct the inclusion. This chapter presents two approaches in order to numerically solve the
inverse obstacle problem and summarizes the two following articles:

[84] F. Caubet, C. Conca and M. Godoy. On the detection of several obstacles in 2D Stokes
flow: topological sensitivity and combination with shape derivatives. Inverse Probl. Imaging,
10(2):327–367, 2016;

[56] P. Bonnelie, L. Bourdin, F. Caubet and O. Ruatta. Flip procedure in geometric approximation
of multiple-component shapes – application to multiple-inclusion detection. SMAI J. Comput.
Math., 2:255–276, 2016.

The simplest way to regularize a shape cost functional in order to solve the inverse obstacle problem
is to parametrize the shape by a truncated Fourier series and to use the classical geometrical shape op-
timization approach. This is for instance done in [8, 89]. This enables to reconstruct an approximation
of the shape, using a descent method. One can reconstruct several obstacles, if the number of obstacles
is given. Indeed this geometrical method does not enable to modify the topology of the domain and
is commonly based on successive shape deformations, where the boundary of the approximated shape
is parametrized and evolves at each step in a direction given by the deformation flow. Hence, for the
geometric approximation of multiple-component shapes, especially when the number of components
is a priori unknown, starting a parametrization method with a one-component initial shape in order
to approximate a multiple-component target shape usually leads the deformation flow to make the
boundary evolve until it surrounds all the components of the target shape (see Figure II.0.1 for illustra-
tions). This classical phenomenon tends to create double points on the boundary of the approximated
shape.

Several alternatives exist, with its own advantages and drawbacks, that depend on the nature
of the problem studied. One can mention the recent developments on topological sensitivity based
iterative schemes made by Carpio et al. in [78–80]. We also refer to some works using the level set
method by Lesselier et al. in [119, 120, 174]. Combinations of several shape optimization methods was
also recently tested by several authors. Allaire et al. propose in [17] to couple the classical geometrical
shape optimization through the level set method and the topological gradient in order to minimize the
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Target shape
Approximated shape

(a) Two-dimensional case (b) Three-dimensional case

Figure II.0.1 – Geometrical shape approximation of a two-component target shape starting from a one-
component initial shape.

compliance. The same combination is made for another problem by He et al. in [150] or by Burger et
al. in [71] for inverse problems. Concerning the minimization of the compliance, Pantz et al. propose
in [184] an algorithm using boundary variations, topological derivatives and homogenization methods
(without a level set approach). We can also mention the work of Christiansen et al. in [97] which
couples topological and boundary variations approaches.

In this chapter, two methods are explored in order to improve the approximation
of multiple-component shapes, especially concerning the two dimensional case: a mixed
method (see Section II.1) and a parametrization method (see Section II.2). Firstly a
blending method coupling the geometrical and the topological approaches is performed. In this part
one of the difficulty is the obtention of the topological asymptotic expansion of the solution of the
Stokes system for the two dimensional case. Then this method allows to numerically find the number
of objects, their relative location and their approximative shape. Secondly a numerical method based
on a Bézier parametrization is established. The main idea is that this polynomial parametrization can
be approximated by its control polygon. This enables to prevent the potential formation of double
points, i.e. to locate the parts of the boundary that are close to each other and this parametrization is
suitable in order to easily change the topology of the approximated shape, precisely in order to divide
a one-component shape into a two-component shape.

II.1 A blending method

This section focuses on the inverse obstacle problem for a two-dimensional Stokes flow using a
topological sensibility analysis and a combination with shape derivatives. This work was done in
collaboration with Carlos Conca and Matías Godoy (university of Chile) as part of the PhD thesis of
Matías Godoy, and is published in Inverse Problems and Imaging (see [84], 41 pages).

II.1.1 Aims and main difficulties of the dimension two

The two main shape optimization techniques used in order to study the inverse obstacle problem
in the literature are topological and geometrical shape optimization methods. The topological gradient
approach was introduced by Schumacher in [199] and Sokolowski et al. in [209]. This method is based
on asymptotic expansions and consequently is essentially appropriate to relatively small inclusions.
Moreover, even if the topological optimization is useful in order to find the number of inclusions, it
may be not well-suited in order to find a satisfactory approximation of the shape of the inclusions (see,
e.g., [85] and references therein; see also [20] and references therein for a comprehensive mathema-
tical treatment with theoretical and numerical results about reconstruction of small inclusions from
boundary measurements). In the geometrical shape optimization category, two main techniques are
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addressed in the literature. They are both based on the computation of a shape gradient used as a flow
making the shape evolve. These two methods use different representations of the shape and different
techniques to deform it. The first approach is the so-called level set approach (see, e.g., the survey [72]
of Burger et al. and references therein, or [202]). It is originally based on an implicit representation
of the approximated shape on a fixed mesh and, in the case of inverse problems, some regularization
methods are usually needed (as curve shortening in, e.g., [197, Section 8]). In order to detect several
inclusions, this method does not need any a priori knowledge on the number of inclusions. The second
approach is based on boundary variations via mesh variations and, in the case of inverse problems,
on an explicit representation of the approximated shape. This method is used e.g. in the work [7] of
Afraites et al. (where a regularization by parametrization is used). Note that the standard algorithm
based on shape derivatives moving the mesh does not provide the opportunity to change the topology
of the shape and consequently the number of inclusions has to be known in advance.

In order to numerically solve the inverse obstacle problem, detecting both the topology (i.e. the
number of obstacles) and the shape of the inclusions, recent works propose to mix several shape
optimization approaches (see, e.g., the non-exhaustive list of references given in the introduction of
this chapter). The aim of our approach is to couple a topological gradient method with a classical
shape gradient method for the detection of immersed obstacles in a two dimensional Stokes flow. In
order to reconstruct the obstacle(s), we assume that a Cauchy pair is given on a part of the surface
of the fluid, that is a Dirichlet boundary condition and the measurement of the Cauchy forces. Hence
the identifiability result of Alvarez et al. [19, Theorem 1.2] implies that this problem could be seen as
the minimisation of a cost functional, which in our case will be a Kohn-Vogelius type cost functional.

Notice that this inverse obstacle problem arises, for instance, in mold filling during which small
gas bubbles can be created and trapped inside the material (as it is mentioned in [44]). We can also
mention the fact that the most common devices used to spot immersed bodies, such as submarines or
banks of fish, are sonars, using acoustic waves: active sonars emit acoustic waves (making themselves
detectable), while passive sonars only listen (and can only detect targets that are noisy enough). To
overcome those limitations, one wants to design systems imitating the lateral line systems of fish,
a sense organ they use to detect movement and vibration in the surrounding water (as emphasized
in [105]).

Topological sensitivity analysis related to Stokes equations have been studied in the past by several
authors, especially relevant are the works of Guillaume et al. [140], Maatoug [149], Amstutz [21] with
steady-state Navier-Stokes equations and [22] with generalization for some non-linear systems and Sid
Idris [205] which develops a detailed work in the two-dimensional case. In all of these works the focus is
set to find topological asymptotic expansions for a general class of functionals where the system satisfies
only Dirichlet boundary conditions. Closer works to our problem have been presented in the past by
Ben Abda et al. [44] and in my previous work [85]. In the first reference they consider a Neumann
boundary condition on the small objects obtaining general results in two and three dimensional cases,
with a complete development of the theory only in the three dimensional case. In [85] we deal with
the same problem as the one we consider here but only again in the three-dimensional case.

In our two-dimensional case, due to the impossibility to have an asymptotic expansion of the
solution of Stokes equations by means of an exterior problem (phenomena which is related to the
Stokes paradox), we have to approximate it by means of a different problem. The deduction of this
approximation is influenced by the work of Bonnaillie-Noël et al. [53]. Indeed the same problem appears
for Laplace’s equation: it is based on the fact that the existence of a solution of the boundary value
problem  −∆V = 0 in R2\ω,

V = u0(z) on ∂ω,
V → 0 at infinity,

(II.1.1)

is not guaranteed except when u0(z) = 0. The classical analysis of elliptic equation in unbounded
domain is made in the functional setting of weighted Sobolev spaces. It is known that (II.1.1) has a
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unique solution in a space containing the constants, hence this solution is the constant u0(z) which
prohibits the condition at infinity if u0(z) 6= 0. Taking this into account, we can define the asymptotic
expansion for the Stokes system which is a crucial part in order to obtain the desired expansion for the
functional involved. It is important to remark that (for a given real number u0(z)) several technical
results which lead to the main result are different to the ones in the three-dimensional setting which
involves additional difficulties to our problem.

From the obtained theoretical results, we present some numerical simulations and propose an
algorithm which joins the topological optimization procedure with the classical shape optimization
method using the computation of the shape gradient for the Kohn-Vogelius functional made in my
previous work [89]. This blending method allows not only to obtain the number and qualitative location
of the objects, moreover it allows to approximate their shapes.

II.1.2 Setting of the problem

Let Ω be a bounded Lipschitz open set of R2 containing a Newtonian and incompressible fluid
with a constant coefficient of kinematic viscosity ν > 0. Let ω ⊂ R2 a fixed bounded Lipschitz domain
containing the origin. For z ∈ Ω and 0 < ε << 1, we denote

ωz,ε := z + εω.

The aim of this work is to detect some unknown objects included in Ω. We assume that a finite
numberm∗ of obstacles ω∗z,ε ⊂ Ω have to be detected. Moreover we assume that they are well separated
(that is: ωzi,εi ∩ ωzj ,εj = ∅ for all 1 ≤ i, j ≤ m∗ with i 6= j) and have the geometry form

ω∗zk,εk = z∗k + εkω
∗
k, 1 ≤ k ≤ m∗,

where εk is the diameter and ω∗k ⊂ R2 are bounded Lipschitz domains containing the origin. The points
z∗k ∈ Ω, 1 ≤ k ≤ m∗, determine the location of the objects. Finally we assume that, for all 1 ≤ k ≤ m∗,
ω∗zk,εk is far from the boundary ∂Ω.

Let gD ∈ H1/2(∂Ω) such that gD 6= 0 satisfying the compatibility condition∫
∂Ω
gD · n = 0.

In order to determine the location of the objects, we make a measurement gN ∈ H−1/2(Γobs) on a
part Γobs of the exterior boundary ∂Ω with Γobs ⊂ ∂Ω, Γobs 6= ∂Ω. Then we denote ω∗ε :=

⋃m∗
k=1 ω

∗
zk,εk

and consider the following overdetermined Stokes problem
−ν∆u+∇p = 0 in Ω\ω∗ε ,

divu = 0 in Ω\ω∗ε ,
u = gD on ∂Ω,
u = 0 on ∂ω∗ε ,

σ(u, p)n = gN on Γobs ⊂ ∂Ω.

(II.1.2)

Here σ(u, p) represents the stress tensor defined by σ(u, p) := 2νD(u)−pI, withD(u) := 1
2 (∇u+ t∇u).

Thus we consider the following geometric inverse problem:

Find ω∗ε ⊂⊂ Ω and a pair (u, p)which satisfy the overdetermined problem (II.1.2). (II.1.3)

To study this inverse problem, we consider two forward problems:
Find (uεD, pεD) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD +∇pεD = 0 in Ω\ωε,

divuεD = 0 in Ω\ωε,
uεD = gD on ∂Ω,
uεD = 0 on ∂ωε,

(II.1.4)
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and 

Find (uεN, pεN) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that
−ν∆uεN +∇pεN = 0 in Ω\ωε,

divuεN = 0 in Ω\ωε,
σ(uεN, pεN)n = gN on Γobs,

uεN = gD on ∂Ω\Γobs,
uεN = 0 on ∂ωε,

(II.1.5)

where ωε :=
⋃m
k=1 ωzk,εk for a finite number m of objects located in z1, . . . ,zm. These two forward

problems are classically well-defined (see, e.g., [69, 138] concerning (II.1.4) and [85, Theorem A.1]
concerning (II.1.5)).

One can remark that if ωε coincides with the actual domain ω∗ε , then uεD = uεN in Ω\ωε. According
to this observation, we propose a resolution of the inverse problem (II.1.3) of reconstructing ω∗ε based
on the minimization of the following Kohn-Vogelius functional

K(Ω\ωε) := 1
2

∫
Ω\ωε

ν|D(uεD)−D(uεN)|2.

We can notice that, integrating by parts the expression of K(Ω\ωε), we get that

K(Ω\ωε) = ν

∫
Γobs

(gD − uεN) · (σ(uεD, pεD)n− gN).

This expression shows that the error can be expressed by an integral involving only the part of the
boundary where we make the measurement and reveals the coupling of the solutions via this functional.
Finally we can notice that the Dirichlet error is weighted by the Neumann error, and vice versa.
Remark II.1.1. In order to guarantee that the inverse problem of finding ω∗ε and a pair (u, p)
satisfying (II.1.2) has a solution, we have to assume the existence of such a ω∗ε . This means that
the measurement gN is perfect, that is to say without error. Then, according to the identifiability
result [19, Theorem 1.2] proved by Alvarez et al., the domain ω∗ε is unique. Hence, if we find ω∗ε such
that K(Ω\ω∗ε ) = 0, then uεD = uεN in Ω\ω∗ε , i.e. uεD satisfies (II.1.2) and thus ωε = ω∗ε is the real
domain.

For ε = 0, we consider as a convention that ω0 = ∅ (instead of ω0 =
⋃m
k=1 {zk}, which comes

from the definition of ωε), and therefore: Ω0 = Ω. Then we denote (u0
D, p

0
D) ∈ H1(Ω) × L2

0(Ω) and
(u0

N, p
0
N) ∈ H1(Ω)× L2(Ω) the respective solutions of the following systems: −ν∆u0

D +∇p0
D = 0 in Ω,

divu0
D = 0 in Ω,
u0

D = gD on ∂Ω,
and


−ν∆u0

N +∇p0
N = 0 in Ω,

divu0
N = 0 in Ω,

σ(u0
N, p

0
N)n = gN on Γobs,
u0

N = gD on ∂Ω\Γobs.

II.1.3 Main results

From now on, we consider that we seek a single obstacle ωz,ε := z + εω, located at a point z ∈ Ω.
Notice that in the case of several inclusions, we proceed by detecting the objects one by one. Thus,
after detecting a first obstacle ωz1,ε1 , we work replacing the whole domain Ω by Ω\ωz1,ω1 (and then
we have ∂ωz1,ε1 ⊂ ∂ (Ω\ωz1,ω1) \Γobs) and the results presented below (particularly the topological
derivative) are still valid for a new inclusion ωz,ε. Note that the asymptotic expansion of the solution
of elliptic boundary value problem in multiply perforated domains is studied in [55, 180].

We recall that the topological sensitivity analysis consists in studying the variations of a design
functional F with respect to the insertion of a small obstacle ωz,ε at the point z ∈ Ω (with no-slip
boundary conditions). The aim is to obtain an asymptotic expansion of F of the form

F(Ωz,ε) = F(Ω) + ξ(ε)δF(z) + o(ξ(ε)), ∀z ∈ Ω, (II.1.6)
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where ε > 0, ξ is a positive scalar function intended to tend to zero with ε and where

Ωz,ε := Ω\ωz,ε, with ωz,ε := z + εω.

We summarize the notations concerning the domains in Figure II.1.2.

Γobs

Ω
∂Ωωz,ε

Ωz,ε

Figure II.1.2 – The initial domain and the same domain after inclusion of an object

The computation of the topological gradient δF in this work is mainly based on my previous
work [85] which deals with the presented problem in the three-dimensional setting. The work of
Bonnaillie-Noël et al. [53], which deals with asymptotic expansions for Laplace’s equation in a do-
main with several obstacles, was the basis for the choice of the approximating problem in the two-
dimensional setting. We also have been inspired by the works of Guillaume et al. [139, 140], where the
authors study topological asymptotic expansions for Laplace and Stokes equations in two and three
dimensions. Finally, let us point out the works of Amstutz [21, 22], where the author develops a topo-
logical asymptotic expansion for a cost functional in the context of a fluid governed by the stationary
Navier-Stokes equations, which contribute to understand better the possibilities for the asymptotic
expansion of the solutions for our considered systems. It is important to underline that in all these
situations the problem involves only Dirichlet boundary conditions.

We recall the expression of the fundamental solution (E,P ) to the Stokes system in R2 given by

E(x) = 1
4πν

(
− log ‖x‖I + srtsr

)
, P (x) = x

2π ‖x‖2
, (II.1.7)

with sr := x

‖x‖
; that is −ν∆Ej +∇P j = δej , where Ej denotes the jth column of E, (ej)2

j=1 is the

canonical basis of R2 and δ is here the Dirac distribution.

II.1.3.1 Asymptotic expansion of the solution of the Stokes problem

In order to provide an asymptotic expansion of the Kohn-Vogelius functional K, we first obtain an
asymptotic expansion of the solution of the Stokes problems (II.1.4) and (II.1.5). This section gives
the idea of the proof of the following result.

Proposition II.1.2. The respective solutions uεD ∈ H1(Ωz,ε) and uεN ∈ H1(Ωz,ε) of Problems (II.1.4)
and (II.1.5) admit the following asymptotic expansions (with the subscript \ = D and \ = N respecti-
vely):

uε\(x) = u0
\ (x) + 1

− log ε (C\(x)−U \(x)) +OH1(Ωz,ε)

(
1

− log ε

)
,

where (U \, P\) ∈ H1(Ω)× L2
0(Ω) solves the following Stokes problem defined in the whole domain Ω −ν∆U \ +∇P\ = 0 in Ω,

divU \ = 0 in Ω,
U \ = C\ on ∂Ω,

(II.1.8)
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with C\(x) := −4πνE(x − z)u0
\ (z), where E is the fundamental solution of the Stokes equations

in R2 given by (II.1.7). The notation OH1(Ωz,ε)

(
1

− log ε

)
means that there exist a constant C > 0

(independent of ε) and ε1 > 0 such that, for all 0 < ε < ε1,∥∥∥∥uε\(x)− u0
\ (x)− 1

− log ε (C\(x)−U \(x))
∥∥∥∥

H1(Ωz,ε)
≤ C

− log ε .

As previously mentioned, the two-dimensional problem cannot be approximated by an exterior
problem, which in general in this case does not admit a solution which vanishes at infinity. Then the
approximation has to be done in a different setting compared to the three-dimensional case, following
the same strategy as in [53] (which concerns the Laplace’s equation in the plane). This basically consists
in building a correction term to the solution given by E(x− z)u0

\ which has a logarithmic term and
then tends to infinity at infinity and is not of finite energy in R2\ω. Therefore it has to be considered
only in Ω. To this, we consider the pair (U \,P \) ∈ H1(Ω)×L2

0(Ω) solution of Problem (II.1.8) and we
combine these solutions with unknown scale parameters a(ε) and b(ε). Imposing the desired scales to
the error function, we will be able to determine the scale factors a(ε) and b(ε) which define completely
the approximation for uε\ . Here we expose the Dirichlet case, the treatment of Neumann case is analog.
In order to simplify the reading, we assume for this part that z = 0 (the general case is analog) and
we use the notation Ωε := Ω0,ε.

Consider the solution (UD,PD) ∈ H1(Ω) × L2
0(Ω) of Problem (II.1.8) with \ = D. The idea is

to combine this solution and the function CD to build a proper corrector. To build this, we search
coefficients a(ε) and b(ε) such that the error rεD defined by

uεD(x) = u0
D(x) + a(ε)CD(x) + b(ε)UD(x) + rεD(x)

is reduced with respect to Rε
D := uεD − u0

D. Notice that the remainder rεD satisfies:
−ν∆rεD +∇prεD = 0 in Ωε,

div rεD = 0 in Ωε,
rεD = −(a(ε) + b(ε))CD(x) on ∂Ω,
rεD = −u0

D(x)− a(ε)CD(x)− b(ε)UD(x) on ∂ωε,

where prεD is defined in analogous way with pressure terms, that is

prεD(x) := pεD(x)− p0
D(x)− a(ε)ΠD(x)− b(ε)PD(x),

with ΠD(x) := −4πνP (x) · u0
D(0).

For x ∈ ∂Ω, we have
rεD(x) = o(1)⇔ a(ε) + b(ε) = o(1).

Let us assume for a while that ω is a disk. Then, for x ∈ ∂ωε, there exists X ∈ ∂B(0, 1) such
that x = εX and we have

rεD(x) = o(1)⇔ −u0
D(εX)− a(ε)CD(εX)− b(ε)UD(εX) = o(1).

We can expand the terms UD(εX) and u0
D(εX) via Taylor developments:

u0
D(εX) = u0

D(0) +O(ε) and UD(εX) = UD(0) +O(ε),

and thus we get (noticing that O(ε) is contained in o(1)):

rεD(x) = o(1)⇔ −u0
D(0)− a(ε)CD(εX)− b(ε)UD(0) = o(1).
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Therefore we have the linear system in unknowns (a(ε), b(ε)):{
a(ε) + b(ε) = 0,

a(ε)CD(εX) + b(ε)UD(0) = −u0
D(0).

We easily get that b(ε) = −a(ε) which implies

a(ε) (CD(εX)−UD(0)) = −u0
D(0).

This vectorial equality implies two possible choices for a(ε): recalling CD(εX) = −4πνE(εX)u0
D(0),

we get (for i, j ∈ {1, 2} , i 6= j)

a(ε) = (u0
D(0))i

c1 (u0
D(0))i − log ε · (u0

D(0))i + c2 (u0
D(0))j + (UD(0))i

,

where c1 and c2 are two positive constants. This leads that a(ε) can be expressed as a(ε) = 1
C−log ε

for another positive constant denoted by C in the two possible cases, and then we get the following
scale:

1
− log ε +O

(
1

log2 ε

)
as ε→ 0.

It is important to notice, as been pointed in [53, Remark 2.2], that this construction is performed
in the case of a disk, where ‖x‖ = ε for x ∈ ∂ωε. In the general case, ω is not a ball and then
log ‖x‖ 6= log ε for all x ∈ ∂ωε and one has to add correctors as performed by Maz’ya et al. in [181,
Section 2.4, p. 60–64]. This correction of log ε is of order zero and is then negligible with respect to
the logarithmic term. Thus the linear system in (a(ε), b(ε)) remains unchanged.

Hence we approximate uεD by

uεD(x) = u0
D(x) + 1

− log ε (CD −UD) + rεD(x).

Analogously we approximate uεN by

uεN(x) = u0
N(x) + 1

− log ε (CN −UN) + rεN(x).

Then several technical lemmas enable to obtain explicit bounds with respect to ε of the remainders rεD
and rεN and to complete the proof of the previous proposition.

II.1.3.2 Topological gradient of the Kohn-Vogelius functional

Using the asymptotic expansions of the solutions and explicit bounds with respect to ε, we prove
the following theorem which gives us the expression of the topological gradient of the Kohn-Vogelius
functional K.
Theorem II.1.3. For z ∈ Ω, the functional K admits the following topological asymptotic expansion:

K(Ωz,ε)−K(Ω) = 4πν
− log ε (|u0

D(z)|2 − |u0
N(z)|2) + o

(
1

− log ε

)
,

where u0
D ∈ H1(Ω) and u0

N ∈ H1(Ω) solve respectively Problems (II.1.4) and (II.1.5) with ωε = ∅.
Therefore we have

ξ(ε) = 1
− log ε and δK(z) = 4πν(|u0

D(z)|2 − |u0
N(z)|2)

in the general asymptotic expansion (II.1.6).
Remark II.1.4. Notice that, contrary to the three dimensional case [85, Theorem 3.1] the topological
gradient does not depend on the geometry of ω. The formula applies for all shapes in 2D. This phe-
nomena is closely related to the Stokes paradox as been pointed in [14, 15, 205] and is coherent with
the results obtained by several authors in similar problems (see, e.g., [21, 24, 44, 139, 140]).
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II.1.4 Numerical simulations

Using the topological gradient algorithm, one can detect the number of objects and their qualitative
location but we do not have informations about the shapes of the objects. Hence it can provide initial
shapes for an optimization method based on the boundary variation method for which we have to
know the number of connected objects we want to reconstruct (see, e.g., my previous work [89]). We
present here a combination of these two approaches in order to find the number of objects, their
locations and their shapes.

We refer to [89] concerning for theoretical results concerning the computation of the shape deri-
vative of the Kohn-Vogelius functional. Particularly it provides the shape gradient of the functional.
Then we suggest an algorithm which consists in two steps:

1. the use of a topological algorithm in order to find the number of objects and their rough location
(see the “initial shape” in Figure II.1.3);

2. the use of a boundary variation method in order to approximate the shape. Here we follow the
same strategy than in [89] using a truncated Fourier parametrization for the obstacles, starting
from the previously found initial shapes.

We present in Figure II.1.3 an example of reconstruction with this algorithm.

Figure II.1.3 – Detection of two obstacles with the combined approach (the initial shape is the one obtained
after the “topological step”) and zoom on the improvement with the geometrical step

We also underline the fact that, after the topological step, the cost of the functional is here
about 1.26 and that, after the geometrical step, we obtain a cost about 2 · 10−2 which qualitatively
means that we improved the detection. In conclusion this blending method which combines the topo-
logical and the geometrical shape methods leads to good results in the identification of obstacle: we
detect the number of obstacles, their locations and their shapes at the same time.

II.2 A Bézier parametrization

This section is devoted to the study of the geometric approximation by parametrization of two-
dimensional multiple-component shape using Bézier curves. This work was done in collaboration with
Pierre Bonnelie, Loïc Bourdin and Olivier Ruatta (university of Limoges) as part of the PhD thesis of
Pierre Bonnelie, and is published in SMAI Journal of Computational Mathematics (see [56], 22 pages).
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II.2.1 A way to change the topology of a domain

The previous section presents a blending method, coupling the topological and the geometrical
shape optimization approaches in order to numerically solve the inverse obstacle problem. As un-
derlined, the theoretical part, especially concerning the computation of the topological gradient, is
technical and may be difficult to prove rigorously, depends on the PDE and on the boundary condi-
tions. The alternative method presented here is based only on mesh variation techniques and on a
parametrization by piecewise Bézier curves. The main idea is that this polynomial parametrization can
be approximated by its control polygon. Particularly one can easily prevent the potential formation
of double points by looking for intersecting control polygons. Once this first step is achieved, one can
easily reorganize the control points of the Bézier parametrization in order to modify the topology of
the shape, precisely in order to divide one component into two. Hence the intersecting control polygons
detection and the flip procedure enable to dynamically change the topology of the shape in order to
find the number of inclusions, and the shape derivatives approach allows to approximate the shape
of the inclusions with an explicit representation. This new method seems to be well-suited in order
to study the above inverse obstacle problem, especially in the case where the number of inclusions is
a priori unknown. In order to test these two procedures, we perform numerical simulations on the
classical inverse obstacle problem for Laplace’s equation, studied by minimizing a shape least squares
functional.

II.2.1.1 Basics on piecewise Bézier curves

Let us fix our notations and recall some basics about Bézier curves (see, e.g., [129, 200] or [133,
from p. 409] for more details). Let d ∈ N∗ and a set of d+ 1 points P0, . . . , Pd of R2. The associated
Bézier curve, denoted by B([P0, . . . , Pd]), is defined by

∀t ∈ [0, 1], B([P0, . . . , Pd], t) :=
d∑
j=0

Pjbj,d(t),

where bj,d are the classical Bernstein polynomials given by

bj,d(t) :=
(
d

j

)
tj(1− t)d−j .

The integer d is the degree of the curve and the points P0, . . . , Pd are its control points (or its control
polygon). Note that a Bézier curve does not go through its control points in general. However it starts
at P0 and finishes at Pd. If P0 = Pd, the Bézier curve is said to be closed. Each point of a Bézier curve
is a convex combination of its control points. As a consequence, a Bézier curve lies in the convex hull
of its control polygon (see Figure II.2.4).

P0

P1

P2

P3

P4

Figure II.2.4 – A non-closed Bézier curve of degree 4 lying in the convex hull of its control polygon.

Using a single closed Bézier curve in order to approximate a two-dimensional shape is not an
efficient method for several reasons. Indeed, in order to approximate a shape with a lot of geometric
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II.2 A Bézier parametrization

features, one would need to increase the number of degrees of freedom, i.e. the number of control
points. However, as is very well-known, increasing the degree of an approximating polynomial curve
leads to a classical oscillation phenomenon and, in the particular case of a Bézier polynomial curve, it
leads to numerical instabilities (due to the ill-conditionness of the Bernstein-Vandermonde matrices,
see, e.g., [179]). Moreover, since each control point has a global influence on the curve, one could not
handle local complexities of a shape with a single Bézier curve. The classical idea is then to divide
the curve in several Bézier curves of small degrees. This leads us to recall the following definition of
piecewise Bézier curves.

Let N ∈ N∗, d ∈ N∗ and a set of N(d + 1) control points P1,0, . . . , P1,d, . . . , PN,d of R2 satisfying
the continuity relations Pi,d = Pi+1,0 for every i = 1, . . . , N − 1. 1 The associated piecewise Bézier
curve, denoted by B([P1,0, . . . , PN,d]) 2, is defined by

∀t ∈ [0, 1], B([P1,0, . . . , PN,d], t) := B([Pi,0, . . . , Pi,d], Nt− i+ 1),

if t ∈
[
i− 1
N

,
i

N

]
, i ranges from 1 to N.

The global curve is then composed of N Bézier curves called patches. Note that a piecewise Bézier
curve goes through Pi,0 and Pi,d for all i = 1, . . . , N . If P1,0 = PN,d, the piecewise Bézier curve is said
to be closed.

Remark II.2.1. In practice we use cubic patches (d = 3) because they are sufficient in order to
recover many geometrical situations, such as inflexion points (see Figure II.2.5).

Figure II.2.5 – A closed piecewise Bézier curve composed of seven cubic patches.

Adapting the proof of the classical Stone-Weierstrass theorem, one can prove the following result
(which corresponds to a particular case of the classical Bishop theorem, see [51]). This result fully
justifies the use of piecewise Bézier curves in order to approximate two-dimensional bounded shapes.

Theorem II.2.2. Let f ∈ C([0, 1],R2). For all ε > 0 and all d ∈ N∗, there exist N ∈ N∗ and a
set of N(d + 1) control points P1,0, . . . , P1,d, . . . , PN,d, satisfying the continuity relations, such that
‖f(t)−B([P1,0, . . . , PN,d], t)‖ ≤ ε for all t ∈ [0, 1].

Recall that the use of polar coordinates, where the radius is expanded in a truncated Fourier
series, is another common and efficient strategy in order to approximate two-dimensional shapes (see,
e.g., [7] in the context of inclusions detection). However it has two main drawbacks. Firstly it allows
to represent only star-shaped domains and secondly, due to a classical oscillation phenomenon, it
cannot represent rigorously straight lines (see, e.g., [89, Figure 5 p.140] in the context of inclusions

1. The continuity relations guarantee the well-definedness and the continuity of the piecewise Bézier curve.
2. One would note here a conflict in notations of a Bézier curve and of a piecewise Bézier curve. In the sequel no

confusion is possible since we will only consider piecewise Bézier curves.
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detection). The use of piecewise Bézier curves is then an alternative in order to approximate non star-
shaped domains and straight lines (see Section II.2.2 for some numerical simulations in the context of
inclusions detection). To conclude, let us notice that the flip procedure, which is the main feature of
this work, is based on the detection of potential collisions between two parts of the boundary of the
approximated shape. Thus it is worth specifying that a parametrization based on polar coordinates,
where the radius is expanded in a truncated Fourier series, is not suitable to prevent such collisions,
in contrary to a piecewise Bézier parametrization.

II.2.1.2 Intersecting control polygons detection and flip procedure

As mentioned in the introduction of this chapter, the detection of unknown obstacle(s) by starting
a classical geometric approximation with a one-component initial shape may lead to the situation
depicted in Figure II.2.6, that is, the deformation flow makes the boundary evolve until it surrounds
all the components of the target shape. This classical phenomenon tends to create a collision between
two parts of the boundary of the approximated shape.

Geometrical shape
approximation

Target shape
Initial approximated shape
Final approximated shape

Figure II.2.6 – A geometric shape approximation of a two-component target shape starting from a one-
component initial approximated shape. The final approximated shape surrounds the two components.

Here we propose a simple and new concept (called flip procedure) which allows to change the
topology of the approximated shape. Precisely, the flip procedure allows to divide a one-component
shape into a two-component shape.

Let us consider a general geometric shape approximation algorithm in which the boundary of the
approximated shape is parametrized by a piecewise cubic Bézier curve. It starts from a one-component
initial shape ω0 and produces a sequence of one-component shapes (ωk)k≥0 by deforming the boundary
at each step. The idea consists in two phases (that are summarized in Figure II.2.7):

1. check, at each step of the approximation algorithm, if the current shape ωk is in the situation
depicted in Figure II.2.6, that is, if two parts of the boundary are very close to each other. The
parametrization by piecewise Bézier curves allows us to prevent such a situation by looking for
intersecting control polygons. This procedure is called intersecting control polygons detection;

2. if some control polygons intersect each other, we apply the flip procedure in order to obtain a
two-component shape by keeping unchanged all other control polygons.

A precise description of this procedure can be found in the corresponding article [56].

II.2.2 Application to obstacles detection

This section focuses on the problem of reconstructing numerically an obstacle ω∗ living in a larger
bounded domain Ω of R2 from boundary measurements. Our aim is especially to test the flip procedure
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Shape ωk

Scan for
intersecting

control polygons

Two intersecting
control polygons

Flip

Two-component
shape ωk+1

Figure II.2.7 – Overview of the complete procedure.

introduced before in the case where ω∗ is a two-component obstacle.
In order to solve numerically the above inverse obstacle problem, we actually consider a shape

optimization problem, by minimizing a shape cost functional. We use the classical geometrical shape
optimization approach, based on shape derivatives and on a shape gradient descent method. We refer
to the classical books of Henrot et al. [152] and of Sokołowski et al. [210] for more details on the
techniques of shape differentiability.

Let Ω be a non-empty bounded and connected open set of R2 with a C1,1 boundary and let
gD ∈ H3/2(∂Ω) such that gD 6= 0. Let d0 > 0 be fixed (small). In the sequel O stands for the set of
admissible shapes given by

O :=
{
ω ⊂⊂ Ω open set with a C1,1 boundary such that d(x, ∂Ω) > d0, ∀x ∈ ω

and such that Ω\ω is connected
}
.

Finally we also introduce Ωd0 an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

We focus on the following inverse problem. Assume that an unknown obstacle ω∗ ∈ O is located
inside Ω. We consider hereafter Laplace’s equation in Ω\ω∗ with homogeneous Dirichlet boundary
condition on ∂ω∗ and non-homogeneous Dirichlet boundary condition on ∂Ω. Precisely we denote by
uex ∈ H1(Ω\ω∗) the unique solution of the problem −∆uex = 0 in Ω\ω∗,

uex = gD on ∂Ω,
uex = 0 on ∂ω∗.

Our main purpose is to reconstruct the unknown shape ω∗, assuming that a measurement is done on
the exterior boundary ∂Ω. More precisely let us assume that we know exactly the value of the measure
gN := ∂nuex ∈ H1/2(∂Ω) on ∂Ω. Thus, for a nontrivial Cauchy pair (gN, gD) ∈ H1/2(∂Ω)× H3/2(∂Ω),
we are interested in the following geometric inverse problem:

Find ω∗ ∈ O and u ∈ H1(Ω\ω∗) which satisfy the overdetermined problem
−∆u = 0 in Ω\ω∗,

u = g on ∂Ω,
∂nu = gN on ∂Ω,
u = 0 on ∂ω∗.

(II.2.1)
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The existence of a solution is trivial since we assume that the measurement gN is exact. From the
classical Holmgren’s theorem (see, e.g., [158]) one can obtain an identifiability result for this inverse
problem which claims that the solution is unique. This fundamental question about uniqueness of a
solution to the overdetermined problem (II.2.1) was deeply studied, see for instance [65, Theorem 1.1],
[102, Theorem 5.1] or also [112, Proposition 4.4 p. 87]. We recall the identifiability result in our case
for the reader’s convenience. 3

Theorem II.2.3. The domain ω∗ and the function u that satisfy (II.2.1) are uniquely defined by the
Cauchy data (gN, gD) 6= (0, 0).

Remark II.2.4. Actually we could assume that the measurement gN is done only on a non-empty
subset Γobs of ∂Ω. All the presented result can be adapted to this case (see, e.g., [83]).

In order to solve the inverse problem (II.2.1) we actually focus on the shape optimization problem

ω∗ ∈ argmin
ω∈O

J (ω), (II.2.2)

where J is the nonnegative least squares functional defined by

J (ω) :=
∫
∂Ω
|∂nu− gN|2 ,

where u ∈ H1(Ω\ω) is the unique solution of the problem −∆u = 0 in Ω\ω,
u = gD on ∂Ω,
u = 0 on ∂ω.

Indeed the identifiability result ensures that J (ω) = 0 if and only if ω = ω∗. Finally, in order to solve
numerically the shape optimization problem (II.2.2), we easily compute the shape gradient of the cost
functional J and apply a classical gradient descent method.

We classically obtain the following expression of the shape gradient of the functional J .

Proposition II.2.5. The least squares functional J is differentiable at ω ∈ O in the admissible
direction V ∈ U :=

{
V ∈W2,∞(Rd); supp (V ) ⊂ Ωd0 and ‖V ‖2,∞ < min

(
d0
3 , 1

)}
with

DJ (ω) · V = −
∫
∂ω

∂nu ∂nw (V · n) ,

where w ∈ H1(Ω\ω) is the unique solution of the adjoint problem given by −∆w = 0 in Ω\ω,
w = 2 (∂nu− gN) on ∂Ω,
w = 0 on ∂ω.

From the above explicit formulation of the shape gradient of J , we are now in a position to
implement some numerical simulations based on a classical gradient descent method and we include
the flip procedure introduced previously in order to detect particularly a multiple-component obstacle.

We present here some numerical simulations which underline the efficiency of the proposed method.
Particularly we can detect smooth and convex shapes (see Figure II.2.8), non-smooth shape and non-
convex shape (see Figure II.2.9) and two-component obstacle starting from a one-component shape
(see Figure II.2.10).

To conclude, notice that the flip procedure is a method that enables to divide a one-component
shape into a two-component shape. Actually the flip procedure can be easily adapted in order to
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Exterior boundary

Exact shape

Initial shape

Approximated shape

(a) Detection of a circle
 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(b) Detection of an ellipse

Figure II.2.8 – Detection of convex and smooth obstacles.

 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(a) Detection of a square
 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(b) Detection of a non-convex shape.

Figure II.2.9 – Detection of a non-smooth obstacle and of a non-convex obstacle.

perform the reverse operation, that is, to merge a two-component shape into a one-component shape
(see Figure II.2.11).

II.3 Perspectives

The two previous methods concern the two dimensional case. Concerning the adaptation of the
first one, that is the blending method, in the three-dimensional case, the theoretical part for the
computation of the topological gradient already exists and was one of my previous work in [85]. The
main difficulty would be to make the numerical simulations, especially for the boundary variation
step. The adaptation of the Bézier parametrization method for the three-dimensional case would be

3. Note that Theorem II.2.3 is true even with weaker assumptions, especially on the regularity of the domains, see,
e.g., [65, Theorem 1.1].
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(b) Intersecting control polygons
 

 

Exterior boundary
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(c) Flip procedure

 

 

Exterior boundary
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(d) Final shape

Figure II.2.10 – Detection of two obstacles starting from a one-component shape

interested. We refer for instance to [186] where deformation of piecewise Bézier surfaces is presented
with an implementation. However, note that the adaptation of the complete algorithmic setting of the
flip procedure to the three-dimensional case would be nontrivial since it would increase the algorithmic
and combinatoric complexities.

Let us mention a natural extension of the previous work which concern the case of Navier-Stokes
equations, especially to obtain the topological asymptotic expansion of the Kohn-Vogelius functional.
Such an adaptation requires to overcome theoretical technical difficulties, due to the nonlinearity. One
could use the existing literature on the subject, as for instance [21].

To conclude, as previously mentioned, several methods exists in order to numerically solve the
inverse obstacle problem. Additionally to the shape optimization approaches recalled previously, one
can also mention the so-called exterior approach consisting in the construction of a decreasing sequence
of open domains that contain the searched obstacle (see, e.g., the works of Dardé et al. [66, 67, 113]).
A numerical comparison of these methods, for instance for the Laplacian case, could give informations
on their respective advantages and drawbacks. This work would be mainly numerical but a rigorous
implementation is necessary to obtain objective conclusions. Finally one can notice that the used
algorithms in the methods could be obviously improved. Indeed the classical gradient method could
be replaced by a Newton kind method. This last point is explored in an other work, exposed in the
following chapter.
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Figure II.2.11 – Detection of one obstacle starting from a two-component shape
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Chapter III

The inverse obstacle problem on new
models for Laplace’s equation

The previous chapter II focuses on the classical inverse obstacle problem and aims at suggesting
new methods to numerically solve it. In a perspective of more concrete applications, this chapter
explores some more realistic configurations, even if the exposed problems are still academic. Hence
two physical constraints are considered. Firstly we consider a partial accessibility of the boundary
of the exterior domain, i.e. the domain of measurements: the question is to detect an inclusion from
partial Cauchy data. Secondly the case of nonclassical boundary conditions imposed on the obstacle
is considered: when the obstacle has a thin layer (as, e.g., some corrosion), one can model it using
Generalized Impedance Boundary Conditions (GIBC). The first section of this chapter summarizes my
works concerning the data completion problem, that is

[90] F. Caubet, J. Dardé and M. Godoy. On the data completion problem and the inverse obstacle
problem with partial Cauchy data for Laplace’s equation. ESAIM Control Optim. Calc. Var.,
to appear, 2017,

[87] F. Caubet, M. Dambrine and H. Harbrecht. A new method for the data completion problem
and application to obstacle detection. Submitted, 2018,

and the second section presents the article on the detection of an obstacle with Wentzell boundary
conditions, that is

[88] F. Caubet, M. Dambrine and D. Kateb. Shape optimization methods for the inverse obstacle
problem with generalized impedance boundary conditions. Inverse Problems, 29(11):115011,
26, 2013.

Electrical Impedance Tomography (EIT) is used in medical imaging to reconstruct the electric
conductivity of a part of a body from measurements of currents and voltages at the surface (see,
e.g., [58]). The same technique is also used in geophysical explorations. An important special case
consists in reconstructing the shape of an unknown inclusion or void assuming (piecewise) constant
conductivities.

In several applications, the aim is then to reconstruct an inclusion (characterized by a Dirichlet
condition for instance) from the knowledge of Cauchy data (that is the Dirichlet and the Neumann
boundary conditions) on an accessible part of the frontier of the domain of study. Notice that no
data at all is provided on a non-empty inaccessible part of the boundary. As already mentioned in
this manuscript, it is well-known that this problem admits at most one solution and that the inverse
obstacle problem is severely ill-posed: the problem may fail to have a solution and, even when a
solution exists, the problem is highly unstable. More precisely, the best one can expect is a logarithmic
stability (see, e.g., [10, 118]). Numerous methods have been proposed to solve this problem : sampling
methods [188], methods based on conformal mappings [146], on integral equations [166, 196], level-set
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method coupled with quasi-reversibility in the exterior approach [65], among others. Among all of
them, shape optimization methods (see, e.g., [7, 72, 139]) present interesting features. Especially they
are easily adaptable to problems governed by different partial differential equations, such as Stokes
system (see, e.g., [21, 84, 89, 140]), and obstacles characterized by different limit conditions, such as
Neumann or generalized boundary conditions (see, e.g., [32, 88]). However, since such methods rely
on the minimization of a (shape) cost-type functional which in turn needs the resolution of several
well-posed direct problems, they need particularly some boundary data on the whole boundary of the
domain of study, and therefore cannot be directly used for the partial Cauchy data case. Then a
data completion step is needed to solve the inverse obstacle problem, which is the topic
of the first part of this chapter: Section III.1.1 deals with the case of partial Cauchy
data and Section III.1.2 focuses on the use of a Newton approach and of the so-called
trial method.

Another situation can occur in EIT: the inclusion may contain a thin layer, as a membrane or a
rough boundary, which can be modeled by some generalized impedance boundary conditions (of order
two) on the obstacle, precisely Wentzell boundary conditions for Laplace’s equation which deal with the
Laplace-Beltrami operator. These boundary conditions appear when one makes an asymptotic analysis
of the solution of the problem in the full domain (taking the layer into account) with respect to the
thickness of the layer and when one seeks equivalent boundary conditions on the reference domain in
order to forget the complex geometry. The construction of generalized impedance boundary conditions
is treated for instance by Antoine et al. in [26], by Poignard in [187] or by Haddar et al. in [144, 145].
This kind of construction is explored more precisely in the next chapter IV. The study of this type of
boundary conditions is an emerging research theme and a general analysis of the Wentzell boundary
conditions is made by Bonnaillie-Noël et al. in [54]. One topic is then to identify the coefficients
corresponding to these conditions as treated by Bourgeois et al. in [61, 68]. Another is to identify the
shape while the coefficients are known. We consider this last problem in the second part of this chapter:
the aim is to use classical shape optimization methods to solve inverse problems in the
case of immersed obstacles modeled by Wentzell boundary conditions (see Section III.2).
One of the difficulty is the shape sensitivity analysis of such a problem, especially in order to prove
the existence and characterize the shape derivatives. Notice that, in the recent work [75], Cakoni et al.
address the question of recovering simultaneously the unknown boundary and the unknown coefficients
by an integral equation approach. We also refer to the recent paper of Bourgeois et al. [62] which deals
with this topic considering the Helmholtz equation.

III.1 Taking into account partial Cauchy data: a data comple-
tion problem

This section is devoted to the inverse obstacle problem, coupled with the data completion problem.
Subsection III.1.1 deals with the inverse obstacle problem in the case of partial Cauchy data and
Subsection III.1.2 focuses on the trial method in order to solve the inverse obstacle problem.

Hence, in this section, we deal with the inverse obstacle problem defined as follows. Let Ω be a
bounded connected Lipschitz open set of Rd (with d = 2 or d = 3) with a boundary ∂Ω divided into
two components: the non-empty (relatively) open sets Γobs and Γina, such that Γobs ∪ Γina = ∂Ω. For
some nontrivial data (gN, gD) ∈ H−1/2(Γobs)×H1/2(Γobs), we consider the following obstacle problem:

Find ω∗ ∈ O and u ∈ H1 (Ω\ω∗) which satisfy the overdetermined problem
−∆u = 0 in Ω\ω∗,

u = gD on Γobs,
∂nu = gN on Γobs,
u = 0 on ω∗.

(III.1.1)
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Here

O :=
{
ω ⊂⊂ Ω open set with a C1,1 boundary such that d(x, ∂Ω) > d0, ∀x ∈ ω

and such that Ω\ω is connected
}
, (III.1.2)

with d0 > 0 a fixed (small) parameter. In other words, the problem is to reconstruct an inclusion ω∗
characterized by a Dirichlet condition from the knowledge of some data (gN, gD) on the accessible
part Γobs of the frontier of the domain of study, no data at all being provided on the inaccessible part
of the boundary Γina (see Figure III.1.1 for an illustration of the notations). This last important point
is one the main novelties of this work.

Γina

Γobs

ω∗

Ω\ω

Figure III.1.1 – A possible configuration for the obstacle problem.

As already mentioned, it is well-known that Problem (III.1.1) admits at most one solution, as
claimed by the following identifiability result 1 that we recall in our case for the reader’s convenience
(see for instance [65, Theorem 1.1], [102, Theorem 5.1] or [112, Proposition 4.4, page 87]).

Theorem III.1.1. The domain ω∗ and the function u that satisfy (III.1.1) are uniquely defined by
the Cauchy data (gN, gD) 6= (0, 0).

It is also well-known that Problem (III.1.1) is severely ill-posed: the problem may fail to have a
solution and, even when a solution exists, the problem is highly unstable.

Due to the ill-posedness, regularization techniques are mandatory to solve the problem numerically.
Several approaches have been proposed, particularly concerning the data completion problem: among
others, we recall the work of Cimetière et al. [100] who consider a fixed point scheme for an appropriate
operator. In [30, 46, 47], Ben Belgacem et al. propose a complete study of the problem based on the
Steklov-Poincaré operator and a Lavrentiev regularization. We also mention the works of Bourgeois et
al. [63, 64] based on the quasi-reversibility method and a generalization to a wider family of systems is
presented by Dardé in [114]. Burman in [73] proposes a regularization through discretization: especially
he obtains an optimal convergence result of the discretized solution to the exact one. In the particular
case of a 2d problem, Leblond et al. in [172] use a complex-analytic approach to recover the solution
of the Cauchy problem respecting furthermore additional pointwise constraints in the domain. Let
us also mention the work of Kozlov et al. [165] which presents the classical KMF algorithm used
widely for numerical simulations. Several works consider modifications of the KMF algorithm in order
to improve the speed of convergence as the work of Abouchabaka et al. [1]. The work of Andrieux
et al. [25] presents another approach considering the minimization of an energy-like functional and
presents an algorithm which is equivalent to the KMF algorithm formulation. The work of Aboulaich
et al. [2] considers a control type method for the numerical resolution of the Cauchy problem for
Stokes system and, as an example of regularization techniques employed in this problem, we mention
the work of Han et al. [147] in which a regularization of an energy functional is considered for an
annular domain. In this section, we will use the classical Tikhonov regularization.

1. As mentioned previously, Theorem III.1.1 is true even with weaker assumptions, see, e.g., [65, Theorem 1.1].
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III.1.1 Analysis of the data completion problem and numerical reconstruc-
tion of an inclusion

The work exposed in this subsection was done in collaboration with Jérémi Dardé (university of
Toulouse) and Matías Godoy (university of Chile) as part of the PhD thesis of Matías Godoy, and is
published in ESAIM: Control Optimization and Calculus of Variations (see [90], 28 pages).

First notice that, up to my knowledge, among all the methods cited above in order to solve the
inverse obstacle problem, only the exterior approach deals with the inverse obstacle problem with
partial Cauchy data. However the exterior approach has been specifically developed to deal with
obstacles characterized by a Dirichlet-type boundary condition, and its adaptation to a Neumann-
type condition is still an open question.

One aim of the method presented here is to overcome this boundary conditions limitation. Indeed
the proposed method could be naturally adapted to Neumann boundary conditions for instance and
is then an effective alternative method to deal with partial Cauchy data.

Thus we want to use shape optimization methods for the inverse obstacle problem in the case where
data are not available on the whole boundary of the domain of study. To do so, our strategy is to solve
the inverse obstacle problem and a data completion problem in order to reconstruct the obstacle and
the missing data at once. We do so through the minimization of a Kohn-Vogelius functional, which
will have both the shape ω∗ and the unknown data as variables. Notice that such type of functional
has already been used successfully to solve obstacle problems and data completion problem separately
(see, e.g., [7, 25]).

III.1.1.1 The data completion problem

Let us assume for a while that the obstacle ω∗ is known. Then, in order to simplify the notations,
let us consider the case ω∗ = ∅ but all the presented results can be easily adapted to the case ω∗ 6= ∅.
The data completion problem consists in recovering data on the whole boundary, specifically on the
inaccessible part Γina, from the overdetermined data (gN, gD) on Γobs, that is:

Find u ∈ H1(Ω\ω∗) such that −∆u = 0 in Ω,
u = gD on Γobs,

∂nu = gN on Γobs.

(III.1.3)

The data completion problem is known to be severely ill-posed, see for instance [45] where the
exponential ill-posedness is clearly highlighted. Particularly it has at most one solution but it may
have no solution and, when a solution exists, it does not depend continuously on the given data (and
therefore the same is true for the missing data); the well-known example of Hadamard [141] is an
example of this behavior.

Definition III.1.2. A pair (gN, gD) ∈ H−1/2(Γobs) × H1/2(Γobs) will be called compatible if there
exists (a necessarily unique) u ∈ H1(Ω) harmonic such that u|Γobs = gD and ∂nu|Γobs = gN.

If a given pair (gN, gD) is not compatible, we may approximate it by a sequence of compatible
data, as the following result asserts (see Fursikov [135, Chapter 3] or Andrieux [25]).

Lemma III.1.3. We have the two following density results.
1. For a fixed gD ∈ H1/2(Γobs), the set of data gN for which there exists a function u ∈ H1(Ω)

satisfying the Cauchy problem (III.1.3) is dense in H−1/2(Γobs).
2. For a fixed gN ∈ H−1/2(Γobs), the set of data gD for which there exists a function u ∈ H1(Ω)

satisfying the Cauchy problem (III.1.3) is dense in H1/2(Γobs).
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In this work we follow the idea developed in [25, 30, 46, 47]: we study the data completion problem
through the minimization of a Kohn-Vogelius type cost functional which admits the solution of Pro-
blem (III.1.3) as minimizer, if such a solution exists. In order to deal with the ill-posedness previously
mentioned, we consider a Tikhonov regularization of the functional which ensures the existence of a
minimizer even for non compatible data thanks to the gained of coerciveness and, in case of compa-
tible data, the convergence towards the exact solution. In case of noisy data, we propose a strategy
to choose the regularization parameter in order to preserve convergence to the unpolluted solution.

The Kohn-Vogelius functional. We defined the Kohn-Vogelius functional as follows: for all
(ϕ,ψ) ∈ H−1/2(Γina)×H1/2(Γina),

K(ϕ,ψ) := 1
2

∫
Ω
|∇ugD

ϕ −∇u
gN
ψ |

2, (III.1.4)

where ugD
ϕ , ugN

ψ ∈ H1(Ω) are the respective solutions of
−∆ugD

ϕ = 0 in Ω,
ugD
ϕ = gD on Γobs,

∂nu
gD
ϕ = ϕ on Γina,

and


−∆ugN

ψ = 0 in Ω,
∂nu

gN
ψ = gN on Γobs,

ugN
ψ = ψ on Γina,

(III.1.5)

where (gN, gD) ∈ H−1/2(Γobs)×H1/2(Γobs) is a given Cauchy pair which may be compatible or not.
We also introduce the solution vϕ, vψ ∈ H1(Ω) of the two following problems (corresponding to the

case gD = 0 and gN = 0, i.e. vϕ = u0
ϕ and vψ = u0

ψ): −∆vϕ = 0 in Ω\ω,
vϕ = 0 on Γobs,

∂nvϕ = ϕ on Γina,
and

 −∆vψ = 0 in Ω\ω,
∂nvψ = 0 on Γobs,
vψ = ψ on Γina.

Remark III.1.4. Note that the two problems appearing in (III.1.5) are well-posed for any given
boundary conditions (ϕ,ψ) ∈ H−1/2(Γina) × H1/2(Γina), without additional compatibility conditions
between gD and ϕ for the first problem and between gN and ψ for the second. This is of particular in-
terest for numerical implementations, as the considered setting allows to consider the classical Sobolev
spaces and, therefore, the implementations can be done with classical finite element method softwares
without any additional adjustments.

We prove several properties on the Kohn-Vogelius functional. Especially K is continuous, convex,
positive and its infimum is zero, even for non compatible data. Moreover, if the Cauchy problem (III.1.3)
admits a solution uex, we prove that ugD

ϕ∗n
⇀

n→∞
uex, weakly in H1(Ω), for all minimizing sequence

(ϕ∗n, ψ∗n)n ⊂ H−1/2(Γina)×H1/2(Γina) of K.

Regularization of the Kohn-Vogelius functional. As mentioned above, when the data com-
pletion problem has no solution, the minimization problem for K fails to have one. Additionally, as
recalled previously, the data completion problem is ill-posed in the sense that, in case of the existence
of solution, there is not a continuous dependence on the given data.

In order to overcome these difficulties, we consider a Tikhonov regularization of the Kohn-Vogelius
functional, which, roughly speaking, allows us to get coerciveness and a better behavior with respect
to noisy data. There is an extensive literature related to this type of regularization (see, e.g., the book
of Engl et al. [125] which describes in detail and in full generality the considered regularization).

Then we define the regularized Kohn-Vogelius functional Kε : H−1/2(Γina) × H1/2(Γina) → R, for
all ε > 0, by

Kε(ϕ,ψ) := K(ϕ,ψ) + ε

2

(
‖vϕ‖2H1(Ω) + ‖vψ‖2H1(Ω)

)
= K(ϕ,ψ) + ε

2‖(vϕ, vψ)‖2(H1(Ω))2 ,
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where K is the previous Kohn-Vogelius functional given by (III.1.4). Kε is a regularization of the
standard K functional, as it always admits a minimizer, regardless of the compatibility of the Cauchy
data: for a given ε > 0, Kε(ϕ,ψ) is continuous, strictly convex and coercive in H−1/2(Γina)×H1/2(Γina)
and therefore there exists

(ϕ∗ε, ψ∗ε ) := argmin
(ϕ,ψ)∈H−1/2(Γina)×H1/2(Γina)

Kε(ϕ,ψ).

Then we prove the following theorem which relates the set of minimizers (ϕ∗ε, ψ∗ε ) of Kε with the
functional K and states a condition to ensure the existence of solution for the Cauchy problem (III.1.3).

Theorem III.1.5. The sequence (ϕ∗ε, ψ∗ε )ε (ε → 0) is a minimizing sequence of K . Furthermore, it
is a bounded sequence if and only if the Cauchy problem has a (necessarily unique) solution uex. In
that case:

1. (ϕ∗ε, ψ∗ε ) converges strongly in H−1/2(Γina) × H1/2(Γina) when ε → 0 to (ϕ∗, ψ∗), a minimizer
of K;

2. ugD
ϕ∗ε

converges strongly in H1(Ω) when ε→ 0 to the solution uex of the Cauchy problem (III.1.3).

Moreover the application F (ε) : (0,+∞) →
(
ugD
ϕ∗ε
, ugN
ψ∗ε

)
∈ H1(Ω) × H1(Ω) is continuous for ε > 0

and, if the data (gN, gD) is compatible, it could be continuously extended to 0 with F (0) = (ugD
ϕex
, ugN
ψex

).

The case of noisy data: choosing the parameter of regularization with respect to the noise
level. As one can expect, in real situations, the data (gN, gD) cannot be measured with complete
precision: noise is intrinsically attached with any measurement method. Hence we consider (gδN, gδD)
as a measured data which is assumed to satisfy the following condition

‖gD − gδD‖H1/2(Γobs) + ‖gN − gδN‖H−1/2(Γobs) ≤ δ, (III.1.6)

where δ > 0 is the amplitude of noise in the data. Notice that we do not know if the noisy data (gδN, gδD)
is compatible or not.

In the following we explore the convergence of minimizers of the regularized Kohn-Vogelius func-
tional Kε associated to noisy data (gδN, gδD) to the minimum of the Kohn-Vogelius functional without
noise, this is, to the solution of the Cauchy problem (III.1.3). For this we consider the following
Kohn-Vogelius functional associated to the noisy data (gδN, gδD):

Kδ(ϕ,ψ) := 1
2

∫
Ω
|∇ug

δ
D
ϕ −∇ug

δ
N
ψ |

2.

We also consider its regularization (noticing that the regularization term remains unchanged)

Kδε(ϕ,ψ) := Kδ(ϕ,ψ) + ε

2‖(vϕ, vψ)‖2(H1(Ω))2

and the associated minimizers (ϕ∗ε,δ, ψ∗ε,δ). Moreover, if (gN, gD) is compatible, we denote

(ϕ∗, ψ∗) := argmin
(ϕ,ψ)∈H−1/2(Γina)×H1/2(Γina)

K(ϕ,ψ).

The key result, in order to obtain the desired convergence from noisy data to the solution of our
problem, is the following proposition.

Proposition III.1.6. We have

‖(ϕ∗ε, ψ∗ε )− (ϕ∗ε,δ, ψ∗ε,δ)‖H−1/2(Γina)×H1/2(Γina) ≤ C
δ√
ε
.
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As a corollary, we deduce in a very general way some conditions on the regularization parameter ε
in order to have convergence in the noisy case.

Corollary III.1.7. Given a compatible data (gN, gD) associated to the Kohn-Vogelius functional mi-
nimizer (ϕ∗, ψ∗). Let us consider ε = ε(δ) such that

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0.

Then we have
lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γina)×H1/2(Γina) = 0.

The last result gives us a guide on how the regularization parameter ε should be chosen in order
to have convergence to the real solution (when it exists) in the noisy case. However these conditions
are general and do not respond to any precise objective. In the following we explore a criterion for
choosing the regularization parameter ε based on the definition of a discrepancy measure: the so-called
Morozov discrepancy principle (see [125] for more details in the context of general regularization of
inverse problems). We follow the strategy used by Ben Belgacem et al. in [47].

Remark III.1.8. Notice that the choice of our parameter will depend on the noise level δ and on the
noisy data (gδN, gδD), this is ε = ε(δ, (gδN, gδD)): it is an a posteriori choice parameter rule. One may
consider an a priori choice parameter rule which is only based on the noise, that is ε = ε(δ). However,
in order to obtain optimal order of convergence, one needs some abstract smoothness conditions on the
real solution which seems to be unrealistic in our setting (see [125] for more details on those strategies).

Let us assume that our problem has a solution, i.e. the Kohn-Vogelius functional K associated
to the compatible data (gN, gD) has a minimizer (ϕ∗, ψ∗). Let us define the discrepancy measure as
the error in the Kohn-Vogelius functional with noisy data when we evaluate it on the solution of our
problem, this is:

Kδ(ϕ∗, ψ∗) = 1
2

∫
Ω

∣∣∣∇(ugδDϕ∗ − ugδNψ∗)∣∣∣2
= K(ϕ∗, ψ∗) + 1

2

∫
Ω

∣∣∣∇(udgD
0 − udgN

0

)∣∣∣2 − ∫
Ω
∇
(
ugD
ϕ∗ − u

gN
ψ∗

)
· ∇
(
udgD

0 − udgN
0

)
,

where (dgN, dgD) := (gδN − gN, g
δ
D − gD) and where the second equality is obtained by rewriting

u
gδD
ϕ∗ = u

gδD−gD+gD
ϕ∗ = udgD

0 +ugD
ϕ∗ and an analogous expression for ug

δ
N
ψ∗ . Now, as (ϕ∗, ψ∗) is the minimizer

of K, we have

K(ϕ∗, ψ∗) = 0 and
∫

Ω
∇
(
ugD
ϕ∗ − u

gN
ψ∗

)
· ∇
(
udgD

0 − udgN
0

)
= 0.

From the well-posedness of the problems associated to udgD
0 and udgN

0 and using (III.1.6), we obtain

Kδ(ϕ∗, ψ∗) = 1
2

∫
Ω

∣∣∣∇(udgD
0 − udgN

0

)∣∣∣2 ≤ C δ2. (III.1.7)

Keeping this in mind, we redefine the noise amount to Kδ(ϕ∗, ψ∗) = δ2 and we consider the discrepancy
principle based on this notion of noise.

One can prove that the application ε 7→ Kδ(ϕ∗ε,δ, ψ∗ε,δ) is strictly increasing and therefore injective.
Moreover, if ε ∈ [0,∞) then Kδ(ϕ∗ε,δ, ψ∗ε,δ) ∈ [0,Kδ(0, 0)). Let us assume that there exists τ > 1 such
that τδ2 ∈ [0,Kδ(0, 0)): indeed we expect that the data we have is not of the same order as the noise,
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otherwise (ϕ∗, ψ∗) = (0, 0) would be an admissible approximation of the exact solution. Then the
discrepancy principle consists, in our case, in choosing ε such that

ε = sup
{
ε : Kδ(ϕ∗ε,δ, ψ∗ε,δ) ≤ τδ2} . (III.1.8)

The idea of choosing the sup is based on the fact that a small regularization parameter involves
less stability, so the natural strategy is to choose the biggest regularization parameter such that the
discrepancy is in the order of the noise. The increasing monotonicity of the application Kδ implies
that ε is simply the parameter such that

Kδ(ϕ∗ε,δ, ψ∗ε,δ) = τδ2. (III.1.9)

Remark III.1.9. It is important to notice that the “redefinition” of the noise estimate does not
involve, for real computations, the knowledge of the real solution (ϕ∗, ψ∗). Indeed we only use the
real solution when we evaluate it into the Kohn-Vogelius functional with noisy data (gδN, gδD) obtaining
the estimate (III.1.7). We can observe that this quantity only depends on a constant C and the error
estimate δ. Hence, by assuming that C ≤ 1 (which is itself a strong assumption, as C depends on
Poincaré inequality constant and trace theorem constant 2), we can consider Kδ(ϕ∗, ψ∗) = δ2 as the
error measure between the real and measured data which leads to the discrepancy principle formulation
given by (III.1.8).

Finally we prove that this a posteriori choice parameter rule satisfies the conditions of Corol-
lary III.1.7.

Proposition III.1.10. The regularization parameter choice given by the Morozov discrepancy prin-
ciple (III.1.9) satisfies

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0.

This implies particularly that we have the following convergence

lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γina)×H1/2(Γina) = 0.

III.1.1.2 The inverse obstacle problem with partial Cauchy data

We now come back to our initial inverse problem (III.1.1). As mentioned, these two problems,
that is the inverse obstacle problem and the data completion problem, can be studied through the
minimization of a cost functional. Thus we focus on the following optimization problem:

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈O×H−1/2(Γina)×H1/2(Γina)

K(ω, ϕ, ψ), (III.1.10)

where K is now the nonnegative Kohn-Vogelius cost functional defined by

K(ω, ϕ, ψ) := 1
2

∫
Ω\ω
|∇ugD

ϕ (ω)−∇ugN
ψ (ω)|2,

where the set of admissible geometries O is given by (III.1.2) and where ugD
ϕ (ω), ugN

ψ (ω) ∈ H1(Ω\ω)
are the respective solutions of the following problems

−∆ugD
ϕ (ω) = 0 in Ω\ω,
ugD
ϕ (ω) = gD on Γobs,

∂nu
gD
ϕ (ω) = ϕ on Γina,
ugD
ϕ (ω) = 0 on ∂ω,

and


−∆ugN

ψ (ω) = 0 in Ω\ω,
∂nu

gN
ψ (ω) = gN on Γobs,

ugN
ψ (ω) = ψ on Γina,

ugN
ψ (ω) = 0 on ∂ω.

(III.1.11)

2. The estimation of the constant C should be analyzed in detail but is beyond the scope of this work
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If the inverse problem (III.1.1) has a solution, then the identifiability result III.1.1 ensures that
K(ω, ϕ, ψ) = 0 if and only if (ω, ϕ, ψ) = (ω∗, ϕ∗, ψ∗) (and in this case ugD

ϕ∗ = ugN
ψ∗ = uex where uex is

the solution of the Cauchy problem in Ω\ω∗).
As previously we introduce the functions vϕ := u0

ϕ and vψ := u0
ψ (which also depend on ω) which

satisfy respectively
−∆vϕ = 0 in Ω\ω,

vϕ = 0 on Γobs,
∂nvϕ = ϕ on Γina,
vϕ = 0 on ∂ω,

and


−∆vψ = 0 in Ω\ω,
∂nvψ = 0 on Γobs,
vψ = ψ on Γina,
vψ = 0 on ∂ω.

(III.1.12)

Hence, using the previous Tikhonov regularization, we consider, instead of (III.1.10), the following
optimization problem

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈O×H−1/2(Γina)×H1/2(Γina)

Kε(ω, ϕ, ψ),

where Kε is the regularized nonnegative Kohn-Vogelius cost functional defined by

Kε(ω, ϕ, ψ) := K(ω, ϕ, ψ) + ε

2‖(vϕ, vψ)‖2(H1(Ω\ω))2 = 1
2

∫
Ω\ω
|∇ugD

ϕ −∇u
gN
ψ |

2 + ε

2‖(vϕ, vψ)‖2(H1(Ω\ω))2 ,

where ugD
ϕ , ugN

ψ ∈ H1(Ω\ω) and vϕ, vψ ∈ H1(Ω\ω) are the respective solutions of Problems (III.1.11)
and (III.1.12).

Computation of the gradient. To minimize the functional Kε, we first compute the gradient in
order to consider a descent method to reconstruct numerically the solution. The partial derivatives
with respect to ϕ and ψ are given by the following proposition.

Proposition III.1.11. For all (ϕ,ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γina)×H1/2(Γina), the partial derivative of the
functional Kε are given by

∂Kε
∂ϕ

(ϕ,ψ) [ϕ̃] =
∫

Γina

ϕ̃ · (ugD
ϕ + εvϕ + wD − ψ)

and
∂Kε
∂ψ

(ϕ,ψ)
[
ψ̃
]

= 〈(∂nu
gN
ψ + ε∂nvψ + ∂nwN − ϕ), ψ̃〉−1/2,1/2,Γina ,

where wN, wD ∈ H1(Ω) are the respective solutions of the following adjoint problems:
−∆wN = −εvψ in Ω,
∂nwN = ∂nu

gD
ϕ − gN on Γobs,

wN = 0 on Γina,
and


−∆wD = εvϕ in Ω,

wD = ugN
ψ − gD on Γobs,

∂nwD = 0 on Γina.

Particularly the directions
(
ϕ̃, ψ̃

)
∈ H−1/2(Γina)×H1/2(Γina) given by

ϕ̃ = ψ − ugD
ϕ |Γina − εvϕ|Γina − wD|Γina and ψ̃ = −vW |Γina ,

with W := ϕ− ∂nu
gN
ψ |Γina − ε∂nvψ|Γina − ∂nwN|Γina ∈ H−1/2(Γina), are descent directions.

Remark III.1.12. The choice of these descent directions can be discussed. The above Proposi-
tion III.1.11 gives the natural idea in order to use a gradient method. But a discussion and an impro-
vement of this method will be given below, see the end of Section III.1.2.1.
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Moreover we compute the shape gradient of the functional and obtain the following statement. We
recall that Ωd0 is an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

Proposition III.1.13. For V ∈ U :=
{
V ∈W2,∞(Rd); supp (V ) ⊂ Ωd0 and ‖V ‖2,∞< min

(
d0
3 , 1

)}
,

the regularized Kohn-Vogelius cost functional Kε is differentiable at ω in the direction V with

DKε(ω) · V = −
∫
∂ω

(∂nρ
u
N · ∂nu

gD
ϕ + ∂nρ

v
N · ∂nvϕ)(V · n) + 1

2

∫
∂ω

|∇w|2 (V · n)

−
∫
∂ω

(∂nρ
u
D · ∂nu

gN
ψ + ∂nρ

v
D · ∂nvψ)(V · n) + ε

2

∫
∂ω

(|∇vϕ|2 + |∇vψ|2 + |vϕ|2 + |vψ|2)(V · n),

where w := ugD
ϕ −u

gN
ψ and where ρuD, ρuN, ρvD, ρvN ∈ H1(Ω\ω) are the respective solutions of the following

adjoint problems
−∆ρuN = 0 in Ω\ω,

ρuN = gD − ugN
ψ on Γobs,

∂nρ
u
N = 0 on Γina,
ρuN = 0 on ∂ω,


−∆ρvN = −εvϕ in Ω\ω,

ρvN = 0 on Γobs,
∂nρ

v
N = 0 on Γina,
ρvN = 0 on ∂ω,

and 
−∆ρuD = 0 in Ω\ω,
∂nρ

u
D = 0 on Γobs,
ρuD = ψ − ugD

ϕ on Γina,
ρuD = 0 on ∂ω,


−∆ρvD = −εvψ in Ω\ω,
∂nρ

v
D = 0 on Γobs,
ρvD = εψ on Γina,
ρvD = 0 on ∂ω.

Numerical simulations. As previously mentioned, Theorem 2 in [7] explains the difficulties en-
countered to solve numerically the reconstruction of ω. Indeed the shape gradient has not an uniform
sensitivity with respect to the deformation direction. Hence, since the inverse obstacle problem is
severely ill-posed, we need some regularization methods to solve it numerically, for instance by adding
to the functional a penalization in terms of the perimeter (see [70] or [107]). Here we choose to make
a regularization by parametrization using a parametric model of shape variations: following the same
strategy as in [7] or in [89], we use a truncated Fourier parametrization for the inclusion.

Then we perform several numerical simulations that we briefly present here (see Figures III.1.2
and III.1.3). The used algorithm is a classical gradient method, updating the boundary condition (ϕ,ψ)
and then the obstacle ω at each iteration. Finally we compare numerically the case of partial Cauchy
data with the case of complete boundary data in Figure III.1.4.

III.1.2 Setting of the trial method

The work exposed in this subsection was done in collaboration with Marc Dambrine (university
of Pau) and Helmut Harbrecht (university of Basel) and is the topic of the submitted paper [87]
(20 pages). We can first notice that, contrary to previously, one can only assume that the admissible
shapes ω ∈ O have Lipschitz boundaries. Moreover we assume now that Γobs = ∂Ω.

The idea is to use the previously mentioned data completion problem in order to use the so-called
trial method to solve the inverse obstacle problem. We also use the minimization of a regularized
Kohn-Vogelius functional in order to approximate the solution of the initial inverse problem (III.1.1).

The first novelty is an improvement of the numerical resolution of the data completion problem
using a Newton approach, which is efficient since the functional is quadratic. Then we build an iterative
sequence of domains using the combination of a data completion subproblem and the trial method
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Figure III.1.2 – Object detection with noise (5%): Real solution, initial guess and obtained obstacle after 10
iterations (ε = 0.01).
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Figure III.1.3 – Object detection with noise: Real solution, initial guess and obtained obstacle after 55 iterations
(ε = 0.001).

which is used to control the evolution of the inclusion boundary. This basically means that, given an
inclusion ω, we compute an harmonic function u ∈ H1(Ω\ω) which admits the Cauchy data (gN, gD)
on the outer boundary ∂Ω. With the help of the Cauchy data at the interior boundary ∂ω, we aim
at updating the interior boundary such that the desired Dirichlet condition u = 0 holds at the new
interior boundary.

III.1.2.1 The data completion problem: a Newton method

Let us consider some nontrivial Cauchy data (gN, gD) ∈ H−1/2(∂Ω)×H1/2(∂Ω) and ω∗ ∈ O. In this
context, the data completion problem consists in recovering data on ∂ω∗, from the overdetermined
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Figure III.1.4 – Comparison between algorithms in the noisy case (5%) after 200 iterations.

data (gN, gD) on ∂Ω, that is:

Find u ∈ H1(Ω\ω∗) such that ∆u = 0 in Ω\ω∗,
u = gD on ∂Ω,

∂nu = gN on ∂Ω.

(III.1.13)

As previously we solve this problem by minimizing a regularized Kohn-Vogelius functional. Notice
that such a functional turns to be quadratic and convex. Surprisingly, to the best of my knowledge, only
gradient based numerical schemes have been studied for the resolution of this problem. We describe
here the Newton method that is completely suited for quadratic objectives.

In order to deal with the ill-posedness previously mentioned, we consider as before a Tikhonov
regularization of the functional which ensures the existence of a minimizer even for non compatible
data thanks to the gained of coerciveness and, in case of compatible data, the convergence towards the
exact solution (as mentioned in the previous section III.1.1). Then we introduce the two maps uDN
and uND defined as follows

uDN : H1/2(∂Ω) × H−1/2(∂ω) −→ H1(Ω\ω),
uND : H−1/2(∂Ω) × H1/2(∂ω) −→ H1(Ω\ω),

where uDN(gD, ϕ) ∈ H1(Ω\ω) solves the boundary values problem ∆u = 0 in Ω\ω,
u = gD on ∂Ω,

∂nu = ϕ on ∂ω,
(III.1.14)

and where uND(gN, ψ) ∈ H1(Ω\ω) solves the boundary values problem ∆u = 0 in Ω\ω,
∂nu = gN on ∂Ω,
u = ψ on ∂ω.

(III.1.15)

Notice that the indices mean the type of boundary condition, where the first one indicates the ou-
ter boundary and the second one the inner boundary. Notice also that, using the notations of Sec-
tion III.1.1, we have uDN(gD, ϕ) = ugD

ϕ and uND(gN, ψ) = ugN
ψ ; however, here, we reconstruct the

56
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data on the boundary ∂ω which will be an approximation of the unknown inclusion, and not on a
fixed part of the exterior boundary. Thus, in order to avoid any confusion between these two parts,
we differentiate these notations.

To tackle the inverse problem, we try to solve the problem:

Find (ϕ,ψ) ∈ H−1/2(∂ω)×H1/2(∂ω) such that
uDN(gD, ϕ) = uND(gN, ψ).

Thanks to the linearity of the maps uND and uDN, this is equivalent to:

Find (ϕ,ψ) ∈ H−1/2(∂ω)×H1/2(∂ω) such that
uDN(0, ϕ)− uND(0, ψ) = −

(
uDN(gD, 0)− uND(gN, 0)

)
.

Notice that this is a standard linear inverse problem associated to the linear operator

A : H−1/2(∂ω)×H1/2(∂ω) −→ H1(Ω\ω)
(ϕ,ψ) 7−→ uDN(0, ϕ)− uND(0, ψ).

Of course, the right hand side b := −
(
uDN(gD, 0)−uND(gN, 0)

)
may belong or may not belong to the

range of A, depending on the fact that data are compatible or not.
We try to solve the previous linear equation in a least squares meaning. We thus focus on the

following optimization problem

(ϕ∗, ψ∗) ∈ argmin
(ϕ,ψ)∈H−1/2(∂ω)×H1/2(∂ω)

K(ϕ,ψ),

where K : H−1/2(∂ω)×H1/2(∂ω)→ R is the non-negative Kohn-Vogelius cost functional defined by

K(ϕ,ψ) := 1
2 |A(ϕ,ψ)− b|2H1(Ω\ω).

Here again, the functional K is convex, positive and its infimum is zero. Notice that the previous
criterion also writes

K(ϕ,ψ) = 1
2 |uDN(gD, ϕ)− uND(gN, ψ)|2H1(Ω\ω) = 1

2

∫
Ω\ω
|∇uDN(gD, ϕ)−∇uND(gN, ψ)|2.

As previously, the idea is to minimize the functional K, noticing that if the inverse problem (III.1.13)
has a solution then the minimum of K is zero.

The usual theory of linear inverse problems can be applied. That is, we solve the normal equation
A∗A(ϕ,ψ) = A∗b or its regularized version (A∗A + εB∗B)(ϕ,ψ) = A∗b where B is a regularization
operator and where ε > 0. However it involves the adjoint A∗ of A and hence to manipulate the scalar
product in the space H−1/2(∂ω) × H1/2(∂ω). The main difficulty of this approach is that the scalar
product in the spaces H1/2(∂ω) and H−1/2(∂ω) is not so easy to deal with from a practical point of view
when we use the optimize then discretize approach. Conversely, if one first discretizes the equations
and then computes the discrete adjoint, the usual theory can be applied. In the following we want to
remain at the continuous level and reduce the minimization of the Kohn-Vogelius objective to such
a linear inverse problem in a simple way thanks to the Newton point of view. Since the objective K
is quadratic, its hessian is constant and its minimizer can be compute by a single step in a Newton
method.

Remark III.1.14. One can note, as in the previous remark III.1.4, that the two problems (III.1.14)
and (III.1.15) are well-posed for any given boundary conditions (ϕ,ψ) ∈ H−1/2(∂ω)×H1/2(∂ω).
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Using the standard Tikhonov regularization, we consider a non-negative real number ε and intro-
duce the regularized Kohn-Vogelius cost functional Kε : H−1/2(∂ω)×H1/2(∂ω)→ R defined by

Kε(ϕ,ψ) := K(ϕ,ψ) + εT (ϕ,ψ),

where the regularizing term T (ϕ,ψ) is defined by

T (ϕ,ψ) :=
1
2

(
|uND(0, ψ)|2 + |uDN(0, ϕ)|2 +

∫
∂ω

ψ2
)

=
1
2

∫
∂ω

(
ψ + ∂nuND(0, ψ)

)
ψ + uDN(0, ϕ)ϕ.

As in Section III.1.1, this regularization enables to obtain the existence of a minimizer, for all ε > 0,
even for non compatible data thanks to the gained of coerciveness and, in case of compatible data,
the convergence of these minimizers towards the exact solution when ε goes to 0.

We have the following expression of the gradient of the objectives with respect to (ϕ,ψ).
Proposition III.1.15. The functional K is quadratic with gradient

DK(ϕ,ψ) · [ϕ̃, ψ̃] =
∫
∂ω

[∂nuND(∂nuDN(gD, ϕ), ψ)− ϕ] ψ̃ +
[
uDN

(
uND(gN, ψ), ϕ

)
− ψ

]
ϕ̃,

and constant Hessian

D2K(ϕ,ψ) ·
(

[ϕ̃1, ψ̃1], [ϕ̃2, ψ̃2]
)

= 〈uDN(0, ϕ̃1)− uND(0, ψ̃1),uDN(0, ϕ̃2)− uND(0, ψ̃2)〉.

Moreover the derivatives of T with respect to (ϕ,ψ) are

DT (ϕ,ψ) · [ϕ̃, ψ̃] =
∫
∂ω

ψ̃
(
ψ + ∂nuND(0, ψ)

)
+ uDN(0, ϕ)ϕ̃,

and
D2T (ϕ,ψ) · [(ϕ̃1, ψ̃1), (ϕ̃2, ψ̃2)] =

∫
∂ω

ψ̃1
(
ψ̃2 + ∂nuND(0, ψ̃2)

)
+ uND(0, ϕ̃2)ϕ̃1.

The first natural idea to build a numerical scheme for minimizing the objective is to use a descent
method, as what is done previously in Section III.1.1.2. This leads to a sequence (ϕn, ψn) by the
update rule (

ϕn+1
ψn+1

)
=
(
ϕn
ψn

)
+ sn+1dn,

where sn+1 is a descent step and where the descent direction dn is naturally chosen as the anti-gradient:

dn = −
(

uDN
(
uND(gN, ϕn), ϕn

)
− ψn

∂nuND
(
∂nuDN(gD, ϕn), ψn

)
− ϕn

)
+ ε

(
uDN(0, ϕn)

ψn + ∂nuND(0, ψn)

)
.

However this updates is not in the right spaces: while (ϕn, ψn) ∈ H−1/2(∂ω) × H1/2(∂ω), the
update dn lies in H1/2(∂ω)×H−1/2(∂ω). In fact, dn is not the gradient that should be computed with
respect to the scalar product on H−1/2(∂ω)×H1/2(∂ω) and not with respect to L2(∂ω)×L2(∂ω). The
true gradient is much more complex to compute. Therefore we do not consider the gradient method
here and use the Newton method that we describe in our context in the following proposition.
Proposition III.1.16. The Newton update (ϕ̃, ψ̃) ∈ H−1/2(∂ω)×H1/2(∂ω) for the regularized Kohn-
Vogelius objective Kε(ϕn, ψn) is given by the linear system

uDN
(
uND(0, ψ̃), ϕ̃

)
− ψ̃ + εuDN(0, ϕ̃)

= ψn − uDN
(
uND(gN, ϕn), ϕn

)
− εuDN(0, ϕn),

∂nuND
(
∂nuDN(0, ϕ̃), ψ̃

)
− ϕ̃+ ε

(
ψ̃ + ∂nuND(0, ψ̃)

)
= ϕn − ∂nuND

(
∂nuDN(gD, ϕn), ψn

)
− ε
(
ψn + ∂nuND(0, ψn)

)
.

We underline that the Hessian of the functional Kε(ϕ,ψ) does not depend on the argument (ϕ,ψ)
and, since the functional is quadratic, the Newton scheme converges in one iteration.
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III.1.2.2 The inverse obstacle problem: the trial method

We now aim at solving numerically the inverse obstacle problem (III.1.1) with the trial method.
The general idea is to use the previous data completion step in order to reconstruct u|∂ω and ∂nu|∂ω
on an approximation ∂ω of the real inclusion and then to use the so-called trial method in order to
update the shape of the inclusion.

Background and motivation. The trial method is a fixed-point type iterative method, which
is well-known from the solution of free boundary problems (see, e.g., [131, 212] and the references
therein). In the context of inverse problems, it has been used for instance in [201].

We assume in the following that the domain ω is starlike. Hence we represent the inclusion’s
boundary ∂ω by a parametrization γ : [0, 2π]→ R2 in polar coordinates, that is

∂ω =
{
γ(s) = r(s)er(s) ; s ∈ [0, 2π]

}
,

where er(s) = t
(

cos(s), sin(s)
)
denotes the unit vector in the radial direction. The radial function r(s)

is supposed to be a positive function in Cper([0, 2π]), where

Cper([0, 2π]) :=
{
r ∈ C([0, 2π]) ; r(0) = r(2π)

}
,

such that d(∂Ω, ∂ω) > 0.
The trial method to solve the conductivity problem (III.1.1) requires an update rule. Suppose that

the actual void’s boundary is ∂ωk. Then the data completion problem yields a state uk which satisfies ∆uk = 0 in Ω\ωk,
uk = gD on ∂Ω,

∂nuk = gN on ∂Ω.

The new boundary ∂ωk+1 is now determined by moving the old boundary into the radial direction,
which is expressed by the update rule

γk+1 = γk + r̃k er.

The computation of the update function r̃k is the topic of the next paragraph.

Update rule. The update function r̃k ∈ Cper([0, 2π]) should be constructed in such a way that
the desired homogeneous Dirichlet boundary condition will be (approximately) satisfied at the new
boundary ∂ωk+1, i.e. we want that the following equality holds:

uk ◦ γk+1 = 0 on [0, 2π],

where uk is assumed to be smoothly extended into the exterior of Ω\ωk if required.
The traditional update rule is obtained by linearizing uk ◦ (γk + r̃k er) with respect to the update

function r̃. This yields the equation

uk ◦ γk+1 ≈ uk ◦ γk +
(
∂uk
∂er
◦ γk

)
r̃k.

We decompose the derivative of uk in the direction er into its normal and tangential components:

∂uk
∂er

= ∂uk
∂n 〈er,n〉+ ∂uk

∂τ
〈er, τ 〉 on ∂ωk,
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where τ represents the unit tangential vector. Hence, defining F (r̃k) := uk ◦ γk +
(
∂uk
∂er
◦ γk

)
r̃k, we

want that F (r̃k) = 0 and then we arrive at the update equation

F (r̃k) = uk ◦ γk +
[(

∂uk
∂n ◦ γk

)
〈er,n〉+

(
∂uk
∂τ
◦ γk

)
〈er, τ 〉

]
r̃k = 0. (III.1.16)

Remark III.1.17. We mention that the solution of the data completion problem according to Sec-
tion III.1.2.1 immediately yields the quantities uk|∂ωk and ∂nuk|∂ωk . Since uk|∂ωk is expressed in terms
of trigonometric polynomials, it is also straightforward to compute(

∂uk
∂τ
◦ γk

)
(s) = 1

‖γ′k(s)‖
∂uk
∂s

(s).

Consequently all terms required in (III.1.16) are available.

Numerical simulations. We perform some numerical simulations presented in Figures III.1.5
and III.1.6 which illustrate the efficiency of the proposed method.

Figure III.1.5 – Iterates (in blue) and the final reconstructions for the first example (in green) with 1% noise
(left-hand side) and with 5% noise (right-hand side).

Figure III.1.6 – Iterates (in blue) and the final reconstructions for the second example (in green) with 1%
noise (left-hand side) and with 5% noise (right-hand side).

III.1.3 Perspectives

The two previous studies concern Laplace’s equation. Their adaptations to others PDE, as the
(Navier-)Stokes system is natural. Additionally to the numerical difficulties that can appear, the main
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novelty could be to adapt to the Stokes system the density lemma on compatible data III.1.3. Indeed
this lemma is crucial in order to understand the ill-posedness of the inverse problem and to prove that
the infimum of the functional is always zero.

Additionally, another perspective is to take into account uncertainties in the measurements, which
is of course more realistic. One could follow the strategy developed recently by Dambrine et al. in [108]
concerning the inverse obstacle problem for complete Cauchy data. The main assumption is to model
the measurements gN as a random field. The strategy which consists in minimizing each realization of
the functional and in taking the average of the minimizers is obviously too costly numerically. Then
Dambrine et al. develop in [108] another approach which consists in minimizing an averaged shape
functional, that is, for 0 < α < 1,

F(ω) = (1− α)E(K(ω)) + αV(K(ω)),

where E represents the expectation and V the variance. Then, assuming that gN has a decomposition
with respect to some independent and identically distributed random variables, they show that the
expectation and the variance of the random shape functional can be computed from deterministic
quantities. Hence the authors compute the shape derivatives and obtain a deterministic shape opti-
mization algorithm in order to solve the inverse obstacle problem for Laplace’s equation. We expect
to adapt this strategy to the case of partial Cauchy data, studying the data completion problem by
the same method. Once again the case of others PDE could be also addressed.

III.2 With generalized impedance conditions of the Wentzell
type

This section focuses on the inverse obstacle problem in the case of corrosion on the obstacle,
or if the inclusion has a thin layer. In such a case, one can model the corrosion or the presence
of the thin layer by nonclassical boundary conditions on the obstacle called Generalized Impedance
Boundary Conditions (GIBC). We focus here on the so-called Wentzell boundary conditions given
by ∂nu + αu + β∆τu = 0, with α > 0 and β < 0. This work was done in collaboration with Marc
Dambrine (university of Pau) and Djalil Kateb (university of Compiègne) and is published in Inverse
Problems (see [88], 26 pages).

III.2.1 The inverse obstacle problem with Wentzell boundary conditions

In this section we study the inverse obstacle problem for a corroded obstacle modeled by the
Wentzell boundary conditions. In our setting, we assume that the boundary coefficients modeling the
corrosion are known and we want to reconstruct the shape of the inclusion from Cauchy data. A
study of the problem of corrosion detection, for Robin boundary conditions, is given by Cakoni et al.
in [74] using a boundary integral equation method, in the spirit of the method proposed by Kress et
al. in [166]. Especially, in [74], the authors give a non-identifiability result. Even if we do not obtain
a general identifiability result (as the one stated for Robin boundary conditions by Bacchelli in [31]),
we prove it for annular configurations with the same center using two suitable measurements. Then,
following previous works on electric impedance topography (see [7, 8, 126]) or on the same topic in the
Stokes and Navier-Stokes cases (see [32, 83, 89]), our strategy is to minimize a least squares functional.

More precisely, let Ω be a smooth (at least C3) bounded open set of Rd (with d = 2 or d = 3).
Let d0 > 0 be a fixed (small) real number. The set of admissible shapes is now defined by

O :=
{
ω ⊂⊂ Ω open set with a C3 boundary such that d(x, ∂Ω) > d0, ∀x ∈ ω

and such that Ω\ω is connected
}
.
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Let us consider ω∗ ∈ O and gD ∈ H5/2(∂Ω) such that gD 6= 0, and let gN ∈ H3/2(∂Ω) be an admissible
boundary measurement, that is gN belongs to the range of the Dirichlet-to-Neumann operator defined
by Λ∂Ω : gD ∈ H5/2(∂Ω) 7→ ∂nu ∈ H3/2(∂Ω), where u is solution of Laplace’s equation with u = gD
on ∂Ω and ∂nu + αu + β∆τu = 0 on ∂ω∗. Then we consider the following overdetermined boundary
values problem: 

−∆u = 0 in Ω\ω∗,
u = gD on ∂Ω,

∂nu+ αu+ β∆τu = 0 on ∂ω∗,
∂nu = gN on ∂Ω,

(III.2.1)

where α > 0 and β < 0 are fixed real number.
Thus we consider the following geometric inverse problem:

Find ω∗ ∈ O and u which satisfy the overdetermined problem (III.2.1). (III.2.2)

To solve this inverse problem, we consider, for ω ∈ O, the least squares functional

J (ω) := 1
2

∫
∂Ω
|∂nu(ω)− gN|2,

where u ∈ H1(Ω\ω) solves  −∆u = 0 in Ω\ω,
u = gD on ∂Ω,

∂nu+ αu+ β∆τu = 0 on ∂ω,
(III.2.3)

measuring in the misfit to data in the L2 sense. Notice that one can prove that the boundary value
problem (III.2.3) admits a unique solution u ∈ H3(Ω\ω).

Then, as in Section II.2.2, we try to minimize the least squares criterion J :

ω∗ ∈ argmin
ω∈O

J (ω). (III.2.4)

Indeed, as previously, if ω∗ solves the inverse problem (III.2.2), then J (ω∗) = 0 and (III.2.4) holds.
Conversely, if ω∗ solves the optimization problem (III.2.4) with J (ω∗) = 0, then it is a solution
of (III.2.2).

Remark III.2.1. Using the local regularity of the solutions in a neighborhood of ∂ω, notice that
we can only assume that ∂Ω is Lipschitz and that gD ∈ H1/2(∂Ω) and gN ∈ H−1/2(∂Ω) (see for
instance [32, 83, 89]). Moreover we could assume that the measurement gN is made only on a part
Γobs ⊂ ∂Ω and not on the whole exterior boundary as made for instance in [32, 83].

Let us recall that Ωd0 is an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3}

and the space of admissible deformations is now defined by

U :=
{
V ∈W3,∞(Rd); supp (V ) ⊂ Ωd0 and ‖V ‖3,∞ < min

(
d0

3 , 1
)}

.

III.2.2 The main results and the numerical reconstructions

III.2.2.1 An identifiability result on rings

The question of the identifiability is the following: does a measurement (or several measurements)
determine uniquely the domain ω∗? This type of result was proved by Bacchelli in [31] for Robin
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boundary conditions. In the case of generalized impedance boundary conditions, one can mention the
discussion by Cakoni et al. in [75], but, up to my knowledge, this is still an open question.

In order to try to answer to this question concerning the non classical Wentzell boundary conditions,
let us focus on particular geometries in the bi-dimensional case. More precisely we consider an annulus
with two concentric circles: the inner circle ∂ω = rS1 has a radius r and we denote by R the radius
of the outer circle ∂Ω = RS1 (where S1 denotes the unit sphere). Hence,

Ω\ω :=
{
x ∈ R2, r < ‖x‖ < R

}
.

Then let u be the solution of the following problem ∆u = 0 in Ω\ω,
u = gD on ∂Ω = RS1,

∂nu+ αu+ β∆τu = 0 on ∂ω= rS1.
(III.2.5)

We deal with the inverse problem of reconstructing the inner circle (i.e. find the radius r) from
boundary measurements on the outer circle ∂Ω. We give a result for identifying uniquely the obstacle
from two pairs of Cauchy data (gD,1, ∂nu1 ∂Ω = gN,1) and (gD,2, ∂nu2 ∂Ω = gN,2), where u1 and u2 are
the respective solutions of Problem (III.2.5) with the Dirichlet data gD,1 and gD,2.

Precisely we show the following result: given α > 0 and β < 0, one can determine uniquely ∂ω
(i.e. the radius r) with two pairs of measurements (gD,1, gN,1) and (gD,2, gN,2), provided gD,1 and gD,2
are suitably chosen (see [88, Theorem 3.1] for a precise statement).

The idea of the proof is the following. We consider two inputs of the form gD,1 = Rn1 cos(n1θ) and
gD,2 = Rn2 cos(n2θ). We assume that two inner radii r and r̃ generate the same Cauchy data for both
inputs. We obtain a system of equations in t := r/r̃ with respect to n1 and n2 of the kind

h1
ni(t) = h2

ni(t), ∀i = 1, 2,

where the hjni are real valued functions of the real variable. We show that for n1 and n2 suitably
chosen, the unique solution of the previous system is t = 1 meaning r = r̃.

III.2.2.2 Shape calculus

As before we aim at using shape optimization tools in order to minimize J . Then, by the classical
method of using a change of variables and the implicit function theorem, we prove the existence of the
first and second order shape derivatives. Hence one compute the shape derivatives of the state and
of the functional. After lengthly computations, we prove the three following results, where H denotes
the mean curvature of ∂ω and b is the signed distance to ∂ω defined by

b(x) :=

 −d(x, ∂ω) if x ∈ Ω\ω,
0 if x ∈ ∂ω,

d(x, ∂ω), if x ∈ ω.

Proposition III.2.2. Let V ∈ U . The shape derivative u′ of u which belongs to H1(Ω\ω) is the only
solution of the following boundary values problem −∆u′ = 0 in Ω\ω,

u′ = 0 on ∂Ω,
∂nu

′ + αu′ + β∆τu
′ = ξ(u,V · n) on ∂ω,

with

ξ(u,V · n) := (V · n) (−α∂nu− αHu+ ∆τu) +∇τu · ∇τ (V · n)
− β∆τ ((V · n)∂nu)− βdivτ

(
(V · n)H∇τu− 2(V · n)D2b∇τu

)
.
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Proposition III.2.3. For V in U , the least squares functional J is differentiable at ω in the direc-
tion V with

DJ (ω) · V = −
∫
∂ω

(
− αHuw +

(
−I + β(H I− 2 D2b)

)
(∇τu · ∇τw) + ∂nu∂nw

)
(V · n),

where w ∈ H1(Ω\ω) is the solution of the following boundary values problem −∆w = 0 in Ω\ω,
w = ∂nu− gN on ∂Ω,

∂nw + αw + β∆τw = 0 on ∂ω.

Proposition III.2.4. Let ω∗ ∈ O be a solution of the inverse problem (III.2.2). For V ∈ U , we have

D2J (ω∗) · V · V = −
∫
∂ω∗

(
− αHuw′ +

(
−I + β

(
HI− 2D2b

)
(∇τu · ∇τw′)

)
+ ∂nu∂nw

′
)

(V · n),

where w′ ∈ H1(Ω\ω∗) is the solution of the following problem −∆w′ = 0 in Ω\ω∗,
w′ = ∂nu

′ on ∂Ω,
∂nw

′ + αw′ + β∆τw
′ = 0 on ∂ω∗.

From this expression of the shape hessian, we prove the instability of the inverse problem (III.2.2)
using the method already used in [32, 83, 89, 126]. The idea of the proof is to write the shape Hessian
as a composition of linear continuous operators whose one is compact. We use a local regularity
argument (and a compact imbedding between two Sobolev spaces) in order to prove the compactness
of the Riesz operator corresponding to the shape Hessian defined from H1/2(∂ω∗) to H−1/2(∂ω∗) at ω∗.
Notice that an alternative proof could be to use the potential layers as what is done in [7].

Despite the instability result, we perform numerical simulations (see Figures III.2.7 and III.2.8)
using a classical shape variation descent algorithm. Nevertheless the simulations are done without
any regularization method in order to solve numerically the optimization problem (III.2.4). Indeed it
seems that, in our case, the degeneracy of the functional does not lead to apparition of oscillations
in the numerical reconstruction. Surprisingly, this problem seems to be less unstable than the cases
of classical boundary conditions, maybe due to the Laplace-Beltrami operator which leads to the
presence of the mean curvature in the expression of the gradient of the functional.

Figure III.2.7 – Reconstruction of some inclusions (exterior boundary in red, initial shape in purple, exact
shape in blue and reconstruction in green)
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III.2 With generalized impedance conditions of the Wentzell type

Figure III.2.8 – Reconstruction with 3% and 10% artificial noise (exterior boundary in red, initial shape in
purple, exact shape in blue and reconstruction in green)

III.2.3 Conclusion

After this work, I pursue my studies on the GIBC, more precisely on the obtention of some GIBC
and their shape derivatives in several contexts. This is the topic of the next chapter IV.
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Chapter IV

Mathematical modeling: taking into account
thin layers

The last section of the previous chapter (see Section III.2) focuses on the inverse obstacle problem
with Wentzell boundary condition. These nonclassical boundary conditions are usually built using an
asymptotic expansion of the solution of the considered problem (see, e.g., the PhD thesis of Vial [215]).
This chapter aims at building boundary conditions modeling a thin layer or a corrosion
effect for some problems: Generalized Impedance Boundary Conditions (GIBC) are es-
tablished in the context of biology in Section IV.1 and in the context of solid mechanics
in Section IV.2. One of the difficulty is to take into account the characteristics of the layer, as in
the first section.

This chapter summarizes the two following articles which concern the construction and the study
of GIBC:

[92] F. Caubet, H. Haddar, J-R. Li and D.V. Nguyen. New transmission condition accounting
for diffusion anisotropy in thin layers applied to diffusion MRI. ESAIM Math. Model. Numer.
Anal., 51(4):1279–1301, 2017;

[93] F. Caubet, D. Kateb and F. Le Louër. Shape sensitivity analysis for elastic structures with
generalized impedance boundary conditions of the Wentzell type - Application to minimization
of the compliance. Journal of Elasticity, accepted, 2018.

Diffusion Magnetic Resonance Imaging (dMRI) gives a measure of the average distance travel-
led by water molecules in a medium and can give useful information on cellular structure and
structural change when the medium is biological tissue. A large number of works have appeared
in recent years and show that dMRI measurements can be correlated with various physiological or
pathological conditions such as cell swelling, demyelinating disorders or the presence of tumors (see,
e.g., [157, 161, 170, 177] and references therein). Especially dMRI can be used to detect and quantify
abnormalities in the myelin sheath surrounding the axons of neurons (see [29, 52, 130, 132]). The
loss of or damage to the myelin sheath can be correlated with many diseases of brain function. A
commonly used mathematical model for water proton magnetization in tissue is the Bloch-Torrey
partial differential equation (see [213]), where intrinsic diffusion tensors are defined in different cel-
lular geometrical compartments. The biological model is usually a three-compartment geometrical
model: the three geometrical compartments are 1) the axons, 2) myelin sheath surrounding the axons,
3) the extra-cellular space. This original three-compartment model can then be approximated by a
two-compartment geometrical model: the two geometrical compartments are 1) the axons and 2) the
extra-cellular space. These two compartments are linked via a transmission condition, obtained using
an asymptotic expansion of the solution of the Bloch-Torrey equation. One objective of my work is to
build such a condition taking into account an anisotropic diffusion.
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This kind of transmission conditions can appear in several context. Another example concerns the
solid mechanics and the mathematical analysis of some elastic structures coated with a thin layer
of constant thickness, which can model some corrosion effects for instance (see, e.g., the work of
Vogelius et al. [217] for the laplacian case). In linear elasticity, it deserves to mention the book of
Ciarlet [99], where a local representation of the GIBC is proposed, and others works [57, 128] in the
context of thin elastic plates or shells. A very common problem in structural mechanics, even for
classical boundary conditions, is then to study the optimal design of a rigid structure in order, for
instance, to maximize its rigidity. Several works deal with the problem of minimizing the compliance
of a structure where standard boundary conditions are imposed on the free boundary. We can here
mention the works of Allaire et al. [16, 18], Amstutz et al. [23], Novotny et al. [183] and Dambrine et
al. [110] (this list of references is far from being exhaustive). Combining these two problems of modeling
a thin layer and of optimal design, we address the question of finding the optimal shape of some elastic
structures with a corroded part of the boundary.

IV.1 Generalized Impedance Boundary Conditions for diffu-
sion Magnetic Resonance Imaging (MRI)

This section is devoted to the construction of transmission conditions in the context of diffusion
Magnetic Resonance Imaging (dMRI) taking into account an anisotropic diffusion in the membrane
of a cell. This work was done in collaboration with Houssem Haddar, Jing-Rebecca Li and Dang Van
Nguyen (École Polytechnique) as part of the PhD thesis of Dang Van Nguyen, and is published in
ESAIM: Mathematical Modelling and Numerical Analysis (see [92], 23 pages).

In order to model the effect of the myelin layer of a cell, a simple and well-known transmission
condition can be used when the diffusion inside the layer is assumed to be isotropic. However, since
the myelin sheath is composed of layers of lipids or proteins [190] (see Fig. IV.1.1 for an illustration),
it is expected that the diffusion tensor in the myelin sheath will have a normal component that is
much smaller than the tangential component (see discussion about diffusion inside the myelin sheath
in [38, 168, 169]).

Figure IV.1.1 – Illustration of the myelin sheath, composed of layers of lipids, surrounding the axon.

Hence, to obtain asymptotic two-compartment models, we rely on a methodology based on classical
scaled asymptotic expansions for thin structures (see [98, 115, 187]) and on an appropriate scaling of
tangential and normal diffusion inside the myelin layer. This methodology has been extensively used to
model thin coatings (see, e.g., [48, 143] and references therein), rough boundaries (see, e.g., [4, 159] and
references therein) and imperfectly conducting obstacles (see, e.g., [144, 145] and references therein).
We can also mention here the works [123, 185].
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To account for low diffusion normal to the layer, we make the following choice for the diffusion
inside the layer:

1. for the tangential direction, we use the same scaling as for diffusion in the axons and in the
extra-cellular space;

2. for the normal direction, we use a scaling proportional to the layer thickness.
This choice leads to asymptotic transmission conditions. The first order approximation (in the layer
thickness) leads to a transmission condition that has the same form as the classical transmission condi-
tion associated with isotropic layer diffusion. Anisotropy appears in the second order approximation
and gives rise to our new Anisotropic Diffusion Transmission Condition (ADTC). This ADTC couples
volumetric diffusion equations with surface diffusion equations. We note that the natural expression
of the second order transmission condition does not exhibit uniform time stability with respect to the
layer thickness, but this well-known phenomenon for higher order asymptotic models can be corrected
by the use of a Padé expansion, as in [98, 142], and our ADTC is corrected in this way. Thus, in its
final form, our ADTC has a mass-conservation property, which is important for dMRI modeling.

IV.1.1 Bloch-Torrey equation to model the diffusion MRI signal

A classic dMRI experiment consists of applying two pulsed gradient magnetic fields with a 180
degree spin reversal between the two pulses in order to encode the displacement of the water molecules
between the two pulses (see, e.g., [211]). The complex transverse water proton magnetization M can
be modeled by the following Bloch-Torrey PDE (see, e.g., [213]):

∂M(x, t)
∂t

+ iq · xf(t)M(x, t)− div (σ(x)∇M(x, t)) = 0, (IV.1.1)

where i :=
√
−1, σ(x) is the intrinsic diffusion tensor, q contains the amplitude and direction in-

formation of the applied diffusion-encoding magnetic field gradient multiplied by the gyro-magnetic
ratio of the water proton, and f , where maxt f(t) = 1, is the normalized time profile of the diffusion-
encoding magnetic field gradient sequence. The time profile of the classic Pulsed Gradient Spin Echo
(PGSE) [211] sequence (simplified to include only the parameters relevant to diffusion, i.e., the imaging
gradients are ignored) is the following:

f(t) :=


1, 0 < t ≤ δ,
−1, ∆ < t ≤ ∆ + δ,

0, elsewhere,

where 0 ≤ δ ≤ ∆ and where we made f(t) negative in the second pulse to include the effect of the 180
degree spin reversal between the pulses. The time at which the signal is measured is called the echo
time TE > δ + ∆.

The dMRI signal is the total magnetization:

S(q) :=
∫
M(x, δ + ∆)dx,

where M is the solution of Equation (IV.1.1). The signal is usually plotted against a quantity called
the b−value, given by

b(q) := ‖q‖2δ2
(

∆− δ

3

)
,

because for a homogeneous domain, where σ(x) = σ is constant, the signal has the analytical expres-
sion

S(q) = exp
(
−
(

qTσq
‖q‖2

)
b(q)

)
,

where the quantity before the b-value is the diffusion coefficient in the direction of q.
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IV.1.1.1 Geometrical compartments

A standard geometrical model of the brain white matter (for an early example, see [28]) divides
the tissue into three compartments:

1. Ωηi is the axons (with associated intrinsic diffusion tensor σi);
2. Ωηe is the extra-cellular space (with associated intrinsic diffusion tensor σe);
3. Ωηm is the myelin sheath (with associated intrinsic diffusion tensor σm).

We denote by η the thickness of the layer (which is assumed to be constant) and by Γ a fictitious
interface inside the myelin layer at equal distance from the two boundaries of the layer. We denote
by Ω the domain formed by union of Ωη` , ` = e, i,m. We also introduce some notations as we consider
the geometrical compartments when η → 0: we denote the remaining two compartments by Ωi and
by Ωe (see Figure IV.1.2). For the ease of notation, we restrict the diffusion tensor, σ(x), for the tissue
to be piecewise constant:

σ(x) :=


σi(x), x ∈ Ωηi ,
σe(x), x ∈ Ωηe ,
σm(x), x ∈ Ωηm.

Ωηm

Ωηi

Ωηe
Γ

Γηe

Γηi
η

(a)

Ωi

Ωe
Γ

(b)

Figure IV.1.2 – Notations for the three compartment model (left) and the two compartment model (right).

For the three compartment model, the natural continuity conditions (of the magnetization and the
flux) on the compartment interfaces result is the following Interface Conditions (IC) on the bounda-
ries Γηi and Γηe of Ωηi and Ωηe :

IC on Γηe and Γηi :
{

[σ∇M · n] = 0,
[M ] = 0,

(IV.1.2)

where n is the normal to Γηe or Γηi and where the symbol [·] denotes the jump relative to the direction
of n.

Finally the anisotropy inside the layer is assumed to be such that

σm :
{
σmn = σn

m n,
σmτ = στm τ ,
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where σn
m and στm indicate respectively the transverse diffusion coefficient and tangential diffusion

coefficient in the layer and τ represents the unit tangential vector. The important assumption we
make (see (IV.1.6) below) implies that

σn
m � στm.

IV.1.1.2 Classical asymptotic model for isotropic diffusion in layer

If the diffusion inside the layer is isotropic, i.e. σn
m = στm, it is well-known that the following asymp-

totic transmission condition, which we denote the Isotropic Diffusion Transmission Condition (IDTC),
can be imposed on the interface Γ (see, e.g., [101]):

IDTC on Γ :
{

[σ∇M · n] = 0,
σ∇M · n = κ0 [M ] , (IV.1.3)

where κ0 is a given permeability coefficient. We recall that in addition to Equation (IV.1.3), the
PDE (IV.1.1) is assumed to hold on Ωi and Ωe. This type of transmission condition corresponds to a
first order asymptotic model when the diffusion tensor inside the membrane scales like η. Our aim is
to improve this condition by taking into account the O(1) tangential diffusion.

IV.1.2 Formal derivation of transmission conditions

The methodology we adopt to derive transmission conditions is similar to the one in [48, 143, 144]
and is based on a scaling of the layer with respect to its thickness η and an asymptotic expansion of
the fields with respect to η. In this manuscript we restrict ourselves to a formal obtention of these
conditions (in the sense that no convergence proof will be established). The latter is technical and
is usually valid (for linear problems) as long as the obtained model is proved to be uniformly stable
with respect to the thickness. This is why we only discuss this last point hereafter. The convergence
proof is given in the appendix of the corresponding article [92]. The following formal technical details
in space dimension 2 are inspired by [27] (see also [144] for space dimension 3).

IV.1.2.1 Expression of the differential operators in curvilinear coordinates

We assume that Γ is a regular curve (at least C2) and is the boundary of a simply connected
domain Ωi (independent from η). Notice that we can treat the case of multiply connected domains by
treating separately each connected component. Then the boundary Γ can be parametrized in terms of
the curvilinear abscissa s as s 7→ xΓ(s), s ∈ [0, L[, with |dxΓ(s)/ds| = 1, where L is the length of Γ.
We assume that this parametrization defines a clockwise orientation. Let n(s) be the unitary normal
vector at xΓ(s) directed to the exterior of Ωi and set τ (s) = dxΓ(s)/ds which is a unitary vector
tangential to Γ at xΓ(s). The curvature c can be defined by

c(s) := τ (s) · dn(s)/ds.

Then, for η < inf0≤s≤L 1/|c(s)|,

∀x ∈ Ωηm,∃!(s, r) ∈ [0, L[×]− η/2, η/2[, x = xΓ(s) + r n(s). (IV.1.4)

Notice that xΓ is the orthogonal projection of x on Γ. The couple (s, r) will be referred to as curvilinear
(or parametric) coordinates of x ∈ Ωηm (with respect to Γ). Let u be a function defined in Ωηm and let
ũ : [0, L[×]− η/2, η/2[ be defined by

ũ(s, r) := u(x),
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where x and (s, r) satisfy Equation (IV.1.4). Then we have

∇u(x) = 1
1 + rc

∂sũ τ + ∂rũn = 1
1 + rc

∇τ ũ+ ∂rũn

and, for a tensor A such that Aτ = Aττ and An = Ann, we have

div
(
A∇u(x)

)
= 1

1 + rc
∂s

(
1

1 + rc
Aτ∂s ũ

)
+ 1

1 + rc
∂r ((1 + rc)An∂r ũ)

= 1
1 + rc

divτ
(

1
1 + rc

Aτ∇τ ũ
)

+ 1
1 + rc

∂r ((1 + rc)An∂r ũ) . (IV.1.5)

IV.1.2.2 Scaling and formal asymptotic expansion

In order to take into account the relatively small values of the diffusion tensor along the normal
coordinate, we choose the scaling

σn
m = κ0 η (IV.1.6)

while we assume that σe, σi and στm are independent from η. Physically, the condition (IV.1.6) may be
an appropriate choice for dMRI modeling in the case of thin myelin layers and high b-values (at high b-
values, permeability effects/water exchange become more prominent). We also scale the membrane Ωηm
with respect to η and transform this domain into (the η independent domain) Γ×]−1/2, 1/2[ through
the mapping x 7→ (xΓ(s), r/η). Let us denote by M` the restriction of M to the domain Ω` for
` = e, i,m. We then define M̃m on Γ×]− 1/2, 1/2[×[0,∞) as

M̃m(xΓ, R, t) := Mm(x, t),

with R := r
η and x, xΓ and r satisfy (IV.1.4). Since the time plays only the role of a parameter in

the process of establishing membrane transmission condition, we omit indicating this variable in the
notation. We first observe, using (IV.1.5),

div (σm∇Mm) = 1
1 + ηRc

divτ
(

1
1 + ηRc

στm∇τM̃m

)
+ 1
η2

1
1 + ηRc

∂R

(
(1 + ηRc)ηκ0∂RM̃m

)
and also notice that

iq · x f(t)M = i(q · xΓ + qnηR)f(t)M̃.

Assuming that M̃m has the asymptotic expansion

M̃m(xΓ, R) =
∞∑
k=0

ηkMk
m(xΓ, R),

for some functionsMk
m defined on Γ×]−1/2, 1/2[, the Bloch-Torrey equation (multiplied by the factor

(1 + ηR)3) implies

∞∑
k=0

ηk
[
(1 + ηR)3∂tM

k
m + (1 + ηR)3i(q · xΓ + qnηR)f(t)Mk

m − (1 + ηR)divτ
(
στm∇τMk

m
)

+ ηRστm∇τMk
m∇τ c−

κ0

η
(1 + ηR)3∂2

RRM
k
m − (1 + ηR)2κ0c∂RM

k
m

]
= 0.

Then, by formal identification of powers of η, we obtain particularly for the first two terms

κ0∂
2
RRM

0
m = 0, (IV.1.7)

κ0∂
2
RRM

1
m = ∂tM

0
m + iq · xΓf(t)M0

m − divτ
(
στm∇τM0

m
)
− κ0c∂RM

0
m. (IV.1.8)
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The expression of ADTC will be obtained from explicit expression of the solutions of (IV.1.7)
and (IV.1.8) in terms of R and using the continuity conditions (IV.1.2) that can be written in terms
of M̃m as

M̃m(xΓ,− 1
2 ) = Mi(xΓ − η

2 n), M̃m(xΓ,
1
2 ) = Me(xΓ + η

2 n),

κ0∂RM̃m(xΓ,− 1
2 ) = σi∇Mi(xΓ − η

2 n) · n, κ0∂RM̃m(xΓ,
1
2 ) = σe∇Me(xΓ + η

2 n) · n.
(IV.1.9)

In order to relate these boundary conditions to the asymptotic expansion of M̃m we postulate that,
for ` = i, e,

M` =
∞∑
k=0

ηkMk
` ,

where the functionsMk
` are defined on Ω` and satisfy the Bloch-Torrey equation in Ω`. We distinguish

two families of ADTC according to the way we choose to match the three asymptotic expansions.

IV.1.2.3 A first family of ADTC

A first family of ADTC is obtained by imposing the continuity conditions

Mk
m(xΓ,− 1

2 ) = Mk
i (xΓ − η

2 n), Mk
m(xΓ,

1
2 ) = Mk

e (xΓ + η
2 n) (IV.1.10)

and

κ0∂RM
k
m(xΓ,− 1

2 ) = σi∇Mk
i (xΓ − η

2 n) · n, κ0∂RM
k
m(xΓ,

1
2 ) = σe∇Mk

e (xΓ + η
2 n) · n,

(IV.1.11)
for all k, which is obtained from (IV.1.9) by formal identification of powers of η. We remark that in
this way the functions Mk

m depend also on η. Let us introduce the notations

〈
Mk
〉
η

(xΓ) :=
Mk

e (xΓ + η
2 n) +Mk

i (xΓ − η
2 )

2 ,
[
Mk
]
η

(xΓ) := Mk
e (xΓ + η

2 )−Mk
i (xΓ − η

2 n),

and similar definitions for
〈
σ∇Mk · n

〉
η
and

[
σ∇Mk · n

]
η
. We first express Mk

m (for k = 0, 1) in
terms of

〈
Mk
〉
η
and

[
Mk
]
η
by solving with respect to R Equations (IV.1.7) and (IV.1.8) using the

two boundary conditions in (IV.1.10). We then obtain an interface condition by using the two boundary
conditions in (IV.1.11). We can already remark that the obtained interface condition will not be a
standard interface condition on Γ but will correspond to a condition that couples the boundary values
at ∂Ωηe and ∂Ωηi .

First order term. From (IV.1.7) and the boundary conditions in (IV.1.10), we readily see that

M0
m =

〈
M0〉

η
+R

[
M0]

η
. (IV.1.12)

We then immediately get from (IV.1.11)[
σ∇M0 · n

]
η

= 0 and
〈
σ∇M0 · n

〉
η

= κ0
[
M0]

η
. (IV.1.13)

Second order term. Proceeding as previously, we get from (IV.1.7), (IV.1.10), (IV.1.12) and from
(IV.1.11)[

σ∇M1 · n
]
η

= (∂t + iq · xΓf(t))
〈
M0〉

η
− divτ

(
στm∇τ

〈
M0〉

η

)
− cκ0

[
M0]

η
,〈

σ∇M1 · n
〉
η

=κ0
[
M1]

η
+ 1

12(∂t + iq · xΓf(t))
[
M0]

η
− 1

12divτ
(
στm∇τ

[
M0]

η

)
.

(IV.1.14)
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A first ADTC of order two. According to the conditions (IV.1.13) and (IV.1.14) and since
M` = M0

` + ηM1
` +O(η2) for ` = e, i, we obtain the following interface approximate conditions

[σ∇M · n]η =η
(

(∂t + iq · xΓf(t)) 〈M〉η − divτ
(
στm∇τ 〈M〉η

)
− cκ0 [M ]η

)
+O(η2),

〈σ∇M · n〉η =κ0 [M ]η + η

12

(
(∂t + iq · xΓf(t)) [M ]η − divτ

(
στm∇τ [M ]η

))
+O(η2).

(IV.1.15)

A membrane transmission condition of order 2 with respect to η is then obtained from (IV.1.15)
by dropping the O(η2) terms. However it turns out that the obtained expression does not lead to a
diffusion problem that respect an energy identity similar to the original problem. This energy identity
is important as it is supposed to provide uniform stability with respect to η. This stability is the main
ingredient that guarantee the convergence rate at the consistency order (see, e.g., [115, 143, 144] for
similar problems).

In order to obtain an expression of ADTC that respects an uniform stability with respect to η, we
replace the term ηκ0 [M ]η by η 〈σ∇M · n〉η in the first equation of (IV.1.15) and add η

4 c [σ∇M · n]η
to the left hand side of the second equation (IV.1.15). These substitutions, that have been suggested
by the proof of the following energy estimate (IV.1.17), indeed do not change the formal O(η2) order
of the reminders. We therefore propose as second order ADTC the following conditions:

[σ∇M · n]η + ηc 〈σ∇M · n〉η = η

(
(∂t + iq · xΓf(t)) 〈M〉η − divτ

(
στm∇τ 〈M〉η

))
,

〈σ∇M · n〉η + η
4 c [σ∇M · n]η = κ0 [M ]η + η

12

(
(∂t + iq · xΓf(t)) [M ]η − divτ

(
στm∇τ [M ]η

))
.

(IV.1.16)
Then we prove the following result, where we use the notation Ωη := Ωηi ∪ Ωηe .

Proposition IV.1.1. If σe = σeI and σi = σiI, then the following energy estimate holds:

1
2

d
dt

∫
Ωη
|M |2 +

∫
Ωη
σ |∇M |2 + κ0

∫
Γ

∣∣∣[M ]η
∣∣∣2

+ η

(
1
2

d
dt

∫
Γ

∣∣∣〈M〉η∣∣∣2 +
∫

Γ
στm

∣∣∣〈∇τM〉η∣∣∣2)+ η

12

(
1
2

d
dt

∫
Γ

∣∣∣[M ]η
∣∣∣2 +

∫
Γ
στm

∣∣∣[∇τM ]η
∣∣∣2) = 0.

(IV.1.17)

Moreover, if the initial dataM(·, 0) = Minit belongs to H1(Ωη` ), for ` = i, e, then the Bloch-Torrey equa-
tion (IV.1.1) with the ADTC (IV.1.16) admits a unique solutionM`∈L2(0,T ; H1(Ωη` ))∩C0(0,T ; L2(Ωη` ))
such that [M ]η and 〈M〉η belong to L2(0, T ; H1(Γ)) ∩ C0(0, T ; L2(Γ)).

Finally notice that in dMRI, the measured signal corresponds to
∫

ΩM and the application of a
diffusion-encoding magnetic field gradient (q 6= 0) induces attenuation of this quantity compared to
the case q = 0 (no attenuation). It is therefore important to check that our approximate model does
not induce artificial attenuation when q = 0. In this case, we check that we have the following mass
conservation property, for all t > 0,∫

Ωηe∪Ωηi
M(x, t) + η

∫
Γ
〈M(x, t)〉η =

∫
Ωηe∪Ωηi

M(x, 0) + η

∫
Γ
〈M(x, 0)〉 .

IV.1.2.4 A second family of ADTC

We have to notice that the previous ADTC (IV.1.16) has to be imposed numerically on each in-
terface ∂Ωηm ∩∂Ωηe and ∂Ωηm ∩∂Ωηi . However, in this case, we have to numerically manage a difficulty:
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IV.1 Generalized Impedance Boundary Conditions for dMRI

the vertices on these interfaces would have to be aligned. Given that making powerful finite element
mesh generation tools is an active area of research, this is a difficulty that may be resolved by choosing
a good mesh generator. For instance the mesh generator “TetGen” [204] allows the specification of
element vertices. To overcome this difficulty in another way, we present here some additional com-
putations based on Taylor expansion of Me and Mi in order to obtain new ADTC imposed on the
middle Γ of the membrane.

Let us introduce the notations〈
Mk
〉

(xΓ) := Mk
e (xΓ) +Mk

i (xΓ)
2 and

[
Mk
]

(xΓ) := Mk
e (xΓ)−Mk

i (xΓ).

The second family of ADTC is obtained by using the previous postulate, for ` = i, e,

M` =
∞∑
k=0

ηkMk
` ,

and by using Taylor expansions of Mk
` for all k, that is

Mk
`

(
xΓ + η

2n
)

= Mk
` (xΓ) + η

2∇M
k
` (xΓ) · n + η2

4 ∇
2Mk

` (xΓ) · n · n +O(η3),

Mk
`

(
xΓ −

η

2n
)

= Mk
` (xΓ)− η

2∇M
k
` (xΓ) · n + η2

4 ∇
2Mk

` (xΓ) · n · n +O(η3).

Proceeding in the same way than for the first family of ADTC, we obtain the following interface
approximate conditions

[σ∇M · n] = η divτ (〈(σ − στmI)∇τM〉) +O(η2),

〈σ∇M · n〉 = κ0 [M ]− η

6P ([M ]) + η

4divτ ([(σ − στmI)∇τM ]) +O(η2),
(IV.1.18)

where
P ([M ]) := (∂t + iq · xΓf(t)) [M ]− divτ (στm∇τ [M ]) .

As previously, the ADTC resulting from (IV.1.18) turns out to be unconditionally unstable. In
order to obtain a stable problem, we replace the operator κ0 [M ] − η

6P by a Padé approximation up
to O(η2) terms (which is compatible with the ADTC order). More precisely we introduce an auxiliary
unknown Ψ on Γ that satisfies (

1 + η

6κ0
P

)
Ψ = [M ] ,

in such a way that

〈σ∇M · n〉 = κ0Ψ + η

4divτ ([(σ − στmI)∇τM ])− 1
2
η2

62κ2
0
P (P (Ψ)) +O(η2).

By neglecting all O(η2) terms, we end up with a second order membrane transmission condition on Γ
in the following form: {

[σ∇M · n] = η divτ (〈(σ − στmI)∇τM〉) ,
〈σ∇M · n〉 = κ0Ψ + η

4divτ ([(σ − στmI)∇τM ]) , (IV.1.19)

where { (
1 + η

6κ0
P
)

Ψ = [M ] ,
Ψ = 0 at t = 0.

(IV.1.20)
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Remark IV.1.2. We can note that, in the specific case where σe = σi = στmI, the second order
ADTC has the simple form {

[σ∇M · n] = 0,

〈σ∇M · n〉 = κ0Ψ.

where Ψ satisfies (IV.1.20).

As for the first family of ADTC, we prove the following energy estimate, using the following
notation:

H(Ω) :=
{
ϕ ∈ H1(Ωi ∪ Ωe); [ϕ] ∈ H1(Γ) and 〈ϕ〉 ∈ H1(Γ)

}
.

Proposition IV.1.3. If σe = σeI and σi = σiI, then the following energy estimate holds:

1
2

d
dt

∫
Ω
|M |2 +

∫
Ω
σ |∇M |2 + κ0

∫
Γ
|Ψ|2 + η

12
d
dt

∫
Γ
|Ψ|2 + η

6

∫
Γ
στm |∇τΨ|2

+ η

∫
Γ
〈στm − σ〉 |〈∇τM〉|

2 + η

4

∫
Γ
〈στm − σ〉 |[∇τM ]|2 − η

2

∫
Γ
Re
(
[σ] [∇τM ] ·

〈
∇τM

〉)
= 0. (IV.1.21)

Moreover, if the conditions

〈στm − σ〉 ≥ 0 and 4 〈στm − σ〉
2 − [σ]2 ≥ 0

hold (which guarantee the stability since these conditions lead to the positivity of the terms in the second
line of (IV.1.21)) and if the initial data M(·, 0) = Minit belongs to L2(Ω), then the Bloch-Torrey equa-
tion (IV.1.1) with the ADTC (IV.1.19–IV.1.20) admits a unique solution (M,Ψ) ∈ L2(0, T ; H(Ω)) ×
L2(0, T ; H1(Γ)) such that (M,Ψ) ∈ C0(0, T ; L2(Ω))× C0(0, T ; L2(Γ)).

Remark IV.1.4. We can notice that the stability is ensured if σe = σi = στm. We also notice that in
the case σe = σi = σ the stability requires στm ≥ σ, which is compatible with the observations in [115]
for the case of the wave equation.

Finally we check again that our approximate model does not induce artificial attenuation in the
case q = 0. Indeed, if q = 0, we prove that∫

Ωe∪Ωi

M(x, t) =
∫

Ωe∪Ωi

M(x, 0).

IV.1.3 Numerical validation

We numerically solve three models of the dMRI signal in the presence of thin layers:
1. the original three-compartment model where Ωηi , Ωηm, Ωηe are linked by the interface conditions

on Γηi and Γηe (see Equation (IV.1.2));
2. the classical asymptotic two-compartment model where Ωe and Ωi are linked by the Isotropic

Diffusion Transmission Condition (IDTC, see Equation (IV.1.3));
3. the new asymptotic two-compartment model where Ωe and Ωi are linked by the Anisotropic

Diffusion Transmission Condition (ADTC, see Equations (IV.1.19–IV.1.20)).
We compute the dMRI signal associated with each of the three models. We compare the accuracy
of the two asymptotic models in approximating the dMRI signal of the original three-compartment
model as η → 0.

As expected, the signal of the two-compartment model with the ADTC converges quadratically
to that of the corresponding three-compartment model whereas the two-compartment model with the
IDTC only has first order convergence: see Figure IV.1.3.
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IV.2 Generalized Impedance Boundary Conditions and optimal design for elasticity

Figure IV.1.3 – The signal of the new two compartment model with ADTC quadratically converges to that of
the corresponding three-compartment model whereas the two compartment model with IDTC only gives the first
order convergence.

IV.2 Generalized Impedance Boundary Conditions (GIBC)
and optimal design for linear elasticity

The previous construction of boundary conditions can be applied in several context. The aim of
this section is to obtained some Generalized Impedance Boundary Conditions (GIBC) in the context
of linear elasticity and general curved interfaces. A condition of the Wentzell type modeling thin layer
coatings on some elastic structures is then obtained through an asymptotic analysis of order one of
the transmission problem at the thin layer interfaces with respect to the thickness parameter. As
mentioned previously, this analysis can model a corrosion effect on the material. A classical question
is then to find the optimal shape of a rigid structure in order to maximize its rigidity. To do this we
perform a shape sensitivity analysis of the GIBC model and characterize the first shape derivative
of this model. A comparison with the asymptotic expansion of the first shape derivative associated
to the original thin layer transmission problem shows that we can interchange the asymptotic and
shape derivative analysis. Finally we apply these results to the compliance minimization problem: we
compute the shape derivative of the compliance in this context and present some numerical simulations.

This work was done in collaboration with Djalil Kateb and Frédérique Le Louër (university of
Compiègne), and is the object of a paper accepted for publication in Journal of Elasticity (see [93],
37 pages).

IV.2.1 Setting of the problem

IV.2.1.1 Introduction of notations

Let Ω be a Lipschitz bounded open set of Rd (with d = 2 or d = 3). We assume that the solid Ω
consists of an isotropic material with a linear behavior. The boundary of Ω is such that ∂Ω =: ΓD∪ΓN
where ΓD and ΓN are two non-empty open sets of ∂Ω and |ΓD| > 0. Let d0 > 0 be a fixed (small) real
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Chapter IV. Mathematical modeling: taking into account thin layers

number and let us define the following set of admissible shapes:

O :=
{
ω ⊂⊂ Ω open set with a C2 boundary such that d(x, ∂Ω) > d0, ∀x ∈ ω

and such that Ω\ω is connected
}
.

Let us consider a (non-empty) inclusion ω ∈ O with boundary ∂ω =: Γ. Then Ω\ω represents a
reference configuration of an elastic solid assumed to be built on ΓD. We denote by n the unit normal
vector to ∂Ω and Γ directed outward to Ω\ω. Moreover, H represents the mean curvature of Γ and b
is the signed distance to Γ defined by

b(x) :=

 −d(x,Γ) if x ∈ Ω\ω,
0 if x ∈ Γ,

d(x,Γ), if x ∈ ω,

so that n = ∇b|Γ. Let η > 0. We consider that Γ has an interior thin layer with thickness η bordering ω
defined by

ωηi := {x+ rn(x) | x ∈ Γ and 0 < r < η} .

We recall that the normal vector n is directed inward the inclusion ω. We set ωη := ω\ωηi and we
denote its boundary by Γη. We also denote by nη the inward unit normal vector to Γη, so that n0 = n.
In the sequel we use the lower index e for all quantities related to Ω\ω and the lower index i for all
quantities related to ωηi . We summarize the notations concerning the domains in Figure IV.2.4 below.

Ω\ω∂Ω

ωη

ωηi

Γ

Γη η

(a)

Ω\ω

ω

ΓNΓD

(b)

Figure IV.2.4 – Notations for the thin layer model (left) and the obtained GIBC model (right).

We denote by Ae the elasticity tensor defined, for any symmetric matrix ξ, by

Ae ξ := 2µe ξ + λe Tr(ξ) I,

where µe > 0 and λe > 0 are two positive constants which represent the Lamé coefficients of the
material making up the solid and we introduce, for any u ∈ H1(Ω), the symmetrized gradient

D(u) := 1
2
(
∇u+ t∇u

)
.
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Analogously Ai represents the elasticity tensor associated to ωηi with Lamé coefficients µi > 0 and
λi > 0. Moreover the stress vector relative to the material properties Ai on Γη is defined by

T ηi (u) := AiD(u)nη,

with the convention T 0
i = Ti and we define similarly Te the stress vector relative to the material

properties Ae on Γ:
Te(u) := AeD(u)n. (IV.2.1)

IV.2.1.2 Introduction of the transmission problem and the GIBC problem

We introduce the following Sobolev space

H1
ΓD

(Ω\ω) :=
{
v ∈ H1(Ω\ω) ; v = 0 on ΓD

}
.

Let f ∈ L2(Ω\ω) be some exterior forces and a load g ∈ H−1/2(ΓN). We are concerned with the
following transmission problem

−div (AeD(uηe )) = f in Ω\ω,
−div (AiD(uηi )) = 0 in ωηi ,

uηe = 0 on ΓD,
Te(uηe ) = g on ΓN,
Ti(uηi ) = Te(uηe ) on Γ,

uηi = uηe on Γ,
T ηi (uηi ) = 0 on Γη.

(IV.2.2)

The solution of such a problem exists, is unique and belongs to H1
ΓD

(Ω\ω ∪ ωηi ) thanks to the Lax-
Milgram theorem and Korn’s inequality.

We introduce the following Hilbert space

V(Γ) =
{
ψ ∈ L2(Γ) ; DΓ(ψ) ∈ L2(Γ)

}
,

endowed with the graph norm ||ψ||2V(Γ) :=
(
||ψ||2L2(Γ) + ||DΓ(ψ)||2L2(Γ)

)1/2
where

DΓ(ψ) := 1
2Πd

(
∇τψ + t∇τψ

)
Πd and Πd := I− n⊗ n.

We denote its dual space by V ′(Γ). Then we set

H(Ω\ω) :=
{
v ∈ H1

ΓD
(Ω\ω); v|Γ ∈ V(Γ)

}
.

The space H(Ω\ω) endowed with the graph norm ‖v‖H(Ω\ω) :=
(
‖v‖2H1(Ω\ω) + ||v||2V(Γ)

)1/2
is a

Hilbert space. We also introduce, for all ψ ∈ V(Γ), the notation

Cη(ψ) := −ηdivτ (σΓ(ψ)), (IV.2.3)

with

σΓ(ψ) := 2µiDΓ(ψ) + λi(divτψ)Πd = AiDΓ(ψ) and Ai ξ := 2µi ξ + λi Tr(ξ) Πd,

where µi and λi := 2λiµi
λi+2µi

are the modified Lamé constants in the thin layer.

Remark IV.2.1. Notice that these modified Lamé coefficients correspond to plane stress situations
(see, e.g., [178, Section 8.2, page 514]). Indeed this state of plane stress arises in the thin layer since
no buckling or blending occurs (see, e.g., [178, Section 3.5, page 102]).
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Using an asymptotic analysis, we prove that the solution of the transmission problem (IV.2.2)
can be approximated up to O(η2) using an asymptotic analysis by the solution vη ∈ H(Ω\ω) of the
following problem with GIBC on Γ:

−div (AeD(vη)) = f in Ω\ω,
vη = 0 on ΓD,

Te(vη) = g on ΓN,
Te(vη) +Cη(vη) = 0 on Γ,

(IV.2.4)

where Te andCη are defined respectively in (IV.2.1) and (IV.2.3). We can also prove the well-posedness
of this problem applying the classical Lax-Milgram theorem.

Remark IV.2.2. (i) The negative Wentzell-type operator ψ 7→ −divτ (σΓ(ψ)) is a positive symme-
tric operator bounded from V(Γ) to V ′(Γ). Indeed we have

〈−divτ (σΓ(ψ)),ϕ〉V′(Γ),V(Γ) =
∫

Γ
λi(divτψ)(divτϕ) + 2µi

∫
Γ
DΓ(ψ) : DΓ(ϕ)

= 〈ψ,−divτ (σΓ(ϕ))〉V(Γ),V′(Γ).

Taking ψ = ϕ, the resulting quadratic form corresponds to (twice) the strain energy (see, e.g.,
[178, Equation (8.2.30), page 514]) in plane stress situation.

(ii) For any ψ ∈ L2(Γ), let set ψn := ψ ·n and ψτ := ψ−ψnn. Then we get the following inclusion{
ψ ∈ L2(Γ) ; ψτ ∈ H1(Γ)

}
⊂ V(Γ) thanks to the equality

DΓ(ψ) = DΓ(ψτ ) +ψn[D2b] .

Moreover, using the formulas given in [99, page 88], one can check that the operator ψ ∈ V(Γ) 7→
DΓ(ψ) ∈ L2(Γ) corresponds to the operator γαβ defined in [99, Theorem 2.7.1]. Using an atlas for
the boundary Γ, one can derive an inequality of Korn-type on 2-dimensional compact manifolds
without boundary from [99, Theorem 2.7.1] ensuring that there exists a constant c0 > 0 depending
on Γ such that (

‖ψτ‖2H1(Γ) + ‖ψn‖2L2(Γ)

)1/2
≤ c0||ψ‖V(Γ).

In other words the two spaces coincide, i.e.{
ψ ∈ L2(Γ) ; ψτ ∈ H1(Γ)

}
= V(Γ).

IV.2.2 Main results

IV.2.2.1 Brief description of the asymptotic analysis

This section is devoted to a brief explanation on the derivation of Problem (IV.2.4) and especially
to the GIBC

Te(vη) +Cη(vη) = 0 on Γ.

Let N ∈ N. We want to approximate the solution uηe ∈ H1
ΓD

(Ω\ω) of the transmission pro-
blem (IV.2.2) by the solution vη[N ] of some boundary value problems of the form


−div

(
AeD(vη[N ])

)
= f in Ω\ω,

vη[N ] = 0 on ΓD,

Te(vη[N ]) = g on ΓN,

Te(vη[N ]) +Cη
N (vη[N ]) = 0 on Γ,
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where ||uηe − v
η
[N ]||H1(Ω\ω) = O(ηN+1). Notice that the linear operator Cη

N is composed of surface
differential operators and depends on the interior Lamé parameters. Also notice that we want here
to obtain the expansion for N = 1 in order to obtain a O(η2) approximation, that is vη = vη[1]
and Cη = Cη

1 .
To do so we follow the procedure described, e.g., in [163, 215], in the same spirit as what is done

in the previous section in an other context. For any x ∈ Γ and r ≥ 0, we set u(x+ rn(x)) =: u(x, r)
and we use the change of variables y = x + rn(x) = x + ηRn(x) with R ∈ [0 , 1]. Then we set
u(x, r) = u(x, ηR) =: Uη(x, R). Firstly we obtain the following asymptotic expansion when η → 0:

div (AiD(u)) (x+ ηRn(x)) = 1
η2

Λ0∂
2
R + ηΛ1∂R +

∑
n≥2

ηnΛn

Uη(x, R),

where

Λ0 := (λi + 2µi)n⊗ n + µi
(
Id − n⊗ n

)
,

Λ1U
η := µiHUη + (λi + µi)

(
n divτUη + ∇τ (Uη · n)

)
,

Λ2U
η := Λ2,2U

η +RΛ2,1∂RU
η,

with

Λ2,1U
η := −µiTr([D2b]2)Uη − (λi + µi)

(
n(Tr([D2b]∇τUη)) + [D2b]∇τ (Uη · n)

)
,

Λ2,2U
η := (λi + µi)∇τdivτUη + µi∆τU

η − λin(Tr([D2b]∇τUη))− µi([D2b]∇τUη])n.

Moreover the traction trace operator is defined on Γ, i.e. for S = 0, by

TiU
η := 1

η
Λ0∂RU

η + λindivτUη + µi[∇τUη]n

and it admits the following expansion on the surface Γη, i.e. for S = 1:

T ηi U
η(·, 1) = 1

η
Λ0∂RU

η(·, 1) +B0Uη(·, 1) +
∑
j≥1

ηjBjUη(·, 1),

with

B0Uη := λindivτUη + µi[∇τUη] n and B1Uη := −
(
λin(Tr([D2b]∇τ Uη)) + µi([D2b]∇τ Uη)n

)
.

Secondly we set uηe :=
∑
n≥0

ηnune in Ω\ω and uηi (x, r) := Uη
i (x, R) =

∑
n≥0

ηnUn
i (x, R) in Γ× [0, 1].

Hence the transmission problem (IV.2.2) can be rewritten as follows:

−
∑
n≥0

ηndiv (AeD(une )) = f in Ω\ω,∑
n≥0

ηn∂2
RΛ0U

n
i = −

∑
n≥1

ηnΛ1∂RU
n−1
i −

∑
n≥2

ηnΛ2U
n−2
i − · · · in Γ× (0, 1),∑

n≥0
ηnune = 0 on ΓD,∑

n≥0
ηnTe(une ) = g on ΓN,∑

n≥1
ηnTe(un−1

e ) =
∑
n≥0

ηn∂RΛ0U
n
i +

∑
n≥1

ηnB0Un−1
i on Γ× {0} ,∑

n≥0
ηnΛ0u

n
e =

∑
n≥0

ηnΛ0U
n
i on Γ× {0} ,∑

n≥0
ηn∂RΛ0U

n
i = −

∑
n≥1

ηnB0Un−1
i −

∑
n≥2

ηnB1Un−2
i + · · · on Γ× {1} .
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Exploring the ranks n = 0, 1, 2, we obtain the result. One can note that we have Cη
0 = 0.

After these formal computations, we prove (under the additional assumption that f ∈ H1/2(Ω\ω)),
that the solution vη ∈ H(Ω\ω) of Problem (IV.2.4) is an approximation up to O(η2) to the original
solution uηe ∈ H1

ΓD
(Ω\ω) of Problem (IV.2.2). Indeed there exists a constant C > 0, depending only

on the domains Ω and ω, such that

‖vη − uηe‖H1(Ω\ω) ≤ C η
2.

IV.2.2.2 Shape sensitivity analysis and minimization of the compliance

Another aim of the present work is to make a shape sensitivity analysis of the problem. Hence
we prove the existence of shape derivatives with respect to the shape ω and characterize the shape
derivative of Problem (IV.2.4). To do this, let us recall that Ωd0 is an open set with a C∞ boundary
such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} ,

and the space of admissible deformations is here given by

U :=
{
V ∈W3,∞(Rd); supp (V ) ⊂ Ωd0 and ‖V ‖3,∞ < min

(
d0

3 , 1
)}

.

Then we obtain the following second main result.

Theorem IV.2.3. Let V ∈ U . The shape derivative vη′ of vη in the direction V , which belongs
to L2(Ω\ω), exists. Moreover, if vη ∈ H2(Γ), then vη′ ∈H(Ω\ω) is the only solution of the following
boundary value problem

−div (AeD(vη′)) = 0 in Ω\ω,
vη′ = 0 on ΓD,

Te(vη′) = 0 on ΓN,
Te(vη′) +Cη(vη′) = ξ(vη,V · n) on Γ,

with

ξ(v,V · n) := (V · n)f + divτ
(

(V · n)Πd (AeD(v)) Πd

)
− ηdivτ

(
(V · n)([D2b]−H Πd)σΓ(v)

)
− ηdivτ

(
(V · n)

(
Ai Πd

( 1
2
(
[D2b]∇τv + t([D2b]∇τv)

))
Πd

) )
+ ηdivτ

(
σΓ((V · n)∂nv)

)
+ η

(
[D2b] + n divτΠd

) (
divτ ((V · n)σΓ(v))

)
+ ηdivτ

(
Ai
( 1

2 ([∇τv]n⊗∇τ (V · n) +∇τ (V · n)⊗ [∇τv]n)
) )
.

We also provide an asymptotic analysis on the shape derivatives for the transmission problem (IV.2.2)
and compare it with the shape derivatives of Problem (IV.2.4): we prove (as underlined in [163]) that
the asymptotic analysis and the shape derivative calculus can be interchanged.

Finally we give an example of application of this work concerning the minimization of the com-
pliance. We compute the shape derivative of the compliance through the introduction of an adjoint
problem and make some numerical simulations in the two-dimensional case in order to illustrate and
validate our theoretical results. Thus, defining the compliance of the structure Ω\ω as

J η(Ω\ω) :=
∫

Ω\ω
AeD(vη) : D(vη) + η

∫
Γ
AiDΓ(vη) : DΓ(vη), (IV.2.5)

where vη ∈H(Ω\ω) solves Problem (IV.2.4), we obtain the following expression of the shape gradient
of this cost functional.
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Theorem IV.2.4. Let V ∈ U . If vη ∈ H2(Γ), then the shape derivative of the cost functional J η
can be written as

DJ η(Ω\ω) · V =
∫

Γ
(V · n) ξ∗(vη,vη) +

∫
Γ
(V · n)f · vη,

where

ξ∗(v,w) := − (Πd (AeD(v)) Πd) :∇τw + η
{(

([D2b]−H Πd)σΓ(v)
)

:∇τw + ([D2b]∇τv) :σΓ(w)

+ (∂nv)divτ (σΓ(w)) + σΓ(v) : (∇τ ([∇τw]n)) + divτ (σΓ(w)[∇τv]n)
}

+ f ·w.

Remark IV.2.5. I am confident that the regularity assumption vη ∈ H2(Γ) made in the two previous
theorems is useless since automatically satisfied. Unfortunately, up to my knowledge, the arguments
to obtain it are not trivial and this study could be the topic of a future work.

Notice that we also prove that the considered functional J η given by (IV.2.5) is an approxima-
tion up to O(η2) to the original compliance J of a structure associated to the original transmission
problem (IV.2.2) which is given by

J (Ω\ωη) :=
∫

Ω\ω
AeD(uηe ) : D(uηe ) +

∫
ωηi

AiD(uηi ) : D(uηi ).

Indeed we have
J (Ω\ωη)− J η(Ω\ω) = O(η2).

IV.2.3 Numerical simulations for a 2D-cantilever

For the numerical simulations presented in this section, we consider the case where we optimize a
part of the boundary of the solid which is not necessarily an inclusion. Hence we consider an elastic
solid with a reference configuration Ω, a bounded open set of R2, built on a part ΓD of its boundary and
subjected to a load g on another part ΓN. We consider here that Γ := ∂Ω\ (ΓD ∪ ΓN) is a non-empty
set and is the only part of ∂Ω which can be optimized (see Figure IV.2.5). We assume that f = 0.
Then the displacement v ∈H(Ω) of the structure is the solution of

−div (AeD(v)) = 0 in Ω,
v = 0 on ΓD,

Tev = g on ΓN,
Tev +Cη(v) = 0 on Γ,

where Te andCη are defined respectively in (IV.2.1) and (IV.2.3). We want to minimize the compliance
adding a penalization on the total mass of the structure. Hence we consider, for ` > 0, the functional

J ηpen(Ω) = J η(Ω) + ` |Ω| =
∫

Ω
AeD(v) : D(v) + η

∫
Γ
AiDΓ(v) : DΓ(v) + ` |Ω| .

According to Theorem IV.2.4 and taking into account the shape derivative of the volume, the shape
derivative of the cost functional J can be written in the form

DJ ηpen(Ω) · V =
∫

Γ
(V · n)

(
ξ∗(v,v) + `

)
,

where V is an admissible deformation and ξ∗ is defined in Proposition IV.2.4.
Using a boundary variation method with a gradient algorithm, we obtain the following result

exposed in Figure IV.2.6.
We also make a simulation adding a hole (with the generalized boundary conditions) in the initial

shape. We obtain the following result exposed in Figure IV.2.7.
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ΓD

ΓD

ΓNΓ

Figure IV.2.5 – A cantilever.

Figure IV.2.6 – Minimization of the compliance for a 2d-cantilever: initial shape (left) and final shape (right).

IV.3 Perspectives

Concerning the first subject on the Bloch-Torrey equation in the context of dMRI, one perspective
could be to adapt the work of Coatléven et al. in [101] in order to obtain a macroscopic model for the
dMRI taking into account the previously mentioned anisotropic behavior in the myelin layer of a cell.
Indeed, assuming that the considered medium in the dMRI is periodic (that is that the disposition of
the cells is periodic), the periodic homogenization theory could enable to obtain a macroscopic model
from the previously established two compartment model. In [101], the authors obtain the result by
expanding the solution of Bloch-Torrey equation using a two-scale asymptotic expansions. Then they
explain that one can use it to solve the inverse problem of recovering some macroscopic properties
of tissues from dMRI measurements. We expect to adapt this work to our model and compare the
obtained results with the ones given in [101].

Concerning the second problem of this chapter, the perspectives could concern mainly the numerical
part. Indeed the used optimization algorithm is a very simple one and uses the classical boundary
variations method. We can improve this numerical part, using for instance other numerical methods
as the so-called level set method which is known to be efficient in this kind of problem (see, e.g., [18]).
This could enable to compare these results with the classical problem without GIBC and also to
validate numerically the announced order O(η2) of the GIBC.
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IV.3 Perspectives

Figure IV.2.7 – Minimization of the compliance for a 2d-cantilever with a hole: initial shape (left) and final
shape (right).
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Chapter V

Sensitivity analysis for contact problems

In the last section of the previous chapter IV, we have considered the linear elasticity equations,
arising in solid mechanics. Additionally to the study of a single structure (as, e.g., the optimal design
of such a structure), an other topic concerns unilateral constraints and contact problems. Contact
mechanics describes the physical behavior of two solids that touch each other while being subjected to
external forces. The bodies may be rigid or flexible; they cannot penetrate each other, but they may
deform or slide one against the other, thus causing friction. From the mathematical point of view,
this phenomenon translates into a unilateral contact constraint: the non-permeability conditions take
the form of inequalities on the contact surface between the bodies and are called Signorini conditions;
the friction occurring in this region is typically modeled by the so-called Tresca’s or Coulomb’s laws
which also appear as a boundary condition with inequalities, but moreover cause nonlinearities in the
variational formulation of the problem. This physical model can be mathematically studied from the
variational inequality theory and with convex analysis tools (see, e.g., the book [124]).

A project (still in progress) aims at studying the optimal shape of a rigid structure (which minimizes
the dissipated energy for instance) in contact situations by taking into account realistic physical
constraints, such as the aforementioned mentioned friction phenomena. This question led us to study
the sensitivity with respect to a parameter of variational inequalities in which the solution is expressed
through the proximal operator (some basics are recalled below, in Section V.1). More precisely the
proximal operator of the sum of two functions (that is the indicator function of a non-empty closed
and convex set of constraints and a convex function) intervenes. Thus we wondered if an adapted
decomposition of the proximal operator of the sum of two convex functions could be
achieved. We obtain such a formula by introducing a new operator and prove a first
result of differentiability of the solution with respect to a parameter. This is the topic of the
following article, written with Samir Adly and Loïc Bourdin (University of Limoges) and accepted in
Journal of Convex Analysis (20 pages), that I summarized in this chapter:

[6] S. Adly, L. Bourdin and F. Caubet. On a decomposition formula for the proximal operator of
the sum of two convex functions. Journal of Convex Analysis, to appear, 2018.

As mentioned, the work presented in this section was initially motivated by the sensitivity analysis,
with respect to a nonnegative parameter t ≥ 0, of a parametrized linear variational inequality of second
kind in a Hilbert space H, with a corresponding function h ∈ Γ0(H), where Γ0(H) is the set of proper,
lower semicontinuous and convex functions from H into R ∪ {+∞}. More precisely, for all t ≥ 0, we
consider the problem of finding u(t) ∈ H such that

〈u(t), z − u(t)〉+ h(z)− h(u(t)) ≥ 〈r(t), z − u(t)〉, (V.0.1)

for all z ∈ H, where r : R+ → H is assumed to be given and smooth enough. In that framework,
the solution u(t) ∈ H (which depends on the parameter t) can be expressed in terms of the proximal

87



Chapter V. Sensitivity analysis for contact problem

operator of h denoted by proxh. Precisely it holds that u(t) = proxh(r(t)) for all t ≥ 0. As a conse-
quence, the differentiability of u(·) at t = 0 is strongly related to the regularity of proxh. If h is a
smooth function, one can easily compute (from the classical inverse mapping theorem for instance) the
differential of proxh, and then the sensitivity analysis can be achieved. In that smooth case, note that
the variational inequality (V.0.1) can actually be reduced to an equality. On the other hand, if h = ιK
is the indicator function of a non-empty closed and convex subset K ⊂ H, then proxh = projK is the
classical projection operator on K. In that case, the work of Mignot in [182, Theorem 2.1 p.145] (see
also the work of Haraux in [148, Theorem 2 p.620]) provides an asymptotic expansion of proxh = projK
and enables to obtain a differentiability result on u(·) at t = 0.

Concerning the sensibility analysis of a unilateral contact problem with friction (as the Tresca
problem), the considered variational inequality (V.0.1) involves the sum of two functions. Precisely,
h = f + g where f = ιK (K being a non-empty closed and convex set of constraints), and where
g ∈ Γ0(H) is a smooth function (derived from the regularization of the friction functional in view
of a numerical treatment). Despite the regularity of g, note that the variational inequality (V.0.1)
cannot be reduced to an equality due to the presence of the constraint set K. In that framework,
in order to get an asymptotic expansion of proxh = proxf+g, a first and natural strategy would be
to look for a convenient explicit expression of proxf+g in terms of proxf and proxg. Unfortunately,
this theoretical question still remains an open challenge in the literature. Let us mention that Yu
provides in [218] some necessary and/or sufficient conditions on general functions f , g ∈ Γ0(H) under
which proxf+g = proxf◦proxg. Unfortunately, as underlined by the author himself, these conditions are
very restrictive and are not satisfied in most of cases (see, e.g., [218, Example 2] for a counterexample).
We recall here that a wide literature is already concerned with the sensitivity analysis of parametrized
(linear and nonlinear) variational inequalities. We refer for instance to [49, 148, 189, 203] and references
therein.

V.1 Notations and basics of convex analysis

For the reader’s convenience, we first recall some basics of convex analysis. We refer to standard
books such as [37, 156, 192] and references therein.

Let H be a real Hilbert space and let 〈·, ·〉 (respectively ‖ · ‖) be the corresponding scalar product
(respectively norm). In the sequel we denote by I : H → H the identity operator and by Lx : H → H
the affine operator defined by

Lx(y) := x− y,

for all x, y ∈ H.
For a set-valued map A : H ⇒ H, the domain of A is given by

D(A) := {x ∈ H | A(x) 6= ∅} .

We denote by A−1 : H ⇒ H the set-valued map defined by

A−1(y) := {x ∈ H | y ∈ A(x)} ,

for all y ∈ H. Note that y ∈ A(x) if and only if x ∈ A−1(y), for all x, y ∈ H. The range of A is given
by

R(A) :=
{
y ∈ H | A−1(y) 6= ∅

}
= D(A−1).

We denote by Fix(A) the set of all fixed points of A, that is, the set given by

Fix(A) := {x ∈ H | x ∈ A(x)} .

Finally, if A(x) is a singleton for all x ∈ D(A), we say that A is single-valued.
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For all extended-real-valued functions g : H→ R ∪ {+∞}, the domain of g is given by

dom(g) := {x ∈ H | g(x) < +∞} .

We say that g is proper if dom(g) 6= ∅, and that g is lower semicontinuous if its epigraph is a closed
subset of H× R.

Let g : H→ R∪{+∞} be a proper extended-real-valued function. We denote by g∗ : H→ R∪{+∞}
the conjugate of g defined by

g∗(y) := sup
z∈H
{〈y, z〉 − g(z)} ,

for all y ∈ H. Clearly g∗ is lower semicontinuous and convex.
We denote by Γ0(H) the set of all extended-real-valued functions g : H→ R∪{+∞} that are proper,

lower semicontinuous and convex. If g ∈ Γ0(H), we recall that g∗ ∈ Γ0(H) and that the Fenchel-Moreau
equality g∗∗ = g holds. For all g ∈ Γ0(H), we denote by ∂g : H ⇒ H the Fenchel-Moreau subdifferential
of g defined by

∂g(x) := {y ∈ H | 〈y, z − x〉 ≤ g(z)− g(x), ∀z ∈ H} ,

for all x ∈ H. It is easy to check that ∂g is a monotone operator and that, for all x ∈ H, 0 ∈ ∂g(x) if
and only if x ∈ argmin g. Moreover, for all x, y ∈ H, it holds that y ∈ ∂g(x) if and only if x ∈ ∂g∗(y).
Recall that, if g is differentiable on H, then ∂g(x) = {∇g(x)} for all x ∈ H.

Let A : H→ H be a single-valued operator defined everywhere on H, and let g ∈ Γ0(H). We denote
by VI(A, g) the variational inequality which consists of finding y ∈ H such that

−A(y) ∈ ∂g(y), (V.1.1)

or equivalently,
〈A(y), z − y〉+ g(z)− g(y) ≥ 0,

for all z ∈ H. Then we denote by SolVI(A, g) the set of solutions of VI(A, g). Recall that if A is Lipschitz
and strongly monotone, then VI(A, g) admits a unique solution, i.e. SolVI(A, g) is a singleton.

Let g ∈ Γ0(H). The classical proximal operator of g is defined by

proxg := (I + ∂g)−1.

Recall that proxg is a single-valued operator defined everywhere on H. Moreover it can be characterized
as follows:

proxg(x) = argmin
(
g + 1

2‖ · −x‖
2
)

= SolVI(−Lx, g),

for all x ∈ H. It is also well-known that

Fix(proxg) = argmin g.

The classical Moreau’s envelope Mg : H→ R of g is defined by

Mg(x) := min
(
g + 1

2‖ · −x‖
2
)
,

for all x ∈ H. Recall that Mg is convex and differentiable on H with ∇Mg = proxg∗ .
Finally it is well-known that if g = ιK is the indicator function of a non-empty closed and convex

subset K of H, that is, ιK(x) = 0 if x ∈ K and ιK(x) = +∞ if not, then proxg = projK, where projK
denotes the classical projection operator on K.
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V.2 The f-proximal operator

V.2.1 Introduction of the f-proximal operator and main result

Let us consider general functions f , g ∈ Γ0(H). In order to avoid trivialities, we assume in the
whole chapter that dom(f) ∩ dom(g) 6= ∅ when dealing with the sum f + g.

We first introduce a new operator proxfg : H ⇒ H called f -proximal operator of g.

Definition V.2.1. Let us consider f , g ∈ Γ0(H). The f -proximal operator of g is the set-valued map
proxfg : H ⇒ H defined by

proxfg := (I + ∂g ◦ proxf )−1. (V.2.1)

This new operator can be seen as a generalization of proxg in the sense that, if f is constant
for instance, then proxfg = proxg. More general sufficient (and necessary) conditions under which
proxfg = proxg are provided in the following proposition. We will base our discussion on the following
conditions:

∂(f + g) = ∂f + ∂g, (C1)

∀x ∈ H, ∂g(x) ⊂ ∂g(proxf (x)), (C2)

and
∀x ∈ H, ∂g(proxf (x)) ⊂ ∂g(x). (C3)

Note that Condition (C2) has been introduced by Yu in [218] as a sufficient condition under which
proxf+g = proxf ◦ proxg.

Proposition V.2.2. Let f , g ∈ Γ0(H) with dom(f) ∩ dom(g) 6= ∅.
(i) If Condition (C2) is satisfied, then proxg(x) ∈ proxfg (x) for all x ∈ H.
(ii) If Conditions (C1) and (C3) are satisfied, then proxfg (x) = proxg(x) for all x ∈ H.

In both cases, Condition (C1) is satisfied and the equality proxf+g = proxf ◦ proxg holds true.

Note that proxfg is a set-valued operator a priori. Indeed we illustrate this by the following example.

Exemple V.2.3. Let us assume that H = R. We consider f = ι{0} and g(x) = |x| for all x ∈ R. In
that case we obtain that ∂g◦proxf (x) = [−1, 1] for all x ∈ R. As a consequence proxfg (x) = [x−1, x+1]
for all x ∈ R. See Figure V.2.1 for graphical representations of proxg and proxfg in that case.

Example V.2.3 provides a simple illustration where proxfg is not single-valued. Especially it follows
that proxfg cannot be written as a proximal operator proxϕ for some ϕ ∈ Γ0(H). We provide some
sufficient conditions under which proxfg is single-valued in the following proposition.

Proposition V.2.4. Let f , g ∈ Γ0(H) with dom(f)∩ dom(g) 6= ∅ and such that ∂(f + g) = ∂f + ∂g.
If either ∂f or ∂g is single-valued, then proxfg is single-valued.

Moreover notice that Example V.2.3 provides a simple situation where ∂g◦proxf is not a monotone
operator. As a consequence, it may be possible that D(proxfg )  H. However we prove the following
characterization.

Proposition V.2.5. Let f , g ∈ Γ0(H) such that dom(f) ∩ dom(g) 6= ∅. It holds that D(proxfg ) = H
if and only if the additivity condition (C1) is satisfied.

Finally, if the additivity condition (C1) is satisfied, the following main result presents an original
decomposition formula of proxf+g.
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0

proxg

proxfg

Figure V.2.1 – Example V.2.3, graph of proxg in bold line, and graph of proxfg in gray.

Theorem V.2.6. Let f , g ∈ Γ0(H) such that dom(f) ∩ dom(g) 6= ∅. If ∂(f + g) = ∂f + ∂g, then the
decomposition formula

proxf+g = proxf ◦ proxfg (V.2.2)

holds true. In other words, for every x ∈ H, we have proxf+g(x) = proxf (z) for all z ∈ proxfg (x).

Remark V.2.7. Let f , g ∈ Γ0(H) with dom(f) ∩ dom(g) 6= ∅ and such that ∂(f + g) = ∂f + ∂g and
let x ∈ H. Theorem V.2.6 states that, even if proxfg (x) is not a singleton, all elements of proxfg (x)
have the same value through the proximal operator proxf , and this value is equal to proxf+g(x).

Remark V.2.8. Let us consider f , g ∈ Γ0(H) such that dom(f)∩dom(g) 6= ∅. Note that the additivity
condition ∂(f + g) = ∂f + ∂g is not only sufficient, but also necessary for the validity of the equality
proxf+g = proxf ◦proxfg . Indeed, from Proposition V.2.5, if ∂f+∂g  ∂(f+g), then there exists x ∈ H
such that proxfg (x) = ∅ and thus proxf+g(x) 6= proxf ◦ proxfg (x).

Remark V.2.9. Let f , g ∈ Γ0(H) with dom(f) ∩ dom(g) 6= ∅ and such that ∂(f + g) = ∂f + ∂g.
From Theorem V.2.6, we deduce that R(proxf+g) ⊂ R(proxf ) ∩ R(proxg). If the additivity condition
∂(f + g) = ∂f + ∂g is not satisfied, this remark does not hold true anymore.

Let us now give a simple illustration of the previous Theorem V.2.6.

Exemple V.2.10. Following the idea of Yu in [218, Example 2], let us consider H = R and let
f(x) = 1

2x
2 for all x ∈ R. Since proxγf = 1

1+γ I for all γ ≥ 0 and proxff = 2
3 I, we retrieve that

1
3I = prox2f = proxf+f = proxf ◦ proxff = 1

3I 6= 1
4I = proxf ◦ proxf .

It is well-known in the literature that obtaining a theoretical formula for proxf+g is not an easy
task in general, even if proxf and proxg are known. In our article [6], we give a more precise description
of the difficulty to obtain an easy computable formula of proxf+g by proving that there is no closed
formula, independent of f and g, allowing to write proxf+g as a linear combination of compositions
of linear combinations of I, proxf , proxg, prox−1

f and prox−1
g . In the decomposition formula (V.2.2),

it should be noted that the difficulty of computing proxf+g is only transferred to the computation
of proxfg which is not an easier task. Note that other rewritings, which are not suitable for an easy
computation of proxf+g neither, can be considered such as

proxf+g = (prox−1
f + prox−1

g − I)−1 = (prox−1
2f + prox−1

2g )−1 ◦ 2I,
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the second equality being provided in [37, Corollary 25.35 p.458]. However our decomposition for-
mula (V.2.2) is of theoretical interest in order to prove in a concise and elegant way almost all other
new statements of this chapter, and also to recover in a simple way some well-known results making
it central in our work. We provide an illustration of this feature in the next section about the classical
Douglas-Rachford algorithm. Moreover, as explained above, we also prove the usefulness of the de-
composition formula (V.2.2) in the context of sensitivity analysis of the variational inequality (V.0.1).

V.2.2 Relationship with the classical Douglas-Rachford operator

Recall that the proximal operator proxf+g is strongly related to the minimization problem

argmin f + g,

since the set of solutions is exactly the set of fixed points of proxf+g denoted by Fix(proxf+g). In the
sequel, we assume that the above minimization problem admits at least one solution. The classical
Douglas-Rachford operator DRf,g : H → H associated to f and g, introduced in [122], is usually
defined by

DRf,g(y) := y − proxf (y) + proxg(2proxf (y)− y),

for all y ∈ H. We refer for instance to [37, Section 28.3 p.517] where details can be found on this
classical operator. This operator provides an algorithm xn+1 = DRf,g(xn) that is weakly convergent
to some x∗ ∈ H satisfying

proxf (x∗) ∈ argmin f + g.

Even if the Douglas-Rachford algorithm is not a proximal point algorithm in general, in the sense
that DRf,g is not equal to proxϕ for some ϕ ∈ Γ0(H) in general, it is a very powerful tool since it
allows to solve the above minimization problem, requiring only the knowledge of proxf and proxg (see,
e.g., [37, Section 28.3 p.517] for more details).

We underline here the relations between the f -proximal operator proxfg and the Douglas-Rachford
operator DRf,g. For this purpose, we introduce an extension DRf,g : H × H → H of the classical
Douglas-Rachford operator defined by

DRf,g(x, y) := y − proxf (y) + proxg(x+ proxf (y)− y),

for all x, y ∈ H.
Note that DRf,g(y) = DRf,g(proxf (y), y) for all y ∈ H, and that the definition of DRf,g only

depends on the knowledge of proxf and proxg.
Then we prove that

proxfg (x) = Fix
(
DRf,g(x, ·)

)
,

for all x ∈ H. More precisely we have the following proposition.

Proposition V.2.11. Let f , g ∈ Γ0(H). It holds that

proxfg (x) = SolVI(proxf , g∗ ◦ Lx) = argmin (Mf∗ + g∗ ◦ Lx) = Fix(DRf,g(x, ·)),

for all x ∈ H, where SolVI denotes the set of solutions of VI(A, g) given by (V.1.1) with A = proxf
and g = g∗ ◦ Lx.

Let us now show that the above statements, especially the decomposition formula (V.2.2), allow
to recover in a concise way the well-known inclusion

proxf (Fix (DRf,g)) ⊂ argmin f + g = Fix(proxf+g). (V.2.3)
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Indeed, if x∗ ∈ Fix(DRf,g), then x∗ ∈ Fix(DRf,g(proxf (x∗), ·)) = proxfg (proxf (x∗)). From the de-
composition formula (V.2.2), we conclude that

proxf (x∗) = proxf ◦ proxfg (proxf (x∗)) = proxf+g(proxf (x∗)).

This proof of only few lines is an illustration of the theoretical interest of the decomposition for-
mula (V.2.2). Note that the above inclusion (V.2.3) is, as well-known, an equality.

Finally the f -proximal operator proxfg is also of interest from a numerical point of view. Indeed
we have the following convergence result for the fixed-point algorithm yk+1 = DRf,g(x, yk).

Theorem V.2.12. Let f , g ∈ Γ0(H) and let x ∈ D(proxfg ) be fixed. Then Algorithm (A1) given by{
y0 ∈ H,

yk+1 = DRf,g(x, yk),
(A1)

weakly converges to an element y∗ ∈ proxfg (x). Moreover, if the conditions dom(f) ∩ dom(g) 6= ∅ and
∂(f + g) = ∂f + ∂g are satisfied, it holds that proxf (y∗) = proxf+g(x).

We conclude that Algorithm (A1) allows to compute numerically proxf+g(x) with the only know-
ledge of proxf and proxg. It turns out that Algorithm (A1) was already considered, up to some
translations, and implemented in previous works (see, e.g., the so-called dual forward-backward split-
ting in [103, Algorithm 3.5]), showing that the f -proximal operator proxfg is already present (in a
hidden form) and useful for numerical purposes in the existing literature. However, to the best of
my knowledge, it has never been explicitly expressed in a closed formula such as (V.2.1) and neither
been deeply studied from a theoretical point of view. This contribution aims at filling this gap in the
literature.

Remark V.2.13. Let f , g ∈ Γ0(H) and let x ∈ D(proxfg ). Algorithm (A1) consists in a fixed-point
algorithm from the characterization given in Proposition V.2.11 by

proxfg (x) = Fix(DRf,g(x, ·)).

Actually, one can see that Algorithm (A1) also coincides with the well-known Forward-Backward algo-
rithm (see [104, Section 10.3 p.191] for details) from the characterization given in Proposition V.2.11
by

proxfg (x) = argmin (Mf∗ + g∗ ◦ Lx).
Indeed we recall that Mf∗ is differentiable with ∇Mf∗ = proxf .

V.3 Conclusion

V.3.1 Application to sensitivity analysis

Let us come back to our initial motivation, namely the sensitivity analysis, with respect to a
nonnegative parameter t ≥ 0, of some parametrized linear variational inequalities of second kind in a
real Hilbert space H. More precisely, for all t ≥ 0, we consider the variational inequality which consists
of finding u(t) ∈ K such that

〈u(t), z − u(t)〉+ g(z)− g(u(t)) ≥ 〈r(t), z − u(t)〉,

for all z ∈ K, where K ⊂ H is a non-empty closed and convex set of constraints, and where g ∈ Γ0(H)
and r : R+ → H are assumed to be given and smooth enough. The above problem admits a unique
solution given by

u(t) = proxf+g(r(t)),
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where f = ιK is the indicator function of K.
Our aim is to provide from Theorem V.2.6 a simple and compact formula for the derivative u′(0).

Following the idea of Mignot in [182] (see also [148, Theorem 2 p.620]), we first introduce the following
sets

Ov := {w ∈ H | ∃λ > 0, projK(v) + λw ∈ K} ∩ [v − projK(v)]⊥ ,

Cv := cl
(
{w ∈ H | ∃λ > 0, projK(v) + λw ∈ K}

)
∩ [v − projK(v)]⊥ ,

for all v ∈ H, where ⊥ denotes the classical orthogonal of a set. Then we prove the following result.

Proposition V.3.1. Let v(t) := r(t)−∇g(u(t)) for all t ∈ R. If the following conditions are satisfied:
(i) r is differentiable at t = 0;
(ii) g is twice differentiable on H;
(iii) Ov(0) is dense in Cv(0);
(iv) u is differentiable at t = 0;
then the derivative u′(0) is given by

u′(0) = proxϕf+ψg (r′(0)),

where ϕf := ιCv(0) and ψg(x) := 1
2 〈D

2g(u(0))(x), x〉 for all x ∈ H.

Remark V.3.2. Proposition V.3.1 provides an expression of u′(0) in terms of the proximal operator
of a sum of two proper, lower semicontinuous and convex functions. Hence it could be numerically
computed from Algorithm (A1), requiring the knowledge of projCv(0)

and proxψg .

The relaxations in special frameworks of the assumptions of Proposition V.3.1 should be the
subject of future works. Particularly it would be relevant to provide sufficient conditions ensuring
that u is differentiable at t = 0. A promising idea in this sense is to invoke the concepts of twice
epi-differentiability and proto-differentiability introduced by Rockafellar in [193, 194].

V.3.2 Perspectives

As mentioned in the introduction of this chapter, our original aim is to contribute to the shape
optimization theory under unilateral constraints. To do this, we could begin by considering one of the
most standard model in contact mechanics which is the so-called Tresca friction problem given by the
following PDE system: {

−∆u+ u = f, in Ω,
|∂nu| ≤ g, ∂nu = −g u

|u| if u 6= 0, on ∂Ω,

where f , g : Rd → R are given functions, corresponding respectively to external forces and nonnegative
friction threshold. This model is a simplified, scalar counterpart of the more realistic setting of contact
mechanics in elasticity. The above classical problem involves non-smooth boundary conditions; in terms
of variational framework, these translate into the variational inequality:∫

Ω
∇u · ∇(ϕ− u) +

∫
Ω
u(ϕ− u) +

∫
∂Ω
g|ϕ| −

∫
∂Ω
g|u| ≥

∫
Ω
f(ϕ− u), (V.3.1)

for all ϕ : Ω → R. Using classical results of convex analysis, this variational inequality turns out to
have a unique solution denoted by uΩ.

The shape sensitivity analysis of solutions to (both linear and nonlinear) variational equalities has
been extensively studied by several authors (see, e.g., the book [152]). However the literature about
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the shape sensitivity analysis of solutions to variational inequalities still matures and is promising [50,
121, 134], with various remaining theoretical challenges. Most investigations on this topic are based on
regularization techniques: the non-smoothness |ϕ| in (V.3.1) is approximated by a smooth, penalized
counterpart. At the opposite, we expect to develop a new approach based on technical tools of non-
smooth analysis in order to derive the existence and an explicit formulation of the shape derivative of
uΩ with respect to small perturbations of the domain Ω. A first step towards fulfilling this objective
is to express uΩ as uΩ = proxj(vΩ), where vΩ is the unique solution to the variational equality∫

Ω
∇v · ∇ϕ+

∫
Ω
vϕ =

∫
Ω
fϕ,

for all test functions ϕ : Ω→ R, where j is the non-smooth functional defined by

j(ϕ) :=
∫
∂Ω
g|ϕ|.

Since the shape differentiability of vΩ is well-known in the literature, we deduce that the existence of
the shape derivative of uΩ is strongly related to the regularity of the proximity operator proxj . Then
we could use the notion of twice epi-differentiability and proto-differentiability (see [193, 194]): these
notions from non-smooth analysis allow to derive asymptotic developments of proximity operators.
However note that the classical techniques of shape sensitivity analysis would involve a parametrized
perturbation jt of the functional j. Nevertheless we do believe that this difficulty can be overcome
by using the recent work of Adly et al. in [5] where the notions introduced by Rockafellar have been
extended in order to handle parametrized functionals jt.

Then the expression of the shape derivative of uΩ resulting from the above approach will make
it possible to compute explicitly the shape gradient of cost functionals of the domain in view of the
numerical resolution of some shape optimization problems involving contact friction.
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Chapter VI

Optimal location of resources in population
dynamics

This last chapter is a little bit independent of others but we give a brief presentation of this
work due to its application and its perspectives. This chapter summarizes the following article in
collaboration with Thibaut Deheuvels (École Normale Supérieure de Rennes) and Yannick Privat
(University of Strasbourg), published in SIAM Journal of Applied Mathematics (28 pages):

[91] F. Caubet, T. Deheuvels and Y. Privat. Optimal location of resources for biased movement
of species: the 1D case. SIAM J. Appl. Math., 77(6):1876–1903, 2017.

The aim of this work is to investigate an optimal design problem motivated by some
issues arising in population dynamics. In a nutshell, we aim at determining the optimal
shape of a region occupied by resources for maximizing the survival ability of a species
in a given box and we consider the general case of Robin boundary conditions on its
boundary. Mathematically, this issue can be modeled with the help of an extremal indefinite weight
linear eigenvalue problem. The optimal spatial arrangement is obtained by minimizing the positive
principal eigenvalue with respect to the weight, under a L1 constraint standing for limitation of the
total amount of resources. The specificity of such a problem lays upon the presence of nonlinear
functions of the weight both in the numerator and denominator of the Rayleigh quotient. By using
suitable rearrangement procedures, an adapted change of variable, as well as necessary optimality
conditions, we completely solve this optimization problem in the unidimensional case by showing
first that every minimizer is unimodal and bang-bang. This leads to investigate a finite dimensional
optimization problem. This allows to show especially that every minimizer is (up to additive constants)
the characteristic function of three possible domains: an interval that sticks on the boundary of the
box, an interval that is symmetrically located at the middle of the box, or, for a precise value of the
Robin coefficient, all intervals of a given fixed length

This work can be seen as an extension of the previous works of Laurain et al. [155, 167] adding an
advection term in the considered equation. Notice that, additionally to the advection term, the general
Robin boundary conditions also lead to mathematical difficulties in the resolution of the problem.

VI.1 The biological model and the state of the art

VI.1.1 The biological model

In this chapter we consider a reaction-diffusion model for population dynamics. We assume that
the environment is spatially heterogeneous and present both favorable and unfavorable regions. More
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specifically we assume that the intrinsic growth rate of the population is spatially dependent. Such
models have been introduced in the pioneering work of Skellam [208], see also [76, 77] and references
therein. We also assume that the population tends to move toward the favorable regions of the habitat,
that is, we add to the model an advection term (or drift) along the gradient of the habitat quality.
This model has been introduced by Belgacem and Cosner in [39].

Precisely we assume that the flux of the population density u(x, t) is of the form −∇u + αu∇m,
where m represents the growth rate of the population, and will be assumed to be bounded and to
change sign. From a biological point of view, the function m can be seen as a measure of the access
to resources at a location x of the habitat. The nonnegative constant α measures the rate at which
the population moves up the gradient of the growth rate m. With a slight abuse of language, we will
also say that m(x) stands for the local rate of resources or simply the resources at location x.

This leads to the following diffusive-logistic equation{
∂tu = div(∇u− αu∇m) + λu(m− u) in Ω× (0,∞),
eαm(∂nu− αu∂nm) + βu = 0 on ∂Ω× (0,∞),

(VI.1.1)

where Ω is a bounded region of Rd (with d = 1, 2, 3) which represents the habitat, β ≥ 0, and λ
is a positive constant. The case β = 0 in (VI.1.1) corresponds to the no-flux boundary condition:
the boundary acts as a barrier for the population. The Dirichlet case, where the boundary condition
on ∂Ω is replaced by u = 0, corresponds to the case when the boundary is lethal to the population,
and can be seen as the limit case when β →∞. The choice 0 < β <∞ corresponds to the case where
a part of the population dies when reaching the boundary, while a part of the population turns back.

Plugging the change of function v = e−αmu into Problem (VI.1.1) yields to{
∂tv = ∆v + α∇v · ∇m+ λv(m− eαmv) in Ω× (0,∞),
eαm∂nv + βv = 0 on ∂Ω× (0,∞).

(VI.1.2)

The relation v = e−αmu ensures that the behavior of models (VI.1.1) and (VI.1.2) in terms of growth,
extinction or equilibrium is the same. Therefore we only deal with Problem (VI.1.2) in the following.

It would be natural a priori to consider weightsm belonging to L∞(Ω) without assuming additional
regularity assumption. Nevertheless, for technical reasons that will be made clear in the following, we
will temporarily assume that m ∈ C2(Ω). Moreover we also make the following additional assumptions
on the weight m, motivated by biological reasons. Given m0 ∈ (0, 1) and κ > 0, we consider that

— the total resources in the heterogeneous environment are limited:∫
Ω
m ≤ −m0|Ω|, (VI.1.3)

— m is a bounded measurable function which changes sign in Ω, i.e.

| {x ∈ Ω, m(x) > 0} | > 0, (VI.1.4)

and using an easy renormalization argument leads to assume that

−1 ≤ m ≤ κ a.e. in Ω. (VI.1.5)
Observe that the combination of (VI.1.3) and (VI.1.4) guarantees that the weight m changes sign
in Ω.

In the following we introduce and investigate an optimization problem in which roughly speaking,
we look at configurations of resources maximizing the survival ability of the population. The main
unknown is the weightm and for this reason, it is convenient to introduce the set of admissible weights:

Mm0,κ := {m ∈ L∞(Ω), m satisfies assumptions (VI.1.3), (VI.1.4) and (VI.1.5)} . (VI.1.6)
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VI.1.2 A principal eigenvalue problem with indefinite weight

It is well known that the behavior of Problem (VI.1.2) can be predicted from the study of the
following eigenvalue problem with indefinite weight (see [39, 76, 153]){

−∆ϕ− α∇m · ∇ϕ = Λmϕ in Ω,
eαm∂nϕ+ βϕ = 0 on ∂Ω,

(VI.1.7)

which also rewrites {
−div(eαm∇ϕ) = Λmeαmϕ in Ω,
eαm∂nϕ+ βϕ = 0 on ∂Ω.

(VI.1.8)

Recall that an eigenvalue Λ of Problem (VI.1.8) is said to be a principal eigenvalue if Λ has a positive
eigenfunction. Using the same arguments as in [9, 154], the following proposition can be proved.

Proposition VI.1.1. 1. In the case of Dirichlet boundary condition, there exists a unique positive
principal eigenvalue denoted λ∞1 (m), which is characterized by

λ∞1 (m) = inf
ϕ∈S0

∫
Ω e

αm|∇ϕ|2∫
Ωme

αmϕ2 ,

where S0 =
{
ϕ ∈ H1

0(Ω),
∫

Ωme
αmϕ2 > 0

}
.

2. In the case of Robin boundary condition with β > 0, the situation is similar to the Dirichlet
case, and λβ1 (m) is characterized by

λβ1 (m) = inf
ϕ∈S

∫
Ω e

αm|∇ϕ|2 + β
∫
∂Ω ϕ

2∫
Ωme

αmϕ2 , (VI.1.9)

where S =
{
ϕ ∈ H1(Ω),

∫
Ωme

αmϕ2 > 0
}
.

3. In the case of Neumann boundary condition (β = 0),
— if

∫
Ωme

αm < 0, then the situation is similar as the Robin case, and λβ1 (m) > 0 is given
by (VI.1.9) with β = 0,

— if
∫

Ωme
αm ≥ 0, then λβ1 (m) = 0 is the only non-negative principal eigenvalue.

Remark VI.1.2. According to the existing literature (see e.g. [39]), the existence of λβ1 (m) defined
as the principal eigenvalue of Problem (VI.1.8) for C2 weights follows from the Krein Rutman theory.
Nevertheless one can extend the definition of λβ1 (m) to a larger class of weights by using Rayleigh
quotients, as done in Proposition VI.1.1.

Following [154, Theorem 28.1] (applied in the special case where the operator coefficients are
periodic with an arbitrary period), one has the following time asymptotic behavior characterization
of the solution of the logistic equation (VI.1.2):

— if λ > λβ1 (m), then (VI.1.2) has a unique positive equilibrium, which is globally attracting
among non-zero non-negative solutions;

— if λβ1 (m) > 0 and 0 < λ < λβ1 (m), then all non-negative solutions of (VI.1.2) converge to zero
as t→∞.

From a biological point of view, the above characterization yields a criterion for extinction or persis-
tence of the species.

A consequence is that the smaller λβ1 (m) is, the more likely the population will survive. This
biological consideration led Cantrell et al. to raise the question of finding m such that λβ1 (m) is
minimized, see [76, 77]. This problem writes

inf
m∈Mm0,κ

λβ1 (m), (VI.1.10)
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or respectively
inf

m∈Mm0,κ
λ∞1 (m).

in the case of Dirichlet conditions.
Biologically this corresponds to finding the optimal arrangement of favorable and unfavorable

regions in the habitat so the population can survive.

Remark VI.1.3. It is notable that, in the Neumann case (β = 0), if we replace Assumption (VI.1.3)
with

∫
Ωm ≥ 0 in the definition of Mm0,κ, then λ0

1(m) = 0 for every m ∈ Mm0,κ. Biologically this
means that any choice of distribution of the resources will ensure the survival of the population.

VI.1.3 State of the art

Analysis of the biological model (with an advection term). Problem (VI.1.2) was introduced
in [39], and studied particularly in [39, 106], where the question of the effect of adding the drift term
is raised. The authors investigate if increasing α, starting from α = 0, has a beneficial of harmful
impact on the population, in the sense that it decreases or increases the principal eigenvalue of
Problem (VI.1.8).

It turns out that the answer depends critically on the condition imposed on the boundary of the
habitat. Under Dirichlet boundary conditions, adding the advection term can be either favorable or
detrimental to the population, see [39]. This can be explained by the fact that if the favorable regions
in the habitat are located near the hostile boundary, this could result in harming the population. In
contrast, under no-flux boundary conditions, it is proved in [39] that a sufficiently fast movement up
the gradient of the resources is always beneficial. Also, according to [106], if we start with no drift
(α = 0), adding the advection term is always beneficial if the habitat is convex. The authors however
provide examples of non-convex habitats such that introducing advection up the gradient of m is
harmful to the population.

Optimal design issues. The study of extremal eigenvalue problems with indefinite weights like
Problem (VI.1.10), with slight variations on the parameter choices (typically α = 0 or α > 0) and
with different boundary conditions (in general Dirichlet, Neumann or Robin ones) is a long-standing
question in calculus of variations. In the survey [151, Chapter 9], results of existence and qualitative
properties of optimizers when dealing with non-negative weights are gathered.

In the survey article [175], the biological motivations for investigating extremal problems for prin-
cipal eigenvalue with sign-changing weights are recalled, as well as the first existence and analysis
properties of such problems, mainly in the 1D case.

A wide literature has been devoted to Problem (VI.1.7) (or close variants) without the drift term,
i.e. with α = 0. Monotonicity properties of eigenvalues and bang-bang properties of minimizers 1 were
established in [9], [176] and [160] for Neumann boundary conditions (β = 0) in the 1D case. In [195],
the same kind of results were obtained for periodic boundary conditions. We also mention [116], for
an extension of these results to principal eigenvalues associated to the one dimensional p-Laplacian
operator.

In this work, we investigate a similar optimal design problem for a more general model in which a
drift term with Robin boundary conditions is considered. In the simpler case where no advection term
was included in the population dynamics equation, a fine study of the optimal design problem [155, 167]
allowed to emphasize existence properties of bang-bang minimizers, as well as several geometrical
properties they satisfy. Concerning now the drift case model with Dirichlet or Neumann boundary
conditions, the existence of principal eigenvalues and the characterization of survival ability of the

1. It means that the L∞ constraints on the unknownm are saturated a.e. in Ω, in other words that every optimizerm∗
satisfies m∗(x) ∈ {−1, κ} a.e. in Ω.
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population in terms of such eigenvalues has been performed in [39, 106]. However and up to my
knowledge, nothing was known about the related optimal design problem (VI.1.10) or any variant.

VI.2 Modeling of the optimal design problem and main re-
sults

VI.2.1 Modeling

From now on, we focus on the 1D case d = 1. Hence, for sake of simplicity, we consider that

Ω := (0, 1).

If ω is a subset of (0, 1), we denote by χω the characteristic function of ω, that is χω(x) = 1 if x ∈ ω
and χω(x) = 0 if not.

As mentioned previously (see Section VI.1.1), we aim at finding the optimal m (whenever it
exists) which minimizes the positive principal eigenvalue λβ1 (m) of Problem (VI.1.8). For technical
reasons, most of the results concerning the qualitative analysis of System (VI.1.2) (especially the
persistence/survival ability of the population as t→ +∞, the characterization of the principal eigen-
value λβ1 (m), and so on) are established by considering smooth weights, say C2. The following theorem
emphasizes the link between the problem of minimizing λβ1 (m) over the class Mm0,κ ∩ C2(Ω) and a
relaxed one, where one aims at minimizing λβ1 over the larger classMm0,κ.

Theorem VI.2.1. When α is sufficiently small, the infimum inf
{
λβ1 (m) , m ∈ Mm0,κ ∩ C2(Ω)

}
is

not attained for any m ∈Mm0,κ ∩ C2(Ω). Moreover, one has

inf
m∈Mm0,κ∩C2(Ω)

λβ1 (m) = min
m∈Mm0,κ

λβ1 (m),

and every minimizer m∗ of λβ1 over Mm0,κ is a bang-bang function, i.e. can be represented as m∗ =
κχE − χΩ\E, where E ⊂ Ω is a measurable set.

As a consequence, we consider the following optimal design problem. Fix β ∈ [0,∞]. We consider
the extremal eigenvalue problem

λβ∗ = inf
{
λβ1 (m), m ∈Mm0,κ

}
, (VI.2.1)

whereMm0,κ is defined by (VI.1.6) and where λβ1 (m) is the positive principal eigenvalue of{
− (eαmϕ′)′ = λmeαmϕ in (0, 1),
eαm(0)ϕ′(0) = βϕ(0), eαm(1)ϕ′(1) = −βϕ(1).

(VI.2.2)

Problem (VI.2.2) above is understood in a weak sense, that is, in the sense of the variational formu-
lation:

Find ϕ ∈ H1(0, 1) such that for all ψ ∈ H1(0, 1),∫ 1

0
eαmϕ′ψ′ + β(ϕ(0)ψ(0) + ϕ(1)ψ(1)) = λβ1 (m)

∫ 1

0
meαmϕψ.

101



Chapter VI. Optimal location of resources in population dynamics

VI.2.2 Solving of the optimal design problem

Let us first provide a brief summary of the main results of this work which concern the resolution
of the optimal design problem (VI.2.1).

In a nutshell, we prove that under an additional smallness assumption on the non-negative para-
meter α, the problem of minimizing λβ1 (·) overMm0,κ has a solution writing

m∗ = κχE∗ − χΩ\E∗ , (VI.2.3)

where E∗ is (up to a zero Lebesgue measure set) an interval. Moreover one has the following alternative:
except for one critical value of the parameter β denoted βα,δ, either E∗ is stuck to the boundary, or E∗
is centered at the middle point of Ω. More precisely there exists δ ∈ (0, 1) such that:

– for Neumann boundary conditions, one has E∗ = (0, δ) or E∗ = (1− δ, 1);
– for Dirichlet boundary conditions, one has E∗ = ((1− δ)/2, (1 + δ)/2);
– for Robin boundary conditions, there exists a threshold βα,δ > 0 such that, if β < βα,δ then

the situation is similar to the Neumann case, whereas if β > βα,δ the situation is similar to the
Dirichlet case.

Figure VI.2.1 illustrates different profiles of minimizers. The limit case β = βα,δ is a bit more intricate.
For a more precise statement of these results, we refer to Theorems VI.2.5, VI.2.6 and VI.2.8 below.

Figure VI.2.1 – Graph of a minimizer for small β (left) and graph of the unique minimizer for large β (right).

We will say that a solution mβ
∗ (whenever it exists) of Problem (VI.2.1) is of Dirichlet type if

mβ
∗ = (κ + 1)χ((1−δ)/2,(1+δ)/2) − 1 for some parameter δ > 0. We first investigate the Neumann and

Robin cases. The Dirichlet case is a byproduct of our results on the Robin problem.

Neumann boundary conditions. In the limit case where Neumann boundary conditions are
imposed (i.e. β = 0), we have the following characterization of persistence, resulting from the Neumann
case in Proposition VI.1.1 (see [106]).

Proposition VI.2.2. Let m ∈Mm0,κ. There exists a unique α?(m) > 0 such that

– if α < α?(m), then
∫ 1

0 me
αm < 0 and λ0

1(m) > 0,
– if α ≥ α?(m), then

∫ 1
0 me

αm ≥ 0 and λ0
1(m) = 0.
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VI.2 Modeling of the optimal design problem and main results

As a consequence, in order to analyze the optimal design problem (VI.2.1) which minimizes the
positive principal eigenvalue λβ1 (m), it is relevant to consider (at least for the Neumann boundary
conditions) α uniformly small with respect to m. This is the purpose of the following theorem.

Theorem VI.2.3 (Neumann case). The infimum

α = inf
m∈Mm0,κ

α?(m)

is attained at every function m∗ ∈ Mm0,κ having the bang-bang property and such that
∫

Ωm∗ =
−m0. In other words, the infimum is attained at every m∗ ∈ Mm0,κ which can be represented as
m∗ = κχE − χΩ\E, where E is a measurable subset of Ω of measure (1−m0)/(κ+ 1). Moreover, one
computes α = 1

1+κ ln
(

κ+m0
κ(1−m0)

)
> 0.

Remark VI.2.4. A consequence of the combination of Theorem VI.2.3 and Proposition VI.1.1 is
that

∫
Ωme

αm < 0 for every m ∈Mm0,κ whenever α < α.

Theorem VI.2.5 (Neumann case). Let β = 0 and α ∈ [0, α). The optimal design problem (VI.2.1)
has a solution.

If one assumes moreover that α ∈ [0,min {1/2, α}), then the inequality constraint (VI.1.3) is active,
and the only solutions of Problem (VI.2.1) are m = (κ + 1)χ(0,δ∗) − 1 and m = (κ + 1)χ(1−δ∗,1) − 1,
where δ∗ := 1−m0

1+κ .

Robin boundary conditions. The next result is devoted to the investigation of the Robin boun-
dary conditions case, for an intermediate value of β in (0,+∞). For that purpose, let us introduce the
positive real number βα,δ such that

βα,δ :=



e−α√
κδ

arctan
(

2
√
κeα(κ+1)

κe2α(κ+1) − 1

)
if κe2α(κ+1) > 1,

πe−α

2
√
κδ

if κe2α(κ+1) = 1,

e−α√
κδ

arctan
(

2
√
κeα(κ+1)

κe2α(κ+1) − 1

)
+ πe−α√

κδ
if κe2α(κ+1) < 1.

We also introduce
δ∗ := 1−m0

1 + κ
and ξ∗ := κ+m0

2(1 + κ) ,

and we denote by β∗α the real number βα,δ∗ .

Note that the particular choice | {m = κ} | = δ∗ corresponds to choosing
∫ 1

0 m = −m0 if m is bang-
bang. It is also notable that if E∗ = (ξ∗, ξ∗ + δ∗) in (VI.2.3), then {m = κ} is a centered subinterval
of (0, 1).

Theorem VI.2.6 (Robin case). Let β ≥ 0 and α ∈ [0, α). The optimal design problem (VI.2.1) has
a solution mβ

∗ .

Defining δ := 1−m̃0
1+κ , where m̃0 = −

∫ 1
0 m

β
∗ and assuming moreover that α ∈ [0,min {1/2, α}), one

has the following.
— If β < βα,δ, then

∫ 1
0 m

β
∗ = −m0 and the solutions of Problem (VI.2.1) coincide with the

solutions of Problem (VI.2.1) in the Neumann case.
— If β > βα,δ, then the solutions of Problem (VI.2.1) are of Dirichlet type. Moreover, if we further

assume that

α <
sinh2 (β∗1/2ξ∗)

1 + 2 sinh2 (β∗1/2ξ∗) , (VI.2.4)
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then
∫ 1

0 m
β
∗ = −m0 and the solutions of Problem (VI.2.1) coincide with the solutions of Pro-

blem (VI.2.1) in the Dirichlet case.
— If β = βα,δ, then

∫ 1
0 m

β
∗ = −m0 and every function m = (κ+1)χ(ξ,ξ+δ∗)−1 where ξ ∈ [0, 1−δ∗]

solves Problem (VI.2.1).

This result is illustrated on Figure VI.2.1. It can be seen as a generalization of [167, Theorem 1],
where the case α = 0 is investigated.

Let us comment on these results. It is notable that standard symmetrization argument cannot be
directly applied. Indeed this is due to the presence of the term eαm at the same time in the numerator
and the denominator of the Rayleigh quotient defining λβ1 (m). The proofs rest upon the use of a change
of variable to show some monotonicity properties of the minimizers, combined with an appropriate
rearrangement procedure as well as a refined study of the necessary first and second order optimality
conditions to show the bang-bang property of the minimizers.

Let us now comment on the activeness of the inequality constraint (VI.1.3). In the case α = 0, one
can prove that a comparison principle holds (see [176], Lemma 2.3). A direct consequence is that the
constraint (VI.1.3) is always active. In our case however, it can be established that the comparison
principle fails to hold, and the activeness of the constraint has to be studied a posteriori.

Remark VI.2.7. We can prove that, if assumption (VI.2.4) fails to hold, then there exist sets of
parameters such that

∫ 1
0 m

β
∗ < m0.

Dirichlet boundary conditions. Finally, as a byproduct of Theorem VI.2.6, we have the following
result in the case of Dirichlet boundary conditions.

Theorem VI.2.8 (Dirichlet case). Let β = +∞ and α ≥ 0. The optimal design problem (VI.2.1) has
a solution. If one assumes moreover that α ∈ [0, 1/2), then any solution of Problem (VI.2.1) writes
m = (κ+ 1)χ((1−δ)/2,(1+δ)/2) − 1 for some δ ∈ (0, 1).

Remark VI.2.9. Note that under the assumptions of Theorem VI.2.6, with the additional assump-
tion (VI.2.4), Theorem VI.2.6 rewrites:

– if β < β∗α, then the only solutions of Problem (VI.2.1) are the Neumann solutions;
– if β > β∗α, then the only solution of Problem (VI.2.1) is the Dirichlet solution;
– if β = β∗α, then every function m = (κ + 1)χ(ξ,ξ+δ∗) − 1 where ξ ∈ [0, 1 − δ∗] solves Pro-
blem (VI.2.1).

The proofs of Theorems VI.2.5, VI.2.6 and VI.2.8 are split into four steps that can be summed up
as follows: (i) proof that one can restrict the search of minimizers to unimodal weights, (ii) proof of
existence, (iii) proof of the bang-bang character of minimizers. The consequence of these three steps is
that there exists a minimizer of the form m∗ = κχE − χΩ\E , where E is an interval. The fourth step
hence writes: (iv) optimal location of E whenever E is an interval of fixed length.

VI.2.3 Qualitative properties and comments on the results

It is interesting to notice that, after some computations, we prove that the optimal eigenvalue λβ∗
is the first positive solution of an algebraic equation, the so-called transcendental equation. More
precisely,

— in the case β < βα,δ, the optimal eigenvalue λβ∗ is the first positive root of the equation (of
unknown λ)

tan
(√
λκδ

)
=
√
κeα(κ+1) (λ+β2e2α) tanh(√λ(1−δ))+2βeα

√
λ

βeα
√
λ(κe2α(κ+1)−1) tanh(√λ(1−δ))+e2α(λκe2ακ−β2)

,
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— in the case β > βα,δ, the optimal eigenvalue λβ∗ is the first positive root of the equation (of
unknown λ)

tan
(√
λκδ

)
=
√
κeα(κ+1) (λ+β2e2α) sinh(

√
λ(1−δ))+2β

√
λeα cosh(

√
λ(1−δ))

Aα(β,λ) ,

where

Aα(β, λ) := 1
2(κe2α(1+κ) − 1)(β2e2α + λ) cosh(

√
λ(1− δ))

+ βeα
√
λ(κe2α(κ+1) − 1) sinh(

√
λ(1− δ)) + 1

2(1 + κe2α(1+κ))(λ− β2e2α).

These formulae provide an efficient way to compute the numbers λβ∗ since it comes to the resolution
of a one-dimensional algebraic equation.

On Figure VI.2.2, we used this technique to draw the graph of β 7→ λβ∗ for a given choice of the
parameters α, κ and m0. It is notable that one can recover from this figure, the values λ0

∗ (optimal
value of λ1 in the Neumann case) as the ordinate of the most left hand point of the curve and λ∞∗
(optimal value of λ1 in the Dirichlet case) as the ordinate of all points of the horizontal asymptotic
axis of the curve. Finally the concavity of the function β 7→ λβ∗ can be observed on Figure VI.2.2. This
can be seen as a consequence of the fact that λβ∗ writes as the infimum of linear functions of the real
variable β.
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Figure VI.2.2 – Graph of β 7→ λβ∗ for α = 0.2, κ = 1 and m0 = 0.4. In that case, β∗α ' 3.2232.

VI.3 Perspectives

The same issues as those investigated in this work remain relevant in the multi-dimensional case,
from the biological as well as the mathematical point of view. Indeed the same considerations as in
Section VI.1.1 lead to investigate the problem

inf
m∈Mm0,κ

λβ1 (m) with λβ1 (m) = inf
ϕ∈S

∫
Ω e

αm|∇ϕ|2 + β
∫
∂Ω ϕ

2∫
Ωme

αmϕ2 .

Such a problem needs a very careful analysis. It is likely that such analysis will strongly differ from the
one led in this article. Indeed we claim that except maybe for some particular sets Ω enjoying symmetry
properties, we cannot use directly the same kind of rearrangement/symmetrization techniques.
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Furthermore the change of variable introduced in the proofs of the main theorem (especially in
order to prove that every minimizer is unimodal), that is

y =
∫ x

0
e−αm(s)ds, x ∈ [0, 1],

is proper to the study of Sturm-Liouville equations. We used it to characterize persistence properties
of the diffusive logistic equation with an advection term and to exploit the first and second order
optimality conditions of the optimal design problem above, but such a rewriting has a priori no
equivalent in higher dimensions.

The following issues could be investigated:
— (biological model) existence, simplicity of a principal eigenvalue for weightsm in the classMm0,κ,

without additional regularity assumption;
— (biological model) time asymptotic behavior of the solution of the logistic diffusive equation with

an advection term, and characterization of the alternatives in terms of the principal eigenvalue;
— (optimal design problem) existence and bang-bang properties of minimizers;
— (optimal design problem) development of a numerical approach to compute the minimizers.

It is notable that, in the case where α = 0, several theoretical and numerical results gathered in [162]
suggest that properties of optimal shapes, whenever they exist, strongly depend on the value of m0.

Another interesting issue (relevant as well in the one and multi-D models) concerns the sharpness
of the smallness assumptions on α made in Theorems VI.2.5, VI.2.6 and VI.2.8. From these results,
one is driven to wonder whether this assumption can be relaxed or even removed.
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Résumé
Ce manuscrit contient une partie de mes activités de recherche depuis mon arrivée à l’Institut de Mathématiques
de Toulouse de l’Université Toulouse III - Paul Sabatier, en 2013.

Il traite de deux domaines mathématiques principaux : l’optimisation de forme et les problèmes inverses. Il
présente un résumé des mes contributions sur ces thématiques sur quelques équations aux dérivées partielles
et souligne les champs d’applications possibles de ces résultats.

Ce travail a été motivé par les questions principales suivantes :
— comment justifier théoriquement l’efficacité d’une méthode numérique ou le besoin de régulari-

sation pour résoudre un problème ?
— comment résoudre numériquement le problème inverse d’obstacles en fonction du contexte phy-

sique ?
— comment modéliser mathématiquement un problème d’optimisation de forme dans différents

champs d’applications ?

Mots clés : optimisation de forme, problèmes inverses, équations aux dérivées partielles, problème de mini-
misation de la trainée, problème inverse d’obstacle, problème de Cauchy, problème de complétion de données,
conditions de Wentzell, développement asymptotique, analyse convexe, opérateur proximal

Abstract
This manuscript contains some of my research activities since my arrival at the Institut de Mathématiques de
Toulouse at the University Toulouse III - Paul Sabatier, in 2013.

It deals with two main mathematical areas: shape optimization and inverse problems. It presents a sum-
mary of my contributions about these themes on some partial differential equations and underlines the
fields of possible applications of the results.

This work was motivated by the following main questions:
— how to justify theoretically the efficiency of a numerical method or the need of regularization to

solve a problem?
— how to solve numerically the inverse obstacle problem according to the physical context?
— how to model mathematically a shape optimization problem in several fields of applications?

Keywords : shape optimization, inverse problems, partial differential equations, drag minimization problem,
inverse obstacle problem, Cauchy problem, data completion problem, Wentzell boundary conditions, asymptotic
expansion, convex analysis, proximal operator
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