, Bibliography [1] A Dataset of Real World Driving to Assess Driver Workload

, Stress Recognition in Automobile Drivers

T. Warwick and -. Dataset,

M. Ablaßmeier, T. Poitschke, S. Reifinger, and G. , Context-Aware Information Agents for the Automotive Domain Using Bayesian Networks, Proceedings of the 2007 Conference on Human Interface: Part I, 2007.
DOI : 10.1007/978-3-540-73345-4_64

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, Self-similarity and long-range dependence through the wavelet lens. Theory and applications of long-range dependence, Birkhäuser, pp.527-556, 2003.

P. Abry, P. Flandrin, M. Taqqu, and D. Veitch, Wavelets for the analysis, estimation and synthesis of scaling data. Self-similar network traffic and performance evaluation, pp.39-88, 2000.

R. Acharya, U. , O. Faust, N. Kannathal, T. Chua et al., Non-linear analysis of EEG signals at various sleep stages, Computer Methods and Programs in Biomedicine, vol.80, issue.1, pp.37-45, 2005.
DOI : 10.1016/j.cmpb.2005.06.011

A. Akbas, Evaluation of the physiological data indicating the dynamic stress level of drivers. Scientific research and essays, pp.430-439, 2011.

S. Alada?-g, A. Güven, H. Ozbek, and N. Dolu, A comparison of denoising methods for electrodermal activity signals, Medical Technologies National Conference (TIPTEKNO), pp.1-4, 2015.

A. Alkali, R. Saatchi, H. Elphick, and D. Burke, Short-time Fourier and wavelet transform analysis of respiration signal obtained by thermal imaging, 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), pp.183-187, 2014.
DOI : 10.1109/CSNDSP.2014.6923821

L. Auret and C. Aldrich, Empirical comparison of tree ensemble variable importance measures, Chemometrics and Intelligent Laboratory Systems, vol.105, issue.2, pp.157-170, 2011.
DOI : 10.1016/j.chemolab.2010.12.004

D. Ayata, Y. Yaslan, and M. Kamasak, Emotion recognition via random forest and galvanic skin response: Comparison of time based feature sets, window sizes and wavelet approaches, 2016 Medical Technologies National Congress (TIPTEKNO), pp.1-4, 2016.
DOI : 10.1109/TIPTEKNO.2016.7863130

A. Babloyantz, J. M. Salazar, and C. Nicolis, Evidence of chaotic dynamics of brain activity during the sleep cycle, Physics Letters A, vol.111, issue.3, pp.152-156, 1985.
DOI : 10.1016/0375-9601(85)90444-X

F. Bach, Consistency of the group lasso and multiple kernel learning, Journal of Machine Learning Research, vol.9, pp.1179-1225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00164735

H. Baek, H. Lee, J. Kim, J. Choi, K. Kim et al., Nonintrusive biological signal monitoring in a car to evaluate a driverâ¿—s stress and health state. Telemedicine and e-Health, pp.182-189, 2009.

J. Bardet, I. Kammoun, and V. Billat, A new process for modeling heartbeat signals during exhaustive run with an adaptive estimator of its fractal parameters, Journal of Applied Statistics, vol.93, issue.5, pp.1331-1351, 2012.
DOI : 10.4015/S1016237206000130

J. Bardet, G. Lang, E. Moulines, and P. Soulier, Wavelet estimator of long-range dependent processes, Statistical Inference for Stochastic Processes, pp.85-99, 2000.

A. B. Jemaa, G. Irato, A. Zanela, A. Brescia, M. Turki et al., Congruent auditory display and confusion in sound localization: Case of elderly drivers, Transportation Research Part F: Traffic Psychology and Behaviour, 2017.

G. Berntson and J. Cacioppo, Heart rate variability: Stress and psychiatric conditions. Dynamic electrocardiography, pp.57-64, 2004.
DOI : 10.1002/9780470987483.ch7

A. Best and B. Braun, Using a novel data resource to explore heart rate during mountain and road running, Physiological Reports, vol.96, issue.8, p.2017
DOI : 10.1007/s00421-005-0081-9

R. Díaz-uriarte and S. Andres, Gene selection and classification of microarray data using random forest, BMC Bioinformatics, vol.7, issue.1, p.3, 2006.
DOI : 10.1186/1471-2105-7-3

D. Dimitriev, E. Saperova, and A. Dimitriev, State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students, PLOS ONE, vol.13, issue.6, pp.1-22, 2016.
DOI : 10.1371/journal.pone.0146131.s002

K. Dopart, , 2015.

P. Doukhan, G. Oppenheim, and M. Taqqu, Theory and applications of long-range dependence, 2003.

I. Dror, A. Peron, S. Hind, and D. Charlton, When emotions get the better of us: the effect of contextual top-down processing on matching fingerprints, Applied Cognitive Psychology, vol.167, issue.6, pp.799-809, 2005.
DOI : 10.1145/1455292.1455310

R. Edelberg, Electrical properties of the skin, Methods in psychophysiology, pp.1-53, 1967.

A. Eke, P. Hermán, J. Bassingthwaighte, G. Raymond, D. Percival et al., Physiological time series: distinguishing fractal noises from motions, Pfl??gers Archiv - European Journal of Physiology, vol.439, issue.4, pp.403-415, 2000.
DOI : 10.1007/s004249900135

A. Eke, P. Herman, L. Kocsis, and L. Kozak, Fractal characterization of complexity in temporal physiological signals, Physiological Measurement, vol.23, issue.1, pp.1-38, 2002.
DOI : 10.1088/0967-3334/23/1/201

P. Ekman, Facial expression and emotion., American Psychologist, vol.48, issue.4, p.384, 1993.
DOI : 10.1037/0003-066X.48.4.384

N. Haouij, J. Poggi, R. Ghozi, S. Sevestre-ghalila, and M. Ja¨?daneja¨?dane, Self-similarity analysis of electrodermal activity for driver's stress level characterization

N. Haouij, J. Poggi, R. Ghozi, S. Sevestre-ghalila, and M. Ja¨?daneja¨?dane, Random forestbased approach for physiological functional variable selection for driver's stress level classification, Statistical Methods & Applications, 2018.

N. Haouij, J. Poggi, S. Sevestre-ghalila, R. Ghozi, and M. Ja¨?daneja¨?dane, AffectiveROAD System and Database to Assess Driver's Arousal State, SAC 2018: Symposium on Applied Computing, 2018.
DOI : 10.1145/3167132.3167395

F. Eyben, M. Wöllmer, T. Poitschke, B. Schuller, C. Blaschke et al., Emotion on the Road???Necessity, Acceptance, and Feasibility of Affective Computing in the Car, Advances in Human-Computer Interaction, vol.9, issue.8, pp.1-5, 2010.
DOI : 10.1016/j.trf.2009.02.002

R. Faghih, P. A. Stokes, M. Marin, R. Zsido, S. Zorowitz et al., Characterization of fear conditioning and fear extinction by analysis of electrodermal activity, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.7814-7818, 2015.
DOI : 10.1109/EMBC.2015.7320204

D. Farina and F. Negro, Accessing the Neural Drive to Muscle and Translation to Neurorehabilitation Technologies, IEEE Reviews in Biomedical Engineering, vol.5, pp.3-14, 2012.
DOI : 10.1109/RBME.2012.2183586

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, 2006.

P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion, IEEE Transactions on Information Theory, vol.38, issue.2, pp.910-917, 1992.
DOI : 10.1109/18.119751

, NHTSA's National Center for Statistics and Analysis. Critical reasons for crashes investigated in the national motor vehicle crash causation survey, 2015.

N. Frijda, Emotions, 1986.
DOI : 10.4135/9781848608399.n12

URL : https://hal.archives-ouvertes.fr/hal-02007885

R. Genuer, J. Poggi, and T. , Vsurf: An r package for variable selection using random forests, The R Journal, vol.7, issue.2, pp.19-33, 2015.
DOI : 10.32614/rj-2015-018

URL : https://hal.archives-ouvertes.fr/hal-01251924

R. Genuer, J. Poggi, and C. Tuleau-malot, Variable selection using random forests, Pattern Recognition Letters, vol.31, issue.14, pp.312225-2236, 2010.
DOI : 10.1016/j.patrec.2010.03.014

URL : https://hal.archives-ouvertes.fr/hal-00755489

E. Gerasimova, B. Audit, S. Roux, A. Khalil, O. Gileva et al., Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis, Frontiers in Physiology, vol.33, issue.75, p.176, 2014.
DOI : 10.1007/s005950300055

URL : https://hal.archives-ouvertes.fr/hal-01586151

A. Gevins and M. Smith, Neurophysiological measures of cognitive workload during human-computer interaction, Theoretical Issues in Ergonomics Science, vol.4, issue.1-2, pp.113-131, 2003.
DOI : 10.1080/14639220210159717

S. Ghosh, T. Nandy, and N. Manna, Real Time Eye Detection and Tracking Method for Driver Assistance System, pp.13-25, 2015.
DOI : 10.1007/978-81-322-2256-9_2

J. Gitter and M. Czerniecki, Fractal analysis of the electromyographic interference pattern, Journal of Neuroscience Methods, vol.58, issue.1-2, pp.103-108, 1995.
DOI : 10.1016/0165-0270(94)00164-C

A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov et al., PhysioBank, PhysioToolkit, and PhysioNet : Components of a New Research Resource for Complex Physiologic Signals, Circulation, vol.101, issue.23, pp.215-220, 2000.
DOI : 10.1161/01.CIR.101.23.e215

D. Gopher and E. Donchin, Workload: An examination of the concept, 1986.

A. Granero, F. Fuentes-hurtado, V. Naranjo-ornedo, J. Guixeres-provinciale, and J. ,

M. A. Ausín and . Raya, A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents, Frontiers in computational neuroscience, vol.10, p.74, 2016.

A. Greco, G. Valenza, L. Citi, and E. Scilingo, Arousal and Valence Recognition of Affective Sounds Based on Electrodermal Activity, IEEE Sensors Journal, vol.17, issue.3, pp.716-725, 2017.
DOI : 10.1109/JSEN.2016.2623677

B. Gregorutti, B. Michel, and P. Saint-pierre, Grouped variable importance with random forests and application to multiple functional data analysis, Computational Statistics & Data Analysis, vol.90, pp.15-35, 2015.
DOI : 10.1016/j.csda.2015.04.002

URL : https://hal.archives-ouvertes.fr/hal-01084301

B. Gregorutti, B. Michel, and P. Saint-pierre, Correlation and variable importance in random forests, Statistics and Computing, vol.2, issue.1, pp.1-20, 2016.
DOI : 10.1093/bioinformatics/btr300

URL : https://hal.archives-ouvertes.fr/hal-01935918

B. Gregorutti, RFgroove: Importance Measure and Selection for Groups of Variables with Random Forests. https://CRAN.R-project.org/package=RFgroove, R package version 1, 2016.

Z. Guendil, Z. Lachiri, C. Maaoui, and A. Pruski, Emotion recognition from physiological signals using fusion of wavelet based features, 2015 7th International Conference on Modelling, Identification and Control (ICMIC), pp.1-6, 2015.
DOI : 10.1109/ICMIC.2015.7409485

URL : https://hal.archives-ouvertes.fr/hal-01785642

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, pp.389-422, 2002.

, H2020. Smart, green and integrated transport, 2014.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2001.

J. Hausdorff, Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking, Human Movement Science, vol.26, issue.4, pp.555-589, 2007.
DOI : 10.1016/j.humov.2007.05.003

J. Hausdorff, C. Peng, J. Wei, A. Goldberger, and R. Jung, Fractal Analysis of Human Walking Rhythm, Biomechanics and Neural Control of Posture and Movement, pp.253-264, 2000.
DOI : 10.1007/978-1-4612-2104-3_18

R. Hazlett, Measuring emotional valence during interactive experiences, Proceedings of the SIGCHI conference on Human Factors in computing systems , CHI '06, pp.1023-1026, 2006.
DOI : 10.1145/1124772.1124925

J. Healey, Wearable and automotive systems for affect recognition from physiology, 2000.

J. Healey and R. Picard, Detecting Stress During Real-World Driving Tasks Using Physiological Sensors, IEEE Transactions on Intelligent Transportation Systems, vol.6, issue.2, pp.156-166, 2005.
DOI : 10.1109/TITS.2005.848368

J. Healey, J. Seger, and R. Picard, Quantifying driver stress: Developing a system for collecting and processing bio-metric signals in natural situations, Biomedical sciences instrumentation, vol.35, pp.193-198, 1999.

M. Helander, Applicability of drivers' electrodermal response to the design of the traffic environment., Journal of Applied Psychology, vol.63, issue.4, pp.481-488, 1978.
DOI : 10.1037/0021-9010.63.4.481

T. Horberry, J. Anderson, M. Regan, T. Triggs, and J. Brown, Driver distraction: The effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance, Accident Analysis & Prevention, vol.38, issue.1, pp.185-191, 2006.
DOI : 10.1016/j.aap.2005.09.007

M. Hu, S. Ali, and M. Shah, Detecting global motion patterns in complex videos, 2008 19th International Conference on Pattern Recognition, pp.1-5, 2008.
DOI : 10.1109/ICPR.2008.4760950

M. Imam, C. Karmakar, A. Khandoker, and M. Palaniswami, Effect of ECGderived respiration (EDR) on modeling ventricular repolarization dynamics in different physiological and psychological conditions, Medical & Biological Engineering & Computing, issue.10, pp.52851-860, 2014.

S. Jerritta, M. Murugappan, K. Wan, and S. Yaacob, Emotion recognition from facial EMG signals using higher order statistics and principal component analysis, Journal of the Chinese Institute of Engineers, vol.4, issue.2, pp.385-394, 2014.
DOI : 10.1007/978-1-4020-6593-4_14

Q. Ji and X. Yang, Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real-Time Imaging, pp.357-377, 2002.

I. Jolliffe, Principal Component Analysis. Springer series in statistics, 2002.

N. Kannathal, U. Rajendra-acharya, C. M. Lim, and P. K. Sadasivan, Characterization of EEG???A comparative study, Computer Methods and Programs in Biomedicine, vol.80, issue.1, pp.17-23, 2005.
DOI : 10.1016/j.cmpb.2005.06.005

C. Karmakar, M. Imam, A. Khandoker, and M. Palaniswami, Influence of psychological stress on qt interval, Computing in Cardiology 2014, pp.1009-1012, 2014.

J. Karvonen and T. Vuorimaa, Heart Rate and Exercise Intensity During Sports Activities, Sports Medicine, vol.5, issue.5, pp.303-311, 1988.
DOI : 10.2165/00007256-198805050-00002

D. Kim and J. Kwon, Moving Object Detection on a Vehicle Mounted Back-Up Camera, Sensors, vol.3, issue.1, p.23, 2015.
DOI : 10.3390/s110808164

P. Konstantopoulos, P. Chapman, and D. Crundall, Driver's visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers??? eye movements in day, night and rain driving, Accident Analysis & Prevention, vol.42, issue.3, pp.827-834, 2010.
DOI : 10.1016/j.aap.2009.09.022

A. Krstaci´ckrstaci´c, G. Krstaci´ckrstaci´c, and D. Gamberger, Control of heart rate by the autonomic nervous system in acute spinal cord injury, Acta clinica Croatica, vol.52, issue.4, pp.430-435, 2013.

G. Krstacic, A. Krstacic, M. Martinis, E. Vargovic, A. Knezevic et al., Non-linear analysis of heart rate variability in patients with coronary heart disease, Computers in Cardiology, pp.673-675, 2002.
DOI : 10.1109/CIC.2002.1166862

L. Li, C. Liu, C. Liu, Q. Zhang, and B. Li, Physiological Signal Variability Analysis Based on the Largest Lyapunov Exponent, 2009 2nd International Conference on Biomedical Engineering and Informatics, pp.1-5, 2009.
DOI : 10.1109/BMEI.2009.5305169

N. Li, J. Jain, and C. Busso, Modeling of Driver Behavior in Real World Scenarios Using Multiple Noninvasive Sensors, IEEE transactions on multimedia, pp.1213-1225, 2013.
DOI : 10.1109/TMM.2013.2241416

H. Lin, H. Lin, W. Lin, and A. Huang, Effects of stress, depression, and their interaction on heart rate, skin conductance, finger temperature, and respiratory rate: sympathetic-parasympathetic hypothesis of stress and depression, Journal of Clinical Psychology, vol.32, issue.10, pp.671080-1091, 2011.
DOI : 10.1016/j.neubiorev.2007.08.007

Y. Lin, H. Leng, G. Yang, and H. Cai, An Intelligent Noninvasive Sensor for Driver Pulse Wave Measurement, IEEE Sensors Journal, vol.7, issue.5, pp.790-799, 2007.
DOI : 10.1109/JSEN.2007.894923

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, Understanding variable importances in forests of randomized trees, 2013.

R. Luijcks, H. Hermens, L. Bodar, C. Vossen, J. Van-os et al., Experimentally Induced Stress Validated by EMG Activity, PLoS ONE, vol.29, issue.4, p.95215, 2014.
DOI : 10.1371/journal.pone.0095215.t001

U. Lundberg, M. Forsman, G. Zachau, M. Eklöf, G. Palmerud et al., Effects of experimentally induced mental and physical stress on motor unit recruitment in the trapezius muscle, Work & Stress, vol.19, issue.2, pp.166-178, 2002.
DOI : 10.5271/sjweh.1472

D. Lykken, Range Correction Applied to Heart Rate and to GSR Data, Psychophysiology, vol.41, issue.3, pp.373-379, 1972.
DOI : 10.1037/h0023922

S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2 (R) Transactions of the American mathematical society, pp.69-87, 1989.

J. Grath, A conceptual formulation for research on stress. Social and Psychological Factors in Stress, pp.10-21, 1970.

A. Morelli, M. Singer, V. Ranieri, A. D. Egidio, L. Mascia et al., Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study, Intensive Care Medicine, vol.42, issue.4, pp.421528-1534, 2016.
DOI : 10.1161/01.HYP.0000085199.33254.15

E. Moulines, F. Roueff, and M. Taqqu, On the Spectral Density of the Wavelet Coefficients of Long-Memory Time Series with Application to the Log-Regression Estimation of the Memory Parameter, Journal of Time Series Analysis, vol.8, issue.2, pp.155-187, 2007.
DOI : 10.1090/trans2/008/05

URL : https://hal.archives-ouvertes.fr/hal-00016357

A. Munoz-diosdado, Fractal and Multifractal Analysis of Human Gait, AIP Conference Proceedings, pp.243-250, 2003.
DOI : 10.1063/1.1615130

K. Natarajan, R. Acharya, U. , F. Alias, T. Tiboleng et al., Nonlinear analysis of EEG signals at different mental states, BioMedical Engineering OnLine, vol.3, issue.1, pp.1-11, 2004.

K. Nicodemus, J. Malley, C. Strobl, and A. Ziegler, The behaviour of random forest permutation-based variable importance measures under predictor correlation, BMC Bioinformatics, vol.11, issue.1, pp.1-13, 2010.
DOI : 10.1186/1471-2105-11-110

J. Nims, M. Capozzi, M. Hailey, and K. Crankson, Athletic performance monitoring system utilizing heart rate information, p.96, 2018.

K. Niven and E. Miles, Affect arousal, Encyclopedia of Behavioral Medicine, pp.50-52, 2013.

, Department of Economic and Social Affairs. World urbanization prospects: The 2014 revision, 2015.

]. P. Orris, E. Hartman, P. Strauss, J. Anderson, J. Collins et al., Stress among package truck drivers, ITS Joint Program Office, pp.202-210, 1997.
DOI : 10.1002/(SICI)1097-0274(199702)31:2<202::AID-AJIM10>3.0.CO;2-5

J. Pan, Q. Ren, and H. Lu, Vigilance analysis based on fractal features of EEG signals, 2010 International Symposium on Computer, Communication, Control and Automation (3CA), pp.446-449, 2010.
DOI : 10.1109/3CA.2010.5533771

C. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley et al., Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Physical Review Letters, vol.9, issue.9, pp.1343-1346, 1993.
DOI : 10.1038/356168a0

C. Peng, J. Mietus, Y. Liu, C. Lee, J. Hausdorff et al., Quantifying Fractal Dynamics of Human Respiration: Age and Gender Effects, Annals of Biomedical Engineering, vol.30, issue.5, pp.683-692, 2002.
DOI : 10.1114/1.1481053

URL : http://reylab.bidmc.harvard.edu/pubs/2002/abe-2002-30-683.pdf

E. Pereda, A. Gamundi, R. Rial, and J. González, Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages, Neuroscience Letters, vol.250, issue.2, pp.91-94, 1998.
DOI : 10.1016/S0304-3940(98)00435-2

J. Perkiömäki, T. Mäkikallio, and H. Huikuri, Fractal and Complexity Measures of Heart Rate Variability, Clinical and Experimental Hypertension, vol.271, issue.3, pp.149-158, 1993.
DOI : 10.1046/j.1460-9592.2003.00298.x

P. Picard, S. Fedor, and Y. Ayzenberg, Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry, Emotion Review, vol.31, issue.13, pp.62-75, 2016.
DOI : 10.1037/12908-000

URL : https://zenodo.org/record/898187/files/article.pdf

R. Picard, Affective Computing, 1997.
DOI : 10.1037/e526112012-054

R. Picard, Affective computing for hci, pp.829-833, 1999.

R. Picard, E. Vyzas, and J. Healey, Toward machine emotional intelligence: analysis of affective physiological state, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.10, pp.1175-1191, 2001.
DOI : 10.1109/34.954607

J. Poggi and C. Tuleau, Classification of objectivization data using cart and wavelets, Proceedings of the IASC 07, pp.1-8, 2007.

H. Portier, F. Louisy, D. Laude, M. Berthelot, and C. Ezennec, Intense endurance training on heart rate and blood pressure variability in runners. Medicine and science in sports and exercise, pp.1120-1125, 2001.

D. Purves, G. Augustine, D. Fitzpatrick, L. Katz, A. Lamantia et al., Physiological Changes Associated with Emotion, Neuroscience, 2001.

F. Putze, J. Jarvis, and T. Schultz, Multimodal Recognition of Cognitive Workload for Multitasking in the Car, 2010 20th International Conference on Pattern Recognition, pp.3748-3751, 2010.
DOI : 10.1109/ICPR.2010.913

J. Ramsay and B. Silverman, Functional Data Analysis, 2005.

J. Ramsay and B. Silverman, Applied functional data analysis: methods and case studies, 2002.
DOI : 10.1007/b98886

P. Ravier, O. Buttelli, R. Jennane, and P. Couratier, An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions, Journal of Electromyography and Kinesiology, vol.15, issue.2, pp.210-221, 2005.
DOI : 10.1016/j.jelekin.2004.08.008

URL : https://hal.archives-ouvertes.fr/hal-00719595

G. Rigas, Y. Goletsis, P. Bougia, and D. Fotiadis, Towards Driver's State Recognition on Real Driving Conditions, International Journal of Vehicular Technology, vol.33, issue.4, 2011.
DOI : 10.1016/j.jelectrocard.2007.11.005

G. Rigas, C. Katsis, P. Bougia, and D. Fotiadis, A reasoning-based framework for car driver&#x2019;s stress prediction, 2008 16th Mediterranean Conference on Control and Automation, pp.627-632, 2008.
DOI : 10.1109/MED.2008.4602162

B. Robinson, S. Epstein, G. Beiser, and E. Braunwald, Control of Heart Rate by the Autonomic Nervous System: Studies in Man on the Interrelation Between Baroreceptor Mechanisms and Exercise, Circulation Research, vol.19, issue.2, pp.400-411, 1966.
DOI : 10.1161/01.RES.19.2.400

A. Roscoe, Assessing pilot workload. Why measure heart rate, HRV and respiration?, Biological Psychology, vol.34, issue.2-3, pp.259-287, 1992.
DOI : 10.1016/0301-0511(92)90018-P

M. Roughan, D. Veitch, and P. Abry, Real-time estimation of the parameters of long-range dependence, IEEE/ACM Transactions on Networking, vol.8, issue.4, pp.467-478, 2000.
DOI : 10.1109/90.865075

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, On-line Random Forests, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp.1393-1400, 2009.
DOI : 10.1109/ICCVW.2009.5457447

N. Scafetta, R. Moon, and B. West, Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases, Complexity, vol.32, issue.5, pp.12-17, 2007.
DOI : 10.1007/978-1-4899-2124-6

S. Schneegass, B. Pfleging, N. Broy, A. Schmidt, and H. F. , A data set of real world driving to assess driver workload, Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI '13, pp.150-157, 2013.
DOI : 10.1145/2516540.2516561

H. Selye, Stress Without Distress. McClelland and Stewart, 1974.

A. Sharma, S. Velipasalar, S. Singh, D. Engel, and S. Gyawali, Effect of Freeway Level of Service and Driver Education on Truck Driver Stress -Phase 1, p.2012

K. Sidek and I. Khalil, Automobile driver recognition under different physiological conditions using the electrocardiogram, PC World, vol.38, pp.753-756, 2011.

M. Singh and A. Queyam, Stress detection in automobile drivers using physiological parameters: A review, International Journal of Electronics Engineering, vol.5, issue.2, pp.1-5, 2013.

R. Singh, S. Conjeti, and R. Banerjee, Biosignal based on-road stress monitoring for automotive drivers, 2012 National Conference on Communications (NCC), pp.1-5, 2012.
DOI : 10.1109/NCC.2012.6176845

M. Skinner and P. Simpson, Workload Issues in Military Tactical Airlift, The International Journal of Aviation Psychology, vol.12, issue.1, pp.79-93, 2002.
DOI : 10.1177/154193128302700203

R. Smart, E. Cannon, A. Howard, P. Frise, and R. Mann, Can we design cars to prevent road rage?, International Journal of Vehicle Information and Communication Systems, vol.1, issue.1/2, pp.44-55, 2005.
DOI : 10.1504/IJVICS.2005.007585

F. Smits, C. Porcaro, C. Cottone, A. Cancelli, P. Rossini et al., Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer???s Disease, PLOS ONE, vol.580, issue.1, p.149587, 2016.
DOI : 10.1371/journal.pone.0149587.s001

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149587&type=printable

C. Strobl and A. Zeileis, Danger: High power! ? exploring the statistical properties of a test for random forest variable importance, Proceedings of 18th International Conference on Computational Statistics, 2008.

J. Tan, A. Andrade, H. Li, S. Walter, D. Hrabal et al., Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults, PLOS ONE, vol.10, issue.4, p.146691, 2016.
DOI : 10.1371/journal.pone.0146691.s002

J. Tao and T. Tan, Affective Computing: A Review, International Conference on Affective computing and intelligent interaction, pp.981-995, 2005.
DOI : 10.1007/11573548_125

M. Taqqu, Fractional brownian motion and long-range dependence. Theory and applications of long-range dependence, pp.5-38, 2003.

P. Taylor, N. Griffiths, A. Bhalerao, D. Watson, X. Zhou et al., Warwickjlr driver monitoring dataset (dmd): A public dataset for driver monitoring research, Proceedings of the cognitive load and in-vehicle human-machine interaction workshop, 2013.

S. Taylor, N. Jaques, W. Chen, S. Fedor, A. Sano et al., Automatic identification of artifacts in electrodermal activity data, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.1934-1937, 2015.
DOI : 10.1109/EMBC.2015.7318762

R. Team and . Core, R: A language and environment for statistical computing. r foundation for statistical computing, vienna, austria. www. R-project. org, 2016.

S. Ullah and C. Finch, Applications of functional data analysis: A systematic review. BMC medical research methodology, p.43, 2013.

M. Van-dooren, J. Vries, and J. Janssen, Emotional sweating across the body: Comparing 16 different skin conductance measurement locations, Physiology & Behavior, vol.106, issue.2, pp.298-304, 2012.
DOI : 10.1016/j.physbeh.2012.01.020

J. Van-erp, H. Veltman, and M. Grootjen, Brain-Based Indices for User System Symbiosis, Brain-Computer Interfaces, pp.201-219, 2010.
DOI : 10.1007/978-1-84996-272-8_12

D. Veitch and P. Abry, A wavelet-based joint estimator of the parameters of long-range dependence, IEEE Transactions on Information Theory, vol.45, issue.3, pp.878-897, 1999.
DOI : 10.1109/18.761330

D. Veitch and P. Abry, Matlab code for the wavelet based analysis of scaling processes, pp.2017-2027

A. Verikas, A. Gelzinis, and M. Bacauskiene, Mining data with random forests: A survey and results of new tests, Pattern Recognition, vol.44, issue.2, pp.330-349, 2011.
DOI : 10.1016/j.patcog.2010.08.011

S. Wallot, R. Fusaroli, K. Tylén, and E. Jegindø, Using complexity metrics with R-R intervals and BPM heart rate measures, Frontiers in Physiology, vol.4, p.211, 2013.
DOI : 10.3389/fphys.2013.00211

B. West, Fractal physiology and the fractional calculus: a perspective, Frontiers in Physiology, vol.1, p.12, 2010.
DOI : 10.3389/fphys.2010.00012

G. Wilson, Applied use of cardiac and respiration measures: Practical considerations and precautions, Biological Psychology, vol.34, issue.2-3, pp.163-178, 1992.
DOI : 10.1016/0301-0511(92)90014-L

K. Yang, H. Yoon, and C. Shahabi, A supervised feature subset selection technique for multivariate time series, Proceedings of the Workshop on Feature Selection for Data Mining: Interfacing Machine Learning with Statistics, pp.92-101, 2005.

R. Yerkes and J. Dodson, The relation of strength of stimulus to rapidity of habitformation, Journal of comparative neurology, vol.18, issue.5, pp.459-482, 1908.

F. Zappasodi, L. Marzetti, E. Olejarczyk, F. Tecchio, and V. Pizzella, Age-Related Changes in Electroencephalographic Signal Complexity, PLOS ONE, vol.84, issue.Suppl 1, p.141995, 2015.
DOI : 10.1371/journal.pone.0141995.s001

L. Zhang, T. Tamminedi, A. Ganguli, G. Yosiphon, and J. Yadegar, Hierarchical multiple sensor fusion using structurally learned Bayesian network, Wireless Health 2010 on, WH '10, p.174, 2010.
DOI : 10.1145/1921081.1921102

R. Zheng, S. Yamabe, K. Nakano, and Y. Suda, Biosignal Analysis to Assess Mental Stress in Automatic Driving of Trucks: Palmar Perspiration and Masseter Electromyography, Sensors, vol.6, issue.3, pp.5136-5150, 2015.
DOI : 10.1016/j.trf.2014.05.008

R. Zhu, D. Zeng, and M. Kosorok, Reinforcement Learning Trees, Journal of the American Statistical Association, vol.7, issue.512, 2012.
DOI : 10.1080/01621459.2011.637468

URL : http://biostats.bepress.com/cgi/viewcontent.cgi?article=1033&context=uncbiostat

.. , Description of the driving setting. For simplification, the toll and the turnaround segments are considered as city driving, p.42

H. , Illustration of segment extraction of different physiological signals of Drive 7 Note that the physiological data were stored based on the same sampling frequency F s = 15, p.44

.. , Boxplots of grouped VI by physiological signals for 100 executions, p.52

.. , Endurance score of the five physiological variables for 100 runs. The two last physiological variables are removed, p.53

.. , Grouped VI of the wavelet levels for 10 iterations, p.55

.. , Wavelet levels selection for 10 executions, p.55

.. Highway, Drive 07 for Foot EDA (left column) and RESP (right column), based on the three selected wavelet levels (see Fig. 3.6) The letter " R " corresponds to rest period, p.56

.. , Wavelet levels endurance score of the three retained physiological variables after 10 executions, p.57

.. , Three configurations of training and test sets choice in the cross validation like procedure, p.58

, Samples of simulated FBM for H=0.2 (green), H=0.5 (blue) and H=0, p.66

H. , Plots of the logscale diagram: illustrations of the linear tendencies in the logscale graphs based on 3-minutes segments extracted from, p.69

, FootEDA corresponding to the Drive 4 of drivedb database is depicted in the top and the corresponding estimated Hurst exponent is presented in the bottom of the Figure. The estimation is done on segments of 3 minutes with 1 minute of overlapping. The term " Hwy " is used to designate highway driving, p.70

.. , The boxplots of estimated H on HandEDA per drive for the 4 drivers. For each drive, the boxplot is presented according to the different driving periods. The sample size is designated on the top of each boxplot, p.71

.. , The boxplots of estimated H on FootEDA per drive for the 4 drivers. For each drive, the distribution is presented according to the different driving periods. The sample size is designated on the top of each boxplot, p.71

.. , HandEDA and (b) FootEDA per driver. The number on the top of each boxplot designates the sample size, p.72

.. , HandEDA and (b) FootEDA per driving condition . The sample size is indicated on the top of each boxplot, p.72

.. , A photo of the plugged E4 in the left hand of a driver It is unobtrusive device allowing to perform the driving task, p.77

, A photo of the Zephyr BioHarness 3 sensor that should be fixed on the chest, p.78

A. , 1-Intel edison Arduino breakout 2-Shield in/out 3-Grove touch sensor 4-beeper 5-Clik air quality sensor 6-Grove Piezo vibration sensor 7-IMU grove MPU 9250 8-Adafruit BME 280 9-Grove luminance sensor 11-Leds 12-WIFI / Bluetooth antenna 13-Power supply, AffectiveROAD, vol.platform, p.79

.. , An overview of the used sensors to capture the different signals, p.80

.. , Snapshot from the video capturing the inside of the car, p.80

.. , Snapshot from the screen shown to each participant in order to validate the subjective stress metric, p.83

.. , Road map of the path drove by the different participants, p.89

Z. , C. , H. , and C. , , p.90

G. , EDA signals captured on both right and left wrists, Heart Rate, Breathing Rate and Posture corresponding to the second drive of the driver, p.91

.. , Explorer applied to an EDA signal (a) before and (b) after preprocessing. This EDA measurement was captured on the left wrist of the driver GM during her second drive. Red vertical bars correspond to the placement of the different detected artifacts, p.92

.. , Posture " per drive (a) before and (b) after the statistical processing, p.93

.. , Snapshot from the screen shown to each participant in order to validate the subjective score, p.94

.. , The driver is asked to rate the stress level before and after performing the drive, Likert plot corresponding to the responses to the two questions on the perceived stress level, p.94

.. , Boxplots of grouped VI by physiological signals for 100 runs, p.99

.. , Endurance score of the four physiological variables for 10 runs, p.100

B. , Grouped VI of the wavelet levels for 100 iterations for the V1 (RightEDA) and V2 (, p.101

.. , Wavelet levels selection for 10 runs, p.101

.. , Variable Importance of the 5 biosignals for 100 runs

.. , Variable Importance of the 5 variables for 100 runs, p.104

, Grouped VI of the wavelet levels for the V1 (RightEDA) and V2 (Post), p.104

.. , Variable Importance of the 5 variables for 100 runs, p.104

.. , Variable Importance of the 5 variables for 100 runs, p.106

R. , , p.106

P. , Variable Importance of the wavelet levels of the two retained biosignals for 10 runs. V1 stands for RightEDA and V2 stands for, p.107

, Illustration of linearity in logscale diagrams corresponding to the most encountered cases of linearity in the RightEDA of the second drive of GM. The vertical bars correspond to the 95% confidence interval estimated for each wavelet level, p.108

, The boxplot of the estimated H per drive for the 9 drivers for RightEDA. For each drive, the values are grouped by the different periods: city, highway and rest, p.109

L. .. , The boxplot of the estimated H per drive for the 9 drivers for, p.110

E. Right, Boxplots of the estimated H per participant for the, p.110

E. Left, Boxplots of the estimated H per participant for the, p.135

.. , Note that each participant is labeled by a sequence composed of gender (M or F) followed by the number of years of the driving experience. No information was available on Ind 4, p.43

.. , Details of the missing data for the 7 drives excluded from the analysis due to the reported incomplete data in the drivedb database, p.43

R. , Summary of the selection algorithm based on, p.47

A. , , p.48

R. , Summary of results of the 10 executions of the, p.50

.. , Selected model for 10 executions of the RF-RFE algorithm. The shaded cells corresponds to the retained variables, p.53

.. , Model error: misclassification rate averaged over 100 executions, p.58

.. , Foot and Hand) and to the respiration signals proposed by [81], p.59

, Automatic selection of the wavelet scales over which the logscale is linear, p.68

.. , Description of the different sensors used in the data acquisition, p.79

D. Characteristic, , p.81

.. , Roadmap: Description of the proposed periods to be encountered during the experiments and the corresponding assumed evoked stress level, p.81

D. Summary and .. Events, The mark " X " is used to designate that the data are complete Hwy " means highway driving and " Rest " designates rest period. The date of each drive is expressed in the second column of the table in format of DD/MM. All the drives were conducted at the same year, 2017. The special events listed in the column, p.82

, Comparison between studies on driver's state recognition offering open database. The comparison is made in terms of used sensors and the provided data, p.83

.. , Studies achieved on driver's state recognition based on biosignals, p.88

.. , Rating questionnaire results before and after the experiment, p.95

.. , Contingency table between the mean subjective metric and the classes provided by the assumptions done in [81], p.97

.. , Repartition of the segments of 4.27 minutes duration per drives, p.98

.. , Selected model for 10 runs of the RF-RFE algorithm. The shaded cells corresponds to the retained variables, p.99

.. Cross-validation-like-procedure, , p.102