Skip to Main content Skip to Navigation

Biosignals for driver's stress level assessment : functional variable selection and fractal characterization

Abstract : The safety and comfort in a driving task are key factors of interest to several actors (vehicle manufacturers, urban space designers, and transportation service providers), especially in a context of an increasing urbanization. It is thus crucial to assess the driver’s affective state while driving, in particular his state of stress which impacts the decision making and thus driving task performance. In this thesis, we focus on the study of stress level changes, during real-world driving, experienced in city versus highway areas. Classical methods are based on features selected by experts, applied to physiological signals. These signals are preprocessed using specific tools for each signal, then ad-hoc features are extracted and finally a data fusion for stress-level recognition is performed. In this work, we adapted a functional variable selection method, based on Random Forests Recursive Feature Elimination (RF-RFE). In fact, the biosignals considered as functional variables, are first decomposed using wavelet basis. The RF-RFE algorithms are then used to select groups of wavelets coefficients, corresponding to the functional variables, according to an endurance score. The final choice of the selected variables relies on this proposed score that allows to quantify the ability of a variable to be selected and this, in first ranges. At a first stage, we analyzed physiological signals such as: Heart Rate (HR), Electromyogram (EMG), Breathing Rate (BR), and the Electrodermal Activity (EDA), related to 10 driving experiments, extracted from the open database of MIT: drivedb, carried out in Boston area. At a second stage, we have designed and conducted similar city and highway driving experiments in the greater Tunis area. The resulting database, AffectiveROAD, includes, as in drivedb, biosignals as HR, BR and EDA and additional measurement of the driver posture. The developed prototype of the sensors network platform allowed also to gather data characterizing the vehicle internal environment (temperature, humidity, pressure, sound level, and geographical coordinates) which are included in AffectiveROAD database. A subjective stress metric, based on driver video-based validation of the observer’s annotation, is included in AffectiveROAD database. We define here the term stress as the human affective state, including affect arousal, attention, mental workload, and the driver’s perception of the environment complexity. The functional variable selection, applied to drivedb, revealed that the EDA captured on foot followed by the BR, are relevant in the driver’s stress level classification. The RF-RFE method along with non-expert based features offered comparable performances to those obtained by the classical method. When analyzing the AffectiveROAD data, the posture and the EDA captured on the driver’s right wrist emerged as the most enduring variables. For both databases, the placement of the EDA sensor came out as an important consideration in the stress level assessment. A deeper analysis of the EDA was carried out since its emergence as a key indicator in stress level recognition, for the two databases. This is consistent with various human physiology studies reporting that the EDA is a key indicator of emotions. For that, we investigated the fractal properties of this biosignal using a self-similarity analysis of EDA measurements based on Hurst exponent (H) estimated using wavelet-based method. Such study shows that EDA recordings exhibits self-similar behavior for large scales, for the both databases. This proposes that it can be considered as a potential real-time indicator of stress in real-world driving experience.
Complete list of metadatas

Cited literature [235 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, September 3, 2018 - 5:23:07 PM
Last modification on : Wednesday, October 28, 2020 - 11:12:02 AM
Long-term archiving on: : Tuesday, December 4, 2018 - 7:39:55 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01866951, version 1



Neska El Haouij. Biosignals for driver's stress level assessment : functional variable selection and fractal characterization. Applications [stat.AP]. Université Paris-Saclay; École nationale d'ingénieurs de Tunis (Tunisie), 2018. English. ⟨NNT : 2018SACLS191⟩. ⟨tel-01866951⟩



Record views


Files downloads