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Chapter 1

Introduction

This thesis is about dynamical correlation between electrons effects in light absorption. This
study is conducted in the framework of theoretical ab-initio spectroscopy. I present here the
analysis of real materials spectra as well as the development of new technical and theoretical
approaches.

When light is absorbed by a material, its energy gives rise to a big variety of different
phenomena and is converted into excitations of the system, e.g., the creation of electron-
hole pairs, the excitations of collective vibrations (electrons and nuclei), or the emission of
particles. Each excitation may be the result of the direct absorption of light, or may be
induced by other excitations occurring in the system.

One strong point of theoretical spectroscopy is that it allows to select which physics to
include in the theory, to neglect at will some process or to focus specifically on others. Ab
initio spectroscopy therefore constitutes an indispensable tool to interpret experimental data
and to predict the behaviour of a system. Simple models, accounting only for few phenomena,
lead to simple interpretations, but are most often expected to give only qualitative trends.
Usually a better quantitative agreement comes with much more complicated models which
account for the physics of many processes taking place at the same time.

Dynamical effects describe the coupling between different excitations of the system and
are therefore a clear manifestation of the many-body nature of the electronic processes.
They are included in nowadays theoretical approaches only to a limited extent. In the
absorption spectrum, dynamical effects are responsible for the reduction of the spectral
weight of some structures, for the renormalization of energies, but also they may create
new features at higher energy which in many cases constitute a challenge for state-of-the-art
theories. Moreover they are potentially important for technological applications, hence a
quantitative theory to explain and predict their properties is more and more needed.

One example is the multiple exciton generation (MEG), where the absorption of a single
high-energy photon is converted into the creation of multiple electron-hole pairs (excitons).
Its possible applications are in the photovoltaic technology since the full exploitation of
this effect could ensure high currents even at low intensity. This process can be correctly
described only by including a dynamical coupling at the level of the electron-hole interaction.

In the present work I try to analyse successes and flaws of present theories, and I propose
some steps towards more efficient and precise calculations based on methodological and
theoretical advances.

1



1.1 An introduction to spectroscopy

The general framework of a spectroscopic experiment is depicted in Fig. 1.1. It is composed
by a source, a scatterer and an analyser. A perturbing (or external) field created by the
source interacts with the scatterer (for us an N-electron system). By effect of the interaction,
the field exchanges energy with the system, which consequently undergoes some excitations.
After the interaction, the outgoing field contains information on the exchanged quantities.
It is eventually analysed to get this information out and to reconstruct and characterise the
spectrum of the possible excitations of the system.

SCATTERER

SOURCE

PERTURBING FIELD

OUTGOING FIELD

ANALYSER

Figure 1.1: The perturbing field produced by the source impinges onto the scatterer (the system). The
outgoing field is measured and analysed.

The perturbing field is typically a beam of photons, electrons, neutrons or other particles
the sample can interact with. It must be characterised to some extent by the knowledge of
the source itself or by measuring some parameters of the field before the interaction with
the sample. For instance in photoemission spectroscopy or absorption experiments, the
perturbing field is a light radiation that can be characterised by its energy, polarization,
intensity and its angle of incidence. In electron energy loss spectroscopy, fast electrons pass
through a thin sample. The electron beam can be parametrised by the average kinetic energy
of the electrons.

On the other side of this scheme, far from the interaction point, the analyser measures
the field after the interaction with the sample . Typically it records the number of particles
at given energy and momentum, or the intensity of the outgoing field. Losses of energy and
modifications of the momentum are related to the exchanged quantities between the system
and the perturbing field, which gives insight into the excitations of the system.

How do we describe what happens in between?

Describing the system: independent particles and effective fields

The true N-electron system is completely characterised by its N-particle wave function
Ψ(r1, r2, . . . , rN , t), eigenfunction of the N-particle Hamiltonian H(t) which depends on time
in presence of a time-dependent perturbation. The external field excites the system from an
initial state Ψi to a final state Ψf . But already for few electrons, the knowledge of the exact
electronic wave function is out of reach, and different schemes have to be employed to try
an interpretation of the process.

In an independent-particle (IP) picture, each electron interacts only with the external
field. In this framework each electron behaves as if it were alone in the external field, the
description of its properties being completely independent of the presence of other electrons.
Correspondingly, the spectrum of the excitations of the whole system is just the weighted
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sum over all possible excitations of the electrons, as depicted schematically in Fig. 1.2. In
formulae the spectrum S(ω), function of the frequency of the incoming field ω, is computed
according to the Fermi’s golden rule

S(ω) ∝
∑

if

|Mif |2δ(Ef − Ei − ω) , (1.1)

where |Mif |2 is the energy-independent probability for one electron to be excited from the
initial state |i〉 of energy Ei to the final state |f〉 of energy Ef , and the delta-function ensures
energy conservation.

Va
le
nc

e
Co

nd
uc

tio
n

Ef-Ei

Figure 1.2: Pictorial representation of
the sum over states (1.1) in the case of
absorption. All electronic transitions of
energy Ef − Ei = ω, contribute to the
spectrum. ω is the photon energy.

But of course electrons are not blind to each other.
Mutual interactions between them always take place in
the form of the Coulomb potential, and the Pauli exclu-
sion principle. Some of these ingredients can be included
quite straightforwardly into an effective IP picture, and
the Pauli exclusion principle can be accounted for at the
level of occupation numbers for single particle states. A
way to include mutual interactions without losing the ad-
vantages of the IP picture is to introduce some effective
(mean) field. The effective field accounts implicitly for
the sum of the external field and the field resulting from
interaction with all other electrons. In this picture each
particle is still blind to the others, but every change of its
own state modifies the effective field which modifies back
the particle state, in a game of reciprocal (selfconsistent)
modifications.

The theories presented in the first chapters can all be
read in this view. In some cases (Chapters 3 and 4) we
will call our independent electrons “Kohn-Sham” electrons, and what will play the role of
the effective field will be composed by the Hartree and the exchange-correlation potential.
In other cases (Chapter 5) our independent particles will be called “quasiparticles” and the
effective field will be composed of the Hartree potential and the self-energy. Of course the
real scheme of these theories is much more refined than the sketch outlined above, but the
time is not yet right to go through the differences: the next chapters will be devoted to that.
At this stage I am interested only in clarifying the origin of the effective field.

1.2 Many-body interactions and dynamical effects

Let us divide the N-electron system into two subsystems: the one electron es, and all the rest
em. Knowing the Hamiltonian H of the system, the properties of the system are determined
by the eigenvalue problem

(
S C1

C2 M

)
·
(

es
em

)
= ω

(
es
em

)
with H =

(
S C1

C2 M

)

The block S is the Hamiltonian of a single electron; at an IP level, the description of the
process would reduce to H = S. The block M describes the rest of the system, and the two

3



coupling terms C1 and C2 describe the interactions between the electron of interest and all
the other electrons.

If now one solves the eigenvalue equation for the one-electron space only, one gets

[
S + C1(ω −M)−1C2

]
es = [S + Veff(ω)] es = ωes

which is still an eigenvalue equation written in the one-electron space only. To the purely
independent-electron Hamiltonian S the dynamical term Veff(ω) = C1(ω−M)−1C2 is added
which is nothing but an effective field which accounts for all mutual interactions of the
system. The folding of all the other electrons into an effective field allows, on one hand, to
solve the problem in the one-electron space, on the other hand, it spawns an extra dynamical
effective field.

What is the meaning of this dynamical dependence?

Dynamical potential and coupling between excitations

Everyday life tells us that in mutual interactions, the energy of one part strongly determines
the reaction of the other part. In descending from the metro, if you ask “excuse me” and you
move slowly, people will (hopefully) let you through without complaining; on the contrary,
if you start running all of the sudden, it is unlikely that they will react in the same way.

In a similar way, let an electron be excited at an energy Es. The rest of the system
reacts to this excitation in a way that, in general, depends on the energy of the excitation:
the other electrons change their state in response to the earliest excitation. This response is
dynamical and it may involve other one-particle excitations, collective excitations or more
complicated scattering events. Each of these processes to happen requires a transfer of a
certain energy Em from the first excitation to the rest of the system. The original excitation
is therefore coupled to the other excitations of the system.

That is the origin of the energy dependence of Veff(ω): it describes the transfer of energy
from the one-electron space to the rest of the system and, of course, vice-versa.

If now one imagines a system with an instantaneous reaction, the effect of the coupling
to the system can be expressed as a simple renormalization of the energy needed to excite an
electron. The effective potential becomes then energy-independent and all the de-excitation
channels are closed. As a consequence, excitations are decoupled and have an infinite lifetime
becoming stationary states of H = S + Veff.

1.3 Dynamical effects in real systems

I will now go more into detail in describing some dynamical effect in experimental and
theoretical spectra. I will focus mostly on two spectroscopic techniques to which I will often
refer in the rest of this work: photoemission and absorption.

1.3.1 Photoemission and plasmon satellites

In photoemission spectroscopy (PES), the probing field is a radiation of given frequency
ωph

1, impinging on the sample from a direction well characterised by the geometry of the

1Other parameters of the radiation field, such as the intensity or the polarization, may characterise the
beam as well, but they are not relevant quantities for our scopes.
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1.2 Spectroscopies

Figure 1.4: Schematic representation of an ARPES experiment.

1.2.2 Absorption and electron energy loss

In optical spectroscopies photons are used to probe the properties of the
system. A photon impinging on a sample can be either absorbed, or reflected
or transmitted. When it is absorbed, its energy is used to create a neutral
excitation of the system. In fact, in an independent-particle picture, an
electron is excited from occupied to empty states, conserving its crystal
momentum (photons have a negligible momentum). Since, contrary to
photoemission, the electron remains in the sample, it cannot be considered
decoupled from the other electrons.

Optical spectroscopies can be interpreted on the basis of the macroscopic
Maxwell equations [4][39]. In a medium, an electric field, polarized along the
ê direction, is a damped wave:

E(x, t) = E0êei ω
c
(nx−ct) = E0êei ω

c
(n1x−ct)e−

ω
c
n2x, (1.22)

where n is the complex refractive index n = n1 + in2. So the intensity of
the field is exponentially decaying:

I(x) = |E(x)|2 = E2
0e−2ω

c
n2x. (1.23)

The absorption coefficient α is the inverse of the distance where the intensity
of the field is reduced by 1/e:

α =
2ωn2

c
. (1.24)

Or, introducing the (macroscopic) dielectric function εM = ε1 + iε2 = n2:

α =
ε2ω

n1c
. (1.25)

13

photon beam analyser

Figure 1.3: Schematic experimental set up of a PES experiment: a light beam of energy ωph impinges
on the sample. The photoemitted electron is collected by the analyser which measures its kinetic energy
Ek = k2/2. From the geometrical configuration (angles ϕ and θ), the direction of the wave vector k can be
reconstructed (ARPES). Image taken from [1].

experimental set up. The measured outgoing field is composed by electrons (photo)emitted
from the sample. They are usually described as time-inverted scattering states [2] of kinetic
energy Ek propagating towards the analyser where their energy (and in angular-resolved
PES (ARPES) their momentum k) is (are) recorded. A schematic representation is found
in Fig. 1.3.

What is measured is the removal energy spectrum, that is the energy needed to extract
one electron from the system. Information about the removal energy spectrum of the system
is given by

Eb(k) = ωph − Ek(k)− Φ

where Eb is the binding energy of the electron and Φ is the work-function (essentially arising
from surface effects).

A simple description of photoemission is offered by the so called three step model [3]. In
this model the process is divided into the actual single-electron excitation due to the light
field, the drift of the excited electrons up to the surface, and finally the emission from the
surface to the analyser. More refined quantum-mechanical models (see e.g. [4]) have been
also developed depicting the entire process at once (one-step model).

A common approximation made in describing photoemission processes is the sudden
approximation (see e.g. [2]), where the second point of the three step model is neglected,
or in different words, the electron does not perturb the system during its propagation and
does not interact with the hole it left. Hence the picture becomes that of the instantaneous
creation of a hole inside the material.

The system passes from its N-particle ground state |N, 0; 0〉 to the state |N − 1,m; k〉
corresponding to a fully-interacting (infinite sum of Slater determinants) state of N-1 elec-
trons in the system plus plus the photoemitted electron of wave vector k. When the sudden
approximation is assumed, the many-body state |N − 1,m; k〉 ≈ |N − 1,m〉|k〉 is factorised
in the photoemitted electron |k〉 and the rest |N − 1,m〉. The problem is then solved only

5



for the electrons of the system, disregarding the emitted particle. In this approximation, the
photocurrent of the emitted electrons Jk(ω) assumes the form

Jk(ω) =
∑

i

|∆k,i|2Aii(Ek − ω) (1.2)

with ∆k,i matrix elements and the spectral weight Aii(ω) = 〈i|A(r, r′, ω)|i〉 projected onto
the single-particle basis set |i〉. The quantity Aii(ω) reads

Aii(ω) =
∑

m

fimf
∗
imδ(ω − Em) (1.3)

with fim = 〈N, 0|ĉ†i |N − 1,m〉 the probability amplitude for the N-electron system to be
excited to the m-th state of the the (N-1)-electron system. Note that, although its similarity
with (1.1), in this expression states |N, 0〉 and |N − 1,m〉 are fully interacting many-body
states.

In an independent-particle picture, each many-body state is represented by one single
Slater determinant. The creation of a hole in the state |i〉, that is the exclusion of the
state |i〉, in the construction of the determinant, does not change the other single-particle
states. The state ĉi|N, 0〉 = |N − 1, i〉 is constructed with the N lowest energy states with
the exception of the state |i〉. Therefore only one state |N − 1,m〉 is accessible, namely the
one for which m = i. Correspondingly f IPim = fiδim and the spectral function Aii(ω) reduces
to a delta-function at energy

EIP
i = EN IP

0 − EN−1 IP
i

If one allows electrons to interact, then the IP delta-peak broadens and loses part of
its spectral weight, becoming what is called a quasiparticle peak. Even though the energy
of the peak is shifted with respect to the IP peak, one can often establish a one-to-one
correspondence between the two. The broadening of the quasiparticle peak is inversely
proportional to the lifetime of the excitation (and indeed it is infinite in the independent-
particle picture). The weight lost by the peak because of the broadening is moved to extra
structures appearing at higher binding energies: the satellites which have no equivalent in
the IP picture. A comparison between the independent-particle and an interacting spectral-
function is given in Fig. 1.4.

Let us give a qualitative example: let us imagine that the creation of the hole in the
state |i〉 is coupled with a bosonic excitation (for example a plasmon) of energy ω̃. The
probability amplitude fim 6= 0 for several states labelled m = i0, i1, i2, ... each corresponding
to a different (N-1)-electron state with a hole in |i〉. At a first level of approximation, these
states can be described as corresponding to the creation of the hole alone |N − 1, i0〉, the
creation of the hole plus the excitation of one boson |N − 1, i1〉, plus two bosons |N − 1, i2〉,
and so on. The spectral function Aii(ω) has peaks at energies

EN
0 − EN−1

i0
= Ei0

EN
0 − EN−1

i1
= Ei1 ≈ Ei0 − ω̃

EN
0 − EN−1

i2
= Ei2 ≈ Ei0 − 2ω̃

and so on.
This is exactly what is observed, for example, in bulk Si [5]. In Fig. 1.5 I report the

integrated spectral function A(ω) =
∑

iAii(ω) of the photoemission spectrum from the
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valence bands of Si at photon energy ωph = 800 eV. The first peaks, with a binding energy
between 0 and -12 eV, correspond to three quasiparticle peaks (Ei0 , Ej0 and Ek0). Beyond
them, other structures are visible at integer multiples of the plasmon frequency ω̃ ∼ 16
eV: the first group of satellites are approximately at energies Ei0 − ω̃,Ej0 − ω̃, Ek0 − ω̃ and
similarly for farther satellites. Their presence is a clear sign of the coupling between different
excitations of the system, that is of the dynamical effects in the photoemission process.

1. Introduction

Figure 1.5: In an independent particle model, excitations measured by pho-
toemission are series of delta peaks. When interactions are taken into account,
the peak is shifted, and, since the lifetime of the excitation is finite, it is broad-
ened. It has become a quasiparticle peak. Moreover, in addition to the main
quasiparticle peak, new structures can appear. They are the satellites. From
Ref. [54].

or with collective excitations of the system. In the excitation spectrum the
delta peak of the independent-particle model is broadened and renormalized
(see Fig. 1.5). Moreover, in addition to the quasiparticle peak, the interaction
between the different excitations can produce also further structures: the
satellites. In particular, the presence of satellites in the spectral function
is due to the fact that screening of Coulomb interaction is essentially a
dynamical effect. This, in turn, can lead to a transfer of spectral weight from
the coherent one-quasiparticle part of the spectrum to the incoherent part
associated to satellites.

A photoemission spectrum is much richer than in an independent-particle
model. In fact, the fingerprints of electronic interactions are immediately
visible in a one-particle excitation spectrum (see Fig. 1.5). For this reason
it is particularly important to be able to extract the information contained
in these spectra, in order to describe the electronic properties of the many-
electron system.

1.3.2 From Wigner and Mott to strong correlations

The homogeneous electron gas, in the high-density limit (small rs), when the
kinetic energy dominates, is the simplest model for metals. But, since the
kinetic energy has a r−2

s dependence and the Coulomb energy is proportional

20

Satellite

quasiparticle

(interacting)

independent-particle

 

Figure 1.4: In the independent-particle picture the
spectral function Aii(ω) is a delta-function. When
the interaction between electrons is included, the
peak is shifted (quasiparticle peak) and broadened.
Correspondingly satellite structures arise at higher
energy. Image taken from [1].

Figure 1.5: Valence band photoemission spectrum
of Si measured at ωph = 800 eV. Satellites are ob-
served distances nω̃ from the quasiparticle peaks.
Here n = 1, 2, 3 and ω̃ ∼ 16 eV is the plasmon en-
ergy. Image kindly given by M. Guzzo [5] and F.
Sirotti [6].

1.3.2 Light absorption and multiple exciton generation

A basic set up of an absorption experiment is quite simple: from one side of the sample, the
source irradiates a target of thickness d and from the other side, in axis with the beam, an
analyser (such as a photodiode) measures the intensity of the transmitted field. Knowing
the intensity I0(ω) of the radiation before the sample, and the transmitted intensity I(ω),
the extinction coefficient

κ(ω) =
c

2dω
log

[
I0(ω)

I(d, ω)

]
with c speed of light in vacuum (1.4)

can be measured. Structures of κ(ω) individuate energies where light is absorbed to excite
the system.

In an independent particle picture, light absorption takes the form of Fermi’s golden rule
(1.1) where the initial state |i〉 = |v,k〉 is in the valence band with energy Ei = Ev(k), and
the final conduction state |f〉 = |c,k + q〉 has energy Ef = Ec(k + q). q is the momentum
transferred from the radiation field to the sample (q ≈ 0 in optical absorption). In this
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picture each peak of the spectrum can be directly related with the band structure of the
material (cfr. section 6.4.2 and subsequent).

But the real scenario is much more complicated: a more correct interpretation of the
process implies the simultaneous creation of an electron and a hole. Each of the two particles
may be described separately, as discussed in the case of photoemission (broad quasiparticle
peak, plasmon satellites), but in addition the two particles (of different charge) attract each
other. They form a neutral state: the e-h pair called also exciton. The exciton interacts as
a whole with the other electrons of the system; its energy Eexc can be transferred to other
excitations.

For example let us imagine an exciton coupled with a boson reservoir (e.g. other excitons)
which need an energy Eλ to be excited. The possible spectrum of the creation of the excitonic
state could be

Eexc if no additional exciton is created, or

Eexc + Eλ if one additional exciton is created, or

Eexc + 2Eλ if two additional excitons are created,...

and so on, similarly to what seen in the photoemission case. Similarly we can imagine that
a photon of high energy ω′ph is absorbed by an exciton of energy Evc. Successively the high
energy exciton may decay transferring part of its energy to the boson reservoir hence exciting
one or more bosons of energy Eλ. Therefore the same photon ω′ph may give rise to different
final states of energy

Evc one high energy exciton state, or

(Evc − Eλ) + Eλ one energetic exciton and one boson, or

(Evc − 2Eλ) + 2Eλ one exciton and two bosons,...

This scheme depicts what happens in the multiple exciton generation process, where the
boson reservoir is composed by other excitons.

In Chapter 5 a more appropriate formalism is introduced and in Chapter 10 these concepts
are developed on a more rigorous way constituting the theoretical developments of this work.

1.4 Multiple exciton generation and solar energy pro-

duction

What is described qualitatively at the end of the last section is the fact that the dynamical
coupling between electron-hole excitations may give rise to multiple excitation processes. Of
this kind is the multiple exciton generation (MEG).

The main process leading to MEG in real materials is the so called impact ionization
[7], which can be schematically described in two steps depicted in Fig. 1.6. A first step

is the creation of one single exciton |vc〉 of energy E
(1)
vc due to the absorption of a high

energy photon. At a second step, scattering events take place between the “hot” exci-
ton and the other particles of the system. Consequently, a part Ev′c′ of its energy can
be transferred to the system with a resulting creation of another exciton of energy Ev′c′ ,
while the first one is now left with energy E

(2)
vc = E

(1)
vc − Ev′c′ . For this process to hap-

pen, the earliest exciton energy must be at least E
(1)
vc > 2Egap with Egap the optical gap
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of the system, but the phenomenon starts usually to be appreciable at higher photon en-
ergies [8, 9]. If the energy E

(1)
vc is high enough, impact ionization can occur many times.

 

Figure 1.6: Pictorial representation of
the impact ionization process: first a high-
energy exciton is created, successively it
looses part of its energy to create an ad-
ditional e-h pair.

This process is not the only way for an exciton
to decay: the exciton may transfer energy to other
excitations, like phonons, and, most important, e-h
hole recombination may be favoured. However in con-
fined system and especially in nanostructured materi-
als (see e.g. [9–11]) the exciton generation may involve
a charge transfer process, i.e. the electron and the hole
of the e-h pair are localised in different regions of the
material, for instance in two neighbouring nanoparti-
cles. This charge separation actually hinders the direct
recombination of the e-h pair, and other channels of
de-excitation, such as MEG, become more probable.

These two ingredients (the charge separation and
the enhancement of MEG rate) make nanostructured
materials excellent candidates for the production of
efficient solar cells. The ideal HOMO-LUMO gap of a
solar device should be in the range 1-1.6 eV, in order

to absorb light where the solar spectrum attains its maximum intensity. MEG is believed to
improve significantly the solar conversion efficiency [7, 10, 12] because it may ensure a higher
charge carrier production rate, even in low intensity regions of the solar emission spectrum.

Theoretical works devoted to the prediction of the lifetime [10], exciton generation rates
[13], conversion efficiencies [7] carrier multiplication rates or the free carrier density have
been carried on, but no quantitative prediction of the full absorption spectrum in presence
of MEG has been given. As explained in this introduction, the correct description of MEG
passes through the correct description of dynamical effects in the e-h interaction.

Figure 1.7: Solar emission spectrum. Image taken from [14].
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In this thesis I show the performances and limitations of today’s state-of-the-art calcula-
tions of optical spectra taking the example of SrTiO3 (Chapter 6), I discuss dynamical effects
in electronic spectra of carbon nanostructures (Chapters 7 and 8), I introduce methodolog-
ical developments for a more efficient and precise description of these effects (Chapter 9)
and I develop a new theoretical approach to the ab-initio description of dynamical effects in
absorption spectra, and hence, amongst other phenomena, to the prediction of MEG.
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Part I

Ab initio theoretical spectroscopy
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Chapter 2

Dielectric theory and theoretical
spectroscopy

This chapter is devoted to the connection between the microscopic description of the dielectric
properties of a material and their macroscopic description in terms of measurable fields.

Starting from Maxwell’s equation in matter, and assuming a linear response of the ma-
terial, I will introduce the microscopic dielectric tensor which connects the external field to
the total field.

In order to link the microscopic description with a macroscopic picture, the macroscopic
average of microscopic components of a field is then defined rigorously on a periodic lat-
tice. This will lead me to the definition of the macroscopic dielectric function which I will
eventually link to the microscopic dielectric function through equation (2.19).

Once the micro-macro connection in the context of dielectric theory is established, I will
give a general presentation of electron energy loss spectroscopy and absorption spectroscopy,
with particular emphasis on what is measured in experiments and its link to the dielectric
properties of the matter.

2.1 An introduction to dielectric theory

2.1.1 The microscopic dielectric constant

The microscopic Maxwell’s equations in presence of matter read, in the Fourier space,

k× E(k, ω) =
ω

c
B(k, ω) (2.1)

k×H(k, ω) = −i4π
c

Jext(k, ω)− ω

c
D(k, ω) (2.2)

k ·D(k, ω) = −i4πρext(k, ω) (2.3)

k ·B(k, ω) = 0 (2.4)

where c is the speed of light and the dielectric displacement D and the magnetization field
H are defined by their constitutive relations

D(k, ω) := E(k, ω) + 4πP(k, ω) and H(k, ω) := B(k, ω)− 4πM(k, ω) . (2.5)

In writing the two equations (2.5) a distinction is made between the induced fields (P
and M), the external fields (D and H) and the total fields inside the material (E and B).
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The polarization field, expressed as a functional P[E] of the total field, is self-consistently
related to E.

For low intensities of the total field E, a linear response can be assumed, consequently
the electric displacement reads

D(k, ω) =

∫
←→ε (k,k′, ω)E(k′, ω)dk′ (2.6)

which defines the microscopic dielectric tensor ←→ε (k,k′, ω).

2.1.2 Longitudinal-longitudinal framework

The equations above are expressed in a Cartesian system of reference. However, in order to
reduce the complexity of the problem, it is convenient to leave such a system of reference in
favour of a longitudinal-transverse reference.

Be A(k) a (vectorial) quantity depending on k (k = |k|), and be k̂ = k/k the unitary
vector (versor) pointing in the direction of k, then the vector A can be decomposed into
a longitudinal part AL(k) := k̂[k̂ ·A(k)] and a transverse part AT (k) := A(k) − k̂AL(k),
where AL = |AL|.

Decomposing D and E on this system of reference, equation (2.6) reads

Dν(k, ω) =
∑

µ=L,T

∫
ε̃νµ(k,k′, ω)Eµ(k′, ω)dk′ with ν = L or T (2.7)

where the dielectric tensor written in this system of reference ε̃ is a matrix of components2

ε̃(k,k′, ω) =

(
ε̃LL(k,k′, ω) ε̃LT (k,k′, ω)
ε̃TL(k,k′, ω) ε̃TT (k,k′, ω)

)
.

In particular, if one focuses on the longitudinal-longitudinal framework, only scalar quan-
tities are involved and the expressions are simplified. The electric field in general is given by
the scalar potential Vtot and by the vector potential A according to

E(k, ω) = iωA(k, ω)− ikVtot(k, ω) .

Setting the vector potential to zero3, only the longitudinal component −ikVtot(k, ω) is left
and E(k) = EL(k) = −ikVtot(k). The longitudinal component of D(k) is then obtained
from expression (2.7):

DL(k, ω) =

∫
ε̃LL(k,k′, ω)EL(k′, ω)dk′. (2.8)

2Note that taking the Cartesian axis z along k, longitudinal components are all parallel to z. Corre-
spondingly ε̃LL is scalar. Transverse components, on the other hand, lay on the xy plane, so ε̃LT and ε̃TL

are a row and a column vectors of 2 components and ε̃TT is a 2× 2 matrix.
3In the LT reference system the electric field decomposes

EL(k, ω) = iωk̂
[
k̂ ·A(k, ω)

]
− ikVtot(k, ω) and ET =

[
iωk̂×A

]T

from which one sees that A = 0 gives a purely longitudinal electric field.
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One can now introduce an external potential Vext such that D(k, ω) = −ikVext(k, ω); by
defining ε(k,k′, ω) = k′

k
ε̃LL(k,k′, ω), equation (2.8) becomes a scalar equation linking the

two potentials

Vext(k, ω) =

∫
ε(k,k′, ω)Vtot(k

′, ω)dk′ . (2.9)

The last equation (2.9) is one of the crucial passages of this chapter: the longitudinal-
longitudinal dielectric function ε(k,k′, ω) is here defined as the ratio between the external
and the total potentials. This quantity can be computed from ab-initio techniques which
will be explained more in detail in Chapters 4 and 5. The interest of this chapter is bridging
the gap between the microscopic description of the dielectric properties of a material and the
macroscopic potentials measured in real experiments. The main result of the microscopic
description of matter is equation (2.9).

Let us now tackle the macroscopic framework.

2.1.3 Macroscopic average of microscopic quantities

The physics we want to describe is that of a sample perturbed by an external field which is
controlled and characterised up to a certain extent by the experimentalist. The electrons of
the sample react to the perturbation establishing an induced field inside the material which
adds to the perturbation. In formulae,

Etot = Eext + Eind . (2.10)

The external field Eext is what the observer uses to probe the system. Therefore it varies
on a macroscopic scale. On the other hand, the induced field reacts to very microscopic
variations and Eind is consequently and intrinsically a microscopic field. The same is valid
for the measured (total) field Etot, because it contains the induced field, even though only
macroscopic components of Etot are actually measured.

If the Fourier component of a field (let us take Etot(k)) is such that 2π/k � a where a is
a typical length of the atomic structure (such as the cell parameter or an (average) nearest
neighbour distance), then the component Etot(k) is said to be macroscopic, otherwise it is
microscopic. With these definitions we can now give a more rigorous definition of what is a
macroscopic average of the microscopic components.

Macroscopic average in periodic systems

Since I will always treat periodic systems throughout the next chapters, I will give a definition
of macroscopic average in such systems. Moreover I will split a generic wave vector k = q+G
into a long-wavelength component q, continuously varying inside the first Brillouin zone, and
short-wavelength component G. Accordingly the compact notation A(k) = AG(q) will be
introduced .

Let us take the generic scalar potential A(r, ω) which varies rapidly inside a cell volume,
and let us define R as the position in space of the center of the cell, then the macroscopic
average of A is

AM(R, ω) = 〈A(r, ω)〉R =
1

Vcell

∫

V(R)

A(r, ω)dr (2.11)
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where Vcell is the volume of the unitary cell and the integral is performed inside the unitary
cell centred in R. At a microscopic scale, R is a discrete variable, but at a macroscopic scale
it varies continuously.

Let us now pass to the reciprocal space:

A(r, ω) =
1

(2π)3

∑

G

∫
AG(q, ω)ei(q+G)·rdq =

1

(2π)3

∫
A(q, ω; r)eiq·rdq

where the function
A(q, ω; r) =

∑

G

AG(q, ω)eiG·r . (2.12)

is the sum of all microscopic components, each of which has at least the period of the cell.
The macroscopic average in Fourier space is then defined analogously to (2.11)

AM(q, ω) = 〈AM(q, ω; r)〉R =
1

Vcell

∫

V(R)

A(q, ω; r)dr . (2.13)

Remembering the definition (2.12) and exploiting the periodicity in real space of A(q, ω; r),
expression (2.14) eventually reduces to

AM(q, ω) = A0(q, ω) (2.14)

since only the integral of the G = 0 component does not vanish.

2.1.4 Micro-macro connection

We have now all the ingredients to establish the link between dielectric properties at a
microscopic scale and at a macroscopic scale.

I rewrite the microscopic relation (2.9) in the case of a periodic system

V G
ext(q, ω) =

∑

G′

εGG′(q, ω)V G′
tot (q, ω) . (2.15)

In the context of spectroscopy, the external field is purely macroscopic, hence the last equa-
tion reads

V 0
ext(q, ω) =

∑

G′

ε0G′(q, ω)V G′
tot (q, ω) . (2.16)

Then one defines the macroscopic dielectric function εM(ω) as the scalar function satis-
fying the relation

V 0
ext(q, ω) = εM(q, ω)V 0

tot(q, ω) . (2.17)

Note that this is the definition of the macroscopic dielectric function.
The micro-macro connection is accomplished when εM(ω) is written in terms of εGG′(q, ω).

One might try to consider only the G′ = 0 component in (2.16), but in this way all micro-
scopic components of V G′

tot (q, ω) are neglected (neglect of local fields, cfr. Chapter 4.5.3).
Instead, one can account for all G′ by inverting (2.16):

V 0
tot(q, ω) = ε−1

00 (q, ω)V 0
ext(q, ω) . (2.18)

and consequently

εM(q, ω) =
1

ε−1
00 (q, ω)

(2.19)
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2.1.5 Why longitudinal framework?

For some kind of spectroscopic techniques, as electron energy loss spectroscopy (EELS), the
perturbation and the response are indeed longitudinal and the use of the LL framework is
completely justified at any wave vector q.

Instead, in the case of light absorption, the perturbation is a transverse field. The
transverse case though is much more difficult to treat. At the present date, few reliable
calculations of optical spectra have been done in this framework.

However, if the transferred momentum is negligible (q ≈ 0, optical transitions), then
transverse and longitudinal parts can be related one to the other. In this limit, and in the case
of cubic symmetry (isotropic materials), the transverse and the longitudinal part coincide.
For lower-symmetry crystals, one can still compute the transverse-transverse components
from a longitudinal-longitudinal component, but some care must be paid on the direction
along which the limit q→ 0 is taken.

2.2 Connection with some spectroscopic technique: EELS

and absorption

2.2.1 Angle-resolved electron energy loss spectroscopy

The electron energy loss spectroscopy (EELS) consists in impinging on the sample with a
beam of electrons. The source (e.g., a transmission electron microscope) irradiates a beam
of fast, but still non-relativistic, electrons (kinetic energy ∼ 100 keV) onto a thin sample. If
sufficiently broad, the electron beam can be modelled by a single plane wave of wave vector
k and energy E = k2/2.

Because of the high kinetic energy of the electrons of the beam, exchange effects between
the electrons of the system and the perturbing field can be neglected. The interaction is
therefore approximated with the classical Hartree interaction between the electron density
ρint of the system and that of the electron beam ρext. The Hartree potential felt by the
electrons of the system at the point r is

VH(r) =

∫
ρext(r

′)

|r− r′|dr
′ .

Far from the sample an analyser collects the outgoing electrons within a solid angle
dΩ. The exit kinetic energy Ek′ = k′2/2 of the scattered electrons is also measured within
a precision dE. The set up allow then for a measurement of the exchanged momentum
(q + G) = k − k′ and exchanged energy ω = Ek − Ek′ , G being a reciprocal space vector
assuring crystal momentum conservation.

From these elements one can compute the inelastic differential cross section (see e.g.
[15, 16]), ∂2σ

∂Ω∂ω
defined as the probability for an electron of initial wave vector k to be

scattered into a state of wave vector k′ within a solid angle dΩ losing an energy ω ± dE/2
∂2σ

∂Ω∂ω
=
k′

k

[
1

4π
v(q + G)

]2

SG(q, ω) ,

where v(q+G) = 4π/|q+G|2 is the Coulomb potential and SG(q, ω) is the dynamical struc-
ture factor. It describes the properties of the sample and it does not depend on the electron
beam nor on the interaction potential between the scatterer and the incident electrons.
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The dynamic structure factor SG(q, ω) can be generalised [17] to the matrix

SGG′(q, ω) =
1

2π

∫
eiωτ 〈0|n̂(q + G, τ)n̂+(q + G′, 0)|0〉dτ

which is a density-density correlation function, with n̂ density operator in the Heisemberg
picture. The dynamical structure factor is the diagonal SG(q, ω) = SGG(q, ω).

Through a generalization of the fluctuation-dissipation theorem [16, 18] it is finally pos-
sible to link S to the inverse dielectric function ε−1 according to

SGG′(q, ω) = −|q + G|2
4π2

=[ε−1
GG′(q, ω)]

which leads to a differential cross section

∂2σ

∂Ω∂ω
= −k

′

k

1

16π3
v(q + G)=[ε−1

GG(q, ω)] . (2.20)

The latter equation contains the important result of this small revision of the EEL spec-
troscopy: the differential cross section gives access to the diagonal elements of the inverse
(longitudinal-longitudinal) microscopic dielectric function.

For an exhaustive introduction on EELS we refer the reader to [19].

2.2.2 Light absorption

The propagation of the electromagnetic radiation inside a material is completely described
by the refractive index n, a vector with complex entries, related to the dielectric properties
through Fresnel’s equation.

In the case of an isotropic material (e.g. cubic crystal), Fresnel’s equation reduces to a
scalar equation4 which is solved by the complex refractive index n(ω)

√
εM(ω) = n(ω) = ν(ω) + iκ(ω) (2.21)

After travelling a distance z inside an absorbing isotropic medium, the intensity I(z, ω)
of a monochromatic wave

E(z, t) = E(n, ω)e−iω(t− ν
c
z)e−

ω
c
κz

is damped to
I(z, ω) = |E(z, t)|2 = I0(ω)e−2ω

c
κ(ω)z

where I0(ω) = |E(ω)|2 is the intensity of the radiation at z = 0 (for instance at the sharp
surface of the sample) and c is the speed of light in vacuum.

If d is the travelled distance, the imaginary part of the refractive index is measured
according to formula (1.4). ν(ω) and κ(ω) are connected by the Kramers-Kronig relations

ν(ω) = 1 +
2

π
P
∫ ∞

0

κ(ω′)

ω′ − ωdω
′ and κ(ω) = − 2

π
P
∫ ∞

0

ν(ω′)− 1

ω′ − ω dω′ (2.22)

4For non isotropic materials, Fresnel’s equation is a polynomial equation of the fourth order in each
Cartesian component of n(ω). The relation linking n(ω) to the dielectric tensor is therefore much more
complicated.

18



where P denotes the Cauchy principal value. Through the Kramers-Kronig relations, one can
measure only one of the two optical functions over a wide range of energies and reconstruct
the second. The full refractive index n(ω) is then obtained and so is the macroscopic dielectric
function εM(q, ω)|q=0 at vanishing q (optical absorption).

So the measure of κ gives access to the imaginary part of εM , or, because of (2.19),

Abs(ω) = lim
q→0
=[εM(q, ω)] = lim

q→0
=
[

1

ε−1
00 (q, ω)

]
. (2.23)

2.3 Summary

In this Chapter three important results have been obtained. They will be used throughout
the entire work, it is therefore worthwhile to summarise them here.

• From microscopic Maxwell’s equation in matter, the microscopic dielectric tensor has
been defined. Working in a purely longitudinal framework, the definition of the dielec-
tric function

V G
ext(q, ω) =

∑

G′

εGG′(q, ω)V G′
tot (q, ω) (2.15)

has been given.

• Once I have introduced the concept of macroscopic average over microscopic compo-
nents, the definition of the macroscopic dielectric function has been introduced:

V 0
ext(q, ω) = εM(q, ω)V 0

tot(q, ω) . (2.17)

• The connection between microscopic and macroscopic dielectric properties is finally
found accounting for all microscopic components of V G

tot(q, ω) (local fields).

εM(q, ω) =
1

ε−1
00 (q, ω)

. (2.19)

Moreover two spectroscopic techniques have been briefly introduced. They give direct
access to the dielectric properties. The main relations (neglecting prefactors) are

EELS(q, ω) = −=
[
ε−1
GG(q, ω)

](
= −=

[
1

εM(q, ω)

]
if G = 0

)
(2.24)

Abs(ω) = lim
q→0
=
[

1

ε−1
00 (q, ω)

]
= lim

q→0
= [εM(q, ω)] (2.25)
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Chapter 3

Density-Functional Theory

In this chapter I will briefly revise Density-Functional Theory. It was introduced in the mid
sixties by Hohemberg, Kohn and Sham [20, 21], and is one of the most fruitful theories in
electronic structure calculations.

I will touch on its conceptual justification, explaining its fundamental theorems and high-
lighting their implications. Then I will focus on the Kohn-Sham system, which maps the
interacting many body problem onto a non-interacting N-particle problem which has the same
electron density as the real system.

To this aim, a non-interacting Hamiltonian is defined via the introduction of an effective
potential that has to be approximated. I will present one of the most widely used approxi-
mations, the Local Density Approximation (LDA), which will be employed in all calculations
presented in this thesis.

Finally I will show that a physical interpretation of electronic properties based on the
Kohn-Sham system, together with the prediction of quantities else than the ground state den-
sity, is often reasonable, although not rigorously justified. The independent-particle picture
of the Kohn-Sham system rarely gives quantitatively accurate results for excited states, and
one has to go beyond DFT.

3.1 Solving the many-body problem

The problem of predicting all the properties of a non-relativistic N-electron system in pres-
ence of a static background5 is equivalent to that of solving the Schrödinger equation
ĤΨk = EkΨk with the Hamiltonian

Ĥ = −1

2

N∑

i=1

∇2
i +

N∑

i=1

Vbgr(ri, {r̃}) +
1

2

∑

i 6=j

1

|ri − rj|
. (3.1)

The Hamiltonian of the N-electron system is the sum of the kinetic energy 1
2
∇2
i of each

electron, the background potential Vbgr(ri, {r̃}) characterised by a set of parameters {r̃}
(typically the position of nuclei) and of the Coulomb interaction v(ri, rj) = 1

|ri−rj | between

5In assuming the background field to be static, I intrinsically assume the Born-Oppenheimer approxima-
tion. Atoms are kept fixed so that the electronic problem is decoupled from the nuclear problem.

21



all electrons excluding the self-interacting term (i 6= j)6. Note that the shape of the mu-
tual interaction v and the kinetic term are always the same in whatever system, so the
characteristics of the system are given only by the background Vbgr.

Solving the Schrödinger equation with (3.1) is a desperate task, but fortunately it is not
compulsory. Indeed the knowledge of the N-body wave function Ψ(r1, ..., rN) gives access
to all possible properties of the N-particle system, which is not what one is usually looking
for. In all practical situations one wants to predict the expectation value of some observable,
e.g. the total energy, or to estimate some other property, such as the direct gap. The wave
function of the system carries too much information with respect to real needs. Therefore
one is interested in recasting the N-particle problem in a much simpler form in order to
access only the observables of interest.

Reducing the complexity of the problem in order to compute only the properties of
interest is the underlying philosophy of Density-Functional Theories, which are the subject
of this chapter and the next one.

3.2 Foundations of Density-Functional Theory

With the works of Hohenberg and Kohn [20] and Kohn and Sham [21] in the mid sixties
one of the most fruitful theories in electronic structure calculations was born:, the Density-
Functional Theory (DFT). Its theoretical foundations stem from two theorems that identify
the electronic density as the basic quantity for solving the many-body problem. The attention
is then moved from a 3N-variable quantity Ψ(r1, ..., rN) to the 3-variable quantity ρ(r).

I will state the theorems and give a physical intuition of what they mean, but I will not
prove them. For more details about the two theorems mostly all books on modern electronic
theory treat DFT in a complete way. I will refer in particular to R. M. Martin’s textbook
Electronic Structure: Basic Theory and Practical Methods [22].

Theorem 1: For any system of interacting particles in a background potential Vbgr(r, {r̃}),
the potential Vbgr(r, {r̃}) is determined uniquely, except for a constant, by the ground
state particle density ρgr(r, {r̃}).

This theorem proves the bijective relation between the potential Vbgr and the ground state
density ρgr. This theorem states that the whole Hamiltonian can be in principle determined
by the knowledge of the ground state density ρgr because the kinetic and the electron-electron
terms are universal in the sense that they do not depend on the specific system (or that is
the same, on the set of parameters {r̃}).

Theorem 2 : A functional for the energy E[ρ] in terms of the density ρ(r) can be defined,
valid for any background potential Vbgr(r, {r̃}). For any particular Vbgr(r, {r̃′}), the
exact ground state energy of the system is the global minimum value of this functional,
and the density ρgr(r, {r̃′}) that minimizes the functional is the exact ground state
density.

6The notation Vbgr is not standard. Usually people speak of “external field” in this context, as done
by the book [22] I will refer to. Actually the term “external field” will be introduced in next chapter to
designate a time-dependent perturbation. To prevent confusion, I prefer the notion of background field.
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This theorem completes the previous one by offering a way to find ρgr(r). Indeed by
minimising the energy functional E[ρ] the ground state density is found as the density for
which the functional attains its global minimum E0. Unfortunately the energy functional
E[ρ] is in general unknown and one has to rely on approximations.

3.2.1 The energy functional

With the two Hohenberg and Kohn theorems, the passage from the wave function Ψ to the
density is accomplished. They prove that all properties of the system can be expressed as
proper functionals of the density ρ(r), and in particular the total energy of the system is a
functional of the form

E[ρ]({r̃}) = 〈Ψ[ρ]|Ĥ[ρ]|Ψ[ρ]〉 =

∫
Vbgr(r, {r̃})ρ(r)dr + F [ρ] (3.2)

where F = T [ρ] + W [ρ] is an unknown functional. It has the property of being universal,
in the sense that it does not depend on the characteristics of the system (that is on the
external parameters {r̃}). It is composed by a the kinetic term T [ρ] = −〈1

2

∑
i∇2

i 〉 and by
an interaction term W [ρ] = 〈1

2

∑
ij |ri− rj|−1〉. Both T [ρ] and W [ρ] are not known and they

have to be approximated.

The Thomas-Fermi-Dirac functional

The homogeneous electron gas (HEG), is completely characterised by its density ρHEG which
is constant in the whole space. Therefore the energy functional FHEG[ρ] = FHEG(ρ). The
functional W [ρ] = EH [ρ] + Ex[ρ] + Ec[ρ] can be separated into a Hartree (classical) term,
a Fock (exchange) term and a correlation term. Except for the correlation term, both the
exchange and the Hartree components can be expressed as analytic functions of the density
ρ, and similarly for the kinetic term.

This property of the HEG has been used in the past to try a first approximation of
equation (3.2) well before the theorems of Hohenberg and Kohn. The Thomas-Fermi-Dirac
(TFD) approximation [23–25] assumes the energy density of the real system to be locally
the same as that of the HEG:

F TFD[ρ] =

∫
ρ(r)fHEG(ρ(r))dr

=
3

10
(3π2)

2
3

∫
ρ

5
3 (r)dr +

1

2

∫
ρ(r)ρ(r′)

|r− r′| drdr
′ − 3

4

(
3

π

) 1
3
∫
ρ

4
3 (r)dr . (3.3)

The first and the third terms are the local-density approximation of the kinetic term T [ρ],
and the exchange term respectively, the second is the exact Hartree contribution. Correlation
terms are still missing (Ec[ρ] ≈ 0).

What poses a problem in this approximation is the kinetic term. Indeed through the virial
theorem it can be shown [26] that T is of the same order of magnitude as the total energy
of the system. The TFD approximation has the merit to demonstrate the big advantage
of working with functionals of the density, but the assumptions used to model the kinetic
term are too crude. Better approximations are therefore needed to be used in practical
calculations.

A different approach to the minimization of the energy E[ρ] has been proposed in 1965
by the work of Kohn and Sham [21].
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3.3 The Kohn-Sham system and the exchange-correlation

potential

The Kohn-Sham scheme relies on an auxiliary independent-particle system subject to an
effective potential VKS[ρ](r). The KS system has the property that it has the same ground
state density as the interacting system: ρKS

gr (r) ≡ ρgr(r).
For both the interacting and the Kohn-Sham systems the Hohenberg and Kohn theorems

are valid. As a consequence one and only one Kohn-Sham potential VKS[ρ](r) is associated
to each interacting system Vbgr(r, {r̃}). A bijective relation Vbgr(r, {r̃}) ↔ VKS[ρ](r) is then
established. The price of working with an independent-particle system is paid by introducing
the unknown potential

VKS[ρ](r, {r̃}) = Vbgr(r, {r̃}) + VH [ρ](r) + Vxc[ρ](r) , (3.4)

where the external and the Hartree potentials are the same as those of the real system and
where the extra exchange-correlation potential Vxc[ρ](r) is the unknown part.

In defining the exchange-correlation energy as

Exc[ρ] := F [ρ]− EH [ρ]− TKS[ρ] =
(
T [ρ]− TKS[ρ]

)
+ (W [ρ]− EH [ρ]) , (3.5)

the exchange-correlation potential is defined as

Vxc[ρ](r) :=
δExc[ρ]

δρ(r)
. (3.6)

The exchange-correlation energy Exc can be split into two terms, the first
(
T [ρ]− TKS[ρ]

)

accounts for the difference between the kinetic energies of the real system and the independent-
particle one, the second (W [ρ]− EH [ρ]) includes the non-Hartree components of the particle-
particle interaction W [ρ].

3.3.1 The Local Density Approximation

The KS scheme shifts the problem of approximating the functional F [ρ] to that of approx-
imating the exchange-correlation energy Exc[ρ]. Since the contribution of Exc to the total
energy is smaller than that of F [ρ], errors in the approximation have less severe consequences.

The simplest and oldest approximation, and by far one of the most used, is the Local
Density Approximation [21] or LDA. Under the assumption of LDA there is the idea that the
exchange-correlation energy per particle at the point r is equal to the exchange-correlation
energy density of a homogeneous-electron gas of density ρ(r), namely

εLDA
xc [ρ](r) := εHEG

xc (ρ(r)) . (3.7)

This leads to the LDA exchange correlation energy ELDA
xc =

∫
ρ(r)εHEG

xc (ρ(r))dr.
The energy density εHEG

xc (ρ) is known exactly for the high density limit and it can be
computed accurately for all homogeneous densities ρ via Quantum Monte Carlo methods
[27].

At the moment of its formulation, this approximation was supposed to be valid for slowly
varying densities and for near-electron gas systems, such as alkali metals. Actually this
approximation happens to give accurate results well beyond these limits and it is still one of
most broadly used approximations.

All the DFT calculations of this thesis are performed within the LDA.
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3.3.2 Kohn-Sham eigenvalues and eigenfunctions

Another great advantage of the KS scheme resides in the minimization procedure itself, which
is much easier in the independent-particle framework than in the interacting system. In fact
the problem of minimizing the KS total energy EKS[ρ] can be decoupled in N independent
equations, thanks to the introduction of the non-interacting orbitals φi. The minimization
of EKS[ρ] is rephrased in the constrained search of a stationary point through the Lagrange
multipliers method.

The total energy EKS[ρ] can be written using orbitals. In fact, from the density

ρ(r) =
N∑

i=1

φ∗i (r)φi(r) with

∫
ρ(r)dr−N = 0 ,

the expectation value of the energy is obtained

EKS[ρ] = −1

2

N∑

i

∫
φ∗i (r)∇2φi(r) +

∫
ρ(r)Vbgr(r, {r̃})dr + EH [ρ] + Exc[ρ] . (3.8)

The constrained search of the stationary point of EKS leads to N equations of the form

δ

δφ∗j(r)

[
EKS −

∑

i

εi

(∫
φ∗j(r)φi(r)dr− δij

)]
= 0 for j = 1, ..., N (3.9)

where the Lagrange multipliers εi account for the orthonormality constraint
∫
φ∗j(r)φi(r)dr =

δij.
By inserting expression (3.8) into (3.9) one gets N independent Schrödinger-like equations

of the kind [
−1

2
∇2 + Vbgr(r, {r̃}) + VH [ρ](r) + Vxc[ρ](r)

]
φi(r) = εiφi(r) (3.10)

called Kohn-Sham equations. Consequently the Lagrange multipliers εi can be interpreted
as the energies of the KS states. The Hartree potential and Vxc depends explicitly on the
density, so the solution of (3.10) must be found self-consistently.

By the use of Lagrange multipliers method, the problem of minimizing the KS energy is
mapped into a fixed-point problem that can be solved for instance by an iterative diagonal-
ization of the KS equations. In practice an initial guess {φ(0)

i }i is done for the KS states, the
density ρ(0) is then computed and correspondingly the Hartree and the exchange-correlation
potentials are constructed. Successively the N equations (3.10) are solved getting to a new

set of KS states {φ(1)
i }i and energies {ε(1)

i }i. A new density ρ(1) is then computed and the
cycle is repeated until some self-consistent criterion is met7. Once self-consistency is reached,
the output density ρ(∞) corresponds to the ground state density ρgr(r) of the material.

Together with the density, structural properties are usually well reproduced such as the
bulk modulus, the stress tensor or the atomic rearrangement in the case of phase transitions.

The KS eigenvalues εi and eigenfunctions φi(r) are by-products of the minimization
scheme. In principle they have no physical meaning: they belong to an effective non-
interacting system which has the only scope of reproducing the exact density. Koopmans’

7Most often mixing of old and new results improves the stability of the algorithm.
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theorems are not satisfied by the KS system so, in principle, the KS energies {εi}i can not
be interpreted as ionization energies, except for the highest occupied eigenvalue [28]. For the
same reason differences of KS states do not give correct excitation energies, except in the
one electron limit.

constants agree well with each other, as well as with the
theoretical and experimental results of other authors.

Under external load, the material's response to the additional
small stress applied is determined by the elastic stiffness coeffi-
cients cij: δsi(ε)¼cijεj, where εj is a deformation related to the
increment of stress tensor δsi(ε). It should be noted that under
loading the elastic constants Cij and elastic stiffness coefficients cij
are not equal but related to each other through a linear equation
with a stress-dependent term [26]. To complement our results on
the structural parameters of GaSe, discussed in the previous
section, we examined the changes in the cij values under uniaxial
and biaxial stress conditions. The calculated stress dependences of
cij are presented in Fig. 4.

The c11 and c33 stiffness coefficients determine internal stresses
generated in the material when deformations in the basal plane
and along the с axis are applied. At zero external pressure these
parameters differ from each other by a factor of three that tells
about high anisotropy of the elasticity of GaSe. As can be seen in
Fig. 4, the application of biaxial stress leads to a linear growth of
the c11 coefficient (and also c12 and c13), while keeping the c33 and
c44 almost unchanged. The maximum value of c11 is 146 GPa at
biaxial stress "s⊥¼ 10 GPa. The rapid growth of the c11/c33 ratio
indicates an increase in degree of anisotropy and arises from the
shortening of the Ga–Se bond length and increasing of the Ga–Ga–
Se angle at compression in the basal plane. Uniaxial loading leads
to the opposite effect, namely, the increase of the c33 coefficient,
whereas c11 is only weakly varied. The response of c33 on the
uniaxial stress has two important features: (i) the change in c33
(and also in a less degree in c11 and c44) follows a nonlinear law,
and (ii) c33 increases to 100 GPa at "s∥¼6 GPa, becoming equal to
the value of c11. Thus, the uniaxial compressive stress applied
perpendicularly to the layers of GaSe causes a reduction of the
crystal anisotropy due to contraction of the interlayer space. Note
that at "s∥¼6 GPa the c12 and c13 coefficients also become almost
equal. Thereby, a “pseudocubic” behaviour of GaSe under these
stress conditions could be claimed. However, it should be pointed
out that in the common case of anisotropic pressures the elastic
stiffness tensor loses its symmetry [26] that should be taken into
account when analyzing the elastic properties. In the case of
hexagonal crystals a particular attention should be paid to the
c13 and c31 coefficients. As follows from common equations of the
elasticity theory, under triaxial load, preserving the symmetry of
crystal lattice (sxx ¼ syy ¼ s⊥,szz ¼ s∥,sxy ¼ sxz ¼ syz ¼ 0), c13
and c31 are not equal any more but relate as c31 – c13¼s⊥−s∥. The
latter expression implies that under a purely biaxial stress the
relation c31¼c13 +s⊥ holds, while under a uniaxial stress c31¼c13
–s∥ is fulfilled. Therefore, there is a noticeable difference between
c13 and c31 at "s∥¼6 GPa: c13¼42 GPa and c31¼48 GPa, as our
direct calculations have shown. This difference leads to some
peculiarities in behaviour of the crystal induced by intrinsic nature
of anisotropic stresses.

The obtained elastic stiffness coefficients can be used to test the
mechanical stability of the strained crystal. The stability criterion
requires that the quadratic form cijεiεj be positive definite, where
cij ¼ ð1=2Þðcij þ cjiÞ is a symmetrized counterpart of cij [27,28]. This
gives the following set of inequalities for the hexagonal lattice:
c44 > 0, c11−c12 > 0, ðc11 þ c12Þc33−2c213 > 0. Our calculations show
that these conditions hold for all the considered compressive
stresses, thus implying that ε-GaSe crystal lattice remains
mechanically stable up to 10 GPa.

To our knowledge, there are no published works concerning
elastic parameters of GaSe subjected to anisotropic load. On the
other hand, taking into account almost full independence of c33 on
s⊥, the stress coefficient ∂c33=∂s∥ calculated in our study can be
compared with the ∂c33=∂p coefficient deduced in [24] from
measurements under hydrostatic pressure. According to present

calculations ∂c33=∂ð−s∥Þ¼17 at s∥¼0, and ∂c33=∂p¼19 according
to [24]. The comparison of these quantities shows a contribution of
the c-parameter deformation in the ∂c33=∂p value.

5. Electronic properties

The electronic band structure of GaSe calculated using the
theoretical zero-pressure lattice parameters is shown in Fig. 5. The
zero of the energy was set at the top of the valence band, which is
at the Γ point of the Brillouin zone. The band structure obtained is
in good agreement with the experimental valence-band energies
[29] mapped by angle-resolved photoemission spectroscopy. Our
pseudopotential plane-wave results are also very close to the
results of the full-potential calculations [23] performed at opti-
mized structural parameters. Note that four lowest valence bands
shown in Fig. 5 have predominantly bonding and antibonding Ga s
character [30] and therefore their relative positions are quite
sensitive to the Ga–Ga distance. The measured energies of these
states lie very well on the calculated dispersion curves; hence, the
computational approach chosen in this work gives interatomic
distances with sufficient accuracy.

According to the published experimental data, the bottom of
the conduction band in ε-GaSe is at the M point, which is located
at the side face of the Brillouin zone of hexagonal lattice. There-
fore, the lowest interband transition is indirect [31,32,8]. However,
the indirect band gap is almost equal to the direct one, the
difference being at the level of several tens of meV that hampers
the precise measurement of its value. Studies of optical absorption
in GaSe bulk crystal have shown that the direct gap at the Γ point
Edg¼2.12 eV at Т¼77 K and is about 2 eV at room temperature
[32,1]. Theoretical results of band gap calculations are in strong
dependence on the approximations chosen for the exchange and
correlation functionals. The widely used in theoretical works local
density and generalized gradient approximations usually under-
estimate the band gaps of semiconductors. Thus, in our LDA
calculations Edg of ε-GaSe was found to be 0.67 eV. It should be
noted that this result was obtained when the 3d states of Ga were
treated as valence. If 3d electrons are frozen in the core, the
computedEdg increases to 0.89 eV. The difference between the two
theoretical band gaps characterizes the role of p–d interaction.

A hydrostatic compression of GaSe leads to a considerable band
structure reconstruction. The characteristic feature is a nonlinear
character of the direct band gap behaviour: at low pressures up to
∼1 GPa a small decrease in Edg is observed, which at further
compression is replaced by a rapid increase. This effect, known
from experimental studies (for instance, [8]), is also well repro-
duced in recent theoretical calculations [4,5]. Since the value of the
indirect gap Eig constantly decreases under hydrostatic compres-
sion, a net effect of the high pressure application is a considerable

Fig. 5. Band structure calculated within DFT-LDA at zero pressure (solid lines) in
comparison with the experimental data [29] (circles).
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Figure 3.1: LDA band structure (solid line) and ex-
perimental photoemission data (dots) of GaSe. Image
taken from Ref. [29].

Nevertheless, it often turns out that for
the occupied states KS energies do not differ
too much from the removal energies (mea-
sured e.g., in photoemission experiments), as
exemplified in Fig. 3.1. This can be traced
back to the fact that the KS potential yields
the correct density and is designed to repro-
duce the highest occupied state correctly. If
the other states do not differ too much in
character, they will be reasonably described
by the same potential.

For this reason the KS system is often
seen as something more than a mere math-
ematical tool. KS wave functions and ener-
gies are often used to describe and predict
properties of real systems in terms of inde-
pendent particles. This interpretation can

be useful and can give some insight into the electronic properties. Nevertheless attention
must be paid to the fact that the KS system is supposed to have nothing in common with
the real system but the electron density. This is especially true when discussing excited state
properties as optical spectra, electronic gap and ionization energies.

3.4 Excited states with DFT

To investigate optical absorption, the simplest approximation is to consider the process as
the sum over all possible single-particle transitions. One electron is excited from the occupied
state |vk〉 of energy εv(k) to the conduction state |ck + q〉 of energy εc(k + q) where q is the
small transferred momentum in the dipole approximation. The other electrons instead are
supposed to be independent, so no electronic relaxation of the system is included. In this
picture Fermi’s golden rule for optical transitions (q→ 0) gives

=[εM(ω)] ∝ lim
q→0

∑

v,c

∫
v(q)

∣∣〈v,k|e−iq·r|c,k + q〉
∣∣2 δ(εc(k + q)− εv(k)− ω)dk (3.11)

where v(q) = 4π/q2 is the Coulomb interaction in Fourier space, the delta-function ensures
energy conservation in the transition and where single particle states can be the KS wave
functions and energies.

In the case q→ 0, one can develop 〈v,k|e−iq·r|c,k + q〉 in k · p-theory (see Appendix E
of [30]), getting

〈v,k|e−iq·r|c,k + q〉 ≈ −iq 〈v,k|∇|c,k〉
εc(k)− εv(k)

.
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Figure 3.2: DOS (top panel) and X-
ray absorption spectroscopy (XAS, bot-
tom panel) of graphite and graphene.

Inserting the expression above into (3.11) and assum-
ing the dipole matrix elements 〈v,k|∇|c,k〉 constant, one
gets

=[εM(ω)] ∝ 1

ω2
JDOS(ω + εl) (3.12)

where the energy conservation has been exploited. This
expression can be easily computed with DFT.

For example, if one considers the absorption from
a deep core state l, with no-dispersing (flat) energy
εl(k) = εl, then the JDOS(ω) becomes a shifted DOS(ω)
of conduction states and the absorption spectrum (3.12)
is proportional to the density of the empty states

=[εM(ω)] ∝ 1

ω2
DOS(ω) of conduction states . (3.13)

Even though a series of rough approximation have
been used in this derivation, actually in some cases this
formula turns out to give qualitatively good results. In
Fig. 3.2 I show the density of states of the conduction
bands I computed for bulk graphite (blue) and graphene
(black) in LDA. In the top panel the computed DOS is
reported; in the bottom panel, valence X-ray absorption
spectra are reported for the same materials with the same
color-code. As it can be seen, the qualitative trend is in-
deed well reproduced: The two π∗ peaks are in a ratio
that is comparable with experimental data and the slope
after the peak (at ∼ 286 eV) is qualitatively well repro-
duced8.

3.5 Summary

In this chapter I presented the main aspects of density functional theory. This theory allows
for very efficient calculations, especially in the Kohn-Sham framework, because it reduces the
complexity of the N-body problem to the evaluation of the ground state density ρ(r), which
is function of only one variable in space. This simplification is paid by the introduction
of the unknown exchange-correlation potential for which many approximations have been
developed.

In principle the Kohn-Sham system only gives the correct ground state density, and no
physical meaning should be given in principle to its eigenfunctions and eigenvalues, especially
when excited states are concerned. As a matter of fact, the Kohn-Sham system often turns
out to be a good starting point even for the calculation of some excited-state properties
such as light absorption spectra, photoemission spectra, electron removal energies (band
structure), activation energy of some process and so on.

For a more rigorous description of excited states one needs a time-dependent theory.

8Data reported in Fig. 3.2 have been measured in the beam line TEMPO [6] at the Soleil synchrotron
light source; I performed the theoretical calculations within a wider project on carbon-based nanostructures
which will be the subject of Chapters 7, 8 and 9. See also Appendix D.
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Chapter 4

Neutral excitations in
Time-Dependent DFT

A theory of the excited states must include time-dependent phenomena as the promotion of
electrons and relaxation processes. The dependence on time is mapped through the Fourier
transform into a dependence on energy. A complete theory of absorption must account for
energy-dependent processes. In this chapter the extension of DFT to time-domain is pre-
sented.

After an introduction, I will present the foundations of the theory: the principal theorems
of Runge and Gross [31] are discussed. I will underline the main differences with the static
DFT and I will point out what are the active research topics in this field.

Subsequently I will concentrate on linear response theory, especially in the framework
of periodic systems. I will go through the path from the microscopic polarizability to the
macroscopic dielectric tensor and finally to absorption spectroscopy and Electron Energy
Loss spectroscopy. A particular attention will be given to approximations and assumptions
used later on throughout this work.

4.1 Spectroscopy and evolution in time

Spectroscopy consists in measuring the response of a sample to some time-dependent external
potential. Before a time t0 the system is in the state Ψ0, that we assume for clarity to be its
ground-state Ψgs, although it is not mandatory. At time t0 a time-dependent perturbation
Vext(r, t) is switched on. Transfers of energy and momentum occur between the external
potential and the system whose properties start evolving in time. This reaction to the
perturbation gives rise, as a consequence, to an induced potential inside the system.

The changes of energy and momentum of the total potential Vtot, sum of both the external
potential and the induced one, are the object of spectroscopic measurements. From these
data, the response function of the system can be obtained.

Theoretical spectroscopy fills the gap between the (measured) response of the system and
its microscopic properties. With the help of theoretical spectroscopy one can reconstruct the
path that goes from the measured modifications of the total potential to the electronic
properties of the system.

In the previous chapter I stressed how the lack of Koopmans’ theorems for the KS system
prevents the interpretation of KS eigenvalues as electron addition and removal energies and
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hence that differences between KS eigenvalues are not excitation energies of the system. If
one wants to discuss spectroscopic data on a rigorous theoretical basis, an extension of DFT
to the time-dependent domain is mandatory.

4.1.1 The time-dependent many-body problem

The time-dependent Hamiltonian reads

Ĥ(t) = T̂ + V̂bgr(r, {r̃}) + Ŵ + V̂ext(r, t) , (4.1)

where the kinetic T̂ and the mutual interacting term Ŵ and the ionic potential V̂bgr are the

same as in the time-independent problem (3.1)9. The external field V̂ext depends explicitly
on time (e.g. a light pulse)10.

The corresponding time-dependent Schrödinger equation is a differential equation of the
kind

Ĥ(t)Ψ(r1, ..., rN , t) = i~
∂

∂t
Ψ(r1, ..., rN , t)

with initial state at t0.
Ψ(r1, ..., rN , t0) = Ψ0(r1, ..., rN) .

Note that Ψ0(r1, ..., rN) can be any state, not only the ground-state.

4.2 The foundations of TDDFT

Attempts to generalise the DFT to time domain date back to the late seventies with the
works of Ando [32, 33], Peukert [34] and Zangwill-Soven [35, 36] who introduced a time-
dependent KS system just assuming the extension to time domain to be possible. A more
rigorous approach to time-dependent DFT came some years later and it was given by E.
Runge and E. K. U. Gross in a work dated 1984 [31]. This paper set the foundations of
modern TDDFT.

It is beyond the scope of this introductory overview to give and demonstrate the four
theorems presented in their work. I will therefore discuss the main results, tracing a parallel
with the HK and KS theorems of DFT, and underlining the most important differences and
implications.

4.2.1 Functionals of the TD-density

The first Runge-Gross (RG) theorem states that

Theorem : For every single-particle potential Vext(r, t), which can be expanded into a Tay-
lor series with respect to the time coordinate around t = t0, a map GΨ0 : Vext(r, t) →
ρ[Ψ0](r, t) is defined by solving the time-dependent Schrödinger equation with a fixed

9In principle, because of the presence of the external field, the ions can start moving, so a general form
of the ionic potential should be V̂bgr(r, {r̃(t)}. However, in this work I will assume the Born-Oppenheimer
approximation also in the presence of a time-dependent perturbation, i.e. I will neglect electron-phonon
coupling.

10Most of the time other authors include Vbgr in Vext.
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initial state Ψ0(r1, ..., rN) = Ψ(r1, ..., rN , t0) and calculating the corresponding densities
ρ(r, t). This map can be inverted up to an additive merely time-dependant function in
the potential.

This theorem demonstrates that for any time-dependent external potential Vext(r, t) and
for any initial condition Ψ0, a bijective relation between the time-dependent density ρ(r, t)
and the external potential can be established. As a consequence, any observable O(t) of the
system can be expressed as a functional O[ρ,Ψ0](t) of the time-dependent density and the
initial-state Ψ0.

Note the important difference with respect to the first HK theorem where there is no
initial-state dependence. In TDDFT, the knowledge of the density itself is not sufficient to
invert the map GΨ0 : Vext(r, t) → ρ[Ψ0](r, t). This is related to the memory of the system.
Investigations on this initial-state dependence are quite recent; see e.g., works of N. T. Maitra
and K. Burke [37, 38].

A necessary hypothesis of the first RG theorem is Vext to be analytic in time. The
analyticity in time of Vext is another recent subject of investigation. The problem started to
be explored only recently, e.g. by N. T. Maitra and co-workers [39].

The second HK theorem of DFT states that the total energy is a (universal) functional
of the density and that it attains its minimum at the ground-state density. When extended
to time domain, a variational minimum principle can not be found. Instead, one looks for
the stationary points of the action integral

A :=

∫ t

t0

〈Ψ(r1, ..., rN , τ)|i ∂
∂τ
− Ĥ(τ)|Ψ(r1, ..., rN , τ)〉dτ . (4.2)

Theorem : The action integral A can be represented as a functional of the density A[ρ]. If
the potential Vext(r, t) is chosen such that no additive time-dependent function can be
split, the total action can be written as A[ρ] = B[ρ] −

∫ t
t0

∫
ρ(r, τ)Vext(r, τ)drdτ where

B[ρ] is a universal function of the density in the sense that the same dependence on
ρ(r, t) holds for all external potentials Vext(r, t). A[ρ] has a stationary point at the exact
density of the system, i.e. the exact density can be computed from the Euler equation
δA[ρ]/δρ(r, τ) = 0.

4.2.2 A time-dependent Kohn-Sham system

Stationary points of the action integral (4.2) correspond to the density of the real system.
Nevertheless this prescription to find the real density is not directly useful for application;
the last RG theorem generalises to time-domain the concept of the KS system giving a way
to interpret excited state properties in terms of the evolution of independent-particles.

Theorem : The exact time-dependent density of the system can be computed from ρ(r, t) =∑N
i=1 φ

∗
i (r, t)φi(r, t) where the single-particle orbitals φi(r, t) fulfil the time-dependent

Schrödinger-like equation
(
i
∂

∂t
+

1

2
∇2

)
φi(r, t) = [Vbgr(r, {r̃}) + Veff[ρ](r, t)]φi(r, t)

with an effective one-particle potential given by

Veff[ρ](r, t) = Vext(r, t) + VH [ρ](r, t) +
δAxc[ρ]

δρ(r, t)
. (4.3)
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The three potentials appearing in the equation above are the external potential, the
Hartree potential and the time-dependent exchange-correlation potential Vxc(r, t) := δAxc[ρ]/δρ(r, t).

4.3 Linear response to a perturbation

We now go back to the spectroscopy experiments: before and at time t0 the system is at rest
in its ground state: Ψ0 = Ψgr. and at time t0 a perturbation Vext(r, t) = θ(t − t0)δVext(r, t)
is turned on. Correspondingly the system starts evolving in time.

The value of a generic observable O(r, t) of the system can be expanded in orders of the
perturbation δVext

O(r, t) = O(r, t0) + δO(r, t) + ...

= O(r, t0) +

∫ ∫ t

t0

χO(r, r′, t− t′)δVext(r
′, t′)dt′dr′ + ... . (4.4)

In the expression above I introduced the susceptibility, also called response function,
χO(r, r′, t − t′), defined as the functional derivative of the observable O with respect to the
variation of the field, namely

χO(r, r′, t− t′) :=
δO(r, t)

δVext(r′, t′)

∣∣∣∣
Vext=0

.

The susceptibility is the linear coefficient of the first order term in equation (4.4) and it is
independent of the external field. Note that the susceptibility depends on the time-difference
because the functional derivative is taken at vanishing perturbation.

When first order terms dominate the response, then one is the linear regime and the
susceptibility carries all information needed to describe the linear response of the system.

4.3.1 The density-density response function

In the framework of TDDFT the central observable is the density ρ(r, t). The correspondent
susceptibility is the density-density response function

χ(r, r′, t− t′) =
δρ(r, t)

δVext(r′, t′)

∣∣∣∣
Vext=0

. (4.5)

In the same way, one can define the response function of the TD-KS system, related to the
same density ρ of the real system and evolving under the action of the effective potential Veff

of equation (4.3). The independent-particle response function (often called IP-polarizability)
then reads

χKS(r, r′, t− t′) =
δρ(r, t)

δVeff(r′, t′)
(4.6)

This expression is of great importance because this quantity can be calculated within first
order perturbation theory [40] through a sum over states (cfr. equation (4.10)).

Since the density of the TD-KS system coincides with the real density, one can establish
a relation between χ and χKS using expressions (4.5) and (4.6). By means of the chain rule
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and remembering definition (4.3), a Dyson equation linking the IP-polarizability and the full
density-density response function can be derived11

χ(r, r′, t− t′) =
δρ(r, t)

δVeff(r′′, t′′)

δVeff(r′′, t′′)

δVext(r′, t′)

= χKS(r, r′, t− t′) + χKS(r, r′′, t− t′′)K(r′′, r′′′, t′′, t′′′)χ(r′′′, r′, t′′′ − t′) ,
(4.7)

where integration is done over repeated indexes. The integrand

K(r, r′, t, t′) :=
δ(t− t′)
|r− r′| + fxc(r, r

′, t, t′) with fxc(r, r
′, t, t′) :=

δVxc(r, t)

δρ(r′, t′)
(4.8)

contains a static Coulomb contribution v(r, r′) = 1/|r − r′|, and a dynamical exchange-
correlation kernel.

Response function and Dyson equation in periodic systems

In this work I will focus on solid state properties and on periodic supercells for the simulation
of finite systems.

Because of the translational symmetry characterising these systems, it is more convenient
to work in reciprocal space by Fourier transforming real space quantities. because the de-
composition into plane waves takes intrinsically into account the translational symmetry of
these systems. Any function F (r) can be expanded in plane waves of wave vector k according
to

F (r) =
1

(2π)3

∫
F (k)e−ik·rdk =

1

(2π)3

∑

G

e−iG·r
∫
FG(q)e−iq·rdq , (4.9)

where the wave vector k = q+G has been split into a continuous long-wavelength component
q laying inside the first Brillouin zone, and a reciprocal lattice vector G. Correspondingly the
Fourier transform F (k) is written as a vector FG(q) where each G-component is a function
of the continuous variable q.

In this framework the IP-polarizability can be written in the spectral representation (cfr.
Adler [40]) as a matrix12 in G and G′

χKSGG′(q, ω) =
1

V
∑

ijk

(fik − fjk+q)
ρ̃ijk(q + G)ρ̃∗ijk(q + G′)

ω − (εj(k + q)− εi(k)) + iη
(4.10)

where f are the occupation numbers, the oscillator strengths ρ̃ are defined

ρ̃ijk(q + G) :=

∫
φik(r)φ∗jk+q(r)e−i(q+G)·rdr , (4.11)

11The response function χ is a causal function, that is χ(t − t′) = 0 for t < t′ in (4.5). Actually, using
(4.3) and (4.8) the resulting χ(t − t′) is symmetric. This contradiction has been solved by R. van Leeuwen
defining a new action functional on the Keldysh contour [41].

12In principle from the generic function F (r, r′) one gets a matrix FGG′(q,q′), but for a periodic function
F (r, r′) = F (r + P, r′ + P) with P = n1a1 + n2a2 + n3a3 linear combination of the unitary vectors aj with
integer coefficients, the crystal momentum conservation imposes q+G = k−k′, so the elements of the FGG′

depend only on q.
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εm(k) are the KS energies, the normalization constant V is the crystal volume13, and η is a
positive infinitesimal quantity needed to Fourier transform from time to frequency.

In a similar way the Dyson equation (4.7) reads

χGG′(q, ω) = χKSGG′(q, ω) + χKSGG′′(q, ω)KG′′G′′′(q, ω)χG′′′,G′(q, ω) (4.12)

where repeated indexes are summed over, and

KGG′(q, ω) = δGG′
4π

|q + G|2 + fGG′
xc (q, ω) .

Neglecting the spin, in insulators and semiconductors the occupation numbers fj are
strictly 2 or 0; this allows for some simplification in the sum over states (4.10). In particular
one can consider only IP-transitions from an occupied state v to an unoccupied c. For each
(v, c) couple, two terms contribute:

χKS(ω) =
2

V
∑

vc

{
ρ̃vcρ̃

∗
vc

ω − (εc − εv) + iη
− ρ̃cvρ̃

∗
cv

ω + (εc − εv) + iη

}
(4.13)

where the dependence in q, G and G′ has been omitted for simplicity.
For each IP-transition v → c the IP-polarizability has two poles: the resonant excitation

at ω = (εc − εv) on the real positive axis and the antriresonant excitation at the negative
energy ω = −(εc − εv) .

4.4 From the susceptibility to the spectra

In this work, linear response TDDFT has been used mainly to compute absorption and EEL
spectra. Both are computed from the macroscopic dielectric function εM(q, ω), which is the
measured observable. The two spectra are obtained according to

Abs(ω) = = [εM(ω)] and EELS(q + G, ω) = −=
[

1

ε−1
GG(q, ω)

]
, (4.14)

where q and ω are the momentum and energy transferred from the perturbing field to the
system.

In the case of periodic (cubic) systems the relation between the macroscopic dielectric
function and the microscopic susceptibility χ is found in the works by Adler [40], and Wiser
[42] and is the important relation (2.19).

In equation (2.15) the total potential Vtot and the external potential Vext are defined as
classical potentials. Therefore Vtot = VH + Vext. By inverting (2.15), the microscopic inverse
dielectric function is given by

ε−1(r, r′, t, t′) =
δVtot(r, t)

δVext(r′, t′)
=

δVext(r, t)

δVext(r′, t′)
+

∫
δVH(r, t)

δρ(r′′, t′′)

δρ(r′′, t′′)

δVext(r′, t′)
dr′′dt′′ . (4.15)

13In practical calculations the Brillouin zone is sampled with Nk points arranged on a mesh. In this case
the crystal volume (in principle infinite) writes V = VcellNk = (2π)3Nk/VBZ with Vcell and VBZ volumes of
the real unitary cell and of the first Brillouin zone respectively.
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where derivative with respect to Vext are taken at vanishing external potential. Making use
of (4.5), one obtains the following expression

ε−1(r, r′, t− t′) = δ(r− r′)δ(t− t′) +

∫ ∫
v(r− r′′)δ(t− t′′)χ(r′′, r′, t′′ − t′)dr′′dt′′

which links the dielectric properties of the material to the polarizability χ. In reciprocal
space the above equation reads

ε−1
GG′(q, ω) := δGG′ +

∑

G′′

vGG′′(q)χG′′G′(q, ω) . (4.16)

where the Coulomb interaction vGG′(q) = δGG′4π/|q + G|2.

In the last expression (4.16) (test-particle expression) exchange-correlation processes be-
tween the electrons of the system and the external field are omitted.

In the case of absorption spectra, this is not an approximation since the electrons of
the system can not exchange with the photons of the external field; on the other hand,
in the case of EELS this may be an approximation. In ordinary EEL spectroscopy, the
impinging electrons have a kinetic energy high enough to be distinguished from the electrons
of the system, hence no exchange effect can take place. Hence the external field can be
approximated with a classical field. When low energy electrons are involved, then exchange-
correlation effects can not be neglected and an exchange-correlation kernel fxc must be added
to the coulomb interaction in equation (4.16) (test-electron expression).

4.5 Practical calculations and approximations

The procedure followed in this work to compute absorption spectra and EEL spectra is
summarised in four steps.

1. A static DFT calculation is performed using the LDA for the exchange-correlation
potential Vxc. The corresponding KS system is characterised by eigenvalues εm(k) and
eigenfunctions φmk(r) computed on a mesh of k-points sampling the Brillouin Zone.

2. With the KS eigenfunctions and eigenvalues14, the IP-polarizability is computed ac-
cording to equation (4.10). At this step, one has to stop the sum at a cutoff value
(cutoff band) and similarly one has to cutoff the dimension of the matrix χKSGG′ .

3. The full susceptibility χ is then computed through the inversion of the Dyson equation
(4.12). At this stage the exchange-correlation kernel fxc must be approximated15.
Convergence on the parameters used has to be checked.

4. The inverse dielectric matrix ε−1 is finally computed via expression (4.16) and the
macroscopic dielectric function εM is obtained (equation (2.19)).

14KS eigenfunctions will be used in all cases. Instead, quasiparticle energies are used most often in the
place of KS eigenvalues (see Chapter 5).

15 Actually in the case of RPA, the Dyson equation is not inverted, but other techniques are used. See
below at Chapter 4.5.2.
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The most demanding step of the calculation is the second, where the IP-polarizability is
computed as a sum over states. Alternative methods exist that avoid the direct calculation
of χKS [43], but they are not efficient when, besides spectra, the full matrix χGG′ is needed
(e.g. in GW calculations), as it is the case in this thesis.

4.5.1 Tamm-Dancoff Approximation

Resonant and antiresonant components of the polarizability are reported in equation (4.13).
The inversion of the Dyson equation mixes the two components, so that the polarizability
has mixed contributions. In some cases, and especially when computing absorption spectra
of systems with a considerable gap, the antiresonant terms can be neglected, that is the

Tamm-Dancoff approximation: χKS ≡ χKSR . (4.17)

The Tamm-Dancoff approximation consists in computing the IP-polarizability (4.13) sum-
ming over resonant excitations only.

When computing EEL spectra or absorption from small band-gap systems, the validity
of this approximation has to be checked.

4.5.2 Exchange-correlation kernels

the exchange-correlation kernel is given formally by

fGG′
xc (q, ω) = χKS−1

GG′ (q, ω)− χ−1
GG′(q, ω)− 4π

δGG′

|q + G|2 ,

but of course χ is not known, so in real calculations the exchange-correlation kernel fxc must
be approximated. In this section I present four approximations used in this work.

Random Phase Approximation (RPA)

The simplest approximation is to neglect fxc:

fRPA
xc (q, ω) = 0 (4.18)

This approximation is called Random Phase Approximation.

In the RPA it is not necessary to solve the Dyson equation (4.12), in fact equations (4.12)
and (4.16) can be combined to give directly (see footnote 15)

εGG′(q, ω) = δGG′ − vGG′(q)χKSGG′(q, ω) . (4.19)

By inverting the last matrix, and making use of (2.19), one can compute εM .

In RPA one assumes that the electrons of the system interact as classical charge densities,
that is via the Hartree potential. Instead exchange-correlation effects such as quasiparticle
corrections to the KS energies and electron-hole interaction are neglected. For metals or
confined small molecules this approximation gives often reasonably good results, but in
insulators the RPA is usually a too strong approximation and other kernels must be used.
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Adiabatic Local Density Approximation (ALDA)

An improvement over the RPA is the Adiabatic Local Density Approximation

fALDA
xc (r, r′, t− t′) = δ(t− t′)δ(r− r′)

dV LDA
xc (r, ρ(r, t))

dρ(r′, t)
(4.20)

obtained by inserting into equation (4.8) the LDA potential (3.7) computed at the instanta-
neous density.

This approximation performs quite well in small molecules and confined systems. How-
ever, as it is local in space and time, it does not catch non-local effects important in solids
and can not describe dynamical effects such as double excitations in molecules or satellites.

Long Range Corrected (LRC)

In the long range limit q + G → 0 the Coulomb interaction diverges, whereas the polariz-
abilities χ and χKS vanish as |q|2. The Long Range Corrected kernel [44, 45]

fLRCxc (q,G,G′, ω) = −α δGG′

|q + G|2 (4.21)

corrects the long range component by subtracting a function that has the same spatial
dependence as the Coulomb interaction, hence χKSfxc is finite, contrary to LDA where
fxc(q→ 0) is constant, so that its effect is zero if finite G components are negligible.

The constant α is material dependent. For a wide class of semiconductors and insulators
it can be fixed following the linear prescription

α = 4.615ε−1
∞ − 0.213 (4.22)

where ε−1
∞ is the dielectric constant computed e.g. in RPA or taken from experiment.

This kernel has been derived from Many-Body Perturbation Theory (MBPT) that will
be presented in the next Chapter. It is meant to include to some extent the electron-hole
interaction and indeed when applied to calculations of semiconductors, it is able to reproduce
continuum exciton effects that are missed by (local) ALDA or RPA kernels.

On the other hand, other exchange-correlation effects such as quasiparticle corrections to
the gap must be included at the level of the IP-polarizability, by substituting quasiparticle
energies εQPm in the denominator of equation (4.10) and by assuming that φQPm ≈ φKSm

16.
Finally, an extension to frequency domain has been included [46] in the form fxc =

−(α + βω2)/|q + G|2.

Bootstrap kernel (BS)

The last approximation I will discuss here, is the recently developed Bootstrap Kernel [47, 48]
which is defined by the empirical relation

fBS
xc (q,G,G′) =

ε−1
GG′(q, ω = 0)

χKS00 (q, ω = 0)
(4.23)

with the prescription that it should be computed self-consistently together with equations
(4.12) and (4.16).

16See Chapter 5 for a discussion on quasiparticle energies and the electron-hole interaction.
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Because 1/χKS diverges as |q|−2, also the BS kernel has the correct singularity in the long-
range limit, giving continuum exciton effects in good agreement with MBPT calculations.
It is similar to the LRC, but it has the advantage that the linear relation to determine the
constant α is replaced by a more sophisticated materials-dependent prescription, so it is
valid also for those materials for which the linear relation (4.22) fails. Moreover it has an
enhanced dependence on G and G′.

Any how, for materials where LRC gives good results, LRC-spectra are almost identical
to BS-spectra. Bound excitons instead can only be accessed by the Bootstrap kernel unless
one modifies (4.22).

As in the case of the LRC kernel, quasiparticle corrections to the KS energies must be
added “by hand” in the IP-polarizability.

Other developments, not used in this thesis include kernels derived from the homogeneous
electron gas [49] or empirical modifications of the Bootstrap [50].

4.5.3 The Local Field Effects

Looking back at (2.19), one may wonder why it is necessary to solve a matrix equation (4.16)
if at the end only one element is used. Indeed it is useful to define an alternative response
function χ̄ such that

εM(ω) := lim
q→0

[1− v0(q)χ̄00(q, ω)] (4.24)

In this way the two spectra read respectively

Abs(ω) = = [εM(ω)] = − lim
q→0

v0(q)= [χ̄00(q, ω)] (4.25)

EELS(q, ω) = −=
[
ε−1
00 (q, ω)

]
= −v0(q)= [χ00(q, ω)] (4.26)

The difference between χ̄ and χ is the only difference between the absorption and the EEL
spectrum at vanishing momentum transfer.

From the definitions (4.24) and (2.19) one gets immediately that

χ̄00 = χ00/(1 + v0χ00) thus χ00 = χ̄00 + χ̄00v0χ00 . (4.27)

This equation shows that χ̄ is essentially a screened polarizability, so not sensible to long-
range effects.

Let us split the Coulomb interaction in equation (4.7) into two parts

vG(q) = v̄G(q) + v0(q)δG0 with v̄G(q) :=

{
0 if G = 0
4π|q + G|−2 if G 6= 0

(4.28)

where we put in evidence a long-range part v0 and a short-range v̄. Then the Dyson equation
splits accordingly into two equations

χ̄GG′ = χKSGG′ + χKSGG′′ [v̄G′′δG′′G′′′ + fG′′G′′′
xc ]χ̄G′′′G′

χGG′ = χ̄GG′ + χ̄G0v0χ0G′ .

The first equation is essentially a a Dyson equation for χ̄. Note that the second equation
gives (4.27) in the case (G,G′) = (0,0).

This tells us that for optical absorption only short-range components of the Coulomb
interaction are relevant, whereas EEL spectra are sensible to the potential also at long
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distances. Indeed it is the long range Coulomb interaction that gives rise to the plasmons
measured in EELS. v̄ carries the fast-varying components of the Coulomb interaction which
account for local inhomogeneities of the polarizability (the local field). Local field effects
are taken into account by the inversion of the Dyson equation, or the inversion of equation
(4.19) in the case of RPA calculations. They may be important whenever localised electrons
(d and f orbitals) are present, when polarizable states are concerned or for large momentum
transfer q, where shorter distances are probed.

Note also that neglecting LFE in the RPA gives χ̄ = χKS. Consequently the absorption
spectrum computed with (4.25) reduces to

NLF + RPA absorption spectrum : Abs(ω) = − lim
q→0

v0(q)=[χKS00 (q, ω)] (4.29)

and no matrix inversion is needed any more.

4.5.4 Spectra of isolated systems

In isolated systems excitations are determined only by short range interactions. For what
stated in the previous section, we expect absorption spectra and EELS (at vanishing mo-
mentum) to be equal. Indeed for isolated systems simulated in a supercell, the volume of
the unit cell Vcell →∞. Since the IP-polarizability is proportional to 1/Vcell (cfr. expression
(4.10) and footnote 13 at page 34), the susceptibility χ00 → 0. From equations (4.27) and
v0 = 4π/|q|2, one obtains the relation between the macroscopic averages

v00χ̄00 =
χ00v00

1 + v00χ00

≈ v00χ00 for Vcell →∞ . (4.30)

This demonstrates that in isolated systems =[εM ] ≈ −=[1/εM ], that is absorption spectrum
≈ EEL spectrum.

The same relation holds also for very weakly polarizable systems, where v00χ00 � 1, for
instance for core levels.

4.6 Summary

In this chapter I introduced the Time-Dependent Density Functional Theory (TDDFT) which
generalises the approach of DFT to account for time-dependent processes. This allows for the
correct description of the inverse dielectric function which is closely related to measurable
quantities in spectroscopic experiments such as EELS (cfr. (2.24)) and absorption (cfr.
(2.25)).

The relation between the KS polarizability χKS and the macroscopic dielectric function
εM has been traced assuming a linear response. It passes through the calculation of polar-
izability χ, obtained from χKS via a Dyson equation (4.12), and of the inverse dielectric
function ε−1, derived in (4.16).

Some approximations for the exchange-correlation kernel fxc have been also presented
and briefly discussed. They will be used later on in the theoretical spectra presented in this
work.

The difference between EEL and absorption spectra has been pointed out by splitting
the Coulomb interaction vG(q) into a with the local fields v̄, defined in (4.28), and the
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long range component v0(q). The second term, which diverges for q → 0, enters in the
EEL spectra, whereas it does not in absorption spectra. For an isolated object, the long-
range components of the Coulomb interaction vanish, so one expect the EEL spectrum and
the absorption spectrum to coincide, as demonstrated by the relation (4.30). This relation
constitutes a criterion to state whether a system is isolated or not.
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Chapter 5

Many Body Perturbation Theory

If in density functional theories, the key variable is the density, in many-body perturbation
theory (MBPT) this role is played by the Green’s function G. In the framework of MBPT,
the spectrum of the one-particle excitations of the system (spectral function) finds a natural
formulation. It is given by the poles of the one-particle Green’s function. In fact, by def-
inition they are the one electron addition and removal energies, which makes the spectral
function closely related to the spectra measured in photoemission and inverse photoemission
spectroscopy.

In the first section, the principal concepts useful for the description of one-particle excita-
tions are introduced: from the definition of the one-particle Green’s function G, the derivation
of the Dyson equation through the Schwinger functional-derivative method, to the introduc-
tion of self-energy Σ. Then I will introduce Hedin’s pentagon together with the GW ap-
proximation for the self-energy which will be discussed in detail, with a special attention for
different schemes (perturbative, self-consistent) or implementations (plasmon-pole models,
contour deformation). I will conclude the one-particle excitation part with a final highlight
on dynamical effects.

In MBPT also two-particle processes can be described. In the second section of this
chapter, I will define the two-particle correlation function L, which can be expressed through
a Dyson equation called Bethe-Salpeter equation (BSE) containing a 4-point kernel Ξ. I will
present the typical approximations used for the kernel with a special emphasis on the static
approximation usually assumed. I will also outline one possible way to overcome the static
approximation to the BSE. I will finally conclude the section with an overview of dynamical
effects in BSE.

5.1 Charged excitations with MBPT

In the second quantization formalism, the many-body Hamiltonian (3.1) reads

Ĥ = −1

2

∑

σ

∫
ψ†(r, σ)∇2ψ(r, σ)dr+

+
∑

σ

∫
ψ†(r, σ)Vbgr(r, {r̃})ψ(r, σ)dr+

+
1

2

∑

σ,σ′

∫
ψ†(r, σ)ψ†(r′, σ′)v(r, r′)ψ(r, σ)ψ(r′, σ′)drdr′ (5.1)
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where the introduction of creation and annihilation field operators ψ† and ψ allow the number
of particles to vary. Calling |N〉 the ground-state of an N interacting particle system, we can
associate to the Hamiltonian (5.1) the time-ordered Green’s function G(r1, r2, t1, t2, σ1, σ2)
at zero temperature, defined

G(1, 2) = iθ(t2 − t1)〈N |ψ†(2)ψ(1)|N〉 − iθ(t1 − t2)〈N |ψ(1)ψ†(2)|N〉 (5.2)

where the notation n = (rn, tn, σn) is introduced to label space, time and spin variables
in a more compact way. This definition corresponds to the expectation value of injecting
(t1 > t2) an electron of spin σ2 into the N particle system at time t2 and in point r2 and
of extracting an electron with spin σ1 at time t1 and point r1, and similarly for the hole in
inverse time-order. It is therefore the one-particle correlation function of the system.

It can be shown that the average value of any single-particle operator Ô can be expressed
as

〈N |Ô(1, 2)|N〉 = −i
∫
O(1, 2)G(2, 1)d1d2,

which includes e.g., density matrix, kinetic energy and spectral functions17. This property
highlights an intrinsic advantage of the Green’s function formalism if compared with DFT, in
fact in DFT all observables can be expressed as a functional of the density, but the functional
is unknown and must be approximated. In the Green’s function approach, the single-particle
observables have a known formulation in terms of G.

Another advantage of this approach is the fact that Koopmans’ theorems are satisfied by
the Green’s function. One can rewrite the expectation value (5.2) making use of a complete
basis of the N+1 and the N-1 systems (cfr. equation (1.3))

G(1, 2) = +iθ(t2 − t1)
∑

m

〈N |ψ†(2)|N − 1,m〉〈N − 1,m|ψ(1)|N〉+

− iθ(t1 − t2)
∑

m

〈N |ψ(1)|N + 1,m〉〈N + 1,m|ψ†(2)|N〉

where |N+1,m〉 is the m-th state of the (N+1)-particle system and similar for the N-1. The
first term is called hole Green’s function: the action of the annihilation and creation fields
is projected onto an (N-1)-particle system, so it is expressed in terms of the creation of a
hole (extraction of an electron). The second term is called electron Green’s function since it
has been projected onto a (N+1)-particle system, hence it is described in terms of electron
injections.

Taking the Fourier transform of the expression above, one gets the Lehmann representa-
tion [52] of the Green’s function

G(r1, σ1, r2, σ2, ω) =
∑

m

fm(r1, σ1)f ∗m(r2, σ2)

ω − Em + iη sign(Em − µ)
(5.3)

with the Lehmann amplitudes defined

fm(r, σ) :=

{
〈N |ψ(r, σ)|N + 1,m〉 and Em = EN+1

m − EN
0 for Em > µ

〈N − 1,m|ψ(r, σ)|N〉 and Em = EN
0 − EN−1

m for Em < µ .

17Also the total energy can be expressed with G [51], although it is actually a two-particle operator.
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The excitation energies Em are by construction the addition (EN+1
m − EN

0 ) and removal
(EN

0 −EN−1
m ) energies of one particle in the fully interacting system. So Koopman’s theorems

are satisfied by construction.
The term iη sign(Em − µ) with η → 0+ is introduced in the denominator to ensure

convergence of the Fourier transform between time and frequency. It changes sign passing
the chemical potential µ thus discriminating between electrons and holes. This change of
sign is related to the different domains of analyticity of the hole and the electron Green’s
functions.

The Green’s function can also be written in the spectral representation

G(r1, σ1, r2, σ2, ω) =

∫ +∞

−∞

A(r1, σ1, r2, σ2, ω
′)

ω − ω′ + iη sign(ω′ − µ)
dω′ , (5.4)

where the spectral function

A(r, σ, r′, σ′, ω) =
∑

m

fm(r, σ)f ∗m(r′, σ′)δ(ω − Em) =
1

π
|=[G(r, σ, r′, σ′, ω)]| (5.5)

can be proven to be a real quantity for a stationary Hamiltonian without magnetic fields.
The second equation comes from Sokhatsky-Weierstrass theorem

lim
η→0+

∫
a(x)

x± iηdx = ∓iπ
∫
a(x)δ(x)dx+ P

∫
a(x)

x
dx

with P denoting the Cauchy principal value of the integral.
The definition (5.5) shows that the spectral function is a series of delta peaks on the real

axis. For finite systems (clusters and molecules), peaks are generally well separated and the
sum runs indeed over a series of discrete excited states, giving rise to separated peaks in the
spectral function. They correspond to well separated poles of G arranged along the real axis.
In the thermodynamic limit of infinite systems, the excited states become closer and closer
ad eventually the spectral function becomes an integral over infinitely close delta-functions,
which corresponds to a branch cut of G along the real axis.

It is evident that the hole and electron contributions are closely related to the photoe-
mission (electron extraction) and inverse photoemission spectroscopies (electron addition).
It is important to note that m may differ from 0, that means that the creation of a hole
(electron extraction) can either promote the system to its (N-1)-ground state (m = 0) or to
any other excited (N-1)-particle state m 6= 0. And similarly for the creation of the electron
(electron addition).

5.1.1 The equations of motion of the Green’s function

In this section I will follow the review article of G. Strinati [53] to introduce the equation
of motion of the single-particle Green’s function. Note, however, that the definition given
in this work of the self-energy differs from that given in the referred article, as specified in
footnote 18 at page 45.

Hierarchical equation

The very definition (5.2) of the Green’s function, or its Lehmann representation (5.3) in
practice are of no help in computing the Green’s function of an N-particle system. This
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because in general the many-body eigenstates |N〉, N − 1〉 and|N + 1〉 are not known.
However using the time-evolution of an operator in the Heisenberg picture, the equation of
motion of the Green’s function can be written

[
i
∂

∂t1
−H0(r1)

]
G(1, 2) + i

∫
v(r1, r3)G2(1, 2, 3, 3+)d3 = δ(1, 2) (5.6)

where H0(r1) = −1
2
∇2

1 +Vbgr(r1) is the non-interacting Hamiltonian, v(r1, r2) is the Coulomb
potential and G2(1, 2, 3, 4) is the two-particle Green’s function which describes the addition
and removal of two particles. The notation 3+ = (r3, σ3, t3 + λ) with λ→ 0+ real number.

The equation above is the first of a set of hierarchical equations where the equation of
motion of the j-particle Green’s function is expressed in terms of the (j+1)-particle Green’s
function (in this sense G ≡ G1). The two-particle Green’s function G2 can be computed
only through the G3 and so on, until the knowledge of the N-particle GN is required. Hence
the complexity of the problem is not reduced, and some strategy must be adopted to close
the equation for G.

Differential equation

The idea is to hide the 2-particle and higher order interactions contained in the G2 via
the introduction of an external field U . The formal tool to do so is offered by Schwinger’s
equation [54]:

δG(1, 2)

δU(3, 4)

∣∣∣∣
U=0

= G(1, 2)G(3, 4)−G2(1, 2, 3, 4) = iL(1, 2, 3, 4) (5.7)

where the fictitious field U(1, 2), introduced as a perturbation (U → 0), mimics the polari-
sation induced in the system. Schwinger’s equation (5.7) tells us that the difference between
the propagation of a non-interacting (GG) pair and an interacting (G2) pair is equal to the
variation δG/δU . L is a two-particle (or 4-point) correlation function. The equation (5.7)
holds also at non-vanishing U , therefore the field U must also be added to the single-particle
Hamiltonian for the derivation to be consistent.

If one inserts (5.7) into (5.6) and makes use of −iG(1, 1+) = ρ(r1, t1, σ1), the integro-
differential functional equation

[
i
∂

∂t1
−H0(r1)− U(1)− VH(r1)

]
G(1, 2) = δ(1, 2) + i

∫
d3v(r1, r3)

δG(1, 2)

δU(3)
(5.8)

is obtained.

The solution of this equation has been recently the subject of the works of G. Lani [55]
and M. Guzzo [5] and it will be addressed also in this thesis in the theoretical development
chapters. Since this chapter is an introduction to state-of-the-art methods and theories, I
will follow here the usual way to solve the equation of motion which relies on the concept of
self-energy.
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The Dyson equation and the self-energy

To overcome the problem of solving such a complicated differential equation, the concept of
self-energy is introduced18

Σ(1, 2) := iv(r1, r3)
δG(1, 4)

δU(3)
G−1(4, 2)d3d4 (5.9)

which inserted into (5.8) leads to the Dyson equation [56, 57] for the Green’s function19

[
i
∂

∂t1
−H0(r1)− U(1)− VH(r1)

]
G(1, 2)−

∫
Σ(1, 3)G(3, 2)d3 = δ(1, 2) . (5.10)

By defining the Hartree Hamiltonian HH(1) := H0(r1) + U(1) + VH(r1), then the Hartree
and the fully-interacting Green’s functions GH and G are formally defined as the resolvent
of the following many-body operators

G−1
H (1, 2) := δ(1, 2)

[
i
∂

∂t1
−HH(1)

]
and (5.11)

G−1(1, 2) := iδ(1, 2)
∂

∂t1
−H(1, 2) = G−1

H (1, 2)− Σ(1, 2) (5.12)

having defined the effective Hamiltonian H(1, 2) := HH(1)δ(1, 2) + Σ(1, 2).

The Dyson equation offers a clear physical interpretation of the Green’s function: in fact
it can be rewritten as an infinite sum

G(1, 2) = GH(1, 2) +

∫
GH(1, 3)Σ(3, 4)GH(4, 2)d3d4+

+

∫
GH(1, 3)Σ(3, 4)GH(4, 5)Σ(5, 6)GH(6, 2)d3d4d5d6 + ... .

This way of writing puts in evidence the self-consistent relation determining G, that is
the essence of the Dyson equation. In propagating inside the system, the undressed particle
GH induces a polarisation which in turns determines a change in its propagation, which
induces a new polarisation and so on... The fully interacting G is the self-consistent solution
of the Dyson equation and it is the limit of the infinite sum reported above.

The physical meaning of the self-energy Σ[G] is finally clear. It plays the role of an
effective field describing the response of the entire system to the propagation of a particle
(hole or electron). It is determined by, and it determines, the solution of the equation in a
self-consistent way. Its role is thus very similar to that played by Vxc in the KS scheme. Let
us go deeper in this analogy.

18 In the referenced article [53] the self-energy is defined Σ = ΣH + Σxc where Σxc corresponds to the
self-energy of this work (5.9) and ΣH = VH is the Hartree contribution.

19Here we keep U 6= 0. Normally when one works with Σ, U → 0, but we will need U later on. Hence all
quantities are functionals of U .
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5.1.2 The quasi-particle equation

The poles of G appearing in the Lehmann representation (5.3) are real and discrete excitation
energies. Correspondingly the spectral function (5.5) is a set of delta functions δ(Em − ω).
The excitations in finite systems (molecules, clusters) are discrete and well separated in
energy, so the poles of the spectral functions are delta-functions separated by finite energy
differences. To study infinite systems, the thermodynamic limit is taken, hence the spectrum
of possible excitations constitutes a continuum, and accordingly the poles of G get closer
and closer. By consequence G is no longer defined in the whole positive real axis.

One great advantage of the KS theory is the possibility to work in an independent-
particle framework. In infinite systems though, the occurrence of a continuum of excitations,
complicates the interpretation in terms of independent excitations. Instead of describing
the bare particles interacting via the bare Coulomb interaction v, one prefers to handle
dressed particles, or quasiparticles, that are bare particles together with the screening cloud
surrounding them. Quasiparticles are still fermions, but with a lower (renormalised) charge.
As a consequence quasiparticles interact via the screened Coulomb interaction W = ε−1v.

In the limit U = 0, the effective Hamiltonian introduced in (5.12) depends only on time
differences, hence on only one frequency. With an analytical continuation in the complex
plane (ω → z), the now non-hermitian operator H(z) can be diagonalised for each z by
solving the left and right equations

[H0(r1) + VH(r1)] Φj(r1, z) +

∫
Σ(r1, r2, z)Φj(r2, z)dr2 = Ej(z)Φj(r1, z) (5.13)

Φ̄j(r1, z) [H0(r1) + VH(r1)] +

∫
Φ̄j(r2, z)Σ(r2, r1, z)dr2 = E∗j (z)Φ̄j(r1, z) .

Correspondingly G(z) (analytic continuation of G(ω)) is the resolvent of H(z) hence it can
be written in terms of its eigenvectors and eigenvalues

G(r1, r2, z) =
∑

j

Φ̄j(r1, z)Φj(r2, z)

z − Ej(z)
. (5.14)

Note how this expression differs from the Lehmann representation (5.3) in the dependence
on z of both the eigenfunctions and the eigenvalues.

One can consider that main contributions to G(z) come from the poles of (5.14), which
are found for those complex energies EQP

j obeying EQP
j −Ej(EQP

j ) = 0. These are found by
solving the quasiparticle equation

[H0(r1) + VH(r1)]φQPj (r1) +

∫
Σ(r1, r2, E

QP
j )φQPj (r2)dr2 = EQP

j φQPj (r1) (5.15)

which is nothing else than the re-writing of (5.13) in z = EQP
j , with the definition of the

quasiparticle wave functions φQPj (r) = Φj(r, E
QP
j ). The Lehmann representation of the

Green’s function is therefore

G(r1, r2, ω) =
∑

j

Zj
φQPj (r1)φQP ∗j (r2)

ω − EQP
j

with Zj =

[
1− dEj(z)

dz

∣∣∣∣
z=EQPj

]−1

, (5.16)
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where Zi are renormalization factors coming from an expansion of Ej(z) around the pole

EQP
j . A pictorial illustration of the idea laying beneath the quasiparticle representation and

the Lehmann representation is depicted in Fig. 5.1.
It is useful to compare (5.15) with (3.10)

[H0(r1) + VH(r1)]φKSj (r1) + Vxc(r1)φKSj (r1) = εjφ
KS
j (r1) (5.17)

[H0(r1) + VH(r1)]φQPj (r1) +

∫
Σ(r1, r2, E

QP
j )φQPj (r2)dr2 = EQP

j φQPj (r1) . (5.18)

Now that an effective single-particle-like picture has been introduced also in the Green’s
function formalism, the similar role played by Σ and Vxc is much more evident. Despite the
much higher complexity of the self-energy operator, the Dyson equation offers a systematic
way to expand it and approximate it, whereas approximations for Vxc[ρ] are much more
difficult to devise. The expansion of Σ in terms of the screened Coulomb potential W and
one particular approximation are the subject of next section.

3. One-particle excitations

Figure 3.3: Schematic comparison between the Lehmann representation (on
the left) and the quasiparticle pole representation (on the right). In the upper
panels the residues of the imaginary part of a complex function are drawn; in
the bottom panels the crosses identify the position of the poles. A series of close
lying poles on the real axis in the Lehmann representation can be equivalently
represented by a single pole in the complex plane (see also Ref. [2]). The
imaginary part of pole in the complex plane gives the width of peak. From Ref.
[142].

(or, more in general, local minima of |z−Eλ(z)| [140]) represent the dominant
contribution to G. In this way one finds the quasiparticle equation:

[h0(r1) + VH(r1)]φs(r1) +
∫

dr2Σ(r1, r2, Es)φs(r2) = Esφs(r1). (3.56)

Even though the quasiparticle equation is a single-particle equation, the
quasiparticles don’t correspond to stationary one-particle eigenstates of the
many-body Hamiltonian Ĥ (1.1), but they are formed by a macroscopically
large number of almost degenerate stationary eigenstates of Ĥ [122]. In
the Lehmann representation in the thermodynamic limit one has a series of
infinite close-lying poles on the real axis that merge to form a branch-cut.
An alternative representation is given by a complex pole, the quasiparticle
energy Es solution of Eq. (3.55), whose real part gives the position of the
peak associated to this pole and its imaginary part the width of the peak
[2] (see Fig. 3.3). The real part of the quasiparticle energy represents the
energy measured in photoemission, its imaginary part is connected to the
lifetime of the excitation.

The quasiparticle equation (3.56) can be directly compared with the

52

Figure 5.1: Pictorial representation of the difference between the Lehmann representation (on the left) and
the quasiparticle representation (on the right). In the thermodynamic limit, an infinite number of delta-like
poles on the real axis (noted as crosses) forming a continuum can be represented as separated poles with a
non vanishing imaginary part. Image taken from [1].

5.1.3 Hedin’s equations and the GW approximation

In small systems as atoms and molecules, the main effect beyond the Hartree interaction is
the exchange, exactly described by the Hartree-Fock operator. In the language of Green’s
functions, the Hartree-Fock operator corresponds to a self-energy Σ = iGv where v is the bare
Coulomb interaction. In extended systems the bare exchange is not a good approximation
and an expansion of Σ in powers of the bare Coulomb interaction is ill-defined.

Lars Hedin has stressed the fact that in extended systems the main effect beyond Hartree-
Fock is the screening of the charged particles (holes and electrons). This effect of the dy-
namical correlation damps the long-range contribution of v. Following this intuition and
inspired by preceding works, e.g. [58], he proposed [59] an expansion of Σ in powers of the
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screened interaction W = ε−1v, presenting a closed set of five equations

G(1, 2) = GH(1, 2) +

∫
GH(1, 3)Σ(3, 4)G(4, 2)d3d4 (5.19)

Σ(1, 2) = i

∫
G(1, 3)W (4, 1)Γ(3, 2, 4)d3d4 (5.20)

W (1, 2) = v(1, 2) +

∫
v(1, 3)P̃ (3, 4)W (4, 2)d3d4 (5.21)

P̃ (1, 2) = −i
∫
G(1, 3)G(4, 1)Γ(3, 4, 2)d3d4 (5.22)

Γ(1, 2, 3) = δ(1, 3)δ(1, 2) +

+

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)d4d5d6d7 (5.23)

where the first equation is the Dyson equation (5.10), the second defines the self-energy, the
third is a Dyson equation for the screened Coulomb interaction W in terms of the irreducible
polarizability P̃ (1, 2) := δρ(1)/δVtot(2) and the last is the Dyson equation for the irreducible
vertex function Γ(1, 2, 3) = −δG−1(1, 2)/δVtot(3). The potential Vtot = U +VH is the sum of
all classical potentials acting on the system.

G
=

G
H +

G
H ΣG

Γ

G

Σ

W

Γ
=

1
+

(δ
Σ

/δ
G

)G
G

Γ

W
=

v
+

vP̃
W

P̃ = −iGGΓ
P̃

Σ =
iG

W
Γ

P̃
=
−iG

G

Figure 5.2: Hedin’s pentagon. The GW
approximation (see text below) skips the
calculation of the vertex Γ (shaded area).
Correspondingly the P̃ = −iGG is a short-
cut for the GW circle.

These five equations can be derived directly from
(5.6) and (5.7) taking U = 0 at the end of the calcula-
tion. They form Hedin’s pentagon reported schemati-
cally also in Fig. 5.2. In principle they must be solved
self-consistently.

The vertex Γ defined

Γ(123) := −δG
−1(1, 2)

δVtot(3)
(5.24)

contains electron-hole and particle-particle interac-
tions. It is found in the description of the irreducible
polarizability P̃ (5.22) and in the definition of Σ (5.20).
It is itself defined by a Dyson equation (5.23).

In the expression of the irreducible polarizability
P̃ = −iGGΓ one recognizes the independent propaga-
tion of the electron and the hole (the group GG) and
the interaction between the two caused by the vertex
Γ. In a similar way, the self-energy is described by
the propagation of a particle (G) which interacts with the rest of the system (WΓ). Using
the definition of the irreducible polarizability and the chain rule, the reducible polarizability
P = δρ/δU can be obtained as solution of a Dyson equation

P (1, 2) =
δρ(1)

δU(2)
= P̃ (1, 2) + P̃ (1, 3)v(3, 4)P (4, 2) = P̃ (1, 3)ε−1(3, 2) . (5.25)

The first equality is the time-ordered analogous20 of equation (4.7); in deriving the last
equation, the definition ε−1 = δVtot/δU has been used.

20There is another difference beyond the fact that P̃ is time ordered and χKS is retarded. In equation (4.7)
I make explicit reference to the KS system, where exchange-correlation effects are inserted in the potential
and in fxc. Instead, in the equation above, Vtot is classical. A true retarded analogous of (5.25) would be
χ = χ̃+ χ̃vχ with χ̃ = δρ/δVtot irreducible susceptibility for which χKS is sometimes a good approximation.
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GW approximation

In practice, iterating Hedin’s pentagon until full self-consistency is impossible. The most
demanding quantity to compute is the 3-point vertex Γ. An approximation suggested by
Hedin [59] is to take the 0-th order of the vertex at every cycle of the pentagon, that is

Γ(1, 2, 3) ≈ δ(1, 3)δ(1, 2) . (5.26)

This approximation defines therefore a shorter self-consistent circle, drawn in Fig. 5.2 as the
non-shaded arrows.

Neglecting the vertex correction leads to a polarizability

P̃ (1, 2) ≈ −iG(1, 2)G(2, 1) . (5.27)

In this approximation, both the electron and the hole fully interact with the system (they
are dressed G)21, but they are mutually independent (no e-h interaction).

The approximation (5.26) is known as GW approximation (GWA) because of the resulting
shape of the self-energy which reads

Σ(1, 2) ≈ iG(1, 2)W (2, 1) . (5.28)

The GW self-energy is a product in time (and space), so its Fourier transform is the
convolution

Σ(r, r′, ω) =
i

2π

∫
e−iδω

′
G(r, r′, ω − ω′)v(r′, r)dω′ + (5.29)

+
i

2π

∫
e−iδω

′
G(r, r′, ω − ω′)Wp(r

′, r, ω′)dω′ . (5.30)

where W = v+ vχv = v+Wp has been divided into a static (bare Coulomb) component and
a dynamic part and δ → 0+ is needed to ensure convergence of the Fourier transform. The
first term gives the exchange self-energy Σx = iGv, whereas the dynamical contributions
define the correlation part of the self-energy Σc = iGWp.

Most practical implementations of the Green’s function approach for real systems rely on
the GWA. In the next section I will present how it is used in practice, together with some
of its limitations and strong points.

5.1.4 GW in practice

Even avoiding the calculation of the vertex Γ, reaching self-consistency in the GW equations
is far from obvious: only recently it has been possible to perform calculations of fully self-
consistent GW, but only on small systems and still some short-cut is needed to make the
calculations computationally feasible [60].

Although approximated self-consistent approaches have been proposed and employed in
the past (CohSex, QPscGW and Hedin’s [2]), much more diffused are the “one shot GW”
or G0W0 methods, which are based on a single iteration of the GW cycle starting from an
appropriate Green’s function G0.

21If the Green’s function appearing in this expression are GH , that would be the RPA or time-dependent
Hartree approximation in the Green’s function formalism.
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a) The first GW iteration: the G0W0 scheme

In the G0W0 scheme only the first iteration of the GW circle of Fig. 5.2 is done. One starts
from the wave functions φ0 and energies ε0 obtained in an independent-particle picture
(typically in the KS scheme), and makes use of equation (5.16) to construct an initial guess
G0. With the same states and energies, also the screening ε−1 and the screened Coulomb
interaction W0 are computed, most often within the RPA. The G0W0 self-energy is then
obtained following equation (5.28), and the Dyson equation is solved, getting an interacting
Green’s function GG0W0 including dynamical correlation effects.

By far, the most widely used application of the G0W0 method is the computation of the
real part of the quasiparticle energies in order to get reliable single-particle excitation energies
such as the extraction energies, or the HOMO-LUMO gap. Looking back to equations (5.17)
and (5.18), one can compute quasiparticle energies from KS energies treating the difference
Σ − Vxc as a perturbation to the KS Hamiltonian. In first order perturbation theory, the
correction energy ∆Ei = EQP

i − εKSi to the state i is

∆Ei = Σi(E
QP
i )− V xc

i =

∫
φ∗i (r)

[
Σ(r, r′, EQP

i )− V xc
i (r)δ(r, r′)

]
φi(r

′)drdr′

where the states φi are the KS states22.
In principle, to solve the equation above, one should know the full function Σ(ω). Other-

wise, and in the majority of cases, a linear approximation for the self-energy is made, leading
to the expression

EQP
i − εKSi = Zi

[
Σi(ε

KS
i )− V xc

i

]
with Zi :=

1

1− (∂Σi(ω)/∂ω)ω=εKSi

. (5.31)

The performance of this method to compute the band structure of some real materials can
be appreciated in Fig. 5.3 where the LDA starting point is marked with red squares (note the
systematic underestimation) and the G0W0 gap energies are reported as blue dots (image
taken from [61]). The renormalization factor Z accounts for the redistribution of the spectral
weight from the quasiparticle peak to other structures called satellites. This is due to the
dynamical structure of the self-energy, and is a signature of the coupling between the hole
(electron) and other neutral excitations of the system. Static approximations (such as HF,
CohSex or QPscGW) give Z = 1: no satellite is predicted and the quasiparticle peak is
indeed a delta-function at the energy EQP

i .
Renormalization moves spectral weight to satellites. The equations above do not contain

information about structures beyond the quasiparticle peaks, except their intensity (the
spectral weight is indeed conserved). To investigate the full spectrum of single-particle
excitations one has to look at the spectral function Ai(ω), introduced in equation (5.5) and
here expressed in a single-state basis as function of the self-energy (cfr. also expression (1.3))

Ai(ω) =
1

π

|=[Σi(ω)]|
(ω − EH

i −<[Σi(ω)])
2

+ =[Σi(ω)]2
=

1

π

|Ii(ω)|
Ri(ω)2 + Ii(ω)2

. (5.32)

The imaginary part I(ω) = =[Σ(ω)] and the shifted real part R(ω) = ω − EH − <[Σ] have
been introduced to simplify future discussions. For an example refer to Fig. 5.4, reporting

22The assumption φKS ≈ φQP is often a good approximation, but in some cases a different zero-order
Hamiltonian must be chosen, for instance the CohSex (see below).
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3.3 GW in practice

Figure 3.2: Comparison between the calculated and the experimental band
gaps for a certain number of materials. In case of perfect agreement between
theory and experiment, the dot, corresponding to the theoretical result, should
stay on the diagonal line. Instead, all the LDA results (red squares) show an
evident underestimation of the band gap. The GW values are in much better
agreement with the experiment. From all-electron perturbative GW calculations
of Ref. [139].

Eq. (3.51) can be analytically continued in the complex plane [122]. A formal
solution of this equation in the complex plane is then given by:

G(r1, r2, z) =
∑

λ

Φλ(r1, z)Φ̃λ(r2, z)
z − Eλ(z)

, (3.52)

where the right and left eigenfunctions Φλ and Φ̃λ are solutions of:

[h0(r1) + VH(r1)]Φλ(r1, z) +
∫

dr2Σ(r1, r2, z)Φλ(r2, z) = Eλ(z)Φλ(r1, z),

[h0(r1) + VH(r1)]Φ̃λ(r1, z) +
∫

dr2Φ̃λ(r2, z)Σ(r2, r1, z) = Eλ(z)Φ̃λ(r1, z).

(3.53)

Right and left eigenfunctions form a biorthonormal set:
∫

drΦ̃λ(r, z)Φλ′(r, z) = δλλ′ . (3.54)

In the quasiparticle approximation one assumes that the complex poles of
the Green’s function G:

Es = Eλ(Es) (3.55)
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Figure 5.3: G0W0 and LDA HOMO-LUMO
gaps for selected materials versus their exper-
imental values. LDA systematically underes-
timates the gap, whereas G0W0 calculations
show a better agreement, but still dependent
on the starting LDA calculation. Image taken
from [61].
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Figure 5.4: The function Ak(ω) of a static self-energy is a
delta-peak at energy ε0k (here Hartree energy). In the case
of a dynamical Σ, the spectral function Ak(ω) (balck solid)
is a broadened peak at εk with a satellite at energy εS given
by the interplay of function Ik(ω) (peaked at the plasmon
resonance) and Rk(ω).

a comparison between Ak(ω) computed with a static self-energy (thick line) and with a
dynamical self-energy (thin solid line). The functionsR and I are also reported with triangles
and dots.

This kind of calculation is more cumbersome than the previous one because Σ is needed
at all energies.

b) Different self-consistent schemes

The general framework of a self consistent scheme starts from an initial guess G0 (0-th order
input), and the successive calculation of a new Green’s function G1, that passes through the
calculation of W , Σ and the inversion of an appropriate Dyson equation. The output G1 is
the output of the first iteration which is used as input for the second and so on until the
condition Gn = Gn+1 is met and convergence achieved23.

A full self-consistent scheme seems to be crucial for total energy calculations [62, 63], but
calculations performed on the homogeneous electron gas [64] indicate that spectral features
would not be reproduced correctly. Structures of A are degraded at each iteration of the
Dyson equation, because of the neglect of the vertex Γ in the self-energy and in W and
the resulting underestimation of the screening. It has indeed been demonstrated that self-
consistency and vertex correction have opposite sign [65–67], so the neglect of only one of the
two may lead to severe errors. Following this argument, partial self-consistency is preferable.

23The self-consistency condition input=output is checked on specific quantities, such as quasiparticle en-
ergies, or eigenfunctions. Moreover the iteration scheme can be more complicated than this: the input of
one cycle can be “mixed” with a previous input to stabilise the iterative algorithm. I will not enter in detail
of convergence criteria or iterative methods, my aim being that of presenting an overview on state-of-the-art
techniques.
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In particular a scheme leading to good results in the homogeneous electron gas [68] seems
to be an update of only the poles of G and not of W , that constitutes an energy-only GW0

self-consistent approach.
Let us go now through the state-of-the-art partial self-consistent schemes applied to real

materials. Original results obtained with the latter two will be presented in Chapter 8.

Coulomb hole plus screened exchange (CohSex) : A first static and Hermitian ap-
proximation of the GW self-energy has been introduced by Hedin in [59]. The exchange
and correlation part of the self-energy are approximated according to

ΣCohSex(r, r′) = ΣSex(r, r′) + ΣCoh(r, r′)

ΣSex(r, r′) = −
occ.∑

i

φi(r)W (r, r′, ω = 0)φ∗i (r
′)

ΣCoh(r, r′) =
1

2
δ(r− r′)Wp(r, r

′, ω = 0) (5.33)

where one recognises a screened exchange term in ΣSex, and the creation of a charged
particle polarizing the system (Coulomb hole) in ΣCoh.

When it was introduced, this approximation was not meant to be used specifically for
self-consistent calculations, but given the properties of the CohSex self-energy, this
scheme can actually be employed in an iterative scheme. Often self-consistent CohSex
is the method of choice when KS is found to be a poor starting points for G0W0

calculations [69].

Quasiparticle self-consitent GW (QPscGW) : The scheme proposed by Faleev and
coworkers in [61, 70] relies on a different static approximation for the self-energy. The
(n+ 1)-th step of the QPscGW self-energy reads

ΣQPGW
ij =

1

2
<
[
〈in|Σ(εni ) + Σ(εnj )|jn〉

]
(5.34)

where the Σ is the true GW self-energy, therefore diagonal elements of ΣQPGW are
exact in the GW scheme. The Hamiltonian resulting from this self energy is hermitian
and static, thus it can be diagonalised. New states |in+1〉 = φn+1

i (r) and energies εn+1
i

are then obtained. The computed energy gap versus the experimental gap of some
materials is reported in Fig. 5.5.

In many cases, the KS states can be considered a good approximation to any n-th
order states (that is φni = φKSi for all n), consequently only energies are updated.
Moreover, in this case the self-energy becomes diagonal on the DFT basis and only
diagonal elements of (5.34) are needed.

Hedin’s approximation to self-consistency (see Ref. [2]): The approximation described
here does not rely on a self-consistent scheme. Indeed it is a one-shot GW calculation
made from a wisely chosen G∆.

When employing the energy-only self-consistent scheme in G, the difference between
the n-th step Green’s function and G∞ is only on the position of the poles. At the
self-consistent condition, input and output coincide: Gn−1 = Gn.
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The GWA is usually formulated as a perturbation theory
starting from a noninteracting Green’s function G0 for
given one-body Hamiltonian H0 ! "r2

2m # Veff . H0 is non-
interacting, so Veff is static and Hermitian but it can be
nonlocal. Because the GWA is an approximation to the
exact theory, the one-body effective Hamiltonian H$!% !
"r2

2m # Vext # VH # !$!% depends on Veff and is a func-
tional of it: the Hartree potential VH is generated through
G0 ! 1=$!"H0 & i!%, and the GWA generates !$!%.
H$!% determines the time evolution of the one-body am-
plitude for the many-body system.

QSGW is a prescription to determine the optimum H0:
we choose Veff based on a self-consistent perturbation
theory so that the time evolution determined by H0 is as
close as possible to that determined by H$!%, within the
RPA. This idea means that we have to introduce a norm M
to measure the difference "V$!% ! H$!% "H0; the opti-
mum Veff is then that potential which minimizes M. A
physically sensible choice of norm is

M'Veff( ! Tr'"V"$!"H0%f"Vgy(
# Tr'f"Vgy"$!"H0%"V( (1)

where the trace is taken over r and !. Exact minimization
M is apparently not tractable, but an approximate solution
can be found. Note thatM is positive definite. If we neglect
the second term and ignore the restriction that Veff is
Hermitian, we have the trivial minimum M'Veff( ! 0 at
Veff ! Vext # VH # Vxc where Vxc ! P

ijj ii!$"j%ijh jj.
Here !$"i%ij ! h ij!$"i%j ji, and f i; !ig are eigenfunc-
tions and eigenvalues ofH0. The second term is similarly a
minimum with !$"i% ! !$"j%. An average of the
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FIG. 1 (color online). Fundamental gaps of sp compounds
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gaps improve on the LDA, but are still systematically under-
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226402-2

Figure 5.5: QPscGW energy gap versus their experimental values. Circles are relative to zinc-blende com-
pounds with direct Γ-Γ gap, while squares are other kind of compounds. The agreement with experimental
gap is much higher with respect to G0W0 calculations (see Fig. 5.3). A systematic small overestimation is
observed. Image taken from [61].

The input Green’s function is the generic G∆ defined according to

G∆(r, r′, ω) =
∑

i

φi(r)φ∗i (r
′)

ω − εKSi −∆± iη

where the ± sign depends whether the state i is empty (−) or occupied (+). The
energy shift ∆, not specified for the moment, allows for a generic position of the poles
of G∆, but note that it does not depend on the state i, so the poles of G are rigidly
shifted. States φi(r) are KS eigenstates24.

When computing G0W0with this generic Green’s function the resulting self-energy Σ∆

is such that

Σ∆(r, r′, ω) = Σ0(r, r′, ω −∆) , (5.35)

as it is clear from equations (5.29) and (5.30), where Σ0 = Σ∆=0 corresponds to the
ΣG0W0 computed on top of a KS calculation. The generic spectral function of G∆ can
be computed according to equation (5.32)

A∆
i (ω) =

1

π

|=[Σ0
i (ω −∆)]|

(ω − εKSi + V xc
i −<[Σ0

i (ω −∆)])
2

+ =[Σ0
i (ω −∆)]2

(5.36)

where Σi = 〈i|Σ|i〉. Still, as long as the shift ∆ in not fixed, the relation above is
general.

24The derivation is not limited to the use of KS states and energies, and any single-particle scheme (such
as Hartree Fock or CohSex) can be employed instead. In its original formulation [2] the Hartree eigenvalues
are used.
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The new energies Ei computed with Σ∆ and the initial energies read respectively

OUTPUT : Ei = εKSi − V xc
i + 〈i|Σ∆(Ei)|i〉 ; INPUT : εKSi + ∆ .

The energy shift ∆ is then fixed by requiring the self-consistency condition at the Fermi
level, i.e. Ein

F = Eout
F . This condition leads to two equations:

∆ = 〈F |Σ∆(EF )|F 〉 − V xc
F and EF = εKSF + ∆ (5.37)

This fixes ∆, in fact using the second into the first and making use of relation (5.35),
one defines

∆ := 〈F |Σ0(εKSF )|F 〉 − V xc
F . (5.38)

and the approximate self-consistent spectral function (5.36) can be computed using
only quantities issued from a G0W0 calculation.

c) Computing the screening: approximations and techniques

The correlation self-energy is a convolution in frequency space, as depicted by (5.30). The
most demanding step is the calculation of Wp(ω) at all frequencies. Two methods to perform
the convolution integral are here presented, the first is an approximation based on a Plasmon
pole model (PPM) for ε−1 and the second is the contour deformation method.

Plasmon pole model : Because of the integration over frequencies, one may disregard all
the structures of Wp(ω), approximating the imaginary part of the screened interaction
with a delta peak of appropriate weight. Each element of the inverse dielectric matrix
ε−1
GG′(q, ω) is then approximated with

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − ω̄2
GG′(q)

(5.39)

defined by two parameters: the plasmon energies ω̄2
GG′(q) and their weights Ω2

GG′(q).

A fitting method is then required to fix the two parameters of the model. In the
Godby-Needs scheme [71] these parameters are fitted on two calculations performed at
ω = 0 and ω = iωp, where ωp is a real value, by preference close to the plasmon energy
of the material. Other schemes have been devised exploiting e.g., sum-rules [72, 73].

This approximation is justified by the fact that for many materials the measured EELS
is well described by a single peak centred at the plasmon energy (cfr. EELS of Si).

In some cases though, this approximation is not reliable because of the presence of
several plasmon peaks on ε−1. For example, kinks in the band structure of graphene
have been shown to be due to low energy excitations, and they can only be described
when at least two poles are used [74]. A multi-plasmon pole model may be used, or one
has to perform the actual calculation of the convolution integral (5.30), for example
with the contour deformation method.

Contour deformation method: To evaluate the self-energy integral on the whole real
axis it is possible to exploit the residue theorem

∮

C

F (z)dz = 2πi
∑

p : zp∈C
Res[F (zp)] with zp pole with multiplicity 1,
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where

Res[F (zp)] := lim
z→zp

(z − zp)F (z) .

To this aim a contour C is chosen as in Fig. 5.6 and the correlation part of Σ (5.30)
splits into two contributions

Σc(ω) =
i

2π

∫ +i∞

−i∞
G(ω + z)Wp(z)dz −

∑

p : zp

lim
z→zp

G(ω + z)Wp(z)(z − zp)

that are computed numerically by interpolating Wp(ω). To get reliable results, the
interpolation requires the calculation of ε−1(ω) in several real (order of hundreds) and
few imaginary frequencies. It is therefore much heavier than the PPM, but it gives
more accurate results, especially when computing full spectral functions, and not only
quasiparticle energies.

Figure 5.6: The integration path in the contour deformation method.

5.1.5 A focus on dynamical effects on the one-particle Green’s
function: GW and the cumulant expansion

In this section I will focus on how GW performs in describing the dynamical effects due to
Σc(ω). The dynamical self-energy broadens the quasiparticle peak, which loses intensity in
favour of structures occurring at higher energy, called satellites.

We have seen (5.31) how the renormalization of the peak is usually accounted for. The
renormalization factor Zi indeed reduces the weight of the peak. This may give a measure
of the importance of dynamical self-energy effects at the QP level. But to see satellites, one
has to look at the spectral function (5.32) Ai.

The full spectrum

In section 1.3.1, I introduced photoemission spectroscopy from an experimental point of
view. I remember that the binding energy of the emitted electrons is

Eb = ~ω − Ek − ϕ ,
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that is the difference between the photon energy~ω, the kinetic energy Ek of the photoelectron
and the work function ϕ of the system.

Referring to Fig. 1.5, relatively sharp peaks in the spectrum are observed in correspon-
dence of the quasiparticle peaks, while at higher energies much broader structures are found
at frequency intervals that multiples of the plasmon frequency. They are plasmon satel-
lites25. As underlined in the introduction, the broadening of the quasiparticle peak with
respect to an ideal (independent-particle) delta-function and the resulting creation of addi-
tional structures at higher energies are both clear signs of the dynamical correlation between
the electrons of the system.

Given this experimental scenario, the question is “How does the GWA describe the satel-
lites?”

The GW approximation and the plasmaron

To calculate satellites in the GWA, one has to compute the spectral function A according to
expression (5.32)

A(ω) =
1

π

|I(ω)|
R2(ω) + I2(ω)

, (5.32-bis)

where the state index i has been dropped for simplicity, and the functions I = =[Σ(ω)] and
R(ω) = ω − EH −<[Σ(ω)] have the same meaning as in (5.32).

Looking at (5.32-bis), one realises that structures are found essentially when energy ω is
such that:
i) either R(ω) = 0 and I(ω) ≈ 0 (vanishing denominator),
ii) or I(ω) has a significant peak and R(ω) is not too large and does not cross the zero line.
In the first case (i), sharp peaks are observed. We speak of quasiparticle (QP) peak when the
structure is in one-to-one correspondence to a peak in the non interacting spectral function,
and we speak of plasmaron [75, 76] in all other cases. The second case (ii) usually gives rise
to broader and less intense structures, corresponding to plasmon satellites, ascribed to the
coupling of the QP with neutral collective excitations of the system. Again, other kinds of
coupling can be observed when one goes beyond GW.

The concept of plasmaron has been introduced initially by L. Hedin who discovered it
in the homogeneous electron gas [75]. He pointed it out as a novel quasiparticle-plasmon
bound state. It is found in the spectral function A(ω) at energies where the imaginary part
of the self-energy I is small and R = 0. So it has the same characteristics of a quasiparticle,
but it is found at higher binding energy.

Later, D. C. Langreth [77] showed on a model Hamiltonian that the correct spectrum
of excitations is indeed a series of satellites separated from the QP peak by multiples of
the plasmon energy, which is experimentally observed in core-electron photoemission spec-
troscopy. Therefore the plasmaron has been first interpreted as an average of the correct
solution, and eventually recognised as a spurious product of GW [76].

A complete treatment of the problem and a historical overview are beyond our scope,
rather we refer the interested reader to a recent work of M. Guzzo [5] and especially to his
Ph.D. thesis [78].

But other satellites are described by the spectral function: they fall in the case ii), where
the numerator dominates. Since I(ω) ∝ =[W (ω)], it has structures at energies corresponding

25There are also other kind of satellites, for example structures due to hole-hole bound states.
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to essentially plasmon resonances. Because of the Kramers-Kronig relations between I and
R, when the first has a structure (let us say in ωp), the latter oscillates and has a peak at
energy ω̃, usually higher than ωp (see Fig. 5.4 for a qualitative description). As a consequence
the spectral function A happens to have a plasmonic peak at a binding energy E = ωp + δ
higher than the true plasmon frequency. The entity of the discrepancy δ depends on the
system and may be of the order of some eV. Moreover, each plasmonic structure of I creates
only one structure on A, so satellite replicas are not reproduced.

We can conclude that GW is not a good approximation for the description of satellites.
Main responsible is the real part of the self-energy <[Σ(ω)] which, whit its peaks, can generate
unphysical peaks by crossing the zero (plasmarons), or shift plasmon satellites to too large
binding energies.

The Cumulant expansion and the satellite series

The cumulant expansion

Gl(τ) = iθ(−τ)e−iE
QP
l τ+Cl(τ) (5.40)

is an ansatz for the single-particle Green’s function (here reported for the hole contribution).
One assumes an exponential form for G, moreover states are assumed decoupled. The cu-
mulant function Cl(τ) contains dynamical one-particle effects. An exponential G is obtained
as exact solution of the quasi-boson Hamiltonian [77], where an electron is coupled with a
boson reservoir (e.g. plasmons), but it can be derived also by an analogy with statistical
concepts [79, 80] or by manipulations of the Dyson equation [81].

By expanding (6.1) in powers of C

Gl(τ) = iθ(−τ)e−iE
QP
l τ

[
1 + Cl(τ) +

1

2
C2
l (τ) +O(3)

]
, (5.41)

and approximating Cl ≈ λle
−iωlτ with a plasmon pole26, the series reads

Gl(τ) = iθ(−τ)e−iE
QP
l τ

[
1 + λle

−iωlτ +
λ2
l

2
e−i2ωlτ +O(3)

]
,

Gl(ω) = Zl

[
1

ω − EQP − iη +
λl

ω − (EQP + ωl)− iη
+

λ2
l

ω − (EQP + 2ωl)− iη
+O(3)

]

where Zl is a renormalization factor. In the last expression we recognize a series of peaks
at energies that are integer multiples of the plasmon peak. So, what was not reproduced by
the GWA is indeed given by the cumulant expansion formalism.

Recently [55, 82], the exponential form of G has been derived from (5.8) by linearizing
the Hartree potential with respect to the external field U and assuming decoupled states.
The idea has been to abandon the Dyson equation and the concept of self-energy, in favour
of the differential equations formalism. This new derivation led to a correct description of
satellite structures in Si [5] and in bulk graphite [78], and allowed for prediction in undoped
graphene (see [78] and Appendix D). Furthermore it is put in practice through a simple
post-processing method of G0W0 spectra. The main interest in this recent derivation is

26This can be justified, e.g. by equating the first order of the expansion (5.41) with the first order of the
Dyson equation (5.19) in the GW approximation for Σ. C is then expressed in terms of Σ and a plasmon
pole can be used to approximate the screened Coulomb interaction.
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not the exponential form itself, but it is indeed the way it is derived since it starts from a
basic equation and makes use of simple approximation that can be generalised. Chapter 10 is
actually devoted to the generalization of this approach to the case of two-particle phenomena
(namely absorption).

5.2 Neutral excitations with MBPT

The Green’s function formalism offers a natural framework also for the description of neutral
excitations. As seen before, equation (5.22) gives the polarizability P̃ = −iGGΓ of the
system in terms of the propagation of two particles (electron and hole) and the vertex Γ
which accounts for the mutual interaction between them. Dielectric properties are strictly
related to the polarizability of the system, as pointed out in the introduction. The key
to access the polarizability is the 2-particle correlation function L27 already introduced in
Schwinger’s equation28 (5.7)

L(1, 2, 3, 4) := −i δG(1, 2)

δU(3, 4)

∣∣∣∣
U=0

= iG(1, 5)G(6, 2)
δG−1(5, 6)

δU(3, 4)

∣∣∣∣
U=0

, (5.42)

where integration over repeated variables is assumed. Second and third terms are related by
differentiating the exact relation δ(1, 2) = G−1(1, 3)G(3, 2).

By using definitions (5.24) and (5.25) together with P̃ = −iGG and the chain rule, one
gets the relation between the reducible polarizability (2-point function) and the 2-particle
correlation function (4-point function):

P (1, 3) = L(1, 1, 3, 3) , (5.43)

so the polarizability of the system can be obtained by contracting space and time variables
of the 4-point function L.

It is possible to express L with a Dyson equation by combining definitions29 (5.42), (5.11)
and (5.12), with VH(5) = −iv(5, 7)G(7, 8)δ(7, 8) and exploiting the chain rule. The equation
obtained in this way is the Bethe-Salpeter equation

L(1, 2, 3, 4) =

= L0(1, 2, 3, 4) + L0(1, 2, 5, 6) [v(5, 7)δ(7, 8)δ(5, 6) + Ξ(5, 6, 7, 8)]L(7, 8, 3, 4) (5.44)

which describes the propagation of two interacting particles inside a many-body environment
in relation with the independent particles L0 and the kernel Ξ defined as

L0(1, 2, 3, 4) := −iG(1, 3)G(4, 2) and Ξ(1, 2, 3, 4) := i
δΣ(1, 2)

δG(3, 4)
. (5.45)

Three contributions are recognised.
1) An “independent particle” contribution (L0 = −iGG) , depicting the effect of the two

27The two particle correlation function describes the propagation of any particle pair: the electron-hole
pair (exciton) as well as the electron-electron or hole-hole particle pairs. Since I am interested in neutral
excitations, I will mostly refer to the two particles as electron and hole, but the following equations are
general.

28All functional differentiations with respect to U are taken at vanishing U in the rest of this chapter, but
this will be omitted from now on to simplify the notation.

29Note that in (5.42) one has to use the non local U(1, 2) instead of the local U(1).
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particles, propagating in the system. Each particle fully interacts with the environment
(dressed G), but they are not interacting each other. Note the similarity between L0 and
the GW polarizability (5.27).
2) A term L0vL representing the classical polarisation (Hartree) induced in the rest of the
system by the particle pair.
3) The e-h direct interaction L0ΞL which constitutes the strong point of this approach. The
BSE kernel indeed includes explicitly the excitonic effect, that is the interaction between the
electron and the hole. In contrast with the exchange-correlation kernel fxc of TDDFT (4.8),
systematic approximations for Ξ can be devised.

5.2.1 Approximations to the BSE

Independent Quasiparticle approximation and GW+RPA

The easiest approximation to the kernel is simply to neglect it. When Ξ = 0, left and right
hand side of the BSE can be contracted before solving the equation, which leads to the
2-point equation

P (13) = P 0(13) + P 0(15)v(56)P (63) . (5.46)

In the “independent particle term” P 0(13) = −iG(13)G(31) each particle is represented by
a fully interacting G. Dynamical self-energy effects (renormalization of the quasiparticle and
resulting occurrence of satellite structures) are then accounted completely in the propagation
of each particle, together with the bare e-h exchange contribution (P 0vP ). What is missing
is the direct particle-particle interaction. When only the quasiparticles are retained in the
Gs composing P 0, that is G is written as in (5.16), then this formula has the name of
Independent Quasiparticle (IQP) approximation.

In the IQP approximation, the intensity of absorption spectra is actually underestimated
by∼ 30 % [83]. This is because the quasiparticle peak is renormalised by the dynamical factor
Z introduced in (5.31), as a consequence a total renormalization ∝ Z2 affects the weight of
optical spectra leading to a strong underestimation of the structures. The profound reason
of this underestimation of the spectra is related to the interplay between the dynamical
self-energy and the dynamical BSE kernel.

I will come to this point later, for the moment I focus on a practical solution to this prob-
lem. In practice, it is preferable to compute an RPA spectrum as in (4.12) but substituting
KS energies with quasiparticle energies, for instance computed using (5.31). Transition en-
ergies are therefore accurate, but the spectral weight is not lost because no dynamical effect
on G is taken into account (Z = 1). I will refer to this approximation either with the name
“GW+RPA” or “SO+RPA” depending whether GW or scissor operator have been used to
compute quasiparticle energies.

GWA+BSE and Static screening approximation

To evaluate the kernel, one can rely on the GWA for which Σ = iGW . Disregarding the
term δW/δG, the kernel Ξ = iδΣ/δG can easily be computed, leading to

L(1234) = L0(1234) + L0(1256) [v(57)δ(56)δ(78)−W (56)δ(57)δ(68)]L(7834) . (5.47)

This equation is still extremely difficult to solve because of the cumbersome time structure
of the Kernel. In principle, L(r1234, t1234) is a function of four times, that is three frequencies.
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Results on the two-site Hubbard model [84] and on small molecular systems [85] have been
computed, but applications to extended (infinite) systems are not feasible for the time being.

Instead, a static approximation to W (t − t′) = Wδ(t − t′) is usually made. The time
contractions t2 = t1 and t4 = t3 can then be done immediately (that is the simultaneous
creation and recombination of the e-h pair). Consequently, one can Fourier transform the
BSE equation,

L(r1234, ω) =

= L0(r1234, ω) + L0(r1256, ω) [v(r57)δ(r56)δ(r78)−W (r56)δ(r57)δ(r68)]L(r7834, ω) , (5.48)

obtaining that both L and L0 depend only on one frequency ω.
Contrary to what happened in the IQP approximation, the equation above can not be

contracted in space from the beginning, so the full 4-point (in space and spin) L(ω) has to
be computed.

For the same reasons as those explained for the IQP approximation, neglecting the dy-
namical contributions prevents the mutual cancellation between the dynamical self-energy
and the dynamical kernel contributions. Because of this, instead of an L0 = −iGG, one
usually uses a different IP-polarizability L0′ = −iG0G0 constructed according to (5.16), but
using KS wavefunctions instead of QP eigenstates, and inserting the real part of the quasi-
particle energies EQP

i in the denominator. I will refer to this approach as GW+BSE (or
SO+BSE if a rigid shift is used to approximate GW corrections).

The solution of equation (5.48) is computationally demanding. It is the solution to this
equation one usually refers to when reporting Bethe-Salpeter spectra.

Many methods to solve the equation above have been developed and implemented in
different flavours. In the following section I present a matrix diagonalization method imple-
mented in the code EXC [86], that is useful to perform successive analysis of the spectra.

5.2.2 Solving the BSE in practice

BSE for optical spectra

Since I will solve BSE mainly for absorption processes, I substitute v with the local field v̄
introduced in equation (4.28). Correspondingly the computed 2-particle correlation function
is L̄ which gives χ̄ once contracted. So the absorption spectrum is easily obtained as the
imaginary part of

εM(ω) = 1− lim
q→0

[
v0(q)

∫
L̄(r1133, ω)e−iq·(r1−r3)dr13

]
, (5.49)

in agreement with equation (4.25).

Static excitonic Hamiltonian

One method to solve the BSE equation is to switch to a state-representation of the operators.
Taking φi(r) any single-particle state, a pair-function basis can be defined by the coupled-
states |i1, j2〉 := φi(r1)φ∗j(r2) = Φij(r1, r2). Although (i, j) is a generic couple of states, I
will refer to this basis as the transition-basis even if conduction-conduction and valence-
valence pairs are included. In particular, if one takes φi as the quasiparticle wave functions,
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and assumes the quasiparticle approximation for G, then L0 = −iGG is diagonal on the
transition-basis

L0 ab
cd(ω) = (fa − fb)

δacδdb
ω − (Eb − Ea) + iη sign(Eb − Ea)

, (5.50)

where the difference between quasiparticle energies (Eb − Ea) is the |a〉 → |b〉 transition
energy and fi is the occupation number of the state i. The infinitesimal quantity η coming
from the denominator of the Gs will have no impact on future discussion, therefore will be
omitted for simplicity.

Projected on this basis, the formal solution of the BSE is given by

L̄abcd(ω) =
{
δikδjl − L0 ij

mn(ω)Kmn
kl

}−1

(ab)(ef)
L0 ef

cd(ω)

=
{
δikδjl − L0 ij

mn(ω)Kmn
kl

}−1

(ab)(ef)
{(Ef − Ee)δecδfd}−1

(ef)(cd) (fc − fd) ,

where K = v̄ −W is the static interaction term defined in terms of the matrix elements

v̄mnkl = 〈〈 v̄(r13)δ(r12)δ(r34) 〉〉 =

∫
φ∗m(r1)φn(r1)v̄(r13)φk(r3)φ∗l (r3)dr13 and (5.51)

Wmk
nl = 〈〈 W (r12)δ(r13)δ(r42) 〉〉 =

∫
φ∗m(r1)φk(r1)W (r12)φn(r2)φ∗l (r2)dr12 . (5.52)

N.B. The notation used to represent matrix elements is not standard. If A(r1, r2) is a
generic two-variable quantity, upper indexes are related to contraction with wave functions
depending on the first space variable (r1 in the example) whereas lower indexes are referred
to the second variable (r2). Because of the difference in the delta-functions of the BSE
kernel, this notation leads to a mismatch in the order of the indexes between v and W .
Consequently attention must be paid in taking v̄ −W .

Making use of the operatorial identity [BC]−1 = C−1B−1 in the expression above, and
after some algebraic manipulation, one gets

L̄abcd(ω) =
{

H̃exc − 1ω
}−1

(ab)(cd)
(fc − fd) (5.53)

with the identity matrix 1abcd = δacδdb and the frequency-independent excitonic Hamiltonian

H̃exc
(ij)(mn) := (Ej − Ei)δimδjn − (fi − fj)

[
v̄ijmn −W im

jn

]
. (5.54)

The solution of equation (5.53) is not trivial only for eigenenergies Eλ and eigenvectors
Aλ satisfying the eigenvalue equation

H̃excAλ = Eexc
λ Aλ , so that L̄ijkl =

∑

λ,λ′

Aijλ S
−1
λλ′A

kl
λ′

Eexc
λ − ω

. (5.55)

In the last expression the spectral representation of L̄ has been used. The fact that vectors
A are not necessarily orthonormal is accounted for by the overlap matrix Sλλ′ = A∗λ ·Aλ′ .

Because of the differences (fi− fj) in (5.53) and (5.54), the eigenvalue problem has to be
solved only in the subspace spanned by IP-transitions, i.e. paired states of the kind30 |vc〉.

30Indeed one also have paired states of the kind |cc′〉 or |vv′〉.
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In this subspace, the excitonic Hamiltonian is a block matrix of the form

H̃exc
(vc)(v′c′) =




Hres
(vc)(v′c′) Kcoup

(vc)(c′v′)

−Kcoup ∗
(vc)(c′v′) −Hres ∗

(vc)(v′c′)


 , (5.56)

with Hres the resonant part, −Hres ∗ = Hantir the antiresonant parts, and Kcoup the coupling
between resonant and antiresonant matrices.

Spectra of Si and LiF obtained with this method are reported in Fig. 5.7. In black solid
lines I report the BSE spectra, in blue the RPA spectra, violet lines stand for RPA+GW (Si)
or RPA+SO (LiF) calculations and red dots are for experimental data. Both systems present
an excitonic peak which is well described by the BSE calculation, while other simulations do
not get this structure.

(a) Si Green functions approach
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Figure 3.VII: Absorption Spectrum for bulk silicon. RPA, GW-RPA and BSE results compared to the
experiment [189].

the GW-RPA, with respect to experiment. The very crucial step, the third one, moves
(red-shift) the GW-RPA peaks in the right position and improves the line-shape of the
spectrum (full line). Let us summarize the mathematical expression of the polarizability
at the three stages (schematically):

DFT-LDA ⇒ χRPA
0 = G0(εi)G

0(εi)

GW-RPA ⇒ P0 = G0(Ei)G
0(Ei)

BSE ⇒ P̃ = P0 + P0WP̃ = (1− P0W )−1P0

We recognize that in both DFT-LDA and GW-RPA cases, the polarizability is given by
the propagation of the electron and the hole separately (product of two one-particle Green
functions), whereas in BSE the propagation of the two particles is correlated by the term
(1− P0W )−1, which is nothing but the vertex term Γ, as follows from (3.12) and (3.14).
This vertex term is responsible for excitonic effects, i.e. for the electron-hole interaction,
giving rise to the two-particle character of the BSE.

Despite its three-step algorithm, the physics of the BSE picture is quite clear, and it
is also easy to recognize the level of approximations occurring at each stage. Moreover
the results one can achieve, within BSE, are remarkable, in a large variety of systems, like
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Figure 5.7: Standard BSE calculations of optical spectra of Si (5.7a) and LiF (5.7b). In Fig. 5.7a RPA+LFE
(double dot-dahsed blue), RPA+GW (dot-dashed violet) and BSE calculation (solid black) are compared
with experimental data (red dots). Similar color code is used for LiF in Fig. 5.7b. The excitonic peak at the
onset is reproduced only by the BSE calculations. Note the strong excitonic peak in the LiF spectrum at 22
eV predicted by BSE. A similar feature will be analised in Chapter 6 in the case of SrTiO3. The image of Si
taken from [87].

Spectral weight analysis

The matrix element L0 vc
v′c′ has resonant and antiresonant components, exactly as in (4.13).

Antiresonant contribution and coupling terms can usually be neglected in absorption spec-
tra (Tamm-Dancoff approximation, cfr section 4.5.1). The resonant contribution Hres

(vc)(v′c′) =

(Ec−Ev)δvv′δ(cc′)− vvcv′c′ +W vv′
cc′ is in principle non hermitian because of the imaginary part

of the quasiparticle energies Ej. On the contrary, 〈〈v̄〉〉 and 〈〈W 〉〉 are Hermitian matrices.
Therefore if one neglects the lifetime of the excitations (that is coherent with neglecting
the dynamical contributions in the kernel) then the full Hexc matrix becomes hermitian.
Consequently eigenvalues Eexc

λ are real and eigenvectors A are orthogonal so that S = 1.
Under these approximations equation (5.49) reduces to

εM(ω) = 1− lim
q→0

v0(q)
∑

λ

|∑vc ρ̃vc(q)Avcλ |2
Eexc
λ − ω − iη

, (5.57)
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where the oscillator strengths ρ̃vc = 〈v|e−iq·r|c〉 have been defined in (4.11).
Although computationally demanding, this approach has the advantage that the opti-

cal spectrum can be decomposed on independent-particle transitions. The excitonic wave
function

Aλ(r, r
′) =

∑

vc

φv(r)Avcλ φ
∗
c(r
′) (5.58)

gives the conditioned probability amplitude to find a particle (e.g., the electron) in r′ given
the other (e.g., the hole) in r.

The numerator of equation (5.57) gives the excitonic spectral weight at the energy Eexc
λ .

It can be decomposed on its independent-particle transitions as well. We introduce the
E-restricted spectral weight

JEλ(q, E) =
∑

(vc):Evc<E
ρ̃vc(q)Avcλ with IP-transition energy Evc = Ec − Ev , (5.59)

which is the spectral weight at energy Eλ obtained by summing all IP-transitions of energy
Evc < E . Correspondingly the converged spectrum31 J∞Eλ(q) = limE→∞ JEλ(q, E). Then, the
cumulant function

fEλ(q, ω) :=
|JEλ(q, ω)|2
|J∞Eλ(q)|2 (5.61)

tends to the value of 1. It is a useful tool to analyse the decomposition of the spectral weight
in terms of the IP-transitions of given frequency. In fact it takes into account the interference
between the terms ρ̃vc(q)Avcλ entering in JEλ because all contributions of energy ω < ω′ are
included in its definition.

5.2.3 Going beyond the static screening approximation

Is it possible to solve the BSE equation in a fully dynamical description of absorption?
Theories and approximations have been proposed in the past, for example Ref. [88] or [89],
the latter being based on the calculation of selected diagrams in the homogeneous electron
gas. To give a description of dynamical effects in light absorption, one should describe on
the same footing two different aspects of the phenomenon.

On one hand the exciton is formed by two charged particles: the electron and the hole.
The effects that each of them induces in propagating in the system are accounted for by the
dynamical Σc(ω). Hence the renormalization of the QP peak and the occurrence of satellites
is one key aspect of the dynamics of absorption.

On the other hand the exciton, as electron-hole pair with neutral charge, has a lower
impact in perturbing the system with respect to the sum of its two components. The pertur-
bation induced in the system by a propagating dipole is much more short-range than that of
a monopole. This is the second aspect to account for: the e-h pair term has to cancel part
of the self-energy contribution. The latter aspect is ascribed to the very propagation of the

31In terms of the E-restricted spectral weight, equation (5.57) reads

εM (ω) = 1− lim
q→0

v0(q)
∑

λ

∣∣J∞Eλ(q)
∣∣2

Eexc
λ − ω − iη . (5.60)
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exciton, it is then a mere 2-particle effect and is therefore described by the dynamical kernel
Ξ(t1234) = iδΣ(12)/δG(34).

To give a coherent description of the dynamical effects in light absorption, these two
aspects have to be treated on the same footing.

This delicate interplay is at the origin of many different phenomena that are not re-
producible in single-particle schemes. Amongst them the renormalization of the absorption
peaks [83, 90, 91] and the occurrence of extra structures due to multiple excitations [84, 85]
have been investigated recently.

The interference between dynamical self-energy and BSE kernel

Some studies have been conducted about the interplay between self-energy and dynamical
kernel effects [83, 90, 91], with major attention on the renormalization of the absorption
peaks.

As explained when introducing the IQP approximation (Ξ = 0, section 5.2.1), if one
neglects the kernel but still includes dynamical self-energy effects within the quasiparticle
approximation, computed spectra have underestimated weight. This has been shown by R.
Del Sole and R. Girlanda [83] on the prototypical case of Si. Further studies conducted by F.
Bechstedt and coworkers [90] showed that indeed interference effects coming from the kernel
have opposite sign and partially cancel with the self-energy contributions.

In their paper, Bechstedt, Tenelsen, Adolph and Del Sole calculated the polarizability,
neglecting the Hartree contribution, and to first order in W , namely

L = −iGG−GGWGG with G from the first iteration of G = G0 +G0 [Σ− Vxc]G

using a G0 computed with KS states. The resulting polarizability L includes linear contribu-
tions from both the dynamical self-energy and the BSE kernel (in the GW approximation).
Moreover G was supposed to be diagonal in the single-particle basis (later on, in chapter 10,
I will refer to this approximation as the decoupling approximation on G), and L was assumed
to be diagonal in the band indexes but not in the wave vector k. It must be noticed that in
solids one has to expand corrections beyond the first order in W for the transition energies
to change. Instead, changes in the exciton wave function to first order are not vanishing and
can have significant impact on spectra [92].

The resulting optical absorption spectrum

=[εM(ω)] =
∑

vc

∑

k

|Mvc(k)|2Avc(k, ω)

is expressed in terms of the squares of the optical oscillators

Mvc(k) =
〈ck|v|vk〉

ELDA
c (k)− ELDA

v (k)
with v velocity operator,

and the absorption spectral function

Avc(k, ω) = [1− βvc(k)]δ(Ec(k)− Ev(k)− ω) + first satellites
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with the (first order) renormalization factor βvc(k) given by

βvc(k) = − 1

π

∑

k′∈BZ
=
[∫ ∞

0

W cck
cck′(ω

′)

|ω′ − Ec(k) + Ec(k′)|2
+

W vvk
vvk′(ω

′)

|ω′ − Ev(k′) + Ev(k)|2 +

−2<Mvc(k
′)

Mvc(k)

W cck
vvk′(ω

′)

(ω′ − Ec(k) + Ec(k′)) (ω′ − Ev(k′) + Ev(k))
dω′
]
. (5.62)

Matrices W ijk
mlk′ are the same32 as in (5.52), with an explicit index for the k points.

The three terms appearing in formula (5.62) are exactly the terms one has to account for:
the dynamical effects of the hole (W vvk

vvk′) and the electron (W cck
cck′) come from the self-energy

contribution, whereas the interference term W cck
vvk′ with opposite sign and double weight is

the interference term coming from the dynamical kernel. Given the opposite sign between
the e-h and the single-particle contributions, partial cancellation between the three terms
happen, giving a negligible renormalization of the peak, that justifies the static GW+BSE
approach. This is the result found by Del Sole and Girlanda [83].

Marini and Del Sole [91] successively derived a dynamical kernel for the BSE at first
and second order in W which depends only on one frequency ω. They have shown that in
some metals as Cu and Ag dynamical excitonic effects together with the renormalization of
quasiparticles have to be included in the calculation to get correct absorption amplitudes
up to first order in W . For the case of the semiconductor Si, corrections even beyond first
order are needed. They showed that the renormalization factors Z and the first order of the
dynamical kernel have the same weight with opposite sign.

Coupling between excitations

Beside renormalization aspects, the inclusion of dynamical effects is mandatory when double
or multiple excitations are of interest.

Extra poles are observed when the excitation involves the simultaneous creation of several
electron-hole pairs. Of this kind are phenomena like the direct generation of several excitons
by absorption of single photon or the generation of electron-hole pairs due to the decay
of a high energy (hot) exciton (impact ionization process). Multiple excitations and decay
processes are accounted for by the coupling between single and multiple excitations. For
instance, in systems like molecules with open-shell ground state, the presence of double
excitations is an experimental evidence as it is the multiple exciton generation in some
nanostructures. The latter are potentially important for application in solar cells [7, 9, 10, 93].

To understand better the link between dynamical kernel and multiple excitations, let us
write a generic Dyson equation

L̃(ω) = L0(ω) + L0(ω)K̃(ω)L̃(ω)

defined in terms of the independent-particle polarizability L0. L0 has a number of poles
(counting the multiplicity) equal to the number of independent 2-particle transitions. The
fully interacting solution L̃ instead accounts for all possible excitations of the system. As a
consequence it must have extra poles corresponding to multiple-excitation processes. Hence
to account for multiple transitions, it is necessary for the number of poles in L̃ to be higher
than in L0, task that can be accomplished only by a dynamical kernel K̃(ω).

32Note that in the original paper, the matrix WGG′ is supposed diagonal. For our scope this detail is
irrelevant.
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So, the role played by K̃(ω) is that of adding poles by folding all possible multiple exci-
tations of the system into the single-excitation space where both L0 and L̃ are represented.
One can imagine to divide the fully interacting space into two subspaces: one spanned by
a basis of single-excitations es (for example the transition-basis introduced in section 5.2.2)
and the other spanned by a basis of multiple excitations em. Following the same way of
reasoning as in section 1.2, one obtains

[
S + C1(ω −M)−1C2

]
es = ωes

where the single-multiple coupling blocks (C1 and C2) together with the multiple-multiple
block (M) are folded into the dynamical kernel C1(M − ω)−1C2.

This is exactly the framework of BSE: it is formulated in the 2-particle space but in-
corporates into the dynamical kernel Ξ(ω) = δΣ/δG the coupling with all other possible
excitations of the system.

Having this in mind, two recent works have tried to exploit the same intuition to devise
TDDFT kernels derived from dynamical BSE. In [84], P. Romaniello et al. solved the dy-
namical BSE in a 2-site Hubbard model within the GWA for the BSE kernel. Instead of a
self-consistent screened interaction, they solved the dynamical problem using a W coming
from a static BSE calculation, thus including dynamical effects only to the first order. The
resulting kernel of the dynamical BSE reads

W̃ ab
cd (ωλ) =

i

2π

∫
W ab
cd

{
1

ωλ − ω − Ecb + iη
+

1

ωλ + ω − Ead + iη

}
dω (5.63)

with Eij = Ei−Ej difference of quasiparticle energies and W ab
cd coming from the static BSE

calculation.
The solution they found for the dynamical BSE has four poles: two involves single-

excitations, one is a singlet double excitation and the fourth unphysical pole has been ascribed
to the self-screening problem of the GWA. The latter issue has been solved in a successive
paper by D. Sangalli et al.[85] where a number conserving approach based on second RPA
is invoked to get rid of spurious solutions. The approach led to the application to small
molecules.

Inspirations from the one-particle case

Some progress in the inclusion of dynamical effects in the theory of absorption has been
done. However these approaches stop at the first [84, 85, 90] or at the second [89, 91] order
in W , and it is a very hard task to go beyond. Moreover most of these works focus on specific
aspects of the spectrum, making use of approximations in order to neglect the aspects of no
interest.

Instead, one would like to achieve a full description of the phenomenon. One would like
to take into account at the same time and with the same theory both the renormalization of
the spectrum and the occurrence of multiple excitations. It is desirable to sum all diagrams
of the dynamical coupling between the exciton and the other excitations. Additionally, one
would like this theory to be used in practice, and not only on model systems. This would
most likely require an implementation exploiting available results, in the spirit of some post-
processing technique, demanding minor modifications to already existing codes.

The culumant expansion of G (6.1) can be seen as an inspiring example: in its exponential
form it contains all extra peaks. The derivation of the exponential G presented in the works
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of G. Lani [55, 82] can be taken as a starting point to explore the dynamical effects in L.
Its underlying philosophy can be adopted also in the two-particle problem, suggesting to
drop the kernel Ξ of (5.45) in favour of a differential formulation. Furthermore, the post-
processing method implemented and used by M. Guzzo [5, 78, 94] can inspire a way to add
dynamical corrections to static BSE results.

The last chapter of this thesis is devoted to the search of such a dynamical theory of
absorption. In Chapter 10, a differential equation for L is derived and solved within some
approximations. In some aspects, the theoretical development presented in this thesis can
be seen as an exploratory work indicating some new ideas to address this problem.
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Part II

Application to real systems and
analysis

69





Chapter 6

Optical properties of SrTiO3

In this chapter I will use the theories introduced in Chapters 3, 4 and 5 at the state-of-the-art
to compute the optical properties of SrTiO3, a transition metal oxide displaying interesting
electronic properties.

The analysis of the computed spectra is based on the comparison between the calculation
of diverse properties, performed at different levels of approximation, and experimental data.
Different theories and approximations give access to different aspects of the same physics
which, collected together, give a clearer interpretation of the observed phenomenon. This
study constitutes therefore a good example to present all tools introduced in the previous
chapters.

But it is not only a “didactic” scope what aimed with this chapter. In fact this analysis
also pointed out some limitation of the theories used, indicating an insufficient description
of dynamical effects in this material.

A large part of the material of this Chapter has been published in Ref. [95]:
L. Sponza, V. Véniard, F. Sottile, C. Giorgetti and L. Reining, Phys. Rev. B 87, 235102 (2013).

6.1 Preface to SrTiO3

Strontium Titanate SrTiO3 (STO) (pure, doped or in junctions) displays several peculiar
properties which make this material widely investigated for technological applications and
for theoretical understanding of basic processes. It is prototypical amongst the transition
metal oxides so it has been often taken as a benchmark material to test the performances of
different theories [96–98]. Of interest are its conducting [99–101], structural [102–104], and
magnetic [105] properties. All these features are closely related to its electronic structure.

Optical spectra of STO measured in different range of energy and with different tech-
niques (reflectivity [106–109], ellipsometry [109, 110], x-ray absorption spectroscopy [111]
and others) have been compared early on with theoretical works, mostly calculations based
on the independent-particle picture [112, 113]. More recent ab initio calculations include
all-electron [114–118] and planewave-pseudopotential approaches [119], but to our knowl-
edge, optical properties have always been calculated in RPA neglecting local fields, that is
by means of equation (4.29).

In this chapter the optical properties of STO are computed using state-of-the-art calcula-
tions including many-body effects. These are evaluated with the TDDFT and also by solving
the Bethe-Salpeter equation (5.48) within standard approximations (GWA and static W in
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the e-h interaction). Special care has been taken in treating localized d electrons and the
interplay between the empty d-states and the occupied O 2p states. Results are compared
with experiments [109, 120]. The remaining discrepancies between theory and experiments
are also discussed.

6.2 Geometry and Crystal field splitting

STO is a transition metal oxide, which crystallizes at room temperature in the cubic per-
ovskite structure of the kind ABO3, with a lattice parameter a = 3.905 Å [121]. Its funda-
mental absorption edge is around 3.2 eV at room temperature [106, 109], and the direct gap
is 3.75 eV [109].

In such materials, the A-atoms (Sr) occupy the corners of a cubic lattice, the B-atom
(Ti) occupies the center of the cube, and O atoms lay at the center of the faces of the cubic
cell, as shown in Fig. 6.1.

Figure 6.1: Atomic position in the cubic STO cell.
Ti (empty circle) lay on the center of the cell, O
atoms (grey circles) form an octahedron centred on
the Ti atom. Sr atoms (black circles) sit at the cor-
ners of the cell.

Figure 6.2: Calculated energy of electronic states in
STO compared to Sr 4d and Ti 3d atomic levels. The
ordering of the energy levels refers to the Γ point, the
corresponding energies are average values taken from
the l-DOS (see beyond).

The presence of the oxygens around the A and B ions breaks the atomic spherical sym-
metry, removing the five fold-degeneracy of the d levels of A and B atoms (crystal field
effect). The atomic five fold-degenerate d levels split into two subgroups according to their
symmetry properties. The three orbitals labelled dxy, dyz and dzx form the t2g group. The
remaining two orbitals labelled dz2 and dx2−y2 form the eg group. The respective energy
position of the eg and t2g depends on the symmetry of the environment of the cations [122].

Since A ions are surrounded by 12 O, they are in a dodecahedral symmetry, so the three
A t2g orbitals are at higher energy than the two A eg orbitals. The B ions are surrounded by
six O ions, corresponding to an octahedral symmetry, with the consequence that the three
t2g orbitals are at lower energy than the two eg orbitals. The energy of the different levels is
in agreement with recent ab initio DFT calculation on electronic properties of SrTiO3 [123].
There is a slight difference to the experimental assignment from ref. [109], where eg and t2g
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states of Sr are reversed, but since the states are significantly hybridized and our assignment
is refers to the Γ point, this is no fundamental contradiction. Since O 2p extend along the
Cartesian axis, one should expect a strong spatial overlap between the O 2pz and the Ti dz2
and between the O 2px,y and the Ti dx2−y2 , giving rise to hybridizations.

6.3 DFT and GW band structure

This section is devoted to the discussion of the band structure and density of state (DOS)
of the material. On-site and angular momentum projected density of states (l-DOS) will
be analysed to identify the character of the first eleven conduction bands. Quasiparticle
corrections to KS energies and possible approximations are also discussed.

Computational details: Groundstate properties and GW corrections to KS eigenvalues
have been computed with ABINIT [124], a planewave-based software.

Semicore pseudopotentials have been used in all calculations, including 40 electrons per
cell. The Ti atom participates with 12 electrons [3s2 + 3p6 + 4s2 + 3d2], the Sr atom
with 10 [4s2 + 4p6 + 5s2] and each O atom participates with 6 electrons [2s2 + 2p4].
Working with semi-core pseudopotentials is crucial because dividing an atomic shell
into core and valence can lead to severe errors in the evaluation of the exchange term33.
The pseudopotentials have been created partially in a doubly ionized configuration (for
Sr and Ti). Core radii, within which the atomic pseudo-wave-functions are exact, were
rc = 1.7 Bohr for all components of Sr, 1.25 Bohr for Ti s and Ti p while rc = 1.65
Bohr for Ti d channel and finally rc = 1.5 Bohr for oxygen.

The exchange-correlation potential of the DFT calculations (band structure and density
of states), has been computed in the LDA. A cutoff of 70 Ha has been used to the
planewave basis set. The density of states has been calculated using a 8×8×8 k-point
grid centred in Γ (i.e. 35 k-points in the irreducible wedge).

GW corrections have been evaluated with the G0W0 method34, with a cutoff energy
of 32 Ha for the basis set, and 25 Ha for the exchange and correlation components of
the self-energy. 80 bands have been included in the calculation of the self-energy, and
200 bands were used for the screening. For both screening and self-energy calculations,
the same k-point grid as for the ground state has been used. The dimension of the
screening matrix is of 2373× 2373 G vectors (∼ 25 Ha). To speed up the calculations,
the Godby-Needs [71] plasmon pole approximation has been used. I have tested its
validity by performing also calculations using contour deformation. When applied,
the scissor operator (SO) shift is based on the results of these calculations, not on
experimental results.

6.3.1 Distribution of quasiparticle corrections

The results of the LDA band structure calculations are in good agreement with experiments
[106, 107, 109] and previous calculations [106, 109, 113–117, 119]. LDA predicts a direct

33Including semicore electrons is of fundamental importance in the computation of the GW corrections, as
can be seen comparing our results with those of Kim and coworkers [96]. The reason has been demonstrated
clearly by M. Rohlfing, P. Krüger and J. Pollmann in Ref. [125].

34Since the localized d states are empty, self-consistency on wave functions is not crucial for this material.
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gap at Γ of 2.21 eV, much smaller than the experimental value of 3.75 eV [109]. This
underestimation is the well known KS bandgap problem. To correct the LDA bandgap,
quasiparticle corrections have been computed within the perturbative G0W0 approximation
using formula (5.31). The resulting bandstructures (LDA and GW), aligned at the HOMO
level, are reported in Fig. 8.5

As it is the case in many materials, near the Fermi energy, GW corrections open the
photoemission gap, giving a GW gap at Γ of 3.76 eV in very good agreement with the
experimental value of 3.75 eV.

(a) LDA and G0W0 band structure
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Figure 6.3: In Fig.6.3a, the GW (red) and the LDA (black) band structure along high symmetry directions
are reported. In Fig. 6.3b the GW correction versus band index is reported for all 35 points of the irreducible
wedge.

To investigate the effect of GW corrections beyond the gap, quasiparticle corrections
versus band index are reported in Fig. 6.3b for different GW calculations. For each band
index i, the corrections are evaluated for the k-points sampling the Brillouin zone: the
resulting line of dots accounts for the deformation of the corresponding band. Small shifts
in the x axis are made to ease the visualization.

If all points of a band collapse in a single spot, then G0W0 corrections mainly shift the
bands, whereas when a dispersion is observed, it means that quasiparticle effects modify the
dispersion of the band too. One can notice that for the HOMO (band 20) and the first three
conduction bands (bands indexes 21, 22 and 23), a rigid shift of constitutes an excellent
approximation, while for other bands one has to be more careful.

Modifications of the band shape become more important for the three deepest bands (12,
13 and 14) as well as for conduction bands starting from index 24. These bands give rise to
optical transitions around 7 eV, which correspond to energies where the electron energy loss
spectrum displays its first structures [109]. In such a case, the validity of the plasmon pole
model (PPM) has to be checked [126].

Using a contour deformation integration (CD; green crosses), I have verified that the
dispersion of the GW corrections were not due to the PPM (red crosses). Both calculations
have been done on a (close to convergence) 4 × 4 × 4 k-point grid because of the higher
computational effort needed for CD calculations. The green and red group of points have
very similar distribution indicating that the dispersion of the corrections is not due to the
PPM approximation. In Bands 27 and 28 the two calculations differ more substantially,
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but I estimate that the effect would be reduced by densifying the grid of k-points. The CD
calculation confirms the validity of the plasmon pole model.

To evaluate correctly the GW corrections, a PPM calculation has been carried out on
a 8 × 8 × 8 k-point grid (blue dots), which leads to converged quasiparticle energies. The
behaviour of the different bands is the same as for the 4× 4× 4 grid. The mean value of the
corrections differs in the PPM(888) and PPM(444) calculations by almost ∼ 0.8 eV, and in
particular for bands 24 and 25 the correction dispersion of the PPM(444) is twice as large
as for the PPM(888).

In any case, in the reference PPM(888) calculation, the deformation of the band shape
does not exceed 1 eV and the separation in energy between the bands is large enough to
be able to distinguish the projected states, thus the character of the bands deduced from
the LDA calculation will still be valid. On the basis of the PPM(888) results, the scissor
operator, whenever used, will be set to the value of 1.6 eV.

6.3.2 State assignment

The quite small deformation of the bands due to G0W0 corrections justifies using alterna-
tively G0W0 -corrected LDA eigenvalues, or a scissor operator (SO) of 1.6 eV . On the l-DOS
reported in Fig. 6.4b, the SO has been applied, while for the band plot of Fig. 6.4a, G0W0

energies have been used. In both cases the HOMO level has been set to 0 eV.

(a) GW band structure (b) Total DOS and atom-centred l-DOS for selected
components

Figure 6.4: State assignment by GW band structure and SO l-DOS. Horizontal dotted lines in 6.4a and
vertical dotted lines in 6.4b highlight specific groups of bands in the band plot and the corresponding
structures in the l-DOS. In the band plot 6.4a, state assignment is reported at Γ (inside the plot) together
with the band index (right axis). Notable bands (20 and 24 dot-dashed; 19 and 25 in green dashed) are also
reported.

To calculate the on site and angular momenta-projected l-DOS, the radii of the spheres
where wave functions were projected were adjusted so that the sum of partial DOS matches
the total DOS. The resulting radii are equal to 3.7 Bohr for Sr, 2.3 Bohr for Ti and 2.2 Bohr
for O. Fig. 6.4b shows the total quasiparticle density of states and dominant contributions
to the on site-projected l-DOS for selected elements and angular momenta. Energies range
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from -6 to 16 eV to include the highest valence states (band index from 12 to 20) and first
11 conduction bands.

Three main structures can be identified: a part of the valence band extending from -4.7
eV to the Fermi energy, a first peaked structure in the conduction band extending from
3.4 to 6 eV and a second broader group of structures between 6 eV and 12.9 eV. The high
electronegativity of oxygen atoms drains almost all the 4s2 and the 3d2 electrons from the
Ti atom and the 5s2 electrons from the Sr atom, filling almost completely the O 2p levels.
Correspondingly the valence band is essentially composed by O 2p states, which weakly
hybridise with the Ti 3eg levels, as expected from the strong spatial overlap between these
states. The Fermi energy lays between the O 2p levels and the Ti 3d bands.

The first group of empty states has a predominant Ti 3d character. Due to crystal-field
symmetry, one can conclude that they are Ti 3t2g levels, that form an almost separate band
(3.4− 6 eV). The second group of structures (6− 12.9 eV) has a predominant d-momentum
character shared between the remaining Ti 3eg levels and the whole Sr 4d subshell, expected
to be also split in eg et t2g levels.

These assignments allow for a more precise description of the band structure (Fig. 6.4a)
where GW energies for valence and conduction bands are plotted in the same energy range
as in Fig. 6.4b. Dotted lines delimiting energy ranges have been drawn in both figures to
facilitate the identification of the three groups of bands. Referring to the bandplot, the three
main groups identified in the l-DOS are recovered. The first is a group of valence bands
extending from around -4.7 eV to the HOMO level and formed by nine bands labelled from
12 to 20 corresponding to O 2p states. At higher energies we find a first group of three
conduction bands (labelled 21, 22 and 23) extending between 3.4 and 6 eV due to Ti 3t2g
and finally a wider group of bands from 6 eV to 12.9 eV composed by 8 bands (24 to 31).

The bands 24 and 25 can be assigned to eg states of Ti with the support of the l-DOS.
To identify the character of Sr states, we can use the crystal-field symmetry argument as
well as the degeneracy of the bands at Γ: the bands 26 and 27 are assigned to the Sr 4eg
and the bands 29, 30 and 31 are assigned to Sr 4t2g.

A careful analysis of the l-DOS in this energy range shows the presence of Sr 5s hybridised
with O 2s states (not shown for clarity). For this reason, band 28 is assigned to Sr 5s states
and O 2s in agreement with reference [123].

Concerning the dispersion of the bands, one can note the presence of regions where some
bands are flat, especially along the ΓX direction, indicating localized states. Of particular
interest for the following analysis are the two topmost valence bands (labelled 19 and 20)
and the lower energy Ti 3eg level (band 24). One can notice that band 24 is flat along Γ−X,
but it strongly disperses in other parts of the BZ indicating that the degree of localization
changes along the same band.

6.3.3 Quasiparticle effects on electrons of different character

Now that bands have been assigned to electrons of different character, one can study the
impact of quasiparticle corrections on the different groups.

Dispersion of the levels

In Fig. 6.5 I report GW quasiparticle correction as a function of the LDA energy of the KS
state.
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For simple materials, as in bulk Si, quasiparticle corrections are almost constant near
the gap, which justifies the use of SO, whereas a linear relation is often observed at higher
energy [126]. In the case of STO, the valence bands (red dots) display a common trend with
almost constant corrections, where in conduction bands different trends can be associated
to different groups of electrons. The Ti 3t2g corrections (green dots) dispose essentially as
a flat line, confirming the validity of the rigid shift approximation to represent their GW
corrections. An essentially linear dispersion is instead displayed by the Sr eg levels (violet
dots) that have higher corrections at higher LDA energies, similar to what happens is Si. A
completely different behaviour is displayed instead by the Ti 3eg levels(blue dots), for which
a linear law can still be used to represent their dispersion, but with a negative derivative:
the higher the LDA energy, the lower the correction. These bands (24 and 25 in Fig. 6.4a)
are quite dispersing at the LDA level, this results in more important modifications of the
band shape, with lower corrections around the M and R points than in Γ.

Dynamical effects

Dynamical effects of the self-energy account for the decay of the quasiparticle due to the
coupling with all the neutral excitations. Correspondingly quasiparticle peaks broaden and
acquire an imaginary part proportional to the inverse of the lifetime of the excitation. The
imaginary part of Σ at the quasiparticle energy has been investigated by Fleszar and Hanke
[126] in bulk Si. As expected, near the Fermi level, =[Σ(EQP )] ∼ (ELDA)2 has a quadratic
dependence on the LDA energies. In Fig. 6.6, I report =[Σ(EQP )] versus ELDA where the
different groups of electrons are marked with dots. The same color code as in Fig. 6.5 has
been used.

The different groups of electrons display different behaviours: in particular =[Σ(EQP )]
fits in a quadratic law =[Σ(EQP )] = κ(ELDA)2 for both Ti 3d and Sr 4d states, but with
different coefficients κT i > κSr. We can see that lifetime effects are stronger in Ti d states,
and especially the two higher energy eg bands35. The lifetime of electrons in Ti d states is

35The bottom conduction should have =[Σ] ≈ 0 because an electron in the bottom valence needs an energy
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lower which suggests a stronger coupling with other excitations of the system.
The occurrence of band-crossing may be responsible for interchanged characters of some

spots between 7 an 8 eV.

6.4 Optical absorption

In this section I present the absorption spectrum of SrTiO3. The section is divided in four
subsections. In the first part, I will discuss the role of the LFE in the high-energy O → Sr
transitions. In the second part, I will concentrate on the 0 − 15 eV region where excitonic
effects are important: I will present BSE calculations (in the standard GW+static W ap-
proach) together with RPA calculation on STO which will constitute the basis for a detailed
study of the origin of the different structures of the spectrum and the different role played
by Ti 3d and Sr 4d electrons (paragraphs a and b). My results will be compared to ex-
perimental data [109, 120]. Then I will pass to the investigation of the spectrum computed
within TDDFT (with different kernels) or by solving the BSE (in the static approximation
(5.48)), inside a smaller range of energies (from 0 to 15 eV). The different role played by
Ti 3d electrons and Sr 4d electrons is analysed referring to the l-DOS and the band structure
discussed in the previous section. This careful analysis allowed me to evidence interference
effects (paragraph c). The third part is devoted to the role of the screened Coulomb interac-
tion W in the e-h interaction, and the fourth part is focused on the test of different kernels
to capture excitonic effects in TDDFT.

Computational details: TDDFT spectra (LRC and Bootstrap) have been computed up
to 15 eV, while RPA up to 30 eV, using the DP simulation code [127]. In the calculation
of χKSGG′ summation over 31 bands was needed to converge the spectrum within 15 eV,
and 50 bands to reach convergence at 30 eV. In all cases the dimension of the χKSGG′

matrix is 33× 33. 1237 plane waves have been included in the basis set. The Brillouin
zone has been sampled with a shifted k-point grid 8× 8× 8, counting 512 inequivalent
k-points. In all TDDFT calculations, G0W0 energies have been used instead of LDA
energies, except where explicitly specified.

The BSE has been solved using the EXC code [86]. Except for the spectra of figure 6.12,
where the full diagonalisation of the excitonic Hamiltonian has been performed, the
Haydock diagonalisation algorithm has been employed, with 150 iterations to achieve
converged spectra. The number of plane waves, the range of energy, the dimension of
the matrix and the k-points grid used are the same as for the TDDFT calculations,
except where explicitly specified.

6.4.1 The role of the local field effects

The RPA spectrum with (LFE) and without (NLF) local fields is reported in Fig. 6.7 together
with two experimental curves [109, 120].

Experimental data (blue and violet crosses) present major structures below 15 eV, and
are essentially featureless beyond this energy. The RPA+LFE (black line) and RPA+NLF

at least twice as large as the gap to decay. Actually, the gap entering in Σ is the LDA gap, lower than the
GW gap, because we did not make self-consistency in W . That could explain the non vanishing imaginary
part of the bottom conduction in Fig. 6.6.
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(red line) calculations reproduce these structures within the quality one can expect from RPA
calculations. We will focus our attention on this range of energy later on in this chapter,
however it is important to point out that within 15 eV, no significant difference can be
found between RPA+LFE and RPA+NLF calculations, indicating that in this range local
fields can be neglected without committing a severe error. The NLF calculation is in good
agreement with previous calculations [116].

At energies around 23 eV, the neglect of local fields give rise to an absorbing structure
absent in the experimental spectra. It is completely washed out when local fields are ac-
counted for. This feature is common to other transition metal oxides structures as BaTiO3

[116] and CaTiO3.

Because of the peaked nature of the structure, well localised semicore states are supposed
to be involved in the transition. The transition energy of 23 eV is compatible with transitions
from deep energy states of O 2s (between -17 and -16 eV) and Sr 4p (between -14.7 and -14
eV) towards the Ti 3d bands. The total DOS and the site-projected l-DOS of these states
are reported in Fig. 6.8. The first transitions (O 2s → Ti 3d) are forbidden in the dipole
approximation, so the peak is due entirely to the Sr 4p states, as well shown in the inset
of Fig. 6.7, where three NLF calculations are shown. I remember that without local fields,
the spectrum reduces to the Fermi’s golden rule and can therefore be interpreted in terms
of single-particle transitions.

The red curve in the inset corresponds to the full NLF spectrum, including all the valence
bands plus semicore states. When O 2s states are subtracted from the calculation (green
curve) the peak is not affected, indicating that these states do not participate to the creation
of the peak. It is only when the Sr 4p states are excluded too (violet line), that the peak
completely vanishes.

When localised states are involved, as in this case, the correct description of the local
inhomogeneities of the response has to be accounted for. For this reason the full matrix ε−1

GG′
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has to be computed.

6.4.2 Analysis of the transitions

Let us now look closer at the first part of the spectrum, from the absorption onset to 15 eV.
The reduced range of energies requires a smaller number of bands, and BSE calculations are
then feasible.

In Fig. 6.9, I report two BSE absorption spectra, computed respectively using GW cor-
rections (black solid line) and the SO of 1.6 eV (red dashed line). The curves are compared
with an GW+RPA (green dashed dotted line) and with experimental data [109, 120] (blue
and violet dotted lines). Both BSE calculations have been performed in the Tamm Dancoff
approximation, that is neglecting antiresonant components of L0 as mentioned in section
5.2.2. I checked that this approximation is indeed valid within the energy range of interest.

In the experimental spectra (violet and blue lines) one can identify three notable struc-
tures: a principal wide structure between 3.5 and 5.6 eV, a step-like bump between 5.6 and
7 eV, and finally a third wider group of peaks between 8 and 11 eV.

Figure 6.9: Absorption spectrum of STO: GW+BSE (black solid) and SO+BSE (red dashed), GW+RPA
(green dashed-dotted) and experimental data from Palik [120] (blue dotted) and from Benthem [109] (violet
crosses).

To include electron-hole interactions in the optical spectrum, the BSE has been solved.
Indeed, when the electron-hole interaction is taken into account through the resolution of
the BSE, all the structures are moved to lower energies indicating a strong excitonic effect.
Comparing the two BSE spectra, one notices that they are very similar. In both spectra, one
can identify four structures of interest: a first group extending from the onset until about 6
eV, a strong and narrow peak around 6.3 eV, a wider group extending between 7 eV and 9.5
eV and finally an isolated peak centred at 10.8 eV.
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The slight differences between the two BSE spectra arise from the difference between
the G0W0 distortion of the bands shown on Fig. 6.3b and the rigid shift approximated
by the SO. The lowest energy feature comes from transitions between bands close to Fermi
energy, where SO is a very good approximation. There the two BSE spectra almost coincide.
Farther from the absorption edge, GW corrections slightly modify the band dispersion with
the consequence of a blueshift of 0.1 eV of the strong narrow peak at 6.3 eV, and minor
modifications in the other structures. In the following, GW energies will be always used, but
this result indicates that SO may be used safely in more complex structures.

The comparison between RPA+GW (cfr. section 5.2.1) and BSE+GW shows that the
excitonic interaction reduces the optical gap leading to a shift of ∼ 0.8 eV of the peak at the
onset. This is mainly an effect of the change in line shape since the corresponding exciton
binding energy that one obtains by comparing the lowest energy Eλ in equation (5.57) to
the direct gap, is only 0.22 eV.

The first BSE structure is on top of the experimental curve up to almost 4 eV, giving
a very good description of the absorption onset. From 4 eV to 6 eV, the BSE spectrum
looses some accuracy in the height of the peaks, but the position of the structure is still
well reproduced. This proves that excitonic effects are very important and should not be
neglected to understand the optical spectrum of SrTiO3.

The second structure predicted by the BSE calculation is a sharp peak centred at 6.4
eV. It is in the range of the step-like structure in experiment extending from 5.5 and 7 eV,
but the calculated intensity is strongly overestimated. Concerning the third structure, the
amplitude is too strong and the energy position is centred at 8 eV for the BSE calculation
while it is 9 eV for the measured spectrum. These two facts indicate a too strong excitonic
effect predicted by theory.

a) Independent particle O 2p→ Ti 3d and O 2p→ Sr 4d transitions

In order to identify the role of different bands in the spectra, I reduced progressively the
number of conduction bands included in the calculation.

Let us first analyse the RPA+GW spectrum. Since the effect of local fields is negligible
in this range of energies, as shown in Fig. 6.7, the spectra reported in Fig. 6.10a have been
calculated without local field effects. This allows for a direct interpretation of the structures
of the spectrum in terms of vertical transitions in the GW band structure because no mixing
of the IP transitions occurs (cfr. expression (4.29)).

Structure Aa is due to transitions from the valence to bands 21, 22 and 23, which have
been assigned to Ti 3t2g states. Since inclusion of higher conduction bands do not affect the
Aa structure, I conclude that it is created by transition involving only the Ti 3t2g states.

Structure Ba is peaked at 7.1 eV. It is created by transitions to band 24 which alone
account for more than 80 % of the spectral weight, and attains full convergence including
band 25. It is therefore completely ascribed to transitions to the two Ti 3eg states.

It is important to note that the two Ti 3eg states concur also to the formation of all the
other spectral features, as expected from their density of states ranging to 11 eV. In particular
Ca is for around 50 % due to these states, the remaining part coming from transitions to
bands 26, 27 (Sr 4eg) and band 28 which has been assigned to an hybridised Sr 5s−O 2s
state. The inclusion of bands 29, 30 and 31 (Sr 4t2g) allows the full convergence of the
spectrum.

Since Ba is of particular interest for the sharp excitonic peak, I investigated in greater
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(a) Excluding conduction bands (b) Excluding specific transitions

Figure 6.10: RPA+GW spectra without local fields. In Fig. 6.10a the number of conduction bands included
in the calculation is up to 31 (black solid: full spectrum), up to 28 (red dashed: Ti 3d + Sr 4d), up to 25
(green dashed-dotted: full Ti 3t2g + full Ti eg shell) up to 24 (blue dashed-double dotted: full Ti 3t2g +
lower energy Ti eg), up to 23 (violed dots: only Ti 3t2g). Fig. 6.10b has been obtained including only Ti
3d states (red), only Sr 4d states (dashed-double dotted blue) and subtracting from the red spectrum the
transitions 19→24 and 20→24 between Γ and X (green dashed-dotted).

detail the origin of the transitions in the Brillouin zone. In Fig. 6.10b I report RPA+GW
spectra calculated including all Ti 3d states -conduction band 21 to 25 - (red solid line)
and calculated excluding Ti 3d, but including Sr 3d states -conduction bands 26 to 31 -
(blue dashed-double dotted line). The full spectrum (black plain circles) is the sum of
these two contributions. These three spectra are computed by summing transitions over all
the 512 k-points sampling the Brillouin zone. The green dashed-dotted curve corresponds
to a spectrum calculated including all Ti 3d states - conduction bands 21 to 25 - but we
suppressed in the summation the transitions from valence bands 19 and 20 to conduction
band 24 arising from k-points that falls into three cylinders enclosing the Γ−X axes of the
BZ: the Ba peak disappears. This demonstrates that this peak is mainly due to transitions
from bands 19 and 20 (top valence O 2p) to conduction bands 24 (Ti 3eg), for k-points along
Γ−X. As already underlined in subsection 6.3.2, these bands are flat, corresponding to well
localized states.

Peak Ca is due for about 50 % to transitions to bands 24 and 25. We checked that the
valence bands involved are the 12 to 17. The remaining part involves transitions from all
valence states to bands 26, 27 and 28.

To conclude, I summarise the analysis of the RPA+GW spectrum in Tab. 6.1.

Table 6.1: Transition analysis of the GW+RPA w/o LFE spectrum

peak transitions involved
Aa O 2p→ Ti 3t2g
Ba bands 19, 20 along ΓX → band 24 (Ti 3eg)
Ca bands from 12 to 17→ Ti 3t2g AND O 2p→ Sr 4eg + band 28
Da O 2p→ Sr 4t2g
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b) Electron-hole interaction in O 2p→ Ti 3d and O 2p→ Sr 4d

The same analysis as in the previous section has been performed on the BSE+GW spectrum.
Parent structures have been labelled with the same letters (A, B, C and D) as in Fig. 6.10a.

(a) BSE+GW spectra (b) Killing the excitonic peak
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Figure 6.11: BSE+GW spectra with reduced number of bands and transitions. The color code and the
method used in 6.11a is the same as in Fig. 6.10a. In 6.11b is shown that the excitonic peak at 6.4 eV is
originated by transitions [19,20]→24 with k-points in the ΓX direction.

As in the RPA case, one can see that the group Ab is completely described by the inclusion
of the bands 21, 22 and 23, corresponding to O 2p→ Ti 3t2g transitions.

The inclusion of bands 24 and 25 is once again responsible for the creation of the structure
labelled Bb at 6.4 eV (with a shift in energy of ∼ 0.8 eV with respect to Ba). In the RPA
case, band 24 was responsible for around 80 % of the peak intensity, and band 25 for the
remaining. In the excitonic case, each band accounts for more or less half of the amplitude.
The peak is very sharp and narrow.

As for the RPA calculation, bands 24 and 25 create half of the Cb peak centred at around
8 eV, the remaining part coming from the Sr 4eg states (bands 26 to 28). The energy
difference between Cb and Ca is ∼ 2 eV, corresponding to a very large excitonic effect.

The structure Db at 10.8 eV is formed essentially by Sr 4t2g states as it is determined
only by bands 29, 30 and 31. The excitonic effect on Db is much smaller.

This analysis shows that the bands 24 and 25 (constituting the Ti 3eg states) play a major
and intriguing role in the formation of the two excitonic structures Bb and Cb. Transitions
arising from these bands give on one hand the strong and narrow exciton Bb, and on the
other hand contribute to the much broader exciton Cb. In section 6.3.2, I underlined that
band 24 has a character that depends on its momentum k. Along the ΓX direction, it is
flat, whereas in other regions of the BZ it is dispersing.

Since we expect the strong and narrow exciton Bb to arise from localized (non-dispersing)
states, we suggest that Bb arises essentially from transitions between valence bands 19, 20
and conduction band 24 along the ΓX direction. This has been checked by suppressing in
the numerator of (5.57) the IP transitions [19,20]→[24, 25] along ΓX (Fig. 6.11b). It is clear
that the excitonic peak at 6.4 eV is due to the IP transitions 19→24 and 20→24 for k-points
along ΓX.

Transitions to 24 and 25 giving rise to the Cb broad excitonic peak (and the background
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that contributes to the total amplitude of Bb) come from the much more dispersing 12 to
18 valence bands, as well as from [19, 20]→ 24 excluding the ΓX direction. The remaining
part of the broad Cb exciton is due to transitions to Sr 4eg.

Even though BSE spectra can not be deconvolved in a sum over states, the peak assign-
ment concluding the previous section is essentially confirmed here.

c) Mixing of O → Ti transitions: interference effects

The excitonic effects mix the single particle transitions T , calling for a much deeper analysis
of the spectral weights ρ̃TA

T
λ entering equation (5.57). The coefficients AT

λ give the weight
and phase with which the various independent-particle transitions T contribute. Let us first
concentrate on the weight. This is readily analysed by plotting |AT

λ |2 as a function of the
GW transition energies ET , for a given excitonic energy Eλ. The space of transitions is
in principle continuous; therefore, the result is given as a histogram where each segment
contains transitions in a range of 100 meV. Fig. 6.12 shows the result for the peak Bb, where
Eλ = 6.4 eV.

Figure 6.12: Spectral weight analysis of the exciton energy Eλ = 6.4 eV. BSE (yellow solid) and RPA+GW
w/o local fields (blue dashed) are shown for comparison. The excitonic amplitude |A|2 (green boxes) is bigger
in the range 6-7 eV, but A it rapidly changes sign which comports a destructive interference. The cumulant
function f6.4(ω) (double dotted-dashed line) starts constructing the spectrum only starting from 7 eV, where
the RPA calculation displays the a small bump.

Without mixing of transitions, one would find a δ-peak. Because of the mixing instead,
what it is observed is a broad distribution (green boxes), with a pronounced asymmetry
extending more towards higher than towards lower energies. In order to situate the energy
range, the figure also shows the BSE and RPA spectra.

From the histogram alone, it is difficult to get a quantitative idea of the role of higher
energy transitions: to this end, one has to consider also the phase of the various contributions.
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One way to do this is to introduce the partial spectral weight [128] defined in formula (5.61):

fEλ(E) =
|JEλ(E)|2
|J∞Eλ|2

. (6.1)

This function36, for the peak energy Eλ = 6.4 eV, is given by the black dashed double-
dotted curve in Fig. 6.12.

One distinguishes two transition energy ranges: the first region is composed by RPA
transitions located between 5.5 and 6.8 eV. These are transitions involving the Ti 3t2g states.
The maximum of |AT6.4|2 falls in this energy range. This, however, does not mean that these
transitions dominate the final spectrum: in fact because of the phase factors, f6.4(E) first
builds up to a sharp peak with increasing E, but this rise is followed by a steep decrease
indicating a destructive interference, until the final result is almost zero around 6.8 eV. The
important contribution to Bb is then given by the second energy range, extending from 6.8
eV to higher energies. It is composed by the independent GW transitions involving the Ti
3eg levels. Here f6.4(E) exhibits a quite monotonic rise that tends to the plateau value of 1
as it should be at convergence. The cumulant function reaches the value 0.5 around 7.5 eV,
that corresponds to the peak Ba in the RPA+GW spectrum. The remaining contribution
essentially comes from transitions associated to peak Ca. These findings confirm our previous
analysis based on figure 6.11a.

6.4.3 Localized excitations and the screening of the electron-hole
pair

The previous results have been obtained using the standard approximations to the Bethe-
Salpeter equation. Beside the static approximation of W , for bulk systems this includes the
fact that the matrix WGG′ is taken to be diagonal in the reciprocal lattice vectors. This is
exact only for homogeneous systems: the off-diagonal elements of W are determined by the
off-diagonal elements of the inverse dielectric matrix. These elements are given by

ε−1
GG′(q, ω) =

∂V tot
G (q, ω)

∂V ext
G′ (q, ω)

, (6.2)

so they describe the variation of the total potential Vtot at a certain length scale induced by
the variation of an external potential Vext at a different length scale.

The effect can often be neglected in optical spectra of bulk materials, when the density
is quite homogeneous or, on the contrary, for strongly localized (e.g. core) electrons which
are not polarizable enough to give a sizable contribution to the induced potential. Moreover,
the exciton may extend over an area that averages out the inhomogeneities of the material.
However, in other systems such as clusters, one has to go beyond the diagonal approximation.
In a material like SrTiO3 one has to be careful, since, as we have seen above, excitations of
quite different character contribute to the spectrum. In particular peak Bb is a candidate for

36Indeed at this energy the excitons are in the continuum, so infinitely many excitons can be found within
a small interval in energy (we computed ≈ 1300 excitons between 6.2 eV and 6.4 eV). Moreover in some case
they can also be degenerate. The curve shown here is actually taken from one exciton only. This has been
chosen because it clearly shows the common features of all the excitons in the range, that is the interference
peak and the monotonic convergence of the function fEλ . Chosing to analyse a different exciton in this range
does not change the conclusions.
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a more careful study, since localized states play a crucial role. Indeed, Fig. 6.13 compares
the result of a standard BSE calculation using a diagonal W (same as previous figure) to
the result obtained when the full matrix WGG′ is taken into account.

Figure 6.13: BSE+GW spectrum with diagonal (red dashed line) and full-matrix WGG′ (black line). The
excitonic effects are reduced once the microscopic inhomogeneities of the response are taken into account by
off-diagonal elements of WGG′ .

The inclusion of the off-diagonal elements leads to minor changes on the Cb structure,
while Ab and Db are totally unaffected. Instead, the excitonic peak Bb is reduced by almost
a factor of two. When the local polarizability of the electrons is correctly taken into account,
there is hence significant improvement in the agreement between theory and experiment.

Nevertheless, the agreement is still not perfect, with the calculated Bb peak noticeably
sharper than in experiment. One possible explanation is that this may be due to the neglect
of other coupling terms in the approach used here: first, we have used the standard static
screening approximation to the BSE, meaning that the one-particle Green’s functions in L0

are used in the quasiparticle approximation ( expression (5.16), though setting Zi = 0 for all
i), and that the screening of the electron-hole interaction in W is taken at ω = 0. Instead, as
discussed in section 5.2.3, one should in principle use the full one-particle Green’s function
including the quasiparticle damping and its satellite structure, as well as the frequency-
dependent W . These two kinds of dynamical effects, which contain the coupling of the
primary excitation to other neutral excitations of the system, are known to cancel each
other to a large extent in simple semiconductors [90]. However, this may no longer be true
in a more complex material with states of different nature. The dominant effect of the
dynamical contribution would be a damping of peaks. Second, we do not take into account
electron-phonon coupling. The latter may be source of errors in oxide perovskite, known to
have a strong electron-phonon coupling constant and so prone to host polaronic [129–131]
excitations that can modify strongly the absorption spectrum.

86



6.4.4 Excitons via TDDFT

BSE calculations are computationally heavy, even when the SO is used instead of state-
dependent GW corrections. In principle also TDDFT gives access to optical spectra, in a
more efficient way. Especially for the description of continuum excitons, relatively simple
kernels have been designed that allow one to perform calculations with an effort comparable
to the RPA. It is therefore interesting to test various TDDFT flavours in the case of STO,
where our BSE results can be considered as benchmarks, and where one would eventually
like to carry out calculations for more complex structures, like interfaces, for which BSE
calculations might come to their limit of feasibility.

I have performed a series of tests with two TDDFT kernels designed to include excitonic
effects: the LRC [45] (see definition 4.22 ) and the more recent empirical Bootstrap kernel
[47] (see definition (4.23)). One should not expect very good agreement at the onset, where
the BSE predicts a bound exciton, but it is still interesting to investigate whether deviations
lie in a tolerable range. Moreover, one may think to obtain a good description in the range
of the continuum excitons, where interference effects dominate. In the spirit of searching for
a simple approach, I used the SO instead of the GW corrections, as we have shown above
the quality of this approximation (sections 6.3.1 and 6.4.2. The result of these calculations
is reported in Fig. 6.14 where also BSE+GW, RPA+GW and the experimental spectra are
shown for comparison.

Figure 6.14: TDDFT calculations using LRC (black solid) and Bootstrap (green dashed). The experimen-
tal spectra from Palik [120] (pink connected squares) and from Benthem [109] (violet crosses) together with
the BSE+GW calculation (red dash-dotted) and the RPA+GW calculation (blue dashed-double-dotted) are
shown for comparison.

As can be expected in view of the similar structure of the LRC and the Bootstrap
kernel, and in particular in force of their identical behaviour as −c/|q|2 for q → 0, the
two approximations act in a similar way: the effect of both kernels is to transfer oscillator
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strength to lower energies with respect to the RPA+SO spectrum, simulating in this way
the effect of the electron-hole interaction. In the case of LRC [45] the constant c that
determines the q → 0 divergence of the kernel is a material-dependent scalar parameter α
which is determined by an established linear relation (4.22) between α and the macroscopic
dielectric constant ε−1

∞ . The value ε∞ = 6.4 as calculated in RPA+LDA has been used, which
yields α = 0.5. The results are not very sensitive to the precise value of α. In the case of
the Bootstrap kernel, the proportionality term is computed self-consistently from ε−1

∞ . Five
iteration cycles have been enough to converge the parameter c. This leads to a similar value
of c = 0.478, and therefore finally yields results that are almost undistinguishable from those
of the LRC kernel.

As expected, in both cases the presence of a bound exciton at the onset cannot be well
reproduced. Spectra therefore exhibit a blue-shift of the order of 1 eV. Still, about 50 % of
the RPA+GW error is removed by the TDDFT calculations. Overall excitonic effects are
weaker than in the BSE, also in the continuum. In particular, peak Bb remains a shoulder,
though it is enhanced by the electron-hole interaction, and also the rest of the spectrum is
less modified by the electron-hole interaction than in the BSE case. This leads to a puzzling
situation: apart from the onset region, the agreement between the approximate TDDFT
results and experiment turns out to be better than when BSE is solved.

However, this should not induce us to think that the TDDFT is superior. These kernels
have been derived directly or indirectly from the BSE, and deviations have to be considered
as errors. Improved results must therefore involve some error cancelling. On one hand, we
have of course the simplified LRC-like form of the tested kernels. Moreover, in both cases one
constant value was chosen for the proportionality constant c. However, it has been shown
[46] that the constant approximation is valid only over a restricted energy range, whereas
improved results over a wider range are obtained with a frequency-dependent prefactor.
With the relation between parameters given by Botti and coworkers [46], one finds that c is
increased by more than a factor of two around Bb, which leads to a slight red-shift of the
peaks. Using this frequency dependent kernel, the discrepancy to the BSE is reduced then,
but only very partially, and Bb remains a shoulder instead of a sharp peak. In other words,
the simple LRC form of the kernel, even when augmented with a frequency-dependent term,
cannot capture the complexity of the BSE.

It is however still interesting to note that in the high energy range the rough approxi-
mation to TDDFT leads to better agreement with experiment than the BSE: though based
on error cancelling as stated above, this should not be considered as a pure coincidence.
Rather, a reduced kernel can visibly simulate to some extent the reduction of the electron-
hole interaction due to coupling effects that are neglected, e.g. damping due to dynamical
effects.

6.5 Conclusion

In conclusion, the optical spectrum of SrTiO3 shows strong excitonic effects. Hence, an
independent-particle description is not sufficient to obtain good agreement with experiment.
There is a bound exciton and significant shift of oscillator strength at the onset that are
well described by state-of-the-art Bethe-Salpeter calculations in the framework of the GW
approximation. Moreover the use of SO quasiparticle correction gives a very good descrip-
tion of the absorption onset. Transitions between localized electronic states dominate the
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spectrum between 6 and 7 eV, leading to a sharp excitonic peak. This peak is overestimated
when the spatial resolution of the screening of the localized electron-hole pair is not taken
into account. Going beyond this standard approximation to Bethe-Salpeter calculations in
solids, the peak is reduced, but it still remains too sharp as compared with experiment.
Further structures around 8 eV also show too strong excitonic effects.

A possible explanation of the discrepancy between BSE and experiments could be the
neglect of coupling to other excitations, such as phonons and/or neutral electronic excitations
contained in principle in the screening of the electron, hole, and electron-hole pair. With the
QP approximation to the electron and hole, and the static approximation to the electron-hole
interaction, these possible excitations are lost37. Overall, it turns out that a quantitatively
correct description of the absorption spectrum of SrTiO3 requires to go beyond state-of-the-
art Bethe Salpeter calculations.

TDDFT in simple long-range approximations to the exchange-correlation kernel recovers
about 50 % of the RPA+GW error at the onset, and yields a better description of the higher
energy part of the spectrum than the BSE. This feature should be due to error cancelling.

However, I also showed that one can obtain agreement with experiment on a level that is
sufficient to analyze the various structures and explain their origin by using computationally
efficient approximate approaches, including the scissor operator to replace GW corrections
to the bandstructure, and TDDFT using a simple long-range kernel.

37Note that similar features are found also in other materials (cfr. peak at 22 eV in LiF reported in
Fig. 5.7b) which also may be ascribed to the lack of coupling.
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Chapter 7

Graphite allotropes

One of the main objectives of this thesis is to understand and predict absorption and EEL
spectra of isolated and interacting nanostructures. In this context systems made of graphene
sheets can be considered as prototype cases.

Investigation on optical [19, 132–135] and EEL spectra [19, 134, 136, 137] have been
already subject of several works. Quasiparticle dispersion has also been studied [138–143],
especially near the point K of the Brillouin zone, but when compared to theory, only the
band structure was considered. Instead, in order to reach the full complexity of electronic
excitations, it is interesting to study also spectral functions, for they are composed of a
quasiparticle peak and satellites. The latter stem from long range plasmon excitations and
can therefore be expected to be more sensible to neighbouring layers than the quasiparticle
peaks. To our knowledge, only few results [74] are available concerning the one-particle
spectral function, as measured e.g. in photoemission.

In this chapter I investigate the full one-particle excitation spectrum, with special empha-
sis on dynamical effects such as plasmon satellites. In this perspective I have taken part into
a theoretical and experimental work which has been recently submitted [94].

Chapters 7, 8 and 9 are devoted to the study of dynamical effects in graphene and graphitic
structures. In this chapter, the interaction between graphene sheets is investigated by looking
at three allotropes of graphite differing only by the stacking of the graphene sheets. I report
the analysis of EEL spectra for parallel and perpendicular momentum and spectral functions.
The main question this chapter wants to answer to is “How sensitive are EEL spectra and
the spectral functions to the geometrical details?”

7.1 Carbon allotropes

Graphite is an allotrope of Carbon. Its bulk structure is composed by 2D layers of atoms
arranged on a honeycomb lattice. Atoms of each layer are strongly bound together by
covalent bonding, whereas the interlayer interactions are essentially of van der Waals nature
[144], and hence much weaker. For this reason graphite exfoliates easily (that let us write
with pencils, as etymology indicates!). The graphene sheets can be therefore considered as
building blocks of the bulk material. By changing the stacking of graphene layers, different
graphitic crystals can be obtained.
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(a) AA stacking

Atomic coordinates

a1 a2 a3

0.0 0.0 0.0
1/3 2/3 0.0

(a) ABA stacking

Atomic coordinates

a1 a2 a3

0.0 0.0 1/4
1/3 2/3 1/4
0.0 0.0 3/4
2/3 1/3 3/4

(a) ABC stacking

Atomic coordinates

a1 a2 a3

0.0 0.0 0.0
1/3 2/3 0.0
1/3 2/3 1/3
2/3 1/3 1/3
0.0 0.0 2/3
2/3 1/3 2/3

Figure 7.4: Three different stacking of graphene with the atomic coordinates for unit cell, expressed in the
hcp unitary vectors.
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Different stacking of graphene

The AA stacking (Fig. 7.1a) is the simplest way to pile up graphene layers: all atoms of one
layer are on top of those of the layer below. Although this configuration is not found in nature,
it is possible to synthesize it using high-density dc plasma in appropriate atmosphere from a
diamond substrate [145]. Via transmission electron microscopy or electron diffraction [146]
it is also possible to characterize the samples. The difficulty in growing this stacking comes
from the repulsion between the pz orbitals of different planes which have a big overlap for all
atoms are superimposed. The measured interlayer distance d between two graphene planes
is between 4.3 Å and 5 Å [146], while the theoretical equilibrium distance I computed38 is
d ≈ 3.64 Å, close to other theoretical works [147]. This structure has two atoms per unit cell
of height Lz = d.

In the ABA stacking (reported in Fig. 7.2a), also called hexagonal graphite, the graphene
sheets are superimposed following a zig-zag pattern in such a way that each layer has the
same position as two layers below, as depicted in Fig. 7.2a. So each hexagon of a sheet is
centred on one atom of the layers below and above. It is the most stable form of graphite
[148] and can indeed be found in nature. The hexagonal close packing (hcp) unitary cell
contains four atoms arranged on two layers. It has an height Lz = 2d0. The theoretical
equilibrium distance between two planes presented in this work is d0 ≈ 3.335 Å in very good
agreement with experimental data [148, 149] and other theoretical predictions [147].

a=2.46 A

nn=1.42 A

Figure 7.5: In-plane ge-
ometry of the unit cell.
Carbon atoms are circles.

The rhombohedral graphite (ABC stacking) is a metastable
phase which is not found at temperatures T > 2000◦C, and which is
not observed alone but always mixed together with the ABA struc-
ture. Recently it has been possible to synthesize bulk ABC graphite
[150, 151]. In the rhombohedral graphite (Fig. 7.3a), graphene layers
are shifted along one direction in such a way that every three lay-
ers the same atomic disposition is found. Although the unitary cell
has a rombohedral symmetry, including 6 atoms per unit cell, it is
better to use a less symmetric hcp cell, to ease the comparison with
other structures. The hcp cell encloses three layers and it contains
6 electrons. I computed the interlayer distance that minimizes the
total energy getting d ≈ 3.36Å, in agreement with the experimen-
tal value of ≈ 3.35Å and recent theoretical calculations [147]. The
corresponding cell height Lz = 3d = 10.08Å. The nearest neighbour environment of the pz
orbitals is similar to that of the ABA stacking, which explains the similar value of d.

A fourth graphitic material is also observed. It is called turbostatic graphite, it is still
made by graphene layers, but no periodicity in the stacking [152] is found.

In all the three periodic structures, the experimental value of the in-plane lattice param-
eter a = 2.46 Å has been used [149], which corresponds to a nearest neighbour distance of
1.42 Å.

38The bulk interlayer equilibrium distance has been computed by minimising the total energy with respect
to d
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7.2 Ground state properties

In this section different contributions to the total energy of the three structures are discussed
and the KS band structure of the three systems are presented.

Computational Details: The k-point grid used to sample the Brillouin zone in the three
systems is a 17×17×8 Monkhorst-Pack grid. The total energy was converged applying
a cutoff to the plane waves basis set of 31 Hartree. Troullier-Martins pseudopotentials
have been used to model core electrons. The exchange-correlation potential has been
approximated within LDA. All calculations have been done with the ABINIT [124]
simulation code. Equilibrium interlayer distances have been computed through mini-
mization of the total energy with respect to the cell height Lz.

Energy contributions

The ground state total energy is the sum of different contributions: kinetic T , Hartree EH
and exchange-correlation Exc. In Tab. 7.1 I report the values I computed for these three
energy components normalised with respect to the total energy of the system (which is
negative).

Table 7.1: Equilibrium interlayer distances and energy contributions.

stacking d [Å] T/Etot EH/Etot Exc/Etot

AA 3.64 -0.6861 -0.3371 0.3546
ABA 3.33 -0.6861 -0.2796 0.3548
ABC 3.36 -0.6861 -0.2796 0.3548

The sum T +EH +Exc 6= Etot because there are other energy contributions (not discussed
here) coming from the specific implementation of the KS scheme in the crystal environment
(as the Ewald contribution) and from the ionic contribution modelled by the pseudopotential.

Note the relative importance of the kinetic term with respect to the other two, as pointed
out in introducing the DFT, at the end of section 3.2.1.

The kinetic and the exchange-correlation contributions do not change in the three con-
sidered stackings, indicating that they are not sensitive to the structural differences at long
distance. This is in agreement with the fact that in LDA the exchange-correlation potential
Vxc(r) decays exponentially, so it is well localised on the planes of graphene39.

On the other hand the Hartree term has a higher ratio in the AA than in the other
two structures. The Hartree energy reads 1

2

∫
ρ(r′)ρ(r)|r − r′|−1drdr′ where ρ is the charge

density. In the AA stacking, electronic charges are piled together forming kind of columns
of charge, whereas in the other two materials charges are more distributed. Because of this
peculiar concentration of charges, the repulsive40 Hartree term has a higher value.

Band structure

The LDA band structure of the three systems is reported in Fig. 7.6.

39This is actually not the correct asymptotic limit; the exact Vxc indeed should decay much more slowly.
40The negative ratio indicate repulsive interaction.
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The valence bands of ABC and ABA are indistinguishable on the in-plane direction
Γ −M − K − Γ; differences are noticed when some perpendicular component is explored
(section Γ−A−L−H −A). Similar considerations hold for the first conduction bands (up
to ≈ 20 eV).

The AA stacking instead differs also in the plane: for instance along the Γ −M line, a
higher degeneracy is observed, because of the higher symmetry of this system.

It is also interesting to compare the bands around the Fermi level in the K point (along
M −K − Γ) and around the H point (along L−H − A).

In the rhombohedral graphite (ABC, Fig. 7.6a), two almost degenerate bands are found
around the K point. One of the two bands splits close to the Fermi energy, avoiding the band
crossing between valence and conduction states in K, whereas the other band gives rise to
the “Dirac cone” (linearly dispersing bands) slightly off from the K point. Identical scenario
is found in the H point.

In the hexagonal graphite (ABA, Fig. 7.6b) a similar dispersion is found at the K point,
but the “Dirac cone” is not observed as the bands crossing the Fermi energy have a quadratic
dispersion. This aspect is in agreement with other calculations performed in multilayer
graphene [141]. At the H point, instead, the difference with the ABC stacking is more
pronounced: bands are degenerate in this point because of the higher symmetry of the
hexagonal graphite, and an almost linear dispersion is indeed observed.

We come finally to the AA stacking, which displays a peculiar behaviour: in both points
bands disperse linearly, but in the K point the tip of the cones is higher than the Fermi
energy, while in the H point the bands cross below the Fermi energy, as reported also by
other authors [143, 153].

The different structure around K in the three materials can be better appreciated in
Fig. 7.7, where the band dispersion near Fermi is reported along the vertical line K −H.

In the ABC geometry a “Dirac cone” occurs in a point near K, slightly shifted towards
the Γ point. Two doubly degenerate bands are parallel one to the other, without dispersing
and without crossing the Fermi level between K and H. The ABA geometry offers a very
different scenario: two degenerate bands lay on the Fermi level, along the entire K − H
line, while other two bands, which are separated at K by about 1 eV, converge in the H
point from above and below the Fermi energy. In the H point all four bands are degenerate.
The AA geometry displays a third different band structure, with two degenerate dispersing
bands from K to H, which cross the Fermi level in the middle of the K −H line forming one
electron pocket in H and a hole pocket in K.

From the band structure alone one can expect spectral functions to be similar, but it is
not clear to which extent.

7.3 Electron energy loss spectra

With the electron energy loss spectroscopy one can access the diagonal elements ε−1
GG(q, ω)

(cfr. equation (2.24)) getting in particular information on the collective excitations of the
system such as plasmon resonances. The latter are collective long-range excitations, so they
are expected to be sensitive to some extent to the geometry of the stacking. In EEL spec-
troscopy it is possible to tune the exchanged momentum q + G in order to probe excitations
along different directions.
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Figure 7.6: Band structure of graphite with different stackings of graphene sheets.

In Figs. 7.8 and 7.9 the EEL spectrum of the three systems at different exchanged mo-
menta is reported. Due to the strong anisotropy of the layered structures I divide the
discussion into two sections, one devoted to in-plane momentum transfer, and the second to
perpendicular momenta.

Computational details: The EEL spectrum has been computed with the code DP [127].
Ground state KS wave functions and energies, computed with the software ABINIT
[124], have been used to construct χKSGG′ according to expression (4.10). The RPA
expression of ε (4.19) has been inverted to get ε−1

GG(q, ω), accounting in this way for
the local fields. The number of plane waves used to reproduce the KS states in the
expression of χKS is 350 for all the three systems, while the number of bands nbands

included in the calculation and the dimension of the matrix npwmat are reported in
Table 7.2. The Brillouin zone has been sampled with a mesh 34× 34×Mz centred in
Γ where the number Mz of points sampling the kz direction (also reported in Tab. 7.2)
depends on the exchanged momentum.

A broadening of 0.1 eV has been applied.
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Figure 7.7: The band structure of the three systems along the K −H line of the Brillouin zone.

Table 7.2: Convergence parameters for the caclulation of EEL spectra.

system nbands npwmat Mz (q‖) Mz (q⊥)

AA 40 50 4 8
ABA 80 100 4 8
ABC 80 100 4 8

Parallel momentum transfer

The EEL spectrum at small parallel momentum is reported in Fig. 7.8a. All systems exhibit
two structures, a small peak at around 7 eV, and a second stronger excitation at much higher
energy (between 25 and 30 eV depending on the system).

The first structure is ascribed to in-plane collective excitations of the π electrons (π
plasmon). The second more intense structure involves the collective vibration of the σ and
the π electrons (π + σ plasmon) [19, 134, 154].

While the π plasmon does not change in the three systems, the π + σ plasmon displays
some modifications. Hexagonal and rhombohedral graphites have essentially the same spec-
trum: the peak has the same height and it is centred at the same energy of 29.4 eV, while
in the AA graphite the π + σ plasmon is red-shifted by ∼ 0.7 eV. I verified that this effect
is actually due to the difference in interlayer distance, and it is not induced by the different
stacking: the AA graphite, having a lower density per volume because of the higher value of
d, has consequently a lower plasmon frequency (ω2

p ∝ ρ). Indeed, if one uses the same inter-
layer distance as for the ABA system, both the π and π + σ plasmons of the AA geometry
do not differ any more from the same structures of the other two geometries.

The spectrum reported in Fig. 7.8b refers to large momentum transfer41 (q‖ ≈ 2 Å−1). In
this case short distances are probed. At almost the same position as in the previous case we
find two structures. Although they resemble the π and π + σ plasmons, both are actually
originated by inter-band transitions, i.e. they reflect the presence of structures in =[εM(ω)].
At this range of exchanged momentum, <[εM ] is never 0, so they can not be considered
plasmonic excitations. Note also their decrease in intensity. Beside these two structures a
third peak (labelled (a) ) is predicted at ∼16 eV also due to inter-band transitions.

The first structure at 7 e V seems not to be modified by the different stacking of the
planes and it is essentially identical in the three considered geometries.

The (a) peak located at 16 eV for the three systems is followed by a small shoulder at

41Large with respect to the reciprocal lattice vector 4π3−1/2a−1 with a = 2.46 Å.
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(a) q‖ ≈ 0 Å−1
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(b) q‖ ≈ 2 Å−1
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Figure 7.8: Electron energy loss spectra for in-plane momentum transfer at small momentum 7.8a and
large momentum 7.8b. The spectra of the three systems are depicted with a black curve (AA), a red curve
(ABA) and a blue curve (ABC).

an energy 2 eV higher. Although the excitation energy is the same, in the AA system the
weight of the first peaks is lower whereas the shoulder has the same intensity in the three
geometries.

The broad and high structure at 35 eV exhibits some interesting differences, in all the
three geometries, although the ABA and the ABC systems differ for minor details. More
modulations are observed in the AA geometry where the high energy part of the spectrum
displays a global height comparable with the other two systems, but with two sharper peaks
on top.

At short q‖ (that is probing long distances), there is no significant difference in the
EEL signals when the same interlayer distance is employed for all structure. On the other
hand some major difference is observable at large momentum transfer, that is when short
distances are probed, especially in the higher region of the spectrum. This is in agreement
with the physical intuition that the electronic density of the three graphites differ more on
a microscopic scale description (local inhomogeneities) than on a macroscopic scale. This is
particularly true for the AA structure: since all carbon atoms are piled one on top of the
other, the inhomogeneities of the charge density are expected to be higher than in the other
two systems. As a result, for large parallel momentum transfer, the AA geometry seems
to be distinguishable from the other systems, with differences likely within experimental
resolution, whereas the other two spectra are too similar to be discerned experimentally.

The theoretical calculations I presented here for the ABA structure are in agreement
with recent theoretical calculations on graphite computed by A. G. Marinopulos et al. [134],
whereas differences are found in comparing our data to [154] because the latter calculations
have been performed without local fields.

Perpendicular exchanged momentum

When perpendicular momentum is exchanged, the family of excitations is much richer, al-
though the intensity is significantly reduced.

Spectra obtained for small perpendicular momentum transfer are reported in Fig. 7.9a.
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Structures of interest are labelled with letters (b,c,d,e1,e2 and f). As in the previous case,
the ABA and the ABC signal are similar to each other, while the AA geometry gives a
significantly different spectrum, much more different than what observed in the in-plane
case.

The (b) structure is common only to the ABA and ABC spectra, while no excitation is
found at the same energy in the AA geometry. These excitations are due to HOMO-LUMO
transitions (π−π∗)[154] which are actually forbidden in the AA geometry because of selection
rules.

At higher energy, all the three geometries display a first group of structures at 10 eV
(c), stemming from structures of the =[εM ], and a strong and narrow peak at 18-19 eV
(d) of plasmonic nature (<[εM ] = 0). While no significant difference is found in the three
systems when looking at the (c) structure, the (d) peak has interesting characteristics in the
AA which are not found in the other two geometries. I report a close up on this structure
in Fig. 7.10, where EEL spectrum (red lines) is reported together with <[εM ] (blue) and
=[εM ] (black). A double peak is displayed (AA) instead of a single structure (ABA and
ABC). The first one, around 18 eV, is a plasmon, alike the similar structure in the other
two systems; the second, higher than the first and located at 20 eV, is another collective
excitation42. Moreover the AA version of the (d) peak decreases sharply, whereas in the
other two geometries the presence of a shoulder at 22 eV makes the slope more gradual.

Beyond 22 eV two notable inter-band structures are found: a first one labelled (e) and
a second labelled (f). The first displays important differences depending on the stacking,
appearing as a relatively narrow and high peak (e1) in the AA stacking or as a much broader
and lower structure (e2) in the other two geometries. Morevoer its position changes: it is
centred at 25 eV in the AA graphite, whereas it is at much higher energy (∼ 28 eV) in the
other two cases.

Finally the (f) structure, still an inter-band transition, is actually a broad excitation
which displays a well defined peak in the AA geometry at 34 eV, whereas no clear feature
can be distinguished in the hexagonal and rhombohedral graphite. The latter result is in
contrast with the ABA calculation reported in [154], where a strong peak is predicted on top
of the (f) structure. The difference has to be ascribed to local field effects, which are more
important for perpendicular components.

In the large momentum regime (Fig. 7.9b), similar features can be found. All excitations
are of inter-band nature, as <[εM ] never crosses the zero line.

At very low energy, ABA and ABC still display an excitation not so different in shape
from the (b) structures originated by the same HOMO-LUMO transitions. Contrary to the
small momentum case, also the AA displays a structure (g) which is strongly peaked at very
low energy. It comes from the semi-metallic nature of the AA system highlighted in Fig. 7.7c
and is actually strongly dependent on the k-point sampling.

After a plateau with no intensity, the signal has a second structure (h) around 10 eV. In
the ABA and ABC graphites, the (h) structure has a strong peak at 19 eV which decrease
abruptly at higher energies. Instead, the same structure in the AA graphite appears broader
and red-shifted by almost 2.5 eV. At its basis, around 22 eV, the ABA and ABC signals
have a small structure which has the same origin as the shoulder discussed for the (d) peak.

The (e) and (f) structures are also recognisable, and marked here with (i) and (j) letters.
Characteristics of the (i) structure change importantly in passing from the AA to the ABA

42Strictly speaking this second peak is not a plasmon, since the <[εM ] does not cross the zero.
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 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25  30  35  40

Im
[ε-1

(ω
)]

Energy (eV)

b

c

d

e1
e2

f

AA
ABA
ABC

(b) q⊥ ≈ 1.5 Å−1
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Figure 7.9: Electron energy loss spectra for momentum transfer perpendicular to the graphene sheets at
small momentum (7.9a) and large momentum (7.9b). The spectra of the three systems are depicted with a
black curve (AA), a red curve (ABA) and a blue curve (ABC).

or ABC geometries, as it was the case for the (e) peaks.

In the case of perpendicular momentum transfer, the number of excitations is much
higher than in the in-plane case and the line shape is more modified by the stacking. Also
in this case, ABC and ABA graphites seem to have too similar spectra to be experimentally
distinguished, whereas the AA graphite differ from them in several regions, thing that may
be used to characterise a sample. In particular, major differences can be found in the region
between 20 and 30 eV where AA displays sharp peaks (e and i) while the other two geometries
present broader blue-shifted structures.

In the perpendicular momentum case, local fields effects significantly change the line
shape of the spectra, especially at high energy.

7.4 Spectral functions

Let us now move to the one-particle spectral functions.

When electrons are extracted from the material, the creation of the hole can couple with
other excitations of the system. This is accounted for by the dynamical self-energy Σ. The
dynamical coupling between the hole and other excitations has moves part of the weight of
the primary peak (quasiparticle peak) to other structures. As a result the quasiparticle peak
broadens and satellites are observed at higher binding energies.

The self-energy is computed in the GW approximation, where Σ ∝ W = ε−1v. Hence, in
order to discuss the dynamical effects of the self-energy, one has to analyse the effects of the
matrix ε−1

GG′(ω) on the single-particle excitations. That justifies the presented study of the
EEL spectrum, but how the elements of ε−1

GG′ enter in Σ is more involved.

Summing together (5.29) and (5.30) to get Σ, and using the Lehmann representation of
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G, the matrix elements of the self-energy read

〈i|Σ(r, r′, ω)|i〉 =

=
i

(2π)4

∑

GG′j

∫
e−iδω

′
∫
ρ̃∗ji(q + G)WGG′(q, ω

′)ρ̃ji(q + G′)

ω − ω′ − εj + i sign(εj − µ)
dqdω′ (7.1)

where ρ̃ji are defined in (4.11), εj are KS energies, and the screened Coulomb interaction W
is reported in its Fourier components.

Because of the sum over G and G′ and the integration in q, all elements of the dielectric
function (long range, short range, both parallel and perpendicular) contribute to the self-
energy. Thus it is not trivial to predict how the stacking influences this sum. The analysis
has to pass through the calculation of the spectral function.

In the previous section I showed that AA graphite can be distinguished from the other
two stackings, especially when perpendicular elements of ε−1 are considered. What is the
scenario in the case of spectral functions?

General considerations

Spectral functions of the three graphitic systems have been computed according to expression
(5.32), reported below to ease the discussion:

Ai(ω) =
1

π

|Ii(ω)|
R2
i (ω) + I2

i (ω)
(7.2)

with
Ii(ω) = =[Σi(ω)] and Ri(ω) = ω − EH

i −<[Σi(ω)]
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where EH
i is the Hartree energy of the |i〉 state (in the case considered here the bottom

valence) and Σi(ω) = 〈i|Σ(r, r′, ω)|i〉 is computed according to (7.1). For a discussion of
possible structures in the spectral function we refer to section 5.1.5.

Computational details: The screening matrix ε−1
GG′(q, ω) has dimension 170×170, the KS

states needed to construct the oscillator strengths are represented by 715 plane waves
and the number of bands included in the sum over states is 150. The k-point grid
used to sample the BZ is 10× 10× 2 centred in Γ. The screening has been computed
with the contour deformation method in order to give an accurate description of all
the structures of the dielectric matrix. The real energy axis has been sampled up to
55 eV with 270 energies, while 5 imaginary energies have been used.

The self energy has been computed using 200 bands and 715 G vectors in the exchange
part, while the correlation part is dimensioned as ε−1. The number of plane waves used
to represent the KS states is 715.

Common features

First let us look separately at the three geometries to recognise features common to the three
systems. In Fig. 7.11 the spectral function A and its components (I and R) are reported for
the three materials.

It is possible to recognise three structures in the spectral functions (red lines) of each
system.

1. The quasiparticle appears as sharp peak around -20 eV. It is generated by the almost
vanishing denominator in expression (7.2). Dynamical effects of the self-energy are
responsible for broadening and damping the peak, with the corresponding occurrence
of extra structures at higher binding energy (satellites).

2. A secondary peak is found at a binding energy of ≈ −28 eV. At this energy I has
the low π plasmon peak and R is almost 0. It can be considered to have a strong
plasmaronic component although in the ABC and ABA systems the function R does
not cross the zero.

3. At much higher binding energy (≈ −55 eV), the three spectral functions display a very
broad and low structure. This is essentially originated by the numerator of expression
(7.2), contrary to the other two peaks. Although the corresponding structure of I is
broad, it is strong enough to produce an appreciable plasmon satellite in A.

Note the similarity in all the three systems between the imaginary part of the self-
energy I(ω) and the EEL spectrum at vanishing q‖. In fact, if one measures the energy
difference between the quasiparticle peak and the other structures of A(ω) (around 7 and
23 eV respectively), one realises that they fall at the same position of the π and the π + σ
plasmons in EELS. For this reason I will refer to these two structures with the name of π
and π + σ plasmons (in I and R) and plasmon satellites (in A).

Some consideration about the plasmaron

Although the plasmaron is a spurious result of GW (see section 5.1.5), it is often located not
far from where some structure should be observed in principle. For example a plasmaron
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(a) ABC stacking
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(b) ABA stacking
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(c) AA stacking
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Figure 7.11: Spectral function A (red), I (blue) and R (black) at bottom valence for the ABC, the ABA
and the AA graphites. The y axis refers to I and R, the spectral function being plotted in arbitrary units.

(a) ABC stacking
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(b) ABA stacking
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(c) AA stacking
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Figure 7.12: Close up on the plasmaron excitation. On the ABC and the ABA systems the π plasmon
satellite appears as a shoulder in the stronger plasmaron excitation. In the AA system the plasmaron is so
strong (ω − EH −<[Σ] = 0) that the plasmon satellite is completely hidden.

can appear when I has sharp structures relatively close to the QP peak (for instance low
energy plasmons, as the π plasmon). In fact, because of the Kramers-Kronig relations, also
R displays a peak which may eventually pass the zero line, so creating a the plasmaron peak,
as evident from equation (7.2).

103



On the other hand, because of the presence of structures in I, a plasmon satellite should
indeed be found, but this is in many cases completely overwhelmed by the much stronger
(and wrong) plasmaron peak.

In Fig. 7.12 a close up of the three plasmarons is shown. In the case of the ABA and the
ABC structures, the π excitation of Σ is not strong enough to make the real part cross the
zero. Strictly speaking the corresponding structure is not therefore a plasmaron, nevertheless
a strong peak is observed due to the small denominator in (7.2). Nevertheless the correct
plasmon satellites can still be recognised as shoulders in both curves.

On the other hand, in the AA geometry, the real part of Σ crosses the zero line, resulting
in a sharper plasmaron peak. As a consequence the π satellite that should be seen is barely
visible.

Comparison between systems

To compare better the three structures, all spectral features are reported in Figs. 7.13 and
7.14. As it can be seen, the differences between hexagonal and rhobohedral graphites are
really small and most likely the two structures can not be distinguished experimentally,
neither from the quasiparticle peak, nor from the satellite structures.
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Figure 7.13: Spectral properties at bottom valence for the AA, ABA and ABC graphite. The ABA and
ABC system have identical features, while some difference in the structures of the AA system is found with
respect to the other two geometries.

On the other hand the AA stacking shows some major difference with respect to the
other two systems, essentially because of the plasmonic excitations. In fact the π structure
of I is more intense and it is peaked at a binding energy lower by 1 eV with respect to the
same excitation in the other two geometries. Important differences are also observed in the
π + σ structure, which is moved by ∼ 5 eV to lower binding energy.
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Figure 7.14: Spectral function A at bottom valence of the three systems. While QP peaks are similar in
the three graphites, the satellites of the AA system differ clearly from the ABA and the ABC system.

7.5 Conclusion

LDA band structure

The LDA band structure of the three systems are appreciably different. In particular direc-
tions Γ −M and A −H may be used to distinguish the three geometries. In fact at Γ and
A a band can be found at ≈ −10 eV which disperses as a plane wave through the directions
Γ −M and A −H. The degree of degeneracy of this state can be used to discriminate the
system: only one band is observed in both paths for the AA, two non degenerate bands are
found in the ABC and two bands along Γ −M but only one along A −H characterise the
ABA stacking. Major differences in the band structure are found closer to the Fermi level
and in the empty states.

EEL spectra

EEL spectra have a very different line shape when parallel or perpendicular momentum
transfer are considered. In the first case, few structures are found: one is generally located
around 7 eV, (π plasmon at q‖ ≈ 0) and another much more intense is at 30 eV or beyond
(the π + σ plasmon at q‖ ≈ 0). Differences between the AA geometry and the other two
systems are found at high energy for large momentum transfer, whereas the ABC and the
ABA graphites are almost identical to each other. Differences at small momentum transfer
are rather ascribed to the different lattice constant along the z axis.

When the momentum is exchanged perpendicularly, a bigger variety of excitations are
predicted for all systems, some of them due to inter-band transitions, such as e.g. the
(b),(g),(e) and (i) peaks, others of plasmonic nature, e.g. (c) and (d). Once again the ABA
and the ABC spectra look very similar; major differences can be found in the AA spectrum.
In particular AA has peculiar characteristics in the range between 20 and 30 eV (structures
(e1) and (i) ). At low energies the structure (g) due to transitions along the K − H line
of the BZ, is strongly sensitive to the k-point sampling and is ascribed to the semi-metallic
character of the bands in the K −H direction.

These conclusions suggest that electron energy loss spectroscopy is indeed sensitive to
the stacking of planes, but only up to the first layer. Parallel momentum could be used to
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characterise the system only when very short distances are probed, that is at big exchanged
momentum. Perpendicular components instead are more sensitive, with no substantial pref-
erence for small or big q⊥. In theoretical spectra, local field effects have to be included,
especially when high energy structures are of interest and for perpendicular momentum
transfer.

Spectral functions

The quasiparticle peaks in the spectral functions seem to be undistinguishable in the three
systems. Small differences may be observed between the AA and the other two graphites,
but they are probably not strong enough to be resolved experimentally.

Clearer could be the distinction based on satellite structures (especially on the π + σ),
but they have to be resolved with enough accuracy. Instead the ABA and ABC signals are
almost identical also in this range.

A structure that is almost a plasmaron is observed in the three geometries, close to the
quasiparticle peak. It is more intense in the AA stacking and slightly blue-shifted with
respect to what seen in the other two graphites. The intensity of this spurious structure is
such that in all the cases the plasmon satellite arising from the π peak either appears as a
small shoulder (ABA and ABC) or it is barely visible (AA stacking).

Since the plasmaron is an artefact of GW [76], one should not expect the calculated
spectra to predict experiment quantitatively. However, the corresponding differences between
stakings can be traced back to the imaginary part of Σ (see Fig. 7.13), which means that they
would also persist in more elaborate approaches. In particular on ABA graphite, cumulant
expansion calculations [5, 79] yield results in good agreement with experiment.
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Chapter 8

From bulk graphite to isolated
graphene

In this and in the subsequent chapters I will focus on the isolated graphene sheet and on
the transition from bulk graphite to isolated graphene. Starting from the AA geometry, the
distance between layers is progressively increased in order to study the electronic properties of
the system at different inter-layer separations, with a special interest for the band structure,
the EEL spectrum and the spectral function.

Dynamical effects of the dielectric function ε−1
GG′(ω) are discussed on the basis of the

direct calculation of the matrix elements (EEL spectra) and the calculation of the self-energy
Σ = iGvε−1. In fact, as seen in the previous chapters, the real and the imaginary part of
Σ determine the peaks of the spectral function. The self-energy and the spectral function
is computed with G0W0 and also via a self-consistent update of the poles of the Green’s
function. Moreover an approximated self-consistent calculation is obtained using a technique
introduced by Hedin [2] and presented in section 5.1.4.

In the context of the graphite-graphene transition, I took part into two experimental
sessions in the beamline TEMPO [6] in the synchrotron radiation source Soleil in Saclay
(France). We collected data of valence band angle-resolved photoemission spectroscopy from
graphite and graphene samples. These measurements have been used to corroborate theoreti-
cal studies on the plasmonic structures of the spectral function of graphene and graphite [94].
More details on this can be found in Appendix D.

Introduction: a single graphene sheet
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Fig. 6. Explanation of peak broadening. For a flat graphene crystal (a), diffraction intensities constitute sharp rods in reciprocal space (b) that are parallel to the
surface normal (also compare with Fig. 3(a)). If the surface is uneven (c), the diffracted intensities are obtained by a superposition of many rods with slightly
different orientation (d). This gives rise to non-zero intensities in cone-shaped volumes in reciprocal space, and therefore to broadened diffraction peaks in the tilted
incidence diffraction patterns. (e) Peak profiles (for the (01̄10) reflection of Fig. 3(c) for different incidence angles (black curves) and Gaussian fits (red), with an
offset that corresponds to the tilt angle in degrees. The peak heights are scaled to the same size. A cone that connects the curves at approximately their FWHM is
drawn as a guide to the eye. (f) FWHM of Gaussian fits for single- and bi-layer graphene vs. tilt angle. The slope (dashed lines) is proportional to the cone angle in
(d). The peak broadening in bilayer samples is approximately half as strong as in monolayers. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

apparently random microscopic out-of-plane deformations
where surface normal varies by several degrees. The smooth
Gaussian shaped broading implies that there are large number
of different orientations present within the submicron diameter
electron beam, and that the surface normal must vary in all
directions. This means that there is a microscopic roughness
present within our membranes with no preferred orientation.
The reproducible appearance across samples indicates that it is
an intrinsic effect. It is important to note that the homogeneous
and isotropic broadening we observe is not compatible with
bending deformation of a rigid membrane. This contradicts the
assumption of an incompressible sheet, which could be curved
in one but not two directions. To emphasize this point, we
remind that, for example, a sheet of paper (which has a very
high in-plane elastic modulus) can be curved into a cylinder
but not into (a section of) a sphere. Consequently, the observed
broadening cannot be explained by strain-free deformations of
graphene. We estimate local strains of up to 1% for the single-
layer membranes.

From a theoretical point of view, graphene is an example
of a crystalline membrane, or can also be described as
a polymerized membrane or a tethered membrane. This
class of membranes is predicted to exist in three different
configurations: a flat one, a so-called crumpled phase with
a fractal dimension, and a compact (collapsed) phase [23].
While most calculations assume a free membrane, our graphene
sheets are attached to a solid frame that provides a boundary
condition. This forces the membrane to be flat on the spatial
scale of the supporting frame. In this study we have focused
on these nearly flat regions, and observed static ripples. Note
that, strictly speaking, ideal 2D crystals are thermodynamically
unstable at a finite temperature [24–26]. The apparent stability
of graphene membranes can be due to the fact that they are
quenched in a metastable configuration after being extracted
from 3D (that is, stable) graphite at a relatively low temperature
so that strong interatomic bonds and small sample sizes do
not allow the generation and propagation of crystal defects. An
interesting alternative is that the observed rippled configuration

Figure 8.1: Pictorial image of free-
standing graphene taken from Ref. [155].

As explained at the beginning of the previous chapter,
graphite is made by layers of graphene sheets. The
previous chapter was focused on the variations of the
electronic properties of bulk graphite due to different
stacking of its constituent layers, while this chapter
is focused on the properties of the building block it-
self. Recently it has been possible to produce single
monolayers of graphene by exfoliation [156], by heat-
ing hexagonal SiC crystals [157, 158] or by chemical
synthesis [159, 160].

The feasibility of isolating free standing [161] and quasi-free standing [158, 162] graphene
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flakes, made it possible to measure electronic properties of bidimensional crystals by means
of e.g., EEL spectroscopy [154, 163] and angle-resolved photoemission spectroscopy [138].
Though, theoretical arguments based on thermodynamics predict 2D crystals to be unstable
[164, 165]. This apparent contradiction is solved by the occurrence of a long wavelength
buckling43 in free-standing sheets and by van der Waals interactions with the substrate in
quasi-free standing graphene.

The elementary cell of graphene is planar. It has two lattice vectors a1 and a2 forming
an angle of 120◦ on the xy plane

a1 = (a ; 0.0 ; 0.0) and a2 =

(
−1

2
a ;

√
3

2
a ; 0.0

)
, with a = 2.46 Å [166]. (8.1)

Atomic coordinates are

τ1 = (0.0 ; 0.0 ; 0.0) and τ2 =

(
1

3
a1 ;

2

3
a2 ; 0.0

)
(8.2)

that results in a nearest neighbour distance of 1.42 Å .

The reciprocal lattice still has a honeycomb structure, but it is rotated by 90◦ with respect
to the real space one. Reciprocal lattice vectors are

b1 =

(√
3

2
b ;

1

2
b ; 0.0

)
and b2 = (0.0 ; b ; 0.0) , with b = 4π/

√
3a−1 . (8.3)

Real and reciprocal space elementary cells of graphene are reported in Fig.s 8.2a and
8.2b.

(a) Real space. Carbon atoms as circles,
full circles in τ1 and τ2.

a1

a2

t2

x

y

(b) Reciprocal lattice. First Brillouin
zone and reciprocal lattice vectors.

x

y

b2

b1

Figure 8.2: Left: real space unit cell and lattice vectors of graphene. Right: first Brillouin zone and
reciprocal lattice vectors.

43The length of a corrugation in free-standing graphene is of the order of one hundred of Å whereas the
nearest neighbour distance is ∼ 1.4 Å. Therefore the isolated graphene sheet can be considered locally a
perfect 2D crystal. As a consequence the bucklng will be ignored in following discussions.
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8.0.1 The transition from graphite to graphene

Graphene has attracted huge interest for its outstanding electronic and structural properties
[167, 168]. Beside interesting properties of the graphene layer itself, an active field of research
is the transition from graphite to graphene [133, 135, 141, 154]. The interest is both theo-
retical and technological, because changes in the number of layers, in their distance or in the
stacking geometry, can be used to tune the electronic properties of a sample to a considerable
extent. An example of this has been given in the previous chapter, where different stackings
of graphene sheets were studied. Here I will investigate the evolution of spectral properties
from the bulk graphite to the isolated sheet. The change itself of the electronic properties is
a subject of this chapter, but furthermore I want to give an answer to the question “At what
interlayer distance a graphene sheet can be considered isolated? And with respect to which
spectral feature?”

To study this transition, two methods can be followed: the first consists in piling mono-
layers of graphene one on top of the other until the graphite system is obtained, the second
consists in increasing progressively the distance between planes of graphite until the isolated
film is found.

Increasing the number of layers

Experimentally, it is possible to grow and characterise graphitic structures with considerable
control on the number of graphene layers. In a work by Eberlein and coworkers [154], a series
of EEL measurements on graphitic systems with different deposition layers is presented.
Spectra have been measured using a scanning transition microscope. They collected spectra
from a monolayer of graphene, a bilayer, a trilayer and so on up to more than 10 layers which
retrieves the bulk graphite signal. Their experimental curves, taken at vanishing momentum
parallel to the planes, are reported in Fig. 8.3. One can recognize the π and the π + σ
plasmon excitations already showed in Fig. 7.8a.

π π+σ 6 eV 15 25 eV
©

π π∗

vF ≈ 106 m/s

100 meV

π
π σ

π π + σ
4.7 eV 14.6 eV

Figure 8.3: EELS at different monolayer deposition for q‖ ≈ 0. Image taken from [154].

In going from graphene to graphite, the π plasmon is blue-shifted by ≈ 2 eV and its
relative intensity with respect to the π + σ plasmon passes from almost 1 to approximately
0.5. The π + σ plasmon is much more sensitive to the stacking of graphene layers, its
peak moves 10 eV towards higher energy (15 eV in graphene and 27 in graphite). The π+σ
structure extends up to 50 eV in graphite, whereas in graphene the signal is negligible already
at 30 eV.
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The explanation given by the authors is the progressive fading of the bulk plasmons of
graphite (at 7 eV and at 26 eV) with the survival only of the surface modes (∼ 5 eV and ∼
15 eV).

In the same paper are presented also theoretical results obtained by increasing the num-
ber of deposited layers (and so mimicking the experiment) and by increasing the interlayer
distance. These calculations have been obtained in the RPA neglecting local field effects
for both parallel and perpendicular momentum transfer. As noted in the previous chapter
(discussing structure (f) in Fig. 7.9a), local fields may play a non negligible role in modifying
the line-shape of the spectrum, especially when perpendicular components are considered.
In fact, an isolated plane constitutes a strong inhomogeneity along z, so local fields have to
be included in theoretical calculations.

Increasing the interlayer distance

A different approach to study the graphite-graphene transition, is by increasing the sep-
aration d between the layers of graphene until convergence to the isolated signal. It is
important to note that the converged distance may differ if looking at different quantities.
Because of this reason, I will speak of isolated system for a given distance d, with respect to
a given property. This approach, easy to follow in simulations, can hardly be performed in
an experimental situation.

This will be the technique of choice in the present work, so all results showed in this
chapter will refer to a transition obtained by an increase in the interlayer distance d.

In this context I took part into an experiment of angle-resolved photoemission from
the valence bands of graphene and graphite. The experiment has been performed at the
TEMPO beamline [6] in the synchrotron radiation source Soleil on July 2011 and February
2012. We studied the dynamical self-energy effects in graphene and graphite comparing
our theoretical results with the experimental data we collected. More details on this work
are reported into Appendix D and in reference [78]. The analysis, mainly based on the
interpretation of photoemission spectroscopy of M. Guzzo et al. [5], yielded an article we
submitted to Physical Review Letters [94].

In order to understand some features of the satellites and in particular of the plasmaron,
I simulated two intermediate graphite-like systems (in future called 2d0 and 4d0) where the
separation between graphene sheets was multiplied by a factor of two and four respectively.

The detailed comparison of the electronic properties of these two intermediate systems,
of the AA graphite and of isolated graphene is the subject of the present chapter.

The supercell method

To isolate the planes of graphene from their periodic replicas, the distance between successive
layers is increased. The simulation box contains the elementary 2D cell of graphene plus some
empty space in the z direction, as depicted in Fig. 8.4a. The simulation box is called supercell
as it is bigger than the unit cell of the material. The height of the supercell Lz is then a
parameter to converge. The corresponding reciprocal cell (Fig.8.4b) has height b3 = 2π/Lz,
which shrinks to 0 as Lz increases. Note that, even though the system of study is a 2D
system, from a computational point of view it is necessarily conceived as a 3D periodic
crystal. I will come back to this point later.
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Table 8.1: Table of graphitic
systems

system Lz [Å]

1d0 3.335
2d0 6.71
4d0 13.42
6d0 20.13

d0 = interlayer distance
in the ABA graphite.

Throughout this chapter, I will use the supercell method
based on the increase of the interlayer distance d. Since the
goal is to describe the isolated graphene, I will work only in the
AA stacking, as it has the lowest number of atoms per unit cell.
At large d one may reasonably expect that all stackings yield
the same result. In this configuration d = Lz because only
one layer of graphene enters in the unitary cell. The interlayer
distance d will be increased by integer multiples of the ABA
graphite distance d0 = 3.335Å; accordingly the corresponding
systems will be labelled 1d0, 2d0, 4d0 and 6d0 (see Tab. 8.1).

8.1 Ground state properties

Here I report and discuss band structure calculations for the four systems of interest. I will
discuss the effect of confinement along the z axis looking at the DFT band structure before
moving to excited state properties.

In Fig. 8.5, the band plots computed up to 40 eV are reported. The highest occupied
state is set to 0 eV for all calculations and it is marked by a red horizontal line.

Computational Details: They do not differ from the parameters used in the previous
chapter44. The k-point grid employed in the calculation of the density (17 × 17 × 8)
yields converged total energy values for all systems.

Valence bands

For all the structures, the four valence bands have a total bandwidth of 20 eV.
For Lz > 1d0, the states along the perpendicular directions K − H and A − Γ do not

disperse at all, which is an indication that the system is confined along kz. From the 2d0

system, the KS charge density of occupied states can be considered to be identical to that
of the isolated graphene. As a confirmation of this, the valence bands do not change when
increasing further the interlayer distance (4d0 and 6d0).

On the contrary, in the 1d0 graphite, constitutive layers still interact with each other.
With respect to the systems reported in Figs. 7.6c and 7.7c, the only difference is in the

44Actually the number of planewaves has been converged directly on the 6d0 graphene sheet.

(a) Real-space

Lz

(b) Reciprocal-space and high symmetry points

High symmetry point coordinates in 

reciprocal lattice coordinates 

!" = 0.0 0.0   0.0!

M = 1/2 0.0   0.0 

K  = 1/3 1/3   0.0 

H  = 1/3 1/3   1/2 

L   = 1/2  0.0   1/2 

A   =  0.0 0.0   1/2 

Figure 8.4: Real and reciprocal supercell for theoretical calculations of graphene
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Figure 8.5: Band structure of four graphitic systems. Fermi energy is marked by a red line at EF = 0 eV.

smaller interlayer distance (3.335 instead of 3.64 Å) which has minor effects on the band
structure. And in fact the same features are recognised. Valence bands disperse along the
K − H and A − Γ directions, demonstrating that the carbon layers are not isolated from
their replicas. It is also remarkable that the greatest differences are located closer to the
Fermi energy, in particular along the K −H line, repeating the same crossing highlighted in
Fig. 7.7c Note finally that in the limit of d→∞, the Γ−A, M −L and K−H lines collapse
to a point. These effects in particular are responsible of the formation of the famous “Dirac
cone” in graphene [143].

Conduction bands

Passing to the analysis of conduction states, the most evident effect of the increase in cell
height is the close-packing of the conduction bands. This is due to the fact that the smaller
the Brillouin zone (|b3| = 2π/Lz) is, the denser the folding of the plane wave-like states be-
come. In the limit Lz →∞, all discretized conduction bands would give rise to a continuum
of states, in agreement with an ideal confinement in two dimensions. As expected, also the
conduction states have a reduced dispersion in the vertical directions K −H and A−Γ, but
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still, some dispersing bands can be found in all systems. This peculiar aspect will turn out
to be important in determining the BZ sampling when computing EEL spectra.

8.2 Electron energy loss spectra

As seen in the introduction (equation (2.20)), the electron energy loss spectroscopy gives
access to the diagonal elements ε−1

GG(q, ω) of the inverse dielectric matrix which enters in the
screened Coulomb interaction W = ε−1v. Hence the investigation of EEL spectra can give
insight into the dynamical screening. I will examine EEL spectra of the four chosen systems
1d0, 2d0, 4d0 and 6d0.

Computational details : The polarizability χ of the four systems has been computed in
the Random Phase Approximation using the software DP [127]. Kohn-Sham eigenval-
ues and eigenfunctions have been computed with ABINIT [124]. Spectra have been
computed up to 40 eV, sampling the BZ with 34 × 34 ×Mz k-point grids centred in
Γ. The converged values of Mz depend on the system and on the direction of the
exchanged momentum q: see Tab. 8.2.

In the same way, the number of bands nbands included in the sum over states (4.10), the
dimension of the χKSGG′(ω,q) matrix [npwmat×npwmat] and the number of plane waves
npwwfn needed to expand the KS states, all depend on the geometry of the system.
The parameters used in the calculations are reported in Tab. 8.2. I have checked that
they give converged spectra.

Table 8.2: Converged parameters for EELS

system nband npwwfn npwmat45 Mz (q‖) Mz (q⊥)

1d0 40 350 50 4 8
2d0 60 450 70 1 6
4d0 80 850 90 1 2
6d0 80 1300 160 1 2

Since χKS is inversely proportional to the cell volume, what is compared in all figures
is d

d0
S(q + G, ω) where S is the spectrum, i.e. −=[ε−1

GG(q, ω)] in the case of EELS and

=[1/ε−1
00 (q, ω)] with q→ 0 in the case of absorption.

Due to the strong anisotropy of the systems, I will divide the results into in-plane mo-
mentum and perpendicular momentum, as done in the previous chapter.

8.2.1 Parallel momentum transfer

In Fig. 8.6, I report the EEL spectra for in-plane momentum transfer of amplitude q‖ ≈ 0.003
Å−1 (8.6a), q‖ ≈ 0.17 Å−1 (8.7) and q‖ ≈ 2 Å−1 (8.6b). In all figures the EEL spectrum is
reported in red for the 1d0 system, in green for the 2d0, in blue for the 4d0 and in black for

45In these anisotropic systems the npwmat parameter is difficult to converge. It has indeed a step-wise
influence on the spectra due to the specific implementation which groups plane waves in spheres of discrete
radius. Minimal changes can still be seen in increasing the npwmat parameter. So the converged values
reported here are a good compromise between speed and accuracy.
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the 6d0. For isolated systems, the absorption spectrum and the EELS coincide, as expressed
in (4.30), hence I also report the =[1/ε−1(ω)] for the 2d0 (cyan line) and for the 6d0 systems
(violet crosses or line).

(a) q‖ ≈ 0
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Figure 8.6: In-plane momentum transfer spectra. − d
d0
=[1/εM ] (EELS) is reported for the 1d0 (red), 2d0

(green), 4d0 (blue) and 6d0 (black) systems; dd0=[εM ] is reported for the 2d0 (cyan) and 6d0 (violet). For an
isolated system −=[ε−1

GG(q)] = =[1/ε−1
GG(q)] according to equation (4.30). At small q‖ (8.6a), the absorption

spectrum converges rapidly with respect to the interlayer distance, while the EEL spectrum is much slower.
At large momentum (8.6b), the scenario is opposite, displaying a fast convergence for EELS and a slow one
for absorption spectra.

The convergence to the isolated spectrum can be discussed on the basis of two different
properties: EELS and absorption. A first observation can be done on EEL spectra only: when
the EEL spectrum does not change by increasing d, convergence to the isolated graphen
is attained, and similarly can be said for the absorption spectrum. However, when EEL
and absorption spectra coincide in force of expression (4.30), i.e. when −=[ε−1

GG′(q)] =
=[1/ε−1

GG′(q)], then the system itself, and not only one specific spectral property, is considered
isolated.

For vanishing (Fig. 8.6a) and long momentum transfer (Fig. 8.6b) two opposite conver-
gence trends are observed. In the first case absorption spectra converge immediately (cyan
line and violet dots are on top of each other) while EEL spectra are still evolving. Ac-
cordingly the system is not isolated: only the optical absorption reached convergence to the
isolated spectrum.

Opposite is the scenario when large momentum is exchanged. In this case the EEL spec-
tra are superimposed starting from a double interlayer separation, whereas the absorption
spectrum is still not at convergence, although evolving in the right direction.

An intermediate case is shown in Fig. 8.7 for q‖ ≈ 0.17Å−1. It can be seen that neither
absorption nor EEL spectra are converged to the isolated spectrum that should be found
somewhere between the black (EELS 6d0) and the violet line (absorption 6d0). These con-
vergence aspects have been extensively discussed in the in-plane case by R. Hambach [19] in
his Ph.D. thesis on spatially-resolved EELS.

I note finally that in the bulk material (red line) interactions between planes are stronger.
Its eigenfunctions and density are significantly different from those of the isolated system so
it is not surprising that its spectrum differs from the others in all regimes. Nevertheless at
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Figure 8.7: q‖ ≈ 0.17 Å−1. At an intermediate momentum transfer, none of absorption spectra or EELS
are at convergence, indicating that Lz must be increased beyond 6d0 to get converged spectra. Note the
different energy scale of this plot with respect to the previous two.

large momenta (small wavelengths) the differences are small, which is compatible with the
physical intuition that locally, in the plane, isolated and the bulk systems are similar.

8.2.2 Perpendicular momentum transfer

In Fig. 8.8, I report the computed spectra for perpendicular momentum transfer in two
different regimes: small momentum (Fig. 8.8a, qz ≈ 0) and large momentum46 (Fig. 8.8b,
qz ≈ 1.41 Å−1).
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(b) q⊥ ≈ 1.4 Å−1
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Figure 8.8: Perpendicular momentum transfer spectra. − d
d0
=[1/εM ] (EELS) is reported for the 1d0 (red),

2d0 (green), 4d0 (blue) and 6d0 (black) systems. d
d0
=[εM ] is reported for the 2d0 (cyan, only in Fig. 8.8a)

and 6d0 (violet). For an isolated system =[εM ] = =[1/εM ] according to equation (4.30). Convergence to the
isolated EEL spectrum is attained at the level of 4d0 in both small and large momentum regimes.

The convergence to the isolated system has a different trend than in the in-plane case.
Comparing Figs. 8.8a and 8.8b, one can verify that there is no particular difference in the

46The exchanged momentum is “large” with respect to the reciprocal lattice vector off-plane of the 1d0

system: 2π/d0 ≈ 1.88Å−1.
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convergence behaviour between the small and the large momentum regimes, contrary to
what observed in the in-plane case. In the small momentum case (Fig. 8.8a) the 6d0 EEL
spectrum and the 4d0 spectrum are almost coincident, while minor differences can be found
at larger momentum (Fig. 8.8b). Anyway differences are small enough to be considered at
convergence even in the large momentum regime. Moreover principal features are already
caught with a separation of 2d0.

Absorption spectra are slower to converge, especially at small momentum, displaying an
opposite trend with respect to the in-plane case.

In both cases (q⊥ ≈ 0 and q⊥ ≈ 1.4) the differences between absorption and EEL spectra
at 6d0 interlayer distance are small. One can consider that a distance d = 6d0 is a good
approximation of an isolated system (spectra do not coincide, but they are very similar).

In any case, the interlayer separation d determines the convergence also in another way:
in fact the number of k-point sampling the kz axis converges much more slowly than for
in-plane momentum, as reported in Tab. 8.2. This is due to the dispersing conduction states
found in all systems. For in-plane transitions, the correct description of these bands was not
crucial so a smaller number of k-points was enough to converge the spectra (4 points in the
1d0, 1 point in the other systems), but when perpendicular momenta are considered, a finer
description of the dispersion along z is necessary even at 6d0 of interlayer distance.

The interaction between the layers in the 1d0 geometry is such that the bulk spectrum
differs significantly from that of the isolated sheet also at large momentum, even though
differences are smaller than in the q⊥ ≈ 0 case. Interesting is the low energy peak around
1 eV, found also in the previous chapter and highlighted by letter (g) in Fig. 7.9b. As
explained in that context, this structure comes from transitions near the semi-metallic band
in the K −H line and it is strongly dependent on the k-point sampling.

8.2.3 Conclusions on the EEL spectra

For in-plane momentum transfer a clear dependence of the convergence on the amplitude
of the momentum is observed for both EELS and absorption. At higher momentum
q‖, smaller lengths are probed and consequently the EEL spectrum is not so sensitive
to the presence of other layers. The convergence is therefore faster. Instead when
small momentum is exchanged, macroscopic differences in the electronic density are
probed and one has to go way beyond d = 6d0 to get a converged EEL spectrum.
On the contrary absorption spectrum displays an inverse behaviour, converging faster
for smaller momenta. The result is that the spectral properties of the system can be
considered at convergence for 6d0 only at large momenta when in-plane components
are considered.

If one is interested only in one spectrum (EELS or absorption) one can decide to
converge either of the two depending on the regime of interest, as pointed out by
Hambach [19]. The reason of this behaviour must be searched in the very difference
between EELS and absorption, that is in the macroscopic Coulomb component v0. The
macroscopic divergent component v0, which is absent in absorption spectra, spoils the
convergence of EELS when small momentum is measured, whereas it has a reduced
weight at large momentum. This observation is general, so a similar trend is expected
in other simulations of isolated systems.

Although useful, this fact will be not exploited in the following of this thesis. Iso-
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lated spectra will be obtained in next chapter using a different technique involving the
modification of the very interaction between layers.

For perpendicular components the scenario is simpler. A small dependence on the mod-
ulus of the exchanged momentum is observed. Anyway in both small and large mo-
mentum transfer the convergence to the isolated system seems to be reached with an
interlayer separation of 6d0. In this regime, particular attention must be paid to the
k-point sampling along kz which has to be much denser than in the in-plane case.

8.3 Spectral functions

In this section, I will make use of formula (7.2) to compute the spectral function Ai(ω)
for the state i=bottom valence and top conduction in the 1d0, 2d0, 4d0 and 6d0 systems.
The functions Ii(ω) = =[Σi(ω)] and Ri(ω) = ω − EH

i − <[Σi(ω)] are the imaginary part
of the self-energy and its shifted real part respectively. Since A is expressed in terms of
the self-energy (7.1), it involves an integral of the dynamical screened Coulomb potential
WGG′(q, ω) = ε−1

GG′(q, ω)vG′(q) and can therefore be related to the EEL spectra reported
above. In the previous section, devoted to EEL spectra, it has been possible to observe
different trends in the transition graphite-graphene; the question I want to address now is
“How does the spectral function converge to the isolated system?”

First I will discuss G0W0 results, then I will analyse the effect of energy-only self-
consistent GWtext0, and finally I will present results obtained with Hedin’s approximation
to self-consistency (cfr. Chapter 5.1.4).

Computational Details: The k-point grid used is 10× 10× 2 for the 1d0 and 2d0 systems
and a 10× 10× 1 for the 4d0 and the 6d0 system.

The self-energy has been computed with the contour deformation method. The real
axis has been sampled using 270 energies up to 54 eV and imaginary axis with 5
energies. In computing the self-energy, KS states have been included up to 200 bands
and represented on a basis of 715 plane waves. The number of G vectors included in
the exchange part is 715, while the correlation part needs only 169 G vectors. The
screening matrix has been computed in RPA including 150 bands in the sum over states
of χKSGG′ . The polarizability matrix is dimensioned as ΣC .

Spectral functions are computed at the Γ point for the bottom valence and the top
valence. Note that the K point of the BZ is not sampled in the k-point grid used
here. In real graphene, the Fermi surface consists in the six K points, where the
peculiar “Dirac cone” is formed by the shrinking of the vertical length of the BZ
and the corresponding coincidence of the K and H points. With the Brillouin zone
sampling employed in this work, the K point is not included, so the material results a
semiconductor with top valence state at the point P=0.3 , 0.3 , 0.0. I will refer to this
point when speaking of Fermi level or top valence. This peculiar sampling is justified
because I am interested in higher energy features and not in the Dirac cone.

All calculations have been performed using the ABINIT [124] simulation code.
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G0W0 spectra

I first analyse the π + σ plasmon in I(ω) (Fig. 8.9b). The 1d0 has a more intense peak at a
binding energy, higher by ∼ 5 eV with respect to the other systems. The 2d0, 4d0 and the
6d0 systems display the structure at the same intensity and position. In the same manner,
the π plasmon appears red-shifted to larger binding energies, but its intensity in the 1d0

is comparable to that in the other systems. The shifted real part R(ω) reflects the same
structures of I because of the Kramers-Kronig relations. Note the plasmaron predicted for
all geometries in correspondence with the π plasmon.

In the spectral function A(ω) reported in Fig. 8.9a, these features constitute small differ-
ences between the 1d0 and the other systems. The QP peak in the 1d0 system is at slightly
larger binding energy because of the different energy where R(ω) crosses the zero line. This
red-shift of the peak is of the order of 1 eV, comparable to the red-shift of the plasmaron
peak. At much larger binding energy the π+σ plasmon satellite is found as a much broader
and weaker structure centred at around 50 eV. The 1d0 spectral functions displays major
differences in correspondence with this satellite, in agreement with the related structure in
I. The π+σ satellite is peaked at -55 eV, at an energy almost 5 eV larger than in the other
three systems and it has also a higher intensity.

At the top valence, the matrix elements of Σ (Figs. 8.9d) differ more than in the previous
case. Namely the I of the the 1d0 is clearly not converged to the isolated (black) curve, and
similarly the 2d0 system presents structures not found in the isolated spectrum. Convergence
of the matrix elements of Σ is reached at d = 4d0.

In spite of these important differences in I and R, the structures are hardly visible in
the spectral function because of their exceedingly low intensity. Indeed, at the top valence,
the spectral function is essentially a featureless delta-function.

Self-consistent calculations

G0W0 spectral functions are intrinsically inconsistent because the self-energy is computed
on a LDA energy scale (with an LDA Fermi energy), while the Green’s function has poles
on the quasiparticle energy scale (with a G0W0 Fermi energy). This problem can affect the
position and shape of the spectral function and, moreover, it can compromise the description
of satellites. In fact these may be located in a wrong position, typically too close to the QP
peak, which may give rise to too strong plasmarons (cfr. section 7.4).

A converged self-consistent calculation is unaffected by this problem, even though one
should pay attention to other aspects, as discussed in Chapter 5.1.4. In this section I will
present results obtained in the self-consistent scheme of S. V. Faleev, M. van Schilfgaarde
and T. Kotani [70] performed in the energy-only GW0 scheme.

Results for bottom valence and Fermi level are reported in Figs. 8.10. In Fig. 8.11 I report
the comparison between self-consistent and G0W0 calculations at bottom valence for the 1d0

and the 6d0 systems.

From the comparison of the self-consistent results with the G0W0 spectra, it is clear that
the bottom valence is indeed modified by the self-consistent cycle.

In the graphene sheet (Fig. 8.11b) the effect of self-consistency is essentially described by
a shift to larger binding energies of both the QP and the plasmaron peak. The shift depends
on the energy, and it amounts to ∼ 0.5 eV for the QP, and to almost 1 eV for the plasmaron,
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(a) G0W0: A(ω) at bottom valence
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(b) G0W0: I(ω) and R(ω) at bottom valence
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(c) G0W0: A(ω) at Fermi level
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(d) G0W0: I(ω) and R(ω) at Fermi level
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Figure 8.9: Spectral function A(ω), imaginary part of Sigma I(ω) and shifted real part R(ω) = ω−EH −
<[Σ(ω)] computed at the bottom valence and at the Fermi level in the G0W0 scheme. In the insets, close-up
of the π + σ plasmon satellite are reported.

occurring together with a damping of the intensity in the latter case. The π + σ plasmon
satellite is too broad to appreciate modifications due to self-consistency.

Of bigger entity are the effects on the bulk material (Fig. 8.11a). The QP peak is moved
by almost 1 eV to larger binding energies, and gains one fourth in intensity becoming much
sharper. As expected, both satellites are moved accordingly: in the case of the -25 eV
satellite, the effect is well visible (it is pushed 2 eV farther), while the π+ σ structure is too
weak to quantify correctly the entity of the shift. The effect on the first satellite is of major
interest: the π structure of I(ω) is moved farther from the QP peak. This effect is strong
enough to prevent the shifted real part R(ω) to cross the zero before the QP peak, as a result
the plasmaron is considerably weakened. The loss of spectral weight of the plasmaron is a
consequence of the enhancement of the QP intensity. Within GW, in order to a have better
quality description of satellites, it is preferable to employ a partially self-consistent scheme.

Similar behaviour is found at the Fermi level, but, alike the G0W0 case, the satellites are
so weak that modifications of the spectral function are not sizable.
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(a) GW0: A(ω) at bottom valence
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(b) GW0: I(ω) and R(ω) at bottom valence
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(c) GW0: A(ω) at Fermi level
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(d) GW0: I(ω) and R(ω) at Fermi level
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Figure 8.10: Spectral function A(ω), imaginary part of Sigma I(ω) and shifted real R(ω) = ω − EH −
<[Σ(ω)] at bottom valence and Fermi levelcomputed in the energy-only GW0 scheme within the QPscGW
framework [70].
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(b) 6d0
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Figure 8.11: Comparison between the QPscGW and the G0W0 spectra in bulk AA graphite (8.11a) and
isolated graphene (8.11b).
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Hedin’s approximation to self-consistency

Obviously self-consistent calculations are much more time consuming than G0W0 ones. They
are also computationally more demanding because every self-consistent step has to be com-
puted for all k-points of the mesh, even when spectral function in only one point are needed,
as it is the case in this work. For all these reasons, one would like to resort to other meth-
ods, which are good compromises between computational time, memory and quantitative
precision.

Hedin’s approximation to self-consistency presented in 5.1.4 perfectly fits these require-
ments consisting in a simple post-processing to be applied on top of a G0W0 calculation. In
Figure 8.12 I report the spectral function of the 1d0 and the 2d0 system for both bottom
valence and Fermi level.

In the 1d0 system (Fig. 8.12a), Hedin’s method improves over the G0W0 spectrum. In
the bottom valence spectrum the plasmaron is moved in the good direction and the weight is
reduced, in agreement with the self-consistent calculation. In the same way, the quasiparticle
peak is moved to higher binding energy, and the intensity is increased. On the other hand, in
the 2d0 system (Fig. 8.12c), Hedin’s trick has no effect on the spectral function which almost
coincides with the G0W0 calculation.

The reason for this is clear when comparing the Fermi level of the self-consistent spectra
with G0W0 ones. In Hedin’s approximation, one fixes the shift ∆ according to (5.38) in
order to assure self-consistency at Fermi. In the 1d0 case (Fig. 8.12b), the self-consistent
and the G0W0 calculations are sizably different at Fermi, so Hedin’s ∆ has a non-negligible
value (namely ∆1d0 = −0.861 eV ). Consequently modifications of the spectral function of
all states are significant. Instead, in the 2d0 system (Fig. 8.12d), the G0W0 Fermi level is
already so close to the self-consistent level that ∆2d0 = 0.102. This small is such that the
spectral function is not affected by Hedin’s shift method.

This approximate method is a useful tool since it is fast to implement and it recovers
almost half of the self-consistent correction. However, if the Fermi level is too close to the
self-consistent result, its effect on the spectral function of all states will be of minor entity.

8.3.1 Comparison with EEL spectra

Both electron energy loss spectra and =[Σ] stem from to the dynamical screening. In the
case of EELS, what is measured (or calculated) is indeed the matrix element ε−1

GG(q, ω).
When looking at =[Σ], what is observed is more cumbersome since it involves a sum over
all elements of WGG′(q, ω) as reported in equation (7.1). So the link between the spectral
function and ε−1

GG(q, ω) is more involved.

In section 8.2 devoted to EEL spectra, I concluded that the convergence to the isolated
graphene sheet merits to be discussed in two distinct cases, for in-plane momentum transfer
k = k‖ and for off-plane momentum k = kz. In the former case, convergence of the spectrum
is much faster for large momenta than for small ones. In the latter case, almost no dependence
on the modulus of the momentum is observed and the spectrum converges reasonably fast
(interlayer distance 6d0) in both large- and short-momentum regimes, but one has to consider
the much higher number of k-points needed to sample the kz axis.

As the self-energy involves an integral over all momenta q and a sum over all G and G′,
the trend towards the graphene signal is driven by a sort of average tendency of the whole
matrix ε−1

GG′(q). The result is that the convergence towards the isolated system of A and of
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(c) 2d0 bottom valence
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Figure 8.12: Spectral functions computed using Hedin’s approximation to self-consistency compared with
G0W0, and with self-consistent calculations.

the matrix elements of Σ is not dominated by small momentum contributions. This is proven
by the fact that the self-energy is pretty close to that of graphene even for small interlayer
distances (d=2d0).

This study demonstrates that it is important to pay attention when discussing features
of the spectral function only on the basis of EELS at q→ 0, and/or when designing approx-
imations.

8.3.2 Conclusions on the spectral functions

The comparative study of convergence of EELS and spectral functions show that matrix
elements of Σ converge rapidly to the isolated graphene because of the contributions of
relatively large exchanged momentum terms of ε−1

GG′(q).
This was already suggested by the analysis of spectral functions at different stacking

which concluded the previous chapter. In fact the self-energy was not modified seriously by
the stacking, indicating a dominance of short-range contributions.

For what concerns self-consistency, I found that updating of the poles of G(ω) actually
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moves to higher binding energies quasi-particle peaks and satellites. The shift grows with
the energy, so satellite structures are shifted more than QP peaks. I also noticed that this
effect is sizable only for deep QP peaks, where the redistribution of spectral weight enhances
satellite structures. Moreover this effect is stronger for smaller interlayer distances. All
these elements suggest that whenever interested in satellites, self-consistency is preferable,
in particular for bulk materials. Instead no important modification is expected in the case
of graphene.

If it were possible, of course one would prefer to save time using approximations instead
of doing self-consistent calculations. In the case of the bulk material (d = 1d0), Hedin’s
method (cfr. Chapter 5.1.4) retrieves almost half of the peak shift and part of the weight
redistribution yielded by self-consistency. In the other cases the effect of self-consistency is
not so big, especially at Fermi, as a consequence Hedin’s method does not affect the spectra.
Therefore, whenever the effects of self-consistency are sizable, Hedin’s shift method is a useful
and fast tool to recover part of the self-consitent corrections.
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Developments
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Chapter 9

Isolated 2D-systems: Coulomb cutoff

In this chapter I will answer once again to the question “At what distance the graphene
sheet can be considered as isolated?” but using a different way to isolate replicas. Instead of
augmenting the interlayer distance to prevent the interaction between graphene layers, the
Coulomb potential itself has been modified. This allows for a much more efficient calculation
of isolated spectra even at relatively small interlayer distances.

The Coulomb cutoff method consists in setting the Coulomb potential to 0 beyond a dis-
tance z0 from the sheet. I have implemented the resulting formulae of the cutoff-interaction
in the code DP [127] which has been also modified to compute the full matrix ε−1

GG′(q, ω) and
to record it in an output file. The compatibility with ABINIT [124] has also been ensured, so
that I could compute spectral functions of graphene obtained with the Coulomb-cutoff.

Here I present the theory of this method, together with some solutions to its analytical
and numerical complexities. Results for the EEL spectra and spectral functions for the 1d0,
2d0, 4d0 and 6d0 geometries are presented and discussed.

9.1 Modifying the interaction

In the previous chapter, I discussed the transition from graphene to graphite through an
analysis of EEL spectra and spectral functions. I started the previous chapter looking for
the minimum distance d for the graphene sheet to be considered isolated from its replicas.
Although an answer has been found concerning spectral functions, an isolated system has
not been found in the case of EELS, especially when in-plane momentum components are
considered. Moreover, also in the case of A(ω) one wishes to keep the supercell as small as
possible. Of course, a possible strategy would be that of a further increase of the interlayer
distance, but simulations would become more and more demanding and eventually infeasible.
In fact, because of the compaction of the Gz space, the dimension of both the plane wave basis
and the the χGG′ matrix increase with the dimension of the supercell. Moreover the close-
packing of conduction states appreciable in Fig. 8.5 causes an increase also in the number of
bands. This dependence on the dimension of the cell is evident in Tab. 8.2.

Another way to prevent the interaction between replicas is to artificially impose a cutoff to
the long-range Coulomb interaction. The Coulomb-cutoff (CC) method consists in working
with a modified Coulomb interaction v̌(r) = v(r)fC(r; {r0}) where the cutoff function fC is
specified by means of parameters {r0} which are defined in order to respect the geometry of
the system.
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In plane wave codes, the use of periodic boundary conditions can not be avoided, though
the simulation of isolated objects requires the Coulomb to vanish between two replicas. The
cutoff function fC has the task to mimic this behaviour.

The advantage of such a procedure is that the simulation cell can be kept at reasonably
low volume so that calculations of isolated systems are computationally affordable. This
idea has been applied already in the 1997 to molecules and clusters by M. R. Jarvis and
coworkers [169].

Point-wise geometry: To study molecules or isolated clusters, one can enclose the system
inside a sphere of radius r0.The cutoff function in real space and the Fourier components
of the CC interaction read respectively

fC(r; r0) = θ(r0 − |r|) and v̌(k) =
4π

k2
[1− cos(kr0)]

where k = |k|.

Linear geometry: Unidimensional chains [170, 171], nanotubes or polymers can be iso-
lated from their replicas by enclosing their axis with a cylinder of radius R and infinite
height, and by requiring v̌(r) = 0 outside this region. Aligning the z to the axis of the
material, the cutoff function and the CC interaction read respectively

fC(r‖;R) = θ(R− r‖) and

v̌(k) =
4π

k2

[
1 + k‖RJ1(k‖R)K0(|kz|R)− |kz|RJ0(k‖R)K1(|kz|R)

]
,

with J and K ordinary and modified cylindrical Bessel functions, r‖ =
√
r2
x + r2

y and
similar definition for k‖.

Planar geometry: To study 2D systems as graphene sheets, the Coulomb interaction has
to vanish beyond a distance z0 from the layer, assumed to lay on the xy plane [170, 171].
The cutoff function fC(rz; z0) and the Fourier components of the CC interaction read

fC(rz; z0) = θ(z0 − |rz|) and (9.1)

v̌(k) =
4π

k2

[
1 + e−k‖z0

(
kz
k‖

sin(kzz0)− cos(kzz0)

)]
, (9.2)

with k = |k| = (k2
x + k2

y + k2
z)

1/2 = (k2
‖ + k2

z)
1/2. Since the planar geometry is the topic

of this chapter, it is worthwhile to analyse in closer detail the CC interaction in 2D.

9.1.1 The cutoff Coulomb interaction in 2D

What is an isolated 2D system?
For our purpose, an isolated 2D system is defined as a bidimensional crystal enclosed in a
supercell of height Lz. The resulting 3D system is periodic in the xy plane with the same
periodicity as the 2D crystal, and has period Lz along z. Inside the 3D cell, the Coulomb
interaction has the shape of equation (9.2).

In the limit of Lz →∞, the system is isolated from the replicas above and below and the
z-periodicity is lost. Correspondingly, the height of the BZ collapses to 0. As the vertical
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distance between two consecutive reciprocal lattice vectors b3 = 2πL−1
z → 0, they form a

continuous along kz. Hence, the vertical components Gz of the reciprocal lattice vectors vary
continuously.

Moreover, as Lz goes to infinity, also the cutoff distance z0 have to taken at infinite
distance from the xy plane. It is immediately verified that in this limit, the expression (9.2)
reduces to the untruncated Coulomb potential 4π/k2.

I stress here that taking Lz → ∞ and z0 → ∞ are two different operations. The first
changes the dimensions of the direct and the reciprocal cells, but what is the effect of the
second?

Domain of definition, limits and divergences

To answer to the question “what is the effect of taking z0 →∞?”, the CC interaction v̌ must
be studied with care. I start analysing the domain of definition of the function, then I will
focus on some notable limits. The non analytic behaviour of the cutoff function will finally
be discussed.

The k-Fourier component of the CC interaction in the planar geometry is reported in
expression (9.2). The function v̌(k) is well defined almost everywhere in the reciprocal space.
Actually it is not defined in the entire k‖ = 0 space, that is along kz, except for all those

points k̃nz satisfying sin(k̃nz z0) = 0.
Thus the domain of definition of the CC interaction is the whole space k‖ 6= 0, where it

has the shape of equation (9.2), plus a family of discrete k̃nz = nπz−1
0 points laying on kz.

As a consequence, when taking limits or performing integrations involving points on the kz
axis, careful attention must be paid for the CC interaction may be not defined.

Two limits are of interest: the limit for kz → 0, and the limit for k‖ → 0. They correspond
to the off-plane and in-plane long range contributions of the CC interaction.

One can freely take kz = 0 in equation (9.2) . The in-plane components of CC read

v̌(k = k‖ + 0) =
4π

k2
‖

[
1− e−k‖z0

]
. (9.3)

There is no difference in taking kz strictly equal to 0 or in evaluating the limit of (9.2) for
vanishing kz. That is, the limit kz = 0 is well defined as long as k‖ 6= 0.

What does it happen if we take the limit k‖ = 0? Let’s consider three cases: for kz = 0,

for a generic kz and for kz = k̃nz .

In-plane: We first evaluate the long range components for in-plane momentum by expand-
ing the exponential of (9.3) up to the second order in k‖:

v̌(k = k‖ + 0)
∣∣
k‖→0+ ∼

4πz0

k‖
− 2πz2

0 (9.4)

Two contributions can be identified, a first term ∼ k−1
‖ which is integrable in two

dimensions, and a second contribution which does not depend on k‖ and is finite.

Generic point: The second case is the in-plane long range limit for finite kz. I now expand
the exponential of the general expression (9.2) up to the first order in k‖, getting

v̌(k = k‖ + kz)
∣∣
k‖→0

∼ 4π

kzk‖
sin(kzz0) +

4π

k2
z

[1− cos(kzz0)− kzz0 sin(kzz0)] . (9.5)
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Two contributions are obtained also in this case. The first contribution diverges as
k‖ → 0 in the same way as the in-plane case, although it does not diverge for vanishing
kz. The second contribution depends only on kz and it is still finite for kz → 0.

The expression above has been obtained for k‖ small, that is for points k close to, but
not laying on, the kz axis. Since we are not strictly on the kz axis, we can take the
limit for kz → 0, obtaining

lim
kz→0

[
v̌(k = k‖ + kz)

∣∣
k‖→0+

]
∼ 4πz0

k‖
− 2πz2

0 (9.6)

which reproduces the in-plane limit (9.4). That shows that the order of the limits can
be interchanged:

lim
kz→0

[
v̌(k = k‖ + kz)

∣∣
k‖→0+

]
= lim

k‖→0
v̌(k = k‖ + 0) .

Special points k̃nz = nπz−1
0 : If the point k = k‖ + k̃nz with n 6= 047, then, by taking the

limit of vanishing k‖, one reaches one of the discrete points along kz where the CC is
defined.

For n 6= 0 the CC interaction reads

v̌(k = k‖ + k̃nz ) =
4π

k2
‖ + (k̃nz )2

[
1 + (−1)n+1e−k‖z0

]

which is indeed finite for k‖ → 0

lim
k‖→0+

v̌(k = k‖ + k̃nz ) =
4π

(k̃nz )2
[1− (−1)n] =

{
0 for n = even and n 6= 0

8z20
n2π

for n = odd
(9.7)

It is remarkable to notice that for n even, the cutoff function vanishes exactly and so
does the CC interaction.

In a 2D isolated system, we expect the macroscopic component of the CC interaction
not to diverge along the kz axis because the cutoff function sets the interaction to 0 at long
distance. This is indeed the case, as shown by expression (9.3).

On the contrary, the infinite periodicity along the xy plane makes the CC interaction
diverge for k‖ = 0 in the whole kz axis, with the exception of the special points k̃nz = nπz−1

0

with n ∈ Z r {0}, where the CC is finite. In these points the limit for k‖ → 0 is given by
expression (9.7), while in all other points of the kz axis the CC interaction is composed by
two terms (cfr. expressions (9.4) and (9.6)). One term is regular and does not depend on k‖
and a second term diverges as k−1

‖ .

This peculiar structure of the domain of fC implies some difficulty in practical calcu-
lations where the k-point space is necessarily discretized. One would like to use a k-point
mesh including as few divergence points as possible. Moreover, as already anticipated, in
performing limits or integrals the presence of divergent points must be treated with care.
Both problems will be addressed in the next section.

47The case n = 0 corresponds in taking the origin, that is on the plane, so its limit is accounted by (9.4).
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9.1.2 Practical implementation and approximations

In the path from χKS to W , the Coulomb interaction v enters in three steps48:
(a) in the (RPA)-Dyson equation χ = χKS + χKSvχ,
(b) in the (test-particle) expression ε−1 = 1 + vχ and finally
(c) in the definition of W = ε−1v.
It is not trivial to understand whether the CC has to be used in all steps at the place of the
untruncated Coulomb interaction. This subject is addressed in the first part of this section,
devoted to the treatment of the external perturbation correction (EPC).

Because of the non analyticity of the CC, it is not trivial to implement the cutoff method
in simulation codes. In the second part of this section, I will address some problems found
in this context, and in particular I will discuss the choice of the cutoff distance z0 and the
evaluation of matrix elements of WGG′(q, ω) around divergences.

The external perturbation correction

In an isolated system, Gz form a continuum and correspondingly the BZ has vanishing
extension along kz. As stated, this is compatible with sticking on a 3D crystal picture if one
assumes infinite periodicity in the z direction (Lz →∞) and a vanishing v between replicas
(imposed by means of the cutoff).

Continuous

G vectors

Discretized

G describing 

continuum

Discretized

G vectors

Periodic IsolatedCutoff

Figure 9.1: Illustration of the effect of
the cutoff function in the Gz space.

When using the CC, the cutoff function fC takes into
account the close packing of the Gz space in an implicit
way. Let Gz be the discrete variable of the periodic
framework and let X =

∑
Gz
XGz be the quantity to com-

pute in the periodic framework. In the isolated system
the same quantity would read X̌ =

∫
X(gz)dgz where

gz is a continuous variable.The cutoff function fC allows
us to compute the isolated X̌ by working in the discrete
framework, according to a scheme schematically repre-
sented by

∑

Gz

∫

Gz

X(gz)dgz = X̌ =
∑

Gz

X̌Gz =
∑

Gz

XGzfC(Gz)

and depicted in Fig. 9.1.
This argument suggests that whenever integrals over

k (i.e. sums over G) are performed, or whenever matrix
multiplications are involved, one has to rely on fC in
order to take into account correctly the compaction of the G space. One first conclusion is
that the CC will substitute the standard v in the Dyson equation (a).where the interaction
is integrated.

More delicate is the (b) case, that is equation ε−1 = 1+vχ. The inverse dielectric function
is used to compute electron energy loss spectra and to compute W (e.g., in the correlation
self-energy). In the first case the matrix describes the response of the system to an external
classical field modelled with a plane wave of momentum q + G. In the second case ε−1 is

48Formulas are schematically reported. They refer to the expressions (4.12), (4.16) and to the definition
WGG′(q, ω) = ε−1

GG′(q, ω)vG′(q).
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the response to a perturbing field caused by some electrons of the system itself. Their wave
functions contains all momentum components, that are therefore integrated over.

In EEL spectroscopy one measures the response to only one specific transferred momen-
tum q + G (plane wave-like perturbation), so no integration over q or sum over G
is done. Because of this reason, the Coulomb interaction appearing in (c) has to be
computed according to

ε̌−1
GG′(q) = δGG′ + vG(q)χ̌GG′(q) (9.8)

where v is the Coulomb interaction without the cutoff, whereas the polarizability χ̌
comes from the CC-Dyson equation in force of the arguments above and is the polar-
izability of the isolated system. In this expression and in the following frequency will
be neglected if not necessary.

The expression (9.8) is the external-perturbation corrected (EPC) screening because
it takes into account the fact that the perturbing field is a plane wave external to the
system and hence it must not be screened. The practical implementation of the EPC
formula in RPA is actually different from this expression. In fact in RPA calculations,
the polarizability is never computed, so one does not have access to χ̌. What is usually
done, is to compute the dielectric matrix according to formula (4.19) and to invert the
result. This actually leads to a full-cutoff (FC) screening

ˇ̌ε−1
GG′(q) = [1− v̌χKS(q)]−1

GG′ = δGG′ + v̌G(q)χ̌GG′(q) (9.9)

which gives bad results for EELS. To recover the EPC-screening expression (9.8) from
the latter, a correction is applied according to the formula [19]

ε̌−1
GG′(q) =

{
δGG′ +

(
ˇ̌ε−1
GG′(q, ω)− δGG′

)
/fC(q,G) if fG

C (q) 6= 0
δGG′ + vG(q)χKSGG′(q) if fG

C (q) = 0 .
(9.10)

where the second expression accounts for the fact that χ̌ = χKS whenever fC = 0.

In GW and BSE the matrix elements of the screened Coulomb interaction are needed.
The screened Coulomb interaction W (r, r′) in reciprocal space reads

WGG′(q) = ε−1
GG′(q)vG′(q) = δGG′vG′(q) + vG′χGG′(q)vG′(q) , (9.11)

and in particular its matrix elements 〈ij|W |mn〉 are

W ij
mn(ω) =

1

(2π)3

∑

GG′

∫

VBZ

ρ̃∗ij(q + G)ε−1
GG′(q, ω)vG′(q)ρ̃mn(q + G′)dq . (9.12)

They enter in the expressions of the correlation self-energy (7.1) and in the BSE kernel
(5.52). Following the argument explained above, because of the sum over G′, it is clear
that the Coulomb interaction vG′ has indeed to be multiplied by the cutoff function
fC(q,G′). To understand how to handle the G vectors, it is possible to rely on the
symmetry

WGG′(q, ω) = W ∗
G′G(q,−ω) , (9.13)

which is satisfied only if the cutoff is applied to vG as well. Then, the resulting screened
CC to be employed in the correlation self-energy and in the BSE kernel is

W̌GG′(q, ω) = ˇ̌ε−1
GG′(q, ω)v̌G′(q) = δGG′ v̌G′ + v̌Gχ̌GG′(q, ω)v̌G′(q) , (9.14)

where the CC interaction as well as the FC screening (9.9) are used.
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Summarising, using the CC interaction, formulae (a), (b) and (c) are modified in the
following way:

(a) χ̌GG′(q) = χKSGG′(q) + χKSGG′′(q)v̌G′′χ̌G′′G′(q) , (9.15)

(b1) ε̌−1
GG′(q) = δGG′ + vG(q)χ̌GG′(q) (9.16)

(b2) ˇ̌ε−1
GG′(q) = δGG′ + v̌G(q)χ̌GG′(q) (9.17)

(c) W̌GG′(q) = ˇ̌ε−1
GG′(q)v̌G′(q) (9.18)

where v̌G(q) = vG(q)fC(q + G), (b1) is the EPC expression of the screening and (b2) is the
FC screening.

How to fix the cutoff distance

For physical reasons, it is reasonable to set z0 = Lz/2, that means cutting the Coulomb
interaction at halfway between two graphene layers. This has the advantage that minimizes
the empty volume in the supercell. Besides this argument, another argument related to the
non-analyticity of the CC leads to the same conclusion.

We are always working in a periodic arrangement of (isolated) replicas of the simulation
cell. In this framework the kz axis is naturally split into q points which are continuous inside
the first Brillouin zone and discrete reciprocal lattice vectors G. The cutoff distance z0 can
be fixed by requiring the n-th reciprocal lattice vector 2nπ/Lz to coincide with the n-th
special point k̃nz = nπz−1

0 , by setting

nπ

z0

= n
2π

Lz
⇐⇒ z0 =

Lz
2
. (9.19)

This argument (introduced by Beigi et al. [171]) goes with the prescription of sampling the
BZ only in one plane (for example the xy plane), so that the only perpendicular component
of the exchanged momentum k− k′ + G is Gz.

If the BZ is sampled on one plane, then (k− k′ + G)⊥ = Gz

The advantage is twofold. First, the only points along kz included in the simulation grid
are special points knz where the CC does not diverge, consequently the only divergent term
of the CC interaction is in the origin. Second, the generic point of the simulation grid is of
the form k = k‖ + 2nπ/Lz so the CC interaction reads

v̌(k) =
4π

k2
‖ + (2nπ/Lz)2

[
1− ek‖Lz/2 cos(nπ)

]
. (9.20)

The prescription of working only with in-plane k-point grids, which at first sight could seem
a limitation, turns actually out to be another strong point of the CC technique, as it will be
clearer in the following.

Integration around k = 0

The matrix elements W ij
mn(ω) computed as in (9.12) are needed for the correlation self-energy

Σc and the Coulomb term of the BSE kernel. The calculation of the 2D isolated system relies
on this expression since it has been defined as a 3D system subject to the CC interaction. It
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involves an integral in the whole BZ is required, including the kz axis where the CC is not
defined. Although the set is of vanishing measure, the CC diverges in all the points of the
set, so the integral of the CC interaction should be treated with care.

In order to carefully treat the divergent terms, I put in evidence parallel and perpendicular
components of the k = q + G vectors in expression (9.12), getting

W ij
mn =

1

(2π)3

∑

G‖Gz

∑

G′‖G
′
z

∫ +π/Lz

−π/Lz
dqz

∫

ABZ

dq‖×

× ρ̃∗ij(q‖ + qz + G‖ +Gz)
4πε−1

G‖GzG′‖G
′
z
(q‖, qz)

|q‖ + qz + G′‖ +G′z|2
ρ̃mn(q‖ + qz + G′‖ +G′z) ,

where ABZ is the area of the basis of the Brilloin zone.
In order to compute the self-energy and the BSE kernel within the CC framework, the

screening and the Coulomb interaction have to be substituted by truncated quantities. The
screening (9.9) is analytic everywhere, while the CC interaction presents singularities as
explained at the beginning of the chapter. In the following I assume v = 4π/|q + G′| and
ε−1 to be substituted with v̌ and ˇ̌ε−1.

In evaluating the expression above, attention must be paid with vectors k′ such that
q‖ + G′‖ = 0. The q + G vectors instead do not pose any problem since v̌ does not depend
on them. For this reason I split the above expression into a sum over G and a sum over
G′. At the same time, I introduce a contracted notation for sake of simplicity, calling the
integrand function

yijmn(q‖, qz,G, G′‖, Gz) :=

:= ρ̃∗ij(q‖ + qz + G)ˇ̌ε−1
G‖GzG′‖G

′
z
(q‖, qz)v̌G′‖G′z(q‖ + qz)ρ̃mn(q‖ + qz + G′‖ +G′z) .

With this definition the matrix element of W reads

W ij
mn =

1

(2π)3

∑

G

Y ij
mn(G) with

Y ij
mn(G) :=

∑

G′‖G
′
z

∫ +π/Lz

−π/Lz
dqz

∫

ABZ

dq‖ y
ij
mn(q‖, qz,G, G′‖, G

′
z) .

What has been done up to now is nothing but rearranging terms. No approximation has
been assumed and I haven’t exploited the isolated system geometry. The only aspect used
from the very beginning is that the expression is written in a 3D periodic arrangement. In
other words, the expression above is still valid even if untruncated quantities (v and ε−1) are
used.

Now let us work out the elements of Y , remembering that whenever q + G has a parallel
contribution, even small, the integrand function y is well defined and smooth. I put in
evidence the G‖ = 0 component

Y ij
mn(G) =

∑

G′z

∫ +π/Lz

−π/Lz
dqz

∫

ABZ

dq‖ y
ij
mn(q‖, qz,G, 0, G′z)+ (9.21)

+
∑

G′‖ 6=0

∑

G′z

∫ +π/Lz

−π/Lz
dqz

∫

ABZ

dq‖ y
ij
mn(q‖, qz,G, G′‖, G

′
z) . (9.22)
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Since every G′‖ appearing in the second term is finite, all its elements are well defined. For

each element, the integrals in q‖ and qz can be approximated49 by appropriate averages of
the function y

∫ +π/Lz

−π/Lz
dqz

∫

ABZ

dq‖ y
ij
mn(q‖, qz,G, G′‖, G

′
z) ≈

(2π)3

V
∑

qi

yijmn(qi‖, q
i
z,GG′‖, G

′
z) (9.23)

implying a proper choice of the points qi inside the BZ. The crystal volume V = VcellNk is
the volume of a unit cell times the number of k points.

We are left wit the first term (9.21) which contains points of non-analyticity. In partic-
ular, when q‖ = 0 the integral is performed on the kz axis, where y is not defined50. The
integral

∫
ABZ

dq‖ =
∑

i

∫
Ai dq‖ can be split into smaller integrals centred on points qi‖. The

approximation used in (9.23) can now be used once again for all Ai, except for the integral∫
A0 dq‖ which encloses the origin. Therefore in the expression (9.21) one can introduce the

following approximation

∫ +π/Lz

−π/Lz
dqz

∫

ABZ

dq‖ y
ij
mn(q‖, qz,G, 0, G′z) ≈

≈
∫ +π/Lz

−π/Lz

∫

A0

yijmn(q‖, qz,G, 0, G′z)dq‖dqz +
(2π)3

V
∑

qi‖ 6=0

yijmn(qi‖, q
i
z,G, 0, G′z) . (9.24)

The last expression is summed over all G′z vectors (cfr. (9.21)). The first term of (9.24)
still have to be handled with care for it is an integral enclosing the kz axis. I remember
that the integrand function is divergent in all the kz axis except for some special point. A
possible way out is to integrate numerically all these terms [172].

But one can reason in a different way: since we are working with an isolated object,
the BZ is planar and the Gz vectors are infinitely close. Moreover if one follows Beigi’s
prescription (9.19), then Gz points happen to coincide with the special points k̃nz where the
CC is defined. Then in the limit of an isolated system the following substitution can be
justified

∑

G′z

∫ +π/Lz

−π/Lz
y(qz, G

′
z)dqz

Lz→∞−−−−−→
z0=Lz/2

∫ +∞

−∞
y(0, G′z)dG

′
z ≈

∑

G′z

2π

Lz
y(0, G′z)

which inserted into (9.24), leads to

∑

G′z

∫ +π/Lz

−π/Lz

∫

A0

yijmn(q‖, qz,G, 0, G′z)dq‖dqz ≈

≈ 2π

Lz

∫

A0

yijmn(q‖, 0,G, 0, 0)dq‖ +
(2π)3

V
∑

G′z 6=0

yijmn(0, 0,G, 0, G′z) , (9.25)

49For the generic function g(k) integrated in the volume D =
∑
iDi, with Di non-overlapping volumes,

the equality
∫
D g(k)dk =

∑
i

∫
Di g(k)dk =

∑
i g(ki)Di is exact if every ki is contained in the volume Di and

is such that g(ki) = 1
Di
∫
Di g(k)dk, i.e. g(ki) is the average value of the integral in the volume Di.

50Sampling only the xy plane, y is not defined in any point of kz axis inside the BZ.
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where the same approximation used in (9.23) and (9.24) has been made for all the integrations
around the points of analyticity. The last approximation is justified by the fact that we are
working with isolated 2D systems, which have planar BZ (q-points only in-plane).

Collecting all terms together, the final expression of the matrix element 〈ij|W̌ |mn〉 is

W̌ ij
mn =

1

V
∑

G

∑

G′‖ 6=0

∑

qi,G′z

yijmn(qi‖, q
i
z,G,G′‖, G

′
z) +

+
1

V
∑

G

∑

G′z

∑

qi‖ 6=0

yijmn(qi‖, q
i
z,G, 0, G′z) +

+
1

V
∑

G

∑

G′z 6=0

yijmn(0, 0,G, 0, G′z) +

+
1

(2π)3

∑

G

2π

Lz

∫

A0

yijmn(q‖, 0,G, 0, 0)dq‖ . (9.26)

The use of Beigi’s prescription allows one to reduce considerably the number of points
where the integral has to be treated by hand. In the end, only the case q + G = 0 needs a
special treatment, exactly as for standard calculations.

9.2 EELS of graphite and graphene using the CC

In this section I present the EELS computed for the four systems 1d0, 2d0, 4d0 and 6d0,
using the CC interaction. Since Beigi’s prescription (9.19) has been used, the q points have
null perpendicular components in all geometries. The resulting implemented expression for
the CC is

v̌G(q‖) =
4π

|q‖ + G‖|2 +G2
z

[
1− e−(q‖+G‖)z0 cos(Gz z0)

]
having fixed z0 =

Lz
2
. (9.27)

To differentiate these calculations with those of the previous chapter, the notation 1d0 +CC
(and similarly for the other systems) will be adopted.

Computational details: The EEL spectra have been computed in the RPA. The EPC has
been applied to all calculations according to formula (9.10). KS equations formulated
with using the standard Coulomb interaction have been solved using ABINIT [124] .

The CC interaction has been implemented in the form (9.27) in the simulation codes
DP [127] and EXC [86]. In all gemoetries, the KS polarizability χKS has been computed
over a grid of 34×34×1 k-points centred in Γ. The number of bands used, the number of
plane waves and the dimension of the matrix are the same as in the previous chapter51,
listed in Tab. 8.2 and here repeated for clarity.

Comparison between the systems is done by plotting scaled spectra −d/d0=[1/εM ] for
EELS and d/d0=[εM ] for absorption.

51The cutoff function θ(|z| − z0) is abruptly varying in space, so one may expect that a higher number of
plane waves is needed to converge the matrix dimension. I tested that in the systems considered here, the
same parameters of the untruncated simulations gives converged results even when employing the cutoff.
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Table 9.1: Converged parameters for EELS with the CC interaction

system nband npwwfn npwmat

1d0 + CC 40 350 50
2d0 + CC 60 450 70
4d0 + CC 80 850 90
6d0 + CC 80 1300 160

9.2.1 Parallel momentum transfer

In Fig. 9.2 the EEL spectra of the 1d0+CC, 2d0+CC and 6d0+CC calculations are reported
for vanishing in-plane momentum transfer (Fig. 9.2a) and for larger momentum (Fig. 9.2b).
For both plots, also the corresponding 6d0 calculation without cutoff has been reported as
a dotted black line in the case of EELS and as a violet line in the case of the absorption
spectrum.

(a) q‖ ≈ 0
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Figure 9.2: EEL spectra for in-plane momentum transfer. In solid red, green and black lines the 1d0 +CC,
2d0 +CC, and 6d0 +CC spectra respectively. Dotted line is the corresponding untruncated 6d0 calculation
(Fig. 8.6a). Violet crosses draw the absorption spectrum =[εM (ω)] of the 6d0 system.

The effect of the CC is striking, especially for small momenta. Already the 1d0 system, is
extremely close to the converged result despite the interaction still occurring between planes
(cfr. Fig. 8.5 ). No difference with respect to the converged result is found when the CC is
applied to the 2d0 system or for higher interlayer distances.

The use of CC has much more effect for small momenta. This can be easily understood by
looking at the CC expression (9.27): the exponential factor is such that limk→∞ fC(k) = 1,
so for high transferred momenta the untruncated- and the cutoff-Coulomb interactions tend
to coincide, as already underlined by R. Hambach [19].

Before passing to the perpendicular momentum transfer, I underline that, in force of
Beigi’s prescription, the k-point grid used has only in-plane (kz = 0) points, even for the
1d0 and 2d0 systems, contrary to what has been necessary for the untruncated Coulomb
calculations. What seemed to be a limitation of the CC method, turns out to be an advantage
since, not only convergence in the distance d is faster, but also it is reached with a coarser
k-point grid.
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The reason for this is that off-plane k-points correspond to Fourier components propagat-
ing along the kz direction, which are negligible in the isolated system [19]. In other words,
by sampling only the plane, we look at those electrons which are confined in the 2D layer.
So, from one side, the CC method allows us to include in the calculation only those electrons
that are meaningful for the description of the isolated system (Beigi’s prescription to sample
only in-plane) and, on the other side, it forces them to move as they were isolated by means
of the cutoff function.

9.2.2 Perpendicular momentum transfer

With the k-point grid used, the off-plane momentum can be only of the kind Gn
z = 2nπ/Lz

(with n 6= 0). In this case, the expression of v̌Gnz (q‖ = 0) reduces to (9.7). Correspondingly,
the imaginary part of the EPC-screening (9.8) is either proportional to χKS (n even) or to
χ̌ (n odd). Depending on the value of n, two different relations can be verified,

n 6= 0 even⇒ −=[ε̌−1] = −=[vχKS] = =[εNLF] (9.28)

n odd⇒ −=[ε̌−1]
Lz→∞−−−−→ =

[
1/ε̌−1

]
. (9.29)

The second expression have been demonstrated in equation (4.30).
In Fig. 9.3, I report an example of the d = 2d0, 4d0 and 6d0 spectra with off-plane mo-

mentum transfer. In order to compare Gz components of same size, the integer n has to be
changed for the different values of d; it is n = 1 in the 2d0, n = 2 in the 4d0 and n = 3 in
the 6d0.
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Figure 9.3: Perpendicular momentum transfer with CC for Gz ≈ 0.94 Å−1. Green and black solid lines
corresponds to 2d0 + CC and 6d0 + CC calculations for which Gz is an odd multiple of 2π/Lz (n = 1 and
n = 3 respectively). They both converge to the =[εM ] spectrum of the 6d0 (violet line). Red dotted and
blue solid line correspond to the 4d0 =[εNLF

M ] and 4d0 + CC EELS respectively. For this system Gz is an
even multiple of 2π/Lz (n = 2).

The conclusion is that for off-plane momenta the convergence to the isolated system is
much as fast as for the in-plane momenta. In fact in half of the cases (n odd) the 2d0 +CC
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is very close to the converged spectrum, as it can be seen in the inset of Fig. 9.3. In the other
half (n even), the EEL spectrum corresponds to the NLF absorption spectrum, which is
proportional to χKS. As demonstrated by R. Hambach [19], the KS polarizability is strongly
localised in the plane, so it is almost blind to the the presence of other layers near the
graphene sheet. As a consequence it converges to the long-range absorption spectrum very
rapidly and so does the ε̌−1.

In the case of perpendicular exchanged momenta, the effect of the CC is that of counting
all Geven

z = 2π(2n)/Lz as the Gz = 0 term.
It is important to underline that also in this case only kz = 0 points have been used to

sample the BZ, similarly to what done for the in-plane study.

9.3 Spectral functions of isolated graphene

I now pass to the discussion of spectral functions, computed using the CC method. The
interlayer distance considered are again d = 1d0, 2d0, 4d0 and 6d0.

Computational details: The parameters of the calculations of Σ and of the screening are
the same as in the previous chapter, except for the k-point grid which is in all cases
a 10× 10× 1 because of Beigi’s prescription. The screening has been computed using
the FC-screening formula (9.9), as I implemented it in the code DP [127]. Matrix
elements of W entering in the calculation of the correlation self-energy have been
computed as summarised in formula (9.26) where the integral enclosing the origin has
been evaluated through an analytical integration of the long-range parallel components
of CC, as detailed in Appendix D.

Computational development

To make ABINIT compute spectral functions via the CC interaction, I had to modify in
several aspects the codes ABINIT and DP.

Up to now, DP was designed to compute absorption or EEL spectra at specific q vectors.
So it has been necessary to make DP write the full matrix ε−1

GG′(q, ω) and record it in a “.SCR”
outpu file. To do so I have included the sequence of subroutines computing ε−1

GG′(q, ω) inside
a loop over all possible q points compatible with the chosen k-point grid. In this way it
has been possible to store in an output file “.SCR” the full matrix ε−1

GG′(q, ω). Moreover I
added the calculation of the cutoff function, which means, beside the simple implementation
of expression (9.20), the implementation of the EPC formula (9.10).

Once the cutoff-dielectric matrix is computed and recorded in “.SCR” by DP, it can be
used in ABINIT to compute the self-energy. Two main problems are found at this stage.
One is the fact that ABINIT uses a symmetrised form of the Coulomb interaction (ε̃−1),
leading to a screened Coulomb interaction

WGG′(q) = ε̃−1
GG′′(q) · ṽG′′G′(q)

where · is a matrix multiplication and

ṽG′′G′(q) =
4π

|q + G′′||q + G′|
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is the symmetrized Coulomb interaction. The second is that the “.SCR” file is used only in
the calculation of Σc, while the cutoff function fC(q + G) is also needed to compute Σx (cfr.
(9.14)).

I solved the problems of the inclusion of fC in Σc and the necessity of symmterizing ε−1

by devising a generalised symmetrization formula

ε̃−1
GG′(q) = ε−1

GG′(q)×
{ |q + G|
|q + G′|fC(q + G′) + δGG′

[
1

ε−1
GG(q)

− fC(q + G)

ε−1
GG(q)

]}
(9.30)

which allows to simultaneously include the cutoff-function and to symmetrize the screening.
The second problem, that is how to include fC in the exchange self-energy, has been

solved by means of a second output file written by DP and read by ABINIT. In the file
“.CTF”, the function fC(q + G) is recorded at all G and all q.

To summarise, to write the full cutoff dielectric matrix in the “.SCR” output file, the CC
interaction has been implemented in DP, together with the possibility of enabling the EPC
formula. Both computations have been inserted into a cycle over the q points compatible
with the sampling of the BZ. The CC spectral functions are then computed with ABINIT
in two steps:
Σx is computed by reading a file “.CTF” where the only cutoff function is recorded to all q
and all G,
Σc is computed by reading the “.SCR” file, written with a specific symmetrization formula
which allows for the inclusion of the fC in the expression ε−1fC v.

The general structure of this procedure is such that further manipulations of W to add
in future GW calculations (e.g., vertex corrections) can be taken into account more easily
by changing the DP code.

The Hartree potential, the XC potential and the nuclei

The exact Vxc is proportional to Q/r, where Q is the charge on a finite system and r the
distance from it. Therefore it has a long-range tail similar to the Hartree potential. Instead,
in LDA, it decays exponentially with the distance from the plane, so at small interlayer
separations, the matrix elements 〈Vxc〉 are at convergence with the isolated system. This
was already evident in Chapter 7, where ground state energy contributions were discussed.

On the other hand, ionic and Hartree contributions both have the correct long-range
behaviour Q/r, but with opposite sign, so they cancel mutually. Indeed it has been demon-
strated by Rozzi et al. [170] that the inclusion of the CC interaction in both potentials give
essentially the untruncated result.

Because of these arguments the cutoff interaction has been included only in the self-energy
and not in the KS calculation.

9.3.1 G0W0 spectra

In Fig. 9.4, I report the spectral function obtained using the CC for the four systems.
Let us first look at the self-energy, decomposed in its imaginary part I(ω) and its shifted

real part R(ω), both reported in Fig. 9.4b. This figure has to be compared with the same
calculations made with standard Coulomb interaction of Fig. 8.9. The extremely good per-
formance of the CC calculation even at the level of the 1d0 geometry is remarkable when
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(a) A(ω) with CC at bottom valence
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(b) I(ω) and R(ω) with CC at bottom valence
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Figure 9.4: Spectral function A(ω), imaginary part of Σ I(ω) and real shifted part of Σ R(ω) calculated
with Coulomb cutoff within G0W0, at the bottom valence in the 1d0 (red lines), 2d0 (green lines), 4d0 (blue
lines) and 6d0 (black lines) systems.

comparing the high energy peak around -50 eV (π plasmon) in the two calculations (Fig. 9.4b
with cutoff and Fig. 8.9b without cutoff). Although the pi plasmon and the global line shape
is essentially at convergence already in the 1d0 + CC calculation, some features are not
well reproduced. This is the case, for instance, of the peak at ∼ −60 eV, predicted by the
1d0+CC calculation, but absent in the other systems. It may be ascribed to a bad evaluation
of the matrix elements of W . Indeed, the amplitudes ρ̃ij =

∫
φ∗i (r)φj(r)dr entering in (9.26)

are computed from KS states of the bulk material, where planes are still interacting. Since
they are not modified by the presence of the cutoff, they correspond to the ρ̃s computed in
the bulk, and this may lead to some error in the matrix elements of Σ. The CC seems to be
less efficient also with respect to the π plasmon, at ∼ −25 eV, which is actually enhanced
with respect to the untruncated case.

Passing to the the spectral function A(ω) reported in Fig. 9.4a, one draws similar con-
clusions, noticing that the quasiparticle peak is much closer to the converged energy and
weight, but the π plasmaron is stronger. On the other hand the π + σ plasmon, that was
significantly far from convergence in the untruncated case, reproduces now the converged
satellite, in agreement with what observed in I(ω).

Selecting the relevant physics

In order to reduce the size of the system used to simulate isolated graphene, one needs to
use the CC formula with its complicated domain of definition. Beigi’s recipe to cope with
this problem is simple: (z0 = Lz/2) + (only kz = 0 sampling). However, in Chapter 8, I
stressed that only one point along the kz axis is not sufficient to calculate accurately the EEL
spectrum, and even calculations in the 2d0 geometry need at least 2 points along kz. The
question which arises naturally is “How does Beigi’s prescription influence the CC calculation
of spectral functions?” or differently stated “Is the constraint of having only in-plane k-points
a drawback of this method?”

In Fig. 9.5 I report the I(ω) of the 1d0 system computed for a number of k-point sampling
the kz axis Mz = 1 and Mz = 2 (solid and dashed blue curves respectively) together with
the 1d0 + CC calculation (solid red), the 6d0 + CC and 6d0 calculations (solid and dashed
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black). The grids are centred in Γ, so that only points laying on the xy plane are included
in the Mz = 1 case, whereas in the Mz = 2, the points are outside the plane.
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Figure 9.5: I(ω) in the 1d0. Calculations without the cutoff are performed by sampling the kz axis with
Mz = 1 or Mz = 2 points (Mz = 1 in solid blue and Mz = 2 in dashed blue). The 1d0 + CC calculation
performed within Beigi’s prescription (Mz = 1) is reported in red. For comparison the converged 6d0 and
6d0 + CC calculations are also plotted (dashed and solid black).

The I(ω) of bulk graphite 1d0 computed with only in-plane points (solid blue), is sub-
stantially different from the isolated curves (6d0 and 6d0 + CC), even though the same grid
gives remarkably good results when the CC is added (red curve). The same strong point
of Beigi’s prescription underlined at the end of section 9.2.1 is retrieved in this context.
The inclusion in the grid of the only qz = 0 points actually allows for a selection of the
physics of interest. In fact this choice corresponds in taking only those Fourier components
(plane waves) that are propagating in the plane and in discarding the others. But this is
not enough, otherwise the solid blue curve would coincide with the isolated graphene. This
selection is efficient only if these components are made blind to the other planes, which is
the task accomplished by the cutoff function.

This last result validates completely Beigi’s recipe (in-plane only k-point sampling)+CC,
which is indeed a very efficient way to compute the spectral function of isolated graphene,
and most likely of many other 2D crystals.

9.3.2 Conclusions

To conclude, I observe that the use of the CC interactions does not affect importantly the
quasiparticle peak and the first satellite, while the higher energy π + σ plasmon satellite
converges much faster to the graphene shape with respect to the untruncated calculation.
Although the CC interaction brings the 1d0 + CC self-energy much closer to the graphene
one, a high energy structure and a small shift in the π plasmon energy are found. These
features may be ascribed to the fact that the inter-layer separation is not high enough at the
DFT level so the Bloch integrals ρ̃ are not correctly calculated. Using KS states computed
for the d = 2d0 instead gives converged graphene results, with half of the kz points needed
in the untruncated calculation.
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Nevertheless the striking effect of the CC on the 1d0 spectrum, made possible to under-
stand what is the very advantage in using the recipe (in-plane sampling + CC). Only the
relevant Fourier components are selected by the choosing only in-plane k-points, and they
are made isolated by the effect of the cutoff function. So, what at the beginning may have
seemed a limitation of the CC method, namely the use of in-plane only k-points, turns out
to be actually another strong point of this method.

The convergence trend observed in EELS calculations can explain why spectral functions
converge faster. As concluded in the previous chapter, the convergence of spectral functions
is driven by short-wavelength components of the ε−1

GG′(q) matrix. As observed before, in
EELS + CC the in-plane components of v̌ tend rapidly to the untruncated Coulomb. For
off-plane elements, the convergence to the isolated case is also fast (half of them coincide
with the NLF absorption spectrum). Therefore, in computing the sums in expression (9.26),
many terms are close to the standard Coulomb ones and the convergence to the isolated
system is as fast as in the untruncated case.

To calculate EELS and spectral functions, the CC interaction has been implemented
in the code DP, together with the capability of recording the full matrix ε−1

GG′(q, ω) in a
file that can be read by the codes ABINIT and EXC. These features are tested and easy
to use, so they can be employed in future by other users, for example to study other 2D
materials (such as h-BN), or to develop further improvements which may take advantage of
this implementation, such as the CC at the BSE level52.

52Some preliminary development in this sense has been done already during this work.
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Chapter 10

A different(ial) approach to the
dynamics of absorption

In the previous chapters I have discussed dynamical effects in the one particle spectral func-
tion. However, the final aim of this thesis is the inclusion of the dynamical e-h interaction
in the description of the optical properties.

The description of dynamical correlation effects in photoemission has been the main sub-
ject of the the works of G. Lani [55] and especially of M. Guzzo [5, 78, 94]. The approach
followed in these works is based on the solution of the equation of motion of G in the form of
the integro-differential equation (5.8). It is therefore a self-energy free approach which does
not rely on the solution of the Dyson equation.

Amongst the advantages, there is the fact that the interaction is not hidden in the effec-
tive field represented by the self-energy. Higher order interactions are not embodied into a
demanding and very hard to approximate 3-point vertex. Of course, the integro-differential
equation is not simpler to solve than the Dyson equation, so other approximations have to
be assumed (cfr. especially [55]). However in this approach, the dynamical structure of the
screening is preserved and dynamical effects as satellite replicas can be correctly described
[5], contrary to what achieved with state-of-the-art self-energy based approaches.

With the aim of inserting dynamical effects into the description of light absorption, I
followed the same strategy and I eventually derived a differential equation for the two particle
correlation function L. Within some approximations I have been able to solve the equation.
The solution contains dynamical effects of the electron, of the hole and of the electron-hole
interaction, accounting for mutual partial cancellations.

Some clarification on the notation

Due to the complexity of the equations reported in this chapter, some simplified notation
has to be clarified from the beginning.
1) Integration over repeated variables and summation over repeated matrix indexes have
always to be assumed, even if

∫
or
∑

symbols are not written explicitly. When the extrema
of several integrals coincide, if the integration symbol is used, only one

∫
will appear for all

integrations.
2) Compact variables 1 = r1, t1, σ1 are used throughout the chapter; no comma will be put
between variables so that G(r1, r2, t1, t2, σ1, σ2) = G(12). Similarly, when only time or space
variables are listed, a cumulative index will be used so that r12 = r1, r2 and analogously for
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integration variables dr12 = dr1dr2.
3) Some quantity has been generalised to a 4-point formalism to be closer to the matrix
notation. Therefore the following definitions have to be assumed:

Γ(1234) = −δG
−1(12)

δU(34)

v(1234) = v(r13)δ(r12)δ(r34)δ(t12)δ(t34)δ(t13)

VH(12) = −iv(1234)G(34) (10.1)

ε−1(1234) =
δVtot(12)

δU(34)
= δ(13)δ(24)− iv(1256)

δG(56)

δU(34)

W (1234) = ε−1(1256)v(5634)

Σ(12) = iv(1345)
δG(36)

δU(45)
G−1(62) (10.2)

where Vtot = VH + U .

10.1 The linear integro-differential functional equation

The two-particle correlation function is defined by Schwinger’s equation (5.7)

L(1234) := L0(1234) + iG2(1234) = −iδG(12)

δU(34)

where L0(1234) = −iG(13)G(42) has been introduced in (5.44). For our aim, the operator
δG/δU must not be taken at vanishing U , contrary to what is done in deriving the BSE.

The differential equation for L is obtained by differentiating the last equality with respect
to U , but first I get rid of the self-energy by substituting it with its definition (5.9) into the
Dyson equation (5.10), getting

G−1
H (1′2′)G(2′2) = δ(1′2) + Σ(1′2′)G(2′2) = δ(1′2) + iv(1′2′3′4′)

δG(2′2)

δU(3′4′)
. (10.3)

Then I take the differentiation with respect to the external field U obtaining

δG−1
H (1′2′)

δU(34)
G(2′2) +G−1

H (1′2′)
δG(2′2)

δU(34)
= iv(1′2′3′4′)

δ2G(2′2)

δU(3′4′)δU(34)
.

Noticing that G−1
H (12) = H0(1)δ(12) − U(12) − VH(12), using the definition of the 2-point

Hartree potential VH(12) := −iv(1234)G(34), and inverting the order of the two derivatives
in the right hand side of the equation, one finally gets

L(1234) = −iGH(13)G(42)+

− iGH(15)G(62)v(5678)L(7834)+

+ iGH(15)v(5678)
δL(6234)

δU(78)
(10.4)

where all quantities are functionals of U . Moreover we suppose that G[U ] is a known func-
tional of U .
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This equation represents the starting point of the present approach and the solution
of this equation will be the subject of the entire chapter. It is a linear integro-differential
functional equation for the two-particle correlation function L.

It is characterised by three terms:

• an “independent particle” term

LH(1234) := −iGH(13)G(42) (10.5)

which describes the propagation of two particles inside the medium. These particles do
not interact with each other (that is why it is called “independent-particle”), but both
are interacting with the rest of the system. The peculiar thing is that the interaction
with the system is not described in a symmetric way: one particle is polarizing the
medium through a simple Hartree interaction (GH(13)), the other interacts via a full
many-body interaction (G(42)). This asymmetry is restored at the end of the calcu-
lation. Because of this asymmetry, if one wants to describe the two particles on the
same footing the screened Coulomb interaction has to be handled carefully.

• a bare Coulomb term
+LH(1256)v(5678)L(7834)

which describes the self-consistent interaction between the two particles and the rest
of the system in terms of a classical Hartree interaction. It describes the polarization
induced in the rest of the system because of the propagation of the particle pair, exactly
as the RPA term in BSE.

• a differential term

iGH(15)v(5678)
δL(6234)

δU(78)

which accomplishes two tasks: it accounts for the electron-hole interaction including
dynamical effects and it restores the “asymmetry” discussed above, as it will be clearer
at the end of the chapter. Indeed it comes from the differentiation of the self-energy
so it can be compared with the kernel Ξ of the BSE.

With these notations, equation (10.4) reads

L(1234) = LH(1234)+

+ LH(1256)v(5678)L(7834)+

+ iGH(15)v(5678)
δL(6234)

δU(78)
(10.6)

Both the standard BSE and this equation are derived from the same Dyson equation
for G, hence it is possible to cast a parallel to get a deeper understanding of the derived
equation and of some aspects of the BSE.

10.1.1 Mutual cancellations in the Bethe-Salpeter Equation

In order to trace a parallel between (10.6) and the BSE (5.44), it turns out to be useful to
re-derive the BSE by differentiating the equality G−1(13)G(32) = δ(12).
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Using

G−1(12) = H0(1)δ(12)− U(12)− VH(12)− Σ(12) = G−1
H (12)− Σ(12) ,

where the 2-point Hartree potential (10.1) has been used, one gets

δG−1(15)

δU(34)
G(52) +G−1(15)

δG(52)

δU(34)
=

= −δU(15)

δU(34)
G(52)− δVH(15)

δU(34)
G(52)− δΣ(15)

δU(34)
G(52) +G−1

H (15)
δG(52)

δU(34)
− Σ(15)

δG(52)

δU(34)
= 0 .

(10.7)

This formulation of the BSE puts in evidence the mutual cancellation between (dynami-
cal) terms containing the self-energy. In fact, using definition (10.2), and the exact relation
δG−1(15)
δU(34)

G(52) = −G−1(15) δG(52)
δU(34)

, the following equality can be verified:

δΣ(15)

δU(34)
G(52) = iv

δ2G(52)

δU(34)δU(67)
− Σ(15)

δG(52)

δU(34)
(10.8)

which, inserted into (10.7), leads to the following equation

−δU(15)

δU(34)
G(52)− δVH(15)

δU(34)
G(52)− iv δ2G(52)

δU(34)δU(67)
+ Σ(15)

δG(52)

δU(34)
=

= −G−1
H (15)

δG(52)

δU(34)
+ Σ(15)

δG(52)

δU(34)
. (10.9)

On each side of the equality, appears a term proportional to Σ. That on the left hand
side comes from the δG−1

δU
G contribution of the left hand side of (10.7), the second, on the

right hand side, comes from the term G−1 δG
δU

. After the cancellation of these two terms, what
is left is the novel differential equation (10.6).

One can follow the same procedure without exploiting G−1 = G−1
H − Σ at the very

beginning (equation (10.7)); in this case, the right hand side of equation (10.9) sums to

G−1(15) δG(52)
δU(34)

, so the mutual cancellation is consequently hidden. In this case, what one gets
by rearranging the terms, is the standard BSE

−δU(15)

δU(34)
G(52)− δVH(15)

δU(34)
G(52)− δΣ(15)

δU(34)
G(52) +G−1(15)

δG(52)

δU(34)
= 0 .

This derivation shows that in the BSE the use of −iGG = L0 introduces terms that must
be partially cancelled by the kernel. The novel equation (10.6) is equivalent to BSE, but has
the advantage that these mutual cancellations are accounted for from the beginning. The
consequence of this cancellation is the introduction of the “asymmetric” independent-particle
term LH = −iGHG.

Equation (10.8) suggests also an alternative formulation of the differential equation de-
rived in the previous section. Using the chain rule in equality (10.8) and making use of the

definitions of Ξ(1234) = i δΣ(12)
δG(34)

and L(1234) = −i δG(12)
δU(34)

, one gets the relation

v(5678)
δL(6234)

δU(78)
= −G(62)Ξ(5678)L(7834)− iΣ(57)L(7234) .
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Inserting now δ(82) = G−1(86)G(62) into the last term, one can write the differential term
of (10.6) as

iGH(15)v(5678)
δL(6234)

δU(78)
= LH(1256)

[
Ξ(5678) + iΣ(57)G−1(86)

]
L(7834)

where the definition of LH(1234) = −iGH(13)G(42) has been used.
The last relation defines a kernel

ΞI(5678) := Ξ(5678) + iΣ(57)G−1(86) (10.10)

which allows me to write the differential equation (10.6) in the form of a Dyson equation

L(1234) = LH(1234) + LH(1256) [v(5678) + ΞI(5678)]L(7834) . (10.11)

The extra term iΣG−1 obtained in this approach corrects the “asymmetry” of LH and
restores the BSE.

These two derivations show that dynamical effects entering in L0 = −iGG are partially
cancelled by dynamical effects entering in Ξ. This confirms what was observed by R. Del
Sole and R. Girlanda [83] and F. Bechstedt and coworkers [90]. Moreover I showed that
the novel differential accounts for these cancellations from the beginning, offering a natural
framework to treat dynamical contributions on the same footing.

Finally, the last equation (10.11) allows for the definition of a dynamical kernel ΞI stem-
ming from Σ, so the same approximations can in principle be done for the calculation of G
and L. Though, I will not follow this strategy.

10.2 Solving the differential equation

Matrix form of the equation

Instead of working in the space domain, I switch to a transition-basis, as done in section
5.2.2 to solve the BSE . Being {φi(r)} a complete set of orthonormal functions (e.g. plane
waves), we define an element of the transition-space basis as

Φij(r1, r2) := φi(r1)φ∗j(r2) = |i1, j2〉 .

On this basis, the following expansions are made

G(H)(12) =
∑

abG
(H)
ab (t12)Φab(r12)

L(H)(1234) =
∑

abcd Φab(r12)L
(H) ab

cd(t1234)Φ∗cd(r34)
δ

δU(12)
=
∑

ab
δ

δUab(t12)
Φ∗ab(r12)

having defined

G
(H)
ab (t12) :=

∫
G(H)(12)Φ∗ab(r12)dr12

L
(H) ab

cd(t1234) :=
∫

Φ∗ab(r12)L(H)(1234)Φcd(r34)dr1234
δ

δUab(t12)
:=
∫

δ
δU(12)

Φab(r12)dr12 .
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The Coulomb interaction v(1234) follows the same expansion as L(1234), as already pointed
out in (5.51).

Consequently the differential equation (10.6) reads

Labcd(t1234) = LH ab
cd(t1234)+

+

∫
LH ab

ef (t1256)vefgh(t5678)Lghcd (t7834)dt5678+

+ i

∫
GH
ae(t15)vefhg(t5678)

δLfbcd(t6234)

δUgh(t78)
dt5678 (10.12)

where equalities
Φ∗gh(r34) = Φhg(r43) and v(r1234) = v(r1243)

have been used in writing the differential term.

Approximations

To evaluate LH , the best approximation to G[U ] has to be taken. To this aim, the exponential
form of G introduced in [78] and used in [5] will be adopted because of the similarity of the
approach followed by the authors and in force of the good results [5, 78] obtained with their
method. To be consistent with this choice a decoupling approximation between states is
assumed at the one-particle level, that is both GH and G are assumed to be diagonal on the
{φi(r)}i basis. As a consequence also the matrix LH is diagonal on the basis of the Φs.

Moreover I extend the decoupling approximation to the two-particle correlation
function assuming that

Labcd(t1234) = Labab(t1234)δacδdb (10.13)

on the Φ-basis.
N.B. The experience we have from standard BSE tells us that the coupling between IP-

transitions is crucial in the description of the excitonic effect, especially in solids, where the
first order correction to the transition energies vanishes or, in other words, the contribution
of diagonal elements is negligible. This is a sign of the many-body nature of the electron-hole
interaction and it can not be neglected. From these considerations one need eventually to
introduce approximations in order to relax this hypothesis, making the theory reliable for
applications to real systems. For the moment we assume the decoupling between transitions
in order to solve the equation for diagonal elements only. This will tell us much about the
structure of the solution and the nature of cancellations.

With the decoupling approximation at the G and at the L level, the problem of solving
a matrix equation (10.12) becomes that of solving one scalar equation for each independent-
particle transition.

The exponential form of the Green’s function, derived in [55] for the state l, reads

Gll(t12) = −iθ(t1 − t2)Gell(t12) + iθ(t2 − t1)Ghll(t12) (10.14)

where Ge is the electron Green’s function, for which the state l is an empty conduction state,
and Gh is the hole Green’s function, with l labelling a valence state. In both cases53

Ge,hll (t1, t2) = eiε
H
l (t2−t1)e−i

1
2

R t2
t1

R t2
t1
W ll
ll (tt

′)dxt′dtei
R t2
t1
Ũll(t)dt (10.15)

53Strictly speaking, when the external potential is time dependent, one should use non-equilibrium Green’s
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where εHl is the Hartree energy of the state φl, W
ll
ll is the diagonal matrix element of the

screened Coulomb interaction (5.52) and Ũ = ε−1U is the screened external potential [78].
The term LH = −iGHG is therefore the sum of four terms corresponding to different

orderings of the four time variables t1, t2, t3 and t4. Since we are interested in light absorption,
i.e. only in e-h pairs, we neglect the particle-particle and hole-hole contributions, considering
only the resonant and antiresonant components

LHab(t1234) = −iθ(t3 − t1)θ(t4 − t2)LHRab (t1234)− iθ(t1 − t3)θ(t2 − t4)LHAab (t1234) . (10.16)

Because of the theta functions, only one term at once can be different from zero. If the non-
vanishing term is the resonant term, then a is always a valence and b always a conduction
state. If the antiresonant term is non-vanishing, then valence and conduction states are
inverted with respect to the resonance case. To emphasize this difference I will use the letter
v to label occupied states, and c for the empty states. The two independent particle terms
read

LHRvc (t1234) = GHvv(t13)Gcc(t42) (10.17)

= e−i[ε
H
c (t4−t2)−εHv (t3−t1)]e−i[

R t4
t2
Ũcc(t)dt−

R t3
t1
Ũvv(t)dt]e−

i
2

R t4
t2
W cc
cc (t−t′)dtdt′ and

LHAcv (t1234) = GHcc (t13)Gvv(t42) (10.18)

= ei[ε
H
c (t3−t1)−εHv (t4−t2)]ei[

R t3
t1
Ũcc(t)dt−

R t4
t2
Ũvv(t)dt]e−

i
2

R t2
t4
W vv
vv (t−t′)dtdt′ .

The differential equation in principle couples the two terms, but we further assume the
decoupling between resonant and antiresonant contributions. The two decoupled
differential equations are then

LRvc(t1234) = LHRvc (t1234)+

− i
∫ min{t3,t4}

max{t1,t2}
LHRvc (t1255)vvcvcLRvc(t5534)dt5+

−
∫ t3

t1

∑

gh

GHvv(t15)vvvhg
δLRvc(t5234)

δUgh(t55)
dt5 (10.19)

LAcv(t1234) = LHAcv (t1234)+

− i
∫ min{t1,t2}

max{t3,t4}
LHAcv (t1255)vvcvcLAcv(t5534)dt5+

+

∫ t1

t3

∑

gh

GHcc (t15)vcchg
δLAcv(t5234)

δUgh(t55)
dt5 (10.20)

where we used the fact that v(t1234) = vδ(t1 − t2)δ(t3 − t4)δ(t1 − t3). Both expressions are
multiplied by the respective couple of θ-functions as in (10.16), so for a given time ordering
only one of the two terms can be different from zero, as stated for the independent-particle
term.

functions. All time integrals should then been interpreted as contour integrals. The structure of the equations
is however unchanged, and since we are only interested in the U → 0 result at the end, we do not specify
this further. Moreover we omit to specify infinitesimal time differences, such as U(t55+) instead of U(t55) in
equation (10.17).
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N.B. For the rest of the chapter, unless explicitly specified, I will discuss only the
resonant equation (10.19). The argument used for its solution are in fact valid also in the
antiresonant case.

10.3 The bare Coulomb equation (BCE)

To get a first understanding of the physics described by this equation and to gain insight into
the different dynamical contributions carried by the single-particle propagations and the e-h
interaction, I initially drop the differential term. Consequently the only dynamical screening
appearing in the equation (10.19) is the contribution carried by the Green’s function Gcc(t42)
defining LHRvc (t1234).

Since I will work only with the resonant contribution for the vc transition, the superscript
R and the subscript vc will be dropped for sake of simplicity.

Immediately one observes that it is possible to contract the time variables, taking t4 = t3
and t1 = t2. This reduces the equation to a 2-point problem whose solution is the (resonant)
polarizability χR(t13) = L(t1133). The equation to solve reads

L(t1133) = LH(t1133)− iv
∫ t3

t1

LH(t1155)L(t5533)dt5 (10.21)

called bare Coulomb equation (BCE).
Moreover the limit U → 0 can be already taken, so the equation is expressed at equilib-

rium. Because of the limit U → 0, a single time-variable τ = t3 − t1 can be introduced.
This would allow for an immediate reformulation of the equation in the frequency domain.

The formulation of (10.21) in the frequency domain would be much simpler because the
convolution becomes a simple product. However, I prefer to stay in the time domain in
order to ease the comparison with the next results, where the transformation will be possible
only at the end of the calculation.

10.3.1 Solution of the bare Coulomb equation

To solve equation (10.21), I first introduce the ansatz L(t1133) = LH(t1133)y(t13). The result-
ing equation

y(t13) = 1− iv
∫ t3

t1

eiTc(t5;t13)y(t53)dt5 (10.22)

verifies the ansatz and constitutes an integral equation for y.
The integrated exponential of iTc(t5; t13), called from now on “wing term”, is defined

according to Tc(t5; t13) :=
∫ t5
t3

∫ t1
t5
W cc
cc (t − t′)dtdt′ and it is depicted schematically in Figure

10.1. Its origin may be ascribed to the split of the full equation, suggesting that it is an
artefact, but I do not have clear indications in this sense. In any case its presence does not
alter the physical insight we will gain from solving the BCE54.

Two methods have been devised to solve equation (10.22), one by differentiation and
another by iteration. The former is presented in the following, the latter is the subject of
Appendix A.

54Moreover, one can assume that its contribution is small and approximate consequently eiT ≈ 1
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Figure 10.1: The difference
∫ t3
t1

∫ t3
t1
−
∫ t5
t1

∫ t5
t1

is represented by the full square minus the area 1. Areas are

labeled: 1 =
∫ t5
t1

∫ t5
t1

; 2 =
∫ t3
t5

∫ t3
t5

; 3a =
∫ t5
t1

∫ t3
t5
dtdt′ and 3b =

∫ t3
t5

∫ t5
t1
dtdt′. The integrals 3a and 3b are

equal because of the symmetries of W . The grey area 3a+ 3b = 2T is the wing-term.

The differentiation of (10.22) with respect to t1, is formally identical to the problem

df(t3)

dt1
=

d

dt1

[
1− iv

∫ t3

t1

f(t)h(t)dt

]
⇐⇒ d log[f(t3)]

dt1
= ivh(t1)

which is solved by the family of functions

fC(t3) = C exp

{
−iv

∫ t3

t1

h(t)dt

}

differing in the value of the constant C which can be fixed by specifying the the boundary
conditions. The fact that y(t11) = 1 = f(t1) fixes C = 1, leading to the solution

y(t13) = exp

{
−iv

∫ t3

t1

eiTc(t;t13)dt

}
. (10.23)

Another proof of the solution can be found in Appendix B.

Similar arguments can be followed also for the antiresonant equation (10.20) leading to
a similar exponential form.

The total equilibrium solution is the sum of the resonant and antiresonant parts. The
equilibrium (U = 0) polarizability depends on the only time difference τ = t3 − t1 and is
given by

χvc(τ) = −iθ(τ)χRvc(τ)− iθ(−τ)χAcv(τ) =

= −iθ(τ)e−i∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W cc

cc (t−t′)dtdt′e−iv
vc
vc

R τ
0 eiTc(t;τ)dt+

− iθ(−τ)ei∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W vv

vv (t−t′)dtdt′eiv
vc
vc

R τ
0 eiTv(t;τ)dt (10.24)

where the symmetry of the Coulomb potential vvcvc = vcvcv has been used and the Hartree
transition energy ∆εHvc = εHc − εHv has been introduced.
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10.3.2 Spectrum of the bare Coulomb solution

For each components (resonant and antiresonant) of the solution (10.24) one identifies three
contributions.

IP-transitions : The independent-transition term e±i∆ε
H
vcτ corresponds to the elementary

transition from empty to occupied Hartree states.

Self-energy contribution : A single-particle screening term exp{−i/2
∫ ∫

W jj
jj (t−t′)dtdt′}

with j = v, c depending on the case, is carried by the fully interacting Green’s function
G in the definition of LH . It is by construction the same exponential contribution as
that obtained by M.Guzzo in [5, 78]. The physics embodied by this term is the full
many-body interaction (with the restriction of the linear screening and the decoupling
approximation) of the propagating particle within the medium. So it includes the
quasiparticle correction, its broadening due to dynamical self-energy effects and the
coupling with the other excitations of the system (e.g., plasmon satellites).

Electron-hole interaction : The third component is the electron-hole Hartree interac-
tion vvcvc, also called e-h exchange term in the exciton language, which is modified by a
phase factor (the wing term) The phase term depends on the quasiparticle propagation.

A clearer insight into the meaning of the BCE result is reached once the Fourier transform
of the equilibrium solution is taken

χvc(τ) =
1

2π

∫
χvc(ω)e−iωτdω with χvc(ω) := Fτ [χvc](ω) =

∫
χvc(τ)eiωτdτ (10.25)

The true Random Phase Approximation: W=0

The analysis of the spectral properties of the solution of the BCE starts from the approxi-
mation W = 0. Neglecting the screened Coulomb interaction, implies a Hartree description
in the propagation of both particles (LH ≈ −iGHGH) and the vanishing of the wing term.
As a consequence the e-h pair interacts only through the classical Hartree interaction. The
expression of the polarizability in this case corresponds to the RPA; it reads

χvc(τ) = −iθ(τ)e−i(∆εHvc+v
vc
vc)τ − iθ(−τ)ei(∆εHvc+v

vc
vc)τ

χvc(ω) =

{
1

ω − (∆εHvc + vvcvc) + iη
− 1

ω + (∆εHvc + vvcvc)− iη

}
,

where the infinitesimal positive quantity η assures convergence of the transformation.
The resonant part has a pole for the positive energy ER = ∆εHvc + vvcvc while the antireso-

nant has a negative-energy pole at EA = −(∆εHvc + vvcvc).
This term is for example responsible for the blue-shift of spectra due to the LFE or to he

fact that EEL spectra have dominant structures at higher energies than absorption, as we
have seen in the previous chapters.

Static screening approximation

The self-energy contribution W ii
ii (t−t′) ≈ 2W s

i δ(t−t′) is approximated with an instantaneous
response of intensity 2W s

i . The integrals of W in the resonant and antiresonant parts are
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evaluated remembering that
∫ b
a
f(x)δ(x)dx = −f(0) if a > b. The wing term vanishes in

both cases.
In the static approximation the polarizability in frequency domain reads

χvc(ω) =

{
1

ω − (∆εHvc + vvcvc +W s
c ) + iη

− 1

ω + (∆εHvc + vvcvc +W s
v )− iη

}
.

The RPA energies are shifted by a state-dependent quantity which is a many-body cor-
rection to the electron (resonant) or the hole (antiresonant) state. This static contribution
corrects the Hartree energy εHi adding static self-energy corrections which leads to a further
blue-shift of the spectrum.

At this stage W is static inside Σ. Therefore no renormalization of the quasiparticle
peak is included. Indeed the shift of the IP energies does not create extra excitations (i.e. no
satellites), so no redistribution of the spectral weight occurs. The parallel with the GW+RPA
approach discussed in section 5.2.1 is here evident: real (static) quaiparticle energies EQP

are substituted to independent-particle states (usually KS, in this case Hartree) and a simple
RPA polarizability is computed to get the absorption spectrum.

Plasmon pole approximation

To perform analytically the integrals beyond the static approximation, I use a plasmon pole
model for W in the self-energy contribution, while the wing term will be disregarded. In real
time the plasmon pole model (PPM) reads

W ii
ii (t− t′) := −iλi

[
θ(t− t′)e−iωi(t−t′) + θ(t′ − t)eiωi(t−t′)

]
, (10.26)

it has the advantage of keeping all time symmetries of the screening and to be analytically
integrable. Hence, it is here introduced as a good approximation of W , in order to gain a
qualitative understanding of the physics of the dynamical correlation.

Through the PPM, the self-energy contribution reads
∫ τ

0

∫ τ

0

W ii
ii (t− t′)dt′dt = 2i

λi
ω2
i

×
{

(e−iωiτ + iωiτ − 1) Resonant: i = c
(eiωiτ − iωiτ − 1) Anitresonant: i = v

and the real time polarizability becomes

χvc(τ) = −iθ(τ)e
− λc
ω2
c e−i(∆ε

H
vc+v

vc
vc−λc/ωc)τeλc/ω

2
ce
−iωcτ

+

− iθ(−τ)e
− λv
ω2
v ei(∆ε

H
vc+v

vc
vc−λv/ωv)τeλv/ω

2
ve
iωvτ

. (10.27)

In the latter expression one recognises three different dynamical contributions.
Let us analyse for instance the resonant term.

1) A first real exponential of −λc/ω2
c accounts for the quasiparticle renormalization and the

shift of spectral weight to higher energy excitations.
2) The static contribution correcting the RPA transition energies with the quasiparticle cor-
rections to the Hartree level is still present with the form W s

c = −λc/ωc .
3) The third contribution, i.e. the double exponential, is responsible for the series of plasmon
satellites shown in [5]. In the polarizability χ, it generates extra poles beyond the elementary
excitation Ec = ∆εHvc+v

vc
vc−λc/ωc, as can be seen clearly by expanding the outer exponential

in powers of λ.
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For the resonant part one gets55

−iθ(τ)χRvc(τ) = −iθ(τ)e
− λc
ω2
c e−i(∆ε

H
vc+v

vc
vc−λc/ωc)τ

[
1 +

λc
ω2
c

e−iωcτ +
λ2
c

2ω4
c

e−i2ωcτ +O(3)

]

χRvc(ω) = e
− λc
ω2
c

[
1

ω − Ec + iη
+

+
λc
ω2
c

1

ω − (Ec + ωc) + iη
+

+
λ2
c

2ω4
c

1

ω − (Ec + 2ωc) + iη
+O(3)

]
. (10.28)

The creation of an electron-hole pair costs an energy Ec if no additional excitation takes
place. Instead, it costs Ec+nωc if n plasmon satellites are created together with the exciton.
The important thing to stress here is that these extra excitations are not due to the creation
of the electron-hole pair itself, but they are caused only by the propagation of the hole. In
fact, in the resonant (antriesonant) term, LH introduces dynamical correlation effects due
uniquely to the hole (electron). In order to account in both terms for the the contributions
due to the other particle and to the particle-pair, i.e. to account for a complete description
of the dynamical effects induced by the exciton, the differential equation has to be solved.

Similarly, the renormalization term in front of expression (10.28) takes into account only
the renormalization of the quasihole (or of the quasielectron in the antiresonant case).

The dynamical effects of the expression above stem entirely from the dynamical effects
of the one-particle Green’s function. In photoemission, the dynamical effects such that
the renormalization, the quasiparticle corrections and the occurrence of satellites are all well
described by the cumulant expansion of G. This result reflects the same physics in absorption
and indeed the Green’s function used here comes from the work of M. Guzzo who generalised
the cumulant expansion proposing a new derivation.

The step further is to include these effects at the level of the e-h interaction, that is the
topic of next section.

10.4 The Differential equation

Let us now pass to the dynamical part of equation (10.19). I neglect the Hartree term to
focus on the differential contribution. Contrary to what done in the BCE, the contraction
t1 = t2 can not be taken, although the other two times can be contracted t3 = t4 so that the
number of variables is reduced to three. For the resonant part of the differential equation
the equation to solve is

Lvc(t1233) = LHvc(t1233)−
∫ t3

t1

∑

gh

GHvv(t15)vvvhg
δLvc(t5233)

δUgh(t55)
dt5 . (10.29)

55Note that the following definitions are used: χ(τ) = −iθ(τ)χR(τ)−iθ(−τ)χA(τ) as introduced in (10.24)
and χ(ω) = χR(ω) + χA(ω).
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10.4.1 From the differential operator to the dynamical screening

An iterative argument can be used to evaluate the differential operator. The 0-th iteration
is taken for L = LH , so the first order is obtained inserting LH into the differential term.

I remind that the one-particle Green’s function (10.15) is a known functional of the
screened Ũ , where Ũab(t12) :=

∫
ε−1 ab

cd(t1234)Ucd(t34)dt34, and that the equalityW ab
cd = vefcd ε

−1 ab
ef ≡

vcdfeε
−1 ab

ef is verified in force of the symmetries of the Coulomb interaction. With this in mind,
(10.29) becomes

Lvc(t1233) = LHvc(t1233)−
∑

ij

∫ t3

t1

∫
GHvv(t15)W ij

vv(t6655)
δLvc(t5233)

δŨij(t66)
dt6dt5 .

To first order in W , this reads

L(1)
vc (t1233) = LHvc(t1233)−

∑

ij

∫ t3

t1

∫
GHvv(t15)W ij

vv(t6655)
δLHvc(t5233)

δŨij(t66)
dt6dt5 .

The differential of LH = GHG is evaluated using the exponential Green’s function (10.15).
It is verified that

δLHvc(t5233)

δŨij(t66)
= iLHvc(t5233) [δviδvjθ(t5 − t6)θ(t6 − t1)− δciδcjθ(t3 − t6)θ(t6 − t2)]

which leads to the following expression for the first iteration

L(1)
vc (t1233) = LHvc(t1233)+

− i
∫ t3

t1

GHvv(t15)GHvv(t53)Gcc(t32)

[∫ t5

t1

W vv
vv (t6655)dt6 −

∫ t3

t2

W cc
vv(t6655)dt6

]
dt5 ,

where the substitution LH = GHG has been used in the last passage.
Using

GHaa(t, t′)GHaa(t′, t′′) = GHaa(t, t′′) ,
a term LHvc(t1233) can be factored out from the integral, leading to a result of the kind
L(1) = LH(1− i

∫
W + i

∫
W ).

The screened Coulomb interaction W is taken at vanishing U , thus it does not depend
on the external field and a formulation L(1)

vc (t1233) = LHvc[U ](t1233)F (1)
vc (t1233) is possible. Only

the LH [U ] term depends on the external field U . It is clear that at any successive iteration,
the differential operator will act on the first term only. Therefore a similar splitting

L(N)
vc (t1233) = LHvc[U ](t1233)F (N)

vc (t1233) (10.30)

is possible at any order N.

10.4.2 Solution of the Dynamical equation

In force of conclusion (10.30) I make the following ansatz

Lvc(t1233) = GHvv[U ](t13)Gcc[U ](t32)Fvc(t1233) . (10.31)
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Inserting this ansatz into the differential equation (10.29) and following the same procedure
as before, one gets to the equation

LHvc(1233)Fvc(t1233) = LHvc(1233)

{
1− i

∫ t3

t1

Svc(t5; t123)Fvc(t5233)dt5

}
(10.32)

having defined Svc(t5; t123) :=

[∫ t5

t1

W vv
vv (t6655)dt6 −

∫ t3

t2

W cc
vv(t6655)dt6

]
. (10.33)

Equation (10.32) satisfies the ansatz (10.31) and defines an integral equation for the dynam-
ical contribution F .

By differentiating both sides of equation (10.32) with respect to t1 and by fixing the
boundary conditions as done in the previous section, that is observing that equation (10.32)
implies F(t1211) = 1, the dynamical equation can be solved. The resulting expression of the
function F is

Fvc(t1233) = exp

{
−i
∫ t3

t1

Svc(t5; t123)dt5

}
which gives

Fvc(t1233) = exp

{
−i
∫ t3

t1

∫ t5

t1

W vv
vv (t6655)dt6dt5 + i

∫ t3

t1

∫ t3

t2

W cc
vv(t6655)dt6dt6

}

and similarly for the antiresonant component.

The solution to the dynamical equation is then L = LHF . At the end of the calculation
the equilibrium solution can be taken in the limit U → 0. Exploiting the time symmetries
of W , one can substitute

∫ t3
t1

∫ t5
t1
W (t6655)dt6dt5 = 1

2

∫ t3
t!

∫ t3
t1
W (t6655)dt6dt5 and the resonant

part of the 2-particle correlation function finally reads

Lvcvc(t1233) = e−i[ε
H
c (t3−t1)−εHv (t3−t1)]e−

i
2

R t3
t2

R t3
t2
W cc
cc− i

2

R t3
t1

R t3
t1
W vv
vv +i

R t3
t1

R t3
t2
W cc
vv

= Gvv(t13)Gcc(t32)ei
R t3
t1

R t3
t2
W cc
vv (10.34)

where variables of integrations have been dropped to simplify the notation.
In the equilibrium limit (U → 0), the contraction t1 = t2 can finally be done; the resulting

polarizability is found to depend only on the time difference τ = t3 − t1, as expected:

χvc(τ) = −iθ(τ)e−i∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W cc

cc (t−t′)dtdt′− i
2

R τ
0

R τ
0 W vv

vv (t−t′)dtdt′×
× e+i

R τ
0

R τ
0 W cc

vv(t−t′)dtdt′ +

− iθ(−τ)ei∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W cc

cc (t−t′)dtdt′− i
2

R τ
0

R τ
0 W vv

vv (t−t′)dtdt′×
× e+i

R τ
0

R τ
0 W cc

vv(t−t′)dtdt′ . (10.35)

10.4.3 Discussion of the dynamical contributions

Let us look more in detail at the dynamical screened contributions

Svc(t5; t123) :=

[∫ t5

t1

W vv
vv (t6655)dt6 −

∫ t3

t2

W cc
vv(t6655)dt6

]
(10.36)

introduced above. As before, I take as example the resonant part.
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The term W vv
vv is the quasiparticle correction to the Hartree energy of the hole. This

restores the electron-hole symmetry lost at the beginning with the introduction of LHvc =
GHv Gc. In fact a similar term W cc

cc is carried by the Gc appearing in the definition of LH .
I stress that these two contributions are one-particle terms: W vv

vv (W cc
cc ) corresponds to the

coupling of the creation of the hole (electron) with all neutral excitations of the system.

But the electron-hole pair, being of neutral charge, is expected to lower the effect of
the two separated particles. The additional e-h term, that is the interference term between
the electron and the hole, is described by the interaction contribution W cc

vv. The opposite
sign with respect to the quasiparticle contributions reminds to the partial cancellations of
the dynamical effects already discussed in [83, 90] and reformulated in this thesis in section
10.1.1.

As done in discussing the solution of the BCE, the static and the plasmon pole approxi-
mations of W to the screening are now introduced.

Static screening approximation

Inserting the static screening W s
ij(t − t′) = 2W ii

jjδ(t − t′) into (10.35), the polarizability
becomes

χvc(τ) = −iθ(τ)e−i(∆ε
H
vc+W

s
cc+W

s
vv−2W s

cv)τ − iθ(−τ)ei(∆ε
H
vc+W

s
cc+W

s
vv−2W s

cv)τ

χvc(ω) =

{
1

ω − Evc + iη
− 1

ω + Evc − iη

}
(10.37)

with elementary excitation energy

Evc = (εHc +W s
cc)− (εHv −W s

vv)− 2W s
cv (10.38)

where one recognizes the independent particle (Hartree) energies, their state dependent cor-
rection due to quasiparticle effects, and the electron-hole contribution.

This result is the perfect analogue to what usually computed in the static BSE approach.
G0W0 energies are used instead of Kohn-Sham eigenvalues, so the group (εHi +W s

ii) is usually
substituted by (εKSi +EG0W0

i ), but the physics described here is exactly the same. The static
electron-hole interaction appearing here W s

cv is the same kind of matrix element W cc
vv used in

the static BSE calculations.

Plasmon pole approximation

Similarly to what done for the BCE, I now discuss the effect of dynamical correlation as-
suming the plasmon pole model (10.26) for each matrix element W ii

jj(t− t′).
Once inserted into the time-dependent expression, the resonant part reads56

−iθ(τ)χRvc(τ) = −iθ(τ)e−Rvce−iEvcτ exp

{
λcc
ω2
cc

e−iωccτ +
λvv
ω2
vv

e−iωvvτ − 2
λvc
ω2
vc

e−iωvcτ
}

(10.39)

56There is no difficulty in computing the antiresonant contribution, but formulae are then too cumbersome.
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where the renormalization term Rvc and the elementary excitation energy Evc are defined
respectively

Rvc :=
λcc
ω2
cc

+
λvv
ω2
vv

− 2
λvc
ω2
vc

(10.40)

Evc :=

(
εHc −

λcc
ωcc

)
−
(
εHv +

λvv
ωvv

)
+ 2

λvc
ωvc

(10.41)

In the solution of the BCE, where only self-energy contributions of one particle (the
hole in resonant case) were accounted for, the renormalization term had only one term. In
contrast, when all dynamical contributions are included, the other particle gives symmetric
contributions and, more important, interference effects appear in the form of a third term of
inverse sign.

Similar considerations are valid for the extra poles and the quasi-static corrections to the
Hartree level. In particular the structure of the extra poles is much more complex: already
at the first order in W three extra poles are created. At higher orders mixed terms arise57.

Order 0 (Resonant):

χ(0)
vc (ω) = e−Rvc

1

ω − Evc + iη

Order 1 (Resonant):

χ(1)
vc (ω) = e−Rvc

[
−2

λvc/ω
2
vc

ω − (Evc + ωvc) + iη
+

+
λcc/ω

2
cc

ω − (Evc + ωcc) + iη
+

λvv/ω
2
vv

ω − (Evc + ωvv) + iη

]

Order 2 (Resonant):

χ(2)
vc (ω) = e−Rvc

[
2λ2

vc

ω4
vc

1

ω − (Evc + 2ωvc) + iη
+

+
λ2
cc

2ω4
cc

1

ω − (Evc + 2ωcc) + iη
+

λ2
vv

2ω4
vv

1

ω − (Evc + 2ωvv) + iη
+

+
λccλvv
ω2
ccω

2
vv

1

ω − (Evc + ωcc + ωvv) + iη
+

−2λccλvc
ω2
ccω

2
vc

1

ω − (Evc + ωcc + ωvc) + iη
− 2λvvλvc

ω2
vvω

2
vc

1

ω − (Evc + ωvv + ωvc) + iη

]

(10.42)

If all the poles are similar ωij ≈ ω̃, then the term of order N has a pole at the energy
Evc +Nω̃ and the weight of the corresponding structure is

e−
(λcc+λvv−2λvc)

ω̃2
(λcc + λvv − 2λvc)

N

ω̃2N
.

57Note that there may be cases where =[χ] < 0; for instance if (ωvc 6= ωvv 6= ωcc), then =[χ(1)] < 0 in
ω = Evc + ωvc. Most likely this problem disappears going beyond the plasmon pole approximation for W
and once the decoupling approximation on transitions is relaxed (see 10.5).
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10.4.4 Where dynamical effects are important?

From these results one can immediately see where dynamical effects will be important. Let
us concentrate on the effect of the weights λ, differences in ω̃ being a less pertinent quan-
tity in the thermodynamic limit. Of course, effects are large when the λs are large, most
importantly, however, is the fact that

λcc + λvv − 2λvc

is dominated by the difference of matrix elements of W involving different states: valence only
(proportional to the Σ contribution to the valence states), conduction only (proportional to
the Σ contribution to the conduction states), and the valence-conduction pairs (that governs
e-h interaction matrix elements in the standard BSE). When these matrix elements are very
similar there is perfect cancellation. Instead, when they are different, the main absorption
peak will be damped and satellites will appear. One case that one may imagine is when
valence and conduction states are localised in different spatial regions (e.g., in charge-transfer
excitations). In this case, W cc

cc and W vv
vv should be significantly larger than W cc

vv. This leads
to self-energy effects that are relatively large compared to the electro-hole interaction effects.
This can be of particular importance in nanostructures whose shape can be tailored to host
and optimize specific processes.

10.5 Conclusions and perspectives

I have presented here a theoretical approach to include dynamical effects in the e-h interaction
at the level of the two-particle correlation function L. The starting point is the differentiation
of the Dyson equation of G with respect to an external field U(1, 2). The resulting differential
term is not substituted by a kernel, but is kept in a differential form, leading to the linear
integro-differential functional equation

L(1234) = −iGH(13)G(42)+

− iGH(15)G(62)v(5678)L(7834)+

+ iGH(15)v(5678)
δL(6234)

δU(78)
, (10.6)

where GH and G are functionals of U .
The differential equation (10.6) can be cast in the form of a Dyson equation (10.9) where

the kernel ΞI is defined in terms of the kernel of the BSE and the self-energy Σ. This way of
writing allowed me to point out in a clean form (cfr. section 10.1.1) the occurrence of mutual
cancellations between the dynamical BSE kernel and the self-energy. This result confirms
what was already observed by other authors [83, 90, 91], and shows that the differential
approach (10.6) is less affected by this issue thanks to the introduction of the “independent-
particle” term LH = iGHG.

To solve the differential equation, two approximations have been introduced. The first
is the exponential diagonal G (10.14) obtained by G. Lani [82] and M. Guzzo [78]. It relies
on a diagonal G over the single-state basis. This has been proven to give excellent results in
describing one-particle dynamical effects beyond the GW approximation, with no additional
computational effort (see Ref.s [5, 78, 94] and Appendix D). The second approximation is
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the decoupling approximation at the L level, which assumes L diagonal on the transition
basis.

Within these approximations, I divided the problem of solving the equation (10.6), in
solving a bare Coulomb equation (10.21), and a differential equation (10.29).

The solution of the bare Coulomb equation is carried out in section 10.3. It leads to
a polarizability for the vc transition (10.24) where the dynamical effects are only of the
one-particle kind. They include a renormalization of the spectral weight, a shift of the
IP transition energies and the occurrence of additional peaks at higher energy due to the
coupling with other excitations. This is clear when a plasmon pole model is inserted in the
result (10.24), leading to the expression (10.28).

The differential equation (10.29), obtained from (10.6) by neglecting the bare Coulomb
term, reads

Lvc(t1233) = LHvc(t1233)−
∫ t3

t1

∑

gh

GHvv(t15)vvvhg
δLvc(t5233)

δUgh(t55)
dt5 . (10.29)

Following an iterative argument, I introduced and verified an ansatz for L, exploiting the
screened external potential appearing in the exponential G (10.14), I was finally able to solve
the equation. The resulting polarizability reads

χvc(τ) = −iθ(τ)e−i∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W cc

cc (t−t′)dtdt′− i
2

R τ
0

R τ
0 W vv

vv (t−t′)dtdt′+i
R τ
0

R τ
0 W cc

vv(t−t′)dtdt′ (10.35)

here reported for the resonant component only. This is the new result of the chapter and
one of the main results of this thesis.

In obtaining the result above, dynamical contributions in the one-particle G and in the
e-h interaction have been treated on the same footing and are summed to all perturbative
orders in the screened Coulomb interaction W . These dynamical effects give rise to three
terms

− i
2

∫ τ

0

∫ τ

0

W cc
cc (t− t′)dtdt′ − i

2

∫ τ

0

∫ τ

0

W vv
vv (t− t′)dtdt′ + i

∫ τ

0

∫ τ

0

W cc
vv(t− t′)dtdt′ (10.43)

where the W ii
ii are the one-particle contributions. The interference term W ii

jj with j 6= i arises
uniquely from the dynamical contribution in the e-h interaction, it has opposite sign with
respect to the other two terms and it has twice their weight. As a consequence, if there is no
big difference between the three terms, dynamical effects in absorption would be negligible
even when important at the G level.

This result is consistent with what published by F. Bechstedt et al. [90] who found to
first order in W a similar interference term (5.62) looking at the dynamical correction to the
spectral renormalization.

However, the result I obtained is more general because it includes dynamical effects at all
orders in W , describing at the same time the renormalization of the absorption peaks, their
shift (exciton binding) and the multiple excitations arising at higher energies. Moreover
it does not repose on the GW approximation for the self-energy which may give a bad
description of one-particle dynamical effects [5, 78].

On the other hand, as already pointed out, the decoupling approximation at the L level
constitutes a big issue. Although it is a good starting point for the design of approximate
methods, this approximation is not justified in solids because of one major problem: each
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single matrix element W ii
jj tends to 0 because of a factor 1/Nk (see expression (5.52)). Hence

formulae have to be reinterpreted in terms of “effective matrix elements”. Otherwise, and to
be really predictive, one has to go beyond this approximation in order to apply this approach
to calculations in real systems.

Some possible way out to this problem has been explored in this thesis. What is finally
needed to compute optical spectra is

LG=0G′=0(q, ω) =
∑

ijkl

ρ̃ij(q)ρ̃∗kl(q)Lijkl(ω) .

The sum over all transitions, that is proportional to N2
k, cures the 1/Nk problem. To use

this fact, one has to derive an expression for off-diagonal elements of L, and δL/δU . The
decoupling approximation at the single-particle level is inherited by the δL/δU term, which
has the effect of making diagonal the whole equation.

When the decoupling approximation at the G level is not applied to the differential term,
approximations inspired on the RPA (L = −iGHGH) lead to an expression that includes
dynamical off-diagonal effects evaluated on the basis of quantities one is able to compute
with nowadays simulation software.

It seems therefore possible to generalise my results in order to include off-diagonal el-
ements and to allow for quantitative calculations in real materials. The work I made is
therefore a promising approach to give quantitative predictions of multiple exciton genera-
tion and other dynamical effects interesting for fundamental questions and for technological
applications such as the production of solar energy.
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Chapter 11

Conclusions

This work has been developed as part of a project whose goal is the enhancement of the
efficiency of solar cell devices. To this aim two joint aspects can be tackled:
1) taking benefit from the new and tunable properties of nanostructures, and
2) increasing the efficiency of light absorption through the generation of several e-h pairs
from a single absorbed photon (multiple exciton generation: MEG).

My thesis is a fundamental work which addresses these two aspects in the framework of
ab-initio theories, and more specifically within the formalism of the many-body perturbation
theory (MBPT). At a theoretical level, the description of MEG necessarily requires the
inclusion of dynamical effects in the e-h interaction. In the MBPT they are in principle
accounted for by the dynamical kernel δΣ(1, 2)/δG(3, 4) (see (5.45)) of the Bethe-Salpeter
equation (BSE), but in practical implementations dynamical effects are most often neglected
and it is very difficult to include them properly. It is therefore worthwhile to look for an
alternative to the dynamical BSE.

Moreover most of the calculations of optical spectra are performed with the codes DP
[127] and EXC [86], both developed in the framework of the ETSF [173]. These codes make
use of plane-waves basis set, which are extremely efficient for bulk systems. One of the
challenges is to devise methods allowing to keep this efficiency in the description of isolated
systems. In fact, the calculation of electronic properties of isolated systems with plane-wave
codes is cumbersome because, in order to isolate the replicas of the simulation cell, one needs
to increase the size of the cell through the addition of empty space. This method has the
drawback that many convergence parameters (dimension of the basis, bands, matrix dimen-
sion) increase accordingly, until a point where calculations are not feasible any more even
though replicas are still interacting (that is the case of Fig. 8.7). One question I addressed
in my work is:
“Is it possible to devise and set up a method to isolate the repeated replicas within reasonable
convergence parameters? And if so, how does it affect the dynamical contributions determin-
ing the spectrum?”

The dynamical BSE has been the subject of several works (see section 5.2.3), but in
most of these approaches, the dynamical e-h interaction has been included only to limited
order in the screened Coulomb interaction W (most often only to the first order). Moreover
each work focuses on specific spectral features (multiple excitations, renormalization of the
intensity), whereas the spectrum must be known over a wide range of energies if one aims to
application in solar energy production. So, the second question I addressed in this work is:
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“Can we devise a method to predict the optical spectrum in a wide range of energies, allowing
for the dynamical coupling of electron-hole pairs with the other excitations of the system?”

From graphite to graphene

Graphene is an almost 2D crystal of carbon atoms arranged on a honeycomb lattice. It
can be rolled to build nanotubes or manipulated to obtain nanostructures of various shapes.
It is therefore a versatile building block for many possible technological applications. For
instance carbon nanotubes [12], graphene layers [174] or carbon nanotowires [175] have been
used to assemble solar cells of promising performances. The closest bulk system to graphene
is graphite.

I studied the transition from graphite to graphene of the EEL spectra and the spectral
function by increasing the empty space between different layers. The system is considered at
convergence to the isolated graphene where the condition EELS = absorption is met, that is

v00χ̄00 =
χ00v00

1 + v00χ00

≈ v00χ00 . (4.30)

Looking at perpendicular components (Fig. 8.8), the convergence to the isolated system is
reached with a moderate interlayer distance (d ≈ 6d0). The dimension of the system is
anyway high because of the great number of k-points that are needed to sample the BZ
along the kz direction (see Tab. 8.2). Instead, for parallel components (Figs. 8.6 and 8.7),
condition (4.30) is met only for large momenta (see also [19]). In particular, EELS converges
extremely slowly for small parallel momentum because of the divergent Coulomb term in
ε−1 = 1 + vχ.

I demonstrated that small-momentum components of ε−1
GG′(q) do not dominate the con-

vergence of the spectral function. This is because all the matrix elements of WGG′(q) =
ε−1
GG′(q)vG′(q) mix in the self-energy

〈i|Σ(r, r′, ω)|i〉 =

=
i

(2π)4

∑

GG′j

∫
e−iδω

′
∫
ρ̃∗ji(q + G)WGG′(q, ω

′)ρ̃ji(q + G′)

ω − ω′ − Ej + i sign(Ej − µ)
dqdω′ , (7.1)

hence also large-momentum and perpendicular components, which converge faster, con-
tribute.

For this reason, in computing spectral functions, a system with interlayer distance d = 2d0

fulfils the criteria.

In the context of this work, I took part in two experimental sessions at the beamline
TEMPO [6] in the synchrotron light source Soleil, to collect photoemission data from the
valence bands of graphite and graphene samples. (see Appendix D).

Isolating nanostructures

To prevent the interaction between repeated replicas in a more efficient way, I set up the
Coulomb cutoff method.

I demonstrated that this method allows for efficient calculations of EELS and spectral
functions of the isolated system with a reduced computational effort.
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Condition (4.30) is met at all exchanged momenta (small- and large-) and in both the
parallel (Fig. 9.2 ) and the perpendicular (Fig. 9.3) configurations, for a system which is only
d = 2d0 + CC and whose the Brillouin zone has been sampled only with kz = 0 points. I
showed that the Coulomb cutoff method in an improvement on supercell calculations also
for spectral functions (Fig. 9.4). The 2d0 +CC computed with only in-plane points (kz = 0)
gives perfectly converged spectra. The use of the Coulomb cutoff method also improves on
the d = 1d0 system (see Fig. 9.5). The requirement of working with (z0 = Lz/2) + (kz = 0
plane), is not only a technical aspect: my results on the spectral function of the 1d0 and the
1d0 +CC fully validate this prescription, offering physical arguments to justify the limitation
to the in-plane sampling of the BZ. By taking only Fourier components in the plane, one
actually selects only the electrons propagating parallel to the plane, and describes their
properties by means of the cutoff function to isolate them from the other replicas.

I implemented important modifications in the codes DP and EXC. These simulation
codes are daily used by many researchers. Amongst the added features, the most important
are:

• the implementation of the Coulomb cutoff expression (9.20) in the calculation of the
RPA dielectric matrix ε−1

GG′(q, ω), together with the implementation of the external
perturbation correction (EPC) (equation 9.10) which can be enabled at will by the
user,

• the inclusion of the whole calculation from χKS to ε−1 inside a loop over all possible q
points compatible with the k-point grid,

• the production of files of format “.SCR” and “.CFT” containing the dielectric matrix
and the cutoff function. The first of the two can be read by ABINIT vers.6 with no
supplementary modification required to the user. The second file to be used requires
minor modification on ABINIT.

Moreover I implemented some tests to ensure the stability of these modifications, for
example by means of internal checks to prevent contradiction between input variables.

The limits of standard approximations...

I have conducted a detailed study of the absorption spectrum of SrTiO3 using state of the
art techniques in the frameworks of the time-dependent density functional theory and the
many-body perturbation theory. I compared my results with experimental data [109, 120].
Structures of interest are found in the range 0-15 eV (direct experimental gap = 3.75 eV),
where the RPA calculation reproduces the experiment within the limits of this theory (cfr.
Fig. 6.7). I included the e-h interaction by solving the BSE in the standard implementation,
that implies a static and diagonal approximation for the screened Coulomb interaction

WGG′(t− t′) ≈ WGGδGG′δ(t− t′) . (11.1)

The absorption onset is very well reproduced, demonstrating the presence of important
excitonic effects in the system. At higher energy excitonic effects predicted by BSE are
overestimated (cfr. Fig. 6.9). This overestimation is striking in two structures: a strong and
narrow peak at 6.4 eV, corresponding to a step-like bump at ∼ 7 eV in experimental spectra,
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and a broader group of excitations located around 8 eV which are red-shifted in the BSE
spectrum by about 1 eV with respect to the experiments (structures Bb and Cb in Fig. 6.11a).

The analysis I conducted of the BSE spectra allowed me to identify the IP transitions
concurring in the creation of the sharp peak, and to point out the different role played in the
optical transitions by Ti 3t2g, Ti 3eg and Sr 4d electrons in relation with their localised (or
not) character. The remaining discrepancies allowed me to put into evidence the necessity to
go beyond standard approximations to get a reliable spectrum. This result has been obtained
by partially relaxing the diagonal-WGG′ approximation (11.1), and by using instead a (static)
matrix WGG′δ(t − t′) which better takes into account the inhomogeneities of the electronic
response. To improve further the agreement with experiments, most likely one also has to
go beyond the static approximation, but a feasible dynamical theory of absorption is needed
first.

...and developments towards a dynamical theory

I derived the equation of motion for the two-particle correlation function L

L(1234) = −iGH(13)G(42)+

− iGH(15)G(62)v(5678)L(7834)+

+ iGH(15)v(5678)
δL(6234)

δU(78)
. (10.6)

It accounts for dynamical effects at the single-particle and at the two-particle level through a
differential operator. The strategy has been inspired by the recent works by G. Lani [55, 82]
and M. Guzzo [5, 78, 94] conducted in the LSI theoretical spectroscopy group. The underlying
philosophy is to get rid of the self-energy operator and to substitute it with its definition
instead. This is a functional operator formulated in terms of the Coulomb interaction v and
the differential of G with respect to an external field U .

The resulting equation (10.6) is equivalent to the general BSE (5.44). This is shown by
casting (10.6) in the form of a Dyson equation

L(1234) = LH(1234) + LH(1256) [v(5678) + ΞI(5678)]L(7834) (10.11)

where the kernel
ΞI(5678) := Ξ(5678) + iΣ(57)G−1(86) (10.10)

can be expressed in terms of the self-energy Σ and the dynamical BSE kernel Ξ. This allowed
me to point out some mutual cancellations between dynamical effects in Σ and Ξ [83, 90, 91]
and to show that in the differential equation (10.6) these cancellations are partially taken
into account from the very beginning by the introduction of the “asymmetric” independent
particle term LH = −iGHG.

I solved (10.6) by employing an exponential form of G [78, 82] and by assuming the
decoupling between optical transitions.

In equation (10.35)

χvc(τ) = −iθ(τ)e−i∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W cc

cc (t−t′)dtdt′− i
2

R τ
0

R τ
0 W vv

vv (t−t′)dtdt′×
× e+i

R τ
0

R τ
0 W cc

vv(t−t′)dtdt′ +

− iθ(−τ)ei∆ε
H
vcτe−

i
2

R τ
0

R τ
0 W cc

cc (t−t′)dtdt′− i
2

R τ
0

R τ
0 W vv

vv (t−t′)dtdt′×
× e+i

R τ
0

R τ
0 W cc

vv(t−t′)dtdt′ (10.35)
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I report the resulting polarizability for the v → c transition. In this expression three dy-
namical contributions are recognized: two one-particle terms W cc

cc and W vv
vv , depicting the

propagation of the two particles in the many-body environment, and a third contribution
W cc
vv describing the interference arising from the dynamical e-h interaction.

In this result, dynamical effects are summed to all orders in W . I showed that partial
mutual cancellation between one-particle and two-particle dynamical effects are accounted
from the beginning in the equation (10.6). The two contributions are treated on the same
footing throughout the entire derivation, which is necessary not to spoil the account for these
cancellations. The resulting polarizability includes at once the renormalization of the peaks,
the excitonic correction to the QP energies and the occurrence of extra structures in the
optical spectrum, as depicted in the formulae at page 160.

The final result can suggest where dynamical effects should be strong and when their
cancellation would enable to neglect them instead. This gives precious hint for materials
design, for example in the domain of photovoltaics where multiple exciton generation (MEG)
is desirable. In order to become a true ab-initio theory, however, one has to overcome the
approximation of decoupled transitions, since single matrix elements tend to zero in the
thermodynamic limit. We have explored this issue, and we are currently working on a
promising expression that goes beyond the decoupling approximation.
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Appendix A

Solution by iteration of the bare
Coulomb equation

It is easy to verify that the N-th iteration of equation (10.22) reads

y(N)(t0, T ) =
N∑

j=0

(−iv)jIj(t0, T ) (A.1)

where the integral Ij is a series of j chained integrals of the kind

Ij(t0, T ) :=

∫ T

t0

f(t1)

[∫ T

t1

f(t2)

[
. . .

[∫ T

tj−1

f(tj)dtj

]
. . .

]
dt2

]
dt1

︸ ︷︷ ︸
j chained integrals

The 0-th order imposes the definition I0 = 1.

One can demonstrate by induction that

Ij(t0, T ) =
1

j!

[∫ T

t0

f(t)dt

]j
(A.2)

assuming the integrability of function f between the limits t0 and T .

The primitive of f reads

F (t) =

∫ T

t

f(t′)dt′ + C(T )

where C is a constant value which is fixed by the boundary conditions.

In the case j = 1 the equality (A.2) is obviously satisfied, so we need to demonstrate its
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validity for the j + 1 order, assuming it valid for the j-the order:

∫ T

t0

f(t1)

[
. . .

[∫ T

tj

f(tj+1)dtj+1

]
. . .

]
dt1 =

=
1

j!

∫ T

t0

f(t1)[F (T )− F (t1)]jdt1

=
1

j!

j∑

k=0

(−1)k
(
j

k

)
F (T )k

∫ T

t0

f(t1)F (t1)j−kdt1

=
1

(j + 1)!

{
[F (T )− F (t0)]j+1 − F (t0)j+1

j+1∑

k=0

(−1)k
(
j + 1

k

)}

By observing that

0 = 0j+1 = (1− 1)j+1 =

j+1∑

k=0

(−1)k
(
j + 1

k

)
, (A.3)

the demonstration is concluded.
Inserting equality (A.2) into the expression (A.1), the solution to the bare Coulomb

equation is finally found by taking the limit for N →∞

y(tt0,T ) =
∞∑

j=0

1

j!

[
−iv

∫ T

t0

eiTc(t;t24)dt

]j
= exp

{
−iv

∫ T

t0

eiTc(t;t0,T )dt

}
(A.4)

which is equal to the solution (10.23).
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Appendix B

Proof of the solution

In this Appendix I prove that L = LHy with y given by (10.17) and (10.18) is indeed solution
of the bare Coulomb equation. I substitute the solution L = LHy into the bare Coulomb
equation and I get

LH(t1234)e−iv̂(t1234) = LH(t1234)− iv
∫
LH(t1255)LH(t5534)e−iv̂(t5534)dt5 (B.1)

where

v̂vcvc(t1234) =

{
vvcvc
∫ min{t3,t4}

max{t1,t2} e
iTc(t;t24)dt for resonant

vvcvc
∫ min{t1,t2}

max{t3,t4} e
iTv(t;t24)dt for antiresonant

. (B.2)

Resonant and antiresonant part are decoupled because of the assumption of the Tamm-
Dancoff approximation. I will give the prove for the resonant part only, since the same
arguments are valid also for the antiresonant part.

The equality (B.1) is satisfied it is satisfied at every order of an expansion in powers of
v. By expanding exp{v̂}, the equation (B.1) for the resonant part reads:

LH(t1234)

{∑

N

[−iv̂(t1234)]N

N !

}
=

= LH(t1234)− iv
∫ min{t3,t4}

max{t1,t2}
LH(t1255)LH(t5534)

{∑

N

[−iv̂(t5534)]N

N !

}
dt5 , (B.3)

having in mind that all the equation is multiplied by a time-ordering term θ(t3−t1)θ(t4−t2).
In the integrand of the right hand side a term LH(t1234) can be put in evidence by

exploiting the fact that

LH(t1255)LH(t5534) = LH(t1234)eiTc(t5;t24) . (B.4)

I recall the definition of Tk(t; t12) =
∫ t
t2

∫ t1
t
Wk(τ, τ

′)dτ ′dτ . Consequently the bare Coulomb
equation now reads

∑

N

[−iv̂(t1234)]N

N !
= 1− iv

∫ min{t3,t4}

max{t1,t2}
eiTc(t5;t24)

{∑

N

[−iv̂(t5534)]N

N !

}
dt5 , (B.5)

having factorised a term LH(t1234) from both sides of the equation.
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The N-th term of the expansion in the right hand side depends on the (N+1)th power of
v, so the equation is verified if

[−iv̂(t1234)]N+1

(N + 1)!
= −iv

∫ min{t3,t4}

max{t1,t2}
eiTc(t5;t24)

{
[−iv̂(t5534)]N

N !

}
dt5 (B.6)

is true for all N.
By introducing the notation:

t0 = max{t1, t2} (B.7)

B = min{t3, t4} (B.8)

f(t) = eiTc(t;t24) (B.9)

F (t) = Primitive of f(t) , (B.10)

the previous problem can be written as

(−iv)N+1

(N + 1)!

[∫ B

t0

f(t)dt

]N+1

=
(−iv)N+1

N !

∫ B

t0

f(t)

(∫ B

t

f(t′)dt′
)N

dt , (B.11)

or, that is equivalent,

1

N + 1

[∫ t0

B

f(t)dt

]N+1

=

∫ t0

B

f(t)

(∫ t

B

f(t′)dt′
)N

dt . (B.12)

In Appendix B, in force of (A.3), I demonstrated that

IN+1(t0, B) =
1

(N + 1)!

[∫ t0

B

f(t)dt

]N+1

(B.13)

where IN+1 =
∫ t0
B
f(t1)

[
. . .
[∫ tN

B
f(tN+1)dtN+1

]
. . .
]
dt1. By inserting this equality into the

equation (B.12), the latter is proven at any order N which concludes the demonstration.
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Appendix C

Singularity at the origin of the
Coulomb cutoff matrix elements of W

For the calculation of self-energy matrix elements and for the BSE kernel, one needs the
matrix elements of W (9.12). To get to this expression integrals in q and sums over G
and G′ have been split into different terms. Except for the integral enclosing the origin, all
terms have been approximated as in (9.23), taking them equal to a constant value times the
integrated volume (cfr. also footnote 49). This procedure is standard for points with non-
null parallel components, whereas for points on the kz axis, this is justified by the employ
of the Beigi’s prescription. At the end of the manipulation the only term to be treated by
hand is

Isz =

∫ π/Lz

−π/Lz
dqz

∫

A0

dq‖y(q‖, qz, 0, 0)

which encloses the origin (cfr. equation (9.24)). In order to perform the integration in qz,
I used the fact that in isolated systems the height of the BZ shrinks to 0, justifying the
expression

Isz ≈
2π

Lz

∫

A0

dq‖y(q‖, 0, 0, 0) =
2π

Lz
I‖sz

which is the term appearing in equation (9.26) concluding section 9.1.2.

In this appendix I treat the problem of how to compute the planar integral

I‖sz =

∫

A0

dq‖y(q‖, 0, 0, 0) . (C.1)

This problem has not be addressed in chapter 9.

Analytic integral at vanishing q‖

The problem in evaluating (C.1) comes from the divergence of the CC interaction. In fact,
the FC inverse dielectric function ˇ̌ε−1, and the Bloch integrals ρ̃ are well behaved also at the
origin. We can extract them from the integration following similar arguments to those used
for (9.23):

I‖sz ≈ ρ̃∗ij(0)ˇ̌ε−1
00 (0, ω)ρ̃mn(0) 4π

∫

A0

fC(q‖)

q2
‖

dqxdqy = ρ̃∗ij(0)ˇ̌ε−1
00 (0, ω)ρ̃mn(0)I0 . (C.2)
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(a) A0
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t

S'/2qm

(b) Small triangle inside A0

Figure C.1: Geometry of the analytic integral of long-range CC on the A0 area which is centred on the
origin.

The area ABZ of the BZ is an hexagon of side S = b/
√

3 where b is the length of the
unitary vector b = 4πa−1/

√
3 and a is the parameter of the unitary cell. The radius of the

inscribed circle R = b/2.
If a Mxy ×Mxy × 1 grid is used to sample the BZ, the area A0 is an hexagon of side

S ′ = S/Mxy and radius of the inscribed circle R′ = R/Mxy. The geometry is reported in
Fig. C.1a.

At convergence with the k‖-point sampling, the longest value of q‖ = L′ can be consid-
ered small enough for the CC interaction to be substituted with its long-range limit (9.4).
Accordingly the integral to evaluate reads

I0 ≈
∫

A0

4πz0

q‖
dqxdqy = 48πz0

∫ π/6

0

∫ R′
cos(θ)

0

dq‖dθ = 24πR′z0 log(3) , (C.3)

where I used the symmetry of the integrand function to rewrite the integral inside the hexagon
as twelve times the integral in the smaller triangle of Fig. C.1b.

The approximation I implemented in all calculations for the evaluation of the Isz integral
is

Isz =
2π

Lz
× ρ̃∗ij(0)ˇ̌ε−1

00 (0, ω)ρ̃mn(0)× 24πR′z0 log(3)

= ρ̃∗ij(0)ˇ̌ε−1
00 (0, ω)ρ̃mn(0)12π2 log(3) b M−1

xy ,

having used z0 = Lz/2.
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Appendix D

Dynamical effects in the Green’s
function of real materials

This work is inscribed into a much wider research project on the dynamical contribution to
electronic correlation. The dynamical effects in the one-particle G have been object of study
of the Ph.D. tesis of G. Lani [82] and M. Guzzo [78].

The latter work M. Guzzo used the exponential form of G (10.14) (derived together
with G. Lani [55, 82]) to correct theoretical GW spectra by means of a post-processing
procedure. This correction to dynamical effects improves over the GW approximation and
gives a realistic description of satellite structures. Moreover, other measurable effects usually

2

by the existence of two main plasmon peaks? Finally, it
allows us to make predictions for the satellite structure
in graphene.

ARPES measurements were performed at the UHV
photoemission station of the TEMPO beamline [20] at
the SOLEIL synchrotron radiation source. Linearly po-
larized photons from the Apple II type Insertion De-
vice (HU44) were selected in energy using a high resolu-
tion plane grating monochromator with a resolving power
E/∆E = 5000. The end-station chamber (base pressure
10−10 mbar) is equipped with a modified SCIENTA-2002
electron analyzer with a delay-line 2D detector which op-
timizes the detection linearity and signal/background ra-
tio [21]. The overall energy resolution was better than
200 meV. The photon beam impinged on the sample
at an angle of 43◦, and photoelectrons were detected
on an angular range of 12◦. Highly-oriented pyrolytic
graphite (HOPG) was cleaved in the introduction stage
of the UHV system exposing a new surface immediately
before the transfer to UHV. At 800 eV kinetic energy,
the Brillouin zone (BZ) is observed with an emission an-
gle of about 8◦. The measured photoemission map was
integrated over the spectral intensity originated by one
BZ. The Fermi level was obtained by measuring a clean
Au(111) surface.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20  0

J(
ω

) 
(a

rb
. 

u
n

its
)

E - EF (eV)

XPS 800 eV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20  0

J(
ω

) 
(a

rb
. 

u
n

its
)

E - EF (eV)

XPS 800 eV
Total

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20  0

J(
ω

) 
(a

rb
. 

u
n

its
)

E - EF (eV)

XPS 800 eV
Total

Intrinsic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20  0

J(
ω

) 
(a

rb
. 

u
n

its
)

E - EF (eV)

XPS 800 eV
Total

Intrinsic
GW

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20  0

J(
ω

) 
(a

rb
. 

u
n

its
)

E - EF (eV)

XPS 800 eV
Total

Intrinsic
GW

Int. 1-pole

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-100 -80 -60 -40 -20  0

J(
ω

) 
(a

rb
. 

u
n

its
)

E - EF (eV)

XPS 800 eV
Total

Intrinsic
GW

Int. 1-pole

-330 -320 -310 -300 -290

P3
π+σ

π

Ref. [22]

-330 -320 -310 -300 -290

P3
π+σ

π

Ref. [22]
Ref. [23]

-330 -320 -310 -300 -290

P3
π+σ

π

Ref. [22]
Ref. [23]

FIG. 1. (Color online) XPS spectrum of HOPG at 800 eV
photon energy. The experimental data collected at normal
emission (blue dots) are compared to the spectral function
A(ω) calculated from GW (magenta dashed) and from a
multi-pole version of Eq. (1) (green dot-dashed). On top of
the latter the black solid line also includes extrinsic and in-
terference effects. The result for A(ω) in the single plasmon
pole approximation (red dotted) is shown for comparison. All
curves are scaled to match the intensity of the main QP peak
at −20 eV. All spectra contain photoabsorption cross sec-
tions, the calculated secondary electron background and 0.4
eV Gaussian broadening to account for finite BZ sampling and
experimental resolution. (inset) C 1s spectrum as measured
in the present work and in Ref. [22] and [23] (arb. units).
Signatures of the π and π+σ plasmons are clearly visible, as
well as the feature termed P3 in [22, 23].

The experimental result is shown by the blue dots in
Fig. 1. The QP bandstructure is found between the Fermi
level and 25 eV binding energy. A tail extends down to
about -30 eV, followed by a broad satellite in the range
[-65;-30] eV and a washed out structure below -65 eV.
The average distance between the main satellite and the
QP region is close to the energy of the π + σ plasmon
(∼ 27 eV) in the loss spectrum of graphite. There is no
clear structure that one could assign to the π plasmon at
7 eV. Overall, there is too much broadening to draw reli-
able conclusions only from the data. In [10, 22] features
beyond the QP peaks have been attributed to extrinsic
background effects and subtracted from the raw data in
order to obtain an “intrinsic” spectrum. Our work leads
to a revision of this hypothesis, as we show below.
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FIG. 2. (Color online) GW spectral function A(ω) (solid
black) with imaginary (dotted blue) and shifted real (dashed
green) parts of the GW self-energy. (a) Lowest valence
state at k = (0.0, 0.0, 0.25). (b) Highest valence state at
k = (0.33, 0.33, 0.25). Inset: zoom on A(ω).

We first look at the results of a GW calculation [24].
The total GW spectral function (magenta dashed curve
in Fig. 1) well describes the QP part of the spectrum
[25]. Moreover, it exhibits a small peak due to the π
plasmon, that may explain the tail around −25 eV, and
a second peak in correspondence with the first exper-
imental satellite, that can be attributed to the π + σ
plasmon. Overall, the GW result is of sufficiently good
for a qualitative discussion, in striking contrast to e.g.
the case of silicon. In order to understand this point,
and to exclude a simple coincidence, we analyze the GW
self-energy in a single plasmon-pole model [26]. The cor-
relation part of the self-energy for a hole is then approx-
imatively Σc(ω) = λ/[ω − ε + ωp − iγ], with γ, ωp and λ
respectively the inverse lifetime, the plasmon frequency,
and the strength; ε is the self-consistently calculated QP
energy. This model describes the GW self-energy around
each plasmon satellite, as one can see by qualitative com-
parison with the full ab initio calculation: the latter is

Figure D.1: Experimental data (blue dots) from valence photoemission of graphite at photon energy
hν =800 eV. GW calculation (violet dashed) and GW+C* with single and multiple plasmon pole models
(dotted red and dashed-dotted green). Multi-pole GW+C* including extrinsic effects (black line). Secondary
electrons have been added to all calculations. Image taken from [94].
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neglected have been added to the calculation, such as background electrons, extrinsic and
interference effects [5]. The first application of this method (GW+C*) gave extremely good
results in the description of the spectrum of Si [5]. In this application some approximations
were used, in particular the plasmon pole approximation for the screening W .

With the aim to validate this approach in more general cases, it was necessary to study
materials with a more complex plasmonic structure. Graphite and graphene, with their
double peak in the EEL spectrum were excellent candidates for this study.

First of all, to study the satellite structures in photoemission spectra from valence states,
good experimental data were needed. Actually only recently the attention is moving from
quasiparticles to satellites, so in literature it is hard to find well resolved data in the wide
energy range necessary for this analysis. This made necessary the acquisition of new exper-
imental data.

I participated in the measurement of angle-resolved photoemission spectra (ARPES)
from graphene and graphite samples. Measurements have been collected on July 2011 and
on February 2012 at the TEMPO [6] beamline in the Soleil synchrotron radiation source.

A photon energy of 800 eV has been employed in order to have good signal to noise ratio
from the satellites; experimental data from the ABA graphite appear as blue dots in Fig. D.1.
At this energy, the electron mean free path is long enough for the experimentalists to be
sensitive essentially to the bulk, which does not constitute a problem in studying graphite
but imposes strong geometry constraints to the measurements on graphene. For this reason
we analysed electrons photoemitted with a grazing angle of 12◦ with respect to the surface
of the sample.

The analysis conducted on graphite data, reported in Fig.D.1, shows clearly that the GW
approximation (violet dashed line) reproduces only qualitatively the measured satellites,
whereas the full GW+C* method (black solid line) perfectly reproduces the experiment.
This analysis and the derivation of a model to predict the level of accuracy one has to
expect from GW in describing satellites yielded a work that has been recently submitted
to Physical Review B [94]. My calculations, shown in Chapter 8, on the 2d0 and the 4d0

geometries have been of precious help in understanding the flaws of the GW approximation
beyond the quasiparticle region.

The analysis of graphene data is on the way.
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