Prévision à court terme des flux de voyageurs : une approche par les réseaux bayésiens

Abstract : In this thesis, we propose a Bayesian network model for short-term passenger flow forecasting. This model is intended to cater for various operational needs related to passenger information, passenger flow regulation or operation planning. As well as adapting to any spatial configuration, it is designed to combine heterogeneous data sources (ticket validation, on-board counts and transport service) and provides an intuitive representation of the causal spatio-temporal relationships between flows. Its ability to deal with missing data allows to make real-time predictions even in case of technical failures or absences of collection systems
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01943718
Contributor : Abes Star <>
Submitted on : Tuesday, December 4, 2018 - 10:19:13 AM
Last modification on : Wednesday, January 23, 2019 - 3:09:31 AM
Long-term archiving on : Tuesday, March 5, 2019 - 1:36:01 PM

File

TH2018ROOSJEREMY.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01943718, version 1

Citation

Jérémy Roos. Prévision à court terme des flux de voyageurs : une approche par les réseaux bayésiens. Algorithme et structure de données [cs.DS]. Université de Lyon, 2018. Français. ⟨NNT : 2018LYSE1170⟩. ⟨tel-01943718⟩

Share

Metrics

Record views

170

Files downloads

150