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production et de tournées de véhicules
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préparée à l’Université d’Evry-Val-d’Essonne

Ecole doctorale n◦580 sciences et technologies de l’information et de la
communication (STIC)
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Chapter 1

Introduction

This thesis investigates a class of production routing problems (PRPs), in which

several fundamental activities, i.e., production planning, inventory control and vehicle

routing, are jointly optimized to improve the performance of the supply chain (SC).

The focus is to propose new models and algorithms for the studied problems. In this

chapter, the research motivation is introduced, and then the content and contributions

are presented.

1.1 Background

Facing the increasing fierce competition in the global market, companies have reached

the consensus that the integrated planning of two or more activities of the SC is one

of the key factors in improving their competitiveness. The speedy development of

advanced information and communication technology has enabled the accomplish-

ment of integrated planning. Two widely studied partially integrated planning prob-

lems are the production direct-distribution problem (PDP) and the inventory routing

problem (IRP). The PDP aims to make a production and direct-distribution plan

to minimize the production, inventory (at both plants and customers), and direct

transportation costs [47]. However, the PDP does not consider routing decisions. In

a single-plant and multi-customer distribution network, the IRP aims to minimize the

total inventory and routing costs by determining the timing and size of each delivery

to its customers and the corresponding routes [30]. However, the production quanti-

ties for each period are given in advance in the IRP. Recently, companies have set up

more integrated planning systems in which the production, inventory, and routing ac-

tivities are optimized. The optimization problem for implementing such an integrated

system is known as the PRP, which has been drawing increasing attention since it

was introduced by Chandra [31] in 1993. The PRP can be defined on a SC network

where a single production plant produces and distributes a single type of product to

a set of customers to meet their dynamic demand over the planning time horizon.
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The classic PRP consists of simultaneously optimizing the production, inventory and

routing decisions to minimize the total cost. A solution to the PRP determines for

each period: 1) how much to produce at the plant; 2) how much to deliver to each

customer; 3) how much inventory to hold in the plant and each customer; and 4) how

to arrange the vehicle routes for each planned delivery. The PRP is a generalization

of the PDP and IRP. It reduces to a PDP if a direct-distribution assumption is made,

and becomes an IRP if the production quantity in each period is fixed. Various studies

and practices have shown that implementing the PRP can enhance synchronization,

reduce product cost and improve service level. Chandra and Fisher [32] point out

that an integrated production, inventory and routing planning can reduce the total

operating cost by 3% - 20%. The Kellogg Company saved 4.5 million dollars in 1995

with an integrated planning system called Kellogg planning system [29]. Meanwhile,

customers can benefit from high service level with low stockout risk through the in-

tegration of production, storage, and routing [19], [94]. Although the classic PRP has

been widely investigated since the last few decades [1]–[4], [18]–[20], [25], [27], [88], [92],

it has not been sufficiently studied. For instance, the multi-product production rout-

ing problem (MPRP) has not received enough attention, although companies often

deal with multiple products in their production and distribution planning. In ad-

dition, most of the existing studies on the PRP focus on the general SC without

capturing the important characteristics of some special industry. In particular, the

food production routing problem (FPRP) for the food supply chain (FSC), in which

the food quality and perishability have to be carefully managed, has not been studied

yet.

The FSC is an important branch of the general SC that aims to provide customers

with high-quality food products with low cost. It plays an important role in the

food industry and is highly related to people’s life quality. Despite that the FSC

shares some common characteristics with the general SC, it has the following specific

features.

1) Most food has a relatively short shelf life and starts deteriorating once being

produced. Examples include fresh meat, fresh-cut vegetables, dairy products, and

bakery products. The value or quality of perishable food products decay when being

stored or delivered [33].

2) The process of food production, packaging, storage and transportation needs to

respect strict conditions and regulations. Most of the perishable food should be stored

and transported under a certain range of recommended temperatures, otherwise, the

food quality and safety cannot be guaranteed. Improper packaging, storage and

transportation will increase the amount of food wastes, food losses and the risk of food

safety, while respecting these conditions and regulations will imperatively increase
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cost. In addition, the delivery of food products may respect more strict delivery time

windows.

3) Food price fluctuates severely. As the food quality decreases, the selling price

could not keep the same. In reality, perishable food products are frequently sold

with promotions (under certain discount policies). Thus the total revenue may be

impacted due to adopted discount policies.

4) Consumers have high requirements for food quality, safety and traceability. The

customers today are more critical on food quality than ever before. They would like

to know more information about the food products they are buying, e.g., the qual-

ity, origin, and storage and transport conditions. Customer satisfaction significantly

depends on the quality of food received by customers.

Considering the above-mentioned characteristics of the FSC, it is meaningful to

study the FPRP capturing these characteristics. However, studies on the FPRP

are nearly blank in the literature. This motivates us to fill in the research gap by

studying the FPRP with food quality and perishability considerations. In the thesis,

we investigate three FPRPs that capture some critical features of the FSC, such

as packaging, customer satisfaction (dependent on food quality), and delivery time

windows. The FPRP is generally more complex than the general PRP due to the

additional complexity of integrating the food characteristics, thus the existing models

and solution methods cannot be directly applied to solve it.

1.2 Content and contributions

Based on the context described in Section 1.1, this thesis focuses on developing new

models and algorithms for a class of production routing problems. Firstly, to further

investigate the classic PRP, a multi-product PRP with outsourcing (MPRPOS) is

investigated. The MPRPOS extends the classic PRP by considering multiple products

and outsourcing decisions. Then, based on the study of the classic PRP, considering

food quality and perishability, a novel FPRP with multiple plants and packaging

consideration (MFPRP) is studied. Thirdly, to investigate the tradeoff between cost

and customer satisfaction, a bi-objective FPRP (BFPRP) is addressed. Finally, a

FPRP with time windows (FPRPTW) is studied. The studied problems integrate

important aspects that have not been addressed in the literature yet. They are

presented in Table 1.1.

The main contributions of the thesis are summarized as follows.

1) A novel MPRPOS is studied. For the problem, a mixed integer linear program

(MILP) model is formulated and a three-level heuristic (TLH) is developed. The

heuristic is also able to solve the classic PRP. Numerical results on MPRPOS

3



Table 1.1: Summary of the studied problems

Problems Objective Plant Product Food Packaging Outsourcing TW Solution method

MPRPOS S S M × TLH

MFPRP S M S × × HM

BFPRP M S S × ε-CTIH

FPRPTW S S S × × CPLEX

Note: S: single, M: multiple, TLH: three-level heuristic, HM: hybrid matheuristic

TW: time windows, ε-CTIH: ε-constraint-based two-phase iterative heuristic

instances show that TLH is efficient and outperforms the commercial solver

CPLEX. Numerical results on PRP benchmark instances further confirm the

good performance of TLH and show that it is very fast for large-sized instances.

In particular, TLH finds 283 new best solutions for the benchmark instances.

2) A new MFPRP with packaging is addressed. For the problem, a MILP model

is proposed. Then a hybrid matheuristic (HM) is developed to solve it. The

heuristic has three components: 1) a two-phase iterative method to generate

a good initial solution or useful information; 2) a fix-and-optimize procedure

to repair and improve the solution; and 3) a route-based optimization to fur-

ther improve the solution. Especially, the route-based optimization exploits the

large number of routes generated by the two-phase iterative and the fix-and-

optimize components. Numerical results demonstrate that HM is efficient and

outperforms the commercial solver CPLEX.

3) A new BFPRP is investigated. The two objectives are to minimize the total

cost and to maximize the average quality of food products received by cus-

tomers. For the problem, a novel bi-objective MILP model is proposed. Then

an ε-constraint-based two-phase iterative heuristic (ε-CTIH) that combines an

ε-constraint framework and a two-phase iterative heuristic is developed to gen-

erate a near-optimal Pareto solution set. The original bi-objective problem is

transformed into a series of single-objective problems that are solved iteratively

by the two-phase iterative heuristic. In particular, compared with the classic

ε-constraint method in which each transformed single-objective problem is only

linked by ε, the proposed ε-CTIH utilizes useful information from the previous

iteration to solve the transformed single-objective problem in the current itera-

tion. The fuzzy logic decision method is applied to help decision makers select

a preferred solution based on their preferences. Computational results on a case

study indicate that the proposed model and solution method are able to solve a
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real world case. In particular, the proposed approach can reduce the total cost

by 10.77% compared with a three-phase constructive heuristic. Computational

results on 185 randomly generated instances show that the proposed approach

can provide better Pareto solution set with shorter computation time compared

with CPLEX.

4) A FPRPTW is studied. This is still an ongoing work. For the problem, a

MILP model is first presented. Then the model is directly solved by CPLEX.

Experimental results on 45 randomly generated instances show that the problem

is quite complex, and only small-sized instances can be solved optimally by

CPLEX. Thus in future study, efficient algorithms should be developed to solve

large-sized instances for the problem.

The remainder of this thesis is organized as follows.

Chapter 2 presents a systematic literature review. Firstly, existing studies on the

PRP is reviewed. Then existing works on the integrated FSC planning is presented.

Finally, we review solution methods for the PRP, followed by the introduction to

bi-objective optimization.

Chapter 3 studies the MPRPOS that extends the classic PRP. For the problem, a

new MILP model is presented and a three-level heuristic is developed. Computational

experiments on 225 randomly generated MPRPOS instances and 1530 PRP bench-

mark instances are conducted to evaluate the performance of the proposed heuristic.

Chapter 4 addresses the MFPRP with packaging considerations. The problem is

first formulated as a MILP model. Then hybrid matheuristic is presented to solve it.

The performance of HM is evaluated by testing 320 randomly generated instances.

Chapter 5 investigates the BFPRP, in which the cost and food quality are si-

multaneously set as objectives. Based on the constructed bi-objective MILP, a new

ε-constraint-based iterative heuristic and a fuzzy logic decision method are developed.

Computational experiments on a case study and randomly 185 generated instances

are conducted to evaluate the proposed methods.

Chapter 6 studies the FPRPTW. A MILP model is formulated and several valid

inequalities are proposed to strengthen the model. Then the proposed model is di-

rectly solved by CPLEX.

Chapter 7 concludes this thesis and discusses perspectives for future research.
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Chapter 2

Literature review

In this chapter, we first review recent developments on the PRP in Section 2.1. Next,

we briefly review recent studies on integrated planning problems considering food

quality and perishability in Section 2.2. Then, the solution methods for the PRP are

reviewed in Section 2.3. We then introduce bi-objective optimization and its solution

methods in Section 2.4, followed by the introduction to fuzzy logic-based decision for

select a preferred solution among a set of alternative solutions Section 2.5. Finally,

we conclude this chapter in Section 2.6.

2.1 The production routing problem

The classic PRP can be defined on a SC network where a single production plant

produces and distributes products to spatially distributed customers in order to meet

their time varying demand. The plant usually has a limited production capacity,

a limited inventory capacity, and a fleet of capacitated vehicles. Each customer

has a deterministic dynamic demand and a limited inventory capacity. A solution

to the PRP corresponds to an integrated plan in which the production, inventory,

distribution and routing decisions are jointly optimized to minimize the total system

cost including the fixed and variable production cost at the plant, the inventory

cost at the plant and customers, and the transportation cost for distributing the

products to customers. The decisions to be made in each period are: 1) production

quantity in the plant; 2) inventory held in the plant and each customer; 3) delivery

quantity to each customer; and 4) vehicle routing for each planned delivery. In

the literature, the studies on PRP can be characterized according to the following

features: 1) single- or multi-plant; 2) single- or multi-product; 3) unlimited or limited

production and/or inventory capacity at the plant; and 4) rich production or routing

considerations. The basic version of the PRP (denoted as classic PRP) involves a

single plant, a single product, multiple (limited) homogeneous vehicles, and multiple

customers. Since the PRP was introduced by Chandra [31] in 1993, the classic PRP
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with a single plant, a single product, and a limited production and inventory capacity

has been most widely investigated with focusing on developing efficient algorithms

[1], [3], [4], [18]–[20], [25]–[27], [85], [88], [92]. The single-plant multi-product PRP has

been studied by [17], [28], [31], [32], [49], [78], [84]. Zhang et al. [102] address a multi-

plant multi-product PRP with two time grids and different production modes. Most

studies consider production and inventory capacity except a few works that assume

unlimited production and inventory capacity [2],[15],[31],[49],[87]. Recently, the PRP

is extensively studied by integrating important issues in supply chain management.

Examples include lost sales [5], [82], backordering [28], greenhouse gas emission [82],

startup cost [84], demand uncertainty [5], [7], [8], rich routing [64], [77], [78], reverse

logistics and remanufacturing [81].

Existing studies on the PRP generally assume that the customer demand should

always be met with in-house production. However, due to various reasons, e.g., lim-

ited capacities, emergency events and demand uncertainty, customer demand may fre-

quently not be met in time with in-house production. In this case, a few studies deal

with this issue by allowing lost sales or backordering [28],[82]. However, timely and re-

liable delivery of products is an important measure of company performance [62],[63].

Outsourcing consists of satisfying customer demand in time with out-house procure-

ment. It is defined as the act of obtaining semi-finished products, finished products

or services from an outside company to satisfy customer demand in time. In this way,

customers can receive their demand without delay. Chu and Chu [36] and Gilley and

Rasheed [52] conclude that outsourcing has many potential benefits to companies,

such as improved financial performance, quick response to changes and better core

competency. Outsourcing has been widely studied in SC planning applications. Lee

et al. [63] investigate advanced planning and scheduling with considering outsourc-

ing. A single-item capacitated dynamic lot-sizing problem (LSP) with backlogging

and outsourcing is studied by [37]. Polynomial algorithms for single-item LSP with

bounded inventory and backlogging or outsourcing are developed by [35], [36]. Lee

and Lan [62] study an extended economic production quantity model under stochastic

demand with a secondary facility. Haoues et al. [56] address a two-echelon SC network

considering multi-outsourcers. Integrating outsourcing decisions in the PRP enables

a company to further reduce system cost and enhance service level. We observe that

the PRP has been widely studied with considering new aspects that are important

in SC planning. However, there are still many aspects awaiting to be investigated

and the multi-product PRP has not received enough attention. To the best of our

knowledge, the multi-product PRP with outsourcing has not been studied yet.
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2.2 The food production routing problem

Food quality and perishability play a vital role in the planning of the production,

inventory and routing activities of a FSC. Existing integrated planning problems

that integrate food quality and perishability can be generally classified as the pro-

duction scheduling and vehicle routing problem (PSVRP), PDP, and IRP. The

PSVRP jointly optimizes production scheduling and vehicle routing decisions, but

no inventory is considered. To minimize the total production, inventory, and direct

distribution costs, the PDP simultaneously considers production lot-sizing with di-

rect shipments to customers, excluding vehicle routing. The IRP solution consists of

jointly determining the inventory and vehicle routing decisions to minimize the total

inventory and routing cost, while the production quantity in each period is assumed

to be given. In the following, we review studies on the PSVRP, PDP, and IRP that

consider food perishability and quality. And then introduce the FPRP.

For the PSVRP with perishable products, Geismar et al. [50] develop a two-phase

heuristic that uses evolutionary algorithms for PSVRP. Chen et al. [33] formulate

a nonlinear model to maximize the total profit and develop a decomposition-based

algorithm. Belo-Filho et al. [21] propose an adaptive large neighborhood search frame-

work that relies on MILP and tools. Amorim et al. [11] study a PSVRP with time

windows. Devapriya et al. [44] propose an evolutionary algorithm-based heuristic

for a perishable product. Lacomme et al. [60] design a greedy randomized adaptive

search procedure with an evolutionary local search algorithm.

In terms of the PDP considering perishability, Ahuja et al. [9] develop a greedy

heuristic and an efficient implementation of the very-large-scale-neighborhood-search

method. Amorim et al. [12] study a bi-objective PDP to minimize the total cost and

to maximize the freshness. Rong et al. [86] study a PDP in which the food quality

is traced throughout the production, inventory and distribution processes. They also

explicitly consider temperature control in the integrated planning model.

For the IRP dealing with perishable products, Le et al. [61] develop a MILP model

and propose a column generation-based solution approach. Mizaei and Seifi [79] pro-

pose a hybrid metaheuristic with lost sale consideration. Soysal et al. [93] investigate

an IRP with truckload-dependent distribution cost, service level consideration and

demand uncertainty. Shaabani and Kamalabadi [90] present an IRP involving per-

ishable products with a fixed shelf life and develop a population-based simulated

annealing algorithm. Crama et al. [41] investigate an IRP with demand uncertainty.

Coelho and Laporte [39] study an IRP with age-based product price to maximize the

total revenue. They formulate the problem with an age index to explicitly trace the

food quality. In addition, the final price of a perishable product is assumed to be
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dependent on its age. Such formulation can trace the food quality throughout the

planning process and capture the effects of product discount policies.

The FPRP, as a natural extension of the PDP and IRP, aims to provide an

integrated food production, inventory and routing plan in which food quality and

perishability are considered. Such integrated planning will save costs, reduce food

wastes and losses, and improve service level. The FPRP is generally more complex

than the classic PRP due to the additional complexity introduced by integrating food

quality and perishability. Therefore, it is of significant value to study the FPRP.

However, the FPRP has rarely been studied in the literature. Recently in 2018, Qiu

et al. [83] study a single-plant PRP considering products with perishable inventory,

but they did not specify the products as food products. Food products are relevant

to people’s health and life quality, therefore the food quality and perishability should

be carefully handled in the FPRP.

Innovative preservation methods can reduce the deterioration rate of perishable

food products and in turn affect the production, inventory and routing decisions.

However, there is an implicit tradeoff between the cost and benefit brought by adopt-

ing a new preservation method, e.g., a SC planner faces the choice between more

expensive preservation methods that can extend shelf life of their products and less

expensive preservation methods that cannot. Recently, SC planning problems that in-

tegrate preservation methods have been receiving increasing attention. Hsu et al. [57]

present a solution procedure to determine an optimal replenishment cycle, shortage

period, order quantity, and preservation method to maximize the total profit. The

effect of preservation technology investment on inventory decisions are studied by [45]

and [75]. Zhang et al. [101] investigate a planning problem in which the pricing, re-

plenishment cycle and preservation technology investment are jointly determined to

maximize the total profit per unit time. Yang et al. [100] examine an optimal dynamic

decision-making problem in which the optimal trade credit, preservation technology

investment and replenishment strategies are simultaneously determined to maximize

the total profit. Most recently, Li et al. [66] study a joint pricing, replenishment

and preservation technology investment problem for non-instantaneous deteriorating

items. Li et al. [67] investigate the coordination of inventory and packaging decisions

in a retailing environment. They show that the choice of packaging methods depends

on the customers’ willingness to buy less fresh items as substitutes, and indicate that

the adoption of better packaging can consistently reduce food waste. Thus, integrat-

ing food preservation decisions in the FPRP seems to be promising. The FPRP with

packaging consideration has not been studied in the literature yet.

Nowadays, customers are more critical on food quality than ever before. As food

quality decreases continuously, it may not meet customers’ expectation when the food
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reaches them. In this case, customer satisfaction is low, which in turn affects the com-

pany’s goodwill and revenue. Therefore, in an integrated FSC planning, a company

should not only focus on reducing cost, but also consider food quality that is quite

related to customer satisfaction. Recently, companies have realized that customer

satisfaction is a key to success in today’s business environment under fierce competi-

tion. Therefore, in a FPRP, decision makers should not only aim to reduce cost, but

also provide customers with high-quality food. Simultaneously optimizing these two

objectives needs to solve a bi-objective optimization problem. Similar bi-objective

problems have been studied by Amorim et al. [12] who study a bi-objective PDP

that minimizes the total production and distribution cost and maximizes the food

freshness. Amorim and Almada-Lobo [10] investigate a bi-objective vehicle routing

problem with time windows (VRPTW) in which the total routing cost and the prod-

uct freshness are simultaneously optimized. However, to the best of our knowledge, a

bi-objective FPRP that simultaneously optimizes the total cost and food quality has

not been investigated yet.

2.3 Solution methods for the production routing

problem

In this subsection, we review existing solution methods for the PRP. They can be

generally classified as exact method, constructive heuristic, branch-and-price (B&P)

approach, Lagrangian-relaxation or benders decomposition methods, meta-heuristic,

and mathematical-programming-based heuristic (matheuristic).

2.3.1 Mixed-integer linear programming method

2.3.2 Exact method

An exact solution method has the advantage in proving optimality of solutions whereas

it is extremely time-consuming, thus it can only solve small-sized instances. Exam-

ples include dynamic programming (DP), branch-and-bound (B&B), and branch-

and-cut (B&C). A few studies propose B&C algorithms to exactly solve the PRP.

Ruokokoski et al. [87] propose a B&C for the PRP with a single uncapacitated ve-

hicle and an uncapacitated plant. They compare several formulations of the PRP.

Results show that instances with 40 customers and 15 periods or with 80 customers

and 8 periods are solved to optimality within two hours. Archetti et al. [15] develop

a B&C for the PRP with a single capacitated vehicle. The subtour elimination con-

straints are first relaxed and added only when they are violated during the branching

process. The algorithm is evaluated on instances with 14 customers and 6 periods,
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and results show that the heuristic can solve most of these instances to optimality in

a few seconds. Adulyasak et al. [3] develop a B&C to solve the multi-vehicle PRP.

They compare two formulations with and without vehicle index, and several valid

inequalities are proposed to strengthen the two formulations. Results indicate that

instances with 35 customers, 3 periods and 3 vehicles can be solved to optimality. Qiu

et al. [84] develop a B&C to address the MPRP with startup cost. Their B&C uses

row generation to deal with subtour elimination constraints. The proposed B&C can

solve instances with up to 70 customers, 3 periods, 4 vehicles, and 3 products. A B&C

based on logical, strengthened lot-sizing, and lifted MTZ-type (Miller-Tucker-Zemlin)

valid inequalities is presented by [83], in which instances with up to 50 customers, 3

periods, and 4 vehicles are solved to optimality.

2.3.3 Constructive heuristic

A constructive heuristic is often designed based on the problem characteristics. It

can quickly provide a feasible solution for a NP-hard optimization problem, but the

solution is not guaranteed to be optimal. Chandra [31] proposes a three-phase con-

structive heuristic that consists of sequentially solving a warehouse replenishment

problem, a resulting distribution problem, and a consolidation process which allows

the potential move of the delivery date to a customer from one period to another.

Their computational results show that the consolidation process can lead to cost

reduction. Chandra and Fisher [32] design a similar three-phase heuristic. In the

heuristic, a production planning problem is first solved to determine a production

schedule that minimizes the total cost of setups and inventory. Then a distribution

problem is solved to schedule a fleet of vehicles. Finally, a local improvement proce-

dure that changes the production schedule and the delivery schedule to customers is

applied. They show that the reduction of the total operating cost ranges from 3%

to 20% accounting to coordination. Lei et al. [64] develop a two-phase heuristic in

which the first phase solves a PDP and the second phase solves many VRPs. Boudia

et al. [26] present an uncoupled heuristic and a coupled heuristic. The uncoupled one

determines the production plan and the distribution plan sequentially.The coupled

one applies local search to improve the solution by performing two kinds of moves,

i.e., exchanges of customers and modification of the production schedule, delivery

schedule, and routes.

2.3.4 Branch and price approach

A B&P approach combines the column generation and the branch and bound meth-

ods. Bard and Nananukul [18] propose a B&P in which a delivery schedule for one
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day is defined as a column to form the restricted master problem. Then promising

columns are generated and added to the restricted master problem iteratively. Then

a branch and bound is used to obtain an integer solution when no column can be

generated any more. Bard and Nananukul [20] then design a hybrid methodology

that combines exact and heuristic procedures within a B&P framework. The method

uses a new branching strategy to deal with the master problem degeneracy and ob-

tains a feasible solution by combining a rounding heuristic and tabu search within

a B&P. Qiu et al. [82] present a B&P heuristic that integrates a column-generation

formulation based on Dantzig-Wolfe decomposition.

2.3.5 Lagrangian relaxation or benders decomposition meth-
ods

The Lagrangian relaxation method transforms the original problems into easier ones

by dualizing the side constraints [48]. Fumero and Vercellis [49] develop a Lagrangian-

relaxation-based heuristic that transforms the original MPRP into four subproblems,

i.e., production, inventory, distribution, and routing subproblems. The Benders de-

composition method is designed to tackle problems with complicating variables which,

when temporarily fixed, yield a problem that is generally easier to solve than the

original problem. The original problem is decomposed into a master problem and

a subproblem, which are solved iteratively by generating and adding feasibility or

optimality cuts. Adulyasak et al. [5] propose a Benders decomposition-based B&C to

solve the PRP with demand uncertainty.

2.3.6 Metaheuristic

Metaheuristic is the most preferred method for solving the PRP since it can exploit

solution space by a guided search procedure with accumulated search experience to

avoid getting trapped into local optimum. Metaheuristics can find near-optimal so-

lutions and can be easily adapted to solve similar problems. However, the quality of

the obtained solutions often needs to be evaluated by other techniques. Many meta-

heuristics are developed to solve the PRP. A greedy randomized adaptive search

procedure and two improved versions with either a reactive mechanism or a path

relinking process are proposed by [25]. Boudia and Prins [27] propose a memetic

algorithm in which the genetic algorithm is modified by a local search procedure to

improve both its initial population and offsrpings. Their memetic algorithm starts

with an initial solution constructed by a simple heuristic. Then a crossover is used

to generate new offsprings. Finally, local search is performed to change both the pro-

duction plan and the distribution plan. Bard and Nananukul [19] develop a reactive
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tabu search heuristic. The heuristic starts from a solution generated by a two-phase

method that solves a PDP with an approximate routing cost and a series of vehicle

routing problem (VRP). Then the reactive tabu search method exploits neighbor-

hoods defined by a swap procedure and a transfer procedure. The swap procedure

involves a exchange of delivery quantities between two customers, and the transfer

procedure tries to reassign the delivery quantity of a customer from one period to

another. Armentano et al. [17] propose two tabu search heuristics, namely the ba-

sic tabu search (TS) and the tabu search with path relinking (TSPR), to solve the

multi-product PRP and the classic PRP. The TS starts with the construction of an

initial solution that may be infeasible, then searches for improvements by performing

three move components, i.e., transference of the maximum quantity from one period

to another, insertion of the quantity in a route, and determination of a new produc-

tion plan. Then the TSPR makes use of path relinking that links every tabu search

local optimum with the farthest solution of a pool of elite solutions. Adulyasak et

al. [4] present an adaptive large neighborhood search heuristic. Firstly, initial so-

lutions are generated by solving a PDP and many VRPs with applying the local

branching inequalities to diversify the production setup schedule. Then the adaptive

large neighborhood search is performed using the proposed selection and transforma-

tion operators. Each time a solution is changed during the transformation process, a

minimum cost flow subproblem is solved to obtain the values of all continuous vari-

ables. Finally, the incumbent solution is further improved by solving a TSP for each

individual route. Recently, Qiu et al. [85] develop a variable neighborhood search

heuristic in which delivery and routing variables are handled by neighborhood search

and binary variables for production setup and continuous variables are determined

by solving a MILP.

2.3.7 Mathematical programming-based heuristic

Mathematical programming-based heuristics (Matheuristics), which enable standard

MILP solvers to be applied to find optimal or near-optimal solutions, have shown good

performance and flexibility to solve PRPs. Relaxation and decomposition techniques

are often combined to transform the original problem into subproblems that are easier

to solve, while trying to lose as less as possible information of the original problem.

Brahimi and Tarik [28] develop a hybrid heuristic that combines a relax-and-fix and

a local search. Firstly, a production-distribution problem is solved with relaxing the

integrality of the routing variables of the original model. Then a series of MILP

models are solved by fixing part of the integer variables, relaxing the integrality

of partial integer variables, and optimizing the remaining integer variables and all

continuous variables. Similar relax-and-fix method has been proposed by [78] to
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solve the multi-product PRP. Zhang et al. [102] propose an iterative MILP-based

heuristic in which a MILP model is solved iteratively with a restricted set of updated

candidate routes. Absi et al. [1] propose a two-phase iterative heuristic in which the

original PRP is decomposed into an PDP and a resulted routing problem. In the

first phase, the PDP, in which an approximate visit cost is introduced, is solved to

determine the production, inventory and delivery quantity. The second phase solves a

series of VRPs or traveling salesman problems (TSPs) to determine the routes. Then

the approximate visit cost is updated. This procedure is repeated until a stopping

criterion is met. Then, Chitsaz et al. [34] present a three-phase iterative matheuristic

similar to that of [1]. The first phase decides the production setup schedule with

an approximate total visit cost. With the production setup schedule being fixed,

the second phase determines the production, inventory and delivery quantity with an

approximate visit cost related to each customer and period. Then the third phase

solves a VRP for each period and updates the approximate visit cost. This process

is repeated until the stopping criterion is met. Solyali süral [92] develop a five-

phase heuristic for the PRP. The first phase establishes customer visiting sequence

by solving a TSP. In the second phase, a restricted PRP is solved with a fixed customer

visiting sequence established in the first phase. The third phase solves a VRP for

each period. Infeasible solutions obtained in the third phase are repaired in the

fourth phase. Finally, incumbent feasible solutions are further improved in the fifth

phase by solving many TSPs. Russell [88] designs a set-partitioning approach and a

multi-phase approach which share some similarities with [1]. He claims that the main

differences are the artificial vehicle routing cost incorporation, predetermined route

generation, and seed route approximate formulation.

2.4 Bi-objective combinatorial optimization

In SC planning applications, the most commonly used objective is to minimize total

cost or to maximize total profit. However, decision makers often face the situation

in which multiple objectives are pursued. Usually, these objectives are conflict and

hard to be achieved simultaneously. In this context, multi-objective optimization

shows its advantage since it has the ability to deal with complex objectives. To

help decision makers find a balance among the multiple targets, the corresponding

problems should be formulated and solved by the multi-objective optimization models

and methods. In this thesis, Chapter 5 investigates a bi-objective food production

routing problem (BFPRP) that simultaneously optimizes two objectives. Therefore,

in the following subsections, we first state the principles of bi-objective optimization,

which is the most common form of the multi-objective optimization. Then the solution
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methods for multi-objective optimization are briefly reviewed. Next, the ε-constraint

method is presented. Finally, the evaluation metrics for bi-objective optimization is

introduced.

2.4.1 Principles

A general bi-objective optimization problem can be formulated as follows (modelM):

min f1 = ϕ(x) (2.1)

min f2 = ω(x) (2.2)

s.t.

x ∈ X (2.3)

where f1 and f2 represent the two objectives that may often be conflict, i.e., there

may not exist a solution that will lead to the minimum of f1 and f2 simultaneously;

x represents a vector of all decision variables; ϕ(x) and ω(x) correspond to the two

objective functions, respectively. X is the feasible region of x. A feasible solution

x ∈ X is said to cover another feasible solution x′ ∈ X if ϕ(x) ≤ ϕ(x′) and ω(x) ≤
ω(x′) , and x is said to dominate x′ ( x ≺ x′) if and only if x covers x′ and at least

one of the two inequalities is strict. Similarly, x ∈ X is said to be non-dominated

if there is no feasible solution x′ ∈ X such that x′ ≺ x. If a feasible solution

is non-dominated, then we say that it is Pareto-optimal. Then its corresponding

objective values (ϕ(x), ω(x)) form a Pareto point. The Pareto-optimal solution set

is defined as Ps = {x ∈ X |x is Pareto-optimal}, and the Pareto front is defined as

Pf = {(ϕ(x), ω(x))|x ∈ Ps}.

2.4.2 Solution methods

Generally, methods for solving multi-objective optimization problems can be classified

into preference-based methods and generating methods [42], [43]. The former; e.g.,

goal programming, goal-attainment, and global criterion methods, take into consider-

ation preferences of a decision maker during a solution process. They provide a single

solution for a decision maker, which is not flexible and lacks information about alter-

native solutions. In contrast, generating methods, e.g., weighted sum, ε-constraint,

and evolutionary methods [40], aim to generate a set of Pareto optimal points without

any preference from a decision maker. These methods have the advantages to provide

a set of solutions that can be selected flexibly by a decision maker and have been

adopted in many real-world applications [95], [96]. Among these methods, weighted

sum methods have several shortcomings. For instance, many combinations of weights
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may result in the same solution, objective functions have to be scaled to a com-

mon scale before forming the weighted sum, and it is hard to control the expected

number of Pareto solutions. Evolutionary methods [59] provide a set of approxi-

mate Pareto solutions that may be very far from the optimal Pareto solutions. The

ε-constraint method is well-known as one of the most effective approaches, especially

for bi-objective optimization problems [23]. It transforms an original multi-objective

problem into a set of mono-objective problems that can be solved to obtain a set of

Pareto solutions. It is superior to the weighted sum method because it is able to

produce non-extreme efficient solutions, does not require scaling, and needs less effort

to obtain an expected number of Pareto solutions [76]. Therefore, the ε-constraint

method is used to solve the studied BFPRP in Chapter 5. In the following, we briefly

introduce the principles of the ε-constraint method.

2.4.2.1 ε-constraint method

The basic idea of an ε-constraint method is to transform an initial bi-objective problem

(say problem defined by (2.1)-(2.3)) into a sequence of mono-objective problems with

one principal objective (say minimize ϕ(x)) by transforming the other objective (say

minimize ω(x)) as a constraint bounded by a parameter ε: ω(x) ≤ ε. For a given

value of ε, the (ε-parameterized) mono-objective problem can be written as:

min {ϕ(x)|ω(x) ≤ ε,x ∈ X} (2.4)

after solving this problem, we obtain a solution x∗(ε) ∈ X , f1(ε) = ϕ(x∗(ε)) and

f2(ε) = ω(x∗(ε)) ≤ ε. It can easily be proved that for any x ∈ Ps, there is an ε

such that x = x∗(ε). As a consequence, by considering all possible values of ε and

solving the corresponding mono-objective problems (2.4), we can generate the set of

all Pareto solutions Ps.

For model M, we transform the second objective into a constraint, thus yielding

the following mono-objective model M(ε):

min f1 = ϕ(x) (2.5)

s.t.

ω(x) ≤ ε (2.6)

x ∈ X (2.7)

In order to construct the set of Pareto-optimal solution, we need to know the set

of all possible values of ε, which is actually an interval. This interval can be deter-

mined by obtaining an ideal point (f I1 , f
I
2 ) and a nadir point (fN1 , f

N
2 ). The ideal and

nadir points define lower and upper bounds on the objective values of Pareto-optimal

17



solutions, respectively [23]. They can be obtained by exactly solving the following

mono-objective problems:

f I1 = min{ϕ(x)|x ∈ X} (2.8)

f I2 = min{ω(x)|x ∈ X} (2.9)

fN1 = min{ϕ(x)|ω(x) = f I2 ,x ∈ X} (2.10)

fN2 = min{ω(x)|ϕ(x) = f I1 ,x ∈ X} (2.11)

the value of ε can be bounded by interval [f I2 , f
N
2 ]. Then a step size ∆ should be fixed

to explore values of ε and form a series of mono-objective problems that are solved

to obtain the Pareto front or its approximation. The solution to each mono-objective

M(ε) for a given value of parameter ε, if not dominated, is a Pareto-optimal solution

to the original problem. The objective values of all Pareto solutions (ϕ(x), ω(x))

form a Pareto front.

Ideally, we expect to generate the exact Pareto front. This may require solving a

large number of mono-objective problems M(ε) that may be very complex and time

consuming, which is impractical and unnecessary for decision makers. In practice,

decision makers may expect some representative Pareto solutions within a reasonable

amount of computation time. The obtained representative Pareto solutions form an

approximate Pareto front AF in which no Pareto point is not dominated by any other

Pareto point in AF .

2.4.3 Performance evaluation

In single-objective optimization, the solution quality can be directly evaluated by com-

paring the obtained solution with the lower or upper bounds. While in bi-objective

optimization, the solution quality evaluation of the approximate Pareto solution set

AF is less straightforward and is often evaluated based on a reference Pareto solu-

tion set denoted as RF . Generally, the quality of AF can be evaluated from four

aspects [80], namely the cardinality |AF | and |RF |, hypervolume ratio H, average

e-dominance D, and computation time T . The cardinality, hypervolume, and e-

dominance are stated as following:

Cardinality is the number of solutions in an obtained Pareto solution set. If

|AF | > |RF |, we say AF is better than |RF | from the cardinality perspective.

Hypervolume ratio H, which can be calculated by (2.12) is the ratio of hypervol-

umes of AF and RF with the denotation of HA and HR, respectively. HA indicates

the objective space covered by set AF . As shown in Fig. 2.1, each Pareto point in

the set forms a rectangle shown by the shaded area with respect to a reference point

(generally the Nadir Pareto point), and the hypervolume of the solution set is the
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area of the union of all rectangles. The larger the hypervolume ratio, the better the

algorithm. If H > 1, then AF is better than RF .

H =
HA
HR

(2.12)

Indicator e-dominance denotes the average distance between AF and RF . An ap-

proximate Pareto point (ϕ(x), ω(x)) ∈ AF is said to e-dominate (ϕ(x′), ω(x′)) ∈ RF

if ϕ(x) ≤ e(x′)ϕ(x′) and ω(x) ≤ e(x′)ω(x′), where the e-dominance indicator e(x′)

for a given Pareto point ((ϕ(x′), ω(x′)) is calculated as:

e(x′) = min
(ϕ(x),ω(x))∈AF

max{ ϕ(x)

ϕ(x′)
,
ω(x)

ω(x′)
} (2.13)

e(x′) < 1 indicates that (ϕ(x′), ω(x′)) is dominated by (ϕ(x), ω(x)). The average

e-dominance indicator is calculated as:

D =
1

|RF |
∑

(ϕ(x′),ω(x′))∈RF

e(x′) (2.14)

The closer D is to 1, the closerAF is to RF .

Nadir point

f1

f2

min

Reference set
Approximate set

f1

f2

Fig. 2.1: Hypervolume indicator and e-dominance indicator

2.5 Selection of a preferred solution - fuzzy logic

decision method

In a bi-objective decision making process, when a set S of alternative solutions

numbered from 1 to |S| are obtained, decision makers may need to choose a best-

compromised solution according to their preference. The fuzzy logic decision method

can take into account their preference and indicate the optimality degree of the se-

lected solution [46], [103]. For the ith objective (i = 1, 2 for a bi-objective problem)

and the sth solution, where s ∈ S, a linear membership function ηi(f
s
i ) is defined for

each of the two objectives as follows:
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ηi(f
s
i ) =


1, f si ≤ f Ii
fNi −fsi
fNi −fIi

, f Ii < f si < fNi , i = 1, 2; 1 ≤ s ≤ S

0, f si ≥ fNi

(2.15)

where f Ii and fNi denote the lower and upper limits of the ith objective function,

respectively; f si is the ith objective value of the sth Pareto solution. The membership

degree ηs of the sth solution is calculated as follows:

ηs =
2∑
i=1

wiηi(f
s
i ) (2.16)

where wi denotes the weight of the ith objective with
∑2

i=1wi = 1. It can be deter-

mined based on decision makers’ preference. The solution with the maximum value

of ηs is selected as their most preferred solution.

Note that this selection process presents some advantages over weighted sum

method. Although both approach require modeling decision makers’ preference, the

meaning of weights is different. In a weighted sum method, a weight is directly at-

tached to each objective, while these objectives are often of different units and scales.

Modeling decision makers’ preference among such objectives is challenging. Further-

more, if decision makers change their mind, a new set of weights has to be estimated

to reflect their new preference and a new problem has to be solved again. The whole

process thus may be very time consuming. In a fuzzy decision approach, however, a

weight is attached to the membership degree of each objective and these membership

degrees are already normalized to a scalar between 0 and 1 and the set of Pareto

optimal solutions is already available at the selection stage. Such weights are easier

to estimate in order to model decision makers’ preference. More importantly, when

decision makers change their mind, it is sufficient to estimate a new set of weights

and select a new solution among the set of Pareto-optimal solutions. This makes the

selection process much shorter.

2.6 Conclusions

In this chapter, we first review the studies on the PRP that is a hard combinatorial

optimization problem since it generally contains two classic optimization problems,

i.e., the LSP and VRP. It can be found that the PRP and its variants have been widely

studied during the last two decades. However, the multi-product PRP has received

less attention. Then we present the review on integrated FSC planning problems.

We find that food perishability and quality have been extensively investigated in
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the PSVRP, PDP, and IRP. However, to the best of our knowledge, the FPRP with

perishability consideration has not been addressed yet. Especially, several critical

issues such as packaging, customer satisfaction, and delivery time windows have not

been investigated in the FPRP yet. Motivated by the above mentioned observations,

this thesis is devoted to developing new models and efficient solution algorithms for

the PRP and FPRP.
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Chapter 3

Multi-product Production Routing
Problem with Outsourcing

3.1 Introduction

Most studies on the PRP limit to a single type of product. However, in real appli-

cations, a company usually produces multiple products. In addition, due to limited

capacities, outsourcing strategy has become an important practice to response quickly

to market changes. The MPRP is generally less frequently addressed and the out-

sourcing aspect has not been integrated in a MPRP yet. Therefore, in this chapter,

as a beginning work, we study a MPRP with Outsourcing (MPRPOS) that is a gener-

alization of the classic PRP. The problem consists of a plant and a set of customers.

The plant produces and distributes multiple types of products to these customers

over a planning horizon. The customer demand must be satisfied on time by either

in-house production or outsourcing.

This chapter focuses on developing an efficient heuristic to solve both the MPR-

POS and the classic PRP. The MPRPOS is first formulated as a MILP, then a

three-level mathematical-programming-based heuristic (TLH) is developed to solve

it. Finally, extensive computational experiments on 225 randomly generated MPR-

POS instances and 1530 classic PRP benchmark instances are conducted to evaluate

the proposed model and the developed heuristic.

The rest of this chapter is structured as follows. Section 3.2 gives the problem

description and mathematical formulation of MPRPOS. In Section 3.3, an efficient

TLH is developed. Computational results are presented in Section 3.4. Section 3.5

concludes the chapter.
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3.2 Problem description and formulation

The MPRPOS concerns a single plant that is responsible to produce and deliver

multiple types of products to a set of retailers over a finite planning time horizon. It

can be stated as follows:

Consider a complete digraph G={N ,A} with a set of nodes N={0, 1, . . . , n} and

a set of arcs A={(i, j) : i, j ∈ N, i 6= j} . A plant that can produce a set of products

P = {0, 1, . . . , |P |} with limited production capacity C and storage capacity U0 is

located at node 0. A fleet of homogeneous vehicles K={1, , 2, . . . , |K|} with capacity

V is available at the plant. A set of customers R={1, 2, . . . , n} is dispersed on the

graph. Each customer i ∈ R has a limited storage capacity Ui and a dynamic demand

dpti for product p ∈ P in period t ∈ T , where T = {0, 1, . . . , |T |} is a finite planning

time horizon.

An MPRPOS consists of simultaneously determining production, storage, delivery

and routing planning to satisfy customer demand with outsourcing consideration. The

objective is to minimize the total production, inventory, routing and outsourcing costs.

For each period of the planning horizon, several decisions have to be made jointly: 1)

how much to produce; 2) how much to deliver to each retailer; 3) how much inventory

to hold at the plant and each retailer; 4) how to arrange the vehicle routes for the

planned deliveries; and 5) how much to outsource for each product and retailer.

Note that once a product p is outsourced, its production and transportation will be

performed by another company with an unit outsourcing cost ep. The MPRPOS is

studied under the following assumptions: 1) each vehicle’s route starts and ends at

the plant; 2) each vehicle can perform at most one trip within each period; and 3)

each customer can be visited at most once within each period, i.e., split delivery from

the plant is not allowed. To formulate the problem, the following notation is defined:

Indices

i, j index of node, i, j ∈ N ;

t index of period, t ∈ T ;

k index of vehicle, k ∈ K;

p index of product, p ∈ P ;

Parameters

cij travel cost on arc (i, j) ∈ A;

ap unit production cost of product p ∈ P ;

ep unit outsourcing cost of product p ∈ P ;

bp production set up cost of product p ∈ P ;

C production capacity;

dpti demand for product p ∈ P at customer i ∈ R in period t ∈ T ;
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Ui inventory capacity of i ∈ N ;

hpi unit inventory holding cost per period of product p ∈ P at i ∈ N ;

Ip0i initial inventory of product p ∈ P held at i ∈ N ;

V vehicle capacity;

Decision variables

ξpt production quantity of product p in period t;

zpti outsourcing quantity of product p for customer i in period t;

wpt equal to 1 if product p is produced in period t; otherwise 0;

Ipti inventory of product p held at customer i at the end of period t;

ypkti quantity of product p delivered to customer i by vehicle k in period t;

vkti equal to 1 if customer i is visited by vehicle k in period t; and 0 otherwise;

xktij equal to 1 if arc (i, j) is traversed by vehicle k in period t; and 0 otherwise.

The considered problem can be formulated as the following MILP (model P).

P : min
∑
p∈P

∑
t∈T

(apξpt + bpwpt) +
∑
i∈R

∑
p∈P

∑
t∈T

epz
pt
i

+
∑
i∈N

∑
p∈P

∑
t∈T

hpi I
pt
i +

∑
(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij (3.1)

s.t.

Ipt0 = Ip,t−1
0 + ξpt −

∑
i∈R

∑
k∈K

ypkti , ∀ p ∈ P, t ∈ T (3.2)

Ipti = Ip,t−1
i + zpti +

∑
k∈K

ypkti − d
pt
i , ∀ i ∈ R, p ∈ P, t ∈ T (3.3)∑

p∈P

ξpt ≤ C, ∀ t ∈ T (3.4)

ξpt ≤ Cwpt, ∀ p ∈ P, t ∈ T (3.5)∑
p∈P

Ipti ≤ Ui, ∀i ∈ N, t ∈ T (3.6)∑
i∈R

∑
p∈P

ypkti ≤ V, ∀ k ∈ K, t ∈ T (3.7)∑
p∈P

ypkti ≤ V vkti , ∀ i ∈ R, k ∈ K, t ∈ T (3.8)∑
k∈K

vkti ≤ 1, ∀ i ∈ R, t ∈ T (3.9)∑
j∈N\{i}

xktij =
∑

j∈N\{i}

xktji , ∀ i ∈ N, k ∈ K, t ∈ T (3.10)

∑
j∈N\{i}

xktij = vkti , ∀ i ∈ N, k ∈ K, t ∈ T (3.11)
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∑
i∈R

xkt0i ≤ 1, ∀ k ∈ K, t ∈ T (3.12)∑
i∈S

∑
j∈S\{i}

xktij ≤ |S| − 1, ∀S ⊆ R, |S| ≥ 2, k ∈ K, t ∈ T (3.13)

ξpt ≥ 0, ∀ p ∈ P, t ∈ T (3.14)

zpti ≥ 0, ∀ i ∈ R, p ∈ P, t ∈ T (3.15)

Ipti ≥ 0, ∀ i ∈ N, p ∈ P, t ∈ T (3.16)

ypkti ≥ 0, ∀ i ∈ R, p ∈ P, k ∈ K, t ∈ T (3.17)

wpt ∈ {0, 1}, ∀ p ∈ P, t ∈ T (3.18)

vkti ∈ {0, 1}, ∀ i ∈ R, k ∈ K, t ∈ T (3.19)

xktij ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K, t ∈ T (3.20)

Objective function (3.1) minimizes the total production, outsourcing, inventory and

routing cost. Constraints (3.2) and (3.3) indicate the inventory flow balance at the

plant and customers, respectively. Constraints (3.4) mean that the total production

quantity of each period cannot exceed the production capacity. Constraints (3.5)

indicate that the production quantity of a product must be 0 if its production is

not launched. Constraints (3.6) limit the maximum inventory level to the capacity

at the plant and customers. The vehicle capacity constraints are imposed by (3.7).

Constraints (3.8) allow positive delivery quantity to a customer only if it is visited.

Constraints (3.9) forbid split delivery from the plant. Constraints (3.10) correspond

to the vehicle flow conservation. Constraints (3.11) link the arc routing variable to

the node visit variable. Constraints (3.12) indicate that one vehicle can perform

at most one trip in each period. Constraints (3.13) are the subtour elimination

constraint. Constraints (3.14)-(3.20) provide the ranges of the decision variables.

The proposed MPRPOS is NP-hard since it contains a VRP that is well known to

be NP-hard [51]. Due to the complexity of the studied problem, a new efficient

three-level heuristic (TLH) is developed in the next section.

3.3 Solution method

In this section, we present an efficient TLH to obtain near-optimal solutions to the

proposed model P , which can be easily adapted to solve the classic PRP that assumes

the outsourcing quantity to be 0. The principle of TLH is presented as follows: 1)

firstly, the original model P is decomposed into a PDP and a series of VRP(t) for

each period t. Then a two-phase iterative method (TIM) solves the above-mentioned

two subproblems iteratively to obtain an initial solution that may be infeasible to P ;

2) in the second level, a repairing strategy is designed to find a feasible solution. In
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the repairing strategy, a restricted PDP (RPDP) and a series of traveling salesman

problem (TSP)(t, k), one for each vehicle k and each period t, are solved sequentially.

In case that the obtained solution from Level 1 is feasible, Level 2 skips the RPDP

step and directly solves a series of TSP(t, k) to consolidate each route; and 3) In

level 3, a fix-and-optimize procedure is applied iteratively to each customer s ∈ R to

further enhance the incumbent solution. Once the fix-and-optimize procedure stops,

a series of TSP(t, k) are solved to form the final solution. The general framework of

TLH is shown in Fig. 3.1. We detail the three levels of TLH in Subsections 3.3.1 to

3.3.3 and outline TLH in Subsection 3.3.4.

Initial solution generation
(Level 1)

Production direct-
distribution problem 

(PDP)

VRP(t)

Infeasibility repair
(Level 2)

Restricted Production 
direct-distribution 
problem (RPDP) 

TSP(t,k)

Solution improvement
(Level 3)

Restricted Production 
direct-distribution 

problem (RPDP(s)) 

TSP(t,k)

Fig. 3.1: General framework of TLH

3.3.1 Level 1: Initial solution generation

Level 1 aims to obtain a good initial solution to model P with a TIM. If the obtained

solution by TIM is infeasible, it will be repaired in the next level. In Level 1, the

original problem is decomposed into a PDP and a series of VRP(t) that are iteratively

solved by updating an approximate visit cost δit for each customer i and each period t.

During the iterative procedure, if the incumbent solution does not improve for a given

number of iterations, a diversification mechanism is applied and the next iteration

is called a diversification iteration. To save computation time, the production setup

schedules are generated only in the first iteration and diversification iterations in TIM.

The generated production setup schedules are then fixed and used in the subsequent

iterations until the next diversification iteration. In TIM, for the sth iteration that is

either the first or a diversification iteration, the first subproblem can be formulated as

an MILP denoted as P1(s) that comes from model P with several modifications. The

vehicle routing constraints (3.7)-(3.13) are first relaxed and aggregate vehicle capacity

constraints are added. Two new variables and a parameter are then introduced.

Finally, the last term in objective function (3.1) is replaced with a term denoting the

approximate routing cost. To formulate P1(s), the following additional parameter

and variables are defined:
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Parameter

δsit approximate visit cost from the plant to customer i in period t for the sth

iteration. Initially, for s = 1 , δsit is set to a specific value, while for s > 1, δsit is

updated based on the VRP(t) solution in the previous iteration.

Decision variables

ypti quantity of product p delivered to customer i in period t;

vti equal to 1 if customer i is visited in period t; and 0 otherwise.

Note that vti and ypti replace vkti and ypkti in model P by removing the vehicle index

k. Thus the capacity of each individual vehicle is no longer restricted in PDP(s).

Instead, aggregate vehicle capacity constraints that limit the total delivery quantity

within a period are introduced. For the sth iteration that is the first or a diversification

iteration, PDP is formulated as a MILP (model P1(s)) as follows:

P1(s) : min
∑
p∈P

∑
t∈T

(apξpt + bpwpt) +
∑
i∈R

∑
p∈P

∑
t∈T

epz
pt
i

+
∑
i∈N

∑
p∈P

∑
t∈T

hpi I
pt
i +

∑
i∈R

∑
t∈T

δsitv
t
i (3.21)

s.t.

(3.4)− (3.6), (3.14)− (3.16), (3.18) and

Ipt0 = Ip,t−1
0 + ξpt −

∑
i∈R

ypti , ∀ p ∈ P, t ∈ T (3.22)

Ipti = Ip,t−1
i + zpti + ypti − d

pt
i , ∀ i ∈ R, p ∈ P, t ∈ T (3.23)∑

i∈R

∑
p∈P

ypti ≤ |K|V, ∀ t ∈ T (3.24)∑
p∈P

ypti ≤ V vti , ∀ i ∈ R, t ∈ T (3.25)

ypti ≥ 0, ∀ i ∈ R, p ∈ P, t ∈ T (3.26)

vti ∈ {0, 1}, ∀ i ∈ R, t ∈ T (3.27)

The objective function (3.21) minimizes the total production, inventory, outsourcing

and visit cost. Constraints (3.22) and (3.23) correspond to the inventory flow balance

at the plant and customers, respectively. Constraints (3.24) indicate that the total

delivery quantity in each period cannot exceed the total vehicle capacity. Constraints

(3.25) ensure delivery quantity to be 0 if a customer is not visited. Constraints (3.26)

and (3.27) bound the variables. Model P1(s) consists of determining production setup

schedule ŵpt, production quantity q̂pt, outsourcing quantity ẑpti , inventory quantity

Îpti , delivery schedule v̂ti , and delivery quantity ŷpti . Although P1(s) is NP-hard, we
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can obtain a relatively good feasible solution with a standard commercial solver.

Once P1(s) is solved, a production setup schedule W = {ŵpt|p ∈ P, t ∈ T} can be

proposed. For a subsequent iteration s that is not a diversification iteration, the

first-phase problem becomes a RPDP denoted as P ′1(s) can be formulated as follows:

P ′1(s) : min
∑
p∈P

∑
t∈T

apξpt +
∑
i∈R

∑
p∈P

∑
t∈T

epz
pt
i

+
∑
i∈N

∑
p∈P

∑
t∈T

hpi I
pt
i +

∑
i∈R

∑
t∈T

δsitv
t
i (3.28)

s.t.

(3.4), (3.6), (3.14)− (3.16), (3.22)− (3.27), and

ξpt ≤ Cŵpt, ∀ p ∈ P, t ∈ T (3.29)

Solving P1(s) or P ′1(s) decides the delivery schedule v̂ti and the corresponding delivery

quantity ŷpti . Then in the second phase of TIM, a series of VRP(t) for each period

t ∈ T can be formulated and solved to determine the number of vehicles used, the

customers each of them visits and the visit sequence. If the number of required vehicles

in the solution to all VRP(t) does not exceed the fleet size |K|, a feasible solution

to P can be formed by the solutions of P1(s) or P ′1(s) and VRP(t). Otherwise, TIM

provides useful information to construct a feasible solution to P at the next level.

At the end of the sth iteration, the visit cost δs+1
it should be updated from the

solution of VRP(t). If the (s+ 1)th iteration is a diversification iteration, we generate

δs+1
it with (3.30); otherwise, if customer i is visited in period t, we calculate δs+1

it

with (3.31); otherwise, it is calculated with (3.32). Equations (3.30)-(3.32) are listed

below:

δs+1
it = RGIF [min

j∈N
{cij}, c0i + ci0] (3.30)

δs+1
it = µ(ci−i + cii+ − ci−i+) + ρ(1− Lkt/V )c0i (3.31)

δs+1
it = min

k∈K
{µ∆ + ρ(1− Lkt/V )c0i} (3.32)

where RGIF represents a randomly generated integer number from the interval; µ

(0 ≤ µ ≤ 1) and ρ (0 ≤ ρ ≤ 1) are parameters. i− and i+ denote the immediate

predecessor and successor nodes of node i in the visit sequence, respectively. Lkt is the

total delivery quantity by vehicle k in period t and ∆kt
i is the cheapest insertion cost

for inserting i into an existing route performed by vehicle k in period t. The update

procedure attempts to better approximate the visit cost for a customer by considering

both the customer clustering and the truckload utilization rate. Parameters µ and ρ

are used to adjust the weight of these two aspects. When solving P ′1(s+1), where s+1
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is a diversification iteration, equation (3.30) is used to restart the iterative procedure

with some random values of δs+1
it to diversify the P ′1(s + 1). The visit cost update

procedure (3.31) and (3.32) tends to drive the solver to remove a customer from a

route if δs+1
it is large and insert a customer into a route if δs+1

it is small.

The aforementioned process is repeated for a number of iterations, then TIM stops

and outputs the best solution to be used in the next level.

The TIM has been developed based on the MIP-based iterative heuristic (IM-

VRP) proposed by [1]. The common points among the TIM, the IM-VRP and the

three-phase heuristic (CCJ-DH) recently developed by [34] are as follows: 1) the

original problems are decomposed into subproblems that are solved sequentially and

iteratively; 2) an approximate visit cost is introduced and it is updated in each it-

eration to serve as a surrogate of the real routing cost. However, our TIM differs

from IM-VRP and CCJ-DH with the following new features: 1) For the production

setup schedule, TIM and CCJ-DH generate it only in the first and diversification

iterations to save computation time, while IM-VRP generates it in each iteration. In

diversification iterations, TIM and IM-VRP diversify the search by re-generating the

value of the approximate visit cost while CCJ-DH does that by adding local branch-

ing inequalities to change the setup schedule; 2) TIM allows infeasible solution and

it is repaired only in Level 2 of TLH to save computation time, while IM-VRP and

CCJ-DH attempt to repair each infeasible solutions once it is found; and 3) TIM uses

a new update mechanism to update the approximate visit cost by considering both

customer clustering and truckload utilization rate, while IM-VRP and CCJ-DH do

that by only considering the customer clustering.

3.3.2 Level 2: Infeasibility repair

Level 2 focuses on repairing the infeasible solution provided by Level 1 and consolidat-

ing vehicle routes. It consists of solving an RPDP and a series of TSP(t, k) to form a

feasible solution to P . In the solution obtained from Level 1, letW = {ŵpt|p ∈ P, t ∈
T} be the production setup schedule. The actual number of vehicles used in period

t ∈ T is denoted as |Kt|, if there exists any period t with that |Kt| > |K|, the solution

is infeasible to P . In this case, the vehicles used in each period are sorted in non-

increasing order of their delivery quantity to form a set of vehicles K = {1, . . . , |K|}
and a set of dummy vehicles V = {|K| + 1, . . . , |Kt|}. Let Rkt be the set of cus-

tomers served by vehicle k in period t. Then a set of customers B consisting of all

customers served by dummy vehicles is formed, i.e., B = {i|i ∈ Rkt, t ∈ T, k ∈ V}.
Let D = {v̂kti } be the delivery setup schedule formed by non-dummy vehicles, i.e.,

D = {v̂kti |i ∈ R \ B, k ∈ K, t ∈ T}.
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Then the second level RPDP can be formulated as a MILP denoted as P2 that

drives from P by relaxing its vehicle routing constraints (3.10)-(3.13) and fixing the

production setup schedule to W = {ŵpt|p ∈ P, t ∈ T} and part of the delivery setup

schedules to D = {v̂kti |i ∈ R \ B, k ∈ K, t ∈ T}. To formulate P2, an additional

parameter σkti is defined to represent the approximate visit cost to customer i by

vehicle k in period t. It can be calculated based on the solution obtained from Level

1. In the best solution of Level 1, if customer i is visited in period t, then σkti is set

to ci−i + cii+ − ci−i+ ; otherwise, σkti is set to ∆kt
i . P2 is formulated as follows:

P2 : min
∑
p∈P

∑
t∈T

apξpt +
∑
i∈R

∑
p∈P

∑
t∈T

epz
pt
i

+
∑
i∈N

∑
p∈P

∑
t∈T

hpi I
pt
i +

∑
i∈B

∑
k∈K

∑
t∈T

σkti v
kt
i (3.33)

s.t.

(3.2)− (3.4), (3.6)− (3.7), (3.14)− (3.17) and

ξpt ≤ Cŵpt, ∀ p ∈ P, t ∈ T (3.34)∑
p∈P

ypkti ≤ V v̂kti , ∀ i ∈ R \ B, k ∈ K, t ∈ T (3.35)∑
p∈P

ypkti ≤ V vkti , ∀ i ∈ B, k ∈ K, t ∈ T (3.36)∑
k∈K

vkti ≤ 1, ∀ i ∈ B, t ∈ T (3.37)

vkti ∈ {0, 1}, ∀ i ∈ B, k ∈ K, t ∈ T (3.38)

The objective function (3.33) minimizes the total cost. Constraints (3.34) indicate

that the production quantity in each period must respect the given production setup

schedule. Constraints (3.35) and (3.36) require the delivery quantity to each customer

to be 0 if not visited. Constraints (3.37) forbid split delivery to customer i ∈ B.

Constraints (3.38) define the delivery setup variable as a binary variable.

With the delivery setup schedule D = {v̂kti |i ∈ R, k ∈ K, t ∈ T} proposed by

P2, a series of TSP(t, k) (up to |T | × |K|) are solved to find a good vehicle visiting

sequence. Then the solutions to model P2 and all TSP(t, k) form a feasible solution

to model P .

If the solution obtained from Level 1 is feasible, a series of TSP(t, k) are directly

solved with D = {v̂kti |i ∈ R, k ∈ K, t ∈ T} to further improve it. Then the incumbent

solution is updated and used in the next level.

3.3.3 Level 3: Incumbent solution improvement

Level 3 aims to improve the incumbent solution by using a fix-and-optimize procedure.

Its basic idea is to iteratively solve a series of subproblems in which a subset of
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binary variables are fixed so that the subproblems can be solved optimally by a MIP

solver [89]. In the sth iteration, all continuous variables (ξpt, z
pt
i , I

pt
i , y

pkt
i ) and binary

variables vkts of a single customer s ∈ R = {1, 2, . . . , n} are optimized, while variables

vkti , i ∈ R \ {s}, k ∈ K, t ∈ T are fixed to v̂kti , i.e., vkti = v̂kti . The production

setup schedule is fixed to W = {ŵpt|p ∈ P, t ∈ T}. According to the incumbent

solution provided by Level 2, we recalculate the approximate visit cost for customer

s according to the delivery setup schedule D as follows: if customer s is visited in

period t, σkts is set to cs−s + css+ − cs−s+ ; otherwise, σkts is set to ∆kt
s which is the

minimum insertion cost by inserting s into the route of vehicle k in period t, and

the corresponding inserting position is recorded. The sth iteration of the procedure

consists of formulating a new RPDP as a MILP as follows:

P3(s) : min
∑
p∈P

∑
t∈T

apξpt +
∑
i∈R

∑
p∈P

∑
t∈T

epz
pt
i

+
∑
i∈N

∑
p∈P

∑
t∈T

hpi I
pt
i +

∑
k∈K

∑
t∈T

σkts v
kt
s (3.39)

s.t.

(3.2)− (3.4), (3.6)− (3.7), (3.14)− (3.17), (3.34), and∑
p∈P

ypkti ≤ V v̂kti , ∀ i ∈ R \ {s}, k ∈ K, t ∈ T (3.40)∑
p∈P

ypkts ≤ V vkts , ∀ k ∈ K, t ∈ T (3.41)∑
k∈K

vkts ≤ 1, ∀ t ∈ T (3.42)

vkts ∈ {0, 1}, ∀ k ∈ K, t ∈ T (3.43)

The objective function (3.39) and constraints (3.40)-(3.43) are similar to the objective

function (3.33) and constraints (3.35)-(3.38), respectively. Note that model P3(s)

focuses on iteratively improving the incumbent solution to model P by adjusting the

delivery setup schedule of customer s while model P2 in level 2 tries to insert a set of

customers B into existing routes performed by non-dummy vehicles.

P3(s) is solved to determine vkts and product flow (ξpt, z
pt
i , I

pt
i , y

pkt
i ). Then all

the routes are updated based on an insertion or removal strategy for customer s.

Note that for each route of vehicle k in period t, if customer s is removed, a new

route is directly formed by connecting the precedent and the successive customers;

if customer s is inserted, it would be in the position recorded when calculating σkts .

Then a feasible solution to P is formed. According to the solution of the sth iteration,

σkts+1 of the (s + 1)th iteration is set to cs−s + css+ − cs−s+ if customer s is visited in

period t; otherwise, it is set to ∆kt
s . The procedure is repeated until all customers

are enumerated. Finally, the obtained solution from the fix-and-optimize procedure
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is further enhanced by solving a series of TSP(t, k) for each period t and each used

vehicle k.

3.3.4 Three-level heuristic outline

The TLH can be summarized in Algorithm 3.1, in which the following parameters

are defined. sol∗ and sol are used to store the best-obtained solution and the current

solution, while obj∗ and obj denote the obtained best objective value and the current

objective value, respectively. s is the iteration counter. M indicates the total num-

ber of iterations that are allowed in TIM. The notation flag serves as an iteration

indicator in the first level. flag = 0 indicates the first or a diversification iteration,

while flag = 1 indicates other iterations.

In Algorithm 1, lines 1-20 correspond to the TIM in Level 1. Lines 1-9 solve a

special lot-sizing problem and a routing problem to form a solution to P that may

be infeasible. Lines 10-14 update the best solution and approximate visit cost. Lines

15-18 correspond to the diversification mechanism. Lines 21-26 represent Level 2.

Particularly, lines 21-23 repair the infeasible solutions. A series of TSP(t, k) are

solved in line 24. Lines 27-33 are devoted to the iterative fix-and-optimize procedure

in Level 3. Line 34 solves a series of TSP. Finally, the best solution is updated and

returned in lines 35 and 36.

3.4 Computational experiments

In this section, 225 newly generated MPRPOS instances and 1530 PRP bench-

mark instances are tested to evaluate the performance of the proposed heuristic.

TLH is implemented in C++, and all tests are performed on a PC with Intel Core

i7 CPU (2.5 GHz) and 8 GB RAM. The tested instances and detailed computa-

tional results are available at http://www.mediafire.com/file/cn4r6aqwm48gog4/

DataAndResults.rar. The initial approximate visit cost δ1
it is set differently for MPR-

POS and PRP based on the problem structure. For the MPRPOS, since outsourcing

is considered, the approximate visit cost will greatly impact the production setup

schedule and the production quantity. δ1
it is generated using equation (3.30) to better

approximate the real routing cost and generate a good production setup schedule. For

the classic PRP, although the approximate visit cost impacts the production setup

and quantity decisions, δ1
it is set to 0 to quickly generate a production setup schedule

and save computation time. Parameters µ and ρ are set to 0.5 for all instances. The

threshold for diversification mechanism is set to 3, which indicates that the diver-

sification mechanism is applied after 3 successive iterations without objective value

improvements after the previous diversification iteration. To make a trade-off between
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Algorithm 3.1 TLH for MPRPOS and for PRP
1. Initialize flag = 0, s = 1, sol∗ ← φ, sol← φ, obj, obj∗ ← +∞

M, δsit for all i ∈ R, t ∈ T
2. while (s ≤M)
3. if (flag = 0)

4. Solve P1(s), output ŵpt, ξ̂pt, ẑ
pt
i , Î

pt
i , ŷ

pt
i and v̂ti

5. else if(flag = 1)

6. Solve P ′1(s), output q̂pt, ẑ
pt
i , Î

pt
i , ŷ

pkt
i and v̂ti

7. end if
8. Solve VRP(t) for each period t with v̂ti and ŷpti known for all i ∈ R, p ∈ P
9. Form a solution sol to P (probably infeasible) and calculate obj
10. if (obj < obj∗)
11. Set obj∗ ← obj and update the corresponding best solution sol∗ ← sol
12. end if
13. Calculate visit cost δs+1

it with (3.31) and (3.32)
14. Set flag = 1
15. if the diversification condition is met then
16. Set flag = 0
17. Reset δs+1

it with (3.30)
18. end if
19. Set s← s+ 1
20. end while
21. if sol∗ is infeasible then

22. Solve P2 with σkti and output q̂pt, ẑ
pt
i , Î

pt
i , ŷ

pkt
i and v̂kti

23. end if
24. Solve a series of TSP(t, k) for all k ∈ K and t ∈ T with v̂kti known for all i ∈ R
25. Form a feasible solution sol to P(s) and calculate obj
26. Set sol∗ ← sol and obj∗ ← obj
27. Set s = 1 and calculate visit cost σkts based on sol∗

28. while ( s ≤ n)
29. Solve P3(s) and output v̂kts
30. Perform insertion or removal strategy for customer s
31. Update the best solution sol∗ and visit cost σkts+1

32. Set s← s+ 1
33. end while
34. Solve TSP(t, k) for each used vehicle in each period
35. Update sol∗ and obj∗

36. Return sol∗ and obj∗
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solution quality and computation time, the number of iterations M is set according to

the size of instances. Particularly, for all MPRPOS instances, M is set to 10; for PRP

benchmark instances, M is set to 200 for small-sized instance set A1, 50 for medium-

and large-sized instances sets A2 and A3, and 10 for very large-sized instance set B.

Note that subproblems PDP, RPDP, and RPDP(s) and in Fig. 1 are solved by the

state-of-the-art commercial solver CPLEX. Since solving PDP is time-consuming,

CPLEX outputs their solutions if the running time is larger than 500s or its gap

is less than 0.01%, respectively. Subproblems VRP(t) and TSP(t, k) in Fig. 1 are

solved by calling the state-of-the-art record-to-record metaheuristic (RTR) [65] and

Lin-Kernighan Heuristic (LKH) [74], respectively. The corresponding codes of RTR

and LKH are available at https://www.coin-or.org/download/source/VRPH/ and

http://www.akira.ruc.dk/~keld/research/LKH/.

In Section 3.4.1, we present the newly generated MPRPOS instances and com-

pare the performance of TLH with that of CPLEX on these instances. In addition,

we analyze how outsourcing impacts the performance of TLH. In subsection 3.4.2,

we briefly introduce the tested PRP benchmark instances, report the implementa-

tion environment of the state-of-the-art algorithms and compare the performance of

TLH with these algorithms on these benchmark instances. Finally, we analyze the

performance of TLH in subsection 3.4.3.

3.4.1 Computational experiments for MPRPOS

3.4.1.1 Instance generation

As MPRPOS is a newly studied problem, there are no benchmark instances in the

literature. To validate the proposed model and evaluate the performance of TLH, we

first randomly generate 150 instances (instance set C) based on the PRP instance

generation in [15]. These instances consist of 30 sets with 5 instances in each set

that is characterized by the number of customers n, periods |T |, and products |P |.
Specifically, n is set to 10, 14, 50, 100, and 200; |T | is set to 3 and 6; |P | is set to 3, 6,

and 12. Fleet size |K| is set to 1 for instances with 10 and 14 customers, and 5, 10 and

20 for instances with 50, 100 and 200 customers, respectively. Customers or plant

locations (Xi, Yi) , which correspond to the coordinates of node i in graph G, are

randomly generated from U[0,1000]. Travel cost cij is set to the Euclidean distance

between nodes i and j. At the beginning of the planning horizon, the initial inventory

Ip0i is set to 0 for all i ∈ N and p ∈ P . The detailed generation of parameters for

MPRPOS is given in Table 3.1.
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Table 3.1: Parameters for MPRPOS model

Parameters Generation description

cij = b
√

(Xi −Xj)2 + (Yi − Yj)2 + 0.5c

dpti randomly generated from U[5, 25]

C = g(
∑
i∈R

∑
p∈P

∑
t∈T d

pt
i )/|T |, where g is randomly generated from U[2, 4]

U0 = gC,where g is randomly generated from U[1, 3]

Ui = gi(
∑
p∈P

∑
t∈T d

pt
i )/|T |, where gi is randomly generated from U[2, 6], i ∈ R

hpi randomly generated from U[0.5, 1.5]

ap randomly generated from U[5, 10]

ep = gpap,where gp is randomly generated from U[1.5, 2], p ∈ P

bp = 30ap, 50ap, 200ap, 400ap, and 800ap, for n = 10, 14, 50, 100 and 200

V = g(
∑
i∈R

∑
p∈P

∑
t∈T d

pt
i )/|K|/|T |,where g is randomly generated from U[1.5,

2]

3.4.1.2 Lower bound of MPRPOS

Our preliminary experiments show that CPLEX can only optimally solve instances

with up to 14 customers and it has difficulty even in providing lower bounds for large-

sized instances. To evaluate the performance of TLH, we propose a lower bound to

MPRPOS based on [19] in which an allocation model is proposed and proved to be

able to provide valid lower bounds for PRP. We present a similar model denoted as

PLB as follows:

PLB : min
∑
p∈P

∑
t∈T

(apξpt + bpwpt) +
∑
i∈R

∑
p∈P

∑
t∈T

epz
pt
i +

∑
i∈N

∑
p∈P

∑
t∈T

hpi I
pt
i

+
∑
i∈R

∑
t∈T

εiv
t
i +

∑
i∈R

∑
p∈P

∑
t∈T

ε0y
pt
i

V
(3.44)

s.t.

(3.4)− (3.6), (3.14)− (3.16), (3.18), (3.22)− (3.27)

The objective function (3.44) minimizes the total production, outsourcing, inventory

and approximate routing cost which is denoted by the last two terms. In (3.44), εi

denotes the minimum transportation cost from customer i to any other customer or

the plant, i.e., εi = minj∈N\{i} cij. Particularly, ε0 denotes the minimum cost from

the plant to any customer. Optimally solving PLB provides a valid lower bound to

model P . If PLB is not optimally solved, a lower bound to PLB is outputted. For

more details, please refer to [19].
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3.4.1.3 Computational results on MPRPOS instances

In this subsection, we first compare the results of TLH and CPLEX for small-sized

instances with up to 14 customers and 1 vehicle. To directly solve the MPRPOS,

CPLEX default settings are used and the subtour elimination constraints (3.13) are

iteratively added. Computation time for each iteration is limited to 3600s. At the

end of each iteration, we check the solution: if there is no subtour, then an optimal

solution is obtained; otherwise, if the time limit (3600s) is reached, CPLEX fails to

provide any feasible solution (upper bound) and only a lower bound is obtained. If

there is one or more subtours in the solution and the time limit is not reached, the

relaxed model is re-solved by adding a set of subtour elimination constraints con-

cerning these subtours. Note that the total computation time may exceed 3600s

because the stopping criterion is only checked at the end of each iteration. Results

provided by CPLEX and TLH for small-sized instances are reported in Table 3.2,

where columns 1 to 3 denote the numbers of customers, periods and products, re-

spectively. Columns “obj∗” and “objC” denote the best objective value obtained by

TLH and the optimal objective value or a lower bound provided by CPLEX, re-

spectively. Column “Gap” indicates the average gap between obj∗ and objC , where

Gap=(obj∗ − objC)/objC ∗ 100%. Columns “T-TLH” and “T-CPLEX” provide the

computation times by TLH and CPLEX, respectively. We can see from Table 3.2

Table 3.2: MPRPOS computational results on instance up to 14 customers

n |T | |P | obj∗ objC Gap(%) T-TLH(s) T-CPLEX(s)

10 3 3 15942 15810 0.85 1.3 149.5

6 32122 32063 0.19 1.8 330.5

12 52638 52550 0.18 10.7 1971.7

6 3 32983 31789 3.69 7.8 3525.1

6 58697 56207 4.43 48.6 4196.8

12 103295 100573 2.73 506.2 4409.7

14 3 3 20726 20250 2.45 2.4 1619.6

6 39690 39452 0.62 6.9 1663.0

12 73163 72967 0.28 17.6 1227.5

6 3 45553 43661 4.29 17.0 3845.6

6 78875 77409 1.93 50.5 2812.2

12 141033 137948 2.25 512.4 4074.8

Average 57893 56723 1.99 98.6 2486

that the average upper bound obtained by TLH and the average optimal objective

value (or lower bound) provided by CPLEX are 57893 and 56723, respectively. TLH

achieves relatively good-quality solutions with an average gap of 1.99% in less than

110s. The average computation time of CPLEX is over 2480s which is more than

37



20 times as long as that of TLH. We can observe from Columns 7 and 8 that for

a given number of customers, the computation time of TLH and CPLEX increase

with the number of periods and products, yet the latter increases much more quickly

than the former. Take instances with 10 customers and 3 periods as an example,

the average computation time of CPLEX increases from 149.5s to 1971.7s when the

number of products increases from 3 to 12, while that of TLH increases from 1.3s

to 10.7s; for instances with 10 customers and 3 products, the computation time of

CPLEX increases from 149.5s to 3525.1s when the number of periods increases from

3 to 6, while that of TLH increases from 1.3s to 7.8s.

To evaluate the performance of TLH for large-sized instances, two lower bounds

denoted as LB1 and LB2 are proposed by directly solving model P and PLB with

CPLEX. Computational results for instances with up to 200 customers are reported

in Table 3.3, in which the first three columns represent the numbers of customers,

periods and products, respectively. Column “obj∗” is the best upper bound obtained

by TLH, while columns “LB1” and “LB2” are lower bounds provided by CPLEX

through solving MPRPOS and MLB, respectively. Columns “Gap1” and “Gap2”

give the gaps of obj∗ with respect to LB1 and LB2 respectively, where Gap1=(obj∗-

LB1)/LB1*100% and Gap2=(obj∗-LB2)/LB2*100%. In particular, the numbers in

bold indicate the better gap between the two obtained lower bounds. Columns “T-

TLH”, “T-LB1” and “T-LB2” represent the computation times to obtain obj∗, LB1

and LB2, respectively.

As can be seen from Table 3.3 that the average best upper bound obtained by TLH

and the average lower bound by PLB are 547931 and 496828, respectively. CPLEX

has difficulties in directly solving model P to provide lower bounds for instances with

more than 100 customers and 6 periods and it only provides better bounds in three

sets of instances. PLB can provide lower bounds for all large-sized instances and

it generally obtains better lower bounds. This may because that PLB is generally

less complex than P and CPLEX can provide better bounds to PLB on large-sized

instances. Column “Gap2” shows that the average gap of obj∗ with respect to LB2 is

9.9%. Regarding the computation time, TLH needs on average 706s that is a relatively

short computation time for such a complex problem. The average computation times

for solving P and PLB by CPLEX are more than 3600s and 900s, respectively. It

increases noticeably with the number of periods and products.

To further compare the results of TLH and CPLEX, the MPRPOS instances are

grouped by the number of customers, yielding 5 sets of instances with 10, 14, 50,

100, and 200 customers.. The average results for each set of instances with the same

number of customers are shown in Fig. 3.2 (a), which indicates that the average gap

increases with the number of customers, while the largest average gap does not exceed
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Table 3.3: MPRPOS computational results on instance up to 200 customers

n |T | |P | obj∗ LB1 LB2 Gap1 Gap2 T-TLH T-LB1 T-LB2

50 3 3 77806 70313 70051 10.66 11.07 11.6 3600.1 0.9

6 136737 126109 126008 8.43 8.52 31.6 4091.8 2.7

12 255275 244921 245617 4.23 3.93 286.4 3600.2 65.2

6 3 153042 136723 137523 11.94 11.28 160.7 3600.2 41.6

6 278465 253216 256246 9.97 8.67 1031.4 3600.2 979.0

12 541375 506202 499273 6.95 8.43 1061.4 3600.4 3600.2

100 3 3 155884 136796 136894 13.95 13.87 37.6 3600.6 2.0

6 277329 255065 256414 8.73 8.16 117.9 3600.7 5.6

12 513744 483816 494759 6.19 3.84 632.9 3600.8 68.3

6 3 304265 - 272599 - 11.62 438.2 - 77.2

6 524291 - 470080 - 11.53 1010.6 - 2141.6

12 1009348 - 929678 - 8.57 1136.9 - 3600.3

200 3 3 263952 - 230864 - 14.33 112.6 - 4.8

6 543135 - 506040 - 7.33 362.6 - 44.3

12 981553 - 939752 - 4.45 1404.0 - 162.4

6 3 578216 - 497103 - 16.32 1237.6 - 489.2

6 1088271 - 978366 - 11.23 1479.6 - 3014.9

12 2180062 - 1895645 - 15.00 2169.4 - 3600.6

Average 547931 - 496828 - 9.90 706.8 - 994.5

12% for the largest-sized instances with 200 customers. Fig. 3.2 (b) shows that the

average computation time of TLH is relatively short for all instances. In summary,

our TLH provides good quality solutions within short computational times.

3.4.1.4 Sensitivity analysis

To analyze the impact of different outsourcing cost on TLH, based on the standard

instance set in Section 3.4.1.1, three new sets of 25 MPRPOS instances (75 new in-

stances) each with |T | = 6 and |P | = 6 are generated by varying the value of gp among

U[1.1, 1.4], U[2.0, 2.5], and U[2.5, 3.0], respectively. In total, 100 instances are tested

including the basic set (gp =U[1.5, 2.0]) of instances with the same size. Computa-

tional results are presented in Table 3.4. The first three columns denote the number of

customers, periods and products, respectively. The fourth column gives the gp value.

The next four columns represent the upper bound (UB) obtained by TLH, the lower

bound (LB) obtained by CPLEX, their gap calculated as gap=(UB-LB)/LB*100%,

and the computation time of TLH, respectively. The last four columns present the

average production, outsourcing, inventory, and routing costs, respectively. Fig. 3.3

shows the changes of total cost, production cost, outsourcing cost, inventory cost and

routing cost with respect to the changes of gp. Note that these values in Fig. 3.3

are calculated over all the instances with the same generation interval of gp. We
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Fig. 3.2: Results for MPRPOS instances

can see from Table 3.4 that the average gap and computation time are 5.88% and

587.0s, respectively, which show that our TLH is relatively effective and efficient for

solving MPRPOS instances with various outsourcing cost. From Table 3.4, we have

the following observations: 1) When the outsourcing cost (gp =U[1.1,1.4]) is lower

than that of the basic set, the MPRPOS instances can be solved to optimality for

instances with up to 14 customers and all customers’ demand is outsourced due to

the small outsourcing cost. The gaps and computation time increase slowly with

the number of customers. The maximum average gap and computation time do not

exceed 3.09% and 627.9s, respectively. 2) When the outsourcing cost (gp =U[2.0,2.5]

and gp =U[2.5,3.0]) is significantly higher than that of the basic set, the gaps and

computation times are quite close for these two sets of instances. They increase with

the number of customers except the set of instances with 200 customers. Most cus-

tomers’ demand is satisfied by in-house production for these instances. 3) For the

set of basic instances (gp =U[1.5,2]), the average UB and gap are generally close to

the instances with higher outsourcing cost. While for instances with 200 customers,

the average UB, gap and computation time of the basic set are the highest compared

with other instances. This may be because the tradeoff between the outsourcing and

in-house production is far from obvious and has to be fine-tuned, which makes the

problem more difficult. The above mentioned observations can be confirmed by Fig.

3.4 that shows the changes of different cost components as the value of gp changes. To

sum up, the results in Table 3.4 indicate that outsourcing cost can impact the perfor-

mance of TLH. If the outsourcing cost is low, and all customers’ demand is satisfied by

outsourcing, the problem is relatively easy to be solved. While the outsourcing cost

and the in-house product cost are comparable, a strong tradeoff between production

and outsourcing makes the problem hard to be solved. Finally, as the outsourcing
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Table 3.4: Sensitivity analysis for MPRPOS instances with varying outsourcing cost

n |T | |P | gp UB LB gap(%) time(s) Pcost Ocost Icost Rcost

10 6 6 U[1.1,1.4] 47171 47171 0.00 0.6 0 47171 0 0

U[1.5,2.0] 58697 56207 4.43 48.6 35986 10425 4610 7677

U[2.0,2.5] 58921 56761 3.82 47.3 43765 105 4839 10211

U[2.5,3.0] 59089 56557 4.50 46.9 43609 104 5440 9936

14 6 6 U[1.1,1.4] 65358 65358 0.00 0.9 0 65358 0 0

U[1.5,2.0] 78875 77409 1.93 50.5 56456 7334 6546 8539

U[2.0,2.5] 79082 77516 2.05 74.6 62003 151 6755 10172

U[2.5,3.0] 79634 77537 2.75 53.6 61919 270 7562 9884

50 6 6 U[1.1,1.4] 245043 243362 0.66 67.3 0 245043 0 0

U[1.5,2.0] 278465 256246 8.70 1031.4 219310 4907 24129 30120

U[2.0,2.5] 278635 256250 8.78 1026.3 224488 245 23481 30421

U[2.5,3.0] 278373 256257 8.67 927.2 225002 6 22482 30884

100 6 6 U[1.1,1.4] 456779 444579 2.62 258.3 0 456779 0 0

U[1.5,2.0] 524291 470080 11.71 1010.6 345450 94030 35691 49120

U[2.0,2.5] 522751 470515 11.33 1007.3 420130 183 44916 57522

U[2.5,3.0] 524455 470483 11.77 1111.4 418717 166 47812 57760

200 6 6 U[1.1,1.4] 968862 937183 3.09 627.9 0 968862 0 0

U[1.5,2.0] 1088271 978366 11.19 1479.6 801918 104090 80857 101406

U[2.0,2.5] 1074743 981848 9.70 1457.3 888061 0 74000 112682

U[2.5,3.0] 1079264 983201 9.97 1411.5 892221 0 74987 112057

Average 392338 363144 5.88 587.0 236952 100261 23205 31919

cost goes much higher than the in-house production cost, the problem can be treated

as a classic PRP. The gaps and computation times for instances with different out-

sourcing cost does not change noticeably except the ones with very low outsourcing

cost, as shown in Fig. 3.4. Overall, the results indicate that TLH is stable in solving

MPRPOS instances with different outsourcing costs.

In summary, results on randomly generated MPRPOS instances show that TLH

can quickly provide near-optimal solutions for small-sized instances. For large-sized

instances with up to 200 customers, the average gap does not exceed 10% with about

1000s computation time. Note that the size of existing benchmark instances on the

well-known NP-hard problem PRP is limited to 200 customers in the literature, and

the multi-product MPRPOS is a generalization of the classic single-product PRP.

Thus our generated instances are relatively large-scaled instances. In our experiments,

we provide feasible solutions and lower bounds to evaluate the developed method

with 225 randomly generated MPRPOS instances. Results show the effectiveness

and efficiency as well as the stability of our method.
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Fig. 3.3: Sensitivity analysis on outsourcing cost

3.4.2 Computational experiments for classic PRP

In this subsection, we briefly present the tested benchmark instances, existing algo-

rithms, and their implementation environment. Then, we report the computational

results obtained by these algorithms on these benchmark instances in terms of average

total cost, number of best solutions found (including the best solutions proposed by

TLH), the average gap with respect to the so-far-best-known solutions and average

CPU time.
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Fig. 3.4: Average gaps and computation times

Table 3.5: Summary of benchmark information

Instance subset A1 A2 A3 B1 B2 B3

Number of instances 480 480 480 30 30 30

Number of periods 6 6 6 20 20 20

Number of customers 14 50 100 50 100 200

Number of vehicles 1 ∞ ∞ 5 9 13

Demand C C C V V V

Production capacity ∞ ∞ ∞ C C C

Plant inventory capacity ∞ ∞ ∞ C C C

Customer inventory capacity C C C C C C

Initial inventory at plant 0 0 0 V V V

Initial inventory at customers V V V 0 0 0

Vehicle capacity C C C C C C

*V: Varying, C: Constant, ∞: Unlimited [4]

3.4.2.1 Benchmark instances description and existing algorithms imple-
mentation

In the literature, algorithm performance comparisons for classic PRP are usually con-

ducted on two sets of widely used benchmark instance sets A and B summarized by [4]

(see Table 3.5). Set A (1440 instances) consists of three subsets A1, A2 and A3 with

14, 50 and 100 customers, respectively. Customer demand on 6 periods is assumed

to be static. Plant production and inventory capacity are assumed to be unlimited.

Vehicle fleet size is set to 1 for A1, and unlimited for A2 and A3. Instances in each

subset are further divided into four classes with 120 instances in each class according

to their parameter settings. Class 1 corresponds to the instances with standard pro-

duction, inventory and transportation cost. Class 2 and class 3 are characterized by

high production and transportation variable costs, respectively. Class 4 has no inven-

tory cost at customers. The benchmark instance set B (90 instances) is composed of
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three subsets B1, B2 and B3 with 50, 100 and 200 customers, respectively. Customer

demand on 20 periods is assumed to be dynamic. The production capacity, inventory

capacity and vehicle fleet size are assumed to be constant.

Table 3.6: Information of the benchmark algorithms

Algorithm Reference Running platform Solver Tested instances

ALNS [4] 2.10 GHz Duo CPU PC CPLEX 12.2 A, B

IM-TSP [1] 2.67 GHz PC CPLEX 12.1 A, B

IM-VRP [1] 2.67 GHz PC CPLEX 12.1 A2, A3, B

CCJ-DH [34] 3.07 GHz CPLEX 12.6 A, B

5P [92] 2.4 GHz work station CPLEX 12.5 A, B

SP-VRP [88] 3.5 GHz PC CPLEX 12.6 A*, B1

MP-VRP [88] 3.5 GHz PC CPLEX 12.6 B

VNS [85] 2.4 GHz PC CPLEX 12.6 A, B

TLH This paper 2.5 GHz PC CPLEX 12.6 A, B

* Only 288 out of the 1440 instances in set A are tested with 96 for each set A1, A2 and A3

3.4.2.2 Comparison of computational results on instance set A

For the set A, a comparison of algorithms on average total cost is presented in Table

3.7, in which the first column and the first row represent the name of instances and

algorithms, respectively. Note the results for A1 and A are not available for IM-VRP

and SP-VR, respectively. Because SP-VRP tests only a part of set A (288 out of 1440

instances), so its average total cost has not been counted. We can see from Table 3.7

that 5P proposes the best results on A1, and TLH provides the lowest average total

cost for A2 and A3. That means TLH has improved the results in the literature on

large-sized instances in A.

Table 3.7: Average total cost obtained for set A

Ins ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS TLH

A1 181803 179424 - 179874 179314 - 179795 179490

A2 590210 589774 588183 587706 587602 - 587612 587494

A3 1089635 1090641 1086169 1086406 1084957 - 1085368 1084860

Tables 3.8-3.10 present the number of optimal or best-known solutions obtained

for sets A1 - A3 by different algorithms. Particularly, BS and NBS mean the numbers

of best solutions and new best solutions obtained by TLH, respectively. Note that [15]

provides optimal solutions for 467 out of 480 small-sized instances in set A1. Table 3.8

shows that our heuristic TLH yields optimal solutions for 168 small-sized instances

in set A1. It outperforms ALNS, CCJ-DH and VNS, while IM-TSP and 5P obtain

optimal solutions for more instances. Compared with existing algorithms, TLH has
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difficulties in finding optimal solutions for set A1 even with 200 iterations in the

first level. This may be because the diversification mechanism in Level 1 is relatively

simple. From Table 3.9, we see that TLH obtains 114 best solutions including 110 new

best solutions for medium-sized instance set A2. Table 3.10 shows that TLH clearly

outperforms all other algorithms. It provides 166 new best solutions among 167 best

solutions found. Numerical results show that our TLH outperforms existing heuristics

on medium- and large-sized instances in terms of the number of best solutions found.

Table 3.8: Number of best solutions found for small-sized instance set A1

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS
TLH

BS NBS
Class 1 1 78 - 10 71 - 30 45 0
Class 2 0 78 - 10 71 - 33 45 0
Class 3 0 52 - 4 67 - 20 35 0
Class 4 1 85 - 20 70 - 27 43 0
Total 2 293 - 44 279 - 110 168 0

Table 3.9: Number of best solutions found medium-sized instance set A2

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS
TLH

BS NBS
Class 1 0 1 3 52 19 3 18 27 24
Class 2 0 7 5 18 37 11 4 38 38
Class 3 0 2 1 43 28 5 18 24 23
Class 4 1 6 9 30 21 9 20 25 25
Total 1 16 18 143 105 28 60 114 110

Table 3.10: Number of best solutions found for large-sized instance set A3

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS
TLH

BS NBS
Class 1 0 0 6 31 26 - 8 47 47
Class 2 0 2 13 27 27 - 6 45 44
Class 3 0 0 1 11 37 - 15 43 43
Class 4 0 2 13 22 23 - 14 32 32
Total 0 4 33 91 113 - 43 167 166

Tables 3.11-3.13 present the average gap with respect to the best solutions found

so far for sets A1-A3 by different algorithms. Looking at Table 3.11, the average gap

of TLH is 0.26% for small-sized instances in set A1 while IM-TSP and 5P achieve

lower gaps of 0.18% and 0.06%, respectively. As shown in Tables 3.12 and 3.13,

TLH achieves the smallest average gap among all algorithms for medium- and large-

sized instances. Especially, TLH provides 0.14% and 0.10% average gaps for sets

A2 and A3, respectively. The results demonstrate that TLH is more effective for
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medium- and large-sized instances in terms of average gap. Similar to the benchmark

algorithms, TLH generally yields larger gaps on the third class instances with high

transportation cost. One possible reason is that SLS has difficulty in generating an

optimal delivery plan due to the inclusion of the approximate visit cost which is to

some extent inaccurate.

Table 3.11: Average gap with respect to the best solutions for small-sized instance
set A1

Classes ALNS(%) IM-TSP(%) IM-VRP(%) CCJ-DH(%) 5P(%) SP-VRP(%) VNS(%) TLH(%)
Class 1 1.7 0.09 - 0.47 0.03 - 0.28 0.15
Class 2 0.36 0.01 - 0.08 0.00 - 0.05 0.03
Class 3 8.43 0.57 - 2.20 0.18 - 1.52 0.76
Class 4 0.95 0.03 - 0.25 0.05 - 0.57 0.09
Average 2.86 0.18 - 0.75 0.06 - 0.61 0.26

Table 3.12: Average gap with respect to the best solutions for medium-sized instance
set A2

Classes ALNS(%) IM-TSP(%) IM-VRP(%) CCJ-DH(%) 5P(%) SP-VRP(%) VNS(%) TLH(%)
Class 1 1.21 1.16 0.25 0.17 0.13 - 0.13 0.07
Class 2 0.18 0.11 0.06 0.04 0.02 - 0.05 0.02
Class 3 3.93 3.11 1.39 0.72 0.48 - 0.43 0.39
Class 4 0.26 0.53 0.17 0.07 0.13 - 0.05 0.09
Average 1.40 1.23 0.47 0.25 0.19 - 0.16 0.14

Table 3.13: Average gap with respect to the best solutions for large-sized instance set
A3

Classes ALNS(%) IM-TSP(%) IM-VRP(%) CCJ-DH(%) 5P(%) SP-VRP(%) VNS(%) TLH(%)
Class 1 1.02 1.88 0.24 0.28 0.09 - 0.19 0.04
Class 2 0.14 0.12 0.03 0.03 0.02 - 0.06 0.01
Class 3 3.82 3.94 1.36 1.73 0.28 - 0.44 0.29
Class 4 0.33 0.70 0.24 0.06 0.05 - 0.08 0.04
Average 1.33 1.66 0.47 0.52 0.11 - 0.19 0.10

Tables 3.14-3.16 present the average CPU times in seconds for sets A1-A3. These

Tables show that all algorithms are relatively efficient on instances set A. Note that

as the implementation and running environment of each algorithm is different, it is

difficult to compare the computation time. Thus the following comparison is relatively

rough. Table 3.14 reports the average computation time for set A1. It indicates that

TLH is comparable to ALNS, CCJ-DH, 5P and VNS, which consume generally less

than 30 seconds on A1. While IM-TSP needs more than 200 seconds. Table 14 for

set A2 shows that TLH is much faster than CCJ-DH and IM-TSP, comparable to

ALNS, and slightly slower than IM-VRP, 5P and VNS, although it is more effective

than 5P and IM-VRP in terms of number of best solutions found and the average
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gap. Table 3.15 indicates that for set A2, the computation times of IM-TSP, CCJ-

DH and SP-VRP are generally longer, which exceed 300s, 200s and 600s, respectively.

Computation times of ALNS, 5P, VNS and TLH are comparable, needing less than

50s. Moving to large-sized instances in set A3, Table 3.16 shows that TLH is relatively

fast among the existing algorithms. VNS provides the best CPU time for large-sized

instance set A3, but it performs badly in term of number of best solutions found and

average gap.

In summary, TLH can find high-quality solutions within short computation time.

Especially, TLH has found 276 new best solutions for instance set A.

Table 3.14: Average CPU times in seconds for small-sized instance set A1

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS TLH
Class 1 9.2 251 - 14.4 5.0 - 12.3 29.3
Class 2 8.9 214.2 - 13.6 4.9 - 12.8 27.8
Class 3 7.6 237.2 - 12.8 4.7 - 12.2 28.0
Class 4 8.7 216.9 - 14.9 5.2 - 12.6 25.1
Average 8.6 229.8 - 13.9 5.0 - 12.5 27.5

Table 3.15: Average CPU times in seconds for medium-sized instance set A2

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS TLH
Class 1 50.2 338.5 25.6 328.8 16.4 736.8 25.2 43.1
Class 2 49.5 235.7 21.7 272.8 13.8 661.2 21.3 36.5
Class 3 42.7 317.9 22.6 252.6 15.8 699.0 24.5 39.3
Class 4 44.1 375.8 27.7 271.5 25.4 466.8 28.4 42.1
Average 46.6 317.0 24.4 281.4 17.9 641 24.9 40.3

Table 3.16: Average CPU times in seconds for large-sized instance set A3

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP VNS TLH
Class 1 228.5 514.2 85.5 1313.1 323.5 2184.6 84.6 168.6
Class 2 217.6 497.4 76.1 1062.7 50.6 2082.6 73.4 131.9
Class 3 197.8 509.3 75.1 1016.9 349.6 2177.4 72.8 144.5
Class 4 206.0 507.0 86.0 1056.6 125.1 2016.6 83.7 159.8
Average 212.5 506.2 80.7 1112.3 212.2 2115.3 78.6 151.2

3.4.2.3 Comparison of computational results on instance set B

In this section, we summarize and compare the computational results on large-sized

instance set B. Table 3.17 presents the average total costs obtained by different al-

gorithms. It reveals that our TLH yields the better average total cost than ALNS,

IM-TSP, IM-VRP, CCJ-DH, 5P, and VNS. While it is a little inferior to SP+MP-

VRP. Tables 3.18 and 3.19 show that TLH provides new best solutions to 7 instances.

In addition, Table 3.20 shows that TLH has an absolute advantage in computation
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time. TLH needs only about 460s average computation time, while existing algo-

rithms require about 2200s - 10100s. In detail, TLH needs only about 280s on B1

while CCJ-DH and 5P take more than 2000s and 3000s, respectively. For the largest-

sized instance set B3, TLH consumes less than 700s, but existing algorithms require

4197s - 19270s.

Table 3.17: Average total costs for very large-sized instance set B

Instance ALNS IM-TSP IM-VRP CCJ-DH 5P SP+MP-VRP VNS TLH
B1 346878 348175 348990 346186 343439 340850 345758 344295
B2 636962 639272 636294 637826 631351 629931 634776 630339
B3 876761 879447 865905 862872 882128 846431 864523 857207

Table 3.18: Number of best solutions for very large-sized instance set B

Classes ALNS IM-TSP IM-VRP CCJ-DH 5P SP+MP-VRP VNS
TLH

BS NBS
B1 0 0 0 0 3 27 0 0 0
B2 1 1 0 0 7 14 0 7 7
B3 0 0 0 0 0 30 0 0 0

total 1 1 0 0 10 71 7 7

Table 3.19: Average gap with respect to the best solutions for very large-sized in-
stance set B

Instance ALNS(%) IM-TSP(%) IM-VRP(%) CCJ-DH(%) 5P(%) SP+MP-VRP(%) VNS(%) TLH(%)
B1 1.78 2.16 2.40 1.58 0.77 0.01 1.46 1.03
B2 1.36 1.73 1.26 1.50 0.47 0.25 1.02 0.31
B3 3.58 3.91 2.30 1.94 4.23 0.00 2.14 1.27

Average 2.24 2.60 1.99 1.68 1.82 0.09 1.54 0.87

In summary, TLH generally outperforms most of the existing heuristics on for

the large-sized instance set B. Although it is a little inferior to SP+MP-VRP in

terms of the average solution quality, it is the fastest among all heuristics and it

needs only 6% of the time consumed by SP+MP-VRP. Particularly, it contributes

new best solutions for 7 out of 90 instances. The excellent performance of TLH on

these instances may due to three aspects: 1) partial fixed production setup schedule

in Level 1; 2) infeasibility repair procedure only in Level 2; 3) further improvement

obtained by the fix-and-optimize procedure in Level 3.

3.4.3 Performance analysis of TLH

In this subsection, we analyze in detail the performance of TLH. The first two levels of

TLH provide a feasible solution to MPRPOS and the third level further improves the

incumbent solution by a fix-and-optimize procedure. In Table 3.21, the improvements
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Table 3.20: Average CPU times in seconds for very large-sized instance set B

Instance ALNS IM-TSP IM-VRP CCJ-DH 5P SP-VRP MP-VRP VNS TLH
B1 481 1653 551 978 2464 2140 3796 488 277
B2 1570 9484 2054 5441 7488 - 7510 1767 493
B3 5794 19270 4197 13693 16365 - 10727 5884 614

Average 2615 10136 2267 6704 8772 - 7344 2713 461

obtained by Level 3 and the corresponding computation time are reported. The

first two columns denote the instance sets and the number of customers. Columns

“gap2” and “gap3” indicate the gaps of the objective value obtained by Level 2 and

Level 3 with respect to the best-known solutions. Column “Improve” presents the

improvements obtained by Level 3, which can be calculated as: Improve=gap2−gap3.

“T2” denotes the computation time at the end of Level 2 and “T3” is the computation

time in Level 3. From Table 3.21, we can see that good feasible solutions are already

obtained at the end of Level 2, and the average gaps are 0.22%, 1.11%, and 0.20% for

instance sets A, B and C, respectively. 0.05%, 0.24% and 0.20% average improvements

for the three sets can be achieved by Level 3, which shows that the fix-and-optimize

procedure is effective. Especially, “0.00” in column “gap3” means the best solutions

are obtained by TLH. In terms of computation time, the first two levels together

generally take longer time than the third level and the computation times increase

with the number of customers. In particular, the computation time increases with

the number of customers more quickly in Level 3, since the more customers needs,

the more iterations are needed in the fix-and-optimize procedure.

Table 3.21: Improvements of the fix-and-optimize procedure

Instance n gap2(%) gap3(%) Improve(%) T2(s) T3(s)

A
14 0.33 0.26 0.07 27.3 0.2
50 0.19 0.14 0.05 36.3 4.0
100 0.13 0.10 0.03 118.2 33.0

Average 0.22 0.17 0.05 60.6 12.4

B
50 1.46 1.03 0.43 270.9 6.0
100 0.45 0.31 0.14 456.2 36.8
200 1.42 1.27 0.15 396.0 218.0

Average 1.11 0.87 0.24 374.3 86.9

C

10 0.14 0.00 0.14 95.6 0.4
14 0.15 0.00 0.15 100.4 0.7
50 0.17 0.00 0.17 419.0 11.5
100 0.12 0.00 0.12 505.8 56.6
200 0.43 0.00 0.43 746.6 381.0

Average 0.20 0.00 0.20 373.5 90.0

To evaluate the effectiveness of the new update mechanism of the approximate

visit cost in Level 1 of TLH, we compare it with the update mechanism proposed

by [1]. To do this, the update mechanism of [1] is implemented in our TLH to form
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a new algorithm called TLHA that is tested on the newly proposed instances and

the benchmarks. The comparison results between TLH and TLHA are presented

in Table 3.22, in which “diff2” denotes the differences between the objective values

of Level 2 obtained by TLH and TLHA. Similarly, “ diff3 ” denotes the differences

between the objective values of the final solution provided by TLH and TLHA. Let

obj2 and obj∗ denote the objcetive values provided by the second-level solution and the

final solution, respectively, then “diff2” and “diff3” can be calculated using equations

(3.45) and (3.46), respectively. T2 and T3 denote the computation times at the end

of Level 2 and Level 3, respectively. It is shown in Table 3.22 that our newly proposed

update mechanism generally provides better results for instance sets A and C, while

providing slightly inferior results for instance set B compared with that proposed

by [1]. The average differences between two mechanisms at the end of Level 2 are

0.25%, -0.03%, and 0.24% for set A, B and C, respectively. These differences do not

change noticeably during Level 3, with the final differences being 0.25%, -0.03%, and

0.21%, respectively. In terms of the computation time, TLH generally takes longer

time than TLHA. Overall, the results in Table 3.22 indicates that the newly proposed

update mechanism is effective for most of the tested instances.

diff2 =
obj2(TLHA)− obj2(TLH)

obj2(TLH)
× 100% (3.45)

diff3 =
obj∗(TLHA)− obj∗(TLH)

obj∗(TLH)
× 100% (3.46)

Table 3.22: omparison of different visit cost update mechanisms

Instance n dif2(%) dif3(%)
T2(s) T3(s)

TLHA TLH TLHA TLH

A

14 0.10 0.12 28.8 27.3 29.0 27.5

50 0.25 0.29 32.6 36.3 35.4 40.3

100 0.39 0.33 93.5 118.2 114.1 151.2

Average 0.25 0.25 51.6 60.6 59.5 73.0

B

50 -0.18 -0.14 149.0 270.9 154.1 276.8

100 -0.00 -0.01 220.1 456.2 250.7 493.0

200 0.10 0.06 338.3 396.0 547.7 614.0

Average -0.03 -0.03 235.8 374.3 317.5 461.3

C

10 0.89 0.74 92.7 95.6 93.2 96.1

14 0.38 0.33 112.0 100.4 112.5 101.1

50 0.39 0.32 314.8 419.0 323.4 430.5

100 0.07 0.03 431.6 505.8 475.7 562.4

200 -0.53 -0.40 670.2 746.6 966.7 1127.6

Average 0.24 0.21 324.3 373.5 394.3 463.5

To sum up, the good performance of TLH is a joint effect of the three levels.

Firstly, Level 1 develops a two-phase iterative method and provides a good feasible
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solution or useful information to be used in Level 2. It generally consumes longer com-

putation time in solving the specific lot-sizing problem (SLS in Fig. 1) by CPLEX,

yet the computation time can be reduced by allowing infeasibility and fixing the

production setup schedule for most iterations when solving SLS. Secondly, Level 2

introduces a restricted production distribution model (RPD in Fig. 1) to repair the

infeasible solutions from Level 1 and further improves them with a simple procedure,

thus the computation time in Level 2 is very short. Finally, Level 3 explores further

improvement by applying a fix-and-optimize procedure on each customer. Accord-

ingly, a higher improvement is achieved and the computation time increases with the

number of customers.

3.5 Conclusions

This chapter investigates a new multi-product production routing problem with out-

sourcing (MPRPOS) that is a generalization of the classic PRP. Firstly, a mixed in-

teger linear program is formulated for the problem. Then a three-level mathematical-

programming-based heuristic (TLH) is developed to solve both MPRPOS and the

classic PRP. In TLH, the original MPRPOS is decomposed into two subproblems

that are solved iteratively to generate an initial solution (probably infeasible); then

a restricted production direct-distribution problem is solved to repair the infeasible

solution and a route consolidation procedure further improves the incumbent solu-

tion; finally, a fix-and-optimize procedure is used to improve the incumbent solution

iteratively. To evaluate the performance of TLH, 225 newly generated MPRPOS in-

stances with up to 200 customers, 20 vehicles, 6 periods, and 12 products are first

tested, followed by the tests on 1530 widely used PRP benchmark instances with up

to 200 customers, 13 vehicles, and 20 periods. Computational results on MPRPOS

instances show that TLH can efficiently find feasible solutions with average gaps of

1.99% and 9.90% with computation times of 98.6s and 706.8s for instances with up

to 14 customers and 200 customers, respectively. Extensive experimental results on

PRP benchmark instances indicate that TLH generally outperforms most of the ex-

isting heuristics for PRP in terms of both solution quality and computation time. In

particular, TLH finds 283 new best solutions for 1530 tested benchmark instances.

The corresponding work has been published in the following paper.

Y. Li, F. Chu, C. Chu, and Z. Zhu. An Efficient Three-level Heuristic for the

Large-scaled Multi-product Production Routing Problem with Outsourcing. Euro-

pean Journal of Operational Research, 272(3):914-927, 2019.
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Chapter 4

Multi-plant Food Production
Routing Problem with Packaging
Consideration

4.1 Introduction

A FSC has some particular characteristics compared to general supply chains. Es-

pecially, product perishability plays an important role and impacts the overall per-

formance of FSCs. Precisely, the limited shelf life of food products can significantly

affect the production, inventory and transportation activities. A longer product shelf

life means a better quality. As the residual shelf life reduces, the product quality de-

teriorates. Innovative food packaging (preservation), such as antimicrobial packaging

methods, may be more expensive, but can extend the product shelf life by slowing

down the decay rate. Integrating such packaging decisions in the food production

routing optimization is important because it can in turn influence production, in-

ventory, and routing decisions. In this chapter, we address a novel multi-plant food

production routing problem (MFPRP) that considers food perishability and packag-

ing simultaneously. The problem, which is an extension of the classic PRP, consists

of determining production, inventory and distribution planning for each plant on

a time horizon. The objective is to maximize the total profit that is equal to the

selling revenue of all retailers minus the total production, packaging, inventory, and

transportation costs. MFPRP is firstly formulated as a MILP. Then it is solved by

a hybrid matheuristic (HM) that has three components: 1) a two-phase iterative

method (TI) method to obtain a good initial solution or useful information; 2) a

fix-and-optimize (FO) procedure to repair infeasibility and to improve the solution;

and 3) a route-based optimization (RO) to further improve the incumbent solution

by exploiting the useful information provided by TI and FO. Finally, HM is evaluated

by computational experiments on 320 randomly generated instances.
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The remainder of this chapter is organized as follows. Section 4.2 presents the

problem description and mathematical formulation. In Section 4.3, a hybrid matheuris-

tic is developed. Computational experiments are conducted in Section 4.4. Finally,

Section 4.5 concludes this chapter.

4.2 Problem description and formulation

The considered MFPRP is defined on a complete digraph G={N , A}. The set N of

nodes is comprised of a subset P = {1, 2, . . . ,m} of m plants and a subset R = {m+

1,m+ 2, . . . ,m+n} of n retailers, i.e., N = P ∪R = {1, 2, . . . ,m,m+ 1, . . . ,m+n}.
The set A of arcs links all nodes, i.e., A={(i, j) : i, j ∈ N, i 6= j}. Each plant p ∈ P
has a limited production capacity Cp and a fleet Kp = {1, 2, . . . , |Kp|} of homogeneous

vehicles with capacity V . Within a planing horizon T = {0, 1, . . . , |T |}, the set of

plants are responsible for producing and distributing a single perishable product to

satisfy the dynamic retailer demand Dit (i ∈ R, t ∈ T ). Both plants and retailers

have a storage capacity Ui where i ∈ N . The retailers’ demand has to be met in time,

i.e., backlogging is not allowed. A set B = {1, 2, . . . , |B|} of packages that will lead

to different product shelf lives exist and a packaged product with the package u ∈ B
has a shelf life s = θ(u). A residual shelf of a product indicates the number of time

periods the product can be stored after it is packaged. Note that the package types

are ordered by their quality such that θ(1) < θ(2) <, . . . , < θ(|B|). Correspondingly,

package u ∈ B incurs a packaging cost eu such that e1 < e2 <, . . . , < e|B|, i.e., a

better package with higher packaging cost leads to a longer shelf life. The shelf life

of a product varies in the set S = {0, 1, . . . , |S|}, where a shelf life 0 means that

the product should be consumed in the current period and cannot be stored to meet

future demand, and |S| may take a value of up to θ(|B|), i.e., the shelf life when using

the best package.

The MFPRP is studied under the following assumptions: 1) products with dif-

ferent packages have different shelf lives; 2) the final price of a product is dependent

on its residual shelf life; 3) the customers’ demand can be satisfied by products with

different residual shelf lives and packages; 4) each vehicle’s route starts and ends at

the same plant; 5) each vehicle can perform at most one trip in each period; and 6)

each retailer can be visited at most once in a period, i.e., split delivery is not allowed.

A solution to the problem consists of determining: 1) production quantity in each

period in each plant; 2) package selection for each produced product; 3) delivery date

and quantity to each customer from the plants in each period; 4) vehicle routing; and

5) selling decisions to satisfy customers’ demand. The objective is to maximize the

total profit, which is equal to the total selling revenue minus the fixed and variable
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production, packaging, inventory, and routing costs. To formulate the problem, the

following notation is defined:

Indices:

i, j, p: index of a node, i, j, p ∈ N ;

t: index of a period, t ∈ T ;

k: index of a vehicle, k ∈ Kp, p ∈ P ;

s: index of a shelf life, s ∈ S;

u: index of a package type, u ∈ B.

Parameters:

Dit: demand of retailer i ∈ R in period t ∈ T ;

ap: unit production cost at plant p ∈ P ;

bp: production set up cost at plant p ∈ P ;

eu: unit packaging cost for package u ∈ B;

gis: selling price for a unit of a product with residual shelf life s ∈ S at retailer

i ∈ R;

Cp: production capacity of plant p ∈ P ;

Ui: inventory capacity of node i ∈ N ;

hi: unit inventory holding cost per period at node i ∈ N ;

Iis0: initial inventory of product with residual shelf life s ∈ S at node i ∈ N ;

V : vehicle capacity;

cij: travel cost on arc (i, j) ∈ A;

|Kp|: fleet size at plant p ∈ P ;

θ(u): shelf life of a newly produced product with package u ∈ B;

Qt: a big number equal to Qt =
∑

i∈R
∑|T |

t′=tDit′ ;

Wit: a big number equal to Wit = min(Ui +Dit,
∑|T |

t′=tDit′).

Decision variables:

ξpt: production quantity in period t at plant p;

zp,θ(u),t: packaging quantity with shelf life θ(u) using package type u in period t at plant

p;

wpt: equal to 1 if there is any production in period t at plant p, and 0 otherwise;

Iist: inventory of product with residual shelf life s at node i at the end of period t;

ϑist: quantity of product with residual shelf life s used to meet the demand at retailer

i in period t;

ypiskt: delivery quantity of product with residual shelf life s from plant p to retailer i

by vehicle k in period t;

vpikt: equal to 1 if retailer i is visited by vehicle k from plant p in period t, and 0

otherwise;
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xijkt: equal to 1 if arc (i, j) is traversed by vehicle k in period t, and 0 otherwise.

The proposed problem can be formulated as follows (model P):

P : max
∑
i∈R

∑
s∈S

∑
t∈T

gisϑist −
∑
p∈P

∑
t∈T

(aptξpt + bptwpt)−
∑
p∈P

∑
u∈B

∑
t∈T

euzp,θ(u),t

−
∑
i∈N

∑
s∈S

∑
t∈T

hiIist −
∑
p∈P

∑
(i,j)∈A

∑
k∈Kp

∑
t∈T

cijxijkt (4.1)

s.t.

Ipst = Ip,s+1,t−1 + zp,θ(u),t −
∑
i∈R

∑
k∈Kp

ypiskt,

∀ p ∈ P, s ∈ {θ(u)|u ∈ B}, t ∈ T (4.2)

Ipst = Ip,s+1,t−1 −
∑
i∈R

∑
k∈Kp

ypiskt, ∀ p ∈ P, s ∈ S \ {θ(u)|u ∈ B}, t ∈ T (4.3)

Iist = Ii,s+1,t−1 +
∑
p∈P

∑
k∈Kp

ypiskt − ϑist, ∀ i ∈ R, s ∈ S, t ∈ T (4.4)

∑
u∈B

zp,θ(u),t = ξpt, ∀ p ∈ P, t ∈ T (4.5)

ξpt ≤ Cpwpt, ∀ p ∈ P, t ∈ T (4.6)∑
p∈P

ξpt ≤ Qt, ∀ t ∈ T (4.7)∑
s∈S

Iist ≤ Ui, ∀i ∈ N, t ∈ T (4.8)∑
s∈S

ϑist = Dit, ∀ i ∈ R, t ∈ T (4.9)∑
i∈R

∑
s∈S

ypiskt ≤ V, ∀ p ∈ P, k ∈ Kp, t ∈ T (4.10)∑
s∈S

ypiskt ≤ Witvpikt, ∀ p ∈ P, i ∈ R, k ∈ Kp, t ∈ T (4.11)∑
p∈P

∑
k∈Kp

vpikt ≤ 1, ∀ i ∈ R, t ∈ T (4.12)

∑
j∈N\{i}

xijkt =
∑

j∈N\{i}

xjikt, ∀ p ∈ P, i ∈ N, k ∈ Kp, t ∈ T (4.13)

∑
j∈R

xpjkt +
∑

j∈N\{i}

xjikt ≥ 2vpikt, ∀ p ∈ P, i ∈ R, k ∈ Kp, t ∈ T (4.14)

∑
j∈N\{i}

xijkt =
∑
p∈P

vpikt, ∀ i ∈ R, k ∈ Kp, t ∈ T (4.15)

∑
p∈P

∑
i∈R

xpikt ≤ 1, ∀ k ∈ Kp, t ∈ T (4.16)

xijkt = 0, ∀ i ∈ P, j ∈ P, k ∈ K, t ∈ T (4.17)∑
i∈R

xpikt = 0, ∀ p ∈ P, t ∈ T, k ∈ Kp′ , p
′ ∈ P \ {p}, (4.18)
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∑
i∈H

∑
j∈H\{i}

xijkt ≤ |H| − 1, ∀H ⊆ R, |H| ≥ 2, p ∈ P, k ∈ Kp, t ∈ T (4.19)

wpt ∈ {0, 1}, ∀ p ∈ P, t ∈ T (4.20)

ξpt ≥ 0, ∀ p ∈ P, t ∈ T (4.21)

zp,θ(u),t ≥ 0, ∀ p ∈ P, u ∈ B, t ∈ T (4.22)

ϑist ≥ 0, ∀ i ∈ R, s ∈ S, t ∈ T (4.23)

Iist ≥ 0, ∀ i ∈ N, s ∈ S, t ∈ T (4.24)

ypiskt ≥ 0, ∀ p ∈ P, i ∈ R, s ∈ S, k ∈ Kp, t ∈ T (4.25)

vpikt ∈ {0, 1}, ∀ p ∈ P, i ∈ R, k ∈ Kp, t ∈ T (4.26)

xijkt ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ Kp, t ∈ T. (4.27)

The objective function (4.1) maximizes the total profit, i.e., the total revenue

minus the total production, packaging, inventory and routing costs. Constraints

(4.2)-(4.4) indicate the inventory flow balance for products with different residual

shelf lives at each plant and retailer, where Ii,|S|+1,t = 0. Constraints (4.5) represent

the flow conservation of the produced and packaged products. Constraints (4.6) and

(4.7) mean that the production quantity at a plant cannot exceed its capacity if the

plant is set for production, in particular, the total production quantity of all plants

should be limited to the total remaining demand of all retailers. Constraints (4.8)

indicate that the inventory at each plant and retailer cannot exceed their inventory

capacities. Constraints (4.9) indicate that the customer demand must be met, and it

can be met by products with different residual shelf lives. Constraints (4.10) mean

that a vehicle cannot deliver more than its capacity. Constraints (4.11) allow positive

delivery quantity by a vehicle originating from a plant to a retailer only if the retailer

is visited by that vehicle. Constraints (4.12) forbid split delivery. Constraints (4.13)

correspond to the vehicle flow conservation. Constraints (4.14) and (4.15) link the

arc routing variables to the delivery schedule. Particularly, if a retailer i is visited by

vehicle k from plant p in period t, then vehicle k must depart from plant p and traverse

an arc linked to node i. Constraints (4.16) state that a vehicle can perform at most

one route in a period. Constraints (4.17) indicate that vehicles cannot travel from

one plant to another. Constraints (4.18) mean that a plant can only use its owned

fleet, i.e., a vehicle cannot depart from a plant if it does not belong to that plant.

Constraints (4.19) forbid subtours. Constraints (4.20)-(4.27) provide the ranges of

the decision variables.

The proposed MFPRP is NP-hard since it contains a VRP that is well known to be

NP-hard [51]. It is hard for a commercial solver to solve model P due to the inclusion

of the subtour elimination constraints (4.19) whose number increases exponentially
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with the number of nodes. In the next section, an efficient hybrid matheuristic is

developed to solve the considered MFPRP.

4.3 Solution approach

In this section, we develop a hybrid matheuristic (HM) to solve the MFPRP. HM

combines a two-phase iterative (TI) procedure, a fix-and-optimize (FO) strategy,

and a route-based optimization (RO) process. The three components of HM are

constructed based on mathematical formulations. In particular, useful information

provided by TI and FO is exploited to find better solutions in RO. Generally, TI

consists of solving a production direct-distribution problem (PDP) and a series of

VRPs for each plant and time period iteratively to generate an initial solution to

MFPRP that may be infeasible. Then FO repairs and improves the initial solution

iteratively by solving a series of restricted PDPs (RPDPs). During the execution of

TI and FO, a large number of vehicle routes will be generated and stored. Finally, to

exploit the stored routes in the RO, a route-based model is formulated and an adaptive

kernel search method (AKS) is developed to solve it. The general framework of HM

is illustrated in Fig. 4.1. In the following subsections, the main components of HM

are presented in detail.

4.3.1 Two-phase iterative method

TI consists of decomposing model P into an PDP and a series of VRPs and solving

them iteratively. Parameter δpit representing the approximate visit cost from plant

p to retailer i in period t is introduced in the objective function of PDP. Once PDP

is solved, the production setup variables and all continuous variables are determined,

and the only decisions left are the routing ones. Then with the delivery schedules

known for each plant p and period t, a series of VRP(p, t) is solved to form a solution to

MFPRP. δpit is then updated based on the routing solution. This process is repeated

until a stopping criterion is met. To formulate PDP, the vehicle routing constraints

(4.10)-(4.19) of model P are first relaxed and aggregate vehicle capacity constraints

are added. The last term in objective function (4.1) is replaced with the sum of

approximate routing cost. The following new parameters and variables are introduced:

Parameters:

δjpit: approximate visit cost from plant p ∈ P to retailer i ∈ R in period t ∈ T of the

jth iteration. For j = 0, δjpit is set to 0; for j ≥ 1, it is updated based on the

solution of the (j − 1)th iteration.

Decision variables:
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Fig. 4.1: General framework of HM

ypist: delivery quantity of product with residual shelf life s from plant p to retailer i

in period t;

vpit: equal to 1 if retailer i is replenished by plant p in period t, and 0 otherwise.

For the jth iteration, PDP is formulated as follows (model P1(j)):

P1(j) : max
∑
i∈R

∑
s∈S

∑
t∈T

gisϑist −
∑
p∈P

∑
t∈T

(aptξpt + bptwpt)−
∑
p∈P

∑
u∈B

∑
t∈T

euzp,θ(u),t

−
∑
i∈N

∑
s∈S

∑
t∈T

hiIist −
∑
p∈P

∑
i∈R

∑
t∈T

δjpitvpit (4.28)

s.t.

(4.5)− (4.9), (4.20)− (4.24), and

Ipst = Ip,s+1,t−1 + zp,θ(u),t −
∑
i∈R

ypist, ∀ p ∈ P, s ∈ {θ(u)|u ∈ B}, t ∈ T (4.29)

Ipst = Ip,s+1,t−1 −
∑
i∈R

ypist, ∀ p ∈ P, s ∈ S \ {θ(u)|u ∈ B}, t ∈ T (4.30)
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Iist = Ii,s+1,t−1 +
∑
p∈P

ypist − ϑist, ∀ i ∈ R, s ∈ S, t ∈ T (4.31)∑
i∈R

∑
s∈S

ypist ≤ |Kp|V, ∀ p ∈ P, t ∈ T (4.32)∑
s∈S

ypist ≤ Witvpit, ∀ i ∈ R, p ∈ P, t ∈ T (4.33)∑
p∈P

vpit ≤ 1, ∀ i ∈ R, t ∈ T (4.34)

ypist ≥ 0, ∀ p ∈ P, i ∈ R, s ∈ S, t ∈ T (4.35)

vpit ∈ {0, 1}, ∀ p ∈ P, i ∈ R, t ∈ T. (4.36)

The objective function (4.28) maximizes the total profit that is equal to the rev-

enue minus the production, packaging, inventory and approximate visit costs. Con-

straints (4.29)-(4.31) are the inventory flow balance constraints. Constraints (4.32)

limit the total delivery quantity from a plant with the total capacity of its owned

fleet size. Constraints (4.33) and (4.34) correspond to (4.11) and (4.12) in model P ,

respectively, while these constraints are not specified to vehicle index.

Model P1(j) consists of determining decisions including the production setup

schedule wpt, production quantity ξpt, packaging quantity zp,θ(u),t, inventory quan-

tity Iist, delivery schedule vpit, delivery quantity ypist, and selling quantity ϑist. Once

P1(j) is solved, with vpit and ypist known, a series of VRP(p, t) for each plant p ∈ P
and each period t ∈ T can be formulated and solved to determine the number of used

vehicles and their routes. Then the approximate visit cost δj+1
pit for the (j+1)th itera-

tion should be updated according to the solution of VRP(p, t) in the jth iteration as:

if retailer i is served by plant p in period t, we calculate δj+1
pit with (4.37); otherwise, it

is calculated with (4.38). In particular, if the overall best solution does not improve

for a number of τ iterations, the (j+1)th iteration is called a diversification iteration,

and we re-generate δj+1
pit with (4.39). Equations (4.37)-(4.39) are:

δj+1
pit = ci−i + cii+ − ci−i+ (4.37)

δj+1
pit = min

k∈K
∆pikt (4.38)

δj+1
pit = RGIF [min

i′∈N
{cii′}, cpi + cip] (4.39)

where i− and i+ denote the immediate predecessor and successor nodes of node i in

a given route, respectively. ∆pikt is the cheapest insertion cost for inserting i into an

existing route performed by vehicle k from plant p in period t. RGIF represents a

randomly generated integer number from the interval.

The solution provided by TI may be infeasible because of the inclusion of the

aggregate vehicle capacity constraints (4.32) for each plant p ∈ P . Because (4.32)
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cannot guarantee the total delivery quantity by a plant to be packed into its owned

fleet. In this case, it will be repaired and improved by FO. In addition, generated

routes by solving VRP(p, t) are stored in the set R.

4.3.2 Fix-and-optimize procedure

As the solution provided in Section 4.3.1 may be infeasible, this section focuses on

designing a fix-and-optimize procedure to: 1) repair infeasibility; 2) improve the in-

cumbent solution. The procedure consists of iteratively forming and solving a RPDP.

Each RPDP aims to optimize the delivery schedule for one retailer and the delivery

schedules for the remaining retailers are fixed to the schedules provided by the pre-

vious iteration. Once a RPDP is solved, vehicle routes are updated by an insertion

or removal strategy.

To formulate the RPDP for retailer j, where j = {1, . . . , n}, the delivery schedule

variables vpikt of retailers i ∈ R \ {j} in model P are fixed to the delivery schedule

v̂pikt provided by the previous iteration. Especially, in the first RPDP, for all retailers

i = {2, . . . , n}, their delivery schedule vpikt is fixed to v̂pikt provided by TI. Secondly,

to better approximate the routing cost from depot p to retailer j by vehicle k, a

similar approximate visit cost σpjkt is introduced. Note that the approximate visit

cost δpjt in model P1 is not specific to any vehicle. σpjkt is calculated based on solution

of the previous iteration: if retailer j is visited by k from p in period t, σpjkt can be

calculated by (4.37); otherwise, σpjkt = ∆pjkt. Finally, to respect the vehicle fleet

size constraint in RPDP, vehicles exceeding the fleet size of plant p in the infeasible

solution are placed into a set Vp. Let |Kpt| be the number of vehicles used by plant

p in period t ∈ T . If there exists any |Kpt| > |Kp|, the vehicles are sorted in non-

increasing order of their delivery quantity in an ordered list. Then an oreded set of

exceeded vehicles is put into Vpt, where Vpt = {|Kp| + 1, . . . , |Kpt|}. Thus the set of

exceeded vehicles of plant p can be denoted as Vp = {Kp + 1, . . . , Kp + |Vp|}, where

|Vp| = maxt∈T{|Vpt|}. Note that in P2(j), the vehicle fleet Kp for plant p is extended

to include the set Vp, i.e., Kp = Kp ∪ Vp.
The jth RPDP can be formulated as follows (P2(j)) :

P2(j) : max
∑
i∈R

∑
s∈S

∑
t∈T

gisϑist −
∑
p∈P

∑
t∈T

(aptξpt + bptwpt)−
∑
p∈P

∑
u∈B

∑
t∈T

euzp,θ(u),t

−
∑
i∈N

∑
s∈S

∑
t∈T

hiIist −
∑
p∈P

∑
k∈Kp

∑
t∈T

σpjktvpjkt (4.40)

s.t.

(4.2)− (4.10), (4.20)− (4.25), and∑
s∈S

ypiskt ≤ Witv̂pikt, ∀ p ∈ P, i ∈ R \ {j}, t ∈ T, k ∈ Kp (4.41)
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∑
s∈S

ypjskt ≤ Wjtvpjkt, ∀ p ∈ P, k ∈ Kp, t ∈ T (4.42)

vpjkt = 0, ∀ p ∈ P, k ∈ Vp, t ∈ T (4.43)∑
p∈P

∑
k∈Kp

vpjkt ≤ 1, ∀ t ∈ T (4.44)

vpjkt ∈ {0, 1}, ∀ p ∈ P, k ∈ Kp \ Vp, t ∈ T. (4.45)

The objective function (4.40) maximizes the total profit. Constraints (4.41) indicate

that all retailers i ∈ R \ j should respect a given deliery schedule, and the delivery

quantity should not exceed its remaining demand. Constraints (4.42) mean that the

delivery quantity to j should be 0 if it is not visited and should not exceed its total

remaining demand. Constraints (4.43) indicate that retailer j cannot be served by

exceeded vehicles. Constraints (4.44) forbid split delivery to j.

Once P2(j) is solved, the routes concerning j are updated by an insertion or

removal strategy according to the value of vpjkt. Especially, the infeasibility in which

retailer j is visited by an exceeded vehicle is repaired.

Note that in FO, any newly generated routes will also be stored in the set R.

4.3.3 Route-based optimization

The route-based optimization RO aims to improve the incumbent solution by exploit-

ing the useful information collected from TI method and the FO procedure. This is

done through formulating and solving a route-based model. Similar route-based mod-

els have been used to solve IRPs by [16] and [22]. Precisely, the route-based model

is constructed with the set R of stored routes to avoid the large sizes of vehicle rout-

ing variables xijkt and subtour elimination constraints (4.19). Note that for a given

route, its cost, its originated plant and its visited retailers are known. For the model,

an adaptive kernel search AKS is developed to solve it. With the following new pa-

rameters and variables, the route-based model is presented to exploit the set R of

routes.

New parameters:

R: set of routes generated by TI and FO;

cr: cost to perform route r ∈ R;

αir: equal to 1 if retailer i is in route r, and 0 otherwise;

βpr: equal to 1 if route r originates from plant p, and 0 otherwise.

New decision variables:

yrist: delivery quantity with residual shelf life s by route r to retailer i in period t;

xrt: equal to 1 if route r ∈ R is used in period t, and 0 otherwise.
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The route-based model can be formulated as follows (model P3):

(P3) : max f =
∑
i∈R

∑
s∈S

∑
t∈T

gisϑist −
∑
p∈P

∑
t∈T

(aptξpt + bptwpt)−
∑
p∈P

∑
u∈B

∑
t∈T

euzp,θ(u),t

−
∑
i∈N

∑
s∈S

∑
t∈T

hiIist −
∑
r∈R

∑
t∈T

crxrt (4.46)

s.t.

(4.5)− (4.9), (4.20)− (4.24), and

Ipst = Ip,s+1,t−1 + zp,θ(u),t −
∑
r∈R

∑
i∈R

βprαiryrist,

∀ p ∈ P, s ∈ {θ(u)|u ∈ B}, t ∈ T (4.47)

Ipst = Ip,s+1,t−1 −
∑
r∈R

∑
i∈R

βprαiryrist,∀ s ∈ S \ {θ(u)|u ∈ B}, t ∈ T (4.48)

Iist = Ii,s+1,t−1 +
∑
r∈R

αiryrist − ϑist,∀ i ∈ R, s ∈ S, t ∈ T (4.49)

∑
s∈S

Iist ≥ (1−
∑
r∈R

τ=t′∑
τ=t+1

αirxrτ )
τ=t′∑
τ=t+1

Diτ , ∀ i ∈ R, t ∈ T, t < t′ ≤ |T | (4.50)∑
i∈R

∑
s∈S

αiryrist ≤ V xrt, ∀ r ∈ R, t ∈ T (4.51)∑
s∈S

yrist ≤ Witαir, ∀ r ∈ R, i ∈ R, t ∈ T (4.52)∑
r∈R

αirxrt ≤ 1, ∀ i ∈ R, t ∈ T (4.53)∑
r∈R

βprxrt ≤ |Kp|, ∀ p ∈ P, t ∈ T (4.54)

yrist ≥ 0, ∀ r ∈ R, i ∈ R, s ∈ S, t ∈ T (4.55)

xrt ∈ {0, 1}, ∀ r ∈ R, t ∈ T. (4.56)

The objective function (4.46) maximizes the total profit. Constraints (4.47)-(4.49)

impose inventory balance. Constraints (4.50) indicate that the inventory of retailer

i in period t must be sufficient to meet the demand in the following t′ − t periods

if i is not visited during these periods. Constraints (4.51) mean the vehicle capacity

must be respected. Constraints (4.52) ensure that the delivery quantity to retailer

i by route r must be 0 if i is not visited by route r. Constraints (4.53) forbid split

delivery. Constraints (4.54) state that the number of used vehicles cannot exceed

the fleet size of each plant and each period. Constraints (4.55) and (4.56) bound the

variables.

Our preliminary experiments show that model P3 cannot be optimally solved by a

commercial solver when the number of routes increases. Thus we develop an adaptive

kernel search (AKS) heuristic for it.
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The kernel search (KS) algorithm is designed to solve mixed binary programs

(MBP). Since its introduction by [13] for the multi-dimensional knapsack problem,

it has been successfully applied to single-source capacitated facility location [55],

alternative-fuel station location [97], and bus lane reservation problems [98], among

others. The bisic idea of KS is to carefully build and solve a set of restricted MBPs

iteratively by fixing a subset of binary variables to obtain a near-optimal solution of

the original problem. Since model P3 aims to select a good combination of the routes

in R to improve the incumbent solution, we select variables xrt to form the kernel.

Our AKS generates a near-optimal solution to P3 through the following steps.

Firstly, the linear relaxation (LP) of model P3 is solved to optimality: if all binary

variables wpt and xrt take integer values in the solution, then AKS terminates with

providing an optimal solution to P3. Otherwise, all variables xrt are sorted in an

ordered list B. In the list, variables xrt that take value 1 in the solution provided by

Section FO are put in the beginning of the list, and the remaining variables xrt are

first sorted in non-increasing order of their values from the solution of the LP and

then in non-increasing order of their reduced costs.

Secondly, our preliminary experiments show that it is difficult to search an ap-

propriate kernel for model P3. Thus an adaptive process is developed to determine

the initial kernel K1. Firstly, the first L variables in list B are selected as a temporal

kernel K, and an expected gap of the upper and lower bounds and a time limit are

set. Then, a MBP(K) is formulated by fixing all xrt variables that are not in K to

0 in model P3, i.e., xrt = 0,∀xrt /∈ K. If MBP(K) is optimally solved or the gap

between the obtained upper and a lower bounds is lower or equal to the expected one

in the time limit, K1 is set as K and the process stops. Otherwise, L is halved and K
is updated, and a new MBP(K) is formed. This process is repeated until MBP(K) is

optimally solved or the stopping criterion is met.

Then the first L variables in set B form the first kernel K1 and the remaining

variables are divided into m buckets of size L, where m = d |B|−L
L
e. The m−1 buckets

have the same length L and the mth bucket may take a length smaller than L. The

m MBPs are solved iteratively. The lth MBP denoted as MBP(Kl∪Bl), in which the

variables xrt except for those in Kl and Bl are fixed to 0, is formulated as follows:

MBP(Kl ∪ Bl) : max f (4.57)

s.t.

(4.5)− (4.9), (4.20)− (4.24), (4.47)− (4.56), and

xrt = 0, ∀xrt /∈ Kl ∪ Bl (4.58)

f ≥ zLBl−1 (4.59)

64



∑
xrt∈Bl

xrt ≥ 1 (4.60)

where zLBl−1 is the best lower bound obtained so far, especially, zLB0 denotes the lower

bound obtained by solving K1. Constraints (4.58) restrict MBP(Kl ∪ Bl ) by fixing

the xrt variables that are not in the current kernel Kl and bucket Bl to 0. Constraint

(4.59) guarantees that the obtained objective value is not worse than the current best

lower bound. Constraint (4.60) ensures that at least one variable in the current bucket

Bl is equal to 1 in a feasible solution. Constraints (4.59) and (4.60) are introduced to

alleviate the computational effort for solving MBP(Kl ∪ Bl).
Once MBP(Kl∪Bl) is solved, Kl+1 and zLBl+1 are updated as follows: if MBP(Kl∪Bl)

is infeasible, Kl+1 and zLBl+1 stay unchanged. Otherwise, Kl+1 is set to Kl ∪ B+
l \ K

−
l ,

where B+
l consists of xrt ∈ Bl taking value 1 in the solution of MBP(Kl∪Bl), and K−l

contains xrt ∈ Kl taking value 0 in the solution of the τ previous iterations, where τ

is an integer parameter. Finally, AKS stops when all MBP(Kl ∪Bl), l = 1, . . . ,m are

solved.

4.3.4 Hybrid matheuristic outline

Our HM can be summarized in Algorithm 4.1, in which the following parameters

are defined. sol∗ (resp. obj∗) and sol (resp. obj) denote the best-obtained solution

(resp. best objective value) and the current solution (resp. current objective value),

respectively. m is the number of buckets in AKS. j is the iteration counter and J

indicates the total number of iterations that are allowed in TI of HM. R is the set of

stored routes.

In Algorithm 1, lines 1-11 correspond to TI in which model P1 and a series of

VRP(p, t) are iteratively solved. Lines 12-21 represent FO where model P2(j) is solved

for each retailer j. Lines 22-33 present the RO. The linear relaxation of model P3 is

optimally solved. Then an adaptive procedure is developed to construct the kernel

K1, and a number of m buckets are constructed. Finally a sequence of MBP(Kl ∪Bl)
is solved to obtain the final solution.

4.4 Computational study

In this section, numerical experiments on 320 randomly generated instances (64

sets of 5 instances) are carried out to evaluate the performance of the developed

hybrid matheuristic. The generated instances and detailed computational results

are available online at http://www.mediafire.com/file/9zgsbgnisl5an0l/MFPRP.

rar. The proposed HM is implemented in C++ in Windows 10 operating system and

compiled under Visual C++ 2015 Community Edition. All tests are performed on
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Algorithm 4.1 HM for MFPRP
1. Initialize j = 1, sol∗ ← φ, sol ← φ, obj, obj∗ ← 0,M, δmpit for all p ∈ P, i ∈ R, t ∈
T ,R ← φ
2. while (j ≤ J)

3. Solve P1, output ŵpt, q̂pt, ẑp,θ(u),t, Îist, ŷpist, d̂ist and v̂pit
4. Solve VRP(p, t) for each plant p and period t with v̂pit and ŷpist known
5. Form a solution sol to MFPRP (potentially infeasible), calculate obj and add
all routes to R
6. if (obj > obj∗)
7. Set obj∗ ← obj and update the corresponding best solution sol∗ ← sol
8. end if

9. Update δj+1
pit with (4.37), (4.38) or (4.39)

10. Set j ← j + 1
11. end while
12. Set j = 1, get the delivery schedule v̂pikt for all retailers i, calculate visit cost
σpjkt for the jth retailer based on sol∗

13. while (j ≤ n)
14. Solve model P2(j) with all vpikt fixed to v̂pikt, where i = R \ {j}
15. Perform insertion or removal procedure for retailer j, update sol, calculate
obj and

add routes to R
16. if (obj > obj∗)
17. Set obj∗ ← obj and sol∗ ← sol
18. end if
29. Set j ← j + 1
20. Calculate visit cost σpjkt based on sol∗: if v̂pjkt = 1, then σpjkt is calculated
by (4.37); otherwise, σpjkt = ∆pjkt

21. end while
22. Formulate model P3 with the set of stored routes R
23. Solve LP(P3), sort the binary variables xrt with the predetermined criterion
24. Determine the kernel K1 and bucket length L with the adaptive process

25. Construct m buckets, where m = d |B|−L
L
e

26. for(l = 1, . . . ,m) do
27. Solve MBP(Kl ∪ Bl) formed by kernel Kl and bucket Bl
28. Update the kernel Kl+1 = Kl ∪ B+

l \ K
−
l

29. if (obj > obj∗)
30. Set obj∗ ← obj and sol∗ ← sol
31. end if
32. end for
33. Return sol∗ and obj∗
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a PC with Intel Core i7 CPU (2.5 GHz) and 8 GB RAM. CPLEX 12.7.1 with de-

fault settings is called to solve subproblems in HM, i.e., P1, P2(j), LP(P3), MBP(K),

and MBP(Kl ∪ Bl). All VRPs are solved with the VRPH packages [53] with the

record-to-record algorithm implementation [65].

In Section 4.4.1, we first detail the parameter settings, instance generation and two

implementations to solve the integrated model P by CPLEX. Computational results

are presented in Section 4.4.2. Section 4.4.3 is devoted to examining the impacts

of different product discount policies. Finally, the performance HM is analyzed in

Section 4.4.4.

4.4.1 Parameter settings and instance generation

The parameters in HM are set as: 1) for the two-phase iterative method, the initial

approximate visit cost δ0
pit is set to 0; the number of iterations allowed in TI is set

to 30; the diversification mechanism is applied after 2 consecutive iterations without

improvement; model P1 is solved with 100s time limit; 2) for the adaptive kernel

search, MBP(K) and MBP(Kl ∪Bl) are solved with 500s time limit, and τ is set to 2.

Since MFPRP is a newly studied problem, there are no benchmark instances and

algorithms available in the literature. Thus the 320 instances are randomly generated

based on the IRP instance generation of [39] and the PRP instance generation of [15].

The number of plants |P |, retailers n, periods |T | and packages |B| are set to {2,

4}, {6, 8, 10, 15, 20, 30, 40, 50}, {3, 6} and {2, 3}, respectively. Fleet sizes |Kp| of

each plant p ∈ P are set equally to 1, 2, and 3 for instances with 6-20, 30-40, and 50

customers, respectively. Product shelf life θ(u) of the newly-produced product with

package u is set to {1, 2} and {1, 2, 3} for instances with 2 and 3 types of packages,

respectively. The coordinate of a node i in graph G that corresponds to a plant or

a retailer location (Xi, Yi) is randomly generated from U[0,1000]. At the beginning

of the planning horizon, the initial inventory Iis0 is set to 0 for all i ∈ N and s ∈ S.

The detailed generation of parameters for MFPRP is given in Table 4.1.

To evaluate the obtained results by HM, lower and upper bounds of MFPRP are

generated with CPLEX. Model P cannot be directly solved by CPLEX due to the

inclusion of the subtour elimination constraints (4.19), whose number increases with

the number of nodes. Thus we introduce two ways to generate bounds of MFPRP.

The basic idea is to relax the subtour elimination constraint (4.19) and to add them

iteratively as needed. We denote the relaxed model of P as RP(P) that is defined by

the objective function (4.1) and constraints (4.2)-(4.18) and (4.20)-(4.26). The two

implementations are detailed as follows. In the first implementation, denoted as CP1,

model RP(P) is solved to optimality. If there exists one or more subtours, the cor-

responding subtour elimination constraints are added to model RP(P), and RP(P)

67



Table 4.1: Parameters for MFPRP model

Parameters Generation description

cij = b
√

(Xi −Xj)2 + (Yi − Yj)2 + 0.5c

Dit randomly generated from U[30, 210]

Cp = βp(
∑
i∈R

∑
t∈T Dit)/|T |/|P |, where β is randomly generated from U[2, 4],

p ∈ P

Up = βpCp, where βp is randomly generated from U[1.5, 2.0], p ∈ P

Ui = βi maxt∈T {Dit}, where βi is randomly generated from U[2, 3], i ∈ R

hi randomly generated from U[0.2, 0.6]

ap randomly generated from U[4, 7]

eu = βuθ(u), where βu is randomly generated from U[1, 2], u ∈ B

bp = βCp, where β is randomly generated from U[0.3, 0.5]

gis = βi − (|S| − s+ 1)ε, where βi is randomly generated from U[16, 21] and ε = 1

V = β(
∑
i∈R

∑
t∈T Dit)/

∑
p∈P |Kp|/|T |, where β is randomly generated from

U[1.5, 3.0]

with the added subtours is then re-solved. This process is repeated until there are

no subtours in the solution to RP(P) or a given time limit is reached. Alternatively,

in the second implementation, denoted as CP2, a lazy constraint callback feature of

CPLEX [58] is applied when RP(P) is solved by the branch-and-cut algorithm (B&C)

in CPLEX. The principle of the feature consists of checking the existence of subtours

whenever a feasible solution to RP(P) is provided by solving its subproblem in the

search tree of B&C. If one or more subtours exist, the corresponding subtour elimi-

nation constraints with new cuts are added to form a new subproblem. The process

continues until B&C terminates or a given time limit is rearched. The difference of

CP1 and CP2 is that CP1 solves RP(P) multiple times while CP2 solves RP(P) only

once. We set a time limit of 3600s for each implementation.

4.4.2 Computational results

In this section, we report the computational results on the 64 sets of instances (each

containing 5 instances of the same size). The results are compared with those provided

by CP1 and CP2. Tables 4.2 and 4.3 show the average results of each set. In the

two tables, columns 1-5 denote the instance set number, numbers of plants, periods,

retailers and packages, respectively. Columns “LB1”, “LB2”, and “LB3” are the

lower bounds (feasible solutions) obtained by CP1, CP2, and HM, respectively. Note

that the two numbers in “( ,)” indicate the numbers of instances for which an optimal

and a feasible solution are found, respectively. The upper (dual) bounds provided

by CP1 and CP2 are shown in columns “UB1” and “UB2”. The computation times
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in seconds for CP1, CP2, and HM are shown in columns “T1”, “T2” and “T3”,

respectively. Column “Dev(%)” indicates the deviations of the solution obtained by

HM with respect to the better solution provided by CP1 and CP2. A negative value

of “Dev(%)” means that HM finds a better solution compared to CP1 and CP2.

“Gap(%)” denotes the gap between the solution provided by HM and the best upper

bound provided by CPLEX. The calculation of “Dev(%)” and “Gap(%)” is as follows:

Dev(%) =
max(LB1,LB2)− LB3

max(LB1,LB2)
× 100% (4.61)

Gap(%) =
min(UB1,UB2)− LB3

LB3
× 100%. (4.62)

Table 4.2 presents the numerical results for 32 instance sets (160 instances in total)

with up to 4 plants and 15 retailers. From its last row, we can see that CP1 finds

optimal solutions in 75 instances, and it cannot find any feasible solution in instances

with 4 plants, 6 periods, and 8 retailers or more within the time limit. Note that for

some sets of instances that are not all solved optimally, the value of LB1 is bigger than

UB1. This is because the value of LB1 is the average objective value of instances that

are solved to optimality, and UB1 is the average upper bounds for all the five instances.

As for CP2, column “LB2” shows that it obtains optimal and feasible solutions in 70

and 154 out of the 160 tested instances, respectively. CP2 generally outperforms CP1

in terms of lower bound but it is a little inferior in finding optimal solutions or upper

bounds. From column “LB3”, we can observe that HM is able to provide solutions for

all instances, finding optimal ones for 30 instances. The average deviation between

the provided lower bounds by HM and CPLEX is -1.26%, which demonstrates that

HM is superior to CPLEX in terms of solution quality. The average gap between

the lower bound provided by HM and the best upper bound obtained by CPLEX

is 5.09%, which reveals that HM is able to consistently find good quality solutions.

Looking at the computation times, the average computation times of CP1, CP2 and

HM are 2262.9 s, 2211.0 s and 106.0s, respectively. It indicates that HM consumes

less than 5% of the computation time of CPLEX. The overall results demonstrate

that HM performs well for instances with up to 4 plants and 15 retailers.

The results for instances with up to 4 plants and 50 retailers are presented in Table

4.3. We can observe from column “LB1” that CP1 only finds 6 optimal solutions and

it cannot find any feasible solution for the remaining 154 instances within the time

limit. CP2 finds 6 optimal solutions among 33 obtained feasible ones. Again, CP2

provides better lower bounds than CP1, while CP1 is superior to CP2 in generating

upper bounds. For HM, it succeeds to provide feasible solutions for all instances,

especially, one optimal solution is found. The average deviation is -3.04%, which

indicates that HM is again superior to CPLEX in providing better feasible solutions.
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Table 4.2: Results for instances with up to 4 plants and 15 retailers

NO. m |T | n |B| CP1 CP2 HM

LB1 UB1 T1(s) LB2 UB2 T2(s) LB3 T3 (s) Dev(%) Gap(%)

1 2 3 6 2 13187(5,5) 13187 15.8 13187(5,5) 13187 4.4 13187(5,5) 5.7 0.00 0.00

2 2 3 6 3 10611(5,5) 10611 22.1 10611(5,5) 10611 4.2 10533(4,5) 6.3 0.66 0.69

3 2 3 8 2 20772(5,5) 20772 63.9 20772(5,5) 20772 12.1 20669(3,5) 5.8 0.48 0.48

4 2 3 8 3 18441(5,5) 18441 436.4 18441(5,5) 18441 60.3 18089(2,5) 7.4 1.98 2.08

5 2 3 10 2 26664(4,4) 27425 915.8 27398(5,5) 27398 403.0 27311(3,5) 7.6 0.29 0.30

6 2 3 10 3 19316(4,4) 21624 811.9 21562(5,5) 21562 107.5 21507(3,5) 8.7 0.27 0.28

7 2 3 15 2 43916(4,4) 43552 1129.3 43487(4,5) 43676 813.9 43324(0,5) 9.2 0.45 0.61

8 2 3 15 3 34892(4,4) 34904 2080.5 34627(3,5) 35230 1680.0 34357(0,5) 20.4 0.76 1.58

9 2 6 6 2 28916(5,5) 28916 379.3 28916(4,5) 28954 835.8 28723(2,5) 22.9 0.57 0.57

10 2 6 6 3 23944(5,5) 23944 827.2 23939(4,5) 24117 1274.0 23601(0,5) 60.6 1.52 1.55

11 2 6 8 2 37971(3,3) 40275 2081.0 39993(2,5) 40691 2547.0 39783(2,5) 43.4 0.58 1.25

12 2 6 8 3 38123(4,4) 36129 1151.0 36027(4,5) 36424 1579.5 35737(1,5) 53.5 0.79 1.17

13 2 6 10 2 - 48935 3600.0 47520(1,5) 49753 3464.0 47637(0,5) 207.1 -0.24 2.61

14 2 6 10 3 52744(1,1) 44537 3455.3 40969(1,5) 45789 2976.4 41671(0,5) 114.4 -2.40 7.71

15 2 6 15 2 - 87712 3600.0 86578(0,5) 89572 3600.0 86776(0,5) 298.0 -0.22 1.11

16 2 6 15 3 76140(1,1) 80739 2922.5 79214(1,5) 81875 3432.9 79672(1,5) 111.5 -0.57 1.38

17 4 3 6 2 12275(5,5) 12275 467.4 12275(5,5) 12275 68.4 12079(1,5) 20.4 1.78 1.84

18 4 3 6 3 12101(5,5) 12101 235.5 12101(5,5) 12101 75.0 11893(0,5) 14.2 1.84 1.92

19 4 3 8 2 19087(3,3) 20163 1859.4 19971(3,5) 20395 2204.9 19753(2,5) 18.5 1.33 2.13

20 4 3 8 3 15368(1,1) 16361 3158.2 15887(3,5) 16514 2409.9 15607(1,5) 22.8 1.99 4.74

21 4 3 10 2 - 27091 3600.0 24844(0,5) 27942 3600.0 25033(0,5) 30.0 -1.07 9.74

22 4 3 10 3 - 21544 3600.0 19959(0,5) 21882 3600.0 20023(0,5) 63.6 -0.91 8.02

23 4 3 15 2 - 40861 3600.0 37178(0,5) 41555 3600.0 38722(0,5) 25.4 -4.50 5.57

24 4 3 15 3 - 37183 3600.0 34765(0,5) 38094 3600.0 35741(0,5) 32.9 -3.30 4.29

25 4 6 6 2 31437(1,1) 29754 3600.0 27172(0,5) 30597 3600.0 27158(0,5) 145.4 -0.06 11.15

26 4 6 6 3 - 26751 3600.0 23878(0,5) 26954 3600.0 23579(0,5) 271.6 1.34 13.80

27 4 6 8 2 - 46910 3600.0 42715(0,5) 47853 3600.0 43753(0,5) 76.1 -2.37 7.12

28 4 6 8 3 - 36474 3600.0 29779(0,5) 37076 3600.0 31208(0,5) 414.0 -4.94 16.94

29 4 6 10 2 - 57429 3600.0 47491(0,5) 59133 3600.0 50251(0,5) 248.7 -5.83 14.56

30 4 6 10 3 - 42706 3600.0 33419(0,5) 43713 3600.0 36924(0,5) 627.0 -10.31 16.20

31 4 6 15 2 - 84849 3600.0 64864(0,4) 85868 3600.0 78128(0,5) 199.1 -19.04 8.86

32 4 6 15 3 - 83483 3600.0 - 85227 3600.0 75929(0,5) 198.8 - 9.51

Average 28205(75,75) 36801 2262.9 32888(70,154) 37351 2211.0 34949(30,160) 106.0 -1.26 5.09

The proved gap between the obtained lower bound by HM and the upper bound by

CPLEX is 7.55%, which shows that HM is able to provide good-quality solutions for

large-sized instances. In addition, the computation time (463.9s) of HM is only 13.3%

that of CPLEX (3478.6s and 3478.8s for CP1 and CP2, respectively) that reaches the

time limit in nearly all instances.

To further compare the results of HM and CPLEX, the instances are grouped by

the number of plants and periods, yielding 8 sets of 40 instances that only vary in
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Table 4.3: Results for instances with up to 4 plants and 50 retailers

NO.m |T | n |B| CP1 CP2 HM

LB1 UB1 T1(s) LB2 UB2 T2(s) LB3 T3(s) Dev(%) Gap(%)

33 2 3 20 2 54761(2,2) 57152 2219.0 56984(2,5) 57518 2189.5 56720(1,5) 13.0 0.46 0.78

34 2 3 20 3 54092(4,4) 52207 1040.1 52198(4,5) 52255 1061.6 51969(0,5) 18.2 0.40 0.42

35 2 3 30 2 - 88992 3600.0 78068(0,2) 90114 3600.0 84334(0,5) 31.4 -9.53 5.66

36 2 3 30 3 - 85332 3600.0 85749(0,1) 86982 3600.0 82791(0,5) 33.7 -3.26 3.20

37 2 3 40 2 - 123971 3600.0 - 124843 3600.0 119072(0,5) 54.4 - 4.07

38 2 3 40 3 - 107365 3600.0 - 107660 3600.0 98585(0,5) 117.3 - 9.26

39 2 3 50 2 - 163671 3600.0 - 166863 3600.0 159198(0,5) 54.6 - 2.82

40 2 3 50 3 - 150592 3600.0 - 154425 3600.0 144022(0,5) 88.2 - 4.63

41 2 6 20 2 - 121546 3600.0 117463(0,5) 123986 3600.0 119899(0,5) 66.3 -2.21 1.43

42 2 6 20 3 - 87307 3600.0 85151(0,5) 88937 3600.0 86008(0,5) 532.4 -0.94 1.55

43 2 6 30 2 - 192300 3600.0 - 195647 3600.0 182241(0,5) 329.1 - 5.81

44 2 6 30 3 - 157951 3600.0 - 161700 3600.0 147554(0,5) 489.4 - 7.57

45 2 6 40 2 - 271684 3600.0 - 275464 3600.0 261081(0,5) 358.1 - 4.10

46 2 6 40 3 - 230860 3600.0 - 233873 3600.0 221942(0,5) 394.4 - 4.05

47 2 6 50 2 - 332460 3600.0 - 333982 3600.0 312978(0,5) 1146.1 - 6.18

48 2 6 50 3 - 282691 3600.0 - 285856 3600.0 261105(0,5) 998.9 - 8.35

49 4 3 20 2 - 59087 3600.0 53190(0,5) 59703 3600.0 55353(0,5) 29.3 -4.24 6.46

50 4 3 20 3 - 54252 3600.0 48870(0,5) 55515 3600.0 51197(0,5) 38.0 -4.96 5.97

51 4 3 30 2 - 96742 3600.0 - 97282 3600.0 86024(0,5) 59.2 - 12.49

52 4 3 30 3 - 91630 3600.0 - 92252 3600.0 82443(0,5) 77.1 - 11.25

53 4 3 40 2 - 129389 3600.0 - 129750 3600.0 118463(0,5) 138.0 - 9.68

54 4 3 40 3 - 117026 3600.0 - 117540 3600.0 104736(0,5) 169.6 - 12.09

55 4 3 50 2 - 153618 3600.0 - 154151 3600.0 139777(0,5) 158.0 - 10.00

56 4 3 50 3 - 149981 3600.0 - 151013 3600.0 133600(0,5) 315.1 - 12.46

57 4 6 20 2 - 127986 3600.0 - 130286 3600.0 120999(0,5) 108.2 - 5.82

58 4 6 20 3 - 110590 3600.0 - 112822 3600.0 102916(0,5) 748.2 - 7.46

59 4 6 30 2 - 185478 3600.0 - 185867 3600.0 165076(0,5) 800.1 - 12.47

60 4 6 30 3 - 171635 3600.0 - 172283 3600.0 150575(0,5) 1360.6 - 14.48

61 4 6 40 2 - 260684 3600.0 - 261262 3600.0 234972(0,5) 707.1 - 11.05

62 4 6 40 3 - 231643 3600.0 - 232505 3600.0 207322(0,5) 842.0 - 11.75

63 4 6 50 2 - 283139 3600.0 - 283615 3600.0 243823(0,5) 1920.2 - 16.76

64 4 6 50 3 - 303653 3600.0 - 304199 3600.0 272772(0,5) 2647.9 - 11.59

Average 54427(6,6) 157269 3476.8 72209(6,33) 158755 3476.6 145611(1,160) 463.9 -3.04 7.55

the number of customers. The average results of solution quality and computation

time are shown in Fig. 4.2 and Fig. 4.3, respectively. Fig. 4.2(a) shows that HM

obtains near-optimal solutions for instances with up to two plants, three periods and

20 customers, and CPLEX performs well in solving these small-sized instances. Fig.

4.2(b) and 4.2(c) indicate that for instances with up to two plants and 6 periods, HM

clearly outperforms CPLEX. The good performance of HM can be further confirmed

by the results for instances with up to four plants, as shown in Fig. 4.2(d). CPLEX
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Fig. 4.2: Comparison on solution quality (gaps(%))

cannot provide any feasible solutions for instances with up to 4 plants, 6 periods and

15 customers. HM can provide feasible solutions for all tested instances. In terms of

the computation times, Fig. 4.5 indicates that HM is much faster than CPLEX. The

computation times of HM increase relatively slowly while that of CPLEX increases

much faster, which mean that HM is more efficient. In summary, numerical results

show that HM is able to find near-optimal solutions within very short computation

time. It clearly outperforms CPLEX in terms of solution quality and computation

time.

4.4.3 Impacts of discount policies

In this paper, we consider a realistic situation in which the perishable food products

have to be sold with discounts as the residual shelf life reduces. Different discount

policies may lead to different profit. To investigate the impact of discount policies

on the total profit, we test instances with different discount policies while all other

parameters remain the same. The set of instances with m = 2 plants, |T | = 6
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Fig. 4.3: Comparison on computation times

periods, n = 20 retailers, and |B| = 3 packages is selected. In the instance generation

introduced in Section 4.4.1, ε (a parameter that determines the shape of the discount)

is set to 1. Taking the instances with ε = 1 as a basis, we generate three new sets of

instances with ε being 0.5, 1.5 and 2.0, respectively. For a product with shelf life of

3 and initial price of 17, the discount policies for ε being 0.5, 1.0, 1.5 and 2.0 can be

illustrated in Fig. 4.4.

These instances are then solved by HM. Upper bounds are generated by CP1

and CP2 with a 3600s time limit, and the obtained best upper bounds are reported.

Average results for the set of instances are presented in Table 4.4, in which the first

column shows the values of ε. The next two columns show the upper bound ob-

tained by CPLEX (including CP1 and CP2) and the lower bound provided by HM,

respectively. Columns 4 and 5 give the gap between the lower and upper bounds,

and the computation time for HM, respectively. Finally, the revenue and cost com-

ponents, i.e., production cost, packaging cost, inventory cost and transportation cost,

are presented in the last five columns.
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Fig. 4.4: Illustrative example of different discount policies

Table 4.4: Results for MFPRP with different discount policies

ε UB LB (profit) Gap (%) Time (s) Revenue Procost Packcost Invcost Transcost

0.5 108563 105954 2.44 209.6 243930 95640 22810 1765 17762

1.0 87307 86008 1.55 532.4 230259 95702 28130 903 19517

1.5 66537 65829 1.21 114.1 221797 96020 38083 403 21462

2.0 60879 60197 1.24 47.6 254162 96785 74449 188 22543

Average 80821 79497 1.61 225.9 237537 96037 40868 815 20321

We can see from Table 4.4 that HM is able to find near-optimal solutions with

an average gap of 1.61% for the 20 instances and an average computation time of

only 225.9s. The small gap and short computation time indicate that HM is ef-

fective and stable in solving MFPRP with different discount policies. In addition,

when the discount policies become steeper, the gaps and computation times gener-

ally decrease. Fig. 4.5 shows the changes of total revenue, profit, and different cost

components when the discount policies changes. As ε increases (discount becomes

steeper), we have the following observations: 1) the total profit obviously reduces; 3)

the total revenue decreases at first and then increases; 4) the production, packaging,

and transportation costs increase; and 4) the inventory cost decreases. The above

observations can be explained by the fact that as the discount becomes steeper: 1)

better packages with higher prices are more often used to prevent the food products

from decaying; 2) less inventory is held since the selling price goes down quickly; and

3) the plants setup and deliveries to retailers become more frequent to produce and

sell fresher food. In summary, the overall results show that discount policies signifi-

cantly impact the total profit. HM consistently performs well for MFPRP instances

with different discount policies.
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4.4.4 Performance analysis of HM

This section analyzes the performance of HM by reporting the improvements obtained

by its three components and the corresponding computation times. The 320 instances

are grouped by the number of retailers, resulting into 8 sets of 40 instances. The

results are shown in Table 4.5 and Fig. 4.6. In Table 4.5 , the first two columns give

the instance set number and the number of retailers in each set. Column “feas.” shows

the number of instances where a feasible solution is found by TI. Columns 4-7 present

the average and maximum improvements obtained by FO with respect to TI, and the

improvements achieved by RO with respect to FO, respectively. The improvements

are calculated with equations (4.63) and (4.64), where obj1, obj2, and obj3 denote

the objective values of the solutions provided by TI, FO and RO, respectively. Note

that the percentage improvement by FO is calculated on the subset of instances for

which a feasible solution has been found by TI since the comparison makes no sense

for infeasible ones. The last three columns show the computation times required by

the three components of HM, respectively. Fig. 4.6 shows the average and maximum

improvements obtained by FO and RO, and the computation times required by the

three components.

% improvement by FO =
obj2− obj1

obj1
× 100% (4.63)

% improvement by RO =
obj3− obj2

obj2
× 100%. (4.64)

Table 4.5 shows that feasible solutions for 273 out of the 320 instances are provided

by TI. The average improvement by FO with respect to TI for these 273 instances

is 0.38%, and the average maximum improvement is 2.69%. This indicates that FO

can generally improve the feasible solution provided by TI. In addition, FO suc-

ceeds to find feasible solutions for all the 320 instances. In terms of RO, an average
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Table 4.5: Performance analysis of HM

NO. n feas.
% improvement by FO % improvement by RO

T1 (s) T2 (s) T3 (s)
Avg. Max Avg. Max

1 6 40 0.50 7.60 1.42 11.59 55.6 0.3 12.5

2 8 40 0.43 2.96 0.40 3.01 70.2 0.3 9.6

3 10 40 0.63 4.18 0.64 6.55 81.5 0.4 81.5

4 15 40 0.38 2.68 0.38 3.05 63.2 0.7 48.1

5 20 40 0.27 1.32 0.16 1.45 66.7 1.0 126.5

6 30 27 0.36 0.96 0.12 1.53 90.9 4.1 302.6

7 40 27 0.27 1.15 0.07 0.89 113.5 6.5 227.7

8 50 19 0.19 0.67 0.07 0.83 176.0 13.8 726.3

All / Avg. 273 0.38 2.69 0.41 3.61 89.7 3.4 191.9
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Fig. 4.6: Performance analysis of HM
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improvement of 0.41% is achieved with the average maximum improvement being

3.61%, which further demonstrates that the route-based optimization component is

effective. The computation times of the TI, FO and RO are 89.7s, 3.4s, and 191.9s,

respectively. From Fig. 4.6 (a) and Fig. 4.6 (b), we can observe FO and RO can

generally obtain greater improvements for instances with up to 20 customers. The

improvements become less obvious as the number of customers increases. In terms of

the computation times of the three components, Fig. 4.6 (c) show that for instances

with up to 15 retailers, TI consumes the longest computation time among the three

components due to the iterative procedure for solving model P1. While for instances

with more than 15 retailers, RO takes longer computation time. This may be due to

the large number of routes stored in R for instances with larger number of retailers,

which makes models MBP(K) and MBP(Kl ∪Bl) hard to solve. For all the instances,

the FO takes very short computation time. Overall, the good performance of HM

comes from the hybridization of the three components, i.e., TI, FO, and RO.

4.5 Conclusion

This chapter investigates a new multi-plant food production routing problem with

perishability and packaging consideration. Firstly, the problem is formulated as a

MILP which is later solved by B&C in two different ways. Then a hybrid matheuris-

tic is developed to solve the problem. The heuristic combines a two-phase iterative

method, a fix-and-optimize procedure and a route-based optimization process. In par-

ticular, the useful information obtained by the components TI and FO is exploited in

RO. To performance of HM is evaluated by computational experiments on 320 ran-

domly generated instances. Computational results for instances with up to 4 plants

and 15 retailers show that HM can find solutions with average gap of -1.26% and

5.09% compared to the lower and upper bounds provided by CPLEX and needs only

less than 5% of the computation time compared with CPLEX. Results for instances

with up to 4 plants and 50 retailers indicate that CPLEX cannot solve these large-

sized instances within 3600s. HM can propose solution with average gap of 7.55%

and average computation time of 460.7s. Analysis on discount policies shows that

the total profit is significantly impacted by different discount policies. Performance

analysis of HM shows that its good performance is a result of the hybridization of the

three components.

The corresponding work is going to be submitted to a journal.
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Chapter 5

Bi-objective Food Production
Routing Problem with Quality
Consideration

5.1 Introduction

As reviewed in Chapter 2, food quality is one of the most important issues in FSC.

Customers expect to receive high-quality food products. However, existing works on

FSC optimization always aim to minimize the total cost or to maximize the total

profit [39], [41], and quality has rarely been treated as an objective. Nowadays, cus-

tomers have the highest expectation to receive high-quality food products than ever

before. Motivated by the fact that the quality of food received by customers may

impact the customer satisfaction which further affects a company’s competitiveness.

A bi-objective food production routing problem is studied in this chapter. The prob-

lem simultaneously optimizes two objectives: 1) to minimize the total production,

inventory and routing costs; 2) to maximize the average quality of food received by

final customers. For the studied problem, a bi-objective MILP is first formulated.

Then an ε-constraint-based two-phase iterative heuristic is developed to generate a

set of Pareto solutions. In particular, useful information from the solution of the

transformed single-objective problem in one iteration is used as input to the next

iteration to reduce the computational efforts. Then a fuzzy-logic decision approach

is applied to select a preferred solution among the generated Pareto solutions based

on decision makers’ preferences. Finally, the heuristic is evaluated by conducting nu-

merical experiments on a case study and on 185 randomly generated instances with

up to 100 retailers and 12 periods.

The remainder of this chapter is organized as follows. Section 5.2 gives the descrip-

tion and formulation of the considered problem. In Section 5.3, an ε-constraint-based

two-phase iterative heuristic is developed to fast solve the problem. Computational
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experiments on an illustrative case and randomly generated instances are conducted

in Section 5.4. Finally, Section 5.5 summarizes this chapter.

5.2 Problem description and formulation

This study considers a BFPRP with quality consideration. The considered problem

can be stated as follows.

Consider a complete digraph G={N ,A} with a set of nodes N={0, 1, . . . , n}
and a set of arcs A={(i, j) : i, j ∈ N, i 6= j}. A plant with limited production and

storage capacities is located at node 0. It has a fleet of homogeneous vehicles

K={1, , 2, . . . , |K|}, each having capacity V . A set of n retailers R={1, 2, . . . , n} with

a limited storage capacity are geographically located at node {1, . . . , n}. Consider a

time horizon T={1, 2, . . . , |T |}, the customer demand at each retailer is assumed to

be deterministic and time varying. A BFPRP consists of simultaneously determining

production, storage, delivery, and routing planning to satisfy customer demand with

food quality deterioration consideration. Note that food quality can be distinguished

by a set of quality levels Q={0, 1, . . . , |Q|}, where 0 represents the freshest food. The

two objectives of BFPRP are to simultaneously minimize the total production, in-

ventory and routing cost and maximize the average quality of food provided to final

customers. The decisions to be made for each period are: 1) how much to produce at

the plant; 2) how much to replenish each retailer; 3) how to arrange the transporta-

tion routes for the planned deliveries; and 4) how to fulfill customer demand at each

retailer.

The study is conducted under the following assumptions: 1) each vehicle’s route

starts and ends at the plant, and each vehicle can perform at most one trip within

each period; 2) each retailer can be visited at most once within each period; i.e., split

delivery is not allowed; 3) food quality degrades by one quality unit per period; and

4) once the quality goes beyond |Q|, food products can no longer be used to meet

customer demand and should be directly turned into waste. The last two assumptions

are realistic and are related to food characteristics. The first two assumptions are

commonplace in IRP and PRP. They can be justified by the fact that it is always pos-

sible to reduce to length of the periods for the assumptions to hold. No split delivery

assumption is further justified by the fact that deliveries disturb regular operations

at the retailers who therefore prefer few deliveries. To ensure the consistence, we

assume that the demand of any retailer in any period does not exceed the sum of the

storage and vehicle capacities. To formulate the problem, the following parameters

and variables are defined:

Parameters
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cij travel cost on arc (i, j) ∈ A;

at unit production cost in period t ∈ T ;

bt production setup cost in period t ∈ T ;

C production capacity;

Iq0i initial inventory at i ∈ N with q ∈ Q;

Dt
i customer demand at retailer i ∈ R in period t ∈ T ;

Ui inventory capacity of i ∈ N ;

hqi unit inventory holding cost per period at i ∈ N with q ∈ Q;

V vehicle capacity;

Variables

ξt production quantity in period t;

wt binary variable equal to 1 if ξt > 0; otherwise 0;

Iqti inventory level with quality q of retailer i at the end of period t;

yqkti delivery quantity with quality q to retailer i by vehicle k in period t;

ϑqti quantity of food used to fulfill customer demand with quality q at retailer i in

period t;

vkti binary variable equal to 1 if retailer i is visited by vehicle k in period t; otherwise

0;

xktij binary variable equal to 1 if arc (i, j) is traversed by vehicle k in period t;

otherwise 0.

With the above description and notation, BFPRP can be formulated as follows:

min f1 =
∑
t∈T

(atξt + btwt) +
∑
i∈N

∑
q∈Q

∑
t∈T

hqi I
qt
i +

∑
(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij (5.1)

min f2 =
∑
i∈R

∑
q∈Q

∑
t∈T

ϑqti q /
∑
i∈R

∑
t∈T

Dt
i (5.2)

s.t.

Iqt0 = Iq−1,t−1
0 −

∑
i∈R

∑
k∈K

yqkti ,∀q ∈ Q \ {0}, t ∈ T (5.3)

I0t
0 = ξt −

∑
i∈R

∑
k∈K

y0kt
i ,∀t ∈ T (5.4)

Iqti = Iq−1,t−1
i +

∑
k∈K

yqkti − d
qt
i ,∀i ∈ R, q ∈ Q \ {0}, t ∈ T (5.5)

I0t
i =

∑
k∈K

y0kt
i − d 0t

i ,∀i ∈ R, t ∈ T (5.6)

ξt ≤ Cwt,∀t ∈ T (5.7)∑
q∈Q

Iqti ≤ Ui,∀i ∈ N, t ∈ T (5.8)
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∑
q∈Q

ϑqti = Dt
i ,∀i ∈ R, t ∈ T (5.9)∑

i∈R

∑
q∈Q

yqkti ≤ V, ∀k ∈ K, t ∈ T (5.10)∑
q∈Q

yqkti ≤ V vkti ,∀i ∈ R, k ∈ K, t ∈ T (5.11)∑
k∈K

vkti ≤ 1,∀i ∈ R, t ∈ T (5.12)∑
j∈N\{i}

xktij =
∑

j∈N\{i}

xktji = vkti , ∀i ∈ R, k ∈ K, t ∈ T (5.13)

∑
i∈R

xkt0i ≤ 1,∀k ∈ K, t ∈ T (5.14)∑
i∈S

∑
j∈S

xktij ≤ |S| − 1,∀S ⊆ R, |S| ≥ 2, k ∈ K, t ∈ T (5.15)

ξt ≥ 0,∀t ∈ T (5.16)

wt ∈ {0, 1},∀t ∈ T (5.17)

Iqti ≥ 0,∀i ∈ N, q ∈ Q, t ∈ T (5.18)

ϑqti ≥ 0,∀i ∈ R, q ∈ Q, t ∈ T (5.19)

yqkti ≥ 0,∀i ∈ R, q ∈ Q, k ∈ K, t ∈ T (5.20)

vkti ∈ {0, 1},∀i ∈ R, k ∈ K, t ∈ T (5.21)

xktij ∈ {0, 1},∀(i, j) ∈ A, k ∈ K, t ∈ T (5.22)

Objective function (5.1) minimizes the total cost, in which the first summation

denotes the fixed and variable production cost, the second and third ones are total in-

ventory cost and total routing cost, respectively. Objective function (5.2) maximizes

the average food quality level. Note that the smaller the objective value, the higher

the average food quality. Constraints (5.3)-(5.6) indicate the food flow balance at the

plant and retailers. Constraints (5.7) and (5.8) are the production and inventory ca-

pacity constraints. Constraints (5.9) indicate that customer demand at each retailer

must be satisfied. The vehicle capacity constraint is imposed by (5.10). Constraints

(5.11) allow positive delivery quantity to a retailer only if it is visited. Constraints

(5.12) forbid split delivery. Constraints (5.13) correspond to the vehicle flow conser-

vation. Constraints (5.14) denote that one vehicle can perform at most one route in

each period. Constraints (5.15) eliminate all subtours. Constraints (5.16)-(5.22) are

nonnegative and integer conditions on decision variables.

The considered BFPRP is NP-hard since it contains a VRP that is well known

to be NP-hard [51]. Due to the complexity of the studied problem, a new approach

that combines an ε-constraint-based two-phase iterative heuristic is developed in next

section.
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5.3 Solution method

As reviewed in Chapter 2, ε-constraint method is one of the most effective methods

in solving a bi-objective optimization problem. Thus in this section, we present an

ε-CTIH to solve the considered BFPRP. The basic idea is to optimize the principle

objective and transform the other objective into constraints bounded by a parameter

ε. For our problem, we take the total cost as the principle objective and transform

the quality objective into constraints. Thus yielding the mono-objective problem

FPRP(ε). Let ϕ(x) and ω(x) denote the two objectives f1 and f2, respectively,

where x represents a vector of all decision variables. X is the feasible region of x

defined by constraints (5.3)-(5.22). FPRP(ε) can be formulated as follows:

minϕ(x) (5.23)

s.t.

ω(x) ≤ ε (5.24)

x ∈ X (5.25)

In order to construct the set of Pareto-optimal solution, we need to know the set of

all possible values of ε, which is actually an interval. This interval can be determined

by obtaining an Ideal point (f I1 , f
I
2 ) and a Nadir point (fN1 , f

N
2 ). They are obtained

by exactly solving the following mono-objective problems:

f I1 = min{ϕ(x)|x ∈ X} (5.26)

f I2 = min{ω(x)|x ∈ X} (5.27)

fN1 = min{ϕ(x)|ω(x) = f I2 ,x ∈ X} (5.28)

fN2 = min{ω(x)|ϕ(x) = f I1 ,x ∈ X} (5.29)

the value of ε can be bounded by interval [f I2 , f
N
2 ]. Then the step size ∆ should

be fixed to explore values of ε and form a series of mono-objective problems that are

solved iteratively to obtain the Pareto front or its approximation. The solution to

each mono-objective FPRP(εm) for a given value of parameter ε, if not dominated, is

a Pareto-optimal solution to the original problem. The objective values of all Pareto

solutions (ϕ(x), ω(x)) form a Pareto front. Ideally, we expect to generate the exact

Pareto front by exactly solving a series of FPRP(ε) with enumerating the possible

value of ε. This would require solving a large number of mono-objective problems

due to the continuous nature of parameter ε, which is impractical and unnecessary

for decision makers. In addition, it is computationally challenging to optimally solve

a complex mono-objective FPRP(ε). In practice, decision makers may expect some

representative Pareto solutions within a reasonable amount of computation time. This
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motivates us to design the ε-CTIH to obtain an approximate Pareto front. Method

ε-CTIH consists of solving a set of M = 1, 2, . . . , |M | mono-objective FPRP(ε) for

|M | values of parameter ε. Next, we present a two-phase iterative heuristic (TIH) to

solve the mth mono-objective problem FPRP(εm) with m ∈M .

5.3.1 Two-phase iterative heuristic for FPRP(εm)

The key to ε-CTIH is to efficiently solve a series of mono-objective FPRP(εm) by de-

composing it into a lot-sizing subproblem and some independent vehicle-routing prob-

lems (VRPs). This decomposition is necessary due to the complexity of FPRP(εm)

with realistic size. More specifically, FPRP(εm) is first decomposed into a variant

of lot-sizing problem FPDP(εm, δ
m,λm) and VRP(εm), where δm is a matrix with

entries δmit (i ∈ R and t ∈ T ) and λm is a vector with entries λmt .

FPDP(εm, δ
m,λm) determines the quantity of food of each quality level to deliver

to each customer in each period without considering the detailed routes of individual

vehicles. These delivery quantities are then disaggregated into the quantity to be

transported to each retailer in each period by each individual vehicle by solving the

vehicle routing problem VRP(εm). In order that the decomposition leads to a solution

close to an optimal one and to ensure existence of a feasible disaggregation, the lot-

sizing problem must take into account, in an aggregated way, the delivery cost and

the transportation capacity. The delivery cost is calculated by estimating the cost

of visiting each customer i ∈ R in each period t ∈ T , namely δmit . The aggregate

transportation capacity is calculated by taking into account the fill rate of the fleet

in each period t ∈ T . This is done by introducing parameter λmt . On the other hand,

in order for the aggregation to be realistic, these two subproblems FPDP(εm, δ
m,λm)

and VRP(εm) are solved sequentially and iteratively until a near-optimal solution

is found. The sets of parameters δm and λm are updated at each iteration using

the solution to VRP(εm) obtained in the previous iteration. The updating of δm is

described in detail later. Parameter λmt ∈ (0, 1] for each t ∈ T is initially set to 1,

and is decreased when the routing phase is infeasible. If there is no feasible solution

to VRP(εm) for some period t, then λmt is decreased by τ ∈ (0, 1). Note that this idea

has been used in [1], [4], [19].

To be specific, FPDP(εm, δ
m,λm) is obtained from FPRP(εm) by eliminating

route-related variables xktij ’s and constraints (5.13)-(5.15) and (5.22). Vehicle-related

index k is dropped from vehicle-related variables yqkti and vkti by considering an ag-

gregated vehicle with aggregated capacity. FPDP(εm, δ
m,λm) can be formulated as

follows:

min f1 =
∑
t∈T

(atξt + btwt) +
∑
i∈N

∑
q∈Q

∑
t∈T

hqi I
qt
i +

∑
(i,j)∈A

∑
t∈T

δmit v
t
i (5.30)
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s.t.

(5.7)− (5.9), (5.16)− (5.19), and∑
i∈R

∑
q∈Q

∑
t∈T

ϑqti q /
∑
i∈R

∑
t∈T

Dt
i ≤ εm (5.31)

Iqt0 = Iq−1,t−1
0 −

∑
i∈R

yqti ,∀q ∈ Q \ {0}, t ∈ T (5.32)

I0t
0 = ξt −

∑
i∈R

y0t
i ,∀t ∈ T (5.33)

Iqti = Iq−1,t−1
i + yqti − ϑ

qt
i ,∀i ∈ R, q ∈ Q \ {0}, t ∈ T (5.34)

I0t
i = y0t

i − d0t
i ,∀i ∈ R, t ∈ T (5.35)∑

i∈R

∑
q∈Q

yqti ≤ λmt |K|V, ∀t ∈ T (5.36)∑
q∈Q

yqti ≤ V vti ,∀i ∈ R, t ∈ T (5.37)

yqti ≥ 0,∀i ∈ R, q ∈ Q, t ∈ T (5.38)

vti ∈ {0, 1},∀i ∈ R, t ∈ T (5.39)

In this formulation, decision variable vti = 1 if retailer i is visited in period t, and 0

otherwise. Variable yqti is the delivery quantity with quality q to retailer i in period t.

Other variables keep the same meaning as in BFPRP. Objective function (5.30) min-

imizes the sum of production, inventory and approximate visiting costs. Constraints

(5.31) mean that the average quality is restricted by εm. Constraints (5.32)-(5.35) are

similar to (5.3)-(5.6). Constraints (5.36) ensure that the total delivery quantity to all

retailers within one period cannot exceed the total vehicle capacity with the expected

fill rate. Constraints (5.37) ensure the delivery quantity to be 0 if a retailer is not

visited. Nonnegative and binary variables are defined by (5.38) and (5.39). For each

iteration of TIH, once FPDP(εm, δ
m,λm) is solved , we obtain values of all variables

except those related to vehicle routes.

From the obtained solution to FPDP(εm, δ
m,λm), we can form a set of retailers

V t to be visited in period t ∈ T ; i.e., V t = {i ∈ R|vti = 1}. For retailer i ∈ V t, let

Dti denote the corresponding delivery quantity; i.e., Dti =
∑

q∈Q y
qt
i . Then solving

VRP(εm) is equivalent to solve a series of independent VRPs, one for each period

t ∈ T such that with V t 6= ∅. Such a problem is denoted VRP(t, εm). By definition,

VRP(t, εm) can be formulated as follows:

min
∑

(i,j)∈A

∑
k∈K

cijx
k
ij (5.40)

s.t. ∑
i∈R

Dtivki ≤ V, ∀k ∈ K (5.41)
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∑
k∈K

vki = 1,∀i ∈ V t (5.42)∑
j∈Vt∪{0}\{i}

xkij =
∑

j∈Vt∪{0}\{i}

xkji = vki ,∀i ∈ V t, k ∈ K (5.43)

∑
i∈Vt

xk0i ≤ 1, ∀k ∈ K (5.44)∑
i∈S

∑
j∈S

xkij ≤ |S| − 1,∀S ⊆ V t, |S| ≥ 2, k ∈ K (5.45)

vki ∈ {0, 1},∀i ∈ V t, k ∈ K (5.46)

xkij ∈ {0, 1}, ∀i ∈ V t, j ∈ V t \ {i}, k ∈ K (5.47)

Objective function (5.40) minimizes the total routing cost. Constraints (5.41)-

(5.45) are the vehicle routing constraints. Constraints (5.46) and (5.47) define binary

variables. FPDP(εm, δ
m,λm) and VRP(εm) are solved iteratively by TIH. The solu-

tions to these two problems form a feasible solution to FPRP(εm).

Then the visiting costs δm are updated as follows: if retailer i ∈ R is visited in

period t, δmit = ci−i+ci+i−ci−i+ , where i− and i+ denote the predecessor and successor

nodes of i in the solution to the vehicle routing problem VRP(t, εm) obtained in the

previous iteration, respectively. Otherwise, δmit is updated as the minimum insertion

cost to one of the routes performed in period t. If the method falls into local optima,

we introduce a diversification mechanism to restart the algorithm when the incumbent

solution is not improved after ND iterations. The number of iterations of TIH is

limited to NT . Once the algorithm stops, we output the best incumbent solution, its

objective value fm1 , the corresponding value of fm2 , and the corresponding value of

the two sets of parameters δ∗m and λ∗m. Algorithm 5.1 describes the detailed steps

of TIH.

In the main loop (line 3 to 19), FPDP(εm, δ
m,λm) and VRP(εm) are solved se-

quentially. A diversification mechanism is introduced to re-start the algorithm (line

15 to 17). Other lines in algorithm 1 are self-explained.

5.3.2 ε-constraint-based two-phase iterative heuristic

In this subsection, we depict the general framework of ε-CTIH to solve BFPRP.

Firstly, objective f2 is transformed into a constraint with an upper bound ε to form

FPRP(ε). To determine the range of ε, we should first compute the interval [f I2 , f
N
2 ].

Preliminary tests show that it is very time consuming to exactly solve (5.26)-(5.28).

TIH is used to solve (5.26)-(5.28) to obtain near-optimal solutions and the corre-

sponding objective values are denoted as fAI1 , fAI2 and fAN1 , respectively. Because

we use TIH which is a heuristic to solve FPRP(ε), we can only obtain an approximate

value of f I1 , denoted as fAI1 . Therefore, the constraint ϕ(x) = f I1 cannot be taken
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Algorithm 5.1 TIH for solving FPRP(εm)
1. Initialize fm1 ← +∞, j ← 0
2. Input NT , ND, εm,λ

m, τ and δm

3. While (j < NT ) do
4. Solve FPDP(εm, δ

m,λm) to obtain total production and inventory cost PC ,
get V t and Dti

5. Solve VRP(t, εm) for all t ∈ T such that V t 6= ∅ to get route Rkt,
for all k ∈ K, number of routes N t, and total routing cost RC

6. If there exists N t > |K| then
7. Set λmt = λmt − τ and goto step 4
8. Else if PC +RC < fm1 then
9. Set δ∗m ← δm, λ∗m ← λm, fm1 = PC +RC
10. Calculate fm2 with (5.2) and set l = 0
11. Else
12. set l = l + 1
13. End if
14. Update δm

15. If l ≥ ND then
16. Diversify by setting δmit ← θ(c0i + ci0) for i ∈ R and t ∈ T , set l← 0
17. End if
18. Set j ← j + 1
19. End while
20. Output fm1 , f

m
2 , δ

∗m and λ∗m

into account to calculate fN2 . Thus we use an alternative way to obtain the value

fAN2 by calculating it directly with (5.2) based on the obtained solution to (5.26).

The approximate Ideal point (fAI1 , fAI2 ), approximate Nadir point (fAN1 , fAN2 ), and

interval [fAI2 , fAN2 ] of ε are formed.

By varying the value of ε in [fAI2 , fAN2 ], a set of |M | mono-objective FPRP(εm) are

solved by calling TIH. As mentioned above, for the mth iteration, TIH consists of se-

quentially and iteratively solving two subproblems FPDP(εm, δ
m,λm) and VRP(εm)

to obtain a near-optimal solution to FPRP(εm). The sets of parameters δm and

λm play a central role in TIH. Good initial values for these parameters may greatly

improve the performance of TIH. In ε-CTIH, the set of mono-objective FPRP(εm)

differs from each other only in (5.31) by changing the value of ε with a step size ∆.

Therefore, the proper parameter settings of FPRP(εm) may also be used in solving

FPRP(εm+1). For this purpose, in addition to outputting the best feasible solution

to FPRP(εm), TIH outputs the corresponding values of f ∗m2 , δ∗m and λ∗m. In the

(m + 1)th iteration of ε-CTIH to solve FPRP(εm+1), the initial values are set as fol-

lows: εm+1 = f ∗m2 − ∆, δm+1 = δ∗m and λm+1 = λ∗m. Note that these settings

contain useful information of FPRP(εm) to avoid redundant iterations when solving

FPRP(εm+1) and serve as a good starting point for FPRP(εm+1). Our heuristic links
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FPRP(εm) to FPRP(εm+1) with ε, δ, and λ while classic ε-constraint methods only

use ε as a link. The general framework of ε-CTIH is outlined in Algorithm 5.2.

Algorithm 5.2 ε-CTIH for solving BFPRP
1. Initialize m← 0, δ0

it ← c0i + ci0,∀i ∈ R, ∀t ∈ T , λ0
t ← 1,∀t ∈ T

2. Call TIH to solve (5.26) to get fAI1 , δ∗0 and λ∗0, and calculate fAN2 with
the solution to (5.26)

3. Call TIH to solve (5.27) and (5.28) to get fAI2 and fAN1

4. Set AF ← {(fAI1 , fAN2 ), (fAN1 , fAI2 )}, εm ← fAN2

5. While (εm > fAI2 ) do
6. Set m← m+ 1, εm ← εm−1 −∆, δm ← δ∗m−1, λm ← λ∗m−1

7. Call TIH to solve FPRP(εm) with δm and λm, and output (fm1 , f
m
2 ), δ∗m

and λ∗m

8. Set AF ← AF ∪ (fm1 , f
m
2 )

9. End while
10. Remove the dominated points from AF and return AF

Having a set S of Pareto solutions at hand, a fuzzy logic decision method can

be used to help decision makers choose a best-compromised solution according to

their preference. The fuzzy logic decision method has been introduced in Chapter 2.

The preferred solution can be obtained by using equations (2.15) and (2.16) for each

combination of objective weights.

5.4 Computational experiments

This section presents the computational experiments conducted on a case study to

illustrate the performance of our algorithm and on 185 randomly generated instances

to show the effectiveness and efficiency of the proposed approach. We compile the

algorithms in C++ by using Microsoft Visual Studio 2010 linked with CPLEX version

12.6.0. All runs are performed on a personal computer with CORE CPU 2.5 GHz

and 8 GB RAM.

5.4.1 Case study

A case is derived from a real-life fresh-meat product logistics network. A food com-

pany produces and distributes a single type of fresh-meat product to its 40 owned

retail stores with 3 homogeneous vehicles. Detailed data of all parameters can be

found in Tables 5.1 and 5.2. Decision makers have to make an integrated plan for the

next week (7 days) indicating how much to produce on each day, how much to deliver

to each retailer on each day, how to arrange proper routes for the planned deliveries,

and at the same time, guide the retailers to sell meat products with different quality

to their final customers.
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Table 5.1: Data for the case study

ID I0 D1 D2 D3 D4 D5 D6 D7 ID I0 D1 D2 D3 D4 D5 D6 D7

1 177 80 72 64 79 74 79 69 21 171 73 86 79 75 74 80 81
2 188 61 67 73 84 74 80 82 22 144 82 61 79 82 84 82 66
3 163 80 70 72 81 79 65 67 23 174 86 81 86 77 77 78 73
4 151 67 62 80 62 80 70 73 24 169 76 66 90 74 79 78 81
5 174 76 64 78 71 84 80 82 25 154 89 72 72 69 81 74 85
6 185 64 67 64 74 70 67 71 26 161 85 85 90 72 73 76 72
7 154 77 79 73 71 71 77 67 27 173 69 87 65 82 86 67 86
8 183 87 82 70 81 73 72 80 28 158 67 85 77 76 75 77 77
9 187 88 78 75 71 76 64 89 29 168 78 69 74 71 83 65 65
10 170 60 88 68 70 82 63 62 30 157 76 70 76 75 89 70 80
11 154 85 73 76 77 71 63 82 31 148 73 70 73 80 73 75 71
12 178 81 81 77 77 74 76 78 32 178 65 65 77 68 81 64 83
13 184 77 82 76 84 70 71 87 33 181 88 67 82 70 78 73 62
14 147 62 70 73 81 75 78 71 34 168 68 83 78 77 72 75 73
15 146 84 83 90 87 78 80 74 35 185 69 77 82 71 72 70 65
16 147 79 79 77 68 74 75 90 36 180 71 67 73 77 81 64 71
17 177 78 84 75 76 83 87 61 37 176 63 73 77 72 80 78 81
18 155 71 79 63 83 76 64 73 38 177 83 71 62 67 82 66 66
19 143 65 64 75 77 88 74 66 39 167 64 87 76 66 77 70 76
20 178 82 76 74 81 71 74 68 40 188 67 80 64 83 76 66 75

Table 5.2: Data for the case study

Production Capacity: 60000 Kg;
Inventory capacity at Production site: 40000 Kg;
Initial inventory at production site: 500 Kg;
Vehicle capacity: 6000 Kg;
Fixed production setup cost: 2000 RMB;
Variable production cost: 20 RMB/Kg;
Unit inventory cost at production site: 0.08 RMB/Kg/day;
Unit inventory cost at all retailers: 0.12 RMB/Kg/day;
Unit transportation cost: 30 RMB/Km;
Quality level range: [0, 3].

Currently, the company applies a three-phase heuristic to generate the production

and distribution plan for the following week. The daily production quantity is first

determined based on the demand from each retailer to minimize the production cost

by assuming products are stored only at the production site. The distribution plan is

then calculated to minimize the total inventory cost. Vehicle routes are generated last

based on the planned deliveries. The three-phase heuristic generates a plan with a

total cost of 309,260 RMB and an average quality level of 2.00. Note that the quality

level is an average value of all product quality sold to final customers. In the case

study, the quality level can be interpreted as the average number of days a product

has been stored before it is sold.
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Fig. 5.1: Approximate Preto front for the case

5.4.1.1 Model solution

CPLEX is unable to solve the studied case with guaranteed optimality due to its large

size. Therefore, we use the proposed model and approach to obtain a set of Pareto

solutions for decision makers. The obtained Pareto solutions (dominated solutions

have been removed) are shown in Fig. 5.1, where the horizontal and vertical axes

denote the cost and quality, respectively. Having a set of Pareto solutions at hand,

we can directly provide all these solutions to decision makers. Besides, we can also

help them select a best-compromised solution. As can be seen from Fig. 5.1 that we

can obtain 29 Pareto solutions for the studied case. The computation time is 1741.7s.

The obtained Pareto front shows a clear conflict between these two objectives. The

two points formed by the approximate lower and upper bounds of the two objectives

are shown in solid squares. The solution generated by the currently-used three-phase

heuristic is shown as a solid triangle. It is obvious that the solution provided by

the currently used three-phase heuristic is dominated by some solutions obtained by

our heuristic. The solution (fAI1 , fAN2 ) obtained by our ε-CTIH, as compared to the

solution obtained by the three-phase heuristic, can reduce the total cost by 10.77%.

5.4.1.2 Results and discussion

To help decision makers select their preferred solutions, we assume the decision makers

have 3 different preferences based on different situations. In the first situation, they

focus more on cost and the weight of the first objective is set to w1 = 0.8. In the second

situation, they treat two objectives equally, i.e., w1 = 0.5. While in the last situation,

they focus more on quality, i.e., w1 = 0.2. The three selected solutions are shown in

Fig. 5.1, from which we can see that different weights may lead to different Pareto
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solutions. Detailed results of the selected solutions are shown in Table 5.3, where the

first four columns are self-explained. Column ∆f1 gives the cost increase compared

with fAI1 ; i.e., ∆f1 = (F1 − fAI1 )/fAI1 and ∆f2 denotes the quality improvement

compared with fAN2 , i.e., ∆f2 = (fAN2 −F2)/fAN2 . The next three columns correspond

to the production, inventory and transportation costs, respectively. The last column

indicates the number of production setups.

Table 5.3: Detailed information for the selected solutions

w1 ηmax F1 F2 ∆f1(%) ∆f2(%) Pcost Icost Tcost S

0.8 0.87 304050 0.88 3.14 56.21 281942 2162 19946 3

0.5 0.79 318404 0.58 8.01 71.21 289511 1516 27377 5

0.2 0.82 395631 0.18 34.21 91.19 363580 2614 29437 6

From Table 5.3, we can see that the membership values range from 0.79 to 0.87,

which are relatively high. If decision makers focus more on cost, the selected solu-

tion shows 3.14% cost increase and 56.21% quality improvement. If they focus more

on quality, the selected solution shows 34.21% cost increase and 91.19% quality im-

provement. We can observe from the last four columns that as they focus more on

quality, the production cost increases because the production should be set up more

frequently; the transportation cost increases since the products should be delivered

to retailers more frequently to ensure quality; the inventory cost decreases since less

inventory can be held because of the high quality requirement. Note that the inven-

tory cost increases from 1516 RMB to 2614 RMB when the quality improves from

0.58 to 0.18. This is because the initial inventory can no longer be all used to fulfill

the demand when the quality requirement is high, and some of the initial inventory

is held till the end of its shelf life. It is also shown in the last column that when the

quality level improves from 0.88 to 0.18, the production setup number doubles.

5.4.2 Randomly generated instances

To thoroughly evaluate the proposed model and solution method, we randomly gen-

erate 37 sets of instances with 5 for each, totaling 185 instances. These instances

are divided into two groups characterized by the number of retailers, vehicles and

periods. The first group of instances, small-sized instances, are generated as follows:

the number of retailers n is 10, 15, or 20; the length of the planning horizon |T | is

3, 4, or 5 for n= 10, 15, or 20 with 1 vehicle; and it is 3, 6, 9, or 12 for n= 20 with

2 vehicles. |Q| is set to All parameters concerning inventory routing are generated

according to the rules of [39]. The initial inventory I0q
i for all i ∈ N and q ∈ Q is

set to 0. Remaining parameters concerning production are generated based on [24],
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as stated below: the production capacity C is set to be
∑

i∈R
∑

t∈T D
t
i

|T | β, where β is

randomly generated from interval [2, 4]; the inventory capacity of the plant U0 is set

to be γC, where γ is randomly generated from interval [1.5, 2]; the unit production

cost at is randomly generated from interval [4, 7]; the fixed setup cost bt is set to be

µC, where µ is randomly generated from interval [0.3, 0.5].

In TIH, FPDP(εm, δ
m,λm) is solved by CPLEX with default settings and a time

limit of 10 seconds. VRP(t, εm) is solved by VRPH package [53], [54]. Parameters NT

and ND are set to 20 and 5, respectively. The value of θ is randomly generated from

[0.5, 1.5] for each i ∈ R, t ∈ T . The aggregate vehicle capacity parameters λmt and τ

are set to 1 and 0.05, respectively. According to our preliminary test, the step size

parameter ∆ is set to 0.05.

To evaluate the performance of ε-CTIH, we compare the approximate Pareto front

AF obtained by ε-CTIH with a reference set RF obtained by another ε-constraint

method (ε-CC) that solves the BFPRP by applying the ε-constraint method frame-

work and adopts CPLEX to solve each of the mono-objective problem FPRP(εm)

instead of TIH. The general framework of ε-CC is similar to that in Algorithm 2.

However, CPLEX is called to solve FPRP(εm) with a time limit of 14400s, i.e., 4

hours and only ε is used to link FPRP(εm) and FPRP(εm+1). Since the number of

subtour elimination constraints (5.15) increases exponentially when the number of

nodes increases, they are treated as lazy constraints and are added only when they

are violated. In detail, we first solve the full model FPRP(εm) with (5.15) being re-

laxed. At the end of each iteration, if there exist one or more subtours in the solution,

then we add the subtour elimination constraints concerning these subtours. Then the

model is re-solved. This process is repeated until no subtour can be found. Then

we get the optimal solution. If the time limit is reached and there are still subtours

in the solution, then CPLEX fails to provide any feasible solution. To compare the

performance of ε-CTIH and ε-CC, we use the four widely used performance indicators

for bi-objective optimization methods [80], namely the cardinality |AF | and |RF |, hy-

pervolume ratio H, average e-dominance D, and computation time T . Note that AF
and RF give the Pareto solution sets obtained by the evaluated method (i.e., ε-CTIH)

and the reference method (i.e., ε-CC), respectively.

5.4.2.1 Results for small-sized instances

Firstly, we present the computational results on 65 (13 sets) small-sized instances in

Table 5.4, where the first four columns denote the numbers of instance sets, retailers,

vehicles and periods, respectively. Cardinality |RF | and |AF | are shown in columns 5

and 6. Indicators H and D are represented in columns 7 and 8, respectively. Columns
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TR and TA correspond to the average computation times (seconds) of ε-CC and ε-

CTIH, respectively. Each value in column 5 to 10 is an average value over 5 instances

with the same size. Finally, the last two columns show the longest computation time

for each group of 5 instances by ε-CC and ε-CTIH, respectively. The results are

further shown in Fig. 5.2 that gives the comparisons of the four indicators, i.e., the

Cardinality, Hypervolume ration, e-dominance and computation time.

Table 5.4: Comparison Results for small-sized Instances

NO. n |K| |T | |RF | |AF | H D TR(s) TA(s) #TR(s) #TA(s)
1 10 1 3 10.8 10.2 0.986 1.004 260 25 667 28
2 4 12.4 12.2 0.993 1.002 880 38 2899 57
3 5 17.4 16.8 0.995 1.001 2325 72 7265 103
4 15 1 3 10.6 10.6 0.984 1.002 1954 31 4958 39
5 4 7.8 12.8 3.532 1.008 10081 48 14400 54
6 5 11 12.4 0.990 1.003 6179 65 14400 101
7 20 1 3 7 10.6 2.197 1.007 2963 31 14400 37
8 4 9.6 9.8 1.154 1.003 5779 48 14400 50
9 5 6.2 13.8 1.024 1.011 9647 65 14400 95
10 20 2 3 0 10.4 - - 14400 36 14400 60
11 6 0 13.8 - - 14400 164 14400 309
12 9 0 18 - - 14400 553 14400 809
13 12 0 16.4 - - 14400 780 14400 918
Average 7.1 12.9 1.428 1.005 4452 150 9754 204

We can observe from cardinality columns (columns 4 and 5) of Table 5.4 and Fig.

5.2(a) that ε-CTIH can generate almost as many Pareto solutions as ε-CC does for

instances with 10 retailers and 1 vehicle, which indicates the performances of ε-CTIH

are comparable with ε-CC. Algorithm ε-CTIH performs better than ε-CC by providing

more Pareto solutions for other instances (instances with 15 retailers or more). It is

worth noting that ε-CC cannot even obtain a Pareto feasible solution within 14400s for

instances with 20 retailers and 2 vehicles. In terms of hypervolume ratio, Fig. 5.2(b)

indicates that all values are either close to or greater than 1, which means that ε-

CTIH performs equally or better than ε-CC. Moving to the e-dominance indicator, all

values of the e-dominance are very close to 1, which implies that the obtained Pareto

solutions by the two methods are quite close to each other. As for the computation

time, Table 5.4 shows that the average computation times for ε-CTIH and ε-CC are

150s and 7513 s, respectively. The former needs only 2% computation time of the

latter. The same trend can also be observed from the last two columns which show the

longest computation time of the two methods. The last results indicate that ε-CTIH

is relatively stable since the average of the longest computation time over all instances

is only 54s longer than that of the average computation time. It shows, however, a

great difference between the average computation time and the longest computation
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time of ε-CC. In addition, the computation time of ε-CC increases exponentially while

that of ε-CTIH increases relatively slowly, as shown in Fig. 5.2(c).

0 2 4 6 8 10 12 14
0

4

8

12

16

20

Instance number

ε-CTIH

ε-CC

(a) comparison results of cardinality

0 2 4 6 8 10 12 14
0

1

2

3

4

Instance number

Hypervolume ratio

e-dominance

(b) Hypervolume ration and e-dominance

0 2 4 6 8 10 12 14
0

0.4

0.8

1.2

1.6
·104

Instance number

T
im

e
(s

ec
on

d
s)

ε-CC avr

ε-CC max

ε-CTIH avr

ε-CTIH max

(c) comparison results of computation times

Fig. 5.2: Comparison results between ε-CTIH and ε-CC

5.4.2.2 Results for medium- and large-sized instances

To further evaluate the performance of ε-CTIH, we next conduct experiments on 120

instances that are considered as medium- and large-sized instances of the considered

problem. For these instances, ε-CC cannot provide a feasible solution within 14400s.

Therefore, we only report computational results obtained by ε-CTIH and evaluate its

performance in terms of cardinality and computation time. Detailed results are given

in Table 5.5.

As can be seen from Table 5.5, ε-CTIH is able to solve all instances and obtain

a reasonable number of approximate Pareto solutions within acceptable computation

time. The average number of Pareto solutions obtained is 13.8 and the average

and longest computation times are 1119s and 1660s, respectively. It is shown that

the computation time of ε-CTIH increases quickly with the number of periods |T |,
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Table 5.5: Computational Results for large-sized Instances

n |K| |T | |AF | TA(s) #TA(s) n |K| |T | |AF | TA(s) #TA(s)
30 3 3 8.8 33 45 60 6 3 10.8 70 132

6 14.4 247 421 6 11.6 446 552
9 16.4 741 1274 9 13.4 1353 2215
12 16.2 1203 1442 12 21.2 3441 5060

40 4 3 11.6 50 94 80 8 3 9.6 81 160
6 15.8 356 624 6 10.8 558 659
9 17.4 1230 1519 9 19.8 2228 3890
12 16 1424 2038 12 16.4 3125 4078

50 5 3 7.2 42 62 100 10 3 7.8 82 206
6 12.8 384 419 6 11 626 933
9 14.8 1238 1508 9 13.8 2288 4050
12 15.8 1896 2590 12 18.6 3726 5881

Average 13.8 1119 1660

and it increases slightly with the number of retailers n. Take instances with 100

retailers as an example. As the number of periods increases from 3 to 12, the average

computation time increases from 82s to 3726s. If we fix the number of periods as 3,

the average computation time increases from 33s to 82s as the number of retailers

increases from 30 to 100. In terms of the longest computation time, some of the

instances show a relatively large difference from the average, but the computation

time is still acceptable. The longest computation time is 1660s on average over the

12 sets of instances. The computation time varies even for instances with the same

size because the number of Pareto solutions obtained is different, which may result

in solving different number of mono-objective problems.

5.5 Conclusion

This chapter investigates a new bi-objective food production routing problem in which

two objectives are simultaneously optimized, i.e., to minimize the total production,

inventory and routing cost, and to maximize the average quality of food products

received by final customers. Firstly, a novel bi-objective MILP model is proposed for

the problem. Then a heuristic that combines an ε-constraint framework and a two-

phase iterative heuristic is developed to generate near-optimal Pareto solution set.

And a fuzzy logic decision method is applied to help decision makers select a preferred

solution. Computational results on a case study indicate that the proposed model

and solution method are able to solve a real world case. In particular, the proposed

approach can reduce 10.77% total cost compared with an three-phase constructive

heuristic. The developed approach also shows that a decision maker can improve the

average quality provided to final customers with a slight cost increase. Computational
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results on randomly generated instances show that the proposed approach can provide

better Pareto solution set with shorter computation time compared with CPLEX.

The corresponding work has been published in the following paper.

Y. Li, F. Chu, C. Feng, C. Chu, and M. Zhou. Integrated Production Inventory

Routing Planning for Intelligent Food Logistics Systems. IEEE Transactions on Intel-

ligent Transportation Systems, pages 1-12, (99)2018. DOI:10.1109/TITS.2018.2835145.
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Chapter 6

Food Production Routing Problem
with Time Windows

6.1 Introduction

In supply chains, a good delivery plan should often respect a time interval (time

window) imposed by retailers. Time windows are one of the most common realistic

constraints in a distribution network [6]. In food supply chains, delivery time win-

dows are more relevant to perishable food products distribution since their quality

deteriorates quickly.

In this chapter, we study a food production routing problem with time windows

(FPRPTW) that extends the classic PRP by considering food perishability and ser-

vice time windows. Firstly, a MILP is formulated for the considered problem. Then

several valid inequalities are proposed to strengthen the formulation. Finally, ran-

domly generated instances are used to validate the proposed model with a MILP

solver.

The remainder of this chapter is organized as follows. Section 6.2 presents the

description and formulation of the considered problem. In Section 6.3, a series of

valid inequalities are proposed to strengthen the model. Computational experiments

on randomly generated instances are conducted in Section 6.4. Finally, Section 6.5

summarizes this chapter.

6.2 Problem description and formulation

The studied FPRPTW can be stated as follows.

Consider a complete digraph G={N ,A} with a set of nodes N={0, 1, . . . , n}
and a set of arcs A={(i, j) : i, j ∈ N, i 6= j}. A plant with limited production and

storage capacities is located at vertex 0. It has a fleet of homogeneous vehicles

K={1, , 2, . . . , |K|}, each having capacity V . A set of n retailers R={1, 2, . . . , n} with
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a limited storage capacity are geographically located at nodes {1, . . . , n}. Consider

a time horizon T={1, 2, . . . , |T |}, the customer demand at each retailer is assumed

to be deterministic and time varying. We assume that the newly produced food can

be immediately used to replenish the retailer, and the delivered food can be directly

used by the retailer to fulfill the demand of its customers. Moreover, in each time

period, each retailer has a specified visit time window, which remains the same for all

time periods. Note that food quality can be distinguished by a set of quality levels

Q={0, 1, . . . , |Q|}, where 0 represents the freshest food. The objective is to maximize

the total profit that is equal to the total selling revenue minus the production, inven-

tory and routing costs. The decisions to be made for each period are: 1) how much to

produce at the plant; 2) how much to replenish each retailer; 3) how to arrange the

transportation routes for the planned deliveries so that the time window constraints

are respected; and 4) how to fulfill customer demand at each retailer.

The study is conducted under the following assumptions: 1) each vehicle’s route

starts and ends at the plant, and each vehicle can perform at most one trip within

each period; 2) each retailer can be visited at most once within each period; i.e.,

split delivery is not allowed; 3) food quality degrades by one quality unit per period;

and 4) once the quality goes beyond |Q|, food products can no longer be used to

meet customer demand and should be directly turned into waste. To formulate the

problem, the following parameters and variables are defined:

Parameters

cij: travel cost on arc (i, j) ∈ A;

τij: travel time on arc (i, j) ∈ A;

at: unit production cost in period t ∈ T ;

bt: production setup cost in period t ∈ T ;

C: production capacity;

Iq0i : initial inventory at i ∈ N with q ∈ Q;

Dt
i : customer demand at retailer i ∈ R in period t ∈ T ;

Ui: inventory capacity of i ∈ N ;

hqi : unit inventory holding cost per period at i ∈ N with q ∈ Q;

gqi : selling price for a unit of a product with quality q ∈ Q at retailer i ∈ R;

ei: starting time of time window of retailer i ∈ R;

e0: earliest departure time from the plant;

li: finishing time of time window of retailer i ∈ R;

l0: latest arrival time at the plant;

si: service time at retailer i ∈ R;

V : vehicle capacity;

Mij: a big number equal to li + si + τij;
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Yt: a big number equal to Yt = min(C,
∑

i∈R
∑|T |

t′=tDit′);

Wit: a big number equal to Wit = min(Ui +Dit,
∑|T |

t′=tDit).

Variables

ξt: production quantity in period t;

wt: binary variable equal to 1 if ξt > 0; otherwise 0;

Iqti : inventory level with quality q of retailer i at the end of period t;

yqkti : delivery quantity with quality q to retailer i by vehicle k in period t;

ϑqti : quantity of food used to fulfill customer demand with quality q at retailer i in

period t;

zkti : time to serve retailer i by vehicle k in period t;

vkti : binary variable equal to 1 if retailer i is visited by vehicle k in period t; otherwise

0;

εkt: departure time of vehicle k in period t at the plant;

λkt: arrival time of vehicle k in period t at the plant;

xktij : binary variable equal to 1 if arc (i, j) is traversed by vehicle k in period t;

otherwise 0.

With the above description and notation, BFPRP can be formulated as follows:

max
∑
i∈R

∑
q∈Q

∑
t∈T

gqi ϑ
qt
i −

∑
t∈T

(atξt + btwt)−
∑
i∈N

∑
q∈Q

∑
t∈T

hqi I
qt
i

−
∑

(i,j)∈A

∑
k∈K

∑
t∈T

cijx
kt
ij (6.1)

s.t.

Iqt0 = Iq−1,t−1
0 −

∑
i∈R

∑
k∈K

yqkti ,∀q ∈ Q \ {0}, t ∈ T (6.2)

I0t
0 = ξt −

∑
i∈R

∑
k∈K

y0kt
i ,∀t ∈ T (6.3)

Iqti = Iq−1,t−1
i +

∑
k∈K

yqkti − ϑ
qt
i ,∀i ∈ R, q ∈ Q \ {0}, t ∈ T (6.4)

I0t
i =

∑
k∈K

y0kt
i − ϑ0t

i ,∀i ∈ R, t ∈ T (6.5)

ξt ≤ Ytwt,∀t ∈ T (6.6)∑
q∈Q

Iqti ≤ Ui,∀i ∈ N, t ∈ T (6.7)∑
q∈Q

ϑqti = Dt
i ,∀i ∈ R, t ∈ T (6.8)∑

i∈R

∑
q∈Q

yqkti ≤ V, ∀k ∈ K, t ∈ T (6.9)∑
q∈Q

yqkti ≤ Witv
kt
i ,∀i ∈ R, k ∈ K, t ∈ T (6.10)

99



∑
k∈K

vkti ≤ 1,∀i ∈ R, t ∈ T (6.11)∑
j∈N\{i}

xktij =
∑

j∈N\{i}

xktji = vkti ,∀i ∈ R, k ∈ K, t ∈ T (6.12)

∑
i∈R

xkt0i ≤ 1, ∀k ∈ K, t ∈ T (6.13)

zkti + si + τij −Mij(1− xktij ) ≤ zktj , ∀i ∈ R, j ∈ R \ {j}, k ∈ K, t ∈ T (6.14)

εkt + τ0i −M0i(1− xkt0i) ≤ zkti , ∀i ∈ R, k ∈ K, t ∈ T (6.15)

zkti + τi0 −Mi0(1− xkti0) ≤ λkt, ∀i ∈ R, k ∈ K, t ∈ T (6.16)

ei ≤ zkti ≤ li,∀i ∈ R, k ∈ K, t ∈ T (6.17)

e0 ≤ εkt,∀k ∈ K, t ∈ T (6.18)

λkt ≤ l0,∀k ∈ K, t ∈ T (6.19)

ξt ≥ 0, ∀t ∈ T (6.20)

wt ∈ {0, 1}, ∀t ∈ T (6.21)

Iqti ≥ 0,∀i ∈ N, q ∈ Q, t ∈ T (6.22)

ϑqti ≥ 0, ∀i ∈ R, q ∈ Q, t ∈ T (6.23)

yqkti ≥ 0,∀i ∈ R, q ∈ Q, k ∈ K, t ∈ T (6.24)

vkti ∈ {0, 1},∀i ∈ R, k ∈ K, t ∈ T (6.25)

xktij ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K, t ∈ T (6.26)

zkti ≥ 0,∀i ∈ R, k ∈ K, t ∈ T (6.27)

εkt ≥ 0, ∀k ∈ K, t ∈ T (6.28)

λkt ≥ 0,∀k ∈ K, t ∈ T (6.29)

Objective function (6.1) maximizes the total profit, which is equal to the to-

tal selling revenue minus the production, inventory, and routing costs. Constraints

(6.2)-(6.5) indicate the food flow balance at the plant and retailers. Constraints (6.6)

restrict the production quantity with the production capacity and the total remaining

demand. In particular, the production quantity should be 0 if the plant is not set up

for production. Constraints (6.7) are the inventory capacity constraints. Constraints

(6.8) indicate that customer demand at each retailer must be satisfied. The vehicle

capacity is imposed by constraints (6.9). Constraints (6.10) mean that if a retailer is

visited, the delivery quantity must not exceed its remaining demand; otherwise, the

delivery quantity should be 0. Constraints (6.11) forbid split delivery. Constraints

(6.12) correspond to the vehicle flow conservation. Constraints (6.13) denote that a

vehicle can perform at most one route in each period. Constraints (6.14)-(6.19) guar-

antee the schedule feasibility of time windows. Precisely, constraints (6.14) indicate
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the time consistency among retailers. Constraints (6.15) and (6.16) correspond to the

time consistency of a vehicle departure from and arrival to the plant, respectively.

Constraints (6.17)-(6.19) ensure the time window constraints of each retailer to be

respected, and limit the departure and arrival times at the plant. Constraints (6.20)-

(6.29) are nonnegative and integer conditions on decision variables. We denote the

objective (6.1) and constraints (6.2)-(6.29) as the original model, namely model P1.

This FPRPTW is NP-hard, since it contains a classical vehicle routing problem with

time windows (VRPTW) which has been well known as a NP-hard problem [91].

6.3 Valid inequalities

In this section, we present valid inequalities that strengthen the model P1. The

following valid inequalities are developed based on that introduced by [14] and [38].∑
j∈R

xkt0j ≥
∑
j∈R

xk+1,t
0j , ∀k ∈ K \ {|K|}, t ∈ T (6.30)

vkti ≤
i∑

j=1

vk−1,t
j , ∀i ∈ R, k ∈ K \ {1}, t ∈ T (6.31)

∑
q∈Q

Iqti ≥ (1−
∑
k∈K

τ=t′∑
τ=t+1

vkτi )
τ=t′∑
τ=t+1

Diτ , ∀ i ∈ R, t ∈ T, t < t′ ≤ |T | (6.32)

Constraints (6.30) and (6.31) break the symmetry in selecting the identical vehicles

and assign these vehicles to routes. Particularly, constraints (6.30) make sure that

the vehicles with smaller number are always used first. Constraints (6.31) mean that

if the kth vehicle is used to serve retailer i, then (k − 1)th vehicle must have been

used to serve retailers with smaller sequence number. Constraints (6.32) are used to

strengthen the inventory routing part. These constraints refer that if a retailer is not

visited during the time interval [t+ 1, τ ], then the inventory held in period t must be

sufficient to meet the summation of the total demand in this interval.

Similarly, we derive the following constraints to strengthen the formulation by

considering the food perishability. These constraints denote that there must be at

least one visit to each retailer within the |Q| + 1 time periods. This must happen

since the food can not be stored longer than |Q| + 1 periods, e.g. if one retailer is

visited in time period t, then the next visit is no later than time period t + |Q| + 1.

Constraints (6.33) can be very strong when the food has a very short shelf-life.

∑
k∈K

t+|Q|∑
τ=t

vkti ≥ 1, ∀i ∈ R, 1 ≤ t ≤ |T | − |Q| (6.33)
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The objective function (6.1) and the constraints (6.2)-(6.33) form the strengthened

model, namely model P2.

6.4 Computational experiments

In this section, in order to verify the effectiveness of the proposed models, computa-

tional experiments on 45 randomly generated instances are carried out. The instances

are solved by CPLEX version 12.6.0. All runs are performed on a personal computer

with CORE CPU 2.5 GHz and 8 GB RAM.

Table 6.1: Parameters for FPRPTW model

Parameters Generation description

cij =
√

(Xi −Xj)2 + (Yi − Yj)2

τij cij/10

Dit randomly generated from U[30, 210]

C = β(
∑
i∈R

∑
t∈T Dit)/|T |, where β is randomly generated from U[2, 4]

U0 = βC,where β is randomly generated from U[1.5, 2]

Ui = βi maxt∈T {Dit}, where βi is randomly generated from U[2, 3], i ∈ R

hqi = (β1 + qβ2)/(1 + q)/100, where β1 and β2 are randomly generated from U[0,
100] and [0, 70], respectively

at randomly generated from U[4, 7]

bt = βC, and β is randomly generated from U[0.3, 0.5]

gqi = β1 − (β1 − β2)q/|Q|, where β1 and β2 are randomly generated from U[10, 20]
and [4, 7], respectively

V = 1.25(
∑
i∈R

∑
t∈T Dit)/|K|/|T |

si U[60, 120]

ei max(β1−β2/2, e0 + τ0i), where β1 is generated from U[e0 + τ0i, l0− τi0− si], and
β2 is set to β3(l0 − e0), in which β3 is randomly generated from U[0.125, 0.25]

li min(β1 + β2/2, l0 − τi0 − si), where β1 is generated from U[e0 + τ0i, l0 − τi0 − si],
and β2 is set to β3(l0 − e0), in which β3 is randomly generated from U[0.125,
0.25]

6.4.1 Instance generation

To validate the proposed models, we randomly generate 9 sets of instances with 5 for

each, totaling 45 instances. These instances are generated as follows: the number of

retailers n is set to {10, 20, 30, 40}; the length of the planning horizon |T | is {3, 6, 10},
{3, 6}, and {3} for instances with up to 20, 30, and 40 retailers, respectively. The

number of vehicles |K| is set to 1 for instances with 10 retailers, and 2 for instances

with 20, 30, and 40 retailers. The number of quality levels |Q| is set as: 2 for |T |= 3; 3
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for |T |= 6; and 5 for |T |= 10. The coordinate of a node i in graph G that corresponds

to a plant or a retailer location (Xi, Yi) is randomly generated from U[0,1000]. At the

beginning of the planning horizon, the initial inventory I0q
i for all i ∈ N and q ∈ Q

is set to 0. Concerning the parameters for the time windows, we use the principle

proposed by [91]. The earliest departure time e0 from the depot and the latest arrival

time l0 to the depot are set to be 0 and 1200 respectively. The service time in retailer

is randomly generated from interval [60, 120]. The detailed generation of parameters

for MFPRP is given in Table 6.1.

6.4.2 Computational results

In this section, the computational results are reported in Table 6.2, in which the first

four columns denote the number of retailers, periods, vehicles, and quality levels, re-

spectively. Note that these results are average values of five instances with the same

size. The best solution value obtained is denoted by “LB”. The “UB1” and “UB2”

denote the best upper bound found with the original P1 and strengthened P2 respec-

tively within the time limit 7200 seconds. “Gap” denotes the average gap between the

obtained lower bound and the upper bound by P1, i.e. (UB1-LB)/LB×100%. The

second column indicates the CPU time. The last column “Opt” reports the number

of instances optimally solved by CPLEX. The results in Table 6.2 show that CPLEX

is capable to optimally solve small instances with 10 retailers up to 10 periods, and 20

retailers up to 3 time periods. The average computational time is less than 102.97s. In

addition, 2 out of 5 instances with 20 retailers and 6 periods are solved to optimality,

but with longer computational time. The computational time increases dramatically

with the number of retailers and the length of planning horizon. Looking at the in-

stance with 30 retailers and 3 periods, the average gap reaches 22.27%, which shows

the complexity of the proposed problem. Note that the average computational time

is less than the time limit, because most of the tests, if not solved optimally, run out

of memory before reaching the time limit. Concerning the computational results with

all valid inequalities, results in column UB2 obviously show that the all upper bounds

have decreased on average comparing with that in column UB1. This indicates that

the proposed valid inequalities can help CPLEX generate better upper bounds.

6.5 Conclusion

This chapter investigates a food production routing problem with time windows. The

problem is firstly formulated as a MILP. Then valid inequalities are introduced to

strengthen the formulation. Experimental results on 45 randomly generated instances
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Table 6.2: Comparison Results for Small-size Instances

n |T | |K| |Q| LB UB1 UB2 Gap(%) Tim(s) Opt
10 3 1 2 13449 13449 13449 0 0.28 5
20 3 2 2 33656 33656 33656 0 102.97 5
30 3 2 2 39606 48079 47793 22.27 1714.58 0
40 3 2 2 63964 73016 72927 14.87 4931.71 0
10 6 1 3 34279 34279 34279 0 3.44 5
20 6 2 3 76397 77770 77699 1.85 1642.84 2
30 6 2 3 111336 122412 122211 10.03 4667.89 0
10 10 1 5 71921 71921 71921 0 32.38 5
20 10 2 5 151998 154367 154040 1.6 4742.49 0

show that the proposed model is capable of providing integrated plans for the deci-

sion makers. As the problem is quite complex, only small instances can be solved

optimally by CPLEX. This is still an ongoing work, efficient algorithms should be

developed to solve large-sized instances for the problem.

The corresponding work has been published in the following paper.

Y. Li, F. Chu, C. Chu, W. Zhou, and Z. Zhu. Integrated production inventory

routing planning with time windows for perishable food. In 19th IEEE International

conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, November

1-4, 2016 , pages 2651-2656, 2016.
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Chapter 7

Conclusions and perspectives

This thesis investigates a class of integrated supply chain planning problems, i.e.,

the PRPs, which simultaneously optimize the production, inventory, and routing

decisions. Firstly, we study a multi-product PRP with outsourcing (MPRPOS), and

develop an efficient three-level heuristic that can solve both the MPRPOS and the

classic PRP. Considering the specific characteristics of food supply chain, we then

investigate a multi-plant FPRP integrating packaging decision (MFPRP), and develop

a hybrid matheuristic to solve it. Thirdly, to investigate the potential tradeoff between

cost and quality, a bi-objective FPRP with quality consideration (BFPRP) is studied

and an ε-constraint-based two-phase iterative heuristic and a fuzzy logic decision

method are developed. Finally, a FPRP with delivery time windows (FPRPTW) is

addressed.

In Chapter 2, we first present a systematic review of recent developments on the

PRP. Next we review the integrated planning problems considering food quality and

perishability. Then we report the existing solution algorithms for solving the PRP. We

find that although the PRP has been receiving increasing attention, the MPRP has

not been sufficiently studied yet. In addition, the FPRP has received little attention

despite its importance.

Chapter 3 investigates the MPRPOS that is a generalization of the classic PRP.

Firstly, a MILP is proposed for the problem. Then a three-level heuristic (TLH) is

developed to solve both MPRPOS and the classic PRP. In TLH, the original MPR-

POS is decomposed into two subproblems that are solved iteratively to generate an

initial solution (probably infeasible); then a restricted production direct-distribution

problem is solved to repair the infeasible solution and a route consolidation procedure

that solves many TSPs further improves the incumbent solution; finally, a fix-and-

optimize procedure is used to improve the incumbent solution iteratively. To evaluate

the performance of TLH, 225 newly generated MPRPOS instances with up to 200

customers, 20 vehicles, 6 periods, and 12 products are first tested, followed by the

tests on 1530 widely used PRP benchmark instances with up to 200 customers, 13

105



vehicles, and 20 periods. Computational results on MPRPOS instances show that

TLH can find feasible solutions with average gaps (times) of 1.99% (98.6s) and 9.90%

(106.8s) for instances with up to 14 customers and 200 customers, respectively. In

particular, TLH finds 283 new best solutions for the tested benchmark instances.

In Chapter 4, we address the MFPRP. Firstly, a MILP model and a hybrid

matheuristic (HM) are developed for it. The heuristic combines a two-phase iterative

method, a fix-and-optimize procedure, and a route-based optimization. In particular,

the route-based optimization exploits the useful route information provided by the

two-phase iterative and the fix-and-optimize components. The performance of HM

is evaluated on 320 randomly generated instances with up to 4 plants, 50 retailers,

6 periods and 3 packages. Numerical results for instances with up to 4 plants and

15 retailers show that HM can find solutions with an average gap of -1.26% and

5.09% compared to the lower and upper bounds provided by CPLEX and needs only

less than 5% of the computation time compared with CPLEX. Results for instances

with up to 4 plants and 50 retailers indicate that HM can still propose solution with

an average gap of 7.55% and average computation time of 460.7s. Analysis on dis-

count policies show that the total profit is significantly impacted by different discount

policies. As the discount becomes quicker, the total profit decreases. Performance

analysis of HM shows that its good performance is a result of the hybridization of the

three components.

Chapter 5 investigates the BFPRP in which two objectives are simultaneously

optimized, i.e., to minimize the total cost, and to maximize the average quality of

food products received by customers. Especially, the quality of food received by

customers, which significantly impacts the customer satisfaction, is for the first time

treated as an objective. Firstly, a novel bi-objective MILP model is proposed for

the problem. Then an ε-constraint two-phase iterative heuristic (ε-CTIH) and a

fuzzy logic decision method are developed to generate a near-optimal Pareto solution

set and to help decision makers select a preferred solution. ε-CTIH transforms the

original bi-objective problem into a series of single-objective problems that are solved

iteratively. Computational results on a case study indicate that the proposed model

and solution method are able to solve a real world case. The proposed fuzzy logic

decision method can help decision makers select a preferred solution based on their

preference. We observe from the results for the case study that a decision maker

can significantly improve the average quality provided to customers with a slight cost

increase. Computational results on 185 randomly generated instances indicate that

ε-CTIH is efficient in providing an approximate Pareto solution set.

In Chapter 6, we study the FPRPTW where the delivery time window is con-

sidered. As it is still an ongoing work, we present a MILP and some preliminary
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results. The proposed model is directly solved by CPLEX. Experimental results on

45 randomly generated instances show that the problem is quite complex, and only

small-sized instances can be solved optimally by CPLEX. The results motivate us to

develop new algorithms to solve this complex problem.

The PRP is an optimization problem integrating the production, inventory and

routing decisions. There are many future research directions to be investigated. They

are summarized as follows:

1) Developing efficient solution algorithms for the PRP. Combining matheuristics

with metaheuristics is promising. Matheuristics show some strengths in providing

good near optimal solution, and metaheuristics have the potential to further improve

the solution by exploiting part of the solution space. For the studied FPRPTW

in Chapter 6, our preliminary results show that only small-sized instances can be

solved by a commercial solver within the time limit, and the solution quality is far

from optimal. In future work, efficient algorithms that combine the strengths of

matheuristics and metaheuristics could be developed to solve it.

2) Integrating more realistic issues in the PRP. In the production planning aspect,

the production setup times and changeovers among several production lines can be

included. In terms of the routing aspect, rich routing problems, e.g., split delivery

that a customer can be visited several times in a period, open routes that a vehicle

does not have to return to the depot, and transshipments among customers can be

considered to model some real-world situations. In particular, the PRP with multiple

trips, which is common in modern e-commerce logistics and daily food distributions,

could be studied.

3) Considering environmental aspect. In order to cope with global climate change,

the amount of greenhouse gas emission is adopted as a key performance indicator by

many companies. The PRP involves the production, inventory and routing activities

during which green house gas is emitted. Therefore, emission can be considered in

a PRP in the lot-sizing aspect as [99] or in the vehicle routing aspect as [43]. In

addition, as the amount of daily food produced and distributed is huge, the recycle

packages and the re-distribution of food are also worth studying. These activities will

help reduce green house gas emission and food waste.

4) Dealing with demand uncertainty. In reality, customer demand is frequently

uncertain and only part of the demand information is known at the beginning of

the planning horizon. In this case, a deterministic model is no longer suitable and

the demand uncertainty should be explicitly considered. Correspondingly, efficient

algorithms should also be developed to propose robust solutions.

5) Quality dependent demand. In reality, the quality of a perishable food product

affects the customer demand. Customers may always prefer the freshest product, and
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any product whose quality does not meet their expectations will turn into lost sales.

Thus explicitly modeling the relationship between the food quality and demand is

promising in a FPRP. Accordingly, efficient solution methods for these complex prob-

lems should be developed to provide good-quality solutions to the decision makers.

6) Temperature control throughout the integrated planning. The production,

storage and transportation of food products should respect certain conditions and

regulations. In particular, food products are often stored and transported with a

recommended range of temperature. Thus in a long food supply chain, it is meaningful

to adopt different transportation modes with different capacity, temperature, and

speed. A proper planning of such multi-modal distribution will reduce food waste

and improve food quality and safety.
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Titre : Modèles et algorithmes pour une classe de problèmes combinés de production et de tournées de
véhicules
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Matheuristique ; Multi-critère.

Résumé : Le problème combiné de production et de
tournées de véhicules (PRP) consiste à proposer une
planification intégrée de la production et de la distri-
bution. Il vise à optimiser le coût global de la chaı̂ne
logistique et à améliorer le niveau de service aux
clients. Bien que le PRP et son application en agroa-
limentaire (FPRP) présentent des enjeux importants
à la fois scientifiques et industriels, ils n’ont pas été
suffisamment étudiés dans la littérature. L’objectif de
cette thèse est de développer de nouveaux modèles
et algorithmes pour le PRP et le FPRP.
Dans cette thèse, nous avons d’abord étudié un
PRP multi-produit avec sous-traitance (MPRPOS)
qui est une extension naturelle du PRP classique.
Pour ce problème, un nouveau programme linéaire
en nombres mixte (MILP) a été proposé et une
heuristique à trois niveaux a été développée. Les
expériences numériques sur 225 instances générées
aléatoirement pour le MPRPOS et 1530 instances de
benchmark du PRP montrent de très bonnes per-
formances de l’heuristique proposée. En particulier,
nous avons obtenu de nouvelles meilleures solutions
pour 283 instances de benchmark.

A partir de l’étude du MPRPOS et en prenant en
compte les spécificités des produits agroalimentaires
(périssabilité et qualité), trois nouveaux FPRPs ont
été ensuite étudié : 1) un FPRP multi-site avec condi-
tionnement (MFPRP) ; 2) un FPRP multi-critère (BF-
PRP) : minimisation du coût total de la chaı̂ne logis-
tique et maximisation de la qualité ; et 3) un FPRP
avec des contraintes de fenêtres horaires (FPRPTW).
Pour chacun des problèmes, un modèle MILP a été
établi. En outre, une Matheuristique hybride combi-
nant une méthode itérative, une procédure de fixe-et-
optimisation et un processus d’optimisation basé sur
les routes déterminées pendant les deux premières
étapes a été développée pour le MFPRP. Pour
le BFPRP, une heuristique du type ε-contrainte et
une méthode par logique floue sont proposées. Et
le FPRPTW est directement résolu par le solveur
CPLEX. Une étude des cas montre que le modèle
et l’algorithme proposés pour le BFPRP peuvent si-
gnificativement améliorer la performance de l’entre-
prise. Les résultats numériques sur des instances
générées aléatoirement montrent que les méthodes
développées sont plus performantes que le CPLEX.

Title : Models and Algorithms for a Class of Production Routing Problems

Keywords : Production routing problem; Food ; Packaging ; Linear programming ; Matheuristics ; multi-
objective.

Abstract : The production routing problem (PRP)
consists of determining an integrated production and
distribution planning that aims to optimize overall cost
and improve service level. Although the PRP has
been attracting academic and practical interests, it
has not been well studied in the literature. Food pro-
duction routing problem (FPRP) that is more complex
than the classic PRP due to food perishability, has ra-
rely been studied. This thesis focuses on developing
new models and algorithms for the PRP and FPRP.
Firstly, a multi-product PRP with outsourcing (MPR-
POS) that is a generalization of the classic PRP is ad-
dressed. For the problem, a mixed integer linear pro-
gramming (MILP) model is proposed and a three-level
heuristic is designed. Computational experiments on
225 newly generated MPRPOS instances and 1530
PRP benchmark instances demonstrate the effective-
ness and efficiency of the proposed heuristic. Espe-
cially, 283 new best solutions for PRP benchmark ins-
tances are found by the heuristic.
Considering food quality and perishability, and ba-

sed on the study for the PRP, three new FPRPs are
then investigated, i.e., 1) a multi-plant FPRP with
packaging consideration (MFPRP) ; 2) a bi-objective
FPRP (BFPRP) that minimizes the total supply chain
cost and maximizes food quality simultaneously ; and
3) a FPRP with delivery time window constraints
(FPRPTW). For each of the studied problems, a MILP
model is proposed. Moreover, a hybrid matheuristic
that combines a two-phase iterative method, a fix-
and-optimize procedure, and a route-based optimiza-
tion is developed for the MFPRP. For the BFPRP, an
ε-constraint-based heuristic and a fuzzy logic decision
method are proposed to generate near-optimal Pareto
solutions and to help decision makers select a pre-
ferred solution. And the FPRPTW is directly solved
by the state-of-the-art solver CPLEX. A case study
shows the proposed model and algorithm for BFPRP
can improve food supply chain performance. Com-
putational results on randomly generated instances
demonstrate the proposed hybrid matheuristic and ε-
constraint-based heuristic outperform CPLEX.
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