M. .. Materials,

. , 81 4.2.7 FE modeling of the suction test

. .. Discussion, , vol.86

. .. Conclusion,

, Constitutive relations are of fundamental importance for the numerical simulation of deformations inside the tissues. Most of the efforts for constitutive modeling of the soft tissues consisted in assuming a law from the collected experimental data, Continuum-based constitutive relations describe the general behavior of the internal constitution of biological soft tissues [Gasser, Ogden, and Holzapfel, 2005.

, The derived constitutive laws proposed in the literature try to approximate different mechanical behaviors such as: hyperelasticity, viscoelasticity, anisotropy, stress-softening Seyed Ali ELAHI 117

M. Abrahams, Mechanical Behaviour of Tendon, In: Med. & biol. Engng, vol.5, pp.433-443, 1964.

P. G. Agache, J. L. Monneur, and . Leveque, Mechanical properties and Young's modulus of human skin in vivo, In: Archives of dermatological research, vol.269, pp.221-253, 1980.

T. Aoki, . Ohashi, M. Matsumoto, and . Sato, The pipette aspiration applied to the local stiffness measurement of soft tissues, Annals of biomedical engineering, vol.25, pp.581-588, 1997.

E. M. Arruda and M. C. Boyce, A Three-dimensional Constitutive Model for the Large Stretch Behaviour of Rubber Elastic Materials, Journal of Mechanics and Physics of Solids, vol.41, pp.389-412, 1993.

P. Asbach, D. Klatt, U. Hamhaber, J. Braun, R. Somasundaram et al., Assessment of liver viscoelasticity using multifrequency MR elastography, Magnetic Resonance in Medicine 60, pp.373-379, 2008.

S. Badir, M. Bajka, and E. Mazza, A novel procedure for the mechanical characterization of the uterine cervix during pregnancy, Journal of the Mechanical Behavior of Biomedical Materials, vol.27, pp.143-153, 2013.

G. G. Barbarino, M. Jabareen, and E. Mazza, Experimental and numerical study on the mechanical behavior of the superficial layers of the face, Skin Research and Technology, vol.17, pp.434-444, 2011.

M. F. Beatty and S. Krishnaswamy, A theory of stress-softening in incompressible isotropic materials, Journal of the Mechanics and Physics of Solids, vol.48, pp.1931-1965, 2000.

I. Brouwer, J. Ustin, L. Bentley, A. Sherman, N. Dhruv et al., Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation, Medicine meets virtual reality, vol.81, pp.69-74, 2001.

J. D. Brown, J. Rosen, M. Moreyra, M. Sinanan, and B. Hannaford, Computercontrolled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics, Medicine Meets Virtual Reality 02/10: Digital Upgrades, pp.71-73, 2002.

J. D. Brown, J. Rosen, Y. S. Kim, L. Chang, M. N. Sinanan et al., In-vivo and in-situ compressive properties of porcine abdominal soft tissues, Studies in Health Technology and Informatics, vol.94, pp.26-32, 2003.

, Seyed Ali ELAHI 121

R. A. Bibliography-brown, R. Prajapati, D. A. Mcgrouther, I. V. Yannas, and M. Eastwood, Tensional homeostasis in dermal fibroblasts: Mechanical responses to mechanical loading in three-dimensional substrates, Journal of Cellular Physiology, vol.175, pp.323-332, 1998.

M. Bucki, M. A. Nazari, and Y. Payan, Finite element speaker-specific face model generation for the study of speech production, Computer Methods in Biomechanics and Biomedical Engineering, vol.13, pp.459-467, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539097

S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck et al., Mechanical characterization of human brain tissue, Acta Biomaterialia, vol.48, pp.319-340, 2017.

T. E. Carew, R. N. Vaishnav, and D. J. Patel, Compressibilty of the Arterial Wall, Circulation Research, vol.23, pp.61-68, 1968.

F. J. Carter, T. G. Frank, P. J. Davies, D. Mclean, and A. Cuschieri, Measurements and modelling of the compliance of human and porcine organs, Medical Image Analysis, vol.5, pp.231-236, 2001.

G. Chagnon, G. Marckmann, and E. Verron, A comparison of the hart-smith model with arruda-boyce and gent formulations for rubber elasticity, Rubber chemistry and technology 77, vol.4, pp.724-735, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01004688

M. A. Cox, N. J. Driessen, R. A. Boerboom, C. V. Bouten, and F. P. Baaijens, Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: Experimental feasibility, Journal of Biomechanics, vol.41, pp.422-429, 2008.

S. Diridollou, F. Patat, F. Gens, L. Vaillant, D. Black et al., In vivo model of the mechanical properties of the human skin under suction, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging, pp.214-221, 2000.

A. Dorfmann and R. W. Ogden, A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber, International Journal of Solids and Structures, vol.41, pp.1855-1878, 2004.

S. A. Elahi, N. Connesson, and Y. Payan, Disposable system for in-vivo mechanical characterization of soft tissues based on volume measurement, Journal of Mechanics in Medicine and Biology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930070

S. A. Elahi, N. Connesson, G. Chagnon, and Y. Payan, In-vivo soft tissues mechanical characterization: volume-based aspiration method validated on silicones, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974859

M. Farshad, M. Barbezat, P. Flueler, F. Shmidlin, P. Graber et al., Material Characterization of the Pig Kidney in Relation with the Biomechanical Analysis of Rental Trauma, Journal of Biomechanics, vol.32, pp.411-425, 1999.

W. N. Findley, J. S. Lai, and K. Onaran, Creep and relaxation of nonlinear viscoelastic materials, vol.19, p.118, 1976.

B. Finlay, The torsional characteristics of human skin in vivo, Biomedical engineering 6, 1971.

, Seyed Ali ELAHI, vol.122

E. Bibliography-florentin and G. Lubineau, Identification of the parameters of an elastic material model using the constitutive equation gap method, In: Computational Mechanics, vol.46, pp.521-531, 2010.

C. Flynn, A. Taberner, and P. Nielsen, Measurement of the force-displacement response of in vivo human skin under a rich set of deformations, In: Medical Engineering and Physics, vol.33, pp.610-619, 2011.

, Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis, Biomechanics and Modeling in Mechanobiology 10, pp.27-38, 2011.

, Modeling the mechanical response of in vivo human skin under a rich set of deformations, Annals of Biomedical Engineering, vol.39, pp.1935-1946, 2011.

G. Franceschini, D. Bigoni, P. Regitnig, and G. A. Holzapfel, Brain tissue deforms similarly to filled elastomers and follows consolidation theory, Journal of the Mechanics and Physics of Solids, vol.54, pp.2592-2620, 2006.

F. Frauziols, F. Chassagne, P. Badel, L. Navarro, J. Molimard et al., In vivo Identification of the Passive Mechanical Properties of Deep Soft Tissues in the Human Leg, pp.400-411, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01380253

Y. C. Fung, Elasticity of soft tissues in simple elongation, American Journal of Physiology-Legacy Content, vol.213, pp.1532-1544, 1967.

Y. C. Fung, K. Fronek, and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression, American Journal of Physiology-Heart and Circulatory Physiology, vol.237, pp.620-631, 1979.

T. C. Gasser, R. Ogden, and G. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Journal of The Royal Society Interface 3, vol.6, pp.15-35, 2006.

A. N. Gent, A new constitutive relation for rubber, Rubber chemistry and technology Technol, vol.69, pp.59-61, 1996.

E. Gentleman, A. N. Lay, D. A. Dickerson, E. A. Nauman, G. A. Livesay et al., Mechanical characterization of collagen fibers and scaffolds for tissue engineering, pp.3805-3813, 2003.

F. M. Hendriks, D. Brokken, C. W. Oomens, D. L. Bader, and F. P. Baaijens, The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments, Medical Engineering and Physics, vol.28, pp.259-266, 2006.

, The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments, Medical Engineering and Physics, vol.28, pp.259-266, 2006.

C. Herlin, B. Gilles, G. Subsol, and G. Captier, Generic 3D geometrical and mechanical modeling of the skin/subcutaneous complex by a procedural hybrid method, Lecture Notes in Computer Science, vol.8789, pp.173-181, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01239192

R. Hill, A theory of the plastic bulging of a metal diaphragm by lateral pressure, The London, vol.41, pp.1133-1142, 1950.

M. Hollenstein, M. Jabareen, S. Breitenstein, M. Riener, P. Clavien et al., Intraoperative mechanical characterization of human liver, Pamm 9, vol.1, pp.83-86, 2009.

M. Bibliography-hollenstein, G. Bugnard, R. Joos, S. Kropf, P. Villiger et al., Towards laparoscopic tissue aspiration, Medical Image Analysis, vol.17, pp.1037-1045, 2013.

G. A. Holzapfel, T. C. Gasser, and M. Stadler, A structural model for the viscoelastic behavior of arterial walls: \mbox{C}ontinuum formulation and finite element analysis, European Journal of Mechanics A/Solids, vol.21, pp.441-463, 2002.

G. A. Holzapfel and R. W. Ogden, Constitutive modelling of arteries, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.466, pp.1551-1597, 2010.

G. A. Holzapfel, Biomechanics of soft tissue". In: Handbook of materials behavior models: nonlinear models and properties, pp.1057-1071, 2001.

J. Huanh, Z. G.-j.-xie, and . Liu, FEA of hyperelastic rubber material based on Mooney-Rivlin model and Yeoh model, J]". In: China Rubber Industry, vol.8, 2008.

J. W. Jor, M. D. Parker, A. J. Taberner, M. P. Nash, and P. M. Nielsen, Computational and experimental characterization of skin mechanics: Identifying current challenges and future directions, Interdisciplinary Reviews: Systems Biology and Medicine, vol.5, pp.539-556, 2013.

M. Kauer, V. Vuskovic, J. Dual, G. Szekely, and M. Bajka, Inverse finite element characterization of soft tissues, Medical Image Analysis 2208, pp.128-136, 2001.

M. Kauer, Inverse Finite Element Characterization of Soft Tissues with Aspiration Experiments Inverse Finite Element Characteriza-tion of Soft Tissues with Aspiration, 2001.

R. M. Kenedi, J. H. Gibson, J. C. Evans, and . Barbenel, Tissue Mechanics". In: Physics in Medecine and Biology, vol.20, pp.699-717, 1975.

A. E. Kerdok, M. P. Ottensmeyer, and R. D. Howe, Effects of perfusion on the viscoelastic characteristics of liver, Journal of Biomechanics, vol.39, pp.2221-2231, 2006.

C. Lally, A. J. Reid, and P. J. Prendergast, Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension, Annals of Biomedical Engineering, vol.32, pp.1355-1364, 2004.

I. Liu, Continuum Mechanics, 2002.

V. Luboz, E. Promayon, and Y. Payan, Linear Elastic Properties of the Facial Soft Tissues Using an Aspiration Device: Towards Patient Specific Characterization, Annals of Biomedical Engineering, vol.42, p.11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01061677

V. Luboz, M. Bailet, C. Boichon-grivot, M. Rochette, B. Diot et al., Personalized modeling for real-time pressure ulcer prevention in sitting posture, Journal of Tissue Viability, vol.27, pp.2-9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930078

V. Luboz, E. Promayon, G. Chagnon, T. Alonso, D. Favier et al., Validation of a Light Aspiration Device for In Vivo Soft Tissue Characterization (LASTIC)". In: Soft Tissue Biomechanical Modeling for, Computer Assisted Surgery, vol.11, pp.243-256, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00706828

G. Machado, G. Chagnon, and D. Favier, Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results, Mechanics of Materials, vol.42, pp.841-851, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01974135

, Seyed Ali ELAHI, vol.124

G. Bibliography-machado, A. Stricher, G. Chagnon, and D. Favier, Mechanical behavior of architectured photosensitive silicone membranes: Experimental data and numerical analysis, In: Mechanics of Advanced Materials and Structures, vol.24, pp.524-533, 2017.

G. Machado, A contribution to the study of induced anisotropy by Mullins effect in silicone rubber, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00618596

E. Maher, A. Creane, C. Lally, and D. J. Kelly, An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue, Journal of the Mechanical Behavior of Biomedical Materials, vol.12, pp.9-19, 2012.

G. Marckmann and E. Verron, Comparison of hyperelastic models for rubberlike materials, Rubber chemistry and technology 7, pp.835-858, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01004680

C. Masri, Study of the elastomeric silicone cuff of an artificial urinary sphincter, 2017.

E. Mazza, O. Papes, M. B. Rubin, S. R. Bodner, and N. S. Binur, Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues, Biomechanics and Modeling in Mechanobiology, vol.4, issue.2-3, pp.178-189, 2005.

E. Mazza, M. Parra-saavedra, M. Bajka, E. Gratacos, K. Nicolaides et al., In vivo assessment of the biomechanical properties of the uterine cervix in pregnancy, Prenatal Diagnosis, vol.34, pp.33-41, 2014.

K. P. Menard, Dynamic mechanical analysis: a practical introduction, 2008.

K. Miller and K. Chinzei, Mechanical properties of brain tissue in tension, Journal of Biomechanics, vol.35, pp.483-490, 2002.

K. Miller, K. Chinzei, G. Orssengo, and P. Bednarz, Mechanical properties of brain tissue in-vivo: Experiment and computer simulation, In: Journal of Biomechanics, vol.33, pp.1369-1376, 2000.

A. M??ram??ra, S. A.-k.-carton, Y. Muller, and . Payan, BREAST biomechanical modelling for compression optimization in digital breast Tomosynthesis, Computer Methods in Biomechanics and Biomedical Engineering, pp.29-35, 2018.

M. Mooney, A theory of large elastic deformation, Journal of Applied Physics, vol.11, pp.582-592, 1940.

K. A. Morris, What is Hysteresis?, In: Applied Mechanics Reviews, vol.64, 2011.

L. Mullins, Effect of stretching on the properties of rubber, Rubber Chemistry and Technology 21, vol.2, pp.281-300, 1948.

, Softening of rubber by deformation, Rubber chemistry and technology 42.1, pp.339-362, 1969.

L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of fillerreinforced vulcanized rubber, Journal of Applied Polymer Science, vol.9, pp.2993-3009, 1965.

M. J. Muñoz, J. A. Bea, J. F. Rodríguez, I. Ochoa, J. Grasa et al., An experimental study of the mouse skin behaviour: Damage and inelastic aspects, Journal of Biomechanics, vol.41, pp.93-99, 2008.

A. Nava, E. Mazza, M. Furrer, P. Villiger, and W. H. Reinhart, In vivo mechanical characterization of human liver, Medical Image Analysis, vol.12, pp.203-216, 2008.

J. A. Nelder and R. Mead, A simplex method for function minimization, The computer journal, vol.7, pp.308-313, 1965.

A. Bibliography-ní-annaidh, K. Bruyère, M. Destrade, M. D. Gilchrist, and M. Otténio, Characterization of the anisotropic mechanical properties of excised human skin, Journal of the Mechanical Behavior of Biomedical Materials, vol.5, pp.139-148, 2012.

E. Nicolas, S. Callé, S. Nicolle, D. Mitton, and J. P. Remenieras, Biomechanical characterization of ex vivo human brain using ultrasound shear wave spectroscopy, Ultrasonics, vol.84, pp.119-125, 2018.
DOI : 10.1016/j.ultras.2017.10.009

URL : https://hal.archives-ouvertes.fr/hal-01652774

G. Odegard, T. S. Gates, and H. B. Herring, Characterization of viscoelastic properties of polymeric materials through nanoindentation, Experimental Mechanics 45, vol.2, pp.130-136, 2005.

R. W. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.326, pp.565-584, 1972.

E. A. Omari, T. Varghese, M. A. Kliewer, J. Harter, and E. M. Hartenbach, Dynamic and quasi-static mechanical testing for characterization of the viscoelastic properties of human uterine tissue, Journal of Biomechanics, vol.48, p.15334406, 2015.

Y. Payan and J. Ohayon, Biomechanics of Living Organs: Hyperelastic constitutive laws for finite element modeling. Academic P, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930098

E. Peña, Computational aspects of the numerical modelling of softening, damage and permanent set in soft biological tissues, Computers and Structures, vol.130, pp.57-72, 2014.

, Prediction of the softening and damage effects with permanent set in fibrous biological materials, Journal of the Mechanics and Physics of Solids, vol.59, pp.1808-1822, 2011.

M. Pensalfini, J. Weickenmeier, M. Rominger, R. Santoprete, O. Distler et al., Location-specific mechanical response and morphology of facial soft tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.78, pp.108-115, 2017.

G. Picinbono, N. Ayache, E. Project, S. Cedex, and H. Delingette, Non-linear and anisotropic elastic soft tissue models for medical simulation, IEEE Int Conf Robot and Automation 2.1, pp.1370-1375, 2001.
DOI : 10.1109/robot.2001.932801

URL : https://hal.archives-ouvertes.fr/inria-00615889

H. J. Qi and M. C. Boyce, Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials, Journal of the Mechanics and Physics of Solids, vol.52, pp.2187-2205, 2004.

M. Rebouah, Anisotropic stress softening and viscoelasticity in rubber like materials and architectured materials, 2014.
URL : https://hal.archives-ouvertes.fr/tel-02053003

T. Rey, G. Chagnon, J. B. Le-cam, and D. Favier, Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers, Polymer Testing, vol.32, pp.492-501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01073891

J. Rosen, B. Hannaford, M. P. Macfarlane, and M. N. Sinanan, Force controlled and teleoperated endoscopic grasper for minimally invasive surgery-Experimental performance evaluation, IEEE Transactions on Biomedical Engineering, vol.46, pp.1212-1221, 1999.
DOI : 10.1109/10.790498

A. Samani, J. Zubovits, and D. Plewes, Elastic moduli of normal and pathological human breast tissues: An inversion-technique-based investigation of 169 samples, Physics in Medicine and Biology, vol.52, pp.1565-1576, 2007.

E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duzgun, A robotic indenter for minimally invasive measurement and characterization of soft tissue response, Medical Image Analysis, vol.11, pp.361-373, 2007.

R. Sanders, Torsional elasticity of human skin in vivo, Pflugers Archive European Journal of Physiology, vol.342, pp.255-260, 1973.

P. Schiavone, . Boudou, . Promayon, Y. Perrier, and . Payan, A light sterilizable pipette device for the in vivo estimation of human soft tissues constitutive laws, Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.4298-301, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00340413

P. Schiavone, F. Chassat, T. Boudou, E. Promayon, F. Valdivia et al., In vivo measurement of human brain elasticity using a light aspiration device, Medical Image Analysis, vol.13, pp.673-678, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00374101

P. Schiavone, E. Promayon, and Y. Payan, LASTIC : a Light Apiration device for in vivo Soft TIssue Characterization, 5th International Symposium on Biomedical Simulation ISBMS10, pp.1-10, 2010.

D. Schwenninger-david, S. Schumann, and J. Guttmann, In vivo characterization of mechanical tissue properties of internal organs using endoscopic microscopy and inverse finite element analysis, Journal of Biomechanics, vol.44, pp.487-493, 2011.

J. G. Snedeker, M. Bajka, J. M. Hug, and P. Niederer, The creation of a highfidelity finite element model of the kidney for use in trauma research, Journal of Visualization and Computer Animation 13.1, pp.53-64, 2002.

W. Sun and M. S. Sacks, Finite element implementation of a generalized Fungelastic constitutive model for planar soft tissues, Biomechanics and Modeling in Mechanobiology, vol.4, pp.190-199, 2005.

. Székely, Surgical simulators, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy, vol.12, pp.14-22, 2003.

L. R. Treloar, The elasticity of a network of long-chain molecules I, Transactions of the Faraday Society, pp.36-41, 1943.

, The elasticity of a network of long-chain molecules II, Transactions of the Faraday Society, pp.241-246, 1943.

D. Valtorta and E. Mazza, Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device, Medical Image Analysis 9, pp.481-490, 2005.

D. R. Veronda and R. A. Westmann, Mechanical characterization of skin-Finite deformations, Journal of Biomechanics, vol.3, 1970.

A. Vexler, I. Polyansky, and R. Gorodetsky, Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer, Journal of Investigative Dermatology, vol.113, pp.732-739, 1999.

V. Vuskovic, Device for in-vivo measurement of mechanical properties of internal human soft tissues, 2001.

S. Ali and E. ,

J. Bibliography-weickenmeier, M. Jabareen, and E. Mazza, Suction based mechanical characterization of superficial facial soft tissues, Journal of Biomechanics, vol.48, pp.4279-4286, 2015.

M. Xu and J. Yang, Human Facial Soft Tissue Thickness and Mechanical Properties: A Literature Review, 35th Computers and Information in Engineering Conference, vol.1, 2015.

W. Yao, K. Yoshida, M. Fernandez, J. Vink, R. J. Wapner et al., Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation, Journal of the Mechanical Behavior of Biomedical Materials, vol.34, pp.18-26, 2014.

O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber chemistry and technology 66, pp.754-771, 1993.

M. Zemánek, J. Bur?a, and M. D?ták, Biaxial Tension Tests with Soft Tissues of Arterial Wall, pp.3-11, 2009.

R. Zhao, K. L. Sider, and C. A. Simmons, Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration, Acta Biomaterialia, issue.3, pp.1220-1227, 2011.