H. Alfvén, Existence of Electromagnetic-Hydrodynamic Waves, vol.150, pp.405-406, 1942.

B. J. Anderson, C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow et al., The global magnetic field of mercury from messenger orbital observations, Science, vol.333, issue.6051, p.54, 2011.

C. S. Arridge, N. André, H. J. Mcandrews, E. J. Bunce, M. H. Burger et al.,

R. E. Hsu, G. H. Johnson, S. Jones, K. K. Kempf, N. Khurana et al., Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations, vol.164, pp.1-83, 2011.

C. S. Arridge, C. B. Agnor, N. André, K. H. Baines, L. N. Fletcher et al., , vol.33, p.105, 2012.

F. , Giant planet magnetospheres, Annual Review of Earth and Planetary Sciences, vol.20, p.89, 1992.

F. Bagenal and S. Bartlett, Magnetospheres of the outer planets group-graphics, p.13, 2013.

K. W. Behannon, R. P. Lepping, E. C. Sittler, N. F. Ness, B. H. Mauk et al., The magnetotail of Uranus, Journal of Geophysical Research : Space Physics, vol.92, p.86, 1987.

M. Benna, B. J. Anderson, D. N. Baker, S. A. Boardsen, G. Gloeckler et al., Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby, vol.209, pp.3-10, 2010.

L. Biermann, Kometenschweife und solare Korpuskularstrahlung, Zeitschrift für Astrophysik, vol.29, issue.6, p.274, 1951.

S. H. Brecht, Global simulations using MHD codes-A few points to consider before you try one, vol.42, pp.169-185, 1985.

L. F. Burlaga, N. F. Ness, Y. Wang, and N. R. Sheeley, Heliospheric magnetic field strength out to 66 au : Voyager 1, 1978-1996, Journal of Geophysical Research : Space Physics, vol.103, issue.A10, pp.23727-23732, 1998.

X. Cao and C. Paty, Diurnal and seasonal variability of uranus's magnetosphere, Journal of Geophysical Research (Space Physics), vol.122, issue.6, pp.6318-6331, 2017.

R. C. Carrington, Description of a singular appearance seen in the sun on september 1, 1859, Monthly Notices of the Royal Astronomical Society, vol.20, issue.I, pp.13-15, 1859.

E. Chané, J. Saur, R. Keppens, and S. Poedts, How is the jovian main auroral emission affected by the solar wind, Journal of Geophysical Research : Space Physics, vol.122, issue.2, pp.1960-1978, 2017.

J. E. Connerney, M. H. Acuña, and N. F. Ness, The magnetic field of uranus, Journal of Geophysical Research : Space Physics, vol.92, issue.A13, p.91, 1987.

R. Courant, K. Friedrichs, and H. Lewy, ¨ Uber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, vol.100, pp.32-74, 1928.

S. W. Cowley, The causes of convection in the earth's magnetosphere : A review of developments during the ims, Reviews of Geophysics, vol.20, issue.3, pp.531-565, 1982.

S. W. Cowley, Response of Uranus' auroras to solar wind compressions at equinox, Journal of Geophysical Research (Space Physics), vol.118, pp.2897-2902, 2013.

S. W. Cowley and G. Provan, Planetary period modulations of saturn's magnetotail current sheet during northern spring : Observations and modeling, Journal of Geophysical Research : Space Physics, vol.122, issue.6, pp.6049-6077, 2017.

S. W. Cowley, E. J. Bunce, and J. M. O'rourke, A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere, Journal of Geophysical Research (Space Physics), vol.109, p.77, 2004.

S. W. Cowley, S. V. Badman, E. J. Bunce, J. T. Clarke, J. Gérard et al., Reconnection in a rotation-dominated magnetosphere and its relation to saturn's auroral dynamics, Journal of Geophysical Research : Space Physics, vol.110, issue.A2, 2005.

B. J. Ii and . Dungey, Interplanetary magnetic field and the auroral zones, Physical Review Letters, vol.6, p.67, 1961.

W. Exner, D. Heyner, L. Liuzzo, U. Motschmann, D. Shiota et al., Coronal mass ejection hits mercury : A.i.k.e.f. hybrid-code results compared to messenger data, Planetary and Space Science, vol.153, pp.89-99, 2018.

K. Fukazawa, T. Ogino, and R. J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF), vol.32, p.3202, 2005.

K. Fukazawa, S. Ogi, T. Ogino, and R. J. Walker, Magnetospheric convection at Saturn as a function of IMF BZ, vol.34, p.66, 2007.

K. Fukazawa, T. Ogino, and R. J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere, vol.34, p.69, 2007.

J. P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics. Cambridge University Press, vol.22, p.23, 2004.

T. I. Gombosi, D. L. Dezeeuw, C. P. Groth, and K. G. Powell, Magnetospheric Configuration for Parker-Spiral IMF Conditions : Results of A 3D AMR MHD Simulation, Advances in Space Research, vol.26, pp.139-149, 2000.

T. I. Gombosi, G. Tóth, D. L. De-zeeuw, K. C. Hansen, K. Kabin et al., Semirelativistic magnetohydrodynamics and physicsbased convergence acceleration, Journal of Computational Physics, vol.177, issue.1, pp.176-205, 2002.

L. Griton, F. Pantellini, and Z. Meliani, Three-dimensional magnetohydrodynamic simulations of the solar wind interaction with a hyperfast-rotating uranus, Journal of Geophysical Research : Space Physics, vol.99, p.107, 2018.
URL : https://hal.archives-ouvertes.fr/obspm-02296091

K. C. Hansen, T. I. Gombosi, D. L. Dezeeuw, C. P. Groth, and K. G. Powell, A 3D Global MHD Simulation of Saturn's Magnetosphere, Advances in Space Research, vol.26, p.72, 2000.

K. C. Hansen, A. J. Ridley, G. B. Hospodarsky, N. Achilleos, M. K. Dougherty et al., Global MHD simulations of Saturn's magnetosphere at the time of Cassini approach, vol.32, pp.20-26, 2005.

D. Heyner and J. Wicht, Mercury's magnetic field in the MESSENGER era, p.52, 2014.

T. W. Hill, A. J. Dessler, and F. C. Michel, Aurora on Uranus-A Faraday disc dynamo mechanism, Geophysical Research Letters, vol.1, issue.1, pp.1187-1198, 1974.

A. J. Hundhausen, Nonlinear model of high-speed solar wind streams, Journal of Geophysical Research, vol.78, p.1528, 1973.

W. Ip and A. Kopp, MHD simulations of the solar wind interaction with Mercury, Journal of Geophysical Research (Space Physics), vol.107, p.1348, 2002.

J. Isbell, A. J. Dessler, and J. H. Waite, Magnetospheric energization by interaction between planetary spin and the solar wind, Journal of Geophysical Research : Space Physics, vol.89, pp.10716-10722, 1984.

K. Issautier, N. Meyer-vernet, M. Moncuquet, and S. Hoang, High-speed solar wind from Ulysses measurements and comparison with exospheric models, American Institute of Physics Conference Series, vol.471, pp.581-584, 1999.

K. Issautier, M. Moncuquet, and S. Hoang, Large-scale structure of the polar solar wind at solar maximum : ULYSSES/URAP observations, Solar Wind Ten, vol.679, pp.59-62, 2003.

C. M. Jackman, N. Achilleos, E. J. Bunce, S. W. Cowley, M. K. Dougherty et al., Interplanetary magnetic field at 9 au during the declining phase of the solar cycle and its implications for saturn's magnetospheric dynamics, Journal of Geophysical Research : Space Physics, vol.109, issue.A11, 1978.

M. K. James, S. M. Imber, E. J. Bunce, T. K. Yeoman, M. Lockwood et al., Interplanetary magnetic field properties and variability near mercury&apos ;s orbit, Journal of Geophysical Research : Space Physics, vol.122, issue.8, pp.7907-7924, 2017.

X. Jia, K. C. Hansen, T. I. Gombosi, M. G. Kivelson, G. Tóth et al., Magnetospheric configuration and dynamics of Saturn's magnetosphere : A global MHD simulation, Journal of Geophysical Research (Space Physics), vol.117, p.72, 2012.

X. Jia, J. A. Slavin, T. I. Gombosi, L. K. Daldorff, G. Toth et al., Global MHD simulations of Mercury's magnetosphere with coupled planetary interior : Induction effect of the planetary conducting core on the global interaction, Journal of Geophysical Research (Space Physics), vol.120, pp.4763-4775, 2015.

K. Kabin, T. I. Gombosi, D. L. Dezeeuw, and K. G. Powell, Interaction of Mercury with the Solar Wind, vol.143, pp.397-406, 2000.

A. Keiling, C. M. Jackman, P. A. Delamere-;-iv, B. R. Keppens, Z. Meliani et al., Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics, vol.207, pp.718-744, 2012.

A. Kidder, R. M. Winglee, and E. M. Harnett, Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation, Journal of Geophysical Research (Space Physics), vol.113, p.9223, 2008.

M. G. Kivelson and C. T. Russell, Introduction to Space Physics, p.15, 1995.

L. Lamy, R. Prangé, K. C. Hansen, J. T. Clarke, P. Zarka et al., Earth-based detection of Uranus' aurorae, Geophysical Research Letters, p.39, 2012.

L. Lamy, R. Prangé, K. C. Hansen, C. Tao, S. W. Cowley et al., The aurorae of Uranus past equinox, Journal of Geophysical Research (Space Physics), vol.122, pp.3997-4008, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01504506

K. R. Lang, The Cambridge Guide to the Solar System, 2011.

I. Langmuir, Oscillations in Ionized Gases, Proceedings of the National Academy of Science, vol.14, pp.627-637, 1928.

R. P. Lepping, Comparison of the field configurations of the magnetotails of Uranus and Neptune, vol.42, pp.847-857, 1994.

A. Masters, Magnetic reconnection at uranus' magnetopause, Journal of Geophysical Research : Space Physics, vol.119, issue.7, pp.5520-5538, 2014.

N. Meyer-vernet, Basics of the Solar Wind, p.22, 2007.

N. Meyer-vernet, K. Issautier, and M. Moncuquet, Quasi-thermal noise spectroscopy : The art and the practice, Journal of Geophysical Research (Space Physics), vol.122, pp.7925-7945, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628354

F. , C. Michel, and P. A. Sturrock, Centrifugal instability of the jovian magnetosphere and its interaction with the solar wind, Planetary and Space Science, vol.22, issue.11, pp.1501-1510, 1974.

E. D. Miner, Uranus-The planet, rings and satellites, vol.81, p.82, 1990.

T. Miyoshi and K. Kusano, MHD simulation of a rapidly rotating magnetosphere interacting with the external plasma flow, vol.24, pp.2627-2630, 1997.

T. Miyoshi and K. Kusano, A global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary magnetic field, vol.106, p.70, 2001.

M. Moncuquet, H. Matsumoto, J. Bougeret, L. G. Blomberg, K. Issautier et al., The radio waves and thermal electrostatic noise spectroscopy (SORBET) experiment on BEPICOLOMBO/MMO/PWI : Scientific objectives and performance, Advances in Space Research, vol.38, issue.8, p.52, 2006.

J. Müller, S. Simon, Y. Wang, U. Motschmann, D. Heyner et al., Origin of Mercurys double magnetopause : 3D hybrid simulation study with A, vol.218, pp.666-687, 2012.

N. F. Ness, M. H. Acuna, K. W. Behannon, L. F. Burlaga, J. E. Connerney et al., Magnetic fields at Uranus, Science, vol.233, p.83, 1986.

K. W. Ogilvie, J. D. Scudder, R. E. Hartle, G. L. Siscoe, H. S. Bridge et al., Observations at Mercury encounter by the plasma science experiment on Mariner 10, Science, vol.185, p.46, 1974.

T. Ogino, R. J. Walker, and M. G. Kivelson, A global magnetohydrodynamic simulation of the Jovian magnetosphere, Journal of Geophysical Research, vol.103, p.225, 1998.

F. Pantellini and L. Griton, Identification of standing fronts in steady state fluid flows : exact and approximate solutions for propagating MHD modes, Astrophysics and Space Science, vol.361, p.107, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382916

F. Pantellini, L. Griton, and J. Varela, Rarefaction and compressional standing slow mode structures in Mercury's magnetosheath : 3D MHD simulations, Planetary and Space Science, vol.112, p.59, 2015.

E. N. Parker, Dynamics of the interplanetary gas and magnetic fields, ApJ, vol.128, issue.8, p.664, 1958.

S. M. Petrinec and C. T. Russell, Hydrodynamic and MHD Equations across the Bow Shock and Along the Surfaces of Planetary Obstacles, Space Science Reviews, vol.79, pp.757-791, 1997.

A. Piel, Plasma Physics, 2010.

V. Pizzo, A three-dimensional model of corotating streams in the solar wind. I-Theoretical foundations, Journal of Geophysical Research, vol.83, pp.5563-5572, 1978.

K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De-zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, Journal of Computational Physics, vol.154, issue.2, pp.284-309, 1999.

G. Provan, S. W. Cowley, T. J. Bradley, E. J. Bunce, G. J. Hunt et al., Dougherty. Planetary period oscillations in saturn's magnetosphere : Cassini magnetic field observations over the northern summer solstice interval, Journal of Geophysical Research : Space Physics, vol.123, issue.5, pp.3859-3899, 2018.

J. D. Richardson and C. W. Smith, The radial temperature profile of the solar wind, Geophysical Research Letters, vol.30, issue.5, p.89

B. E. Vi, R. Richer, G. M. Modolo, S. Chanteur, F. Hess et al., A global hybrid model for Mercury's interaction with the solar wind : Case study of the dipole representation, Journal of Geophysical Research (Space Physics), vol.117, p.54, 2012.

P. Roe, Characteristic-based schemes for the euler equations, Annual Review of Fluid Mechanics, vol.18, issue.1, pp.337-365, 1986.

C. T. Russell, J. G. Luhmann, and R. J. Strangeway, Space Physics : an Introduction, vol.26, p.49, 2016.

M. Schulz and M. C. Mcnab, Source-surface modeling of planetary magnetospheres, Journal of Geophysical Research, vol.101, pp.5095-5118, 1996.

G. L. Siscoe, Two magnetic tail models for 'Uranus, vol.19, pp.483-490, 1971.
DOI : 10.1016/0032-0633(71)90164-4

J. A. Slavin, M. H. Acuña, B. J. Anderson, D. N. Baker, M. Benna et al., MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere, Science, vol.324, p.48, 2009.

C. W. Smith, W. H. Matthaeus, G. P. Zank, N. F. Ness, S. Oughton et al., Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations, Journal of Geophysical Research : Space Physics, vol.106, issue.A5, pp.8253-8272, 2001.

D. J. Southwood and E. Chané, High-latitude circulation in giant planet magnetospheres, Journal of Geophysical Research (Space Physics), vol.121, pp.5394-5403, 2016.

J. R. Spreiter and A. Y. Alksne, Solar-wind flow past objects in the solar system, Annual Review of Fluid Mechanics, vol.2, pp.313-354, 1970.

J. R. Spreiter, A. L. Summers, and A. Y. Alksne, Hydromagnetic flow around the magnetosphere, vol.14, p.223, 1966.
DOI : 10.1016/0032-0633(66)90124-3

URL : http://hdl.handle.net/2060/19660009062

R. Srygley, Des boussoles chez les animaux, 1999.

D. J. Stevenson, Planetary Magnetic Fields : Achievements and Prospects, Space Science Reviews, vol.152, pp.651-664, 2010.
DOI : 10.1007/s11214-009-9572-z

P. A. Sturrock, Plasma Physics, 1994.

T. Tanaka, Finite volume tvd scheme on an unstructured grid system for three-dimensional mhd simulation of inhomogeneous systems including strong background potential fields, Journal of Computational Physics, vol.111, issue.2, pp.381-389, 1994.

E. Thébault, B. Langlais, J. S. Oliveira, H. Amit, and L. Leclercq, A time-averaged regional model of the Hermean magnetic field, Physics of the Earth and Planetary Interiors, vol.276, pp.93-105, 2018.

M. F. Thomsen, D. G. Mitchell, X. Jia, C. M. Jackman, G. Hospodarsky et al., Plasmapause formation at Saturn, Journal of Geophysical Research (Space Physics), vol.120, pp.2571-2583, 2015.
DOI : 10.1002/2015ja021008

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021008

G. Tóth, D. Kovács, K. C. Hansen, and T. I. Gombosi, Three-dimensional MHD simulations of the magnetosphere of Uranus, Journal of Geophysical Research (Space Physics), vol.109, issue.A18, p.11210, 2004.

P. Trávní?ek, P. Hellinger, and D. Schriver, Structure of mercury's magnetosphere for different pressure of the solar wind : Three dimensional hybrid simulations, Geophysical Research Letters, vol.34, issue.5, p.51

P. M. Trávní?ek, D. Schriver, P. Hellinger, D. Her?ík, B. J. Anderson et al., Mercury's magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field : Hybrid simulation results, Icarus, vol.209, issue.1, pp.11-22, 2010.

V. M. Vasyliunas, Plasma distribution and flow, vol.63, p.64, 1983.

G. Voight, T. W. Hill, and A. J. Dessler, The magnetosphere of Uranus-Plasma sources, convection, and field configuration, vol.266, pp.390-401, 1983.

R. J. Walker and T. Ogino, A simulation study of currents in the Jovian magnetosphere. Planetary and Space Science, vol.51, pp.295-307, 2003.

R. J. Walker, T. Ogino, and M. G. Kivelson, Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere, Planetary and Space Science, vol.49, issue.3, pp.237-245, 2001.

, Magnetospheres of the Outer Planets (Part I), vol.65, p.69

Y. Wang, J. Mueller, U. Motschmann, and W. Ip, A hybrid simulation of Mercurys magnetosphere for the MESSENGER encounters in year 2008, vol.209, pp.46-52, 2010.

C. Xia, J. Teunissen, I. E. Mellah, E. Chané, and R. Keppens, Mpi-amrvac 2.0 for solar and astrophysical applications, The Astrophysical Journal Supplement Series, vol.234, issue.2, p.92, 2018.

H. Thomas, I. G. Zurbuchen, and . Richardson, Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, pp.31-43, 2006.

, LISTE DES FIGURES 6.5 Données du champ magnétique mesurées par Voyager IIàIIà Uranus, accompagnées par un schéma présentant la trajectoire de la sonde dans la magnétosphère 83

´. Etat-initial-des-simulations-de-tóth, , 2004.

. Figure-de-tóth, ] présentant une comparaison avec les données mesurées par la sonde Voyager II, 2004.

. Figure-de-tóth, , vol.87, 2004.

P. Figure-de-cao, , 2017.

, Carte de B z dans la simulation MHD d'Uranus avec le bord internè a 5R U, p.90

. , Grille de simulation raffinée utilisée pour la simulation d'Uranus avec le bord internè a 10R U

. .. , Exemple de grille disponible dans la nouvelle version d'AMRVAC, p.92

, 13Évolution13´13Évolution temporelle des zones de reconnexion et de la structure magnétique dans la simulation d'un Uranus hyper rapide, au solstice, cas symétrique, p.94

, 14Évolution14´14Évolution temporelle du profil des vitesses dans le plan de l'´ ecliptique dans la simulation d'un Uranus hyper rapide, au solstice, cas symétrique, p.95

. , Carte des vitesses de propagation dans la queue magnétosphérique d'un Uranus hyper rapide, au solstice, cas symétrique

. , Comparaison d'une simulation avec ou sans IMF d'un Uranus hyper rapide, au solstice, cas symétrique

. , Carte du champélectriquechampélectrique résistif dans l'ionosphère d'un Uranus hyper rapide, au solstice

, 18Évolution18´18Évolution temporelle des zones de reconnexion et de la structure alfvénique dans la simulation d'un Uranus hyper rapide, au solstice, cas asymétrique, p.99

, Configuration de la magnétosphère d'UranusàUranusà l'´ equinoxe, par Cowley, p.101, 2013.

, Symétrie sur une demie rotation de la configuration Uranus-rapidè a l'´ equinoxe 102

. , Symétrie sur une demie rotation de la configuration Uranus-rapidè a l'´ equinoxe, un quart de rotation plus tard

. .. , Schéma explicatif de la configuration des lignes de champ magnétique de l'IMF en aval de la magnétosphère d'un Uranus rapidè a l'´ equinoxe, vol.104

. , Mesure du pas de la structure ondulatoire en aval de la magnétosphère d'un Uranus rapidè a l'´ equinoxe

B. .. Johnson, C. L. Korth, H. Winslow, R. M. Borovsky, J. E. Purucker et al., Low-degree structure in Mercury's planetary magnetic field, J. Geophys. Res. (Planets), p.0, 2012.

Z. Bebesi, K. Szego, A. Balogh, N. Krupp, G. Erdos et al., Slow-mode shock candidate in the Jovian magnetosheath, Planet. Space Sci, vol.58, pp.807-813, 2010.

F. De-hoffmann and E. Teller, Magneto-hydrodynamic shocks, Phys. Rev, vol.80, pp.692-703, 1950.

R. E. Denton, S. P. Gary, X. Li, B. J. Anderson, J. W. Labelle et al., Lowfrequency fluctuations in the magnetosheath near the magnetopause, J. Geophys. Res, vol.100, pp.5665-5679, 1995.

W. C. Feldman, R. L. Tokar, J. Birn, E. W. Hones, and S. J. Bame, Structure of a slow mode shock observed in the plasma sheet boundary layer, J. Geophys. Res, vol.92, pp.83-94, 1987.

T. Hada and C. F. Kennel, Nonlinear evolution of slow waves in the solar wind, J. Geophys. Res, vol.90, pp.531-535, 1985.

G. G. Howes, S. D. Bale, K. G. Klein, C. H. Chen, C. S. Salem et al., The slow-mode nature of compressible wave power in solar wind turbulence, Astrophys. J. Lett, vol.753, p.19, 2012.

G. G. Howes, S. C. Cowley, W. Dorland, G. W. Hammett, E. Quataert et al., Astrophysical gyrokinetics: basic equations and linear theory, Astrophys. J, vol.651, pp.590-614, 2006.

K. Kabin, T. I. Gombosi, D. L. Dezeeuw, and K. G. Powell, Interaction of mercury with the solar wind, Icarus, vol.143, pp.397-406, 2000.

R. Keppens, Z. Meliani, A. J. Van-marle, P. Delmont, A. Vlasis et al., Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics, J. Comput. Phys, vol.231, issue.3, pp.718-744, 2012.

P. H. Krisko and T. W. Hill, Two-dimensional model of a slow-mode expansion fan at Io, Geophys. Res. Lett, vol.18, pp.1947-1950, 1991.

V. N. Oraevsky, Kinetic theory of waves, Basic Plasma Physics I. Vol. 1 of Handbook of Plasma Physics, pp.243-278, 1983.

H. E. Petschek and R. M. Thorne, The existence of intermediate waves in neutral sheets, J. Comput. Phys, vol.147, pp.1157-1163, 1967.

K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De-zeeuw, A solutionadaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys, vol.154, pp.284-309, 1999.

E. Richer, R. Modolo, G. M. Chanteur, S. Hess, and F. Leblanc, A global hybrid model for Mercury's interaction with the solar wind: case study of the dipole representation, J. Geophys. Res. (Space Phys.), vol.117, p.10228, 2012.

G. L. Siscoe and E. Sanchez, An MHD model for the complete open magnetotail boundary, J. Geophys. Res, vol.92, pp.7405-7412, 1987.

P. Song, C. T. Russell, J. T. Gosling, M. Thomsen, and R. C. Elphic, Observations of the density profile in the magnetosheath near the stagnation streamline, Geophys. Res. Lett, vol.17, pp.2035-2038, 1990.

D. J. Southwood and M. G. Kivelson, On the form of the flow in the magnetosheath, J. Geophys. Res, vol.97, pp.2873-2879, 1992.

D. J. Southwood and M. G. Kivelson, The Formation of Slow Mode Fronts in the Magnetosheath, Washington DC American Geophysical Union Geophysical Monograph Series, vol.90, p.109, 1995.

J. R. Spreiter and A. Y. Alksne, Solar-wind flow past objects in the solar system, Annu. Rev. Fluid Mech, vol.2, pp.313-354, 1970.

M. G. Taylor and P. J. Cargill, A general theory of self-similar expansion waves in magnetohydrodynamic flows, J. Plasma Phys, vol.66, pp.239-257, 2001.

M. G. Taylor and P. J. Cargill, Correction to A general theory of self-similar expansion waves in MHD flows, J. Plasma Phys, vol.69, p.89, 2003.

P. M. Trávní?ek, D. Schriver, P. Hellinger, D. Her?ík, B. J. Anderson et al., Mercury's magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: hybrid simulation results, Icarus, vol.209, pp.11-22, 2010.

F. Pantellini, Planetary and Space Science, vol.112, pp.1-9, 2015.

Y. Wang, J. Raeder, and C. Russell, Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt, Ann. Geophys, vol.22, pp.4273-4290, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00317791

Y. Wang, J. Mueller, U. Motschmann, and W. Ip, A hybrid simulation of Mercury's magnetosphere for the MESSENGER encounters in year, Icarus, vol.209, pp.46-52, 2008.

L. G. Westerberg, H. O. ?kerstedt, H. Nilsson, H. Réme, and A. Balogh, 3D MHD reconnection model coupled with Cluster multi-spacecraft data, J. Geophys. Res. (Space Phys.), vol.113, p.3205, 2008.

B. J. Zwan and R. A. Wolf, Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res, vol.81, pp.1636-1648, 1976.

P. H. References-krisko and T. W. Hill, Two-dimensional model of a slow-mode expansion fan at Io, Geophys. Res. Lett, vol.18, pp.1947-1950, 1991.

C. Lacombe, F. G. Pantellini, D. Hubert, C. C. Harvey, A. Mangeney et al., Mirror and Alfvenic waves observed by ISEE 1-2 during crossings of the earth's bow shock, Ann. Geophys, vol.10, pp.772-784, 1992.

F. Pantellini, L. Griton, and J. Varela, Rarefaction and compressional standing slow mode structures in Mercury's magnetosheath: 3D MHD simulations, Planet. Space Sci, vol.112, pp.1-9, 2015.

G. L. Siscoe and E. Sanchez, An MHD model for the complete open magnetotail boundary, J. Geophys. Res, vol.92, pp.7405-7412, 1987.

J. R. Spreiter and A. Y. Alksne, Solar-wind flow past objects in the solar system, Annu. Rev. Fluid Mech, vol.2, pp.313-354, 1970.

M. Verigin, J. Slavin, A. Szabo, G. Kotova, and T. Gombosi, Planetary bow shocks: Asymptotic MHD Mach cones, Earth Planets Space, vol.55, pp.33-38, 2003.

F. Griton, Z. Pantellini, and . Méliani-revue, A.3 3D magnetohydrodynamic simulations of the solar wind interaction with a hyper-fast rotating Uranus Article de 2018 par, vol.2
URL : https://hal.archives-ouvertes.fr/tel-01906490

L. , O. De-paris, P. Université, C. , S. Université et al., Uranus Pathfinder: Exploring the origins and evolution of Ice Giant planets, Experimental Astronomy, vol.8102, pp.753-791, 2012.

K. W. Behannon, R. P. Lepping, E. C. Sittler, N. F. Ness, B. H. Mauk et al., The magnetotail of Uranus, Journal of Geophysical Research, vol.92, pp.354-369, 1987.

L. F. Burlaga, N. F. Ness, Y. Wang, and N. R. Sheeley, Heliospheric magnetic field strength out to 66 AU: Voyager 1, 1978-1996, Journal of Geophysical Research, vol.103, issue.A10, pp.727-750, 1998.

X. Cao and C. Paty, Diurnal and seasonal variability of Uranus's magnetosphere, Journal of Geophysical Research: Space Physics, vol.122, pp.6318-6331, 2017.

E. Chané, J. Saur, R. Keppens, and S. Poedts, How is the Jovian main auroral emission affected by the solar wind?, Journal of Geophysical Research: Space Physics, vol.122, 1960.

J. E. Connerney, M. H. Acuña, and N. F. Ness, The magnetic field of Uranus, Journal of Geophysical Research, vol.92, issue.A13, pp.329-344, 1987.

T. I. Gombosi, G. Tóth, D. L. Zeeuw, K. C. Hansen, K. Kabin et al., Semirelativistic magnetohydrodynamics and physics-based convergence acceleration, Journal of Computational Physics, vol.177, issue.1, pp.176-205, 2002.

X. Jia, K. C. Hansen, T. I. Gombosi, M. G. Kivelson, G. Tóth et al., Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation, Journal of Geophysical Research, vol.117, 2012.

A. Keiling and C. M. Jackman, Magnetotails in the solar system, Geophysical Monograph Series, vol.207, 2015.

R. Keppens, Z. Meliani, A. J. Van-marle, P. Delmont, A. Vlasis et al., Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics, Special Issue: Computational Plasma Physics, vol.231, pp.718-744, 2012.

A. Masters, Magnetic reconnection at Uranus' magnetopause, Journal of Geophysical Research: Space Physics, vol.119, pp.5520-5538, 2014.

M. Podolak and R. T. Reynolds, The rotation rate of Uranus, its internal structure, and the process of planetary accretion, Icarus, vol.70, pp.31-36, 1987.

J. D. Richardson and C. W. Smith, The radial temperature profile of the solar wind, Geophysical Research Letters, vol.30, p.1206, 2003.

M. Schulz and M. C. Mcnab, Source-surface modeling of planetary magnetospheres, Journal of Geophysical Research, vol.101, pp.5095-5118, 1996.

T. Tanaka, Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields, Journal of Computational Physics, vol.111, issue.2, pp.381-389, 1994.

G. Tóth, D. Kovács, K. C. Hansen, and T. I. Gombosi, Three-dimensional MHD simulations of the magnetosphere of Uranus, Journal of Geophysical Research, vol.109, 2004.