F. Discuss, , pp.9-36, 2015.

A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, Tracking single molecules at work in living cells, Nature Chemical Biology, vol.5, issue.7, pp.524-532, 2014.
DOI : 10.1038/nmeth.1176

S. W. Hell, Far-Field Optical Nanoscopy, Science, vol.316, issue.5828, pp.1153-1158, 2007.
DOI : 10.1126/science.1137395

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al.,

M. W. Davidson, J. Lippincott-schwartz, and H. F. Hess, Imaging intracellular fluorescent protein at nanometer resolution, Science, pp.313-1642, 2006.

A. Gahlmann and W. E. Moerner, Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging, Nature Reviews Microbiology, vol.583, issue.1, pp.9-22, 2014.
DOI : 10.1016/j.febslet.2009.11.035

L. D. Lavis and R. T. Raines, Bright Building Blocks for Chemical Biology, ACS Chemical Biology, vol.9, issue.4, pp.855-866, 2014.
DOI : 10.1021/cb500078u

L. D. Lavis and R. T. Raines, Bright Ideas for Chemical Biology, ACS Chemical Biology, vol.3, issue.3, pp.142-155, 2008.
DOI : 10.1021/cb700248m

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea, Journal of Cellular and Comparative Physiology, vol.5, issue.3, pp.223-239, 1962.
DOI : 10.1111/j.1469-185X.1960.tb01460.x

D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, Primary structure of the Aequorea victoria green-fluorescent protein, Gene, vol.111, issue.2, pp.229-233, 1992.
DOI : 10.1016/0378-1119(92)90691-H

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, Green fluorescent protein as a marker for gene expression, Science, vol.263, issue.5148, pp.802-805, 1994.
DOI : 10.1126/science.8303295

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, The Fluorescent Toolbox for Assessing Protein Location and Function, Science, vol.312, issue.5771, pp.312-217, 2006.
DOI : 10.1126/science.1124618

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-554, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

, 21

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, Fluorescent proteins as a toolkit for in vivo imaging, Trends in Biotechnology, vol.23, issue.12, pp.605-613, 2005.
DOI : 10.1016/j.tibtech.2005.10.005

N. C. Shaner, G. H. Patterson, and M. W. Davidson, Advances in fluorescent protein technology, Journal of Cell Science, vol.120, issue.24, pp.4247-4260, 2007.
DOI : 10.1242/jcs.005801

N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer et al., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, proteins via iterative somatic hypermutation, pp.1567-1572, 2004.
DOI : 10.1016/S0165-0270(00)00354-X

K. M. Dean and A. E. Palmer, Advances in fluorescence labeling strategies for dynamic cellular imaging, Nature Chemical Biology, vol.339, issue.7, pp.512-523, 2014.
DOI : 10.1126/science.1231540

J. Lippincott-schwartz, N. Altan-bonnet, and G. H. Patterson, Photobleaching and photoactivation: following protein dynamics in living cells, Nat. Cell Biol, pp.7-14, 2003.

R. N. Day and M. W. Davidson, The fluorescent protein palette: tools for cellular imaging, Chemical Society Reviews, vol.90, issue.10, pp.2887-2921, 2009.
DOI : 10.1016/j.cell.2007.12.033

E. A. Jares-erijman and T. M. Jovin, FRET imaging, Nature Biotechnology, vol.21, issue.11, pp.1387-1395, 2003.
DOI : 10.1038/nbt896

T. K. Kerppola, Bimolecular Fluorescence Complementation: Visualization of Molecular Interactions in Living Cells, Methods Cell Biol, vol.85, pp.431-470, 2008.
DOI : 10.1016/S0091-679X(08)85019-4

W. B. Frommer, M. W. Davidsonb, and R. E. Campbell, Genetically encoded biosensors based on engineered fluorescent proteins, Chemical Society Reviews, vol.20, issue.10, pp.2833-2841, 2009.
DOI : 10.1039/b907749a

A. B. Cubitt, R. Heim, S. R. Adams, A. E. Boyd, L. A. Gross et al., Understanding, improving and using green fluorescent proteins, Trends in Biochemical Sciences, vol.20, issue.11, pp.448-545, 1995.
DOI : 10.1016/S0968-0004(00)89099-4

R. Heim, D. C. Prasher, and R. Y. Tsien, Wavelength mutations and posttranslational autoxidation of green fluorescent protein., Proceedings of the National Academy of Sciences, vol.91, issue.26, p.91, 1994.
DOI : 10.1073/pnas.91.26.12501

R. Heim, A. B. Cubitt, and R. Y. Tsien, Improved green fluorescence, Nature, vol.373, issue.6516, pp.663-664, 1995.
DOI : 10.1038/373663b0

N. C. Shaner, M. Z. Lin, M. R. Mckeown, P. A. Steinbach, K. L. Hazelwood et al.,

Y. Roger and R. Y. Tsien, Improving the photostability of bright monomeric orange and red fluorescent proteins, Nat. Methods, vol.5, pp.545-551, 2008.

A. G. Evdokimov, M. E. Pokross, N. S. Egorov, A. G. Zaraisky, I. V. Yampolsky et al., Structural basis for the fast maturation of Arthropoda green fluorescent protein, EMBO reports, vol.114, issue.10, pp.1006-1012, 2006.
DOI : 10.1073/pnas.98.2.462

URL : http://embor.embopress.org/content/embor/7/10/1006.full.pdf

S. R. Adams, R. E. Campbell, L. A. Gross, B. R. Martin, and G. K. Walkup,

R. Y. Tsien, New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and 49

G. V. Los, L. P. Encell, M. G. Mcdougall, D. D. Hartzell, N. Karassina et al.,

G. Vidugiris, J. Zhu, A. Darzins, D. H. Klaubert, R. F. Bulleit et al., HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem. Biol, vol.3, pp.373-382, 2008.

L. Jullien and A. Gautier, Fluorogen-based reporters for fluorescence imaging: a review, Methods and Applications in Fluorescence, vol.3, issue.4, pp.1-12, 2015.
DOI : 10.1088/2050-6120/3/4/042007

T. Komatsu, K. Johnsson, H. Okuno, H. Bito, T. Inoue et al., Real-Time Measurements of Protein Dynamics Using Fluorescence Activation-Coupled Protein Labeling Method, Journal of the American Chemical Society, vol.133, issue.17, pp.6745-6751, 2011.
DOI : 10.1021/ja200225m

X. Sun, A. Zhang, B. Baker, L. Sun, and A. Howard,

K. Johnsson, C. J. Noren, M. Xu, and J. I. Corrêa, Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging, ChemBioChem, vol.12, pp.2217-2226, 2011.

G. Lukinavi?ius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang et al.,

L. Reymond, J. I. Corrêa, Z. Luo, C. Schultz, and E. A. Lemke,

S. Manley and K. Johnsson, A near-infrared fluorophore for live-cell superresolution microscopy of cellular proteins, Nat. Chem, vol.5, pp.132-139, 2013.

A. S. Klymchenko, Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications, Accounts of Chemical Research, vol.50, issue.2, pp.366-375, 2017.
DOI : 10.1021/acs.accounts.6b00517

C. Szent-gyorgyi, B. F. Schmidt, Y. Creeger, G. W. Fisher, K. L. Zakel et al.,

A. Waggoner, Fluorogen-activating single-chain antibodies for imaging cell surface proteins, Nat. Biotechnol, vol.26, pp.235-240, 2008.

H. Ozhalici-unal, C. L. Pow, S. A. Marks, L. D. Jesper, G. L. Silva et al.,

J. M. Burnette, P. B. Berget, and B. A. Armitage, A rainbow of fluoromodules: A promiscuous scFv protein binds to and activates a diverse set of fluorogenic cyanine dyes, J. Am. Chem

, Soc, vol.130, pp.12620-12621, 2008.

N. I. Shank, K. J. Zanotti, F. Lanni, P. B. Berget, and B. A. Armitage, Enhanced Photostability of Genetically Encodable Fluoromodules Based on Fluorogenic Cyanine Dyes and a Promiscuous Protein Partner, Journal of the American Chemical Society, vol.131, issue.36, pp.12960-12969, 2009.
DOI : 10.1021/ja9016864

, Vis spectrophotometer (Evolution array, Thermo Scientific) Corrected fluorescence spectra upon one-photon excitation were recorded with a Photon Technology International QuantaMaster QM-1 spectrofluorimeter (PTI, Monmouth Junction, NJ) equipped with a Peltier cell holder (TLC50, Quantum Northwest The overall emission quantum yields after one, × 1 cm quartz cuvettes

, III-2

M. Plamont, E. Billon-denis, S. Maurin, C. Gauron, F. M. Pimenta et al.,

J. Querard, B. Pan, J. Rossignol, K. Moncoq, N. Morellet et al., Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.497-502, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259909

E. T. Boder and K. D. Wittrup, Yeast surface display for screening combinatorial polypeptide libraries, Nature Biotechnology, vol.4, issue.6, pp.553-557, 1997.
DOI : 10.1016/0378-1119(88)90185-0

S. A. Gai and K. D. Wittrup, Yeast surface display for protein engineering and characterization, Current Opinion in Structural Biology, vol.17, issue.4, pp.467-473, 2007.
DOI : 10.1016/j.sbi.2007.08.012

G. Chao, W. L. Lau, B. J. Hackel, S. L. Sazinsky, S. M. Lippow et al., Isolating and engineering human antibodies using yeast surface display, Nature Protocols, vol.350, issue.2, pp.755-768, 2006.
DOI : 10.1126/science.274.5284.94

R. D. Gietz and R. H. Schiestl, Large-scale high-efficiency yeast transformation using the

/. Liac, D. Ss, and . Peg, Nat Protoc, issue.2, pp.38-41, 2007.

, 18 (s, 3H); 13 C NMR (75 MHz, CD 3 SOCD 3 , ? in ppm): 193, HBRAA-3M) Yellow powder (80 %). 1 H NMR (300 MHz, CD 3 SOCD 3 1H), 7.38 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), pp.10-5072

, -hydroxy-2-methoxybenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid (HBRAA-2OM) Orange powder (74 %), p.1068

, 1H), 7.33 (d, J = 8.7 Hz, 1H), 6.57 (dd, J = 8.4, 2.1 Hz, 1H), pp.6-53

1. Hz, 87 (s, 3H); 13 C NMR (75 MHz, CD 3 SOCD 3 , ? in ppm): 193, p.71

, 13 H 10 NO 5 S 2 ] -: 324.0; HRMS (ESI): m/z 324

, -hydroxy-2, 5-dimethylbenzylidene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (HBRAA-2,5DM) Orange powder (59 %)

, 17 (s, 1H), 6.77 (s, 1H), 4.72 (s, 2H), 2.36 (s, 3H), 2.15 (s, 3H); 13 C NMR (75 MHz, CD 3 SOCD 3 , ? in ppm): 1936; MS (ESI): m/z 322, pp.36-3220214

J. =. , -thioxothiazolidin-3-yl)acetic acid (HBRAA-3E) Yellow powder (62 %) 1 H NMR (300 MHz, CD 3 SOCD 3 , ? in ppm): 13.44 (s, 1H), 10.49 (s, 1H), 7.77 (s, 1H), 7.41 (s, 1H), ), 2.59 (q, J = 7.2 Hz, 2H), 1.17 (t, pp.322-322

H. Esi, , p.212

, -thioxothiazolidin-3-yl)acetic acid (HBRAA-3OE) Yellow powder (59 %) 1 H NMR (300 MHz, CD 3 SOCD 3 , ? in ppm): 13.43 (s, Yeast cell sorting Yeast library (about 1 × 10 9 cells) was grown overnight (30°C, 280 rpm) in 1 L of SD (20 g/L dextrose, 6.7 g/L yeast nitrogen base, 1.92 g/L yeast synthetic dropout without tryptophane Yeast culture was diluted to OD 600 1 in 1L of SD and grown (30°C, 280 rpm) until OD 600 2-5. 5 × 10 9 cells yeast cells were then collected and grown for 36 h (23°C, pp.280-281

, 5× 10 8 induced cells were then pelleted by centrigugation (25°C, 3 min 1 g/L bovine serum albumin, pH 7.4), and incubated for 30 min at room temperature in 200 ?L of 1/250 primary antibody chicken antic-Myc IgY (Life Technologies) solution in DPBS-BSA. Cells were then washed with 10 mL DPBS-BSA, and incubated in 200 ?L of 1/100 secondary antibody Alexa Fluor® 647?goat anti-rabbit IgG, Na 2 HPO 4 -7H 2 O, 1% penicillin-streptomycin 10 washed with 10 mL DPBS-BSA (137 mM NaCl, 2.7 mM KClLife Technologies) solution in DPBS-BSA for 20 min on ice. After washing with DPBS, cells were incubated in 10 mL DPBS supplemented with

, Beckman Coulter) equipped with a 488 nm and a 640 nm laser. The sorted cells were collected in SD, grown overnight (30°C, 240 rpm) and spread on SD plates, MoFlo? Astrios Cell Sorter

, Plates were incubated for 60 h at 30°C. The cell lawn was collected in SD supplemented with 30% glycerol, aliquoted and frozen or directly used in the next round

, IV-5 Reference

M. C. Hung and W. Link, Protein localization in disease and therapy, Journal of Cell Science, vol.124, issue.20, pp.3381-3392, 2011.
DOI : 10.1242/jcs.089110

P. Z. Chia, Y. M. Ramdzan, F. J. Houghton, D. M. Hatters, and P. A. Gleeson, High-Throughput Quantitation of Intracellular Trafficking and Organelle Disruption by Flow Cytometry, Traffic, vol.125, issue.5, pp.572-582, 2014.
DOI : 10.1016/j.cell.2006.02.049

M. Plamont, E. Billon-denis, S. Maurin, C. Gauron, F. M. Pimenta et al.,

J. Querard, B. Pan, J. Rossignol, K. Moncoq, N. Morellet et al., Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.497-502, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259909