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ABSTRACT

With tremendous generation of data, we have data collected from different information

sources having heterogeneous properties, thus it is important to consider these represen-

tations or views of the data. This problem of machine learning is referred as multiview

learning. It has many applications for e.g. in medical imaging, we can represent human

brain with different set of features for example MRI, t-fMRI, EEG, etc. In this thesis, we

focus on supervised multiview learning, where we see multiview learning as combination

of different view-specific classifiers or views. Therefore, according to our point of view, it is

interesting to tackle multiview learning issue through PAC-Bayesian framework. It is a tool

derived from statistical learning theory studying models expressed as majority votes. One

of the advantages of PAC-Bayesian theory is that it allows to directly capture the trade-off

between accuracy and diversity between voters, which is important for multiview learning.

The first contribution of this thesis is extending the classical PAC-Bayesian theory (with a

single view) to multiview learning (with more than two views). To do this, we considered

a two-level hierarchy of distributions over the view-specific voters and the views. Based

on this strategy, we derived PAC-Bayesian generalization bounds (both probabilistic and

expected risk bounds) for multiview learning. From practical point of view, we designed

two multiview learning algorithms based on our two-level PAC-Bayesian strategy. The first

algorithm is a one-step boosting based multiview learning algorithm called as PB-MVBoost.

It iteratively learns the weights over the views by optimizing the multiview C-Bound which

controls the trade-off between the accuracy and the diversity between the views. The second

algorithm is based on late fusion approach (referred as FusionallCq ) where we combine the

predictions of view-specific classifiers using the PAC-Bayesian algorithm CqBoost proposed

by Roy et al. Finally, we show that minimization of classification error for multiview weighted

majority vote is equivalent to the minimization of Bregman divergences. This allowed us to

derive a parallel update optimization algorithm (referred as MωMvC2) to learn our multiview

weighted majority vote.
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INTRODUCTION

Machine learning (ML) is a subfield of Artificial Intelligence that focuses on the study of

algorithms that “learn” from input data (past experiences) to make decisions (knowledge

or expertise) on new data. Typically, the input to a learning algorithm is training data

(corresponds to experience) and the output is a model (corresponds to expertise) that make

decisions on the new data. In the past few decades, machine learning algorithms have

been applied to many real-word applications for example spam filtering, credit card fraud

detection, digit recognition, medical diagnostics, recommendation systems, search engines,

etc. Machine learning algorithms can be broadly divided into two categories i.e. supervised

[59, 87] and unsupervised learning [37]1.

• Supervised Learning: The learning algorithm is provided with input examples and

their desired outputs (called as labels). The objective is to learn a classification function

(referred as classifier) which classifies new examples into different labels (as illustrated

in Figure 1.1(a)).

• Unsupervised Learning: The learning algorithm is provided with input examples but

without any labels. The objective is to cluster the data into different categories or

classes based on similarities between the data points (as illustrated in Figure 1.1 (b)).

In this thesis, we focus on the problem of supervised learning where we learn a classifier

using the training data drawn from an unknown distribution D which performs well on

1There exists other learning paradigms, such as semi-supervised learning [16], transfer learning [64],
reinforcement learning [82], etc.
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CHAPTER 1. INTRODUCTION

(a) Supervised Learning

(b) Unsupervised Learning

Figure 1.1: An example of (a) Supervised Learning (classification of cats and dogs) and (b)
Unsupervised Learning (clustering of cats and dogs)

new unseen data drawn from the same distribution. In other words, we want the learned

classifier to generalize well from the training data to any data drawn from the same distribu-

tion. Therefore, we need to study the generalization guarantees in form of generalization

bounds [86, 88] for learning algorithms. Probabilistic generalization bounds with a high

probability on learning sample of size m drawn from distribution D, provides an estimation

of true risk (or generalization error) of a classifier in terms of empirical error on training data,

complexity of classifier and size of learning sample. In contrast, non-probabilistic general-

ization bounds are the expectation bounds on all possible learning samples of size m drawn

from distribution D. In our work, we derive non-probabilistic generalization bounds for the

PAC-Bayesian theory [35, 57] which provide theoretical guarantees for models that take the

form of majority vote over set of classifiers. Assuming a priori weights (or distribution) over

set of classifiers, PAC-Bayesian theory after seeing learning sample, aims at finding a poste-

rior distribution over these set of classifiers leading to well performing weighted majority

vote. Therefore, it is interesting to derive the non-probabilistic generalization bounds from

PAC-Bayesian standpoint where the posterior distribution is data dependent.

In many real-life applications, we have data collected from different information sources

2



having heterogeneous properties, so it is important to consider these multiple representa-

tions or views of the data. This issue is referred as multiview learning. It has been applied to

many real applications for example in multilingual regions of the world, including many

regions of Europe or in Canada, documents are available in more than one language [2].

As another example, in multimedia content understanding, multimedia segments can be

described by their audio and video signals [4]. Therefore, multiview learning has become a

promising topic with wide applicability.

In literature, there exists different ways to tackle multiview learning, spurred by seminal work

of Blum and Mitchell [9] on co-training. To adapt multiview learning to single view setting,

traditional machine learning algorithms such as support vector machines concatenate all

the views of the data (also referred as early fusion [79]). However, this method does not take

into account the view-specific properties of the mutliview data therefore tends to overfit

in the case when we have small number of training examples [91]. Another approach is

based on late fusion [6] where we combine classifiers learned on each view (view-specific

classifiers) in order to exploit different representations for improving the performance of

the final learned model [79]. In such situation, it is important to consider the relationships

between the multiple views appropriately or in other words consensus or diversity between

the views [2, 41, 50, 60]. In this thesis, we focus on supervised multiview learning, where

we see multiview learning as combination of different view-specific classifiers or views.

Therefore, according to our point of view, it is interesting to tackle multiview learning issue

through PAC-Bayesian framework. It is an interesting theoretical tool to understand this

setting as it allows to directly capture the trade-off between accuracy and diversity between

voters [35, 60]. In consequence, we have extended the single-view PAC-Bayesian analysis to

multiview learning. Moreover, compared to the PAC-Bayesian work of Sun et al. [81], we are

interested here to the more general and natural case of multiview learning with more than

two views. From practical point of view, we designed three multiview learning algorithms

exploiting late fusion and boosting paradigms.

Context of this work This thesis was carried out in machine learning teams from two

establishments: the Data Intelligence group of Laboratoire Hubert Curien UMR CNRS 5516,

part of University of Saint-Étienne and University of Lyon, and the Data Analysis, Model-

ing and Machine Learning (AMA) group of Laboratoire Informatique de Grenoble, part of

Grenoble Alps University. This project is partially funded by the “Région Rhône-Alpes” and

ANR project LIVES (Learning with Interacting ViEws).
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CHAPTER 1. INTRODUCTION

Organization of the thesis This dissertation is organized as follows. Part I reviews the

background work relevant to this thesis:

• Chapter 2 introduces the notions related to statistical learning theory that are nec-

essary for the rest of this document. We begin with two main principles of risk mini-

mization for learning theory: i) empirical risk minimization (ERM) and ii) structural

risk minimization (SRM), followed by examples of some classic supervised machine

learning algorithms.

• Chapter 3 is dedicated to multiview learning in general. We present basic concepts

and background for multiview learning. We introduce two fundamental principles of

multiview learning: i) consensus and ii) diversity. For each principle, we present some

of multiview learning algorithms.

In Part II, we present the contributions of our work:

• Chapter 4 presents a detailed overview of the PAC-Bayesian theory for single view

learning. In this chapter, we derive the non-probabilistic generalization bounds ex-

pressed as expected risk bounds for the PAC-Bayesian theory.

• Chapter 5 presents the PAC-Bayesian analysis for multiview learning with more than

two views. We considered a hierarchy of distributions, i.e. weights, over the views and

the view-specific classifiers: i) for each view a posterior and prior distributions over

the view-specific classifiers, and ii) a hyper-posterior and hyper-prior distribution

over the set of views. Based on this setting, we derive PAC-Bayesian generalization

bounds (both probabilistic and expected risk bounds) for multiview learning with

more than two views. Moreover, we derive the generalization bound for the multiview

C-Bound which we use to derive boosting based algorithm PB-MVBoost.

• Chapter 6 presents two multiview learning algorithms based on boosting and late

fusion approaches. First algorithm is a boosting-based learning algorithm, called as

PB-MVBoost. It iteratively learns the weights over the view-specific classifiers and

the weights over the views by optimizing the multiview C-Bound which controls a

trade-off between the accuracy and the diversity between the views. Second algorithm

is a two-step learning algorithm FusionallCq which combines the predictions of view-

specific classifiers using a PAC-Bayesian algorithm CqBoost [73]. In order, to see the

potential of proposed algorithm,

4



• Chapter 7 shows that the minimization of the classification error of multiview weighted

majority vote is equivalent to the minimization of Bregman divergences. This allows

us to derive a parallel-update multiview learning algorithm MωMvC2. We experimently

study our algorithm on three publicly available datasets.

Finally, in Chapter 8 we conclude our work and discuss possible directions for future work.
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2
SINGLE VIEW SUPERVISED LEARNING

In machine learning, the goal of supervised learning is to generally learn a classification

function or a classifier using a set of labeled examples in order to make predictions on new

unseen data. In this chapter, we introduce formally the supervised learning setting (for

single view) and describe the main ideas of statistical learning theory, with a focus on binary

classification. We present two main principles of risk minimization for learning theory: i)

empirical risk minimization (ERM) and ii) structural risk minimization (SRM). Lastly, we

recall some of supervised machine learning algorithms.

2.1 Introduction

The objective of supervised learning [59, 87] is to learn a classification function or a model

using a set of labeled examples in order to make predictions on new unlabeled data 1. A learn-

ing algorithm is provided with a training sample of m examples denoted by S = {(xi , yi )}m
i=1,

that is assumed to be independently and identically distributed (i.i.d.) according to a un-

known joint distribution D over X ×Y , where X ∈Rd is a d−dimensional input space and

Y is the output space. The notation (D)m stands for the distribution of such a m-sample,

and DX for the marginal distribution on X . In this thesis, we consider binary classification

tasks where Y = {−1,+1}.

1Note that there exists other learning paradigms, such as unsupervised learning [37], semi-supervised
learning [16], transfer learning [64], reinforcement learning [82], etc.
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We consider a hypothesis space H consisting of a set of classifiers such that ∀h ∈ H,h :

X → Y . In supervised learning, our objective is to learn a function (or in other words a

classifier) hS :X →Y belonging to the hypothesis space H using a training sample S, such

that hS “best” predicts the label y from x for any input example (x, y) drawn from the un-

known distribution D. In order to learn hS , we need a criterion to evaluate the quality of any

hypothesis h ∈H. Therefore, we define the notion of true risk:

Definition 2.1. (True Risk). The true risk is the expectation of the classification errors of a

classifier h ∈H over the data distribution D:

RD(h) = E
(x,y)∼D

1[h(x)6=y], (2.1)

where 1[p] = 1 if predicate p is true and 0 otherwise.

The goal of supervised learning is to find a classifier which has the smallest true risk. However,

we can not compute the true risk of a classifier h ∈H as the distribution D over data is

unknown. Therefore, we rely on its empirical counterpart, i.e., we compute the error of the

classifier on the training sample S. This is referred as the empirical risk.

Definition 2.2. (Empirical Risk). For a given training sample S = {(xi , yi )}m
i=1 consisting of m

examples drawn from the unknown data distribution D, we define the empirical risk of a

classifier h ∈H as:

RS(h) = 1

m

m∑
i=1

1[h(xi )6=yi ]. (2.2)

2.2 Strategies for Minimization of Risk

In order to solve the binary classification task, one natural solution is to pick a classifier

h ∈ H which minimizes the empirical risk over the learning sample S. However, in real

world scenarios, we have a limited number of training examples and we can always find a

complex hypothesis which perfectly fits the training samples, i.e., RS(h) = 0. It can happen

that the learned hypothesis h commits a lot of errors on new unseen data drawn from the

distribution D. This problem of having the empirical risk tending to zero and large deviation

between the true risk and the empirical risk is called overfitting. Therefore, while finding

a good hypothesis from hypothesis space we need to control the trade-off between the

minimization of empirical risk and complexity of hypothesis space. This trade-off is called

bias-variance trade-off. The solution to avoid overfitting is to restrict the hypothesis space

to simple ones. In this section, we present two principles of risk minimization for learning

10
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theory: i) empirical risk minimization (ERM) and ii) structural risk minimization (SRM) [85].

We present these principles in the next sections.

2.2.1 Empirical Risk Minimization (ERM)

The idea behind the ERM principle is to restrict the hypothesis space H (consisting of simple

classifiers) and then pick the classifier h∗
S ∈H which has the smallest empirical error [87],

such that

h∗
S = argmin

h∈H
RS(h). (2.3)

The fundamental question with ERM principle is: does the minimization of the empirical risk

leads to a good solution in terms of the true risk? The answer to this question lies in statistical

notion called consistency. According to this concept, we need to pick the hypothesis h ∈H
which has low deviation between the true risk and the empirical risk when the size of training

examples tends to infinity. Vapnik [85] proved that ERM principle is consistent if and only if:

∀ε> 0, lim
m→∞ Pr

S∼(D)m

[
sup
h∈H

[
RD(h)−RS(h)

]≤ ε

]
= 0, (2.4)

The direct implication of the above result is the generalization bound which is a tool to

evaluate the deviation between the true risk and the empirical risk for all hypothesis h ∈H
learned on a learning sample S. These bounds are referred as PAC (Probably Approximately

Correct) bounds [83]. The general form of PAC bounds is given as:

∀h ∈H, Pr
S∼(D)m

[∣∣RD(h)−RS(h)
∣∣≤ ε

]
≥ 1−δ, (2.5)

where ε≥ 0 and δ ∈ (0,1]. It means that with a high probability on the random choice of the

learning sample the deviation between the true risk RD(h) and the empirical risk RS(h), for

a given h ∈H, is less than certain value ε (that we want as small as possible).

In this section, we present two generalization bounds that hold for any hypothesis h ∈H
and takes the form given by Equation (2.5). With a high probability on the random choice of

the learning sample, they bound the difference between the true risk of a classifier and its

empirical risk in terms of number of examples m and the complexity of hypothesis space H.

Note that, these bounds holds for any classifier h ∈H.

2.2.1.1 Bound Based on the VC-dimension

One of the possible way to measure the complexity of the hypothesis space H is the VC-

dimension, proposed by Vapnik and Chervonenkis [88]. We consider m data points in
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learning sample S. These m points can be labeled in 2m ways for binary classification task.

Therefore, we can define 2m different classification problems with m data points. If for any

of these classification problems, we can find h ∈H that separates the two classes with a

zero empirical error, then we say H shatters m points. The maximum number of data points

that can be shattered by any hypothesis space H is the VC-dimension of H. For example,

the VC-dimension for linear classifiers is d +1, where d is the dimension of the hypothesis

space H. It helps us to measure the complexity of the hypothesis space or in other words

the learning capacity of the hypothesis space. Using this notion of calculating the learning

capacity of a hypothesis space, Vapnik & Chervonenkis [88] derived following generalization

bound:

Theorem 2.1. (Generalization bound based on the VC-dimension). Let D be an unknown

distribution on X ×Y , let H be a continuous hypothesis space with VC-dimension V C (H).

For any h ∈H, with probability of at least 1−δ on the random choice of the learning sample

S ∼ (D)m , we have:

RD(h) ≤ RS(h)+
√

V C (H)
(

ln 2m
V C (H) +1

)+ ln(4/δ)

m
.

This bound suggests that with a high probability on the random choice of the learning

sample, the empirical risk of a classifier tends to its true risk if we have a large number of

training examples and a hypothesis space H with a low VC-dimension. In practice, for some

cases computation of the VC-dimension is not feasible and there are cases for which the

VC-dimension equals to infinity. For example the VC-dimension of the K-nearest neighbour

classifier is infinite for K = 1. Moreover, the VC-dimension focuses on the worst labeling

of examples for the hypothesis space H. In the next section, we present the generalization

bound based on the Rademacher complexity which is calculated on average on all possible

labels instead of the worst labeling scenario and that are data dependent.

2.2.1.2 Bound Based on the Rademacher Complexity

Generalization bounds based on the Rademacher complexity [49] measures how well any

hypothesis h ∈H correlates with random noise variables σi instead of true labels yi . These

random variables σi are called as Rademacher random variables σi and are defined by

σi =
+1 with prob. 1/2,

−1 with prob. 1/2.

12
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We compute the empirical Rademacher complexity of hypothesis space H with respect to a

learning sample S by

RS(H) = E
σ

[
sup
h∈H

1

m

m∑
i=1

σi h(xi )

]
. (2.6)

The above expression measures the correlation of H with random noise over the learning

sample S and has the advantage of measuring the complexity of a hypothesis space that is

data dependent. However, we are interested in measuring the correlation of H with respect

to data distribution DX over X . Therefore, we compute the expectation of RS(H) over all

learning samples of size m drawn i.i.d. from distribution DX :

RD(H) = E
S∼(D)m

[
RS(H)

]
.

This is the Rademacher complexity of a given hypothesis space H. Following theorem

presents the classical generalization bound based on Rademacher complexity [6, 49]:

Theorem 2.2. (Generalization bound based on the Rademacher Complexity). Let D be an

unknown distribution on X ×Y , let H be a continuous hypothesis space, for any h ∈H, with

probability of at least 1−δ on the random choice of the learning sample S ∼ (D)m , we have:

RD(h) ≤ RS(h)+RD(H)+
√

log 1
δ

2m
,

and RD(h) ≤ RS(h)+RS(H)+3

√
log 2

δ

2m
.

The second bound in the above theorem depends on the empirical Rademacher complexity

which can be easily calculated from the learning sample S. These bounds suggests that

with a high probability on the random choice of the learning sample, the empirical risk of a

classifier tends to its true risk if we have a large number of training examples and hypothesis

space H of low Rademacher complexity.

2.2.2 Structural Risk Minimization (SRM)

Since restricting the hypothesis space H requires prior knowledge about the learning

task and the data. One solution is to consider an infinite sequence of hypothesis classes

H1,H2, . . . with increasing complexities such that ∀i ∈ {1,2, . . . },Hi ⊂Hi+1. For each hypoth-

esis space Hi , the learning algorithm selects a hypothesis that minimizes the empirical

13
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risk. Finally, from these (sub-)optimal hypotheses, one picks the hypothesis h∗
S which has

smallest empirical risk.

h∗
S = argmin

h∈Hi ,i∈{1,2,... }

{
RS(h)+pen(Hi )

}
, (2.7)

where pen(Hi ) is the penalty of the hypothesis space Hi depending upon its complexity.

In the next section, we present classifier combination approaches where instead of picking

a h ∈H, we construct a weighted majority vote over all the classifiers from H. Classifier

combination approaches has shown to perform well in practice as it helps to reduce both

bias and variance.

2.3 Classifier Combination Approaches

Ensemble methods or classifier combination approaches [26, 50, 71] aims at combining the

outputs of individual classifiers (weighted or unweighted combination) from the hypoth-

esis space H. In practice, it has been shown that the final learned combination performs

better than individual classifiers [26, 50]. A necessary condition for better performance of

ensemble methods is that individual classifiers should be weak and diverse [43]. A classifier

is weak when its error rate is better than random guessing on any new example x drawn

from the unknown distribution D and two classifiers are diverse if they make errors on

different examples. If these conditions are satisfied then the reason for better performance

of ensemble methods is that they try to decrease both variance and bias. Variance is the

amount by which the prediction, over one training sample, differs from the expected value

over all the training sample. Bias is the amount by which the expected classifier prediction

differs from the true prediction of the training sample.

Reducing Variance. We can learn different classifiers from a classifier space H having the

same empirical risk on the training data. However, the learned classifiers can have dif-

ferent generalization guarantees. Therefore, instead of picking a single classifier we can

combine the classifiers. The combination may not perform better than a single classifier

but it will eliminate the risk of picking a bad single classifier. This scenario is illustrated by

Figure 2.1 (a). In the figure, {h1, . . . ,h4} are single classifiers which has similar empirical risk

but different generalization guarantees and h∗ is an optimal classifier in the terms of the

true risk. By combining the four accurate classifiers, we can find a good approximation to h∗.
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(a) Reducing Variance (b) Reducing Bias

Figure 2.1: Reasons for better performance of ensemble methods than a single classifier.
By combining the accurate classifiers {h1, . . . ,h4}, we can find a good approximation to the
optimial classifier h∗.

Reducing Bias: There is a possibility that the considered classifier space does not con-

tain the optimal classifier h∗. Then the classifier combination may help us to find a good

approximation to the optimal classifier. Figure 2.1 (b) shows the case when the optimal

classifier is outside the considered classifier space.

2.3.1 Notations and Setting

In order to learn a weighted combination over all the classifiers in H, we define the majority

vote classifier as follows:

BQ (x) = sign

[
E

h∼Q
h(x)

]
, (2.8)

where Q is a distribution over h ∈H. The learner objective is to find the posterior distribution

Q that leads to well-performing majority vote BQ . We define the true risk and the empirical

risk of the majority vote as follows:

Definition 2.3. (True Risk of the majority vote). The true risk of the weighted majority vote

classifier over the data distribution D:

RD(BQ ) = E
(x,y)∼D

1[BQ (x)6=y]. (2.9)
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Definition 2.4. (Empirical Risk of the majority vote). For a given training sample S =
{(xi , yi )}m

i=1 consisting of m examples drawn from the unknown data distribution D, we

define the empirical risk of the majority vote classifier as:

RS(BQ ) = 1

m

m∑
i=1

1[BQ (xi )6=yi ]. (2.10)

In the next section, we present the classical PAC-Bayesian generalization bound which

upper bounds the deviation between the true risk and the empirical risk of the majority

vote classifier in terms of Kullback-Leibler divergence between the prior and the posterior

distributions over the set of classifiers and the number of traning examples m.

2.3.2 The PAC-Bayesian Generalization Bound

The PAC-Bayesian theory, introduced by McAllester [57], is a tool to derive theoretical

guarantees for models that take the form of a majority vote over the hypothesis space H
(defined as in Equation (2.8)). The PAC-Bayesian theory assumes a prior distribution P over

the set of classifiers from hypothesis space H, aims at learning – from the learning sample

S – a posterior distribution Q that leads to a well-performing weighted majority vote BQ

i.e with a low true risk. The following theorem is the PAC-Bayesian generalization bound

proposed by McAllester [58]:

Theorem 2.3. (The PAC-Bayesian Theorem [58]) For any distribution D over X ×Y , for any

hypothesis space H, for any prior distribution P over H, for any δ ∈ (0,1], with a probability

of at least 1−δ over the learning sample S ∼ (D)m , we have for all posterior distributions Q

over H:

RD(BQ ) ≤ 2 · E
h∼Q

RD(h) ≤ 2 ·

 E
h∼Q

RS(h)+

√√√√K L(Q||P )+ ln 2
p

m
δ

2m

 ,

where K L(Q||P ) = E
h∼Q

ln Q(h)
P (h) is the Kullback-Leibler divergence between the learned posterior

distribution Q and P.

From the above theorem, the true risk of the majority vote can be seen as trade-off between

expectation of individual classifiers risk, KL divergence term that captures the deviation

between prior P and posterior Q distributions over the set of classifiers from hypothesis

space H and the number of training examples m. In Chapter 4, we present the general

PAC-Bayesian theory in more details. Since by definition the learned posterior distribution Q
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is data dependent, we propose in Chapter 4 a new formulation of the PAC-Bayesian theorem

that aims at bounding the expectation over all the posterior distributions we can learn for a

given algorithm (and a learning sample size). Our new PAC-Bayesian theorem is then not

anymore expressed as a probabilistic bound over a random choice of learning sample S, but

as an expectation risk bound, bringing another point of view on the PAC-Bayesian analysis.

Note that all the generalization bounds we have presented so far are probabilistic bounds.

2.4 Some Supervised Learning Algorithms

In this section, we present three algorithms for the supervised machine learning.

2.4.1 Support Vector Machines

Support Vector Machines [10, 20] is one of the most commonly used supervised learning

algorithm for binary classification tasks. Support vector machines (SVM) outputs a classifier

which takes the form of an optimal hyperplane classifying a new given example into one

of the label. For example, in a two dimensional space this hyperplane is a line dividing

the plane in two parts corresponding to each label. Here, “optimal hyperplane” means the

seperating hyperplane that maximizes the “margin” of the training sample. In this thesis, we

use SVM models to derive a new algorithm for multiview learning (in Chapter 6).

In a d-dimensional input space X ∈Rd , the equation of hyperplane is defined as follows:

〈w, x〉+b = 0 ⇐⇒
d∑

i=1
wi xi +b = 0,

where 〈·, ·〉 is dot product between two vectors, w ∈Rd is the normal vector for the hyper-

plane and b ∈R is the intercept of the hyperplane. The hyperplane divides the plane in two

classes Y = {−1,+1} and the classifier for the hyperplane is defined as follows:

h(x) = sign
[〈w, x〉+b

]
=

+1 if 〈w, x〉+b > 0,

−1 if 〈w, x〉+b < 0.

It is clear that there exist an infinite number of hyperplanes (with different w and b) that

separate two classes. However, SVM chooses the hyperplane which has the maximum
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Figure 2.2: Maximum-margin hyperplane for a binary SVM. Support vectors are marked
with a green outline.

distance from the nearest training examples from the hyperplane. Since the number of

training examples is finite ∃ε≥ 0 such that:

h(x) = sign
[〈w, x〉+b

]
=

+1 if 〈w, x〉+b ≥ ε,

−1 if 〈w, x〉+b ≤−ε.

As we can scale w and b, we can rewrite above equation as follows:

h(x) = sign
[〈w, x〉+b

]
=

+1 if 〈w, x〉+b ≥ 1,

−1 if 〈w, x〉+b ≤−1.

From this equation, we can easily deduce that there is no training example between two

parallel hyperplanes 〈w, x〉+b = 1 and 〈w, x〉+b =−1. Therefore, the distance between two

hyperplanes is 2
||w || which is referred as margin of the separating hyperplane. For a given

learning sample S = {(xi , yi )}m
i=1, support vector machines chooses the hyperplane which
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maximizes the margin by solving the optimization problem:

min
w

1

2
w T w, (2.11)

s.t. yi
(〈w, x〉+b

)≥ 1, i = 1, . . . ,m.

SVM uses the Lagrange duality techniques [11] to transform the above optimization problem

into a dual optimization problem:

max
µ

m∑
i=1

µi − 1

2

m∑
i , j=1

µiµ j yi y j xT
i x j , (2.12)

s.t . µi ≥ 0,
m∑

i=1
yiµi = 0, i = 1, . . . ,m,

where µi are the Lagrange multipliers corresponding to each example in the training sample

S. Training examples which have non-zero Lagrange multipliers are called as support vectors

and they lie on two parallel hyperplanes 〈w, x〉+b = 1 and 〈w, x〉+b =−1 (see Figure 2.2 for

illustration).

We have assumed that the training data is linearly separable. This is a strong assumption for

many real world scenarios. One solution to this issue is to transform the original input space

X ∈Rd into some higher dimensional space H (a Hilbert Space) and learn a linear classifier

in H .

Assume we have a mapping function φ from the original space Rd to a high dimensional

space H , then we can rewrite the dual optimization problem (Equation (2.12)) as:

max
µ

m∑
i=1

µi − 1

2

m∑
i , j=1

µiµ j yi y j 〈φ(xi ),φ(x j )〉,

s.t . µi ≥ 0,
m∑

i=1
yiµi = 0, i = 1, . . . ,m,

It is trivial to note that the knowledge of 〈φ(xi ),φ(x j )〉 is sufficient to solve the above optimiza-

tion problem. Therefore, we denote 〈φ(xi ),φ(x j )〉 by a kernel function K (xi , x j ) : Rd ×Rd →R

and by computing K (xi , x j ) directly, we can avoid the explicit mapping of our data from Rd

to H . This is called as kernel trick. Finally the classifier becomes:

h(x) = sign

[
m∑

i=1
µi K (x, xi )+b

]
. (2.13)
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Note that, K is a kernel function if it is a symmetric positive semi-definite (PSD), i.e.,

m∑
i=1

m∑
j=1

ci c j K (xi , x j ) ≥ 0,

for all finite sequences of x1, . . . , xm ∈X and c1, . . . ,cm ∈R. The kernel function which satisfies

above property are referred as Mercer Kernel. In the literature, there exists different types of

Mercer kernels, some of them are:

• Linear Kernel:

∀(xi , x j ) ∈X 2,K (xi , x j ) = xT
i x j + c,

where constant c is a hyperparameter.

• Polynomial Kernel:

∀(xi , x j ) ∈X 2,K (xi , x j ) =
(
axT

i x j + c
)p

,

where slope a, constant c and degree p are hyperparameters.

• Gaussian Kernel:

∀(xi , x j ) ∈X 2,K (xi , x j ) = exp
(
− ||xi −x j ||2

2σ2

)
,

where σ (standard deviation which measures the amount of variation of a set of input

examples) is a hyperparameter.

• Radial Basis Function (RBF) kernel:

∀(xi , x j ) ∈X 2,K (xi , x j ) = exp
(
−γ||xi −x j ||2

)
,

where γ is a hyperparameter. Note that, this kernel can project the data in infinite

dimension.

2.4.2 Adaboost

Adaboost [32] is a classifier combination approach based on boosting [75]. Typically, Ad-

aboost repeatedly (T times) learn a “weak”classifier using a learning algorithm with different

probability distributions over the learning sample S. Finally, it combines all the weak clas-

sifiers in order to have one single strong classifier (BQ ) which performs better than the

individual weak classifiers (see Algorithm 1). In this thesis, we use adaboost as one of our
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Algorithm 1 Adaboost

Input: Learning Sample S = (xi , yi ), . . . , (xm , ym), where xi ∈Rd and yi ∈ {−1,1}.
Hypothesis space H.
Number of iterations T .

1: for xi ∈ S do
2: D1(xi ) ← 1

m

3: for t = 1, . . . ,T do
4: Learn a weak classifier h(t ) using distribution D(t )

5: Compute error: ε(t ) ← E
(xi ,yi )∼D(t )

[
1[h(t )(xi )6=yi ]

]
6: Compute classifier weight: Q(t ) ← 1

2

[
ln

(
1−ε(t )

ε(t )

)]
7: for xi ∈ S do

8: D(t+1)(xi ) ← D(t )(xi )exp
(−yi Q(t )h(t )(xi )

)∑m
j=1D(t )(x j )exp

(−y j Q(t )h(t )(x j )
)

9: Return: BQ (x) = (∑T
t=1 Q(t )h(t )(x)

)
baselines and we also exploit the boosting paradigm to derive new algorithms for multiview

learning (in Chapters 6 and 7).

At each iteration t of the algorithm, we select a weak classifier (Step 4) and compute the

weight over the classifier (Step 6) as follows:

Q(t ) = 1

2

[
ln

(1−ε(t )

ε(t )

)]
,

where ε(t ) = E
(xi ,yi )∼Dt

[
1[h(t )(xi )6=yi ]

]
is the classification error of the selected classifier. Intu-

itively, we give more weight to the classifiers (in the final combination) which have low

classification error on the learning sample. Finally, we update the weight for any example xi

(Step 8) as follows:

D(t+1)(xi ) ← D(t )(xi )exp
(−yi Q(t )h(t )(xi )

)∑m
j=1D(t )(x j )exp

(−y j Q(t )h(t )(x j )
) .

Intuitively, we are increasing the weight of the examples which are misclassified by the

current classifier. This is done to learn a classifier at the next iteration t +1 which focuses on

these misclassified examples.

2.4.3 CqBoost

CqBoost [73] is a column generation ensemble learning algorithm based on the C-Bound

[51] (recalled in Theorem 2.4 below). In this thesis, we use this algorithm to derive a multi-
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CHAPTER 2. SINGLE VIEW SUPERVISED LEARNING

view learning algorithm in Chapter 6.

The C-Bound gives a tight upper bound on the risk of the majority vote defined by Equation

(2.9). It depends on the first and second statistical moments of the margin of the majority

vote BQ , defined as:

Definition 2.5. (Margin) Let MQ be a random variable that outputs the margin of the major-

ity vote on the example (x, y) drawn from distribution D, given by

MQ (x, y) = E
h∼Q

yh(x),

The first and second statistical moments of the margin are respectively given by

µ1(MD
Q ) = E

(x,y)∼D
MQ (x, y),

µ2(MD
Q ) = E

(x,y)∼D
(
MQ (x, y)

)2.

According to this definition, the risk of the weighted majority vote can be rewritten as:

RD(BQ ) = Pr
(x,y)∼D

(
MQ (x, y) ≤ 0

)
.

From this observation, one can derive the C-Bound stated as follows:

Theorem 2.4. (The C-Bound [34, 72, 73]) For any distribution Q over H and for any distri-

bution D, if µ1

(
MD

Q

)
≥ 0, we have:

RD(BQ ) ≤ 1−
(
µ1

(
MD

Q

))2

µ2

(
MD

Q

) .

The minimization of the empirical counterpart of the C-Bound is a natural way to learn the

distribution Q in order to lead a well performing majority vote BQ (x). CqBoost minimizes

the second moment of margin by fixing its first moment µ1(M S
Q ) = µ (hyperparameter to

tune).

Let H be the classification matrix of size m ×n where m is the number of examples and n is

the number of classifiers in H. Each element Hi j = h j (xi ) contains the output of the classi-

fier h j ∈H for any input example xi . Let y be the vector of labels of the training examples

and q be the vector of weights over set of classifiers. Now, we can rewrite the first and second
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Algorithm 2 CqBoost

Initialize: Let q be the vector of n zeros, α be the vector of m values with 1
m and let Ĥ be a

empty matrix.

1: loop

2: Select the column j violating the most constraint of dual problem (Equation 2.15).
3: If

∑m
i=1 αi yi Hi j ≤ ν+ε :

4: Break

5: Add the j -th column of H to matrix Ĥ.
6: Update q,α and ν by solving the primal or dual optimization problem of Equations

2.14 or 2.15 using matrix Ĥ.
7: Return: q

moments of margin as follows:

µ1(MD
Q ) = 1

m

m∑
i=1

MQ (xi , yk )

= 1

m
y>Hq,

and µ2(MD
Q ) = 1

m

m∑
i=1

(
MQ (xi , yk )

)2

= 1

m
q>H>Hq.

Finally, CqBoost solves the following constrained optimization problem:

argmin
q,γ

1

m
γ>γ, (2.14)

s.t . γ= diag(y)Hq,
1

m
1>γ≤µ, q ≥ 0, 1>q = 1,

where 0 and 1 are the vector of zeros and ones of size n. CqBoost uses the Lagrange dual-

ity techniques [11] to transform the above optimization problem to a dual optimization

problem:

argmin
α,β,ν

m

4
α>α+ β

2
1>α+ β2

4
+βµ+ν, (2.15)

s.t . H> diag(y)α≤ ν1, β≥ 0,

where, α,β and ν are Lagrange multipliers. A column generation based algorithm CqBoost

[73] (see Algorithm 2) is designed based on above optimization problem. At each iteration t ,

the algorithm selects a new column from matrix H which is added to the problem. Finally,

it solves the primal or dual problem of original problem. It stops when no more column

violates the dual constraint. Note that the C-Bound has led to another algorithm MinCq [72].
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CHAPTER 2. SINGLE VIEW SUPERVISED LEARNING

2.5 Conclusion

In this chapter, we introduce the basic concepts of supervised machine learning for classifi-

cation where we consider a labeled training sample. Here, our objective is to learn a classifier

in order to make predictions on new data coming from same distribution than the one that

have generated the learning sample. In addition, we introduce three supervised learning

algorithms: SVM, Adaboost and Cqboost. In many real-life applications, we can have data

produced by more than one source and are so-called as multiview data. In this thesis, we

are particularly interested in deriving supervised learning algorithms for multiview learning

when we have multiple representations of the input data. In the next chapter, we introduce

the concepts and state-of-art methods for multiview learning.
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3
MULTIVIEW LEARNING

In this chapter, we present some basic concepts and notions for multiview learning. We

start by a brief introduction on multiview learning in Section 3.1. Then, we present the two

fundamental principles of multiview learning: i) consensus (Section 3.3), and ii) diversity

principles (Section 3.4). We discuss some of algorithms in details for both principles.

3.1 Introduction

With the tremendous generation of data, we have data collected from different information

sources having heterogeneous properties, thus it is important to consider these representa-

tions or views of the data. This problem of machine learning is referred as multiview learning,

spurred by the seminal work of Blum and Mitchell on co-training [9]. Multiview learning has

many applications (see Figure 3.1), some of them are

• Image Classification: We can represent each image by different sets of features such as

Histograms of Oriented Gradient (HOG) and Region-Of-Interest (ROI). These different

features can be seen as different views of data [84].

• Multilingual Document Classification: We have documents written in different lan-

guages like French, German, English etc. We can see different languages as different

views of data [2].

• Webpage Classification: We can represent each webpage with different descriptions

for example textual content, images, inbound and outbound hyperlinks etc [9].
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CHAPTER 3. MULTIVIEW LEARNING

Figure 3.1: Examples of multiview learning data: (a) Multilingual document classification,
(b) Webpage classification based on both textual and image data, (c) Medical Imaging where
each brain image is represented by its MRI and t-fMRI images and (d) Multimedia data
which is combination of both video and audio signals.

• Multimedia Data Processing: We can describe each multimedia segment by their

audio and video signals [4].

• Medical Imaging: We can represent human brain with different set of features for

example MRI, t-fMRI, fMRI, EEG etc [63].

One natural solution is to adapt multiview learning problem to monoview setting by concate-

nating all the views of the data and learn the final model using traditional machine learning

algorithms such as support vector machines (see Section 2.4.1) This method is referred

as early fusion [79]. However, early fusion based approaches do not take into account the

view-specific properties of the multiview data, therefore they tend to overfit when we have a

small number of training examples [91]. Another approach is to see multiview learning as a

combination of different view-specific classifiers corresponding to each view. The goal is

to learn a multiview model over the predictions of view-specific classifiers. This method of

learning a multiview model in two stages is called as late fusion [79] (sometimes referred

as stacking [89]), as illustrated in Figure 3.2. In contrast to monoview learning, multiview
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Figure 3.2: Classifier Combination approach to multiview learning

learning aims at exploiting different representations or views of the input data in order

to improve the learning performance. Most of multiview learning algorithms exploits two

fundamental principles which ensures their success: i) consensus, and ii) diversity principles.

In the next section, we first present basic notations and setting for multiview learning. In

sections 3.3 and 3.4, we present consensus and diversity principles in more details followed

by conclusion in Section 3.5.

3.2 Notations and Setting

We consider multiview binary classification tasks where the examples are described with

V ≥ 2 different representation spaces, i.e., views; let V be the set of these V views. Formally,

we focus on tasks for which the input space is X =X1 ×·· ·×XV , where ∀v ∈V , Xv ⊆Rdv is a

dv -dimensional input space, and the binary output space is Y = {−1,+1}. We assume that

D is an unknown distribution over X ×Y . Each multiview example x = (x1, x2, . . . , xV ) ∈X
is given with its label y ∈Y , and is independently and identically drawn (i.i.d.) from D. In

the case of supervised learning, an algorithm is provided with a training sample S of m

examples i.i.d. from D: S = {(xi , yi )}m
i=1 ∼ (D)m , where (D)m stands for the distribution of a

m-sample. Note that, in the case of semi-supervised learning one has access to an additional

unlabeled training data Su = {x j }mu
j=1 ∼ (DX )mu along with labeled data Sl = {(xi , yi )}ml

i=1 ∼
(D)ml . Moreover, for each view, we consider a view-specific set Hv of classifiers hv :Xv →Y .

The goal of multiview learning is to exploit multiple representations of the input data and

improve the learning performance.
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3.3 Consensus Principle

The consensus principle [22, 50] seeks to maximize the agreement between multiple rep-

resentations of the data. Consider a two-view multiview data (i.e. V = 2) where each input

example x = (x1, x2) ∈X with its label y ∈Y . The agreement between two classifiers on two

views can be formulated as follows

Agreement= Pr
x∼DX

[
h1(x1) = h2(x2)

]
. (3.1)

In recent years, many multiview learning algorithms have been proposed based on the

above consensus principle. In this section, we present some approaches which exploits this

principle.

3.3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [44] based approaches maximize the inter-relationships

between two (or more) sets of variables. CCA has been applied to multiview learning[1, 17,

25, 95] which aims at learning a latent subspace shared by multiple views by assuming

that the input views are generated from this subspace. The dimensionality of this latent

subspace is lower than the original views, so CCA is an effective way to eliminate the curse

of dimensionality problem.

Consider a two-view multiview data (i.e. V = 2) where the input examples are drawn from

X1 ∈Rd1 and X1 ∈Rd2 input spaces. Let X1 and X2 be m ×d1 and m ×d2 data matrices cor-

responding to each view v1 and v2 respectively. The goal of CCA is to find two projection

vectors w1 ∈Rd1 and w2 ∈Rd2 such that the projected data on w1 and w2 have a maximum

correlation, Corr defined as following:

Corr= cov
(
w>

1 X1, w>
2 X2

)√
var

(
w>

1 X1
)
var

(
w>

2 X2
)

= w>
1 C12w2√(

w>
1 C11w1

)(
w>

2 C22w2
) , (3.2)
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where covariance matrices C11,C22,C12 are defined as follows:

C11 = 1

m

m∑
i=1

(
x1

i − x̄1
)(

x1
i − x̄1

)>
,

C22 = 1

m

m∑
i=1

(
x2

i − x̄2
)(

x2
i − x̄2

)>
,

C12 = 1

m

m∑
i=1

(
x1

i − x̄1
)(

x2
i − x̄2

)>
,

where x̄1 and x̄2 are the means for two views:

x̄1 = 1

m

m∑
i=1

x1
i ,

and x̄2 = 1

m

m∑
i=1

x2
i .

Since the correlation (Equation (3.2)) does not change with a rescaling of w1 and w2, CCA

can be formulated as following:

max
w1,w2

w>
1 C12w2, (3.3)

s.t. w>
1 C11w1 = 1, w>

2 C11w2 = 1.

The above maximization problem is solved using Lagrange multiplier technique [11] . The

Lagrangian function for above problem is defined as:

L = w>
1 C12w2 − λ1

2

(
w>

1 C11w1 −1
)− λ2

2

(
w>

2 C22w2 −1
)

, (3.4)

where λ1 and λ2 are the Lagrange multipliers. Differentiating L with respect to w1 and w2,

we obtain

C12w2 −λ1C11w1 = 0, (3.5)

and C21w1 −λ2C22w2 = 0. (3.6)

By multiplying w>
1 and w>

2 , we respectively have

w>
1 C12w2 −λ1w>

1 C11w1 = 0,

and w>
2 C21w1 −λ2w>

2 C22w2 = 0.
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Since w>
1 C11w1 = 1 and w>

2 C11w2 = 1, we can deduce that λ1 = λ2 = λ. Substituting λ in

Equations (3.5) and (3.6) and solving for w1 and w2, we obtain:

w1 =
C−1

11 C12w2

λ
, (3.7)

and C21C−1
11 C12w2 =λ2C22w2. (3.8)

Form above, Equation (3.8) is equivalent to solving standard eigenvalue problem given as

C−1
22 C21C−1

11 C12w2 =λ2w2.

Finally, the correlation between different views is provided by the eigenvector corresponding

to the largest eigenvalues.

This method leverages only two views data, extending it to multiple views is achieved

with generalized version of CCA by Kettenring [47]. Moreover, CCA based approaches does

not scale well as for large training datasets the inversion of matrix C11 in Equation (3.7) is

tedious. CCA is a linear feature extraction algorithm and Akaho [1] derived a kernel version

of original CCA algorithm (KCCA) to handle non-linear data. The non-linear projections

learned by KCCA are limited by the choice of a fixed kernel, Andrew et al. [3] proposed

deep CCA approach using neural networks in order to learn more flexible representations.

In contrast to CCA, which ignores label information of input examples, Diethe et al. [25]

generalized Fisher’s Discriminant analysis to find the projections for multiview data which

takes into account the labels of examples.

3.3.2 Co-training and Co-regularization

Semi-supervised learning is the problem of learning when we have both labeled and unla-

beled training data. In many real-world scenarios, it is both expensive and time consuming

to annotate the data. Therefore, it is interesting to consider both labeled and unlabeled data

in order to learn an effective classification model.

The Co-training algorithm proposed by Blum and Mitchell [9] is a classical algorithm in

multiview semi-supervised learning. This algorithm combines both labeled and unlabeled

data under the two-view setting. It iteratively learns two classifiers corresponding to each

view using the labeled data. Then at each iteration, the learner on one view is used to label

the unlabeled data which is added to the training pool of the other learner. In this way, on

the unlabeled data, classifiers learned on two views exchange informations on the two views
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Figure 3.3: Co-training style algorithm: It iteratively learns two classifiers corresponding
to each view of data. Then, the classifier on one view labels the unlabeled data for another
view.

(see Figure 3.3). Finally, the learned view-specific classifiers are used separately or jointly to

make predictions on new examples.

The Co-EM algorithm, proposed by Nigam and Ghani [62], is a variant of co-training al-

gorithm which combines the co-training with the probabilistic expectation maximization

approach [24]. Basically, it gives unlabeled examples probabilistic labels using the naive

Bayes algorithm [28, 33]. As SVM (described in Section 2.4.1) is known to be a better fit for

many classification problems, Brefeld and Scheffer [12] developed the SVM version of the

co-EM algorithm.

Co-regularization based approaches can be seen as regularized versions of co-training

algorithm. The co-regularization based algorithms [69] return two classifiers correspond-

ing to each view by simultaneously maximizing the agreement between the two views on

unlabeled data and the empirical error on the labeled data. Sindhwani et al. [78] proposed

a co-regularized least squared approach for multiview learning with two views where the

following objective function is optimized:(
h∗

1 ,h∗
2

)= argmin
h1∈H1,h2∈H2

∑
i∈Sl

[
yi −h1(x1

i )
]2+µ

∑
i∈Sl

[
yi −h2(x1

i )
]2

(3.9)

+γ1||h1||2H1
+γ2||h2||2H2

+ γC

mu

mu∑
i=1

[
h1

(
x1

i

)−h2
(
x2

i

)]2
,

where parameter µ,γ1,γ2 and γC are regularization parameters. In Equation (3.9), the first

two terms evaluate the classification error made by the labeled data on the two views, the
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third and fourth terms measure the complexity of the hypothesis space using L2 norm and

the final term enforces the agreement among the classifiers on unlabeled data. Finally, the

prediction for any new input example x is given as follows:

h∗ (x) = sign

[
1

2

(
h∗

1 (x1)+h∗
2 (x2)

)]
.

Following a similar strategy as co-training, Amini et al. [2] proposed a self-learning multiview

algorithm for more general and natural of multiview learning with more than two views.

Firstly, it learns view-specific classifiers for each view separately using the labeled data.

Given the view-specific classifiers, it iteratively assigns the labels (which is generally referred

as pseudo-labels) to the unlabeled data for which all classifier predictions agree. Finally, it

trains the new view-specific classifiers using the labeled data and pseudo-labeled unlabeled

examples.

3.3.3 SVM-like Algorithms

Farquhar et al. [30] combined the kernel Canonical Correlation Analysis (KCCA) with the

Support Vector Machines (recalled in Section 2.4.1) to derive a single optimization problem

called as SVM-2K for two views. This is done by introducing the agreement constraint

between the projections of two SVMs corresponding to each view. Formally, the constraint

is defined as: ∣∣w>
1 φ1(x1

i )+b1 −w>
2 φ2(x2

i )−b2
∣∣≤ ηi +ε

where w1 and w2 are the weight vectors for two SVMs, b1 and b2 are biases for two SVMs and

ηi is the slack variable. Note that φv (xv
i ) is the feature projection (ideally, in high dimension)

for any example xi for view v ∈ {1,2} with corresponding kernel function Kv . Basically, the

above constraint measures the amount by which the examples fail to meet ε similarity.

Finally, combining the above constraint with the usual SVM constraints for two views leads

to the minimization of the following optimization problem:

min
w1,w2,b1,b2

1

2

∣∣∣∣w1
∣∣∣∣2 + 1

2

∣∣∣∣w2
∣∣∣∣2 +C1

m∑
i=1

ξ1
i +C2

m∑
i=1

ξ2
i +D

m∑
i=1

ηi

s.t .
∣∣w>

1 φ1(x1
i )+b1 −w>

2 φ2(x2
i )−b2

∣∣≤ ηi +ε, ∀1 ≤ i ≤ m

yi
(
w>

1 φ1(x1
i )+b1

)≥ 1−ξ1
i , ∀1 ≤ i ≤ m

yi
(
w>

2 φ2(x2
i )+b2

)≥ 1−ξ2
i , ∀1 ≤ i ≤ m

ξ1
i ≥ 0, ξ2

i ≥ 0, ηi ≥ 0, ∀1 ≤ i ≤ m

32



3.3. CONSENSUS PRINCIPLE

where, ξ1 and ξ2 are the slack variables and C1,C2 and D are the hyperparameters. The final

prediction function for any input example x is defined as follows:

h(x) = 1

2
sign

[(
w>

1 φ1(x1)+b1
)+ (

w>
1 φ2(x2)+b2

)]
.

SVM-2K exploits only two-view data. However, in many real world scenarios we can have

data represented by more than two views. In this thesis, we are interested in more general

case of supervised multiview learning when we have data represented by more than two

views.

In order to handle multiview learning with more than two views, one natural solution is to

see multiview learning as combination of different view-specific classifiers corresponding to

each view. The goal is to learn a final combination over the set of view-specific classifiers

which performs better than individual view-specific classifiers (as shown in figure 3.2). Amini

et al. [2] proposed a multiview majority voting scheme (MV-MV) for more than two views,

where view-specific classifiers are learned using SVM by minimizing the following empirical

risk:

h∗
v = argmin

hv∈Hv

1

m

∑
(xi ,yi )∼(D)m

1[hv (xv
i )6=yi ]. (3.10)

Finally, the prediction for a multiview example x is then based on the majority vote over

these view-specific classifiers:

MV-MV(x) = sign

[
1

V

V∑
v=1

h∗
v (xv )

]
. (3.11)

Amini et al. [2] proposed a Rademacher analysis of the risk of above multiview majority vote

classifier. The generalization bound is given by following theorem

Theorem 3.1. (Generalization bound for MV-MV). Let D be an unknown distribution X ×Y ,

for each view v ∈V we consider a continuous hypothesis space Hv , with probability of at least

1−δ on the random choice of the learning sample S ∼ (D)m , we have:

RD(MV−MV) ≤ 1

V

V∑
v=1

RS(h∗
v )+ 2

V

V∑
v=1

RS(Hv )+6

√
log 2

δ

2m
.

where RS(Hv ) is the empirical Rademacher complexity for hypothesis space Hv defined by

Equation (2.6).
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3.3.4 PAC-Bayesian Analysis of Multiview Learning

Sun et al. [81] proposed a PAC-Bayesian analysis (introduced in Section 2.3.2) for co-

regularization style multiview learning approaches with two views. In order to derive PAC-

Bayesian generalization bounds, they considered the linear classifiers of the following form

h(x) = sign
(
u>φ(X )

)
, (3.12)

where u = [
u>

1 ,u>
2

]>
is the concatenated weight vector for two views and φ(x) is the kernel-

induced feature projection for concatenated views where X =
[

x1> , x2>
]>

. Similar to the

usual PAC-Bayesian theory, they assume a prior distribution for a classifier defined as

P (u) ∝N (0,I)×V (u1,u2) , (3.13)

where N (0,I) is a Gaussian distribution with zero mean and identity covariance matrix I,

and

V (u1,u2) = exp

{
− 1

2σ2
E

(x1,x2)

(
x1>u1 −x2>u2

)2
}

,

V (u1,u2) emphasizes those classifiers which has high view agreements. By defining X̄ =[
x1> ,−x2>

]>
and solving the prior distribution given by Equation 3.13, we have

P (u) ∝N (0,I)×V (u1,u2)

∝ exp

{
−1

2
u>

(
I+ E(X̄ X̄ >)

σ2

)
u

}
.

Finally, P (u) =N (0,
∑

), where
∑ =

(
I+ E(X̄ X̄ >)

σ2

)−1
. The posterior is chosen to be of the fol-

lowing form

Q(u) =N
(
µw,I

)
, (3.14)

where ||w || = 1 and therefore the distance between the center of posterior and origin is µ.

Finally, the PAC-Bayesian generalization bound for multiview learning with two views in

specific case of linear classifiers is given by the following theorem

Theorem 3.2. (PAC-Bayesian generalization bound for multiview learning [81]) For linear

classifier (Equation (3.12)) with prior and posterior given by Equations (3.13) and (3.14), for

any unknown distribution D over X ×Y , with a high probability 1−δ over the random choice

of learning sample S ∼ (D)m , we have

∀w,µ : K L
(

RS
(
h(w,µ)

) ∣∣∣∣ RD
(
h(w,µ)

) )
≤

−d ln
[

f −
(

2
√

(R/σ)2 +1−1
)√

1
2m ln 3

δ

]
+ H

σ2 + (1+µ2)R2

2σ2

√
1

2m ln 3
δ
+µ2 +2ln

(m+1
δ/3

)
2m

,
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where

h(w,µ) = F

(
µ y w>φ(x)

||φ(x)||
)

,

f = 1

m

m∑
i=1

∣∣∣I+ Xi X >
i

σ2

∣∣∣ d
2

,

H = 1

m

m∑
i=1

[
X >

i Xi +µ2 (
w>Xi

)2
]

,

||w || = 1, d is the sum of dimensions of both views, R = supX ||X || and F (z) is the Gaussian

cumulative distribution

F (z) =
∫∞

z

1p
2π

e
−z2

2 d z.

The above generalization bound has allowed them to derive a SVM-like learning algorithm

but limited to two views. The objective function of the multiview SVMs (MvSVMs) is given by:

min
w1,w2,ξ1,ξ2

1

2

(∣∣∣∣w1
∣∣∣∣2 + ∣∣∣∣w2

∣∣∣∣2
)
+C1

m∑
i=1

(
ξ1

i +ξ2
i

)+C2

m∑
i=1

(
w>

1 x1
i −w>

2 x2
i

)2

s.t . yi
(
w>

1 x1
i

)≥ 1−ξ1
i , ∀1 ≤ i ≤ m

yi
(
w>

2 x2
i

)≥ 1−ξ2
i , ∀1 ≤ i ≤ m

ξ1
i ≥ 0, ξ2

i ≥ 0, ∀1 ≤ i ≤ m

where w1 and w2 are the weight vectors for two SVMs corresponding to each view, ξ1 and ξ2

are the slack variables and C1 and C2 are the hyperparameters. The final prediction function

for any input example x is given as follows:

h∗(x) = 1

2
sign

[(
w>

1 x1)+ (
w>

1 x2)] .

Note that they also extended above PAC-Bayesian bound for a data dependent prior distri-

bution and the semi-supervised learning setting. In this thesis, our objective is to derive

PAC-Bayesian generalization bounds for more general and natural case of multiview learning

with more than two views and not limited to linear classifiers.

3.4 Diversity Principle

The diversity principle demonstrates that in a multiview learning problem, each represen-

tation or view of the data may contain some information which other views do not have.

Intuitively, while combining different views, we want views to be as accurate as possible, in
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case they make errors, these errors should be on different examples. In contrary to consensus

principle, the diversity based approaches tries to increase the disagreement between the

views while controlling the accuracy of the view-specific classifiers. Many multiview learning

algorithms based on ensemble learning have been proposed which takes into account the

diversity between views [41, 46, 48, 66, 67, 90, 94] in different manners.

Janodet et al. [46] proposed a boosting based multiview learning algorithm for 2 views, called

2-Boost. At each iteration, the algorithm learns the weights over the view-specific voters by

maintaining a single distribution over the learning examples. Conversely, Koço et al. [48]

proposed Mumbo that maintains separate distributions for each view. For each view, the

algorithm reduces the weights associated with the examples that are hard to classify, and

increases the weights of those examples on the other views. This trick allows a communica-

tion between the views such that other views can compensate the information lacked by a

particular view.

Xu and Sun [94] proposed EMV-AdaBoost, an embedded multiview Adaboost algorithm,

restricted to two views. At each iteration, an example contributes to the error if it is mis-

classified by any of the view-specific voters and the diversity between the views is captured

by weighting the error by the agreement between the views. Xiao and Guo [90] derived

a weighted majority voting Adaboost algorithm MVWAB (for more than two views) which

learns weights over view-specific voters at each iteration of the algorithm. Peng et al. [66, 67]

proposed variants of Boost.SH (boosting with SHared weight distribution) which controls

the diversity for more than two views. They maintain a single global distribution over the

learning examples for all the views. In order to control the diversity between the views, at

each iteration they update the distribution over the views by casting the algorithm in two

ways: i) a multiarmed bandit framework (rBoost.SH) and ii) an expert strategy framework

(eBoost.SH) consisting of set of strategies (distribution over views) for weighing views.

Moreover, Morvant et al [61] proposed a late fusion[79] approach to handle multimedia data

in a PAC-Bayesian fashion, but without any theoretical justifications and in a ranking setting.

Concretely, they learn a multiview model over the predictions of view-specific classifiers

using a PAC-Bayesian algorithm MinCq [72]. MinCq algorithm is based on C-Bound (given

by Theorem 2.4) which is able to control the trade-off between the accuracy and the diversity

between the view-specific classifiers.

In the next sections, we formally present MVWAB and rBoost.SH algorithms.
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3.4.1 Multiview Weighted Adaboost (MVWAB)

Algorithm 3 MVWAB
Input: Training set S = {(xi , yi ), . . . , (xm , ym)}, where xi = (x1, x2, . . . , xV ) and yi ∈ {−1,1}.

For each view v ∈V , a view-specific hypothesis set Hv .
Number of iterations T .

for xi ∈ S do
D1(xi ) ← 1

n

for t = 1, . . . ,T do
∀v ∈V , h(t )

v ← argminhv∈Hv
E

(xi ,yi )∼D(t )

[
1[hv (xv

i )6=yi ]

]
Optimize the weighted least square loss to learn the weight parameters {βv }V

v=1

min
β

m∑
i=1

D(t )(i )
( V∑

v=1
βv h(t )

v (xv
i )− yi

)2
,

s.t . 0 ≤βv ≤ 1 and
V∑

v=1
βv = 1.

Compute the base classifier h(t )(x) = sign
(∑V

v=1 βv h(t )
v (xv )

)
Compute error: ε(t ) ← E

(xi ,yi )∼D(t )

[
1[h(t )(xv

i )6=yi ]

]
Compute weight over the base classifier:

Q(t ) ← 1

2

[
ln

(1−ε(t )

ε(t )

)]
for xi ∈ S do

D(t+1)(xi ) ← D(t )(xi )exp
(−yi Q(t )h(t )(xi )

)∑m
j=1D(t )(x j )exp

(−y j Q(t )h(t )(x j )
)

Return: B MV
Q (x) =∑T

t=1 Q(t )h(t )(x)

Xiao et al. [90] combined multiview learning and the Adaboost (presented in Section 2.4.2)

techniques to derive a boosting based algorithm (see Algorithm 3) for multiview learning.

At each iteration t , the Multiview Weighted Adaboost (MVWAB) algorithm separately trains

the view-specific classifiers h(t )
v for each view v ∈V using the probability distribution (D(t ))

over the learning sample S. Then, the base classifier h(t ) is a linear combination of the view-

specific classifiers which are weighted according to the set of weight parameters {βv }V
v=1:

h(t )(x) = sign
( V∑

v=1
βv h(t )

v (xv )
)
, (3.15)
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CHAPTER 3. MULTIVIEW LEARNING

where 0 ≤βv ≤ 1 and
∑V

v=1 βv = 1. The weight parameters {βv }V
v=1 are obtained by minimiz-

ing the following weighted least square loss:

min
β

m∑
i=1

D(t )(i )
( V∑

v=1
βv h(t )

v (xv
i )− yi

)2
, (3.16)

s.t . 0 ≤βv ≤ 1 and
V∑

v=1
βv = 1.

Following the similar strategy as in Adaboost, weight over the base classifier (Equation 3.15)

is computed as follows:

Q(t ) = 1

2

[
ln

(1−ε(t )

ε(t )

)]
,

where ε(t ) = E
(xi ,yi )∼D(t )

[
1h(t )(xi )6=yi

]
is the classification error of the base classifier. Finally, the

distribution D(t ) over the learning sample S is updated as follows:

D(t+1)(xi ) ← D(t )(xi )exp
(−yi Q(t )h(t )(xv

i )
)∑m

j=1D(t )(x j )exp
(−y j Q(t )h(t )(xv

j )
) .

Finally, after T iterations, the algorithm returns following classifier:

B MV
Q (x) =

T∑
t=1

Q(t )h(t )(x). (3.17)

3.4.2 Randomized Boosting with SHared weight distribution

(rBoost.SH)

Peng et al. [66, 67] proposed a multiview boosting algorithm called rBoost.SH that learns

the view-specific classifiers independently for each view but maintains a shared distribution

over the learning sample to propagate the information among the different views. Moreover,

in order to capture the diversity between the views, they learn a distribution over the views

using the multiarmed bandit framework [5]. In multiarmed bandit framework, an algorithm

tries one out of V actions (in this case, number of views) at any time t . For each action, there

is an associated reward and the objective of the algorithm is to maximize the total reward

after taking the actions over a period of time.

rBoost.SH maintains a probability distribution π over the views. It updates the distribution

π according to the estimated cumulative reward at step 10(i i ) of the Algorithm 4. At step 5, a

view is chosen according to the distribution ρ which is weighted combination of uniform
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Algorithm 4 rBoost.SH
Input: Training set S = {(xi , yi ), . . . , (xm , ym)}, where xi = (x1, x2, . . . , xV ) and yi ∈ {−1,1}.

For each view v ∈V , a view-specific hypothesis set Hv .
Number of iterations T , σ> 0 and γ ∈ (0,1].

1: for xi ∈ S do
2: D1(xi ) ← 1

n

3: ∀v ∈V , π1
v ← exp

(
σγ
3

√
T
M

)
4: for t = 1, . . . ,T do

5: ∀v ∈V ,ρ(t )
v ← (1−γ) π(t )

v∑V
i=1 π(t )

i

+ γ
V

6: Let j be the selected view according to distribution ρ(t )

7: For j -th view, h(t )
j ← argminh j∈H j

E
(xi ,yi )∼Dt

[
1

[h j (x
j
i )6=yi ]

]
8: Compute edge θ of view-specific weak classifier h(t )

j : θ(t )( j ) = E
(xi ,yi )∼D(t )

[
yi h(t )

j (x j
i )

]
9: Compute the reward function for j -th view: r(t )( j ) =

√
1−θ2

(t )( j )

10: ∀v ∈V , set:

i) r̂(t )(v) =
{ r(t )(v)

ρ(t )
v

if v = j

0 otherwise

ii) π(t+1)
v =π(t )

v exp

(
γ

3V

(
r̂(t )(v)+ σ

ρ(t )
v

p
T V

))

11: Let h(t )
∗ = h(t )

j and compute weight over the classifier:

Q(t ) ← 1

2

[
ln

(
1+θ(t )( j )

1−θ(t )( j )

)]
12: for xi ∈ S do

13: D(t+1)(xi ) ← D(t )(xi )exp
(−yi Q(t )h(t )

∗ (x∗
i )

)
∑m

j=1D(t )(x j )exp
(−y j Q(t )h(t )

∗ (x∗
j )

)
14: Return: B MV

Q (x) =∑T
t=1 Q(t )h(t )

∗ (x∗)
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distribution over the views and π, which encourages exploration of different views. For the

chosen view j , a weak view-specific classifier is learned and weight over the classifier is

computed as following:

Q(t ) ← 1

2

[
ln

(
1+θ(t )( j )

1−θ(t )( j )

)]
,

where θ(t )( j ) = E
(xi ,yi )∼Dt

[
yi h(t )

j (x j
i )

]
is the edge of view-specific weak classifier. Then, the

distribution D(t ) over the learning sample S is updated as follows:

D(t+1)(xi ) ← D(t )(xi )exp
(−yi Q(t )h(t )

∗ (x∗
i )

)
∑m

j=1D(t )(x j )exp
(−y j Q(t )h(t )

∗ (x∗
j )

) ,

where h(t )
∗ is the learned view-specific classifier at iteration t . Finally, after T iterations,

rBoost.SH returns a weighted majority of T view-specific classifiers:

B MV
Q (x) =

T∑
t=1

Q(t )h(t )
∗ (x∗).

3.5 Conclusion

In this chapter, we introduced basic concepts and background for multiview learning where

we have multiple representations or views of the input data. The objective of multiview

learning is to learn a multiview classifier which takes into account different views of the

data in order to improve the learning performance. We present two fundamental principles

of multiview learning i.e. i) consensus, and ii) diversity principles. In addition, for each

principle, we introduced some of multiview learning algorithms.

In this thesis, we derive a PAC-Bayesian generalization bound for multiview learning (with

more than two views) on the risk of the multiview majority vote which exhibits a term of

diversity in the predictions of the view-specific classifiers. This is done by considering a hier-

archy of distributions over the view-specific classifiers and views. Based on this hierarchy of

weights, we derive three multiview learning algorithms. We will discuss these contributions

in the next part of this thesis.
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4
THE PAC-BAYESIAN THEOREM AS AN EXPECTED RISK BOUND

The PAC-Bayesian theory provides generalization guarantees for classifiers expressed as

a weighted combination of voters. In this chapter, we derive a new kind of PAC-Bayesian

generalization bounds which are expressed as expected risk bounds instead of probabilistic

bound (presented in Section 2.3.2 of Chapter 2). Note that in this chapter, we are in single

view setting and we present extension to multiview learning of Chapter 5. This work has

been done in collaboration with Dr. Pascal Germain from INRIA, Lille, France. It has been

accepted at CAp, 2017 [40] and published in the proceedings of ECML-PKDD, 2017 [41].

4.1 Introduction

The PAC-Bayesian approach introduced by McAllester [57] provides Probably Approximately

Correct (PAC) generalization guarantees for models expressed as a weighted majority vote

over the hypothesis space H.1 In this framework one assumes a prior distribution P over H
which models the a priori weights associated with each classifier2 in H. After observing the

learning sample S, the learner aims at finding a posterior distribution Q (that modalizes the

weight associated to each voter in the majority vote ) over H that leads to a well-performing

majority vote (see Figure 4.1). It is well-known that the error of deterministic majority vote

is upper bounded by twice the error of stochastic Gibbs classifier. PAC-Bayesian theorems

1Note that the majority vote setting is not too restrictive since many machine learning approaches can
be considered as majority vote learning, notably ensemble methods [26, 71] (as pointed out in Section 2.3 in
Chapter 2).

2For example, the voters expected to be most accurate for the task can have the largest weights under P .
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Figure 4.1: The PAC-Bayesian theory assumes a prior distribution P (in blue) over the
hypothesis space H and aims at learning — from the learning sample S — a posterior
distribution Q (in red).

(e.g., [14, 34, 35, 54, 57, 58, 77]) typically provide generalization bounds on the true risk of

the Gibbs classifier—a fortiori of the majority vote—uniformly for all learned distribution Q,

but with a high probability over the random choice of the learning sample S.

Since by definition the learned posterior distribution is data dependent, we propose in

this chapter a new formulation of the PAC-Bayesian theorem that aims at bounding the

expectation directly by the risk of the Gibbs classifier over all the possible learning samples

of a given size m, i.e., we upper bound the expectation over all posterior distributions we

can learn from all the possible learning samples of a given size m. Our new PAC-Bayesian

theorem is then not anymore expressed as a probabilistic bound, but as an expectation risk

bound, bringing another point of view on the PAC-Bayesian analysis.

4.2 The Usual PAC-Bayesian Theory

In this section, we first recall the usual PAC-Bayesian theorem in the form proposed by

Germain et al. [34, 35]. This general result can be seen as a theoretical tool to recover most

of the known PAC-Bayesian probabilistic bounds (among them, the one recalled in Theorem

2.3 in Chapter 2). Then, in Section 4.3, we provide a novel formulation of the PAC-Bayesian

theorem expressed as an expectation bound.

4.2.1 Notations and Setting

For a binary classification task, in a single view setting, on data drawn from a fixed yet

unknown distributionD overX×Y , the PAC-Bayesian approach assumes a prior distribution
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P over the hypothesis spaceH that models on a priori belief 3 on the classifiers fromH before

the observation of the learning sample S. Given the learning sample S = {(xi , yi )}m
i=1 ∼ (D)m ,

the learner objective is then to find a posterior distribution Q over H leading to an accurate

weighted majority vote BQ (x) defined as

BQ (x) = sign

[
E

h∼Q
h(x)

]
= sign

[
1

|H|
|H|∑
i=1

Q(h)h(x)

]
.

In other words, one wants to learn Q over H such that it minimizes the true risk RD(BQ ) of

BQ (x):

RD(BQ ) = E
(x,y)∼D

1[BQ (x)6=y] ,

where 1[p] = 1 if predicate p holds, and 0 otherwise. However, a PAC-Bayesian generalization

bound does not directly focus on the risk of the deterministic weighted majority vote BQ .

Instead, it upper-bounds the risk of the stochastic Gibbs classifier GQ , which predicts the

label of an example x by drawing h from H according to the posterior distribution Q and

predicts h(x). Therefore, the true risk RD (GQ ) of the Gibbs classifier on a data distribution

D, and its empirical risk RS(GQ ) estimated on a sample S ∼ (D)m are respectively given by

RD(GQ ) = E
(x,y)∼D

E
h∼Q

1[h(x)6=y] ,

and RS(GQ ) = 1

m

m∑
i=1

E
h∼Q

1[h(xi )6=yi ] .

The above Gibbs classifier is closely related to the weighted majority vote BQ . Indeed, if BQ

misclassifies x ∈X , then at least half of the classifiers (under measure Q) make an error on

x. Therefore, we have

RD(BQ ) ≤ 2RD(GQ ). (4.1)

Thus, an upper bound on RD(GQ ) gives rise to an upper bound on RD(BQ ). Other tighter

relations exist [35, 51, 54], such as the so-called C-Bound [51] that involves the expected

disagreement dD(Q) between all the pair of classifiers, and that can be expressed as follows

(when RD < 1
2 ):

RD(BQ ) ≤ 1−
(
1−2RD(GQ )

)2

1−2dD(Q)
, (4.2)

where dD(Q) is the expected disagreement between the pair of classifiers, defined as:

dD(Q) = E
x∼DX

E
(h,h′)∼Q2

1[h(x)6=h′(x)].

3When one has no priori information, one usually use P as uniform distribution as shown in Figure 4.1.
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Note that, we presented the another form of the C-bound in Section 2.4.3 of Chapter 2 and

we provide the proof of C-bound in Appendix B.1. Moreover, Germain et al. [35] have shown

that the Gibbs classifier’s risk can be rewritten in terms of dD(Q) and expected joint error

eD(Q) between all the pair of classifiers as

RD(GQ ) = 1

2
dD(Q)+eD(Q) , (4.3)

where eD(Q) = E
(x,y)∼D

E
(h,h′)∼Q2

1[h(x)6=y]1[h′(x)6=y] .

It is worth noting that from a multiview learning standpoint where the notion of diversity

among classifiers is known to be important [2, 4, 50, 56, 81], Equations (4.2) and (4.3) directly

capture the trade-off between diversity and accuracy. Indeed, dD(Q) involves the diversity

between classifiers, while eD(Q) takes into account the errors. Note that the principle of con-

trolling the trade-off between diversity and accuracy through the C-bound of Equation (4.2)

(also Section 2.4.3 of Chapter 2) has been exploited by Roy et al. [72, 73] and Morvant et al.

[60, 61] to derive well-performing PAC-Bayesian algorithms that aims at minimizing it.

Last but not least, PAC-Bayesian generalization bounds take into account the given prior

distribution P on H through the Kullback-Leibler divergence between the learned posterior

distribution Q and P :

KL(Q‖P ) = E
h∼Q

ln
Q(h)

P (h)
.

4.2.2 The usual PAC-Bayesian Theorem

In this section, we present the general PAC-Bayesian theorem in its probabilistic form. A

key step in PAC-Bayesian proofs is the use of a change of measure inequality [58], based on

the Donsker-Varadhan inequality [27]. The change of measure inequality is recalled in the

following Lemma:

Lemma 4.1. For any hypothesis space H, for any prior P and any posterior Q on H, and for

any measurable function φ :H→R, we have

E
h∼Q

φ(h) ≤ KL(Q‖P )+ ln

(
E

h∼P
eφ(h)

)
.

Proof. Deferred to Appendix B.2 �

Based on Lemma 4.1, the following theorem can be seen as a general PAC-Bayesian theorem

which takes the form of a probabilistic bound (we recalled its one form in Theorem 2.3
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in Chapter 2). Concretely, with a high probability over the random choice of the learning

sample, it upper-bounds the “deviation” between the true and empirical risks of the Gibbs

classifier uniformly for all distribution Q, according to a convex function D : [0,1]×[0,1]→R.

Theorem 4.1 (Germain et al. [34, 35]). For any distribution D on X×Y , for any set of voters H,

for any prior distribution P on H, for any δ∈(0,1], for any convex function D : [0,1]×[0,1]→R,

with a probability at least 1−δ over the random choice of S∼(D)m , we have for all posterior

distribution Q on H:

D
(
RS(GQ ),RD(GQ )

)≤ 1

m

[
KL(Q‖P )+ln

(
1

δ
E

S∼(D)m
E

h∼P
em D(RS (h),RD(h))

)]
,

where RD(h) and RS(h) are respectively the true and the empirical risks of individual voters,

and KL(Q‖P ) = E
h∼Q

ln Q(h)
P (h) is the Kullback-Leibler divergence between the learned posterior

distribution Q and P.

Proof. Deferred to Appendix B.3. �

As stated by Germain et al. [34, 35], we can retrieve the classical versions of the PAC-Bayesian

theorem [14, 58, 77] by selecting a well-suited deviation function D , and by upper-bounding

ES Ehem D(RS (h),RD(h)). Note that, we recalled one of the classical version in in Theorem 2.3 in

Chapter 2. In the next section, we provide a novel formulation of the PAC-Bayesian theorem

expressed as an expectation bound.

4.3 A New PAC-Bayesian Theorem as an Expected Risk

Bound

In this section, we introduce a new variation of the general PAC-Bayesian theorem of Ger-

main et al. [34, 35]. While most of the PAC-Bayesian bounds are probabilistic bounds, we

state here an expected risk bound. More specifically, Theorem 4.2 below is a tool to upper-

bound ES∼Dm RD(GQS )—where QS is the posterior distribution outputted after observing the

learning sample S—while PAC-Bayes usually bounds RD(GQ ) uniformly for all distribution

Q, but with high probability over the random choice of learning sample S ∼ (D)m . Since

by definition posterior distributions are data dependent, this different point of view on

PAC-Bayesian analysis has the advantage to involve an expectation over all the possible

learning samples (of a given size m) in bounds itself.
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Theorem 4.2. For any distribution D on X ×Y , for any set of voters H, for any prior distribu-

tion P on H, for any convex function D : [0,1]× [0,1] →R, we have

D

(
E

S∼(D)m
RS(GQS ), E

S∼(D)m
RD(GQS )

)
≤ 1

m

[
E

S∼(D)m
KL(QS‖P )+ ln

(
E

S∼(D)m
E

h∼P
em D(RS (h),RD(h))

)]
,

where RD(h) and RS(h) are respectively the true and the empirical risks of individual classi-

fiers.

Similarly to Germain et al. [34, 35], by selecting a well-suited deviation function D and by

upper-bounding ES Ehem D(RS (h),RD(h)), we can prove the expected bound counterparts of the

classical PAC-Bayesian theorems of [14, 58, 77]. The proof presented below borrows the

straightforward proof technique of Bégin et al. [7]. Interestingly, this approach highlights

that the expectation bounds are obtained simply by replacing the Markov inequality by the

Jensen inequality (respectively Theorems A.1 and A.2, in Appendix).

Proof of Theorem 4.2 The last three inequalities below are obtained by applying Jensen’s

inequality on the convex function D (Theorem A.2), the change of measure inequality

(Lemma 4.1), and Jensen’s inequality on the concave function ln.

mD

(
E

S∼(D)m
RS(GQS ), E

S∼(D)m
RD(GQS )

)
= mD

(
E

S∼(D)m
E

h∼QS

RS(h), E
S∼(D)m

E
h∼QS

RD(h)

)
≤ E

S∼(D)m
E

h∼QS

mD (RS(h),RD(h))

≤ E
S∼(D)m

[
KL(QS‖P )+ ln

(
E

h∼P
em D(RS (h),RD(h))

)]
≤ E

S∼(D)m
KL(QS‖P )+ ln

(
E

S∼(D)m
E

h∼P
em D(RS (h),RD(h))

)
.

�

Since the C-bound of Equation (4.2) involves the expected disagreement dD(Q), we also

derive below the expected bound that upper-bounds the deviation between ES∼(D)m dS(QS)

and ES∼(D)m dD(QS) under a convex function D . Theorem 4.3 can be seen as the expectation

version of probabilistic bounds over dS(QS) proposed in [35, 51].

Theorem 4.3. For any distribution D on X ×Y , for any set of voters H, for any prior distribu-

tion P on H, for any convex function D : [0,1]× [0,1] →R, we have

D

(
E

S∼(D)m
dS(QS), E

S∼(D)m
dD(QS)

)
≤ 2

m

[
E

S∼(D)m
KL(QS‖P )+ ln

√
E

S∼(D)m
E

(h,h′)∼P 2
emD(dS (h,h′),dD(h,h′))

]
,

where dD(h,h′) = Ex∼DX 1[h(x)6=h′(x)] is the disagreement between classifiers h and h′ on the

distribution D, and dS(h,h′) is its empirical counterpart.
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Proof. The last three inequalities below are obtained by applying Jensen’s inequality on

the convex function D (Theorem A.2), the change of measure inequality (Lemma 4.1), and

Jensen’s inequality on the concave function ln.

mD

(
E

S∼(D)m
dS(QS), E

S∼(D)m
dD(QS)

)
= mD

(
E

S∼(D)m
E

(h,h′)∼Q2
S

dS(h,h′), E
S∼(D)m

E
(h,h′)∼Q2

S

dD(h,h′)

)
≤ E

S∼(D)m
E

(h,h′)∼Q2
S

mD
(
dS(h,h′),dD(h,h′)

)
≤ E

S∼(D)m

[
KL(Q2

S‖P 2)+ ln
(

E
(h,h′)∼P 2

em D(dS (h,h′),dD(h,h′))
)]

≤ E
S∼(D)m

KL(Q2
S‖P 2)+ ln E

S∼Dm
E

(h,h′)∼P 2
emD(dS (h,h′),dD(h,h′)).

Then, we use the fact that KL(Q2
S‖P 2) = 2KL(QS‖P ) [35], which is detailed below:

KL(Q2
S‖P 2) = E

(h,h′)∼Q2
S

ln
QS(h)QS(h′)

P (h)P (h′)

= E
(h,h′)∼Q2

S

[
ln

QS(h)

P (h)
+ ln

QS(h′)
P (h′)

]
= 2KL(QS‖P )

�

In the next section for sake of completeness, we derive the expected bound variations as-

sociated to the classical PAC-Bayesian theorems of [14, 58, 77], by selecting a well-suited

deviation function D and by upper-bounding ES Ehem D(RS (h),RD(h)).

4.4 Specialization of our Theorem to the Classical

Approaches

In this section, we provide the specialization of our PAC-Bayesian theorem (Theorem 4.2) to

the most popular PAC-Bayesian approaches [14, 58, 77].

4.4.1 Square Root Bound

We derive in Corollary 4.1 the specialization of Theorem 4.2 to the McAllester [58]’s point of

view.
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Corollary 4.1. For any distribution D on X ×Y , for any set of voters H, for any prior distri-

bution P on H, we have:

E
S∼(D)m

RD(GQS ) ≤ E
S∼(D)m

RS(GQS )+
√

1

2m

[
E

S∼(D)m
KL(QS‖P )+ ln 2

p
m

]
.

Proof. Deferred to Appendix B.4 �

The generalization bound presented in Corollary 4.1 suggests that in order to minimize

expectation of true risk of Gibbs classifier over all possible posterior distributions, one

needs to control the trade-off between its empirical counterpart E
S∼(D)m

RS(GQS ) and KL-

divergence term E
S∼(D)m

KL(QS‖P ). This bound is easy to interpret as it links the true risk and

the empirical risk of the Gibbs classifier by a linear relation.

4.4.2 Parametrized Bound

To derive the generalization bound with the Catoni’s [14] point of view, given a convex

function F and a real number C > 0 we define the measure of deviation between the

empirical disagreement/joint error and the true risk as D(a,b) =F −C a [34, 35]. Then, we

obtain following generalization bound.

Corollary 4.2. For any distribution D on X ×Y , for any set of voters H, for any prior distri-

bution P on H, for all C > 0, we have:

E
S∼(D)m

RD(GQS ) ≤ 1

1−e−C

(
1−exp

[
−C E

S∼(D)m
RS(GQS )− 1

m

[
E

S∼(D)m
KL(QS‖P )

]])
.

Proof. Deferred to Appendix B.5 �

The generalization bound given by Corollary 4.2 allows us to explicitly control the trade-

off between empirical risk E
S∼(D)m

RS(GQS ) and KL-divergence term E
S∼(D)m

KL(QS‖P ) using

the hyperparameter C . It appears to be a natural tool to design PAC-Bayesian algorithms.

Moreover, following the similar approach as Germain et al. [36], we can derive a simplified

form of above generalization bound using 1−e−x ≤ x:

E
S∼(D)m

RD(GQS ) ≤ C

1−e−C

(
E

S∼(D)m
RS(GQS )+ 1

m ×C

[
E

S∼(D)m
KL(QS‖P )

])
.
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4.4.3 Small kl Bound

If we make use, for function D(a,b) between the empirical risk and the true risk, of the

Kullback-Leibler divergence between two Bernoulli distributions with probability of success

a and b, we can obtain a bound similar to[53, 77]. Concretely, we apply Theorem 3 with:

D(a,b) ≤ kl(a,b) = a ln
a

b
+ (1−a) ln

1−a

1−b
.

Corollary 4.3. For any distribution D on X ×Y , for any set of voters H, for any prior distri-

bution P on H, we have:

kl

(
E

S∼(D)m
RD(GQS )

∣∣∣∣ E
S∼(D)m

RS(GQS )

)
≤ 1

m

[
E

S∼(D)m
KL(QS‖P )+ ln 2

p
m

]
.

Proof. Deferred to Appendix B.6 �

The generalization bound given by Corollary 4.3 controls the trade-off between the KL

divergence term and the empirical risk using kl(·||·). It is difficult to interpret due to kl-

divergence term between true risk and empirical risk of Gibbs classifier. In order to upper

bound the true risk, one needs to solve the following problem:

max b

s.t . kl

(
b

∣∣∣∣ E
S∼(D)m

RS(GQS )

)
= 1

m

[
E

S∼(D)m
KL(QS‖P )+ ln 2

p
m

]
and 0 ≤ b ≤ 1.

4.5 Conclusion

In this chapter, we propose a new PAC-Bayesian theorem that is not a probabilistic bound

as usual. Indeed, it is expressed as an expectation over the posterior distributions that we

can learn for a given learning sample size, while the usual PAC-Bayesian theorem stands

uniformly for all the possible posterior distributions but with high probability over the

random choice of the learning sample. Since by definition posterior distributions are data

dependent, this different point of view on PAC-Bayesian analysis has the advantage to involve

an expectation over all the possible learning samples (of a given size m) in bounds itself.

Moreover, we specialize our PAC-Bayesian theorem to three most popular PAC-Bayesian

approaches. In the next chapter, we provide an extension of this bound to mutlview learning

where we have multiple representations or views of the input data.
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5
PAC-BAYESIAN ANALYSIS OF MULTIVIEW LEARNING

In this chapter, we study a two-level multiview learning learning with more than two views

under the PAC-Bayesian framework. This approach, sometimes referred as late fusion,

consists in learning sequentially multiple view-specific classifiers at the first level, and then

combining these view-specific classifiers at the second level. Our main theoretical result is a

generalization bound on the risk of the majority vote which exhibits a term of diversity in

the predictions of the view-specific classifiers. From this result it comes out that controlling

the trade-off between diversity and accuracy is a key element for multiview learning, which

complements other results (Theorems 3.1 and 3.2 in Chapter 3) in multiview learning. This

work has been done in collaboration with Dr. Pascal Germain from INRIA, Lille, France. It

has been accepted at CAp, 2016 [42] and CAp, 2017 [40]; published in the proceedings of

ECML-PKDD, 2017 [41]; and submitted to Neurocomputing Journal.

5.1 Introduction

We make use of the PAC-Bayesian framework [57] of Chapter 4 to study the issue of learning

a binary classification model while taking into account different information sources. This

issue is referred as multiview learning [4, 80] and is described in Chapter 3. Here, our goal

is to propose a theoretically grounded criteria to “correctly” combine different views while

taking into account the diversity between the views (see Section 3.4 for more details). With

this in mind we propose to study multiview learning through the PAC-Bayesian framework

that allows to derive generalization bounds for models that are expressed as a combination
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over a set of classifiers or views (in our case). In this chapter, we extend the PAC-Bayesian

theory (both the probabilistic and the expected risk generalization bounds) to multiview

with more than two views. Concretely, given a set of view-specific voters, we define a hier-

archy of posterior and prior distributions over the views, such that (i) for each view v , we

consider a prior Pv distribution and learn a posterior Qv distribution over each view-specific

voters’ set, and (ii) we consider a prior π and learn a posterior ρ distribution over the set

of views (see Figure 5.1), respectively called hyper-prior and hyper-posterior1. In this way,

our proposed approach encompasses the one of Amini et al.[2] (recalled in Theorem 3.1)

that considered uniform distribution to combine the view-specific classifiers’ predictions.

Moreover, compared to the PAC-Bayesian work of Sun et al. [81] (recalled in Theorem 3.2),

we are interested here to the more general and natural case of multiview learning with more

than two views.

Our theoretical study also includes a notion of disagreement between all the voters, al-

lowing to take into account a notion of diversity between them which is known as a key

element in multiview learning [2, 15, 50, 56].

In Section 5.2, we present the notations and setting for our two-level hierarchical mul-

tiview learning followed by the instantiation of the PAC-Bayesian generalization bounds

to the two-level multiview approach (in Section 5.3). We present the generalization bound

for the multiview C-bound in Section 5.5. Before concluding in Section 5.7, we discuss the

relation between our analysis and previous works in Section 5.6.

5.2 Notations and Setting

We consider binary classification problems where the multiview observations x = (x1, . . . , xV )

belong to a multiview input set X =X1 × . . .×XV , where V ≥ 2 is the number of views of not-

necessarily the same dimension. We denote V the set of the V views. In binary classification,

we assume that examples are pairs (x, y), with y ∈ Y = {−1,+1}, drawn according to an

unknown distribution D over X ×Y . To model the two-level multiview approach, we follow

the next setting. For each view v ∈V , we consider a view-specific setHv of voters hv :Xv →Y ,

and a prior distribution Pv on Hv . Given a hyper-prior distribution π over the views V , and

a multiview learning sample S = {(xi , yi )}m
i=1 ∼ (D)m , our PAC-Bayesian learner objective

1Our notion of hyper-prior and hyper-posterior distributions is different than the one proposed for lifelong
learning [68], where they basically consider hyper-prior and hyper-posterior over the set of possible priors:
The prior distribution P over the voters’ set is viewed as a random variable, which is not the case in this thesis.
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Figure 5.1: Example of the multiview distributions hierarchy with 3 views. For all views
v ∈ {1,2,3}, we have a set of nv voters Hv = {h1

v , . . . ,hnv
v } on which we consider a prior Pv

view-specific distribution (in blue). A hyper-prior π distribution (in green) over the set of
3 views is also considered. The objective is to learn a set of posterior {Qv }3

v=1 (in red) view-
specific distributions and a hyper-posterior ρ distribution (in orange) leading to a good
model. The length of a rectangle represents the weight (or probability) assigned to a voter or
a view.

is twofold: (i) finding a posterior distribution Qv over Hv for all views v ∈ V ; (ii) finding

a hyper-posterior distribution ρ on the set of views V . This hierarchy of distributions is

illustrated by Figure 5.1. The learned distributions express a multiview weighted majority

vote B MV
ρ defined as

B MV
ρ (x) = sign

[
E

v∼ρ
E

hv∼Qv

h(xv )

]
. (5.1)

Thus, the learner aims at constructing the posterior and hyper-posterior distributions that

minimize the true risk RD(B MV
ρ ) of the multiview weighted majority vote:

RD(B MV
ρ ) = E

(x,y)∼D
1[B MV

ρ (x)6=y].

As pointed out in Section 4.2, the PAC-Bayesian approach deals with the risk of the stochastic

Gibbs classifier G MV
ρ defined as follows in our multiview setting, and that can be rewritten in
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terms of expected disagreement d MV
D (ρ) and expected joint error e MV

D (ρ):

RD(G MV
ρ ) = E

(x,y)∼D
E

v∼ρ
E

hv∼Qv

1[hv (xv )6=y] (5.2)

= 1
2 d MV

D (ρ)+e MV
D (ρ) , (5.3)

where d MV
D (ρ) = E

x∼DX
E

v∼ρ
E

v ′∼ρ
E

hv∼Qv

E
h′

v∼Qv ′
1[hv (xv )6=h′

v (xv ′ )],

and e MV
D (ρ) = E

(x,y)∼D
E

v∼ρ
E

v ′∼ρ
E

hv∼Qv

E
h′

v∼Qv ′
1[hv (xv )6=y]1[h′

v (xv ′ )6=y].

Obviously, the empirical counterpart of the Gibbs classifier’s risk RD(G MV
ρ ) is

RS(G MV
ρ ) = 1

m

m∑
i=1

E
v∼ρ

E
hv∼Qv

1[hv (xv
i )6=yi ]

= 1

2
d MV

S (ρ)+e MV
S (ρ) ,

where d MV
S (ρ) and e MV

S (ρ) are respectively the empirical estimations of d MV
D (ρ) and e MV

D (ρ) on

the learning sample S. As in the single-view PAC-Bayesian setting, the multiview weighted

majority vote B MV
ρ is closely related to this stochastic multiview Gibbs classifier G MV

ρ , and

a generalization bound for G MV
ρ gives rise to a generalization bound for B MV

ρ . Indeed, it is

easy to show that RD(B MV
ρ ) ≤ 2RD(G MV

ρ ), meaning that an upper bound over RD(G MV
ρ ) gives

an upper bound for the majority vote. Moreover the C-Bound of Equation (4.2) can be

extended to our multiview setting by Lemma 5.1 below. Equation (5.4) is a straightforward

generalization of the single-view C-bound of Equation (4.2). Afterward, Equation (5.5) is a

looser version obtained by rewriting RD(G MV
ρ ) as the ρ-average of the risk associated to each

view, and lower-bounding d MV
D (ρ) by the ρ-average of the disagreement associated to each

view.

Lemma 5.1. Let V ≥ 2 be the number of views. For all posterior {Qv }V
v=1 distributions over

{Hv }V
v=1 and hyper-posterior ρ distributions on views V , if RD(G MV

ρ ) < 1
2 , then we have

RD(B MV
ρ ) ≤ 1−

(
1−2RD(G MV

ρ )
)2

1−2d MV
D (ρ)

(5.4)

≤ 1−
(
1−2Ev∼ρ RD(GQv )

)2

1−2Ev∼ρ dD(Qv )
, (5.5)

where RD(GQv ) and dD(Qv ) are respectively the true view-specific Gibbs risk and the expected

disagreement defined as

RD(GQv ) = E
(x,y)∼D

E
hv∼Qv

1[hv (xv )6=y] ,

and dD(Qv ) = E
x∼DX

E
hv∼Qv

E
h′

v∼Qv

1[hv (xv )6=h′
v (xv )].
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Proof. Proof of Equation (5.4) is given in Appendix C.1. To prove Equation (5.5), we first

notice that in the binary setting where y ∈ {−1,1} and hv :X → {−1,1}, we have

1[hv (xv )6=y] =
1

2
(1− y hv (xv ))

and

RD(G MV
ρ ) = E

(x,y)∼D
E

v∼ρ
E

hv∼Qv

1[hv (xv )6=y]

= 1

2

(
1− E

(x,y)∼D
E

v∼ρ
E

hv∼Qv

y hv (xv )
)

= E
v∼ρ

RD(GQv ) .

Moreover, we have

d MV
D (ρ) = E

x∼DX
E

v∼ρ
E

v ′∼ρ
E

hv∼Qv

E
h′

v∼Qv ′
1[hv (xv )6=h′

v (xv ′ )]

= 1

2

(
1− E

x∼DX
E

v∼ρ
E

v ′∼ρ
E

hv∼Qv

E
hv∼Qv ′

hv (xv )×h′
v (xv ′

)
)

= 1

2

(
1− E

x∼DX

[
E

v∼ρ
E

hv∼Qv

hv (xv )
]2)

.

From Jensen’s inequality (Theorem A.2, in Appendix) it comes

d MV
D (ρ) ≥ 1

2

(
1− E

x∼DX
E

v∼ρ

[
E

hv∼Qv

hv (xv )
]2)

= E
v∼ρ

[
1

2

(
1− E

x∼DX

[
E

hv∼Qv

hv (xv )
]2)]

= E
v∼ρ

dD(Qv ) .

By replacing RD(G MV
ρ ) and d MV

D (ρ) in Equation (5.4), we obtain

1−
(
1−2RD(G MV

ρ )
)2

1−2d MV
D (ρ)

≤ 1−
(
1−2Ev∼ρ RD(GQv )

)2

1−2Ev∼ρ dD(Qv )
.

�

Similarly than for the mono-view setting, Equations (5.3) and (5.4) suggest that a good

trade-off between the risk of the Gibbs classifier G MV
ρ and the disagreement d MV

D (ρ) between

pairs of voters will lead to a well-performing majority vote. Equation (5.5) exhibits the

role of diversity among the views thanks to the disagreement’s expectation over the views

Ev∼ρ dD(Qv ).
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5.3 General Multiview PAC-Bayesian Theorem

Now we state our general PAC-Bayesian theorem suitable for the above multiview learning

setting with a two-level hierarchy of distributions over views (or voters). As pointed out in

Chapter 4, ap key step in PAC-Bayesian proofs is the use of a change of measure inequal-

ity [58], based on the Donsker-Varadhan inequality [27]. Lemma 5.2 below extends this tool

to our multiview setting.

Lemma 5.2. For any set of prior distributions {Pv }V
v=1 and any set of posterior distributions

{Qv }V
v=1 over {Hv }V

v=1, for any hyper-prior distribution π on views V and hyper-posterior

distribution ρ on V , and for any measurable function φ :Hv →R, we have

E
v∼ρ

E
hv∼Qv

φ(hv ) ≤ E
v∼ρ

KL(Qv‖Pv )+KL(ρ‖π)+ ln

(
E

v∼π
E

hv∼Pv

eφ(hv )
)

.

Proof. We have

E
v∼ρ

E
hv∼Qv

φ(hv ) = E
v∼ρ

E
hv∼Qv

lneφ(hv )

= E
v∼ρ

E
hv∼Qv

ln
(Qv (hv )

Pv (hv )

Pv (hv )

Qv (hv )
eφ(hv )

)
= E

v∼ρ

[
E

hv∼Qv

ln
(Qv (hv )

Pv (hv )

)
+ E

hv∼Qv

ln
( Pv (hv )

Qv (hv )
eφ(hv )

)]
.

According to the definition of Kullback-Leibler divergence, we have

E
v∼ρ

E
hv∼Qv

φ(hv ) = E
v∼ρ

[
KL(Qv‖Pv )+ E

hv∼Qv

ln
( Pv (hv )

Qv (hv )
eφ(hv )

)]
.

By applying Jensen’s inequality (Theorem A.2, in Appendix) on the concave function ln, we

have

E
v∼ρ

E
hv∼Qv

φ(hv ) ≤ E
v∼ρ

[
KL(Qv‖Pv )+ ln

(
E

hv∼Pv

eφ(hv )
)]

= E
v∼ρ

KL(Qv‖Pv )+ E
v∼ρ

ln
(ρ(v)

π(v)

π(v)

ρ(v)
E

hv∼Pv

eφ(hv )
)

= E
v∼ρ

KL(Qv‖Pv )+KL(ρ‖π)+ E
v∼ρ

ln
(π(v)

ρ(v)
E

hv∼Pv

eφ(hv )
)
.

Finally, we apply again the Jensen inequality (Theorem A.2) on ln to obtain the lemma. �

Based on Lemma 5.2, the following theorems can be seen as a generalization of Theorem 4.1

and Theorem 4.2 to multiview respectively. Note that we still rely on a general convex
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function D : [0,1]× [0,1] →R, that measures the “deviation” between the empirical disagree-

ment/joint error and the true risk of the Gibbs classifier. Note that, in both of following

theorems, we split empirical Gibbs risk into empirical expected disagreement and expected

joint error using Equation (4.3). This is done in order to highlight the trade-off between

disagreement (or diversity between views) and joint error which is important for multiview

learning (as discussed in Chapter 3).

Theorem 5.1 (Probabilistic bound for Multiview Learning). Let V ≥ 2 be the number of views.

For any distribution D on X ×Y , for any set of prior distributions {Pv }V
v=1 over {Hv }V

v=1, for

any hyper-prior distributions π over V , for any convex function D : [0,1]× [0,1] →R, for any

δ ∈ (0,1], with a probability at least 1−δ over the random choice of S ∼ (D)m , for all posterior

{Qv }V
v=1 over {Hv }V

v=1 and hyper-posterior ρ over V distributions, we have:

D
(

1
2 d MV

S (ρS)+e MV
S (ρS),RD(G MV

ρ )
)
≤

1

m

[
E

v∼ρ
KL(Qv‖Pv )+KL(ρ‖π)+ ln

(
1

δ
E

S∼(D)m
E

v∼π
E

h∼Pv

emD(RS (h),RD(h))
)]

.

Proof. Deferred to Appendix C.2.; �

Theorem 5.2 (Expected Risk Bound for Multiview Learning). Let V ≥ 2 be the number of

views. For any distribution D on X ×Y , for any set of prior distributions {Pv }V
v=1, for any

hyper-prior distribution π over V , for any convex function D : [0,1]× [0,1] →R, we have

D
(

1
2 E

S∼(D)m
d MV

S (ρS)+ E
S∼(D)m

e MV
S (ρS), E

S∼(D)m
RD(G MV

ρS
)
)
≤ 1

m

[
E

S∼(D)m
E

v∼ρS
KL(Qv,S‖Pv )

+ E
S∼(D)m

KL(ρS‖π)+ ln

(
E

S∼(D)m
E

v∼π
E

hv∼Pv

emD(RS (hv ),RD(hv ))
)]

.

Proof. We follow the same steps as in Theorem 4.2 proof.

mD
(

E
S∼(D)m

RS(G MV
ρS

), E
S∼(D)m

RD(G MV
ρS

)
)

= mD
(

E
S∼(D)m

E
v∼ρS

E
hv∼Qv,S

RS(hv ), E
S∼(D)m

E
v∼ρS

E
hv∼Qv,S

RD(hv )
)

≤ E
S∼(D)m

E
v∼ρS

E
hv∼Qv,S

mD (RS(hv ),RD(hv ))

≤ E
S∼(D)m

[
E

v∼ρS
KL(Qv,S‖Pv )+KL(ρS‖π)+ ln

(
E

v∼π
E

hv∼Pv

emD(RS (hv ),RD(hv ))
)]

,

where the last inequality is obtained using Lemma 5.2. After distributing the expectation of

S ∼ (D)m , the final statement follows from Jensen’s inequality (Theorem A.2)

E
S∼(D)m

ln

(
E

v∼π
E

hv∼Pv

emD(RS (hv ),RD(hv ))
)
≤ ln

(
E

S∼(D)m
E

v∼π
E

hv∼Pv

emD(RS (hv ),RD(hv ))
)

,

and from Equation (4.3): RS(G MV
ρS

) = 1
2 d MV

S (ρS)+e MV
S (ρS). �

59



CHAPTER 5. PAC-BAYESIAN ANALYSIS OF MULTIVIEW LEARNING

It is interesting to compare this generalization bound to Theorem 4.1 (and Theorem 4.2). The

main difference relies on the introduction of view-specific prior and posterior distributions,

which mainly leads to an additional term E
v∼ρ

KL(Qv‖Pv )
(

and E
S∼(D)m

E
v∼ρS

KL(Qv,S‖Pv )
)
, ex-

pressed as the expectation of the view-specific Kullback-Leibler divergence term over the

views V according to the hyper-posterior distribution ρ. This additional term captures the

deviation between the view-specific posterior and prior distributions over all the views.

We also introduce the empirical disagreement allowing us to directly highlight the pres-

ence of the diversity between voters and between views. As Theorem 4.2 (and Theorem

4.2), Theorem 5.1 (and Theorem 5.2) provides a tool to derive PAC-Bayesian generalization

bounds for two-level multiview supervised learning setting. Indeed, by making use of the

same trick as Germain et al. [34, 35], generalization bounds can be derived from Theo-

rem 5.1 (and Theorem 5.2) by choosing a suitable convex function D and upper-bounding

ES Ev Ehv em D(RS (hv ),RD(hv )). We provide the specialization to the three most popular PAC-

Bayesian approaches [14, 53, 58, 77] in the next section.

Since the multiview C-bound of Equation (5.4) involves the expected disagreement d MV
D (ρ),

we also derive below the probabilistic and expected bounds that upper-bounds the deviation

between d MV
S (ρ) and d MV

D (ρ) under a convex function D . Theorem 5.3 can be seen as the of

probabilistic and expected bounds over d MV
S (ρ) proposed by [35, 51].

Theorem 5.3. Let V ≥ 2 be the number of views. For any distribution D on X ×Y , for any

set of prior distributions {Pv }V
v=1, for any hyper-prior distribution π over V , for any convex

function D : [0,1]× [0,1] →R, we have

Pr
S∼(D)m

(
D

(
d MV

S (ρ),d MV
D (ρ)

)
≤ 2

m

[
E

v∼ρ
KL(Qv‖Pv )+ KL(ρ‖π)+ ln

√
E

S∼(D)m
E

(hv ,h′
v )∼P 2

emD(dS (hv ,h′
v ),dD(hv ,h′

v ))
])

≥ 1−δ ,

and

D
(

E
S∼(D)m

d MV
S (ρS), E

S∼(D)m
d MV
D (ρS)

)
≤ 2

m

[
E

S∼(D)m
E

v∼ρS
KL(Qv,S‖Pv )+ E

S∼(D)m
KL(ρS‖π)+ ln

√
E

S∼(D)m
E

(hv ,h′
v )∼P 2

emD(dS (hv ,h′
v ),dD(hv ,h′

v ))
]

.

Proof. The result is obtained straightforwardly by following the proof steps of Theorem 5.1

and Theorem 5.2 respectively, using the disagreement instead of the Gibbs risk. Then, simi-

larly at what we have done to obtain Theorem 4.3, we substitute KL(Q2
v,S‖P 2

v ) by 2KL(Qv,S‖Pv ),

and KL(ρ2
S‖π2) by 2KL(ρS‖π). �
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5.4 Specialization of our Theorem to the Classical

Approaches

In this section, we provide specialization of our multiview theorem to the most popular

PAC-Bayesian approaches [14, 53, 57, 77]. To do so, we follow the same principles as Germain

et al. [34, 35] as recalled in Chapter 4.

5.4.1 Square Root Bound

We derive here the specialization of our multiview PAC-Bayesian theorem to the McAllester[58]’s

point of view.

Corollary 5.1. Let V ≥ 2 be the number of views. For any distribution D on X ×Y , for any set

of prior distributions {Pv }V
v=1 over {H}V

v=1, for any hyper-prior distribution π over V , we have

Pr
S∼(D)m

(
RD(G MV

ρ ) ≤ 1

2
d MV

S (ρ)+e MV
S (ρ)

+

√√√√ E
v∼ρS

KL(Qv,S‖Pv )+ E
S∼(D)m

KL(ρS‖π)+ ln 2
p

m
δ

2m

)
≥ 1−δ

and

E
S∼(D)m

RD(G MV
ρS

) ≤ 1

2
E

S∼(D)m
d MV

S (ρS)+ E
S∼(D)m

e MV
S (ρS)

+

√√√√ E
S∼(D)m

E
v∼ρS

KL(Qv,S‖Pv )+ E
S∼(D)m

KL(ρS‖π)+ ln 2
p

m

2m
.

Proof. Deferred to Appendix C.3. �

5.4.2 Parametrized Bound

To derive a generalization bound with the Catoni’s [14] point of view—given a convex

functionF and a real number C > 0— define the measure of deviation between the empirical

disagreement/joint error and the true risk as D(a,b) =F (b)−C a [34, 35]. We obtain the

following generalization bound.

Corollary 5.2. Let V ≥ 2 be the number of views. For any distribution D on X ×Y , for any set

of prior distributions {Pv }V
v=1 over {H}V

v=1, for any hyper-prior distributions π over V , for all
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C > 0, we have:

Pr
S∼(D)m

(
RD(G MV

ρ ) ≤ 1

1−e−C

(
1−exp

[
−

[
C

(
1
2 d MV

S (ρ)+e MV
S (ρ)

)
+

1

m

[
E

S∼(D)m
E

v∼ρS
KL(Qv,S‖Pv )+ E

S∼(D)m
KL(ρS‖π)+ ln 1

δ

]]]))
≥ 1−δ

and

E
S∼(D)m

RD(G MV
ρS

) ≤ 1

1−e−C

(
1−exp

[
−

[
C

(
1
2 E

S∼(D)m
d MV

S (ρS)+ E
S∼(D)m

e MV
S (ρS)

)
+

1

m

[
E

S∼(D)m
E

v∼ρS
KL(Qv,S‖Pv )+ E

S∼(D)m
KL(ρS‖π)

]]])

Proof. Deferred to Appendix C.4. �

5.4.3 Small kl Bound

If we make use, for function D(a,b) between the empirical risk and the true risk, of the

Kullback-Leibler divergence between two Bernoulli distributions with probability of success

a and b, we can obtain a bound similar to [53, 77]. Concretely, we apply Theorem 5.1 and

Theorem 5.2 with:

D(a,b) = kl(a,b) = a ln
a

b
+ (1−a) ln

1−a

1−b
.

Corollary 5.3. Let V ≥ 2 be the number of views. For any distribution D on X ×Y , for any set

of prior distributions {Pv }V
v=1 over {H}V

v=1, for any hyper-prior distributions π over views V ,

we have:

Pr
S∼(D)m

(
kl

(
1
2 d MV

S (ρ)+e MV
S (ρ),RD(G MV

ρS
)
)

≤ 1

m

[
E

S∼(D)m
E

v∼ρS
KL(Qv,S‖Pv )+ E

S∼(D)m
KL(ρS‖π)+ ln

2
p

m

δ

])
≥ 1−δ

and

kl

(
1
2 E

S∼(D)m
d MV

S (ρS)+ E
S∼(D)m

e MV
S (ρS), E

S∼(D)m
RD(G MV

ρS
)

)
≤ 1

m

[
E

S∼(D)m
E

v∼ρS
KL(Qv,S‖Pv )+ E

S∼(D)m
KL(ρS‖π)+ ln 2

p
m

]
.

Proof. Deferred to Appendix C.5. �
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5.5 Generalization Bound for the Multiview C-Bound

From a practical standpoint, as pointed out before, controlling the multiview C-Bound of

Equation (5.5) can be very useful for tackling multiview learning. The next theorem is a

generalization bound that justify the empirical minimization of the multiview C-bound (we

use in our algorithm PB-MVBoost derived in Section 6.2 of Chapter 6).

Theorem 5.4. Let V ≥ 2 be the number of views. For any distribution D on X ×Y , for any set

of prior distributions {Pv }V
v=1 over {H}V

v=1, for any hyper-prior distributions π over views V ,

and for any convex function D : [0,1]× [0,1] → R, with a probability at least 1−δ over the

random choice of S ∼ (D)m for all posterior {Qv }v
v=1 and hyper-posterior ρ distributions, we

have:

RD(B MV
ρ ) ≤ 1−

(
1−2 E

v∼ρ
sup

(
rδ/2

Qv ,S
))2

1−2 E
v∼ρ

inf dδ/2
Qv ,S

,

where

rδ/2
Qv ,S =

{
r : kl(RS(GQv )‖r ) ≤ 1

m

[
KL(Qv‖Pv )+ ln

4
p

m

δ

]
and r ≤ 1

2

}
(5.6)

and dδ/2
Qv ,S =

{
d : kl(d S

Qv
‖d) ≤ 1

m

[
2.KL(Qv‖Pv )+ ln

4
p

m

δ

]}
(5.7)

Proof. Let assume that the Gibbs risk RD(GQv ) ≤ 1
2 . Then with a high probability over the

random choice of learning sample, probabilistic bound of Corollary 5.3 in Chapter 5 says

that the true Gibbs risk RD(GQv ) is included in the continuous set rδ
Qv ,S defined as

rδ
Qv ,S =

{
r : kl(RS(GQv )‖r ) ≤ 1

m

[
KL(Qv‖Pv )+ ln

2
p

m

δ

]
and r ≤ 1

2

}
Thus, an upper bound on RD(GQv ) is obtained from maximum value of rδ

Qv ,S . From proba-

bilistic small kl bound of expected disagreement (see Theorem 5.3), we can easily derive the

continuous set dδ
Qv ,S defined as

dδ
Qv ,S =

{
d : kl(d S

Qv
‖d) ≤ 1

m

[
2KL(Qv‖Pv )+ ln

2
p

m

δ

]}
Finally, the bound is obtained (from Equation (5.5) of Lemma 5.1) by replacing the view-

specific Gibbs risk RD(GQv ) by its upper bound sup rδ/2
Qv ,S and expected disagreement dD(Qv )

by its lower bound inf dδ/2
Qv ,S . �
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5.6 Discussion on Related Works

In this section, we discuss two related theoretical studies of multiview learning (that are

recalled in Chapter 3) related to the notion of majority vote.

Massih et al. [2] proposed a Rademacher analysis (Theorem 3.1 in Chapter 3) of the risk of the

multiview majority vote over the view-specific classifiers (for more than two views) where the

distribution over the views is restricted to the uniform distribution. In their work, each view-

specific classifier is learned by minimizing the empirical risk: h∗
v = argmin

hv∈Hv

1

m

∑
(x,y)∼(D)m

1[hv (xv )6=y].

Finally, the prediction for any multiview example x is based on the majority vote over these

view-specific classifiers. The risk of the multiview majority vote (MV-MV) is hence given by

RD(MV-MV(x)) = E
(x,y)∼D

1

V

V∑
v=1

1[h∗
v (xv )6=y].

In comparison to our work, we considered a non-uniform distribution over the views by

following a hierarchy of distributions over the view-specific classifiers. Moreover, in our

bounds (Theorem 5.1 and Theorem 5.1), we have explicitly highlighted the term to control

the diversity between the views, which is important for multiview learning.

Sun et al. [81] proposed a PAC-Bayesian analysis for co-regularization style multiview learn-

ing approaches (Theorem 3.2 in Chapter 3) but limited to two views and in a more restrictive

setting. Indeed, they considered linear classifiers over the concatenation of two views and

defined a prior distribution over the classifiers that promotes similar classification among

the two views (see Section 3.3.4 for more details). In contrast to our work, we are interested

in more general case when we have more than two views. Moreover, our generalization

bounds are not specific to any type of classifiers and the notion of diversity among the views

is handled in a different way and is inherent of the definition of the Gibbs Risk.

Lastly, both of the above approaches exploit the consensus principle (Section 3.3 in Chapter

3) of multiview learning where the objective is to maximize the agreement between the

multiple views of the data. Whereas, our bounds exploits the diversity principle (Section 3.4

in Chapter 3) where our objective is to control the trade-off between the diversity between

the views and the accuracy of the view-specific voters. According to the diversity principle,

we exploit different informations from different views of the data. This is done by following

a two-level hierarchical strategy over the view-specific classifiers and the views.
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5.7 Conclusion

In this chapter, we propose a first PAC-Bayesian analysis of weighted majority vote classifiers

for multiview learning when observations are described by more than two views. Here,

our goal is to correctly combine the multiple views of the data while taking into account

the diversity between the views. Therefore, we study multview learning using the PAC-

Bayesian theory which allows us to derive generalization bounds for models expressed

as a combination over the view-specific voters and the views. Our analysis is based on

a hierarchy of distributions, i.e. weights, over the views and voters: (i) for each view v a

posterior and prior distributions over the view-specific voter’s set, and (ii) a hyper-posterior

and hyper-prior distribution over the set of views. We derive general PAC-Bayesian theorems

(probabilistic and expected risk bounds ) tailored for this setting, that can be specialized

to any convex function to compare the empirical and true risks of the stochastic Gibbs

classifier associated with the weighted majority vote. We also presented a similar theorem

for the expected disagreement, a notion that turns out to be crucial in multiview learning.

Moreover, we derive the generalization bound for the multiview C-bound which we use to

design a boosting based algorithm PB-MVBoost in the next chapter. We present multiview

learning algorithms based on this two-level hierarchical strategy in the next chapters.
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6
MULTIVIEW BOOSTING ALGORITHM BASED ON THE MULTIVIEW

C-BOUND

In this chapter, we design a boosting based multiview learning algorithm based on two-level

hierarchical strategy presented in Chapter 5, referred as PB-MVBoost. It iteratively learns

i) weights over view-specific voters capturing view-specific information, and ii) weights

over views by optimizing a PAC-Bayesian multiview C-Bound (Equation (5.5) of Lemma 5.1)

that takes into account the accuracy of the view- specific voters and the diversity between

the views. Moreover, we derive another two-step multiview algorithm based on late fusion

[79] strategy. It learns view-specific voters at the base level of hierarchy and then learn

a multiview model over the predictions of the view-specific voters using PAC-Bayesian

algorithm CqBoost (Algorithm 2 in Chapter 2). Different experiments on three publicly

available datasets show the efficiency of the proposed approaches with respect to state-

of-art models. This work has been done in collaboration with Dr. Pascal Germain from

INRIA, Lille, France. It has been published in the proceedings of ECML-PKDD, 2017 [41] and

submitted to Neurocomputing Journal.

6.1 Introduction

We follow the two-level hierarchical learning strategy proposed in Chapter 5, in order to

design a multview learning algorithm based on the idea of boosting [31, 32, 74, 75]. We recall

the idea of the two-level hierarchical learning strategy in Figure 6.1. Concretely, i) for each
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Figure 6.1: Example of the multiview distributions hierarchy with 3 views. For all views
v ∈ {1,2,3}, we have a set of nv voters Hv = {h1

v , . . . ,hnv
v } on which we consider a prior Pv

view-specific distribution (in blue). A hyper-prior π distribution (in green) over the set of
3 views is also considered. The objective is to learn a set of posterior {Qv }3

v=1 (in red) view-
specific distributions and a hyper-posterior ρ distribution (in orange) leading to a good
model. The length of a rectangle represents the weight (or probability) assigned to a voter or
a view.

view v , we consider a prior Pv and a posterior Qv distributions over view-specific voters

to capture view-specific informations and ii) a hyper-prior πv and a hyper-posterior ρv

distributions over the set of views to capture the accuracy of view-specific classifiers and

diversity between the views. Following this distributions’ hierarchy, we define a multiview

majority vote classifier where view-specific classifiers are weighted according to posterior

and hyper-posterior distributions. By doing so, we extended the usual monoview C-Bound

to multview C-Bound (Lemma 5.1) which bounds the error of the multiview majority vote in

terms of multiview gibbs classifier and the expected disagreement (see Equation (5.2)).

From the practical point of view, we design two algorithms based on the idea of boost-

ing [31, 32, 74, 75] and late fusion [79] (also referred as stacking [89]). Our boosting-based

multiview learning algorithm, called PB-MVBoost, deals with the two-level hierarchical

learning strategy. PB-MVBoost is an ensemble method and outputs a multiview classifier

that is a combination of view-specific voters. It is well known that controlling the diversity
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between the view-specific classifiers or the views is a key element in multiview learning

[2, 15, 41, 50, 56, 61] (as discussed in Chapters 3 and 5). Therefore, to learn the weights

over the views, we minimize an upper-bound on the error of the majority vote using the

multiview C-bound [35, 41, 73] (proposed in Lemma 5.1), allowing us to control a trade-off

between accuracy and diversity. Concretely, at each iteration of our multiview algorithm,

we learn i) weights over view-specific voters based on their ability to deal with examples on

the corresponding view (capturing view-specific informations); and ii) weights over views

by minimizing the multiview C-bound. Second algorithm is a two-step learning algorithm

FusionallCq [41] based on the PAC-Bayesian theory. It learns the view-specific voters at the

base level of hierarchy. Finally, at second level, we combine the predictions of view-specific

voters using a PAC-Bayesian algorithm CqBoost [73] (Algorithm 2 in Chapter 2) which cap-

tures both accuracy and diversity between view-specific voters.

In order to show the potential of our algorithms, we empirically evaluate our approach

on MNIST1, MNIST2 [55] and Reuters RCV1/RCV2 collections [2]. We observe that our algo-

rithm PB-MVBoost, empirically minimizes the multiview C-Bound over iterations, and lead

to good performances even when the classes are unbalanced. We compare PB-MVBoost with

our two-step learning algorithm FusionallCq and it came out that PB-MVBoost is more stable

algorithm across different datasets and computationally faster than FusionallCq .

In the next section, we derive our multiview learning algorithm PB-MVBoost. In Section 6.3,

we discuss the relation between our algorithm with previous works. Before concluding in

Section 6.5, we experiment our algorithms in Section 6.4.

6.2 PB-MVBoost

Following our two-level hierarchical strategy (see Figure 6.1), we aim at combining the

view-specific voters (or views) leading to a well performing multiview majority vote given

by Equation (5.1). Boosting [75] (presented in Sections 2.3 and 2.4.2 of Chapter 2) is a well

known approach which aims at combining a set of weak voters in order to build a more

efficient classifier than each of the view-specific classifiers alone. Typically, boosting algo-

rithms repeatedly learn a “weak" voter using a learning algorithm with different probability

distribution over the learning sample S. Finally, it combines all the weak voters in order to

have one single strong classifier expressed as a majority vote which performs better than

the individual weak voters. We exploit boosting paradigm to derive a multiview learning
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Algorithm 5 PB-MVBoost
Input: Training set S = {(xi , yi ), . . . , (xm , ym)}, where xi = (x1, x2, . . . , xV ) and yi ∈ {−1,1}.

For each view v ∈V , a view-specific hypothesis set Hv .
Number of iterations T .

1: for xi ∈ S do
2: D1(xi ) ← 1

m

3: ∀v ∈V , ρ1
v ← 1

V and Hv ←φ

4: for t = 1, . . . ,T do
5: For each view v ∈V , learn a view-specific weak classifier h(t )

v using distribution D(t )

6: Compute error: ∀v ∈V , ε(t )
v ← E

(xi ,yi )∼D(t )

[
1[ht

v (xv
i )6=yi ]

]
7: Compute classifier’s weight (taking into account view specific information):

∀v ∈V ,Q(t )
v ← 1

2

[
ln

(
1−ε(t )

v

ε(t )
v

)]

8: ∀v ∈V , Hv ← Hv ∪ {h(t )
v }

9: Optimize the multiview C-Bound to learn weights over the views

maxρ

[
1−2

∑V
v=1 ρ

(t )
v r (t )

v

]2

1−2
∑V

v=1 ρ
(t )
v d (t )

v

s.t .
V∑

v=1
ρ(t )

v = 1, ρ(t )
v ≥ 0 ∀v ∈ {1, ...,V }

where, ∀v ∈V , r (t )
v ← E

(xi ,yi )∼D(t )

E
hv∼Hv

[
1[hv (xv

i )6=yi ]

]
∀v ∈V , d (t )

v ← E
(xi ,yi )∼D(t )

E
hv ,h′

v∼Hv

[
1[hv (xv

i )6=h′
v (xv

i )]

]
10: for xi ∈ S do

11: D(t+1)(xi ) ← D(t )(xi )exp(−yi
∑V

v=1 ρ
(t )
v (Q(t )

v h(t )
v (xv

i )))∑m
j=1D(t )(x j )exp(−y j

∑V
v=1 ρ

(t )
v (Q(t )

v h(t )
v (xv

j )))

12: Return: For each view v ∈V , weights over view-specific voters and weights over views
i.e. ρT . Such that, for any input example x multiview weighted majority vote is defined
as:

B MV
ρ (x) = sign

(
V∑

v=1
ρT

v

T∑
t=1

Q(t )
v h(t )

v (xv )

)
.
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algorithm PB-MVBoost (see Algorithm 5) for our setting.

Note that we keep the same notations and setting as in Section 5.2 of Chapter 5. For a

given training set S = {(xi , yi ), . . . , (xm , ym)} ∈ (X × {−1,+1})m of size m; our proposed algo-

rithm (Algorithm 5) maintains a distribution over the examples which is initialized as the

uniform distribution. Then at each iteration t , V view-specific weak classifiers are learned

according to the current distribution Dt (Step 5), and their corresponding errors εt
v are

estimated (Step 6).

Similarly to the Adaboost algorithm [32] (recalled in Section 2.4.2 of Chapter 2), the weights

of each view-specific classifier (Q(t )
v )1≤v≤V are then computed with respect to these errors

as :

∀v ∈V ,Q(t )
v ← 1

2

[
ln

(
1−ε(t )

v

ε(t )
v

)]

To learn the weights (ρv )1≤v≤V over the views, we optimize the multiview C-Bound, given

by Equation (5.5) of Chapter 5 (Step 8 of algorithm). The multiview C-Bound controls the

trade-off between the expectation of the Gibbs risk E
v∼ρ

r (t )
v and the expected disagreement

E
v∼ρ

d (t )
v over all view-specific classifiers defined as follows

E
v∼ρ

r (t )
v = E

(xi ,yi )∼D(t )

E
v∼ρ

E
hv∼Hv

I[hv (xv
i ) 6= yi ], (6.1)

and E
v∼ρ

d (t )
v = E

(xi ,yi )∼D(t )

E
v∼ρ

E
hv ,h′

v∼Hv

I[hv (xv
i ) 6= h′

v (xv
i )]. (6.2)

Intuitively, the minimization of the multiview C-Bound tries to diversify the view-specific

voters and views (Equation (6.2)) while controlling the classification error of the view-specific

classifiers (Equation (6.1)). This allows us to control the accuracy and the diversity between

the views which is an important ingredient in multiview learning [41, 61, 66, 67, 94] as

discussed in Chapters 3 and 5. In Section 6.4, we empirically show that our algorithm

minimizes the multiview C-Bound over the iterations of the algorithm (this is theoretically

justified by the generalization bound of Theorem 5.4). Finally, we update the distribution

over training examples xi (Step 9), by following the Adaboost algorithm and in a way that

the weights of misclassified (resp. well classified) examples by the final weigthed majority

classifier increase (resp. decrease).

D(t+1)(xi ) ← D(t )(xi )exp(−yi
∑V

v=1 ρ
(t )
v (Q(t )

v h(t )
v (xv

i )))∑m
j=1D(t )(x j )exp(−y j

∑V
v=1 ρ

(t )
v (Q(t )

v h(t )
v (xv

j )))
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Intuitively, this forces the view-specific classifiers to be consistent with each other, which

is important for multiview learning [46, 48, 90]. Finally, after T iterations of algorithm, we

learn the weights over the view-specific voters and weights over the views leading to a

well-performing weighted multiview majority vote

B MV
ρ (x) = sign

(
V∑

v=1
ρT

v

T∑
t=1

Q(t )
v h(t )

v (xv )

)
.

6.3 Discussion on Related Works

In this section, we compare existing ensemble-based multiview learning algorithms [2, 46,

48, 66, 67, 81, 90, 94] (discussed in Sections 3.3 and 3.4 of Chapter 3) with our approach.

Janodet et al. [46] and Xu and Sun [94] designed boosting based multiview learning al-

gorithms 2-Boost and EMV-AdaBoost respectively for two-view setting. In this work, we are

interested in deriving multiview learning algorithms for more general and natural case of

more than two views. Koço et al. [48] proposed Mumbo that maintains separate distribu-

tions for each view in order to communicate between the views or in other words, to control

the diversity between the views. On the other hand, Peng et al. [66, 67], for controlling the

diversity between the views, learn the weights over the views by casting the algorithm in

two ways: i) a multiarmed bandit framework (rBoost.SH) (Algorithm 4 in Chapter 3) and

ii) an expert strategy framework (eBoost.SH) consisting of set of strategies (distribution

over views) for weighing views. Whereas, we follow a two-level learning strategy where we

learn (hyper-)posterior distributions/weights over the view-specific voters and the views. In

order to take into account the accuracy and the diversity between the views, we optimize the

multiview C-Bound (an upper-bound over the risk of the multiview majority vote learned,

see e.g. [35, 41, 73])

Furthermore, our approach encompasses the one of Amini et al. [2] and Xiao and Guo [90].

Amini et al. [2] proposed a Rademacher analysis (Theorem 3.1 in Chapter 3) for the majority

vote over the set of view-specific classifiers (for more than two views). Xiao and Guo [90]

derived a weighted majority voting Adaboost algorithm (Algorithm 3 in Chapter 3) which

learns weights over view-specific voters at each iteration of the algorithm. Both of these

approaches maintain a uniform distribution over the views whereas our algorithm learns

the weights over the views such that they capture diversity between the views. Moreover,

Sun et al.[81] proposed a PAC-Bayesian analysis for multiview learning over the concatena-
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tion of views but limited to two views and to a particular kind of voters: linear classifiers

(as discussed in Section 3.3.4 of Chapter 3). This has allowed them to derive a SVM-like

learning algorithm but dedicated to multiview with exactly two views. In our work, we are

interested in learning from more than two views and no restriction on the classifier type.

Contrary to them, we followed a two-level distributions’ hierarchy where we learn weights

over view-specific classifiers and weights over views.

6.4 Experimental Results

In this section, we present experiments to show the potential of our algorithms on the

following datasets.

6.4.1 Datasets

MNIST

MNIST is a publicly available dataset consisting of 70,000 images of handwritten digits

distributed over ten classes [55]. The size of the different classes in the number of images

is given in Table 6.1. For our experiments, we generated 2 four-view datasets where each

view is a vector of R14×14. Similarly than done by Chen et al. [18], the first dataset (MNIST1) is

generated by considering 4 quarters of image as 4 views. For the second dataset (MNIST2)

we consider 4 overlapping views around centre of image: this dataset brings redundancy

between the views. These two datasets allow us to check if our algorithm is able to capture

redundancy between the views. We reserve 10,000 of images as test samples and remaining

as training samples.

Class zero one two three four
# Images 6903 7877 6990 7141 6824

Class five six seven eight nine
# Images 6313 6876 7293 6825 6958

Table 6.1: Number of images per class in MNIST.
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Multilingual, Multiview Text categorization

This dataset is a multilingual text classification data extracted from Reuters RCV1/RCV2

corpus1. It consists of more than 110,000 documents written in five different languages

(English, French, German, Italian and Spanish) distributed over 6 classes. We see different

languages as different views of the data. The statistics of this dataset are presented in

Table 6.2. We reserve 30% of documents as test samples and remaining as training data.

Language # Docs Class # Docs
English 18,758 C15 18,816
French 26,648 CCAT 21,426
German 29,953 E21 13,701
Italian 24,039 ECAT 19,198
Spanish 12,342 GCAT 19,178
Total 111,740 M11 19,421

Table 6.2: Number of documents per language (left) and per class (right) in Reuters
RCV1/RCV2 corpus.

6.4.2 Experimental Protocol

While the datasets are multiclass, we transformed them as binary tasks by considering one-

vs-all classification problems: for each class we learn a binary classifier by considering all the

learning samples from that class as positive examples and the others as negative examples.

We consider different size of learning samples S (150, 200, 250, 300, 500, 800, 1000) that

are chosen randomly from the training data. Since the classes are unbalanced, we report

the accuracy along with the standard F1-measure [70], which is the harmonic average of

precision and recall defined as

F1 = 2×Pr eci si on ×Recal l

Pr eci si on +Recal l
.

Experiments are repeated 20 times by at each time splitting the training and the test sets

at random over the initial datasets and all the scores are averaged over all the one-vs-all

classification problems.

We design two multiview learning algorithms based on our two-step hierarchical strat-

egy. The first algorithm is the boosting based multiview learning algorithm PB-MVBoost
1https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,

+Multiview+Text+Categorization+Test+collection
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Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Monov .9034± .001↓ .5353± .006↓ .9164± .001↓ .5987± .007↓ .8420± .002↓ .5051± .007↓

Concat .9224± .002↓ .6168± .011↓ .9214± .002↓ .6142± .013↓ .8431± .004↓ .5088± .012↓

Fusiondt .9320± .001↓ .5451± .019↓ .9366± .001↓ .5937± .020↓ .8587± .003↓ .4128± .017↓

MV-MV .9402± .001↓ .6321± .009↓ .9450± .001↓ .6849± .008↓ .8780± .002↓ .5443± .012↓

rBoost.SH .9256± .001↓ .5315± .009↓ .9545± .0007 .7258± .005↓ .8853± .002 .5718± .011↓

MV-AdaBoost .9514± .001 .6510± .012↓ .9641± .0009 .7776± .007↓ .8942± .006 .5581± .013↓

MV-Boost .9494± .003↓ .7733± .009↓ .9555± .002 .7910± .006↓ .8627± .007↓ .5789± .012↓

FusionallCq .9418± .002↓ .6120± .040↓ .9548± .003↓ .7217± .041↓ .9001 ± .003 .6279 ± .019

PB-MVBoost .9661± .0009 .8066± .005 .9674± .0009 .8166± .006 .8953± .002 .5960± .015↓

Table 6.3: Test classification accuracy and F1-measure of different approaches averaged over
all the classes and over 20 random sets of m = 500 labeled examples per training set. Along
each column, the best result is in bold, and second one in italic. ↓ indicates that a result is
statistically significantly worse than the best result, according to a Wilcoxon rank sum test
with p < 0.02.

described in Section 6.2. Second one is a two-step multiview learning algorithm based on

classifier late fusion approach [79]. We call this algorithm FusionallCq [41]. Concretely, at

first level, we learn different view-specific linear SVM models (recalled in Section 2.4.1 of

Chapter 2) with different hyperparameter C values (12 values between 10−8 and 103). Finally,

at the second level, we learn a weighted combination over the predictions of view-specific

voters using PAC-Bayesian algorithm CqBoost[73] (recalled in Section 2.4.3 of Chapter 2)

with a RBF kernel. Note that, CqBoost tends to minimize the PAC-Bayesian C-Bound [35]

controlling the trade-off between accuracy and disagreement between voters. The hyperpa-

rameter γ of the RBF kernel (presented in Section 2.4.1 of Chapter 2 ) is chosen over a set of

9 values between 10−6 and 102; and hyperparameter µ of FusionallCq is chosen over a set of

8 values between 10−8 and 10−1. To study the potential of our algorithms (FusionallCq and

PB-MVBoost), we considered following 7 baseline approaches:

• Monov : We learn a view-specific model for each view using a decision tree classifier

and report the results of the best performing view.

• Concat: We learn one model using a decision tree classifier by concatenating features

of all the views.

• Fusiondt : This is a late fusion approach where we first learn the view-specific classi-

fiers using 60% of learning sample Then, we learn a final multiview weighted model

over the predictions of the view-specific classifiers. For this approach, we used decision

tree classifier at both levels of learning.

75



CHAPTER 6. MULTIVIEW BOOSTING ALGORITHM BASED ON THE MULTIVIEW C-BOUND

• MV-MV: We compute a multiview uniform majority vote (similar to approach followed

by Amini et al. [2]) over all the view-specific classifiers’ outputs in order to make final

prediction. We learn view-specific classifiers using decision tree classifier (Equation

(3.11) in Chapter 3).

• rBoost.SH (Algorithm 4 in Chapter 3): This is the multiview learning algorithm pro-

posed by Peng et al. [66, 67] where a single global distribution is maintained over the

learning sample for all the views and the distribution over views are updated using

multiarmed bandit framework. At each iteration, rBoost.SH selects a view accord-

ing to the current distribution and learns the corresponding view-specific voter. For

tuning the parameters, we followed the same experimental setting as Peng et al. [66].

• MV-AdaBoost: This is a majority vote classifier over the view-specific voters trained

using Adaboost algorithm. Here, our objective is to see the effect of maintaining

separate distributions for all the views.

• MV-Boost (Algorithm 6): This is a variant of our algorithm PB-MVBoost but without

learning weights over views by optimizing multiview C-Bound. Here, our objective is

to see the effect of learning the weights over the views for multiview learning tasks.

For all boosting based approaches (rBoost.SH, MV-AdaBoost, MV-Boost and PB-MVBoost),

we learn the view-specific voters using a decision tree classifier with depth 2 and 4 as a weak

classifier for MNIST, and Reuters RCV1/RCV2 datasets respectively. For all these approaches,

we set the number of iterations to T = 100. For optimizing the multiview C-Bound, we

used Sequential Least SQuares Programming (SLSQP) implementation provided by scikit-

learn [65]. Note that we made use of the scikit-learn [65] implementation for learning the

decision tree models.

6.4.3 Results

Firstly, we report the comparison of our algorithms FusionallCq and PB-MVBoost (for m =
500) with all the considered baseline methods in Table 6.3. Secondly, Figure 6.2 and Figure

6.3, illustrates the evolution of the accuracy and the F1-measure according to the size of the

learning sample. From the table, the proposed two-step learning algorithm FusionallCq is sig-

nificantly better than the baseline approaches for Reuters dataset. Whereas, our boosting

based algorithm PB-MVBoost is significantly better than all the baseline approaches for all

the datasets. This shows that considering a two-level hierarchical strategy in a PAC-Bayesian

manner is an effective way to handle multiview learning.
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 6.2: Evolution of accuracy with respect to the number of labeled examples in the
initial labeled training sets on MNIST1, MNIST2 and Reuters datasets.
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 6.3: Evolution of F1-measure with respect to the number of labeled examples in the
initial labeled training sets on MNIST1, MNIST2 and Reuters datasets.

78



6.4. EXPERIMENTAL RESULTS

Algorithm 6 MV-Boost
Input: Training set S = {(xi , yi ), . . . , (xm , ym)}, where xi = (x1, x2, . . . , xV ) and yi ∈ {−1,1}.

For each view v ∈V , a view-specific hypothesis set Hv .
Number of iterations T .

1: for xi ∈ S do
2: D1(xi ) ← 1

m

3: for t = 1, . . . ,T do
4: For each view v ∈V , learn a view-specific weak classifier h(t )

v using distribution D(t )

5: Compute error: ∀v ∈V , ε(t )
v ← E

(xi ,yi )∼D(t )

[
1[h(t )

v (xv
i )6=yi ]

]
6: Compute classifier’s weight (taking into account view specific information):

∀v ∈V ,Q(t )
v ← 1

2

[
ln

(1−ε(t )
v

ε(t )
v

)]
7: for xi ∈ S do

8: D(t+1)(xi ) ← D(t )(xi )exp(−yi
∑V

v=1(1/V )(Q(t )
v h(t )

v (xv
i )))∑m

j=1D(t )(x j )exp(−y j
∑V

v=1(1/V )t (Q(t )
v h(t )

v (xv
j )))

9: Return: For each view v ∈V , weights over view-specific voters.

In Figure 6.4, we compare proposed algorithms FusionallCq and PB-MVBoost in terms of accu-

racy, F1-score and time complexity for m = 500 examples. For MNIST datasets, PB-MVBoost

is significantly better than FusionallCq . For Reuters dataset, FusionallCq performs better

than PB-MVBoost but the computation time for FusionallCq is much higher than the one

of PB-MVBoost. Moreover, in Figure 6.3, we can see that the performance (in terms of F1-

measure) for FusionallCq is worse than PB-MVBoost when we have less number of training

examples (m = 150 and 200). This shows that the proposed boosting based one-step algo-

rithm PB-MVBoost is more stable and more effective for multiview learning.

From Table 6.3, Figure 6.2 and Figure 6.3, we can observe that MV-AdaBoost (where we

have different distributions for each view over the learning sample) provides better results

compared to other baselines in terms of accuracy but not in terms of F1-measure. On the

other hand, MV-Boost (where we have single global distribution over learning sample but

without learning weights over views) is the best among baselines in terms of F1-measure.

Moreover, the performances of MV-Boost first increases with an increase of the quantity

of the training examples, then decreases. Whereas our algorithm PB-MVBoost provides the

best results in terms of both accuracy and F1-measure, and leads to a monotonically in-

crease of the performances with respect to the addition of labeled examples. This confirms
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Figure 6.4: Comparison between FusionallCq and PB-MVBoost in terms Accuracy (a), F1-
Measure (b) and Time Complexity (c) for m = 500

that by maintaining a single global distribution over the views and learning the weights

over the views using a PAC-Bayesian framework, we are able to take advantage of different

representations (or views) of the data.

Finally, we plot the behaviour of our algorithm PB-MVBoost over T = 100 iterations on

Figure 6.5 for all the datasets. We plot accuracy and F1-measure of the learned model on

training and test data along with the empirical multiview C-Bound on the training data at

each iteration of our algorithm. Over the iterations, the F1-measure on the test data keeps

on increasing for all the datasets even if F1-measure and accuracy on the training data

reach the maximal value. This confirms that our algorithm handles unbalanced data well.

Moreover, the empirical multiview C-Bound (which controls the trade-off between accuracy

and diversity between views) keeps on decreasing over the iterations. This validates that by

combining the PAC-Bayesian framework with the boosting one, we can empirically ensure

the view specific informations and diversity between the views for multiview learning.
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 6.5: Plots for classification accuracy and F1-measure on training and test data; and
empirical multiview C-Bound on training data over the iterations for all datasets with m =
500.
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6.4.4 A note on the Complexity of PB-MVBoost

The complexity of learning decision tree classifiers is O(d mlog (m)), where d is depth of

decision tree. We learn the weights over the views by optimizing Equation (5.5) (Step 8 of our

algorithm) using SLSQP method which has time complexity of O(V 3). Therefore, the overall

complexity is O
(
T

(
V 3 +V dv m.log (m)

))
. Note that it is easy to parallelize our algorithm:

by using V different machines, we can learn the view-specific classifiers and weights over

them (Steps 4 to 7).

6.5 Conclusion

We propose a boosting-based learning algorithm, called as PB-MVBoost. At each iteration

of the algorithm, we learn the weights over the view-specific voters and the weights over

the views by optimizing an upper-bound over the risk of the majority vote (the multiview

C-Bound) that has the advantage to allow to control a trade-off between accuracy and the

diversity between the views. The empirical evaluation shows that PB-MVBoost leads to good

performances and confirms that our two-level PAC-Bayesian strategy is indeed a nice way

to tackle multiview learning. Moreover, we compare the effect of maintaining separate

distributions over learning sample for each view; single global distribution over views; and

single global distribution along with learning weights over views on results of multiview

learning. We show that by maintaining a single global distribution over learning sample for

all the views and learning the weights over the views is effective way to deal with multiview

learning. In this way, we are able to capture the view-specific informations and control

the diversity between the views. Moreover, we proposed a two-step learning algorithm

FusionallCq which is based on PAC-Bayesian theory. Finally, we experimentally show that

PB-MVBoost is more stable and computationally faster than FusionallCq . In the next chapter,

we show that the empirical risk minimization of the multiview majority vote is equivalent

to the minimization of Bregman divergences. This allowed us to derive a parallel-update

optimization algorithm for multiview learning.
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7
MULTIVIEW LEARNING AS BREGMAN DISTANCE OPTIMIZATION

In this chapter, we derive a multiview learning algorithm where we jointly learns view-

specific weighted majority vote classifiers (i.e. for each view) over a set of base voters, and a

second weighted majority vote classifier over the set of these view-specific weighted majority

vote classifiers. We show that the empirical risk minimization of the final majority vote given

a multiview training set can be cast as the minimization of Bregman divergences. This allows

us to derive a parallel-update optimization algorithm for learning our multiview model.

We empirically study our algorithm with a particular focus on the impact of the training

set size on the multiview learning results. The experiments show that our approach is able

to overcome the lack of labeled information. It has been accepted at CAp, 2018 [39] and

published in the proceedings of IDA, 2018 [38].

7.1 Introduction

In this chapter, we propose a multiview Boosting-based algorithm, called MωMvC2, for the

general case where observations are described by more than two views. Our algorithm

combines previously learned view-specific classifiers as in [2] but with the difference that

it jointly learns two sets of weights for, first, combining view-specific weak classifiers; and

then combining the obtained view-specific weighted majority vote classifiers to get a final

weighted majority vote classifier. We show that the minimization of the classification error

over a multiview training set can be cast as the minimization of Bregman divergences al-

lowing the development of an efficient parallel update scheme to learn the weights. Using a
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large publicly available corpus of multilingual documents extracted from the Reuters RCV1

and RCV2 corpora as well as MNIST1 and MNIST2 collections, we show that our approach

consistently improves over other methods, in the particular when there are only few training

examples available for learning. This is a particularly interesting setting when resources are

limited, and corresponds, for example, to the common situation of multilingual data.

In the next section, we present the double weighted majority vote classifier for multiview

learning. Section 7.3 shows that the learning problem is equivalent to a Bregman-divergence

minimization and describes the Boosting-based algorithm we developed to learn the classi-

fier. In Section 7.4, we present experimental results obtained with our approach. Finally, in

Section 7.5 we discuss the outcomes of this study and give some pointers to further research.

7.2 Notations and Setting

We consider binary classification problems where the multiview observations x = (x1, . . . , xV )

belong to a multiview input set X =X1 × . . .×XV , where V ≥ 2 is the number of views of

not-necessarily the same dimension. We denote V the set of the V views. In binary classifi-

cation, we assume that examples are pairs (x, y), with y ∈Y = {−1,+1}, drawn according to

an unknown distribution D over X ×Y . We further assume that we have a finite set of weak

classifiersHv = {h j
v :Xv → {−1,+1} | j ∈ {1, . . . ,nv }}, where nv is number of view-specific weak

classifiers. We aim at learning a two-level encompassed weighted majority vote classifier

where at the first level a weighted majority vote is build for each view v∈V over the associ-

ated set of weak classifiers Hv , and the final classifier, referred to as the Multiview double

ωeighted Majority vote Classifier (MωMvC2), is a weighted majority vote over the previous

view-specific majority vote classifiers (see Figure 7.1 for an illustration). Given a training

set S={(xi , yi )}m
i=1 of size m drawn i.i.d. with respect to a fixed, yet unknown, distribution

D over (X1×·· ·×XV )×Y , the learning objective is to train the weak view-specific classifiers

(Hv )1≤v≤V and to choose two sets of weights; Q = (Qv )1≤v≤V , where ∀v ∈ V , Qv=(Q j
v )1≤ j≤nv ,

and ρ=(ρv )1≤v≤V , such that the multiview weighted majority vote classifier B MV
ρ

B MV
ρ (x) =

V∑
v=1

ρv

nv∑
j=1

Q j
v h j

v (xv ) (7.1)

has the smallest possible generalization error on D. We follow the Empirical Risk Minimiza-

tion principle [87], and aim at minimizing the 0/1-loss over S:

RS(B MV
ρ ) = 1

m

m∑
i=1

1[yi B MV
ρ (xi )≤0],

84



7.2. NOTATIONS AND SETTING

all views

v = 1

h1
1 h2

1 h3
1 h4

1

v = 2

h1
2 h2

2 h3
2 h4

2 h5
2

v = 3

h1
3 h2

3 h3
3

Figure 7.1: Illustration of MωMvC2 with V =3. For all views v ∈ {1,2,3}, we have a set of view-
specific weak classifiers (Hv )1≤v≤V that are learned over a multiview training set. The ob-
jective is then to learn the weights Q (red histograms) associated to (Hv )1≤v≤V ; and the
weights ρ (orange histograms) associated to weighted majority vote classifiers such that the
multiview weighted majority vote classifier Bρ (Equation 7.1) will have the smallest possible
generalization error.

where 1p is equal to 1 if the predicate p is true, and 0 otherwise. As this loss function is

non-continuous and non-differentiable, it is typically replaced by an appropriate convex

and differentiable proxy. Here, we replace 1z≤0 by the logistic upper bound a log(1+ e−z),

with a=(log2)−1. The misclassification cost becomes

RS(B MV
ρ ) = a

m

m∑
i=1

ln
(
1+exp

(− yi B MV
ρ (xi )

))
, (7.2)

and the objective would be then to find the optimal combination weights Q? and ρ? that

minimize this surrogate logistic loss.

Note that the two-level hierarchical strategy considered in Chapters 5 and 6 is different

from this one. In the PAC-Bayesian theory, for a given set of view-specific classifiers, we as-

sume (hyper-)prior distributions over the view-specific classifiers and the views. Then, after

seeing the learning sample, our objective is to learn the (hyper-)posterior distributions over

the view-specific classifiers and the views leading to a well-performing multiview majority

vote. However, in this chapter, there is no notion of (hyper-)prior distributions over the set

of view-specific classifiers. Here, the objective is to learn the optimal combination weights

Q? and ρ? by minimizing surrogate logistic loss defined by Equation (7.2).
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7.3 An Iterative Parallel update Algorithm to Learn MωMvC2

In this section, we first show how the minimization of the surrogate loss of Equation (7.2)

is equivalent to the minimization of a given Bregman divergence (Definition 7.1). Then,

this equivalence allows us to employ a parallel-update optimization algorithm to learn the

weights Q=(Qv )1≤v≤V and ρ leading to this minimization.

7.3.1 Bregman-divergence optimization

We first recall the definition of a Bregman divergence [13, 52].

Definition 7.1 (Bregman divergence). Let Ω⊆Rm and F : Ω→R be a continuously differen-

tiable and strictly convex real-valued function. The Bregman divergence DF associated to F

is defined for all (p,q) ∈Ω×Ω as

DF (p||q) = F (p)−F (q)−〈∇F (q), (p−q)
〉

, (7.3)

where ∇F (q) is the gradient of F estimated at q, and the operator 〈·, ·〉 is the dot product

function.

The optimization problem arising from this definition that we are interested in, is to find

a vector p? ∈Ω—that is the closest to a given vector q0 ∈Ω—under the set P of V linear

constraints

P = {p ∈Ω|∀v ∈V , ρv p>Mv = ρv p̃>Mv },

where p̃ ∈Ω is a specified vector, and Mv is a m×nv matrix with nv=|Hv | the number of

weak classifiers for view v∈V . Defining the Legendre transform as

LF

(
q,

V∑
v=1

ρv MvQv

)
= argmin

p∈Ω

{
DF (p||q)+

V∑
v=1

〈
ρv MvQv ,p

〉}
.

the dual optimization problem can be stated as finding a vector q? in Q̄, the closure of the

set

Q=
{

q = LF

(
q0,

V∑
v=1

ρv MvQv

)∣∣∣ρ ∈RV ;∀v,Qv ∈Rnv
}

,

for which DF (p̃||q?) is the lowest. It can be shown that both of these optimization problems

have the same unique solution [23, 52], with the advantage of having parallel-update opti-

mization algorithms to find the solution of the dual form in the mono-view case [19, 21, 23],

making the use of the latter more appealing.
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According to our multiview setting and to optimize Equation (7.2) through a Bregman

divergence, we consider the function F defined for all p∈Ω=[0,1]m as

F (p) =
m∑

i=1
pi ln(pi )+ (1−pi ) ln(1−pi ),

which from Definition 7.1 and the definition of the Legendre transform, yields that for all

(p,q) ∈Ω×Ω and r ∈Ω

DF (p||q) =
m∑

i=1
pi ln

(pi

qi

)
+ (1−pi ) ln

(1−pi

1−qi

)
, (7.4)

and ∀i ∈ [m], LF (q,r)i = qi e−ri

1−qi +qi e−ri
, (7.5)

with ai the i th characteristic of a=(ai )1≤i≤m (a being p, q, r or LF (q,r)).

Now, let q0 = 1
2 1m be the vector with all its components set to 1

2 . For all i ∈ {1, . . . ,m}, we

define LF (q0,v)i =σ(vi ) with σ(z) = (1+ez)−1, ∀z∈R. We set the matrix Mv of size m ×nv ,

(Mv )i j = yi h j
v (xv

i ). Then using Equations (7.4) and (7.5), it comes

DF

(
0
∣∣∣∣∣∣LF

(
q0,

V∑
v=1

ρv MvQv

))
=

m∑
i=1

ln

(
1+exp

(
−yi

V∑
v=1

ρv

nv∑
j=1

Q j
v h j

v (xv
i )

))
. (7.6)

As a consequence, minimizing Equation (7.2) is equivalent to minimizing DF (0||q) over

q ∈ Q̄0, where for Ω= [0,1]m

Q0 =
{

q ∈Ω

∣∣∣∣qi =σ

(
yi

V∑
v=1

ρv

nv∑
j=1

Q j
v h j

v (xv
i )

)
;ρ,Q

}
. (7.7)

For a set of weak-classifiers (Hv )1≤v≤V learned over a training set S; this equivalence allows

us to adapt the parallel-update optimization algorithm described in [19] to find the optimal

weights Q and ρ defining MωMvC2 of Equation (7.1), as described in Algorithm 7.

7.3.2 A Multiview Parallel Update Algorithm

Once all view-specific weak classifiers (Hv )1≤v≤V have been trained, we start from an initial

point q(1) ∈Q0 (Equation (7.7)) corresponding to uniform values of weights ρ(1) = 1
V 1V and

∀v ∈ [V ], Q(1)
v = 1

nv
1nv . Then, we iteratively update the weights such that at each iteration t ,

using the current parameters ρ(t ),Q(t ) and q(t ) ∈Q0, we seek new parameters ρ(t+1) and δ(t )
v

such that for

q(t+1) = LF (q0,
V∑

v=1
ρ(t+1)

v Mv (Q(t )
v + δ(t )

v )), (7.9)
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Algorithm 7 Learning MωMvC2

Input: Training set S = {(xi , yi )}m
i=1, where ∀i ,xi = (x1

i , . . . , xV
i ) and yi ∈ {−1,1}; and a maximal

number of iterations T .
Initialization: ρ(1) ← 1

V 1V and ∀v,Q(1)
v ← 1

nV
1nv

Train the weak classifiers (Hv )1≤v≤V over S
For v ∈V set the m ×nv matrix Mv such that (Mv )i j = yi h j

v (xv
i )

1: for t = 1, . . . ,T do
2: for i = 1, . . . ,m do

3: q (t )
i =σ

(
yi

V∑
v=1

ρ(t )
v

nv∑
j=1

Q j (t )
v h j

v (xv
i )

)
4: for v = 1, . . . ,V do
5: for j = 1, . . . ,nv do
6: W (t )+

v, j =∑
i :sign((Mv )i j )=+1 q (t )

i |(Mv )i j |
7: W (t )−

v, j =∑
i :sign((Mv )i j )=−1 q (t )

i |(Mv )i j |

8: δ(t )
v, j = 1

2 ln
(W (t )+

v, j

W (t )−
v, j

)
9: Q(t+1)

v =Q(t )
v +δ(t )

v

10: Set ρ(t+1), as the solution of :

minρ −
V∑

v=1
ρv

nv∑
j=1

(√
W (t )+

v, j −
√

W (t )−
v, j

)2
(7.8)

s.t.
V∑

v=1
ρv = 1, ρv ≥ 0 ∀v ∈V

Return: Weights ρ(T ) and Q(T ).

we get DF (0||q(t+1)) ≤ DF (0||q(t )).

Following the same strategy as in [19, Theorem 3], it is straightforward to show that in

this case, the following inequality holds:

DF (0||q(t+1))−DF (0||q(t )) ≤ A(t ) , (7.10)

where A(t ) =−
V∑

v=1
ρ(t+1)

v

nv∑
j=1

(
W (t )+

v, j (e
−δ(t )

v, j −1)−W (t )−
v, j (e

δ(t )
v, j −1)

)2
,

with ∀ j ∈ {1, . . . ,nv };W (t )±
v, j =∑

i :sign((Mv )i j )=±1 q (t )
i |(Mv )i j |. Note that we provide the proof of

Equation 7.10 in Appendix D.

By fixing the set of parameters ρ(t+1); the parameters δ(t )
v that minimize A(t ) are defined as
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∀v ∈V ,∀ j ∈ 1, . . . ,nv ;δ(t )
v, j = 1

2 ln

(
W (t )+

v, j

W (t )−
v, j

)
. Plugging back these values into the above equation

gives

A(t ) =−
V∑

v=1
ρ(t+1)

v

nv∑
j=1

(√
W (t )+

v, j −
√

W (t )−
v, j

)2
. (7.11)

Now by fixing the set of parameters (W (t )±
v, j )v, j , the weights ρ(t+1) are found by minimizing

Equation (7.11) under the linear constraints ∀v ∈V ,ρv ≥ 0 and
∑V

v=1 ρv = 1. This alternating

optimization of A(t ) bears similarity with the block-coordinate descent technique [8], where

at each iteration, variables are split into two subsets—the set of the active variables, and the

set of the inactive ones—and the objective function is minimized along active dimensions

while inactive variables are fixed at current values.

Convergence of Algorithm. The sequences of weights (Q(t ))t∈N and (ρ(t ))t∈N found by Al-

gorithm 7 converge to the minimizers of the multiview classification loss (Equation (7.2)),

as with the resulting sequence (q(t ))t∈N (Equation 7.9), the sequence (DF (0||q(t )))t∈N is de-

creasing and since it is lower-bounded (Equation (7.6)), it converges to the minimum of

Equation (7.2).

7.4 Experimental Results

We present below the results of the experiments we have performed to evaluate the efficiency

of Algorithm 7 to learn the set of weights Q and ρ involved in the definition of the multiview

weighted majority vote classifier B MV
ρ (Equation (7.1)). Note that we keep the same datasets

as of Chapter 6.

7.4.1 Experimental Protocol

In our experiments, we set up binary classification tasks by using all multiview observations

from one class as positive examples and all the others as negative examples. We reduced the

imbalance between positive and negative examples by subsampling the latter in the training

sets, and used decision trees as view specific weak classifiers1. We compare our approach to

the following seven algorithms.

• Monov is the best performing decision tree model operating on a single view.

1Note that, the experimental protocol in Chapter 6 is different from this one. In Chapter 6, we kept the
original distribution of classes whereas in this chapter we reduce the imbalance by subsampling.
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• Concat is an early fusion approach, where a mono-view decision tree operates over

the concatenation of all views of multiview observations.

• Fusion is a late fusion approach, sometimes referred to as stacking, where view-

specific classifiers are trained independently over different views using 60% of the

training examples. A final multiview model is then trained over the predictions of the

view-specific classifiers using the rest of the training examples.

• MVMLsp2 [45] is a multiview metric learning approach, where multiview kernels are

learned to capture the view-specific information and relation between the views. We

kept the experimental setup of [45] with Nyström parameter 0.24.3

• MV-MV [2] is a multiview algorithm where view-specific classifiers are trained over

the views using all the training examples. The final model is the uniformly weighted

majority vote (Equation 3.11 in Chapter 3).

• MVWAB [90] (Algorithm 3 in Chapter 3) is a Multiview Weighted Voting AdaBoost algo-

rithm, where multiview learning and ababoost techniques are combined to learn a

weighted majority vote over view-specific classifiers but without any notion of learning

weights over views.

• rBoost.SH [66, 67] (Algorithm 4 in Chapter 3) is a multiview boosting approach where

a single distribution over different views of training examples is maintained and, the

distribution over the views are updated using the multiarmed bandit framework. For

the tuning of parameters, we followed the experimental setup of [66].

Fusion, MV-MV, MVWAB, and rBoost.SH make decision based on some majority vote strate-

gies, as the proposed MωMvC2 classifier. The difference relies on how the view-specific clas-

sifiers are combined. For MVWAB and rBoost.SH, we used decision tree model to learn

view-specific weak classifiers at each iteration of algorithm and fixed the maximum number

of iterations to T = 100. To learn MωMvC2, we generated the matrix Mv by considering a set

of weak decision tree classifiers with different depths (from 1 to maxd −2, where maxd is

maximum possible depth of a decision tree). We tuned the maximum number of iterations

by cross-validation which came out to be T = 2 in most of the cases and that we fixed

throughout all of the experiments. To solve the optimization problem for finding the weights

ρ (Equation 7.8), we used the Sequential Least SQuares Programming (SLSQP) implementa-

tion of scikit-learn [65], that we also used to learn the decision trees. Results are computed
2We used the Python code available from https://lives.lif.univ-mrs.fr/?page_id=12
3Note that, based on Nyström parameter, this algorithm uses the part of learning sample while training.
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Table 7.1: Test classification accuracy and F1-score of different approaches averaged over
all the classes and over 20 random sets of m = 100 labeled examples per training set. Along
each column, the best result is in bold, and second one in italic. ↓ indicates that a result is
statistically significantly worse than the best result, according to a Wilcoxon rank sum test
with p < 0.02.

Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Monov .8369± .002↓ .5206± .003↓ .8540± .003↓ .5523± .004↓ .7651± .005↓ .5276± .005↓

Concat .8708± .005↓ .5851± .011↓ .8719± .004↓ .5866± .010↓ .7661± .009↓ .5298± .008↓

Fusion .8708± .005↓ .5851± .010↓ .9029± .009↓ .6559± .018↓ .7926± .013↓ .5533± .015↓

MVMLsp .7783± .041↓ .4185± .051↓ .7766± .062↓ .4813± .067↓ .6241± .032↓ .3488± .045↓

AggregL .8956± .003↓ .6404± .005↓ .9045± .004↓ .6627± .009↓ .8179± .007↓ .6083± .007↓

MVWAB .9175± .003↓ .7011± .009↓ .9038± .003↓ .6838± .008↓ .8147± .007↓ .6045± .009↓

rBoost.SH .7950± .006↓ .4652± .006↓ .8762± .004↓ .6089± .007↓ .8200± .007 .6164± .007↓

MωMvC2 .9260± .004 .7122± .010 .9169± .005 .6977± .012 .8269± .013 .6280± .010

over the test set using the accuracy and the standard F1-score [70], which is the harmonic

average of precision and recall. Experiments are repeated 20 times by each time splitting the

training and the test sets at random over the initial datasets.

7.4.2 Results

Table 7.1 reports the results obtained for m=500 training examples by different methods

averaged over all classes and the 20 test results obtained over 20 random experiments4.

From these results it becomes clear that late fusion and other multiview approaches (except

MVMLsp) provide consistent improvements over training independent mono-view classifiers

and with early fusion, when the size of the training set is small. Furthermore, MωMvC2 outper-

forms the other approaches and compared to the second best strategy the gain in accuracy

(resp. F1-score) varies between 0.8% and 1.3% (resp. 1.5% and 2%) across the collections.

These results provide evidence that majority voting for multiview learning is an effective

way to overcome the lack of labeled information and that all the views do not have the same

strength (or do not bring information in the same way) as the learning of weights, as it is

done in MωMvC2, is much more effective than the uniform combination of view-specific

classifiers as it is done in MV-MV.

We also analyze the behavior of the algorithms for growing initial amounts of labeled data.

Figure 7.2 and Figure 7.3 illustrates this by showing the evolution of the accuracy and the

4We also did experiments for Monov , Concat, Fusion, MV-MV using Adaboost. The performance of Ad-
aboost for these baselines is similar to that of decision trees.
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 7.2: Evolution of accuracy w.r.t the number of labeled examples in the initial labeled
training sets on MNIST1, MNIST2 and Reuters datasets.

92
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 7.3: Evolution of F1-measure w.r.t the number of labeled examples in the initial
labeled training sets on MNIST1, MNIST2 and Reuters datasets.
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F1-score with respect to the number of labeled examples in the initial labeled training sets

on MNIST1, MNIST2 and Reuters datasets. As expected, all performance curves increase

monotonically w.r.t the additional labeled data. When there are sufficient labeled examples,

the performance increase of all algorithms actually begins to slow, suggesting that the la-

beled data carries sufficient information and that the different views do not bring additional

information.

An important point here is that rBoost.SH—which takes into account both view-consistency

and diversity between views—provides the worst results on MNIST1 where there is no over-

lapping between the views, while the weighted majority vote as it is performed in MωMvC2

still provides an efficient model. Furthermore, MVMLsp—which learns multiview kernels to

capture views-specific informations and relation between views—performs worst on all the

datasets. We believe that the superior performance of our method stands in our two-level

framework. Indeed, thanks to this trick, we are able to consider the view-specific information

by learning weights over view-specific classifiers, and to capture the importance of each

view in the final ensemble by learning weights over the views.

7.4.3 A note on the Complexity of the Algorithm

For each view v , the complexity of learning decision tree classifiers is O(dv ml og (m)). We

learn the weights over the views by optimizing Equation (7.11) (Step 10 of our algorithm)

using SLSQP method which has time complexity of O(V 3). Therefore, the overall complexity

is O(V dv m.log (m)+T V 3). Note that it is easy to parallelize our algorithm: by using V

different machines, we can learn the view-specific classifiers and weights over them (Steps 4

to 9).

7.4.4 Comparison with FusionallCq and PB-MVBoost

In Figure 7.4, we compare MωMvC2with FusionallCq and PB-MVBoost (proposed in Chapter 6)

for m = 500 training examples. From Figure 7.4, we can deduce that MωMvC2performs worse

than FusionallCq and PB-MVBoost algorithms. However, computationally MωMvC2is faster

than FusionallCq and PB-MVBoost. As discussed in Chapter 6, time complexity of PB-MVBoost

is O
(
T

(
V 3 +V dv m.l og (m)

))
, whereas the time complexity for MωMvC2is O(V dv m.log (m)+

T V 3). The reason for better performance of FusionallCq and PB-MVBoost is that they control

the trade-off between the accuracy and the diversity between the views. The major drawback

of MωMvC2is that it is unable to handle the unbalanced data whereas PB-MVBoost leads to

good performances even when the classes are unbalanced.
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Figure 7.4: Comparison between MωMvC2, FusionallCq and PB-MVBoost in terms of (a) Accu-
racy , (b) F1-Measure and (c) Time Complexity for m = 500.

7.5 Conclusion

In this chapter, we show that the minimization of the multiview classification error is equiv-

alent to the minimization of Bregman divergences. This embedding allowed us to derive

a parallel-update optimization boosting-like algorithm (referred as MωMvC2) in order to

learn the weights of over the view-specific classifiers and the views. Our results show clearly

that our method allows to reach high performance in terms of accuracy and F1-score on

three datasets in the situation where few initial labeled training documents are available. It

also comes out that compared to the uniform combination of view-specific classifiers, the

learning of weights allows to better capture the strengths of different views. Moreover, we

show that this new algorithm is computationally much faster than our previous algorithms

(FusionallCq and PB-MVBoost) based on PAC-Bayesian theory.
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CONCLUSION AND PERSPECTIVES

In this thesis, we have studied the problem of learning the majority vote classifiers for su-

pervised multiview learning where we have multiple representations or views of the input

data. We see multiview learning as combination of different view-specific classifiers or views.

Therefore, we rely on the PAC-Bayesian theory and the boosting paradigm to derive theoreti-

cal guarantees and to design multiview learning algorithms for more general and natural

case of more than two views.

The PAC-Bayesian theory provides theoretical guarantees for models that take the form of

majority vote over the set of classifiers. The usual PAC-Bayesian generalization bounds are

probabilistic bounds which upper bounds (with a high probability on learning sample of

size m drawn from distribution D) the true risk of a gibbs classifier in terms of its empirical

risk on the training data, the Kullback-Leibler divergence between the posterior and the

prior distributions and the size of learning sample. Since posterior distributions are data

dependent, our first contribution was to derive a non-probabilistic expected risk bound for

the PAC-Bayesian theory in a single view learning setting. This different point of view on

PAC-Bayesian analysis has the advantage to involve an expectation over all the posterior

distributions that we can learn from a given learning sample size.

Our second contribution was to extend the PAC-Bayesian theory to multiview learning

with more than two views. We considered a two-level hierarchy of distributions over the

view-specific voters and the views, such that i) for each view, we consider a prior and learn
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a posterior distribution over the view-specific voters, and ii) we consider a hyper-prior

distribution and learn a hyper-posterior distribution over the views. Based on this strat-

egy, we derived PAC-Bayesian generalization bounds (both probabilistic and expected risk

bounds) for multiview learning. Our generalization bounds include a notion of disagreement

between all the voters and the views which allowed us to take into account the diversity

between them which is known to be a key element in multiview learning. Note that, com-

pared to PAC-Bayesian analysis of Sun et al. [81] we are interested in more natural case of

multiview learning with more than two views. Moreover, Amini et al. [2] derived a general-

ization bounds based on Rademacher complexity for the risk of multiview majority vote

over the view-specific classifiers where the distribution over the views is restricted to the

uniform distribution (not in our case). Additionally, we derived the generalization bound for

the multiview C-bound which we use to design a boosting based algorithm for multiview

learning.

From practical point of view, we designed two multiview learning algorithms based on

our two-level PAC-Bayesian strategy. The first algorithm is a one-step boosting based mul-

tiview learning algorithm called as PB-MVBoost. It iteratively learns the weights over the

view-specific classifiers (in order to capture the view-specific informations) and the weights

over the views by optimizing the multiview C-Bound which controls the trade-off between

the accuracy and the diversity between the views. The second algorithm is based on late

fusion approach (referred as FusionallCq ) where we combine the predictions of view-specific

classifiers using the PAC-Bayesian algorithm CqBoost [73] which controls the trade-off be-

tween the accuracy and the diversity between the view-specific classifiers. We empirically

evaluated both of above algorithms on three publicly available datasets MNIST1, MNIST2

and Reuters. We empirically show that the proposed algorithms performs better than

considered baseline approaches. We show that PB-MVBoost minimizes the multiview C-

Bound over the iterations and able to handle the unbalanced classes. Moreover, we compare

PB-MVBoost with FusionallCq and show that PB-MVBoost is more stable algorithm across

different datasets and computationally faster.

Finally, we show that minimization of classification error for multiview weighted majority

vote is equivalent to the minimization of Bregman divergences. This allowed us to de-

rive a parallel-update optimization algorithm (referred as MωMvC2) to learn our multiview

weighted majority vote. We experimentally evaluated our algorithms on three publicly avail-

able datasets and showed that proposed algorithm performs better than the considered
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baseline approaches. Moreover, MωMvC2is computationally faster than PB-MVBoost. How-

ever, it unable to handle the unbalanced classes.

As future work, we would like to specialize our PAC-Bayesian generalization bounds to

linear classifiers for which PAC-Bayesian approaches are known to lead to tight bounds

and efficient learning algorithms [34]. This clearly opens the door to derive theoretically

founded algorithms for multiview learning. Another perspective is to extend our bounds for

diversity-dependent prior similar to the approach used by Sun et al. [81] for more than two

views to additionally consider a priori knowledge on the diversity. In addition, we would like

to explore our proposed expectation risk bound for PAC-Bayesian theory from algorithmic

point of view.

For PB-MVBoost, we fix the number of iterations to T = 100. Therefore, we would like to

find the suitable stopping criteria for our boosting algorithm. As shown in our experiments

(Figure 6.5 in Chapter 6), the F1-measure on test data keeps on increasing even if the clas-

sification accuracy and F1-measure on training data reaches to maximal value. Schapire

et al. [76] explained this behaviour for boosting methods using margins explanation. They

showed that boosting is effective if margins of the training examples keeps on increasing over

the iterations. In our case, one of the possible direction to find the suitable stopping criteria

is to exploit the margin behaviour for PB-MVBoost. The major drawback of MωMvC2algorithm

is that it is unable to handle the unbalanced data. One possible solution to handle the un-

balanced data is to learn the view-specific classifiers (input to our algorithm) such that they

take into account original class distributions in the training data.

Another possible direction is to explore semi-supervised multiview learning where we have

unlabeled data Su = {x j }mu
j=1 along with labeled data Sl = {(xi , yi )}ml

i=1 during training. For our

algorithms, one of the possible way is to learn a view-specific classifier using pseudo-labels

(for unlabeled data) generated from the classifiers trained from other views, e.g. [29, 93]. For

PB-MVBoost, another possible direction is to make use of unlabeled data while computing

view-specific disagreement for optimizing multiview C-Bound.

Moreover, the question of extending our work to the case where all the views are not nec-

essarily available or not complete (missing views or incomplete views, e.g. [2, 92]), is very

exciting. For PB-MVBoost, one possible solution is to learn the view-specific voters using

available view-specific training examples and adapt the distribution over the learning sam-
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ple accordingly. For MωMvC2, one solution could be to adapt the definition of the matrix

Mv to allow to deal with incomplete data; this may be done by considering the notion of

diversity to complete Mv .
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MATHEMATICAL TOOLS

Theorem A.1 (Markov’s ineq.). For any random variable X s.t. E(|X |)=µ, for any a>0, we

have P(|X | ≥ a) ≤ µ

a
.

Theorem A.2 (Jensen’s ineq.). For any random variable X , for any concave function g , we

have g (E[X ]) ≥ E[g (X )].

Theorem A.3 (Cantelli-Chebyshev ineq.). For any random variable X s.t. E(X ) = µ and

Var(X ) =σ2, and for any a>0, we have P(X −µ≥ a) ≤ σ2

σ2+a2 .
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APPENDIX OF CHAPTER 4

B.1 Proof of C-bound

In this section, we present the proof of Lemma ?? [35]. Firstly, we need to define the margin

of the weighted majority vote BQ and its first and second statistical moments.

Definition B.1. Let MQ is a random variable that outputs the margin of the weighted major-

ity vote on the example (x, y) drawn from distribution D, given by:

MQ (x, y) = E
h∼Q

y h(x).

The first and second statistical moments of the margin are respectively given by

µ1(MD
Q ) = E

(x,y)∼D
MQ (x, y). (B.1)

and,

µ2(MD
Q ) = E

(x,y)∼D
[
MQ (x, y)

]2

= E
x∼DX

y2
[

E
h∼Q

h(xv )
]2 = E

x∼DX

[
E

h∼Q
h(x)

]2
. (B.2)

According to this definition, the risk of the weighted majority vote can be rewritten as follows:

RD(BQ ) = Pr
(x,y)∼D

(
MQ (x, y) ≤ 0

)
.

105



APPENDIX B. APPENDIX OF CHAPTER 4

Moreover, the risk of the Gibbs classifier can be expressed thanks to the first statistical

moment of the margin. Note that in the binary setting where y ∈ {−1,1} and h :X → {−1,1},

we have 1[h(x)6=y] = 1
2 (1− y h(x)), and therefore

RD(GQ ) = E
(x,y)∼D

E
h∼Q

1[h(x)6=y]

= 1

2

(
1− E

(x,y)∼D
E

h∼Q
y h(x)

)
(B.3)

= 1

2
(1−µ1(MD

Q )) .

Similarly, the expected disagreement can be expressed thanks to the second statistical

moment of the margin by

dD(Q) = E
x∼DX

E
h∼Q

E
h′∼Q

1[h(x)6=h′(x)]

= 1

2

(
1− E

x∼DX
E

h∼Q
E

h′∼Q
h(x)×h′(x)

)
= 1

2

(
1− E

x∼DX

[
E

h∼Q
h(x)

]
×

[
E

h′∼Q
h′(x)

])
= 1

2

(
1− E

x∼DX

[
E

h∼Q
h(x)

]2)
(B.4)

= 1

2
(1−µ2(MD

Q )) .

From above, we can easily deduce that 0 ≤ dD(Q) ≤ 1/2 as 0 ≤ µ2(MD
Q ) ≤ 1. Therefore, the

variance of the margin can be written as:

Var(MD
Q ) = Var

(x,y)∼D
(MQ (x, y))

=µ2(MD
Q )− (µ1(MD

Q ))2.
(B.5)
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B.2. PROOF OF CHANGE OF MEASURE INEQUALITY

The proof of the C-bound

Proof. By making use of one-sided Chebyshev inequality (Theorem A.3 of A), with X =
−MQ (x, y), µ= E

(x,y)∼D
(MQ (x, y)) and a = E

(x,y)∼D
MQ (x, y), we have

RD(BQ ) = Pr
(x,y)∼D

(
MQ (x, y) ≤ 0

)
= Pr

(x,y)∼D

(
−MQ (x, y)+ E

(x,y)∼D
MQ (x, y) ≥ E

(x,y)∼D
MQ (x, y)

)

≤
Var

(x,y)∼D
(MQ (x, y))

Var
(x,y)∼D

(MQ (x, y))+
(

E
(x,y)∼D

MQ (x, y)
)2

=
Var(MD

Q )

µ2(MD
Q )−

(
µ1(MD

Q )
)2
+

(
µ1(MD

Q )
)2

=
Var(MD

Q )

µ2(MD
Q )

=
µ2(MD

Q )−
(
µ1(MD

Q )
)2

µ2(MD
Q )

= 1−

(
µ1(MD

Q )
)2

µ2(MD
Q )

= 1−

(
1−2RD(GQ )

)2

1−2dD(Q)

�

B.2 Proof of Change of measure inequality

We have

E
h∼Q

φ(h) = E
h∼Q

lneφ(h)

= E
h∼Q

ln
(Q(h)

P (h)

P (h)

Q(h)
eφ(h)

)
= E

h∼Q
ln

(Q(h)

P (h)

)
+ E

h∼Q
ln

( P (h)

Q(h)
eφ(h)

)
.
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According to the Kullback-Leibler definition, we have

E
h∼Q

φ(h) = KL(Q‖P )+ E
h∼Q

ln
( P (h)

Q(h)
eφ(h)

)
.

By applying Jensen’s inequality (Theorem A.2, in Appendix) on the concave function ln, we

have

E
h∼Q

φ(h) ≤ KL(Q‖P )+ ln
(

E
h∼P

eφ(h)
)

B.3 Proof of Theorem 4.1

First note that E
h∼P

em D(RS (h),RD(h)) is a non-negative random variable. Using Markov’s in-

equality (Theorem A.1 in Appendix A), with δ ∈ (0,1], and a probability at least 1−δ over the

random choice of the learning sample S ∼ (D)m , we have

E
h∼P

em D(RS (h),RD(h)) ≤ 1

δ
E

S∼(D)m
E

h∼P
em D(RS (h),RD(h))

By taking the logarithm on both sides, with a probability at least 1−δ over S ∼ (D)m , we have

ln

[
E

h∼P
em D(RS (h),RD(h))

]
≤ ln

[
1

δ
E

S∼(D)m
E

h∼P
em D(RS (h),RD(h))

]
We now apply Lemma 4.1 on the left-hand side of the above inequality with φ(h) = m D (RS(h),RD(h)).

Therefore, for any Q on H with a probability at least 1−δ over S ∼ (D)m , we have

ln

[
E

h∼P
em D(RS (h),RD(h))

]
≥ m E

h∼Q
D(RS(h),RD(h))−K L(Q||P )

≥ mD( E
h∼Q

RS(h), E
h∼Q

RD(h))−K L(Q||P )

where the last inequality is obtained by applying Jensen’s inequality (Theorem A.2 in Ap-

pendix A) on the convex function D . By rearranging the terms we have

D
(
RS(GQ ),RD(GQ )

)≤ 1

m

[
KL(Q‖P )+ln

(1

δ
E

S∼(D)m
E

h∼P
em D(RS (h),RD(h))

)]

B.4 Proof of Square Root Bound

We apply Theorem 4.2 with D(a,b)=2(a−b)2.

Then, we upper-bound E
S∼(D)m

E
h∼P

em D(RS (h),RD(h)). By considering RS(h) as a random variable

following a binomial distribution of m trials with a prob. of success R(h), we have
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E
S∼(D)m

E
h∼P

em D(RS (h),RD(h)) ≤ E
S∼(D)m

E
h∼P

em kl(RS (h),RD(h))

= E
h∼P

E
S∼(D)m

[
RS(h)

RD(h)

]mRS (h) [ 1−RS(h)

1−RD(h)

]m(1−RS (h))

= E
h∼P

m∑
k=0

Pr
S∼(D)m

[
RS(h)= k

m

][ k/m

RD(h)

]k[ 1−k/m

1−RD(h)

]m−k

=
m∑

k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k

≤ 2
p

m.

B.5 Proof of Parametrized Bound

The result comes from Theorem 4.2 by taking D(a,b) =F −C a , for a convex function F
and C > 0, and upper-bounding E

S∼(D)m
E

h∼P
em D(RS (h),RD(h)). We consider RS(h) as a random

variable following a binomial distribution of m trials with a prob. of success R(h). We have

E
S∼(D)m

E
h∼P

em D(RS (h),RD(h)) = E
S∼(D)m

E
h∼P

emF (RD(h)−C m RS (h))

= E
S∼(D)m

E
h∼P

emF (RD(h))
m∑

k=0
Pr

S∼(D)m

(
RS(h) = k

m

)
e−C k

= E
S∼(D)m

E
h∼P

emF (RD(h))
m∑

k=0

(m
k

)
RD(h)k (1−RD(h))m−k e−C k

= E
S∼(D)m

E
h∼P

emF (RD(h))(RD(h)e−C + (1−RD(h))
)m .

The corollary is obtained with

F (p) = ln
1

(1−p[1−e−C ])
.

B.6 Proof of Small kl Bound

We apply Theorem 4.2 with D(a,b) ≤ kl(a,b).

Then, we upper-bound E
S∼(D)m

E
h∼P

em D(RS (h),RD(h)). By considering RS(h) as a random variable

following a binomial distribution of m trials with a prob. of success R(h), we have
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E
S∼(D)m

E
h∼P

em D(RS (h),RD(h)) ≤ E
S∼(D)m

E
h∼P

em kl(RS (h),RD(h))

= E
h∼P

E
S∼(D)m

[
RS(h)

RD(h)

]mRS (h) [ 1−RS(h)

1−RD(h)

]m(1−RS (h))

= E
h∼P

m∑
k=0

Pr
S∼(D)m

[
RS(h)= k

m

][ k/m

RD(h)

]k[ 1−k/m

1−RD(h)

]m−k

=
m∑

k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k

≤ 2
p

m.
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C.1 Proof of C-Bound for Multiview Learning

In this section, we present the proof of Lemma 5.1, inspired by the proof provided by Germain

et al. [35]. Firstly, we need to define the margin of the multiview weighted majority vote Bρ

and its first and second statistical moments.

Definition C.1. Let Mρ is a random variable that outputs the margin of the multiview

weighted majority vote on the example (x, y) drawn from distribution D, given by:

Mρ(x, y) = E
v∼ρ

E
h∼Qv

y h(xv ).

The first and second statistical moments of the margin are respectively given by

µ1(MD
ρ ) = E

(x,y)∼D
Mρ(x, y). (C.1)

and,

µ2(MD
ρ ) = E

(x,y)∼D
[
Mρ(x, y)

]2

= E
x∼DX

y2
[

E
v∼ρ

E
h∼Qv

h(xv )
]2 = E

x∼DX

[
E

v∼ρ
E

h∼Qv

h(xv )
]2

. (C.2)

According to this definition, the risk of the multiview weighted majority vote can be rewritten

as follows:

RD(B MV
ρ ) = P

(x,y)∼D
(
Mρ(x, y) ≤ 0

)
.
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Moreover, the risk of the multiview Gibbs classifier can be expressed thanks to the first

statistical moment of the margin. Note that in the binary setting where y ∈ {−1,1} and

h :X → {−1,1}, we have 1[h(xv )6=y] = 1
2 (1− y h(xv )), and therefore

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv )6=y]

= 1

2

(
1− E

(x,y)∼D
E

v∼ρ
E

h∼Qv

y h(xv )
)

(C.3)

= 1

2
(1−µ1(MD

ρ )) .

Similarly, the expected disagreement can be expressed thanks to the second statistical

moment of the margin by

d MV
D (ρ) = E

x∼DX
E

v∼ρ
E

v ′∼ρ
E

h∼Qv

E
h′∼Qv ′

1[h(xv )6=h′(xv ′ )]

= 1

2

(
1− E

x∼DX
E

v∼ρ
E

v ′∼ρ
E

h∼Qv

E
h∼Qv ′

h(xv )×h′(xv ′
)
)

= 1

2

(
1− E

x∼DX

[
E

v∼ρ
E

h∼Qv

h(xv )
]
×

[
E

v ′∼ρ
E

h′∼Qv ′
h′(xv ′

)
])

= 1

2

(
1− E

x∼DX

[
E

v∼ρ
E

h∼Qv

h(xv )
]2)

(C.4)

= 1

2
(1−µ2(MD

ρ )) .

From above, we can easily deduce that 0 ≤ d MV
D (ρ) ≤ 1/2 as 0 ≤µ2(MD

ρ ) ≤ 1. Therefore, the

variance of the margin can be written as:

Var(MD
ρ ) = Var

(x,y)∼D
(Mρ(x, y))

=µ2(MD
ρ )− (µ1(MD

ρ ))2.
(C.5)
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The proof of the C-bound

Proof. By making use of one-sided Chebyshev inequality (Theorem A.3 of Appendix A), with

X =−Mρ(x, y), µ= E
(x,y)∼D

(Mρ(x, y)) and a = E
(x,y)∼D

Mρ(x, y), we have

RD(Bρ) = P
(x,y)∼D

(
Mρ(x, y) ≤ 0

)
= P

(x,y)∼D

(
−Mρ(x, y)+ E

(x,y)∼D
Mρ(x, y) ≥ E

(x,y)∼D
Mρ(x, y)

)

≤
Var

(x,y)∼D
(Mρ(x, y))

Var
(x,y)∼D

(Mρ(x, y))+
(

E
(x,y)∼D

Mρ(x, y)
)2

=
Var(MD

ρ )

µ2(MD
ρ )−

(
µ1(MD

ρ )
)2
+

(
µ1(MD

ρ )
)2

=
Var(MD

ρ )

µ2(MD
ρ )

=
µ2(MD

ρ )−
(
µ1(MD

ρ )
)2

µ2(MD
ρ )

= 1−

(
µ1(MD

ρ )
)2

µ2(MD
ρ )

= 1−

(
1−2RD(Gρ)

)2

1−2d MV
D (ρ)

�

C.2 Proof of Probabilistic Bound for Multiview Learning

First, note that E
v∼π

E
h∼Pv

emD(RS (h),RD(h)) is a non-negative random variable. Using Markov’s

inequality (Theorem A.1), with δ ∈ (0,1], and a probability at least 1−δ over the random

choice of the multiview learning sample S ∼ (D)m , we have

E
v∼π

E
h∼Pv

em D(RS (h),RD(h)) ≤ 1

δ
E

S∼(D)m
E

v∼π
E

h∼Pv

emD(RS (h),RD(h)).

By taking the logarithm on both sides, with a probability at least 1−δ over S ∼ (D)m , we have

ln
[

E
v∼π

E
h∼Pv

em D(RS (h),RD(h))
]
≤ ln

[1

δ
E

S∼(D)m
E

v∼π
E

h∼Pv

emD(RS (h),RD(h))
]

. (C.6)

113



APPENDIX C. APPENDIX OF CHAPTER 5

We now apply Lemma 5.2 on the left-hand side of the Inequality (C.6) with φ(h) = m D(RS(h),RD(h)).

Therefore, for any Qv on Hv for all views v ∈V , and for any ρ on views V , with a probability

at least 1−δ over S ∼ (D)m , we have

ln
[

E
v∼π

E
h∼Pv

em D(RS (h),RD(h))
]

≥ m E
v∼ρ

E
h∼Qv

D(RS(h),RD(h))− E
v∼ρ

KL(Qv‖Pv )−KL(ρ‖π)

≥ m D

(
E

v∼ρ
E

h∼Qv

RS(h), E
v∼ρ

E
h∼Qv

RD(h)

)
− E

v∼ρ
KL(Qv‖Pv )−KL(ρ‖π),

where the last inequality is obtained by applying Jensen’s inequality on the convex function

D . By rearranging the terms, we have

D

(
E

v∼ρ
E

h∼Qv

RS(h), E
v∼ρ

E
h∼Qv

RD(h)

)
≤ 1

m

[
E

v∼ρ
KL(Qv‖Pv )+KL(ρ‖π)

+ ln
(1

δ
E

S∼(D)m
E

v∼π
E

h∼Pv

en D(RS (h),RD(h))
)]

.

Finally, the theorem statement is obtained by rewriting

E
v∼ρ

E
h∼Qv

RS(h) = RS(G MV
ρ ),

E
v∼ρ

E
h∼Qv

RD(h) = RD(G MV
ρ ).

and from Equation (4.3): RS(G MV
ρ ) = 1

2 d MV
S (ρ)+e MV

S (ρ).

C.3 Proof of Square Root Bound

To prove the above result, we apply Theorem 5.1 and Theorem 5.2 with D(a,b) = 2(a −b)2.

Then, we upper-bound E
S∼(D)m

E
v∼π

E
hv∼Pv

em D(RS (hv ),RD(hv )). According to Pinsker’s inequality,

we have

D(a,b) ≤ kl(a,b) = a ln
a

b
+ (1−a) ln

1−a

1−b
.
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By considering RS(h) as a random variable which follows a binomial distribution of m trials

with a probability of success R(h), we obtain

E
S∼(D)m

E
v∼π

E
hv∼Pv

em D(RS (hv ),RD(hv )) ≤ E
S∼(D)m

E
v∼π

E
hv∼Pv

em kl(RS (hv ),RD(hv ))

= E
v∼π

E
hv∼Pv

E
S∼(D)m

[
RS(hv )

RD(hv )

]mRS (hv ) [ 1−RS(hv )

1−RD(hv )

]m(1−RS (hv ))

= E
v∼π

E
hv∼Pv

m∑
k=0

Pr
S∼(D)m

[
RS(hv ) = k

m

][ k/m

RD(hv )

]k[
1−k/m

1−RD(hv )

]m−k

=
m∑

k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k

≤ 2
p

m .

C.4 Proof of Parametrized Bound

The result comes from Theorem 5.1 and Theorem 5.2 by taking D(a,b) =F (b)−C a, for a

convex F and C > 0, and by upper-bounding E
S∼(D)m

E
v∼π

E
hv∼Pv

emD(RS (hv ),RD(hv )). We consider

RS(hv ) as a random variable following a binomial distribution of m trials with a probability

of success R(hv ). We have:

E
S∼(D)m

E
v∼π

E
hv∼Pv

em D(RS (hv ),RD(hv )) = E
S∼(D)m

E
v∼π

E
h∼Pv

emF (RD(hv )−C m RS (hv ))

= E
S∼(D)m

E
v∼π

E
hv∼Pv

emF (RD(hv ))
m∑

k=0
Pr

S∼(D)m

(
RS(hv ) = k

m

)
e−C k

= E
S∼(D)m

E
v∼π

E
hv∼Pv

emF (RD(hv ))
m∑

k=0

(m
k

)
RD(hv )k (1−RD(hv ))m−ke−C k

= E
S∼(D)m

E
v∼π

E
hv∼Pv

emF (RD(hv ))(RD(hv )e−C + (1−RD(hv ))
)m .

The corollary is obtained with

F (p) = ln
1

(1−p[1−e−C ])
.

C.5 Proof of Small kl Bound

The result follows from Theorem 5.1 and Theorem 5.2 by taking D(a,b) = kl(a,b), and upper-

bounding E
S∼(D)m

E
v∼π

E
hv∼Pv

em kl(RS (hv ),RD(hv )). By considering RS(hv ) as a random variable

which follows a binomial distribution of m trials with a probability of success R(hv ), we can
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prove:

E
S∼(D)m

E
v∼π

E
hv∼Pv

em kl(RS (hv ),RD(hv )) = E
v∼π

E
hv∼Pv

E
S∼(D)m

[
RS(hv )

RD(hv )

]mRS (hv ) [1−RS(hv )

1−RD(h)

]m(1−RS (hv ))

= E
v∼π

E
hv∼Pv

m∑
k=0

Pr
S∼(D)m

(
RS(hv ) = k

m

)[ k/m

RD(hv )

]k[ 1−k/m

1−RD(hv )

]m−k

=
m∑

k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k

= ξ(m).

where ξ(m) =
m∑

k=0

(
m

k

)( k

m

)k(
1− k

m

)m−k
≤ 2

p
m.
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D.1 Proof of Equation 7.10

Firstly, we can show that distribution q(t+1) is a simple function of previous distribution q(t )

q(t+1) = LF

(
q0,

V∑
v=1

ρ(t+1)
v Mv (Q(t )

v + δ(t )
v )

)

= LF

(
q0 +

V∑
v=1

ρ(t+1)
v MvQ(t )

v ,
V∑

v=1
ρ(t+1)

v Mv δ(t )
v

)

= LF

(
q(t ),

V∑
v=1

ρ(t+1)
v Mv δ(t )

v

)
. (D.1)

From the definition of DF (p||q) and LF (q,r) given by equations (7.4) and (7.5) respectively,

we can show that,

DF (0||LF (q,r))−DF (0||q) ≤
m∑

i=1
qi (e−ri −1). (D.2)

Let si j
v = sign

(
(Mv )i j

)
and from Equations (D.1) and (D.2), we have following

DF (0||q(t+1))−DF (0||q(t )) = DF

(
0

∣∣∣∣∣∣ LF

(
q(t ),

V∑
v=1

ρ(t+1)
v Mv δ(t )

v

))
−DF (0||q(t ))

≤
m∑

i=1
q(t )

i

[
exp

(
V∑

v=1
ρ(t+1)

v

nv∑
j=1

δ(t )
v, j si j

v

∣∣(Mv )i j
∣∣)−1

]
,

≤
m∑

i=1
q(t )

i

[
V∑

v=1
ρ(t+1)

v

nv∑
j=1

∣∣(Mv )i j
∣∣(e

−δ(t )
v, j s

i j
v −1

)]
, (D.3)
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by assuming ∀ j ∈ {1, . . . ,nv }; W (t )±
v, j =∑

i :sign((Mv )i j )=±1 q (t )
i |(Mv )i j |, we have

DF (0||q(t+1))−DF (0||q(t )) ≤−
V∑

v=1
ρ(t+1)

v

nv∑
j=1

(
W (t )+

v, j e
−δ(t )

v, j −W (t )−
v, j e

δ(t )
v, j −W (t )+

v, j +W (t )−
v, j

)

put ∀v ∈V ,∀ j ∈ 1, . . . ,nv ; δ(t )
v, j = 1

2 ln

(
W (t )+

v, j

W (t )−
v, j

)
, we have

DF (0||q(t+1))−DF (0||q(t )) ≤ A(t ) ,

where A(t ) =−
V∑

v=1
ρ(t+1)

v

nv∑
j=1

(√
W (t )+

v, j −
√

W (t )−
v, j

)2
.

Equation (D.3) uses the fact that, for any z j
v ’s, for ρv ≥ 0 with

∑
v ρv ≤ 1 and for p j

v ≥ 0 with∑
j p j

v ≤ 1, we have

exp

(∑
v

ρv
∑

j
p j

v z j
v

)
−1 = exp

(∑
v

ρv
∑

j
p j

v z j
v +0.

(
1−∑

v
ρv

∑
j

p j
v z j

v

))
−1

≤∑
v

ρv
∑

j
p j

v z j
v +

(
1−∑

v
ρv

∑
j

p j
v z j

v

)
−1 (D.4)

=∑
v

ρv
∑

j
p j

v

(
ez

j
v −1

)
Equation (D.4) is obtained using the Jensen’s inequality applied to convex function expo-

nential.
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