J. A. Dimasi, R. W. Hansen, and H. G. Grabowski, The price of innovation: new estimates of drug development costs, Journal of Health Economics, vol.22, issue.2, pp.151-185
DOI : 10.1016/S0167-6296(02)00126-1

M. Siddiqui and S. V. Rajkumar, The High Cost of Cancer Drugs and What We Can Do About It, Mayo Clinic Proceedings, vol.87, issue.10
DOI : 10.1016/j.mayocp.2012.07.007

G. Jeanmairet, Molecular Density Functional Theory of Water, The Journal of Physical Chemistry Letters, vol.4, issue.4, pp.619-624, 2013.
DOI : 10.1021/jz301956b

URL : https://hal.archives-ouvertes.fr/hal-01308802

G. Jeanmairet, Classical density functional theory to tackle solvation in molecular liquids, mar, 2015.

G. Jeanmairet, Introduction to Classical Density Functional Theory by a Computational Experiment, Journal of Chemical Education, vol.91, issue.12, pp.2112-2115
DOI : 10.1021/ed500049m

URL : https://hal.archives-ouvertes.fr/hal-01308784

G. Jeanmairet, Hydration of clays at the molecular scale: the promising perspective of classical density functional theory, Molecular Physics, vol.137, issue.9-10, pp.9-10, 2014.
DOI : 10.1103/PhysRevB.85.064111

URL : https://hal.archives-ouvertes.fr/hal-01078964

M. Levesque, Solvation of complex surfaces via molecular density functional theory, The Journal of Chemical Physics, vol.137, issue.22, pp.224107-224107
DOI : 10.1103/PhysRevB.85.064111

URL : https://hal.archives-ouvertes.fr/hal-01308817

C. N. Pace, Protein structure, stability and solubility in water and other solvents, pp.1448-1225, 2004.

Y. Levy and J. N. Onuchic, Water and proteins: A love-hate relationship, Proceedings of the National Academy of Sciences 101, pp.3325-3326
DOI : 10.1073/pnas.2534828100

E. Meyer, Internal water molecules and H-bonding in biological macromolecules: A review of structural features with functional implications, Protein Science, vol.58, issue.6, pp.1543-1562
DOI : 10.1524/zpch.1968.58.5_6.225

J. E. Ladbury, Just add water ! The effect of water on the specificity of proteinligand binding sites and its potential application to drug design », in : Chemistry [12] A. T. Garcia-Sosa, « Hydration Properties of Ligands and Drugs in Protein Binding Sites : Tightly-Bound, Bridging Water Molecules and Their Effects and Consequences on Molecular Design Strategies, Journal of Chemical Information and Modeling, vol.536, pp.1388-1405, 2013.

R. U. Lemieux, « How Water Provides the Impetus for Molecular Recognition in Aqueous Solution, Accounts of Chemical Research, vol.298, pp.373-380, 1996.

J. R. Tame, The role of water in sequence-independent ligand binding by an oligopeptide transporter protein, Nature Structural Biology, vol.50, issue.12, pp.998-1001, 1996.
DOI : 10.1006/jmbi.1994.1328

Z. Li and T. Lazaridis, The Effect of Water Displacement on Binding Thermodynamics:?? Concanavalin A, The Journal of Physical Chemistry B, vol.109, issue.1, pp.662-670, 2005.
DOI : 10.1021/jp0477912

P. W. Snyder, Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase, Proceedings of the National Academy of Sciences, pp.17889-17894
DOI : 10.1021/ct1003077

L. Wang, B. J. Berne, and R. A. Friesner, Ligand binding to protein-binding pockets with wet and dry regions, Proceedings of the National Academy of Sciences, pp.1326-1330, 2011.
DOI : 10.1073/pnas.93.17.8951

D. L. Mobley and K. A. Dill, Binding of Small-Molecule Ligands to Proteins: ???What You See??? Is Not Always ???What You Get???, Structure, vol.17, issue.4, pp.489-498
DOI : 10.1016/j.str.2009.02.010

C. Barillari, Classification of Water Molecules in Protein Binding Sites, Classification of Water Molecules in Protein Binding Sites, pp.2577-2587, 2007.
DOI : 10.1021/ja066980q

L. R. Olano and S. W. Rick, Hydration Free Energies and Entropies for Water in Protein Interiors, Journal of the American Chemical Society, vol.126, issue.25, pp.7991-8000, 2004.
DOI : 10.1021/ja049701c

U. Bren and D. Jane?i?, Individual degrees of freedom and the solvation properties of water, The Journal of Chemical Physics, vol.137, issue.2
DOI : 10.1039/b902357g

M. H. Ahmed, « Bound Water at Protein-Protein Interfaces : Partners, Roles and Hydrophobic Bubbles as a Conserved Motif9 (sept. 2011), sous la dir AUFFINGER, « A molecular dynamics simulation study of an aminoglycoside/A-site RNA complex : conformational and hydration patterns, PLoS ONE Biochimie, vol.68, issue.88, pp.1061-1073, 2006.

S. Genheden, Accurate Predictions of Nonpolar Solvation Free Energies Require Explicit Consideration of Binding-Site Hydration, Journal of the American Chemical Society, vol.133, issue.33, pp.13081-13092, 2011.
DOI : 10.1021/ja202972m

R. Abel, Contribution of Explicit Solvent Effects to the Binding Affinity of Small-Molecule Inhibitors in Blood Coagulation Factor Serine Proteases, ChemMedChem, vol.106, issue.6, pp.1049-1066, 2011.
DOI : 10.1073/pnas.0902463106

A. Biela, Ligand Binding Stepwise Disrupts Water Network in Thrombin: Enthalpic and Entropic Changes Reveal Classical Hydrophobic Effect, Journal of Medicinal Chemistry, vol.55, issue.13, pp.6094-6110
DOI : 10.1021/jm300337q

C. Stegmann, « The Thermodynamic Influence of Trapped Water Molecules on a Protein-Ligand Interaction, Angewandte Chemie International Edition, vol.4828, pp.5207-5210, 2009.

A. C. Anderson, The Process of Structure-Based Drug Design, Chemistry & Biology, vol.10, issue.9, pp.787-797
DOI : 10.1016/j.chembiol.2003.09.002

URL : https://doi.org/10.1016/j.chembiol.2003.09.002

C. Zhang and L. Lai, Towards structure-based protein drug design, Biochemical Society Transactions, vol.31, issue.5, pp.1382-1386
DOI : 10.1002/prot.10629

URL : http://www.biochemsoctrans.org/content/ppbiost/39/5/1382.full.pdf

P. , Structure-Based Drug Design, pp.4-10, 2013.

I. Bruno, Crystallography and Databases, pp.10-5334, 2017.

H. M. Berman, The Protein Data Bank, pp.235-242, 2000.

G. Montelione, Recommendations of the wwPDB NMR Validation Task Force, Structure, vol.21, issue.9, pp.1563-1570
DOI : 10.1016/j.str.2013.07.021

R. Read, A New Generation of Crystallographic Validation Tools for the Protein Data Bank, Structure, vol.19, issue.10, pp.1395-1412
DOI : 10.1016/j.str.2011.08.006

R. Henderson, Outcome of the First Electron Microscopy Validation Task Force Meeting, Structure, vol.20, issue.2, pp.205-214
DOI : 10.1016/j.str.2011.12.014

H. Cm and . Structure, Based Drug Design, 2001.

J. B. Chaires, T. Calorimetry, D. In, and . Design, Annual Review of Biophysics, vol.371, pp.135-151, 2008.

N. C. Garbett and J. B. Chaires, Thermodynamic studies for drug design and screening, Thermodynamic studies for drug design and screening, pp.299-314
DOI : 10.1351/pac200173040745

URL : http://europepmc.org/articles/pmc3496183?pdf=render

G. Klebe, Applying thermodynamic profiling in lead finding and optimization, Nature Reviews Drug Discovery, vol.7, issue.2, pp.95-110, 2015.
DOI : 10.1002/cmdc.201200206

R. E. Skyner, A review of methods for the calculation of solution free energies and the modelling of systems in solution, Physical Chemistry Chemical Physics, vol.10, issue.9, pp.6174-6191, 2015.
DOI : 10.1021/ct400783h

M. Reddy, Free Energy Calculations to Estimate Ligand-Binding Affinities in Structure-Based Drug Design, Current Pharmaceutical Design, vol.20, issue.20, pp.3323-3337, 2014.
DOI : 10.2174/13816128113199990604

S. Brown, M. Shirts, and D. Mobley, Free-energy calculations in structure-based drug design, pp.61-86, 2010.

N. Hansen and W. F. Van-gunsteren, Practical Aspects of Free-Energy Calculations: A Review, Journal of Chemical Theory and Computation, vol.10, issue.7, pp.2632-2647
DOI : 10.1021/ct500161f

C. D. Christ, A. E. Mark, and W. F. Van-gunsteren, Basic ingredients of free energy calculations: A review, Journal of Computational Chemistry, vol.129, pp.10-1002, 2009.
DOI : 10.1007/b99427

P. A. Kollman, « Calculating Structures and Free Energies of Complex Molecules : Combining Molecular Mechanics and Continuum Models », en, Accounts of Chemical Research, vol.3312, pp.889-897, 2000.

J. Srinivasan, Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate???DNA Helices, Journal of the American Chemical Society, vol.120, issue.37, pp.9401-9409, 1998.
DOI : 10.1021/ja981844+

S. Genheden, U. Ryde, M. The, and M. Pbsa, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opinion on Drug Discovery, vol.43, issue.5, pp.449-461, 2015.
DOI : 10.2174/1386207013330689

URL : http://europepmc.org/articles/pmc4487606?pdf=render

J. Hansen and I. Mcdonald, Theory of Simple Liquids, Third Edition, 3 e éd, 2006.

C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids : I : Fundamentals, en, 1984.

F. Hirata, Molecular Theory of Solvation, en, 2003.

J. Puibasset and L. Belloni, Bridge function for the dipolar fluid from simulation, The Journal of Chemical Physics, vol.136, issue.15
DOI : 10.1080/00268979100101961

L. Belloni, Exact molecular direct, cavity, and bridge functions in water system, The Journal of Chemical Physics, vol.147, issue.16
DOI : 10.1063/1.4994281

URL : https://hal.archives-ouvertes.fr/cea-01629086

D. Chandler and H. C. Andersen, Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids, The Journal of Chemical Physics, vol.57, issue.5, pp.1930-1937
DOI : 10.1063/1.1677784

D. Chandler, J. D. Mccoy, and S. J. Singer, Density functional theory of nonuniform polyatomic systems. I. General formulation, The Journal of Chemical Physics, vol.85, issue.10, pp.5971-5976, 1986.
DOI : 10.1063/1.445090

A. Kovalenko and F. Hirata, Self-consistent description of a metal???water interface by the Kohn???Sham density functional theory and the three-dimensional reference interaction site model, The Journal of Chemical Physics, vol.8, issue.20, pp.10095-10112, 1999.
DOI : 10.1063/1.469201

D. Beglov and B. Roux, An Integral Equation To Describe the Solvation of Polar Molecules in Liquid Water, The Journal of Physical Chemistry B, vol.101, issue.39, pp.7821-7826, 971083.
DOI : 10.1021/jp971083h

Q. Du, D. Beglov, and B. Roux, Solvation Free Energy of Polar and Nonpolar Molecules in Water:?? An Extended Interaction Site Integral Equation Theory in Three Dimensions, The Journal of Physical Chemistry B, vol.104, issue.4, pp.796-805, 1021.
DOI : 10.1021/jp992712l

T. Luchko, Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber, Journal of Chemical Theory and Computation, vol.6, issue.3, pp.607-624
DOI : 10.1021/ct900460m

D. Roy, N. Blinov, and A. Kovalenko, -Octanol Using 3D-RISM-KH Molecular Theory of Solvation: Making Right Choices, The Journal of Physical Chemistry B, vol.121, issue.39
DOI : 10.1021/acs.jpcb.7b06375

A. Kovalenko and F. Hirata, Potential of Mean Force between Two Molecular Ions in a Polar Molecular Solvent: A Study by the Three-Dimensional Reference Interaction Site Model, The Journal of Physical Chemistry B, vol.103, issue.37, pp.7942-7957, 1999.
DOI : 10.1021/jp991300+

A. Kovalenko and F. Hirata, Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method, The Journal of Chemical Physics, vol.113, issue.7, pp.2793-2805, 2000.
DOI : 10.1006/jmre.1998.1427

J. Johnson, Small molecule hydration energy and entropy from 3D-RISM, Journal of Physics: Condensed Matter, vol.28, issue.34, pp.344002-344012
DOI : 10.1088/0953-8984/28/34/344002

URL : http://europepmc.org/articles/pmc5118872?pdf=render

D. J. Sindhikara and F. Hirata, Analysis of Biomolecular Solvation Sites by 3D-RISM Theory », en, The Journal of Physical Chemistry B, vol.11722, pp.6718-6723, 2013.
DOI : 10.1021/jp4046116

T. Imai, A. Kovalenko, and F. Hirata, « Hydration structure, thermodynamics, and functions of protein studied by the 3D-RISM theory », en, in : Molecular Simulation 32, pp.10-11, 2006.

Y. Kiyota, N. Yoshida, and F. Hirata, A New Approach for Investigating the Molecular Recognition of Protein: Toward Structure-Based Drug Design Based on the 3D-RISM Theory, Journal of Chemical Theory and Computation, vol.7, issue.11, pp.3803-3815, 1021.
DOI : 10.1021/ct200358h

S. Phongphanphanee, N. Yoshida, and F. Hirata, Molecular Selectivity in Aquaporin Channels Studied by the 3D-RISM Theory », en, pp.7967-7973, 2010.

S. Phongphanphanee, N. Yoshida, and F. Hirata, « The potential of mean force of water and ions in aquaporin channels investigated by the 3D-RISM method », en, Journal of Molecular Liquids, vol.1471, issue.2, pp.107-111, 2009.

A. Kovalenko and F. Hirata, Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach, The Journal of Chemical Physics, vol.112, issue.23, pp.10391-10402, 2000.
DOI : 10.1021/j100702a014

, Lipinski, « Lead-and drug-like compounds : the rule-of-five revolution », in : Drug Discovery Today : Technologies 1, pp.337-341

S. Vilar, M. Chakrabarti, and S. Costanzi, Prediction of passive blood???brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors, Journal of Molecular Graphics and Modelling, vol.28, issue.8, pp.899-903, 2010.
DOI : 10.1016/j.jmgm.2010.03.010

F. Lombardo, J. F. Blake, and W. J. Curatolo, Computation of Brain???Blood Partitioning of Organic Solutes via Free Energy Calculations, Journal of Medicinal Chemistry, vol.39, issue.24, pp.4750-4755, 1996.
DOI : 10.1021/jm960163r

R. Abel, Role of the Active-Site Solvent in the Thermodynamics of Factor Xa Ligand Binding, Journal of the American Chemical Society, vol.130, issue.9, pp.2817-2831, 2008.
DOI : 10.1021/ja0771033

T. Young, Motifs for molecular recognition exploiting hydrophobic enclosure in protein???ligand binding, Proceedings of the National Academy of Sciences, pp.808-813, 2007.
DOI : 10.1063/1.464397

R. Evans, « Density Functional Theory for Inhomogeneous Fluids I : Simple Fluids in Equlibrium, Lecture notes at 3rd Warsaw School of Statistical Physics, 2009.

R. Evans, Fundamentals of Inhomogeneous Fluids, en, sous la dir. de D, 1992.

L. Ding, Efficient molecular density functional theory using generalized spherical harmonics expansions, Chemical Physics (juil. 2017)
DOI : 10.1063/1.3081142

URL : https://hal.archives-ouvertes.fr/cea-01564512

P. Abbott, Tricks of the trade : Legendre-Gauss quadrature, pp.689-691, 2005.

L. Ding, « Molecular Density Functional Theory under homogeneous reference fluid approximation », Theses, p.2017

R. H. Byrd, « A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.165, pp.1190-1208
DOI : 10.2172/204262

URL : https://digital.library.unt.edu/ark:/67531/metadc666315/m2/1/high_res_d/204262.pdf

, Numerical Optimization, 2006.

V. Sergiievskyi, Solvation free-energy pressure corrections in the three dimensional reference interaction site model, The Journal of Chemical Physics, vol.17, issue.18
DOI : 10.1063/1.1678513

URL : https://hal.archives-ouvertes.fr/hal-01308776

V. Sergiievskyi, « Pressure Correction in Classical Density Functional Theory : Hyper Netted Chain and Hard Sphere Bridge Functionals

M. Misin, « Salting-out effects by pressure-corrected 3D-RISM », en, The Journal of Chemical Physics, vol.145
DOI : 10.1063/1.4966973

URL : https://strathprints.strath.ac.uk/58396/1/Misin_etal_JCP_2016_Salting_out_effects_by_pressure_corrected_3D_RISM.pdf

M. Misin, M. V. Fedorov, and D. S. Palmer, Hydration Free Energies of Molecular Ions from Theory and Simulation, The Journal of Physical Chemistry B, vol.120, issue.5, pp.975-983
DOI : 10.1021/acs.jpcb.5b10809

M. Misin, M. V. Fedorov, D. S. Palmer, and . Communication, Communication: Accurate hydration free energies at a wide range of temperatures from 3D-RISM, The Journal of Chemical Physics, vol.142, issue.9, pp.91105-91115
DOI : 10.1063/1.1309013

M. Levesque, R. Vuilleumier, and D. Borgis, Scalar fundamental measure theory for hard spheres in three dimensions: Application to hydrophobic solvation, The Journal of Chemical Physics, vol.137, issue.3, pp.34115-34116
DOI : 10.1137/0907058

URL : https://hal.archives-ouvertes.fr/hal-01308818

G. Jeanmairet, M. Levesque, and D. Borgis, Molecular density functional theory of water describing hydrophobicity at short and long length scales, The Journal of Chemical Physics, vol.59, issue.15, pp.154101-154102, 2013.
DOI : 10.1063/1.4813400

URL : https://hal.archives-ouvertes.fr/hal-01308799

G. Jeanmairet, « Molecular density functional theory for water with liquidgas coexistence and correct pressure, The Journal of Chemical Physics, vol.142
DOI : 10.1063/1.4917485

URL : http://arxiv.org/pdf/1502.03048

G. Jeanmairet, Molecular density functional theory of water including density???polarization coupling, Journal of Physics: Condensed Matter, vol.28, issue.24, pp.244005-244015, 2016.
DOI : 10.1088/0953-8984/28/24/244005

URL : https://hal.archives-ouvertes.fr/hal-01308758

C. Zhu, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software, vol.23, issue.4, pp.550-560, 1997.
DOI : 10.1145/279232.279236

V. L. Ginzburg and L. D. Landau, On the Theory of Superconductivity, pp.113-137, 2009.

P. Tarazona and . Free, Physical Review A 31 Miguel, « Surface tension of the most popular models of water by using the test-area simulation method, The Journal of Chemical Physics, vol.12615, issue.4, pp.2672-2679, 1985.

G. Hummer, An information theory model of hydrophobic interactions., Proceedings of the National Academy of Sciences 93, pp.8951-8955, 1996.
DOI : 10.1073/pnas.93.17.8951

D. M. Huang and D. Chandler, The Hydrophobic Effect and the Influence of Solute-Solvent Attractions, pp.2047-2053, 2002.

T. P. Straatsma, H. J. Berendsen, and J. P. Postma, Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water, The Journal of Chemical Physics, vol.85, issue.11, pp.11-6720, 1986.
DOI : 10.1021/ja00311a112

L. Sebastian, Advances in Parallel Computing 27, Parallel Computing : On the Road to Exascale, pp.431-438, 2016.

G. A. , « JuBE-based Automatic Testing and Performance Measurement System for Fusion Codes, Advances in Parallel Computing 22.Applications, Tools and Techniques on the Road to Exascale Computing, pp.465-472, 2012.

D. L. Mobley, Small Molecule Hydration Free Energies in Explicit Solvent: An Extensive Test of Fixed-Charge Atomistic Simulations, Journal of Chemical Theory and Computation, vol.5, issue.2, pp.350-358, 2009.
DOI : 10.1021/ct800409d

R. C. Rizzo, Estimation of Absolute Free Energies of Hydration Using Continuum Methods:?? Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions, Journal of Chemical Theory and Computation, vol.2, issue.1, pp.128-139, 2006.
DOI : 10.1021/ct050097l

D. L. Mobley, K. A. Dill, and J. D. Chodera, Treating Entropy and Conformational Changes in Implicit Solvent Simulations of Small Molecules, The Journal of Physical Chemistry B, vol.112, issue.3, pp.938-946, 2008.
DOI : 10.1021/jp0764384

D. L. Mobley, Comparison of Charge Models for Fixed-Charge Force Fields:?? Small-Molecule Hydration Free Energies in Explicit Solvent, The Journal of Physical Chemistry B, vol.111, issue.9, pp.2242-2254, 2007.
DOI : 10.1021/jp0667442

D. L. Mobley, The Journal of Physical Chemistry B, vol.113, issue.14, pp.4533-4537, 2009.
DOI : 10.1021/jp806838b

O. Beckstein and B. I. Iorga, Prediction of hydration free energies for aliphatic and aromatic chloro derivatives using molecular dynamics simulations with the OPLS-AA force field, Journal of Computer-Aided Molecular Design, vol.6, issue.4, pp.635-645
DOI : 10.1021/ct900661c

URL : https://hal.archives-ouvertes.fr/hal-00741317

D. L. Mobley, Alchemical prediction of hydration free energies for SAMPL, Journal of Computer-Aided Molecular Design, vol.127, issue.15, pp.551-562
DOI : 10.1063/1.2771171

D. L. Mobley, Blind prediction of solvation free energies from the SAMPL4 challenge, Journal of Computer-Aided Molecular Design, vol.26, issue.5, pp.135-150
DOI : 10.1007/s10822-014-9712-8

D. L. Mobley, J. P. Guthrie, and . Freesolv, FreeSolv: a database of experimental and calculated hydration free energies, with input files, Journal of Computer-Aided Molecular Design, vol.8, issue.9, pp.711-720, 2014.
DOI : 10.1021/ct200726v

G. D. Matos, « Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database, Journal of Chemical & Engineering Data, vol.625, pp.1559-1569

V. P. Sergiievskyi, Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections, The Journal of Physical Chemistry Letters, vol.5, issue.11, pp.1935-1942, 2014.
DOI : 10.1021/jz500428s

URL : https://hal.archives-ouvertes.fr/hal-01308791

M. T. Geballe and J. P. Guthrie, The SAMPL3 blind prediction challenge: transfer energy overview, Journal of Computer-Aided Molecular Design, vol.11, issue.4, pp.489-496
DOI : 10.1897/1552-8618(1992)11[1595:TDOHLC]2.0.CO;2

D. Horinek, S. I. Mamatkulov, and R. R. Netz, Rational design of ion force fields based on thermodynamic solvation properties, The Journal of Chemical Physics, vol.46, issue.12, pp.124507-124517, 2009.
DOI : 10.1021/jp063552y

H. A. Lorentz, Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, pp.127-136, 1881.

Y. Marcus and «. A. , A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes, Biophysical Chemistry, vol.51, issue.2-3, pp.111-127, 1994.
DOI : 10.1016/0301-4622(94)00051-4

R. M. Noyes, Journal of the American Chemical Society, vol.84, issue.4, pp.513-522, 1962.
DOI : 10.1021/ja00863a002

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, pp.11225-11236, 1021.
DOI : 10.1021/ja9621760

S. Zhao, Molecular density functional theory of solvation: From polar solvents to water, The Journal of Chemical Physics, vol.3, issue.19, pp.10-1063, 2011.
DOI : 10.1021/jp982638r

G. A. Papoian, Water in protein structure prediction Proceedings of the National Academy of Sciences of the United States of America, pp.3352-3357, 2004.

A. Moreno, Advanced Methods of Protein Crystallization, Protein Crystallography, pp.51-76
DOI : 10.1016/j.abb.2015.12.010

J. D. Westbrook, The Protein Data Bank: unifying the archive, Nucleic Acids Research, vol.30, issue.1, pp.245-248, 2002.
DOI : 10.1093/nar/30.1.245

C. Azuara, incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics », en, in : Nucleic Acids Research 34, pp.38-42, 2006.

W. L. Jorgensen and J. Tirado-rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, Journal of the American Chemical Society, vol.110, issue.6, pp.1657-1666, 1988.
DOI : 10.1021/ja00214a001

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry, vol.91, issue.24, pp.6269-6271, 1021.
DOI : 10.1021/j100308a038

H. J. Berendsen, D. Van-der-spoel, R. Van-drunen, and «. Gromacs, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications 91, pp.1-3
DOI : 10.1016/0010-4655(95)00042-E

N. Chéron and E. I. Shakhnovich, Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations », en, Journal of Computational Chemistry, vol.3822, pp.1941-1951, 2017.

M. Levesque, Accounting for adsorption and desorption in lattice Boltzmann simulations, Physical Review E, vol.88, issue.1
DOI : 10.1142/S012918319700076X

URL : https://hal.archives-ouvertes.fr/hal-01078977

J. Vanson, Unexpected coupling between flow and adsorption in porous media, Soft Matter, vol.19, issue.A9, pp.6125-6133, 2015.
DOI : 10.1063/1.2815730

URL : https://hal.archives-ouvertes.fr/hal-01308089

A. J. Asta, Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions, Physical Review E, vol.95, issue.6, 2017.
DOI : 10.1038/ncomms9558

URL : https://hal.archives-ouvertes.fr/hal-01548459