, 363) 1371 (1, 510) 1538 (1, 572) 1696 (2, 693) 1839 (2, 752) 0.050 1383 (2, 379) 1669 (1, 496) 1875 (1, 556) 2066 (2, 672) 2238 (2, 730) 0.100 1655 (2, 370) 1997 (1, 480) 2238 (1, 539) 2458 (2, 650) 2678 (2, 708) 0.150 1772 (1, 388) 2134 (1, 473) 2394 (2, 583) 2632 (2, 641) 2871 (2, 699) 0.200 1834 (1, 384) 2213 (1, 470) 2482 (2, 578) 2731 (2, 636) 2979 (1, 738) 0.250 1873 (1, 382) 2263 (1, 468) 2531 (2, 575) 2787 (2, 633) 3043 (2, 692), vol.3, p.14201, 19900.

, Minimal (left) and maximal (right) total effort ratio to get into the basin of 0 (in days) for various values of (? E , ?), the minimum and maximum being taken with respect to (T, ?), with a period and an entrance time shown in parentheses. The total effort ratio is defined as the total number of released male mosquitoes divided by the initial (wild) male mosquito population, vol.9

, 23133) 317) 667 (1, 420) 752 (1, 474) 826 (1, 521) 896 (1, 565) 528 (1, 629) 661 (1, 749) 735 (1, 833) 803 (1, 909) 868 (1, 982) 534 (1, 1012) 642 (1, 1179) 708 (1, 1300) 771 (1, 1414) 830 (1, 1522), vol.7155, p.470, 13603.

E. Bubbles-chapter, MATHEMATICAL PERSPECTIVES under (too) specific conditions on the nonlinearities in [53] (see the introduction of the cited article for a historical and synthetic presentation of the techniques of proof)

. First, 3) simultaneously. By classical results on competitive systems (see the discussion in Section 4.3.3), there exists a traveling wave ? := (? 1 , ? 2 ) connecting 0 at ?? to E + at +? and traveling at speed c ? R. Using this particular solution and the comparison principle yields: Proposition 13.1. Assume c = 0, vol.13

, has a solution then for all L > L * it also has a solution

, ) be a solution to (13.2) for some L > 0

?. K-o-n, By the symmetric construction (extending by E + on R\(?L, L)), we can show that any solution to (13.3) gives rise to a "bubble" super-solution, which prevents E + from being the invading state and imposes c > 0 if c = 0. In particular, assuming c = 0 implies that for any L 1 , L 2 > 0, the existence of a solution to (13.2) with L = L 1 and to (13.3) with L = L 2 are incompatible, whence the first part of the result. Then, the sub-and super-solution method exposed in Chapter 4, Proposition 4.5 for scalar elliptic equations extends to systems (by the same process of building monotone and bounded sequences of sub-and super-solutions), This inequality is preserved by the time-dynamics, and in particular 0 cannot be the invading state: if c = 0 then c < 0

, Under the additional assumptions of Proposition 7.8, we know that there is exactly one bubble of radius L * > 0 and two bubbles of radius L for all L > L *, particular Theorem 7.1 and Section, vol.7

, or D 1 and D 2 ), we can indeed deduce from Proposition 13.1 that generically, (13.2) and (13.3) cannot be solved simultaneously. As noted in Section 4.3.3, the sign of c is usually not simple to determine. With the bubble viewpoint, it amounts to checking which Dirichlet problem has solutions among (13.2) and (13.3). Numerical simulations lead us to the following conjecture, which may hold under specific addi

L. , There exists L * > 0 such that (13.3) (resp. (13.2)) has ˆ 0 non-negative solution for L < L * , ˆ 1 non-negative solution for L = L * , ˆ 2 non-negative solutions for, Conjecture 13.2. Assume c > 0 (resp. c < 0)

, Etymologia: Aedes aegypti, Emerging Infectious Disease journal, vol.22, p.1807, 2016.

H. N. , W. Da-costa, P. J. Silva, J. M. Leite, L. P. Gonçalves et al., Diptera: Culicidae) in an Urban Endemic Dengue Area in the State of Rio de Janeiro, Brazil, Dispersal of Aedes aegypti and Aedes albopictus, vol.98, pp.191-198, 2003.

P. Adkisson, J. Tumlinson, and E. F. Knipling, Biographical Memoirs (National Academy of Sciences), p.83, 1909.

L. Alphey, Genetic control of mosquitoes, Annual Review of Entomology, vol.59, pp.205-224, 2014.

L. Alphey, A. Mckemey, D. Nimmo, O. M. Neira, R. Lacroix et al., Genetic control of Aedes mosquitoes, Pathogens and Global Health, vol.107, pp.170-179, 2013.

R. Anguelov, Y. Dumont, and J. M. Lubuma, Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput. Math. Appl, vol.64, pp.374-389, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00732800

, On nonstandard finite difference schemes in biosciences, AIP Conf. Proc, pp.212-223, 2012.

R. Anguelov and J. M. Lubuma, Contributions to the mathematics of the nonstandard finite difference method and applications, Numerical Methods for Partial Differential Equations, vol.17, pp.518-543, 2001.

T. H. Ant, C. S. Herd, V. Geoghegan, A. A. Hoffmann, and S. P. Sinkins, The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti, PLoS pathogens, vol.14, p.1006815, 2018.

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, vol.30, pp.33-76, 1978.

G. Aronsson and I. Mellander, A deterministic model in biomathematics. Asymptotic behavior and threshold conditions, p.49

C. Atyame, P. Labbé, F. Rousset, M. Beji, P. Makoundou et al., Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations, Mol Ecol, vol.24, issue.2, pp.508-521, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285420

V. R. Aznar, M. S. De-majo, S. Fischer, D. Francisco, M. A. Natiello et al., A model for the development of Aedes (Stegomyia) aegypti as a function of the available food, Journal of Theoretical Biology, vol.365, pp.311-324, 2015.

V. R. Aznar, M. Otero, M. S. De-majo, S. Fischer, and H. G. Solari, Modeling the complex hatching and development of Aedes aegypti in temperate climates, Ecological Modelling, vol.253, pp.44-55, 2013.

N. Bacaër, Histoires de mathématiques et de populations, ´ Editions Cassini, 2009.

, Sur le modèle stochastique SIS pour uné epidémie dans un environnement périodique, Journal of Mathematical Biology, vol.71, pp.491-511, 2015.

N. Bacaër and N. Ait-dads, Sur l'interprétation biologique d'une définition du paramètre R 0 pour les modèles périodiques de populations, Journal of Mathematical Biology, vol.65, pp.601-621, 2012.

D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol.66, 1993.

F. Baldacchino, B. Caputo, F. Chandre, A. Drago, A. Della-torre et al., Control methods against invasive Aedes mosquitoes in Europe: a review, vol.71, pp.1471-1485, 2015.

E. J. Balder, On equivalence of strong and weak convergence in L 1-spaces under extreme point conditions, Israel J. Math, vol.75, pp.21-47, 1991.

J. Bara, Z. Rapti, C. E. Cáceres, and E. J. Muturi, Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus, PLoS ONE, vol.10, pp.1-18, 2015.

G. Barles, of Mathématiques & Applications (Berlin) [Mathematics & Applications, vol.17, 1994.

N. Barton, The effects of linkage and density-dependent regulation on gene flow, Heredity, vol.57, pp.415-426, 1986.

N. H. Barton and G. Hewitt, Adaptation, speciation and hybrid zones, Nature, vol.341, pp.497-503, 1989.
DOI : 10.1038/341497a0

N. H. Barton and S. Rouhani, The probability of fixation of a new karyotype in a continuous population, Evolution, vol.45, issue.3, pp.499-517, 1991.

N. H. Barton and M. Turelli, Spatial Waves of Advance with Bistable Dynamics: Cytoplasmic and Genetic Analogues of Allee Effects, vol.178, pp.48-75, 2011.

H. Berestycki, B. Nicolaenko, and B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal, vol.16, issue.6, pp.1207-1242, 1985.
DOI : 10.1137/0516088

A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for Industrial and Applied Mathematics, 1994.
DOI : 10.1137/1.9781611971262

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al.,

S. I. Farrar and . Hay, The global distribution and burden of dengue, Nature, pp.504-507, 2013.

S. Billiard, P. Collet, R. Ferrì-ere, S. Méléard, and V. C. Tran, Stochastic dynamics for adaptation and evolution of microorganisms, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374179

M. S. Blagrove, C. Arias-goeta, C. Di-genua, A. Failloux, and S. P. Sinkins, A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus, PLoS Neglected Tropical Diseases, vol.7, p.2152, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01680359

P. Bliman, M. S. Aronna, F. C. Coelho, and M. A. Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, Journal of Mathematical Biology, vol.76, pp.1269-1300, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01579477

P. A. Bliman and N. Vauchelet, Establishing traveling wave in bistable reaction-diffusion system by feedback, IEEE Control Systems Letters, vol.1, pp.62-67, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480833

T. Bourgeron, V. Calvez, J. Garnier, and T. Lepoutre, Existence of recombinationselection equilibria for sexual populations, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01489695

K. Bourtzis, Wolbachia-based technologies for insect pest population control, vol.627, pp.104-117, 2008.

A. Braides, A handbook of ?-convergence, Handbook of Differential Equations: Stationary Partial Differential Equations, vol.3, pp.101-213, 2006.

H. Brezis, Analyse fonctionnelle. Théorie et applications, Mathématiques appliquées pour le master, Editions Dunod, 1999.

M. G. Bulmer, The mathematical theory of quantitative genetics, 1980.

R. Bürger, The mathematical theory of selection, recombination, and mutation, Wiley Series in Mathematical and Computational Biology, 2000.

F. Campillo, N. Champagnat, and C. Fritsch, On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models, Communications in Mathematical Sciences, issue.7, p.15
URL : https://hal.archives-ouvertes.fr/hal-01254053

V. O. Campo-duarte, D. E. Cardona-salgado, and D. , Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inf. Sci, vol.1, pp.1-17, 2017.

C. Carrère, Optimization of an in vitro chemotherapy to avoid resistant tumours, J. Theoret. Biol, vol.413, pp.24-33, 2017.

T. J. Case and M. L. Taper, Interspecific Competition, Environmental Gradients, Gene Flow, and the Coevolution of Species' Borders, The American Naturalist, vol.155, issue.5, pp.583-605, 2000.

E. Caspari and G. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, vol.13, pp.568-570, 1959.

D. D. Chadee, P. S. Corbet, and J. J. Greenwood, Egg-laying yellow fever mosquitoes avoid sites containing eggs laid by themselves or by conspecifics, Entomologia Experimentalis et Applicata, vol.57, pp.295-298, 1990.

E. Chambers, L. Hapairai, B. A. Peel, H. Bossin, and S. Dobson, Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions, vol.5, p.1271, 2011.

M. H. Chan and P. S. Kim, Modeling a Wolbachia Invasion Using a Slow-Fast Dispersal Reaction-Diffusion Approach, Bull Math Biol, vol.75, pp.1501-1523, 2013.

G. Chapuisat and R. Joly, Asymptotic profiles for a traveling front solution of a biological equation, Math. Mod. Methods Appl. Sci, vol.21, issue.10, pp.2155-2177, 2011.

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, vol.2, pp.125-160, 1997.

J. Chern, Y. Tang, C. Lin, and J. Shi, Existence, uniqueness and stability of positive solutions to sublinear elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A, vol.141, pp.45-64, 2011.

M. Cheung, Pairwise comparison dynamics for games with continuous strategy space, J. Econ. Theory, vol.153, pp.344-375, 2014.

, Imitative dynamics for games with continuous strategy space, Games and Economic Behavior, vol.99, pp.206-223, 2016.

J. Clairambault, S. Gaubert, and B. Perthame, An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations, Comptes Rendus Mathematique, vol.345, issue.10, pp.549-554, 2007.

P. Collet, S. Méléard, and J. A. Metz, A rigorous model study of the adaptive dynamics of Mendelian diploids, J. Math. Biol, vol.67, pp.569-607, 2013.

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, p.2144, 1980.

C. Coron, M. Costa, H. Leman, and C. Smadi, A stochastic model for speciation by mating preferences, Journal of Mathematical Biology, vol.76, pp.1421-1463, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01281975

P. R. Crain, J. W. Mains, E. Suh, Y. Huang, P. H. Crowley et al., Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement, BMC Evolutionary Biology, vol.11, pp.1-10, 2011.

C. Curtis and T. Adak, Population replacement in culex fatigans by means of cytoplasmic incompatibility: 1. laboratory experiments with non-overlapping generations, Bulletin of the World Health Organization, vol.51, pp.249-255, 1974.

T. J. Davis, P. E. Kaufman, J. A. Hogsette, and D. L. Kline, The Effects of Larval Habitat Quality on Aedes albopictus Skip Oviposition, Journal of the American Mosquito Control Association, pp.321-328, 2015.

L. De-bougainville, Voyage autour du monde par la frégate la Boudeuse et la flûte l, 1771.

L. Desvillettes, P. E. Jabin, S. Mischler, and G. Raoul, On selection dynamics for continuous structured populations, Communications in Mathematical Sciences, vol.6, issue.3, pp.729-747, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00363138

U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation, Nature, vol.400, pp.354-357, 1999.

O. Diekmann, J. Heesterbeek, and J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, vol.28, pp.365-382, 1990.

O. Diekmann, P. Jabin, S. Mischler, and B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol, vol.67, pp.257-271, 2005.

M. Doebeli, H. J. Blok, O. Leimar, and U. Dieckmann, Multimodal pattern formation in phenotype distributions of sexual populations, Proc. R. Soc. B, vol.274, pp.347-357, 2007.

Y. Du, Order structure and topological methods in nonlinear partial differential equations, vol.1, 2006.

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc, vol.12, pp.279-312, 2010.

C. Dufourd, Spatio-temporal mathematical models of insect trapping : analysis, parameter estimation and applications to control, 2017.

C. Dufourd and Y. Dumont, Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, Comput. Math. Appl, vol.66, pp.1695-1715, 2013.

Y. Dumont and J. M. Tchuenche, Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, Journal of Mathematical Biology, vol.65, pp.809-855, 2012.

R. Durrett and S. A. Levin, The importance of being discrete (and spatial), vol.46, pp.363-394, 1994.

H. L. Dutra, L. M. Barbosa, E. P. Santos, J. B. Carsagata, D. A. Silva et al., From Lab to Field: The Influence of Urban Landscapes on the Invasive Potential of Wolbachia in Brazilian Aedes Aegypti Mosquitoes, vol.9, 2015.

G. Duvallet, D. Fontenille, and V. Robert, Entomologie médicale et vétérinaire, Référence, IRD Editions/Quae, 2017.

C. Dye, The analysis of parasite transmission by bloodsucking insects, vol.37, pp.1-19, 1992.

J. Edgerly and M. Marvier, To hatch or not to hatch? Egg hatch response to larval density and to larval contact in a treehole mosquito, Ecological entomology, vol.17, pp.28-32, 1992.

P. Erdos and A. Rényi, On a classical problem of probability theory, Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, vol.6, pp.215-220, 1961.

B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems, Society for Industrial and Applied Mathematics, 2002.

J. Z. Farkas, S. A. Gourley, R. Liu, and A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, Journal of Mathematical Biology, vol.75, pp.621-647, 2017.

J. Z. Farkas and P. Hinow, Structured and Unstructured Continuous Models for Wolbachia Infections, Bulletin of Mathematical Biology, vol.72, pp.2067-2088, 2010.

A. Fenton, K. N. Johnson, J. C. Brownlie, and G. D. Hurst, Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy, The American Naturalist, vol.178, pp.333-342, 2011.

P. C. Fife, Mathematical aspects of reacting and diffusing systems, vol.28, 1979.

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Archive for Rational Mechanics and Analysis, vol.65, pp.335-361, 1977.

R. A. Fisher, Xxi.-on the dominance ratio, Proceedings of the royal society of Edinburgh, vol.42, pp.321-341, 1923.

R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, vol.7, pp.355-369, 1937.

D. A. Focks, D. G. Haile, E. Daniels, and G. A. Mount, Dynamic Life Table Model of a Container-Inhabiting Mosquito, Aedes aegypti (L.) (Diptera: Culicidae). Part 1. Analysis of the Literature and Model Development, Journal of Medical Entomology, vol.30, pp.1003-1017, 1993.

R. Fourer, AMPL : a modeling language for mathematical programming, Scientific Pr, 1996.

J. Françoise, Oscillations en biologie, Analyse qualitative et modèle, 2005.

R. A. Gardner, Existence and stability of travelling wave solutions to competition models: a degree theoretic approach, J. Diff. Equations, vol.44, pp.343-364, 1982.

J. Garnier, T. Giletti, F. Hamel, and L. Roques, Inside dynamics of pulled and pushed fronts, p.98, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00630298

J. Garnier, L. Roques, and F. Hamel, Success rate of a biological invasion in terms of the spatial distribution of the founding population, Bulletin of Mathematical Biology, vol.74, pp.453-473, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01257398

C. Garret-jones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity, Nature, vol.204, pp.1173-1175, 1964.

S. Gaubert and T. Lepoutre, Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model, Journal of Mathematical Biology, vol.71, issue.6, pp.1663-1703, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00773211

L. Girardin and G. Nadin, Travelling waves for diffusive and strongly competitive systems: Relative motility and invasion speed, European Journal of Applied Mathematics, vol.26, pp.521-534, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01135087

G. Guzzetta, F. Montarsi, F. A. Baldacchino, M. Metz, G. Capelli et al., Potential risk of dengue and chikungunya outbreaks in northern Italy based on a population model of Aedes albopictus (Diptera: Culicidae), vol.10, pp.1-21, 2016.

E. Hairer, C. Lubich, and M. Roche, Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations, BIT, vol.28, pp.678-700, 1988.

F. Hamel, Reaction-diffusion problems in cylinders with no invariance by translation. part ii: Monotone perturbations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.14, pp.555-596, 1997.

P. A. Hancock and H. C. Godfray, Modelling the spread of wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 2012.

P. A. Hancock, S. P. Sinkins, and H. C. Godfray, Population dynamic models of the spread of Wolbachia, The American Naturalist, vol.177, pp.323-333, 2011.

, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases, PLoS Negl Trop Dis, vol.5, pp.1-10, 2011.

P. A. Hancock, V. L. White, A. G. Callahan, C. H. Godfray, A. A. Hoffmann et al., Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia, Journal of Applied Ecology, vol.53, pp.785-793, 2016.

S. Hanson and G. J. Craig, Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae), J Med Entomol, vol.31, issue.2, pp.192-201, 1994.

L. K. Hapairai, Studies on Aedes polynesiensis introgression and ecology to facilitate lymphatic filariasis control, 2013.

L. K. Hapairai, J. Marie, S. P. Sinkins, and H. Bossin, Effect of temperature and larval density on Aedes polynesiensis (Diptera: Culicidae) laboratory rearing productivity and male characteristics, p.132, 2013.

L. K. Hapairai, M. A. Sang, S. P. Sinkins, and H. C. Bossin, Population studies of the filarial vector Aedes polynesiensis (Diptera: Culicidae) in two island settings of French Polynesia, Journal of medical entomology, vol.50, pp.965-976, 2013.

R. Harbach, The Culicidae (Diptera): A Review Of Taxonomy, Classification And Phylogeny, vol.1668, pp.591-638, 2007.

A. Henrot and M. Pierre, Variation et optimisation de formes, vol.48, 2005.

M. Hertig and S. B. Wolbach, Studies on rickettsia-like micro-organisms in insects, The Journal of medical research, vol.44, p.329, 1924.

D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya, Relative compactness in L p of solutions of some 2m components competition-diffusion systems, Discrete and continuous dynamical systems, vol.21, pp.233-244, 2008.

D. Hilhorst, S. Martin, and M. Mimura, Singular limit of a competition-diffusion system with large interspecific interaction, J. Math. Anal. Appl, vol.390, pp.2488-513, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00600105

M. W. Hirsch, The Dynamical Systems approach to differential equations, Bulletin of the American Mathematical Society, issue.1, p.11

M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of differential equations: ordinary differential equations, vol.II, pp.239-257, 2005.

, Monotone maps: a review, Journal of Difference Equations and Applications, vol.11, pp.379-398, 2005.

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of the American Mathematical Society, vol.40, pp.479-519, 2003.

A. A. Hoffmann, I. Iturbe-ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington et al., Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, vol.8, pp.1-9, 2014.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, pp.454-457, 2011.

N. Honorio, C. Codeço, F. Alves, M. Magalhães, R. Lourenço-de et al., Temporal distribution of Aedes aegypti in different districts of Rio De Janeiro, Brazil, measured by two types of traps, J Med Entomo, vol.46, issue.5, pp.1001-1014, 2009.

M. Huang, X. Song, and J. Li, Modelling and analysis of impulsive releases of sterile mosquitoes, Journal of Biological Dynamics, vol.11, p.27852161, 2017.

H. Hughes and N. F. Britton, Modeling the Use of Wolbachia to Control Dengue Fever Transmission, Bull. Math. Biol, vol.75, pp.796-818, 2013.

P. Jabin and H. Liu, On a non-local selection-mutation model with a gradient flow structure, vol.30, pp.4220-4238, 2017.

P. E. Jabin and G. Raoul, On Selection dynamics for competitive interactions, Journal of Mathematical Biology, vol.63, issue.3, pp.493-517, 2011.
DOI : 10.1007/s00285-010-0370-8

URL : https://hal.archives-ouvertes.fr/hal-00602077

L. Jachowski, Filariasis in American Samoa. Y. Bionomics of the Principal Vector, Aedes polynesiensis Marks, vol.60, pp.186-203, 1954.

V. A. Jansen, M. Turelli, and H. C. Godfray, Stochastic spread of Wolbachia, Proceedings of the Royal Society of London B: Biological Sciences, vol.275, pp.2769-2776, 2008.

J. Jiang, The algebraic criteria for the asymptotic behavior of cooperative systems with concave nonlinearities, vol.6, pp.193-208, 1993.

F. M. Jiggins, The spread of wolbachia through mosquito populations, PLOS Biology, vol.15, pp.1-6, 2017.

S. Joanne, I. Vythilingam, N. Yugavathy, C. S. Leong, M. Wong et al., Distribution and dynamics of Wolbachia infection in Malaysian Aedes albopictus, Acta Trop, vol.148, pp.38-45, 2015.

K. N. Johnson, The impact of Wolbachia on virus infection in mosquitoes, Viruses, p.7

S. Juliano, R. G. , R. Maciel-de-freitas, M. Castro, C. Codeço et al., She's a femme fatale: low-density larval development produces good disease vectors, Memórias do Instituto Oswaldo Cruz, vol.109, pp.1070-1077, 2014.
DOI : 10.1590/0074-02760140455

URL : http://www.scielo.br/pdf/mioc/v109n8/0074-0276-mioc-109-8-1070.pdf

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competitiondiffusion equations, SIAM Journal on Mathematical Analysis, vol.26, pp.340-363, 1995.

T. H. Keitt, M. A. Lewis, and R. D. Holt, Allee Effects, Invasion Pinning, and Species' Borders, The American Naturalist, vol.157, issue.2
DOI : 10.2307/3079259

M. Kimura, On the probability of fixation of mutant genes in a population, Genetics, vol.47, pp.713-719, 1962.

J. Kingman, A convexity property of positive matrices, Quart. J. Math, vol.12, pp.283-284, 1961.

M. Kirkpatrick and N. H. Barton, Evolution of a Species' Range, The American Naturalist, vol.150, pp.1-23, 1997.

E. Kisdi and S. A. Geritz, Adaptive Dynamics in Allele Space: Evolution of Genetic Polymorphism by Small Mutations in a Heterogeneous Environment, Evolution, vol.53, pp.993-1008, 1999.

J. Koiller, M. A. Silva, M. O. Souza, C. T. Codeço, A. Iggidr et al., Aedes, Wolbachia and dengue, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00939411

A. Kolmogorov, I. Petrovsky, and N. Piskunov, Etude de l'´ equation de la diffusion avec croissance de la quantité dematì ere et son applicationàapplicationà unprobì eme biologique, pp.1-26, 1937.

M. G. Kre?-i-n and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.), vol.3, pp.3-95, 1948.

J. Lamboley, A. Laurain, G. Nadin, and Y. Privat, Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions, Calc. Var. Partial Differential Equations, vol.55, p.37, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01295457

R. M. Lana, T. G. Carneiro, N. A. Honório, and C. T. Codeço, Seasonal and nonseasonal dynamics of aedes aegypti in rio de janeiro, brazil: Fitting mathematical models to trap data, Acta Tropica, vol.129, pp.25-32, 2014.

R. M. Lana, M. Morais, T. França-melo-de-lima, T. Carneiro, L. Stolerman et al., Assessment of a trap based Aedes aegypti surveillance program using mathematical modeling, vol.13, p.190673, 2018.

H. Laven, Eradication of Culex pipiens fatigans through Cytoplasmic Incompatibility, Nature, vol.216, p.383, 1967.

R. Lees, J. Gilles, J. Hendrichs, M. Vreysen, and K. Bourtzis, Back to the future: the sterile insect technique against mosquito disease vectors, vol.10, pp.156-162, 2015.

R. Lees, B. Knols, R. Bellini, M. Benedict, A. Bheecarry et al., Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes, vol.132, pp.2-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01285430

M. Legros, M. Otero, V. Romeo-aznar, H. Solari, F. Gould et al., Comparison of two detailed models of Aedes aegypti population dynamics, Ecosphere, p.1515, 2016.

M. A. Lewis, B. Li, and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, Journal of Mathematical Biology, vol.45, pp.219-233, 2002.

T. J. Lewis and J. P. Keener, Wave-block in excitable media due to regions of depressed excitability, SIAM Journal on Applied Mathematics, pp.293-316, 2000.

J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies, Journal of Biological Dynamics, vol.9, p.25377433, 2015.

P. Lions and P. E. Souganidis, Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris Sér. I Math, vol.327, pp.735-741, 1998.

T. P. Livdahl, R. K. Koenekoop, and S. G. Futterweit, The complex hatching response of Aedes eggs to larval density, Ecological Entomology, vol.9, pp.437-442, 1984.

C. C. Lord, M. E. Woolhous, J. A. Heesterbeek, and P. S. Mellor, Vectorborne diseases and the basic reproduction number: a case study of African horse sickness, Medical and Veterinary Entomology, vol.10, pp.19-28

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, and B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol, vol.77, pp.1-22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00921266

A. Lorz, S. Mirrahimi, and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, vol.36, pp.1071-1098, 2011.

V. Losert and E. Akin, Dynamics of games and genes: Discrete versus continuous time, vol.17, pp.241-251, 1983.

R. Ma, R. Chen, and Y. Lu, Positive solutions for a class of sublinear elliptic systems, Bound. Value Probl, p.15, 2014.

G. Macdonald, The Epidemiology and Control of Malaria, 1957.

R. Maciel-de-freitas, R. Souza-santos, C. T. Codeço, R. Lourenço-de, and . Oliveira, Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycle, Medical and Veterinary Entomology, vol.24, pp.74-82, 2010.

P. , Mutation and recombination in a model of phenotype evolution, J. Evol. Equ, vol.2, pp.21-39, 2002.

P. Magal and G. Raoul, Dynamics of a kinetic model describing protein exchanges in a cell population, 2015.

L. Malaguti and C. Marcelli, Existence and multiplicity of heteroclinic solutions for a non-autonomous boundary eigenvalue problem, Electronic Journal of Differential Equations, pp.1-21, 2003.

J. Marsden and M. Mccracken, of Applied mathematical sciences, The Hopf Bifurcation and its Applications, vol.19, 1976.

H. Matano and P. Polá?ik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part I: A general quasiconvergence theorem and its consequences, Communications in Partial Differential Equations, vol.41, pp.785-811, 2016.

E. A. Mcgraw and S. L. O&apos;neill, Beyond insecticides: new thinking on an ancient problem, Nature Reviews Microbiology, vol.11, pp.181-193, 2013.

J. M. Medlock, K. M. Hansford, F. Schaffner, V. Versteirt, G. Hendrickx et al., A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options, Vector borne and zoonotic diseases, pp.435-447, 2012.

J. Meigen, Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten, vol.1, 1818.

J. Meiss, Differential Dynamical Systems, 2007.

R. E. Mickens, Advances in the applications of nonstandard finite difference schemes, 2005.

, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations, Journal of Difference Equations and Applications, vol.11, pp.645-653, 2005.

S. Mirrahimi, B. Perthame, and P. Souganidis, Time fluctuations in a population model of adaptive dynamics, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.32, pp.41-58, 2015.

S. Mirrahimi and G. Raoul, Dynamics of sexual populations structured by a space variable and a phenotypical trait, Theoretical Population Biology, vol.84, pp.87-103
URL : https://hal.archives-ouvertes.fr/hal-01849254

L. A. Moreira, I. Iturbe-ormaetxe, J. A. Jeffery, G. Lu, A. T. Pyke et al.,

. O&apos;neill and . Wolbachia, Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium, vol.139, pp.1268-1278, 2009.

L. Mousson, C. Dauga, T. Garrigues, F. Schaffner, M. Vazeille et al., Failloux, Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations, Genetical Research, vol.86, pp.1-11, 2005.

C. B. Muratov and X. Zhong, Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations, Discrete Contin. Dyn. Syst, vol.37, pp.915-944, 2017.

J. D. Murray, Mathematical biology. I. An introduction, Interdisciplinary applied mathematics, 2002.

G. Nadin, M. Strugarek, and N. Vauchelet, Hindrances to bistable front propagation, application to Wolbachia, Journal of Mathematical Biology, vol.76, issue.6, pp.1489-1533, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01442291

T. Nagylaki, Conditions for existence of clines, Genetics, vol.80, pp.595-615, 1975.

T. H. Nguyen, H. L. Nguyen, T. Y. Nguyen, S. N. Vu, N. D. Tran et al., Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, vol.8, p.563, 2015.

L. O&apos;connor, C. Plichart, A. C. Sang, C. L. Brelsfoard, H. C. Bossin et al., Open Release of Male Mosquitoes Infected with a Wolbachia Biopesticide: Field Performance and Infection Containment, PLoS Neglected Tropical Diseases, vol.6, pp.1-7, 2012.

C. F. Oliva, D. Damiens, and M. Q. Benedict, Male reproductive biology of Aedes mosquitoes, Acta Tropica, vol.132, pp.12-19, 2014.

M. Otero, N. Schweigmann, and H. G. Solari, A stochastic spatial dynamical model for Aedes aegypti, Bulletin of Mathematical Biology, vol.70, pp.1297-325, 2008.
DOI : 10.1007/s11538-008-9300-y

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, Journal of Differential Equations, vol.146, pp.121-156, 1998.

, Exact multiplicity of positive solutions for a class of semilinear problem, Journal of Differential Equations, vol.II, pp.94-151, 1999.

E. S. Paixão, M. G. Teixeira, and L. C. Rodrigues, Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases, BMJ Global Health, vol.3, p.530, 2018.

N. Pasteur and M. Raymond, Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations, J. Hered, vol.87, pp.444-449, 1996.
URL : https://hal.archives-ouvertes.fr/halsde-00201447

B. Perthame, Transport equations in biology, Frontiers in mathematics, 2007.

, Parabolic equations in biology, Lecture Notes on Mathematical Modelling in the Life Sciences, 2015.

B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J, vol.57, pp.3275-3301, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00168404

P. Polacik, Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, vol.2, pp.835-883, 2002.

, Threshold solutions and sharp transitions for nonautonomous parabolic equations on R n , Archive for Rational Mechanics and Analysis, vol.199, pp.69-97, 2011.

, Spatial trajectories and convergence to traveling fronts for bistable reaction-diffusion equations, Contributions to nonlinear elliptic equations and systems. A tribute to Djairo Guedes de Figueiredo on the occasion of his 80th Birthday, pp.404-423, 2015.

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 1984.

A. Qualteroni, R. Sacco, and F. Saleri, Numerical mathematics, 2000.

G. , Macroscopic limit from a structured population model to the Kirkpatrick-Barton model, 2017.

F. Rivì, Ecologie de Aedes (Stegomyia) polynesiensis, Marks, 1951, et transmission de la filariose de Bancroft en Polynésie, 1988.

S. Rouhani and N. H. Barton, Speciation and the "Shifting Balance" in a continuous population, Theoretical Population Biology, vol.31, pp.465-492, 1987.

G. Sallet and M. A. Silva, Monotone dynamical systems and some models of wolbachia in aedes aegypti populations, ARIMA, vol.20, pp.145-176, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01320616

W. Sandholm, Potential games with continuous player sets, J. Econ. Theory, vol.97, pp.81-103

, Population Games and Evolutionary Dynamics, 2010.

H. Schechtman and M. O. Souza, Costly Inheritance and the Persistence of Insecticide Resistance in Aedes aegypti Populations, PLOS ONE, vol.10, pp.1-22, 2015.

T. Schmidt, I. Filipovi´cfilipovi´c, A. A. Hoffmann, and G. Ra?i´ra?i´c, Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, p.120, 2018.

T. Schmidt, N. H. Barton, G. Ra?i´ra?i´c, A. Turley, B. Montgomery et al., Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti, vol.15, p.2001894, 2017.

J. G. Schraiber, A. N. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein et al., Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, Journal of Theoretical Biology, vol.297, pp.26-32, 2012.

D. S. Shepard, U. E. , Y. A. Halasa, and J. D. Stanaway, The global economic burden of dengue: a systematic analysis, The Lancet Infectious Diseases, vol.16, pp.935-941, 2016.

J. Simon, Compact sets in the space L p, vol.146, pp.65-96, 1986.

S. P. Sinkins, Wolbachia and cytoplasmic incompatibility in mosquitoes, Molecular and population biology of mosquitoes, vol.34, pp.723-729, 2004.

H. L. Smith, Cooperative systems of differential equations with concave nonlinearities, Nonlinear Analysis: Theory, Methods & Applications, vol.10, pp.1037-1052, 1986.

, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, 1995.

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional differential equations, Journal of Differential Equations, vol.93, pp.332-363, 1991.

K. Snow, The names of European mosquitoes: Part 7, vol.9, pp.4-8, 2001.

M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type, SIAM Journal on Applied Mathematics, vol.76, issue.5, pp.2060-2080, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01264980

M. Strugarek, N. Vauchelet, and J. P. Zubelli, Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model, Mathematical Biosciences and Engineering, vol.15, issue.4, pp.961-991, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01355118

T. Suzuki and F. Sone, Breeding habits of vector mosquitoes of filariasis and dengue fever in Western Samoa, vol.29, pp.279-286, 1978.

C. Taing, Dynamique de concentration dans des EDPs non locales issues de la biologie, 2018.

F. Theobald, A monograph of the Culicidae or mosquitoes, British Museum (Natural History), vol.1, 1901.

R. C. Thomé, H. M. Yang, and L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci, vol.223, pp.12-23, 2010.

A. N. Tikhonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sb, issue.73, pp.575-586, 1952.

E. Trélat, J. Zhu, and E. Zuazua, Allee optimal control of a system in ecology, 2017.

J. Tufto, Quantitative genetic models for the balance between migration and stabilizing selection, Genet. Res, vol.76, pp.285-293, 2000.

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, vol.64, pp.232-241, 2010.

M. Turelli and N. H. Barton, Genetic and Statistical Analyses of Strong Selection on Polygenic Traits: What, Me Normal?, Genetics, vol.138, pp.913-941, 1994.

M. Turelli and A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, vol.353, pp.440-442, 1991.

, Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations, Genetics, vol.140, pp.1319-1338, 1995.

S. Vakulenko and V. Volpert, New effects in propagation of waves for reaction-diffusion systems, Asymptotic Analysis, vol.38, pp.11-33, 2004.

P. Van-den-driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation, Journal of Mathematical Biology, vol.40, pp.525-540, 2000.

G. G. Van-doorn and U. Dieckmann, The Long-Term Evolution of Multilocus Traits under Frequency-Dependent Disruptive Selection, Evolution, vol.60, pp.2226-2238, 2006.

F. Vavre and S. Charlat, Making (good) use of Wolbachia: what the models say, Current Opinion in Microbiology, Ecology and industrial microbiology, vol.15, pp.263-268, 2012.

M. Vazeille, S. Moutailler, D. Coudrier, C. Rousseaux, H. Khun et al., Two Chikungunya Isolates from the Outbreak of La Reunion (Indian Ocean) Exhibit Different Patterns of Infection in the Mosquito, Aedes albopictus, vol.2, pp.1-9, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00196860

D. A. Villela, C. T. Codeço, F. Figueiredo, G. A. Garcia, R. Maciel-de-freitas et al., A Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE, vol.10, issue.4, 2015.

A. Volpert, V. Volpert, and V. Volpert, Traveling wave solutions of parabolic systems, vol.140, 1994.

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming, Math. Program, vol.106, pp.25-57, 2006.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al.,

S. A. Lloyd, S. L. Ritchie, A. A. O&apos;neill, and . Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, pp.450-453, 2011.

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nature Review Microbiology, vol.6, pp.741-751, 2008.

B. Wu and R. Cui, Existence, uniqueness and stability of positive solutions to a general sublinear elliptic systems, Bound. Value Probl, p.14, 2013.

S. Wu and W. Li, Global asymptotic stability of bistable traveling fronts in reactiondiffusion systems and their applications to biological models, Chaos, Solitons & Fractals, vol.40, pp.1229-1239, 2009.

D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constantyield harvesting, Discrete and Continuous Dynamical Systems Series B, vol.21, issue.2, pp.699-719, 2016.

H. Yang, Assessing the influence of quiescence eggs on the dynamics of mosquito Aedes aegypti, Applied Mathematics, vol.5, pp.2696-2711, 2014.

H. M. Yang, M. L. Macoris, K. C. Galvani, M. T. Andrighetti, and D. M. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and Infection, vol.8, pp.1188-1202, 2009.

H. L. Yeap, P. Mee, T. Walker, A. R. Weeks, S. L. O&apos;neill et al., Dynamics of the "Popcorn" Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito Vector Control, Genetics, vol.187, pp.583-595, 2011.

H. L. Yeap, G. Rasic, N. M. Endersby-harshman, S. F. Lee, E. Arguni et al., Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations, Heredity, vol.116, pp.265-276, 2016.

Z. Zhang, T. Ding, W. Huang, and Z. Dong, Qualitative Theory of Differential Equations, no. 101 in Translations of Mathematical Monographs, 1991.

B. Zheng, M. Tang, J. Yu, and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, Journal of Mathematical Biology, vol.76, issue.1, pp.235-263, 2018.

A. Zlatos, Sharp transition between extinction and propagation of reaction, J. Amer. Math. Soc, vol.19, pp.251-263, 2006.