S. and S. G. , World map of direct normal irradiation Available from: http://solargis.info/doc/free-solar-radiation-maps-DNI, 2015.

A. , Reference Solar Spectral Irradiance: ASTM G-173 Available from: http://rredc.nrel.gov/solar/spectra, 2015.

A. Vossier, Etude de la conversion photovoltaïque sous forte et très forte concentration de l'énergie solaire, 2007.

A. Vossier, Assessing the Efficiency of Advanced Multijunction Solar Cells in Real Working Conditions: A Theoretical Analysis, IEEE Journal of Photovoltaics, vol.5, issue.6
DOI : 10.1109/JPHOTOV.2015.2466452

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.6, issue.17, pp.510-519, 1961.
DOI : 10.1109/JRPROC.1957.278348

6. N. , Available from, Best Research-Cell Efficiencies, 2016.

M. A. Green, Solar cell efficiency tables (version 47) Progess in Photovoltaics: Research and Applications, pp.3-11, 2016.

M. Yamaguchi, Multi-junction III???V solar cells: current status and future potential, Solar Energy, vol.79, issue.1, pp.78-85, 2005.
DOI : 10.1016/j.solener.2004.09.018

W. C. Sinke, A strategic research agenda for photovoltaic solar energy technology The physics of the solar cell. Handbook of photovoltaic science and engineering, 2nd Edition, pp.82-128, 2003.

. Servagent, Capteurs à semi-conducteurs et applications Physique des semi-conducteurs : Fondamentaux Available from: http://www.optiqueingenieur .org/fr, OPI_fr_M05_C02_web.html. 12. Wolf, M. and H. Rauschenbach, Series resistance effects on solar cell measurements. Advanced energy conversion, pp.455-479, 1963.

S. Bensalem, Effets de la température sur les paramètres caractéristiques des cellules solaires, 2011.

M. J. Deen and F. Pascal, Electrical characterization of semiconductor materials and devices???review, Journal of Materials Science: Materials in Electronics, vol.69, issue.6, pp.17-549, 2006.
DOI : 10.1139/p92-152

J. Charles, La Jonction, du Solaire à la Microélectronique. Revue des Energies Renouvelables, issue.3, pp.1-16, 2000.

F. Khan, S. Baek, and J. H. Kim, Intensity dependency of photovoltaic cell parameters under high illumination conditions: An analysis Applied Energy Byrnes, S. The Shockley-Queisser limit Available from: http://sjbyrnes.com/sq.pdf. 18 Oral session, al. New Material Fresnel Lens with High Performence in Wide Temperature Range. in CPV11. 2015, pp.356-362, 1991.

M. Muller, S. Kurtz, and D. Jordan, Degradation Analysis of a CPV Module After Six Years On-sun. in CPV11, 2015.

E. Sanchez and G. Araújo, Mathematical analysis of the efficiency-concentration characteristic of a solar cell. Solar cells, pp.263-276, 1984.

L. Esaki, Junctions, Physical Review, vol.109, issue.2, p.603, 1958.
DOI : 10.1142/9789814503464_0088

A. Gassenq, Nouvelles sources lasers à super réseau InAs/GaSb/InSb pour l'émission moyen infrarouge, 2010.

A. W. Bett and S. Philipps, CPV at the Crossroads? in CPV11 Aix-les-Bains, France. Oral session. 26, Current Status of Concentrator Photovoltaic (CPV) Technology. 2015, National Renewable Energy Laboratory (NREL), 2015.

C. H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, Journal of Applied Physics, vol.264, issue.8, pp.51-4494, 1980.
DOI : 10.1038/264734a0

I. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies, Solar Energy Materials and Solar Cells, vol.85, issue.2, pp.293-300, 2005.
DOI : 10.1016/j.solmat.2004.08.008

A. Barnett, Very high efficiency solar cell modules, Progress in Photovoltaics: Research and Applications, pp.75-83, 2009.
DOI : 10.1002/pip.852

URL : http://onlinelibrary.wiley.com/doi/10.1002/pip.852/pdf

L. M. Fraas, Over 35-percent efficient GaAs/GaSb tandem solar cells, IEEE Transactions on Electron Devices, vol.37, issue.2, pp.443-449, 1990.
DOI : 10.1109/16.46381

A. W. Bett, III-V compounds for solar cell applications, Applied Physics A: Materials Science & Processing, vol.69, issue.2, pp.119-129, 1999.
DOI : 10.1007/s003390050983

R. R. King, D. C. Law, and K. M. Edmondson, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, pp.90-183516, 2007.

N. H. Karam, Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual-and triple-junction solar cells. Electron Devices, IEEE Transactions on, issue.10, pp.46-2116, 1999.

T. Kirchartz, Internal voltages in GaInP/GaInAs/Ge multijunction solar cells determined by electroluminescence measurements Applied Physics Letters High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE, Journal of crystal growth, vol.92, issue.122, pp.261-341, 2004.

R. King, Wafer bonded four-junction GaInP, Photovoltaic Energy Conversion Proceedings of 3rd World Conference on. 2003: IEEE. 37. King,GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, pp.22-277, 2000.

R. Hoheisel, Electroluminescence analysis of irradiated GaInP/GaInAs/Ge space solar cells, Solar Energy Materials and Solar Cells, vol.108, pp.235-240, 2013.
DOI : 10.1016/j.solmat.2012.06.015

N. Kalyuzhnyy, Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells, Semiconductors, vol.41, issue.11, pp.1520-1528, 2010.
DOI : 10.1002/j.1538-7305.1949.tb03645.x

E. Cánovas, Photoreflectance analysis of a GaInP/GaInAs/Ge multijunction solar cell, Applied Physics Letters, vol.21, issue.20, pp.97-203504, 2010.
DOI : 10.1063/1.115081

P. Benitez-gimenez, Ultra-high efficiency, high-concentration PV system based on spectral division between GaInP/GaInAs/Ge and BPC silicon cells, CPV7, pp.88-92, 1407.

S. Adachi, R. R. King, R. A. Sherif, and G. S. Kinsey, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, High- EfficiencyMultijunction Concentrator Cells. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, 2005. NREL/CD-520- 38172: p. 6. 45. Wojtczuk, S., Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells. NREL/SR-5200-51767, p.35, 2009.
DOI : 10.1002/9780470744383

M. Wiemer, V. Sabnis, and H. Yuen, 43.5% efficient lattice matched solar cells, High and Low Concentrator Systems for Solar Electric Applications VI, pp.810804-810804, 2011.
DOI : 10.1117/12.897769

S. Zhang and S. Wei, Nitrogen solubility and N-induced defect complexes in epitaxial GaAs: N, Physica B: Condensed Matter, vol.308, pp.839-842, 2001.

H. Kowaki, Optical DLTS for the study of recombination centers in GaAsN grown by chemical beam epitaxy, CPV-9, 2013.
DOI : 10.1063/1.4822195

W. Chen, Point defects in dilute nitride III-N???As and III-N???P, Physica B: Condensed Matter, vol.376, issue.377, pp.545-551, 2006.
DOI : 10.1016/j.physb.2005.12.138

T. Honda, Improvement of minority-carrier lifetime in GaAsN grown by chemical beam epitaxy, 2010 35th IEEE Photovoltaic Specialists Conference, p.35, 2010.
DOI : 10.1109/PVSC.2010.5616424

D. Schlenker, Miscibility gap calculation for Ga1???xInxNyAs1???y including strain effects, Journal of Crystal Growth, vol.196, issue.1, pp.67-70, 1999.
DOI : 10.1016/S0022-0248(98)00787-8

S. Fahy, A. Lindsay, and E. O. Reilly, Intrinsic limits on electron mobility in disordered dilute nitride semiconductor alloys, IEE Proceedings - Optoelectronics, vol.151, issue.5, pp.352-356, 2004.
DOI : 10.1049/ip-opt:20040876

M. A. Green, Solar cell efficiency tables (version 41) Progress in Photovoltaics: Research and Applications): p. 1-11. 54. SolarJunction Available from: www.sj-solar.com. 55. Dimroth, F., et al. Development of high efficiency wafer bonded 4-junction solar cells for concentrator photovoltaic applications, Photovoltaic Specialist Conference (PVSC). 2014: IEEE. 56. Tibbits, T.N., et al. New efficiency frontiers with wafer-bonded multi-junction solar cells. in Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, 2013.

R. Krause, Wafer bonded 4-junction GaInPGaInAs concentrator solar cells Next generation of wafer-bonded multi-junction solar cells, Proceedings of CPV-10, AIP Conf. Proc. 1616, 2014.

A. Luque, Will we exceed 50% efficiency in photovoltaics?, Journal of Applied Physics, vol.1, issue.3, pp.31301-031301, 2011.
DOI : 10.1002/pip.v9:4

A. Marti and G. L. Araújo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, vol.43, issue.2, pp.203-222, 1996.
DOI : 10.1016/0927-0248(96)00015-3

M. Ferhat, Computational optical band gap bowing of III?V semiconductors alloys. physica status solidi (b), pp.241-279, 2004.

T. Tansel, Effect of the passivation layer on the noise characteristics of mid-waveinfrared InAs/GaSb superlattice photodiodes, Photonics Technology Letters, issue.9, pp.24-790

W. Shockley, A. Goetzberger, and R. Scarlett, Theory and Experiment on Current Transfer from Alloyed Contact to Diffused Layer, Research and Investigation of Inverse Epitaxial UHF Power Transistors', A. Goetzberger, 1964.

A. and P. , Modélisation et caractérisation du transport électrique dans le silicium microcristallin pour des applications photovoltaïques, 2014.

C. Ho, A. E. Ruehli, and P. A. Brennan, The modified nodal approach to network analysis. Circuits and Systems, IEEE Transactions on, issue.6, pp.22-504, 1975.

A. Milnes and A. Polyakov, Gallium antimonide device related properties. Solid-State Electronics, pp.803-818, 1993.

B. Tadayon, Extremely low specific contact resistivities for p-type GaSb, grown by molecular beam epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.1, pp.1-3, 1995.
DOI : 10.1116/1.587979

M. Rolland, Low noise ohmic contacts on n and p type GaSb, Journal de Physique III, vol.3, issue.9, pp.1825-1832, 1993.
DOI : 10.1051/jp3:1993242

URL : https://hal.archives-ouvertes.fr/jpa-00249045

F. Y. Soldatenkov, A decrease in ohmic losses and an increase in power in GaSb photovoltaic converters, Semiconductors, vol.15, issue.3, pp.1219-1226, 2011.
DOI : 10.1016/0038-1101(72)90048-2

V. P. Khvostikov, High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide, Semiconductors, vol.37, issue.10, pp.40-1242, 2006.
DOI : 10.1109/PVSC.1996.563968

F. Padovani and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electronics, pp.695-707, 1966.

D. K. Schroder, Semiconductor material and device characterization, 2006.

A. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid- State Electronics, pp.239-247, 1970.

K. K. Ng and R. Liu, On the calculation of specific contact resistivity on, IEEE Transactions on Electron Devices, vol.37, issue.6, pp.1535-1537, 1990.
DOI : 10.1109/16.106252

C. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes. Solid-State Electronics, pp.395-399, 1965.

C. Crowell and S. Sze, Current transport in metal-semiconductor barriers. Solid-State Electronics, pp.1035-1048, 1966.

S. M. Sze and K. K. Ng, Physics of semiconductor devices, 2006.

D. Qiao, Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction, Journal of Applied Physics, vol.87, issue.2, p.801, 2000.
DOI : 10.1063/1.113295

A. Luque and G. Sala, Concentrators: the path to commercialization of the novel sophisticated ultra high efficiency solar cells, Proc. of the 4 th ICSC, 2007.

?. Alt?ndal, The role of interface states and series resistance on the I?V and C?V characteristics in Al/SnO2/p-Si Schottky diodes. Solid-State Electronics, pp.47-1847, 2003.

N. Tu?luo?lu, S. Karadeniz, and ?. , Effect of series resistance on the performance of silicon Schottky diode in the presence of tin oxide layer Applied surface science, pp.481-489, 2005.

M. Özer, Temperature dependence of characteristic parameters of the Au/SnO2/n- Si (MIS) Schottky diodes. Solid-State Electronics, pp.51-941, 2007.

?. Karata?, Temperature dependence of characteristic parameters of the Hterminated Sn/p-Si (100) Schottky contacts Applied surface science, pp.250-260, 2003.

M. El-adawi and I. , A method to determine the solar cell series resistance from a single I???V. Characteristic curve considering its shunt resistance???new approach, Vacuum, vol.64, issue.1, pp.33-36, 2001.
DOI : 10.1016/S0042-207X(01)00370-0

M. Priyanka, S. Lal, and . Singh, A new method of determination of series and shunt resistances of silicon solar cells, Solar Energy Materials and Solar Cells, vol.91, issue.2-3, pp.91-137, 2007.
DOI : 10.1016/j.solmat.2006.07.008

K. Bouzidi, M. Chegaar, and A. Bouhemadou, Solar cells parameters evaluation considering the series and shunt resistance, Solar Energy Materials and Solar Cells, vol.91, issue.18, pp.91-1647, 2007.
DOI : 10.1016/j.solmat.2007.05.019

S. Bensalem and M. Chegaar, Thermal behavior of parasitic resistances of polycrystalline silicon solar cells, pp.171-176, 2013.

S. Banerjee and W. Anderson, Temperature dependence of shunt resistance in photovoltaic devices, Applied Physics Letters, vol.24, issue.1, pp.38-40, 1986.
DOI : 10.1109/T-ED.1977.18749

/. Sva-/-nsm-/-semicond and L. , Available from Photodétecteurs à base de Ga1-x Alx Sb dans la gamme 1, 3-1, 6 ?m, Semiconductors, issue.12, pp.18-781, 1983.

H. Ye, Y. Shu, and L. Tang, The simulation and optimization of the internal quantum efficiency of GaSb thermophotovoltaic cells with a box-shaped Zn diffusion profile, Solar Energy Materials and Solar Cells, vol.125, pp.268-275, 2014.
DOI : 10.1016/j.solmat.2014.03.010

B. Juang, GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays, Applied Physics Letters, vol.106, issue.11, pp.106-111101, 2015.
DOI : 10.1007/s11664-014-3029-1

S. Dumartin, Technique de l'optique dans les simulateurs et moyens d'essais, Revue de l'Electricit?? et de l'Electronique, vol.-, issue.06, pp.46-50, 2001.
DOI : 10.3845/ree.2001.065

P. Singh and N. M. Ravindra, Temperature dependence of solar cell performance???an analysis, Solar Energy Materials and Solar Cells, vol.101, pp.36-45, 2012.
DOI : 10.1016/j.solmat.2012.02.019

G. Siefer and A. W. Bett, Analysis of temperature coefficients for III-V multi-junction concentrator cells, Progress in Photovoltaics: Research and Applications, pp.515-524, 2014.
DOI : 10.1016/0379-6787(86)90129-8

M. Green, Silicon solar cells: Advanced principles and practice, 1995.

P. Würfel and U. Würfel, Physics of solar cells: from basic principles to advanced concepts, 2009.

V. Khvostikov, High-efficiency GaSb photocells. Semiconductors, 2013 Press Release, F.I.f Available from: https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases- 2014/new-world-record-for-solar-cell-efficiency-at-46-percent, S.E. and Systems, vol.47, issue.99, pp.307-313, 2014.
DOI : 10.1134/s1063782613020139

E. Giudicelli, Caractérisation thermique des cellules photovoltaïques multijonction par la méthode 3?, 2014.

E. Giudicelli, Solar cells based on GaAs: Thermal behavior study, 2015.
DOI : 10.1115/1.1347993

URL : http://aip.scitation.org/doi/pdf/10.1063/1.4931502

J. Szlufcik, Low-cost industrial technologies of crystalline silicon solar cells, Proceedings of the IEEE, pp.711-730, 1997.
DOI : 10.1109/5.588971

A. Mette, New concepts for front side metallization of industrial silicon solar cells, 2007.

P. Panek, M. Lipi?ski, and J. Dutkiewicz, Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells, Journal of Materials Science, vol.8, issue.6, pp.40-1459, 2005.
DOI : 10.1007/s10853-005-0583-1

J. Snel, The Doped Si/SiO2 Interface. Solid-State Electronics, pp.135-139, 1981.
DOI : 10.1016/0038-1101(81)90008-3

J. Dorkel and P. Leturcq, Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level. Solid-State Electronics, pp.821-825, 1981.
DOI : 10.1016/0038-1101(81)90097-6

, Available from: http://www.pveducation.org, PVEducation, 2015.

J. Faust, R. Willardson, and H. Goering, Preparation of III?V Compounds. Compound Semiconductors, p.445, 1962.

R. Willardson, H. L. Goering, and P. Wang, Compound Semiconductors. Vol. I. Preparation of III???V Compounds, Journal of The Electrochemical Society, vol.111, issue.10, pp.247-248, 1964.
DOI : 10.1149/1.2425958

/. Ag and . Augeni, , pp.10-14

, Milnes, vol.610, p.17, 1993.

N. Au, I 250-300 N.I 1, pp.10-14

, AuZn 1, pp.10-15

R. , , p.17, 1993.

, AuGeNi N.I 380 1 h 4, pp.10-16

, Subetki (1995) 6-9, p.17

/. Ge and . Au,

/. Ge and . Ni, , pp.10-11

/. Ge, /. Ni, and . Au, , pp.10-11

, Tadayon, vol.42010, p.17, 1995.

, Cr, vol.10250, p.300

, 1 min (1-2), pp.10-15

/. Ti and . Pt, , pp.10-16

. Vogt, , pp.79-80, 1996.

/. Pd, /. Ge, and . Pd,

/. Pd, , pp.10-15

, Yang, vol.10, p.18, 1996.

/. Pd, /. Te, and . Pd, , pp.10-16

, N.I Pd/Ge N.I 300 45 sec ohmique (N.I), Varblianska, 1997.

. Sb, Pd 300-450 45 sec 1-10, pp.10-14

, Pd 350 45 sec ohmique (N.I)

, Vogt, vol.610, p.17, 1998.

/. Pd, /. Ge, /. Au, /. Pt, and . Au, , pp.10-16

, Vogt, vol.62, p.18, 1999.

. Ti, , p.80

, Non Non, issue.2, pp.6-28010

/. Pt and . Au, , pp.6-510

/. Pd and . Au, , pp.9-3010

/. Ni and . Au, , pp.10-15

, Au, vol.80, pp.10-17, 1900.

S. , , p.17, 2001.

/. Pd, /. Ge, /. Au, /. Pt, and . Au, , pp.10-16

. Pd, Ge 300 45 sec 4, pp.10-16

, Ikossi, vol.5610, p.17, 2002.

/. Pd, /. Ge, and . Pd,

/. Pd and . Ge, , pp.10-16

). N. Huang, /. Pd, /. Ge, and . Au, , 2004.

, Robinson, vol.210, p.18, 2004.

/. Pd, /. Ge, /. Au, /. Pt, and . Au, , pp.10-16

/. Pd, /. In, /. Pd, and . Pt,

, Robinson, vol.210, p.18, 2005.

, Khvostikov, vol.110, p.20, 2006.

/. Cr, N. Au, and . Non-non, , pp.10-16

/. Cr and . Ag-non-non, , pp.10-15

/. Cr and . Au, Mn) Non Non, pp.10-16

/. Ti and . Pt, Au Non Non (4-6), pp.10-16

, Soldatenkov, vol.10, p.20, 2011.

/. Cr and . Au, , pp.10-16

, 200 1,3, pp.10-16

. Ti, , p.150

, Non Non, vol.12, pp.10-15

, 220 15-60 sec 8, pp.10-16

/. Ti and . Pt, , p.120

, Non Non, vol.61, pp.10-16

, 220 15-60 sec 2,9, pp.10-16

/. Ti and . Pt, , p.115

, Non Non, vol.69, pp.10-16

, Références Dopage Métallisation Epaisseur Température Temps de ? c (?.cm²) 2,2, pp.10-16

/. Ti, /. Pt, and . Ag, Au Non Non, vol.26, pp.10-17

, 90 15-60 sec 2, pp.10-17

/. Ti, /. Pt, and N. I. Ag, Non Non, vol.23, pp.10-17

, 90 15-60 sec 1,1, pp.10-17

, 160 1,3, pp.10-17

, 225 2,1, pp.10-17

/. Ti, /. Pt, and N. Au, I Non Non, vol.18, pp.10-17

, 90 15-60 sec 1,7, pp.10-17

, 275 2,1, pp.10-17

, Pt/Ag Non Non, vol.13, pp.10-17

, 160 15-60 sec 6, pp.10-18

W. Li-shu, N. Ti, /. Pt, /. Au, and N. I. Rta, , pp.10-17, 2012.

/. Ni and . Pt, , pp.10-17

, Résumé

. La-conversion-photovoltaïque, PV) de l'énergie solaire repose sur la capacité qu'ont certains matériaux à convertir l'énergie des photons en courant électrique

, à base de matériaux semi-conducteurs III-V, est un empilement de sous-cellules aux gaps décroissants qui permet notamment une plus large utilisation du spectre solaire Soumettre ces cellules PV à un flux solaire concentré permet d'augmenter significativement la puissance électrique créée par celles-ci, et ainsi d'abaisser substantiellement le coût de l'électricité produite. Le record du monde est actuellement détenu par le partenariat Soitec / Fraunhofer ISE avec un rendement de 46,0 % mesuré sur une cellule quadruple-jonctions en GaInP, Une cellule multi-jonctions (MJ)

, simple à mettre en oeuvre avec des cellules MJ monolithiques accordées sur substrat de GaSb pour des concentrations solaire de 1 000, soit une irradiance directe de 1 MW/m² Ce type de cellules, du fait de la très bonne complémentarité des gaps des matériaux et ses alignements de bandes favorables, constitue une alternative crédible et originale aux cellules existantes pour une utilisation sous flux solaire fortement concentré Afin de mieux comprendre la cellule multijonctions III-Sb optimale, les travaux réalisés ont porté sur la fabrication et la caractérisation des trois sous-cellules fabriquées indépendamment. Ces trois échantillons épitaxiés sont l, cellule Middle) et le GaSb (cellule Bottom) ayant comme gaps respectifs 1, pp.22-22

, 30 nm) sur substrat GaSb type P. - La caractérisation sous obscurité courant-tension des paramètres électriques des cellules PV à température ambiante et en fonction de la température. - La caractérisation thermique par mesure de la conductivité thermique des matériaux et une cartographie de température de surface en fonction du flux solaire concentré en conditions réelles. - La caractérisation électro-optique par réponse spectrale, à partir de laquelle nous avons calculé le rendement quantique externe qui représente le rapport entre la quantité d'électrons créés et la quantité de photons incidente. - La caractérisation sous illumination à 1 soleil (1 000 W/m²) sous simulateur solaire et en conditions solaire dont nous avons comparé les paramètres électriques. - La caractérisation des cellules sous flux solaire (fortement), La caractérisation des métallisations par structure TLM (Transmission Line Method) dont le meilleur résultat obtenu concerne une métallisation tri, pp.2-96

, Ce travail a été cofinancé par le Ministère de l'Education et de la Recherche (Allocation ED)