T. A. Desai, Y. Xia, G. Whitesides, D. Branch, A. Prokop et al., Micro- and nanoscale structures for tissue engineering constructs, Medical Engineering & Physics, vol.22, issue.9, 2000.
DOI : 10.1016/S1350-4533(00)00087-4

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, Microscale technologies for tissue engineering and biology, Proceedings of the National Academy of Sciences, vol.75, issue.21, pp.2480-2487, 2006.
DOI : 10.1021/ac034773s

URL : http://www.pnas.org/content/103/8/2480.full.pdf

, -2-structural-organization- of-the-human-body-2

P. Liang and T. H. Macrae, Molecular chaperones and the cytoskeleton, J. Cell Sci, vol.110, 1997.

D. A. Fletcher and R. D. Mullins, Cell mechanics and the cytoskeleton, Nature, vol.105, issue.7280, pp.485-492, 2010.
DOI : 10.1091/mbc.10.12.4075

D. Stanley, A Review of the Muscle Cell Cytoskeleton and Its Possible Relation to Meat Texture and Sarcolemma Emptying, Food Struct, 1983.

G. E. Davis, K. J. Bayless, M. J. Davis, G. A. Meininger, S. Fowler et al., Regulation of Tissue Injury Responses by the Exposure of Matricryptic Sites within Extracellular Matrix Molecules, The American Journal of Pathology, vol.156, issue.5, pp.156-1489, 2000.
DOI : 10.1016/S0002-9440(10)65020-1

C. S. Barros, S. J. Franco, U. Muller, and E. Matrix, Extracellular Matrix: Functions in the Nervous System, Functions in the Nervous System, pp.5108-005108, 2011.
DOI : 10.1101/cshperspect.a005108

URL : http://cshperspectives.cshlp.org/content/3/1/a005108.full.pdf

A. Teti, Regulation of cellular functions by extracellular matrix, J. Am. Soc. Nephrol, vol.2, pp.83-90, 1992.

S. Badylak, D. Freytes, and T. Gilbert, Extracellular matrix as a biological scaffold material: Structure and function, Acta Biomaterialia, vol.5, issue.1, pp.1-13, 2009.
DOI : 10.1016/j.actbio.2008.09.013

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, Journal of Cell Science, vol.123, issue.24, 2010.
DOI : 10.1242/jcs.023820

, boundless.com/biology/textbooks/boundless-biology-textbook/cell- structure-4/connections-between-cells-and-cellular-activities-63/extracellular- matrix-of-animal-cells-324-11461

F. M. Watt and H. Fujiwara, Cell-Extracellular Matrix Interactions in Normal and Diseased Skin, Cold Spring Harbor Perspectives in Biology, vol.3, issue.4, 2011.
DOI : 10.1101/cshperspect.a005124

S. S. Chen, W. Fitzgerald, J. Zimmerberg, H. K. Kleinman, and L. Margolis, Cell-Cell and Cell-Extracellular Matrix Interactions Regulate Embryonic Stem Cell Differentiation, Stem Cells, vol.25, pp.553-561, 2007.

F. Rosso, A. Giordano, M. Barbarisi, and A. Barbarisi, From Cell-ECM interactions to tissue engineering, Journal of Cellular Physiology, vol.11, issue.2, pp.199-174, 2004.
DOI : 10.1016/S1063-4584(03)00032-3

, boundless.com/physiology/textbooks/boundless-anatomy-and-physi ology-textbook/organization-at-the-cellular-level-3/external-cellular-components -47/intercellular-junctions-351-11462

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Geometric Control of Cell Life and Death Science, issue.80, p.276, 1997.

B. M. Baker and C. S. Chen, Deconstructing the third dimension ??? how 3D culture microenvironments alter cellular cues, Journal of Cell Science, vol.125, issue.13, pp.3015-3039, 2012.
DOI : 10.1242/jcs.079509

P. M. Gilbert, K. L. Havenstrite, K. E. Magnusson, and A. Sacco,

N. K. Kraft, S. Nguyen, M. P. Thrun, H. M. Lutolf, and . Blau, Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture, p.329, 2010.

F. Brandl, F. Sommer, and A. Goepferich, Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior, Biomaterials, vol.28, issue.2, pp.28-134, 2007.
DOI : 10.1016/j.biomaterials.2006.09.017

J. M. Stukel and R. K. Willits, Mechanotransduction of Neural Cells Through Cell???Substrate Interactions, Tissue Engineering Part B: Reviews, vol.22, issue.3, pp.173-182, 2016.
DOI : 10.1089/ten.teb.2015.0380

P. Tsimbouri and P. M. , Adult Stem Cell Responses to Nanostimuli, J. Funct. Biomater, vol.6, pp.598-622, 2015.

M. A. Schwartz, Integrins and Extracellular Matrix in Mechanotransduction, Cold Spring Harbor Perspectives in Biology, vol.2, issue.12, p.5066, 2010.
DOI : 10.1101/cshperspect.a005066

G. F. Weber, M. A. Bjerke, and D. W. Desimone, Integrins and cadherins join forces to form adhesive networks, Journal of Cell Science, vol.124, issue.8, pp.1183-93, 2011.
DOI : 10.1242/jcs.064618

Z. Sun, S. S. Guo, and R. Fässler, Integrin-mediated mechanotransduction, The Journal of Cell Biology, vol.215, issue.4, 2016.
DOI : 10.1016/j.bbagen.2007.09.017

URL : http://jcb.rupress.org/content/215/4/445.full.pdf

Q. Wei, T. L. Pohl, A. Seckinger, J. P. Spatz, and E. A. Cavalcanti-adam, Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation, Beilstein Journal of Organic Chemistry, vol.11, pp.11-773, 2015.
DOI : 10.3762/bjoc.11.87

M. W. Renshaw, D. Toksoz, and M. A. Schwartz, Involvement of the Small GTPase Rho in Integrin-mediated Activation of Mitogen-activated Protein Kinase, Journal of Biological Chemistry, vol.268, issue.36, pp.271-21691, 1996.
DOI : 10.1038/372786a0

J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, Mechanotransduction and extracellular matrix homeostasis, Nature Reviews Molecular Cell Biology, vol.42, issue.12, pp.802-812, 2014.
DOI : 10.1016/j.jbiomech.2008.11.011

URL : http://europepmc.org/articles/pmc4513363?pdf=render

S. Huveneers and E. H. Danen, Adhesion signaling - crosstalk between integrins, Src and Rho, Journal of Cell Science, vol.122, issue.8, pp.1059-1069, 2009.
DOI : 10.1242/jcs.039446

URL : http://jcs.biologists.org/content/joces/122/8/1059.full.pdf

D. Choquet, D. P. Felsenfeld, and M. P. Sheetz, Extracellular Matrix Rigidity Causes Strengthening of Integrin???Cytoskeleton Linkages, Cell, vol.88, issue.1, pp.39-48, 1997.
DOI : 10.1016/S0092-8674(00)81856-5

URL : https://doi.org/10.1016/s0092-8674(00)81856-5

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, Transmembrane crosstalk between the extracellular matrix and the cytoskeleton, Nature Reviews Molecular Cell Biology, vol.310, issue.suppl., pp.793-805, 2001.
DOI : 10.1006/jmbi.2001.4818

R. O. Hynes, Integrins, Cell, vol.110, issue.6, pp.673-87, 2002.
DOI : 10.1016/S0092-8674(02)00971-6

Y. Lad, D. S. Harburger, and D. A. Calderwood, Integrin Cytoskeletal Interactions Methods Enzymol, pp.69-84, 2007.

J. Du, X. Chen, X. Liang, G. Zhang, J. Xu et al., Integrin activation and internalization on soft ECM as a mechanism of

X. Guo and J. Chen, Research on induced pluripotent stem cells and the application in ocular tissues, Int. J. Ophthalmol, vol.8, pp.818-843, 2015.

J. Yu, M. A. Vodyanik, K. Smuga-otto, J. Antosiewicz-bourget, J. L. Frane et al., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, pp.318-1917, 2007.

M. H. Chin, M. J. Mason, W. Xie, S. Volinia, and M. ,

O. Ambartsumyan, L. Aimiuwu, J. Richter, I. Zhang, V. Khvorostov et al.,

N. Grunstein, N. Lavon, C. M. Benvenisty, A. T. Croce, T. Clark et al., Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures, pp.111-123, 2009.

K. Takahashi, K. Tanabe, M. Ohnuki, and M. ,

. Yamanaka, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, pp.861-872, 2007.

, www.rndsystems.com/cn/resources/articles/differentiation-potential-induc ed-pluripotent-stem-cells

S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, and M. ,

. Studer, Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nat. Biotechnol, vol.27, pp.275-280, 2009.

B. Hu, J. P. Weick, J. Yu, L. Ma, X. Zhang et al., Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency, Proc. Natl. Acad. Sci. U. S
DOI : 10.1002/stem.38

, A, vol.107, pp.4335-4375, 2010.

E. P. Papapetrou, M. J. Tomishima, S. M. Chambers, Y. Mica, E. Reed et al., Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation, Proceedings of the National Academy of Sciences, vol.27, issue.3, pp.12759-64, 2009.
DOI : 10.1038/nbt.1529

R. Jaenisch and R. Young, Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming, Cell, vol.132, issue.4, pp.567-582, 2008.
DOI : 10.1016/j.cell.2008.01.015

Y. Sun, K. M. Yong, L. G. Villa-diaz, X. Zhang, W. Chen et al., Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem??cells, Nature Materials, vol.13, issue.6, pp.13-599, 2014.
DOI : 10.1038/nmat2732

S. Musah, P. J. Wrighton, Y. Zaltsman, X. Zhong, S. Zorn et al., Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification, Proc. Natl. Acad. Sci. U. S. A, pp.111-13805, 2014.
DOI : 10.1016/j.devcel.2012.03.013

A. J. Engler, C. Carag-krieger, C. P. Johnson, M. Raab, H. Tang et al., Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating, Journal of Cell Science, vol.121, issue.22, pp.3794-3802, 2008.
DOI : 10.1242/jcs.029678

S. Bose, M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology, vol.30, issue.10, pp.546-54, 2012.
DOI : 10.1016/j.tibtech.2012.07.005

R. C. Dutta and A. K. Dutta, Cell-interactive 3D-scaffold; advances and applications, Biotechnology Advances, vol.27, issue.4, pp.334-339, 2009.
DOI : 10.1016/j.biotechadv.2009.02.002

K. M. Woo, V. J. Chen, and P. X. Ma, Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment, Journal of Biomedical Materials Research, vol.30, issue.2, pp.67-531, 2003.
DOI : 10.1016/S8756-3282(01)00634-2

S. Li, J. R. De-wijn, J. Li, P. Layrolle, and K. De-groot, Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Engineering, vol.9, issue.3, pp.535-548, 2003.
DOI : 10.1089/107632703322066714

R. Sultana, J. Yang, and X. Hu, Deposition of Micro-Porous Hydroxyapatite/Tri-Calcium Phosphate Coating on Zirconia-Based Substrate, Journal of the American Ceramic Society, vol.23, issue.4, pp.95-1212, 2012.
DOI : 10.1177/0885328208096798

J. Wiltfang, H. A. Merten, K. A. Schlegel, and S. Schultze-mosgau,

P. Rupprecht and . Kessler, Degradation characteristics of tri-calcium-phosphate (TCP) in minipigs, J. Biomed. Mater. Res, vol.63, pp.115-121, 2002.

T. J. Webster, Nanophase ceramics: The future orthopedic and dental implant material, pp.125-166, 2001.
DOI : 10.1016/S0065-2377(01)27005-7

, Reference

K. Kulangara, K. W. Leong, X. S. Jiang, K. W. Leong, H. Q. Mao et al.,

N. Mao, H. J. Winograd, and . Donahue, Substrate topography shapes cell function, Soft Matter, vol.5, p.4072, 2009.

D. Kim, P. P. Provenzano, C. L. Smith, and . Levchenko, Matrix nanotopography as a regulator of cell function, The Journal of Cell Biology, vol.62, issue.3, 2012.
DOI : 10.1038/nmat1365

M. J. Biggs, R. G. Richards, and M. J. Dalby, Nanotopographical modification: a regulator of cellular function through focal adhesions, Nanomedicine: Nanotechnology, Biology and Medicine, vol.6, issue.5, pp.619-633, 2010.
DOI : 10.1016/j.nano.2010.01.009

C. Bettinger, R. Langer, and J. Borenstein, Engineering Substrate Topography at the Micro-and Nanoscale to Control Cell Function, Angew. Chemie Int, pp.48-5406, 2009.

C. A. Mirkin and J. A. Rogers, Emerging Methods for Micro- and Nanofabrication, MRS Bulletin, vol.26, issue.07, pp.506-509, 2001.
DOI : 10.1557/mrs2001.121

D. B. Weibel, W. R. Diluzio, and G. M. Whitesides, Microfabrication meets microbiology, Nature Reviews Microbiology, vol.16, issue.3, pp.209-218, 2007.
DOI : 10.1557/mrs2005.52

R. Ayala, C. Zhang, D. Yang, Y. Hwang, A. Aung et al., Engineering the cell???material interface for controlling stem cell adhesion, migration, and differentiation, Biomaterials, vol.32, issue.15, pp.32-3700, 2011.
DOI : 10.1016/j.biomaterials.2011.02.004

, 10] https://www.microsi.com/the-difference-between-positive-and-negative photoresi st

D. Qin, Y. Xia, and G. M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nature Protocols, vol.41, issue.3, pp.491-502, 2010.
DOI : 10.1021/cm950587u

URL : https://www.nature.com/articles/nprot.2009.234.pdf

Y. Xia, G. M. Whitesides, and S. Lithography, SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, pp.153-184, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. , Soft Lithography in Biology and Biochemistry, Annual Review of Biomedical Engineering, vol.3, issue.1, pp.335-373, 2001.
DOI : 10.1146/annurev.bioeng.3.1.335

R. N. Palchesko, L. Zhang, Y. Sun, A. W. Feinberg, and Y. Joyce, Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve, PLoS ONE, vol.4, issue.12, p.51499, 2012.
DOI : 10.1371/journal.pone.0051499.s001

F. Carvalho, P. Paradiso, B. Saramago, A. M. Ferraria, A. M. Do-rego et al., An integrated approach for the detailed characterization of an immobilized enzyme, Journal of Molecular Catalysis B: Enzymatic, vol.125, pp.64-74, 2016.
DOI : 10.1016/j.molcatb.2016.01.001

P. Zucca and E. Sanjust, Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms, Molecules, vol.251, issue.9, pp.14139-14194, 2014.
DOI : 10.1021/bp010171n

C. P. Tan, B. R. Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead et al., Parylene peel-off arrays to probe the role of cell???cell interactions in tumour angiogenesis, Integrative Biology, vol.3, issue.10, 2009.
DOI : 10.1016/S0002-9440(10)64005-9

C. P. Tan and H. G. Craighead, Surface Engineering and Patterning Using Parylene for Biological Applications Materials, vol.3, pp.1803-1832, 2010.

H. A. Biebuyck, N. B. Larsen, E. Delamarche, and B. Michel, Lithography beyond light: Microcontact printing with monolayer resists, IBM Journal of Research and Development, vol.41, issue.1.2, pp.41-159, 1997.
DOI : 10.1147/rd.411.0159

, elveflow.com/microfluidic-tutorials/soft-lithography-reviews-and-tut orials/introduction-in-soft-lithography/introduction-about-soft-lithography-and-p olymer-molding-for-microfluidic

C. K. Wong, O. C. Cheung, B. Xu, and M. M. Yuen, TM) for polymer flip chip, p.53

, Components Technol. Conf. 2003. Proceedings., IEEE, pp.652-657

E. Kim, Y. Xia, and G. M. Whitesides, Polymer microstructures formed by moulding in capillaries, Nature, vol.376, issue.6541, pp.376-581, 1995.
DOI : 10.1038/376581a0

, References

E. D. Hay and E. Matrix, Extracellular matrix., The Journal of Cell Biology, vol.91, issue.3, pp.205-223, 1981.
DOI : 10.1083/jcb.91.3.205s

R. O. Hynes, The Extracellular Matrix: Not Just Pretty Fibrils, Science, vol.284, issue.25, pp.1216-1225, 2009.
DOI : 10.1074/jbc.M809348200

Y. Sun, C. S. Chen, and J. Fu, Forcing Stem Cells to Behave: A Biophysical Perspective of the Cellular Microenvironment, Annual Review of Biophysics, vol.41, issue.1, pp.41-519, 2012.
DOI : 10.1146/annurev-biophys-042910-155306

M. A. Wozniak and C. S. Chen, Mechanotransduction in development: a growing role for contractility, Nature Reviews Molecular Cell Biology, vol.10, issue.1, pp.34-43, 2009.
DOI : 10.1074/jbc.M509205200

URL : http://europepmc.org/articles/pmc2952188?pdf=render

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, pp.677-689, 2006.

Y. Bao, Y. Huang, M. L. Lam, T. Xu, N. Zhu et al.,

C. , Substrate Stiffness Regulates the Development of Left?Right Asymmetry in Cell Orientation, ACS Appl. Mater. Interfaces, vol.8, pp.17976-17986, 2016.

D. E. Ingber, T. The, . Basis, . Of, and . Mechanotransduction, TENSEGRITY: THE ARCHITECTURAL BASIS OF CELLULAR MECHANOTRANSDUCTION, Annual Review of Physiology, vol.59, issue.1, pp.575-599, 1997.
DOI : 10.1146/annurev.physiol.59.1.575

A. B. Castillo and C. R. Jacobs, Mesenchymal Stem Cell Mechanobiology, Current Osteoporosis Reports, vol.40, issue.Pt 4, pp.98-104, 2010.
DOI : 10.2106/00004623-198567040-00028

B. Trappmann, J. E. Gautrot, J. T. Connelly, D. G. Strange, Y. Li et al.,

C. Stuart, H. Boehm, B. Li, V. Vogel, J. P. Spatz et al., Extracellular-matrix tethering regulates stem-cell fate, Nat. Mater, pp.11-642, 2012.

A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia et al.,

. Kane, The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells, Biomaterials, vol.30, pp.4695-4699, 2009.

T. Tzvetkova-chevolleau, A. Stéphanou, D. Fuard, and J. ,

. Tracqui, The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure, Biomaterials, pp.29-1541, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00846385

N. D. Leipzig and M. S. Shoichet, The effect of substrate stiffness on adult neural stem cell behavior, Biomaterials, vol.30, issue.36, pp.30-6867, 2009.
DOI : 10.1016/j.biomaterials.2009.09.002

I. Levental, P. C. Georges, P. A. Janmey, P. A. Janmey, and V. M. ,

E. Isabey, B. Planus, C. Senger, and . Picart, Soft biological materials and their impact on cell function, Soft Matter, vol.3, pp.299-306, 2007.

A. Seidi, M. Ramalingam, I. Elloumi-hannachi, S. Ostrovidov, and A. Khademhosseini, Gradient biomaterials for soft-to-hard interface tissue engineering, Acta Biomaterialia, vol.7, issue.4, pp.1441-1451, 2011.
DOI : 10.1016/j.actbio.2011.01.011

B. C. Isenberg, P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong, Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength, Biophysical Journal, vol.97, issue.5
DOI : 10.1016/j.bpj.2009.06.021

, J, vol.97, pp.1313-1322, 2009.

J. S. Martinez, A. M. Lehaf, J. B. Schlenoff, T. C. Keller, and . Iii, Cell Durotaxis on Polyelectrolyte Multilayers with Photogenerated Gradients of Modulus, Biomacromolecules, vol.14, issue.5, pp.14-1311, 2013.
DOI : 10.1021/bm301863a

H. Kim and S. R. Peyton, Bio-inspired materials for parsing matrix physicochemical control of cell migration: A Review, Integr. Biol., vol.12, issue.2, pp.37-52, 2012.
DOI : 10.1016/S0962-8924(01)02205-X

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-52, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

URL : https://doi.org/10.1016/s0006-3495(00)76279-5

Y. K. Cheung, E. U. Azeloglu, D. A. Shiovitz, K. D. Costa, D. Seliktar et al., Microscale Control of Stiffness in a Cell-Adhesive Substrate Using Microfluidics- Based Lithography, pp.48-7188, 2009.
DOI : 10.1002/anie.200900807

B. G. Keselowsky, D. M. Collard, and A. J. García, Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation, Proc. Natl. Acad. Sci
DOI : 10.1021/bi025752f

URL : http://www.pnas.org/content/102/17/5953.full.pdf

U. S. , , pp.5953-5960, 2005.

J. Li, F. Zhang, L. Yu, N. Fujimoto, M. Yoshioka et al.,

K. Nordenskjöld, J. Grinnemo, C. Kere, O. Betsholtz, K. Hovatta et al., Culture substrates made of elastomeric micro-tripod arrays for long-term expansion of human pluripotent stem cells, J. Mater. Chem. B, vol.5, pp.236-244, 2017.

L. Trichet, J. L. Digabel, R. J. Hawkins, S. R. Vedula, and M. Gupta,

R. Hersen, B. Voituriez, and . Ladoux, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proc. Natl. Acad. Sci. U

S. A. , , pp.6933-6941, 2012.

J. Wei, J. Shi, B. Wang, Y. Tang, X. Tu et al., Fabrication of adjacent micropillar arrays with different heights for cell studies, Microelectronic Engineering, vol.158
DOI : 10.1016/j.mee.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01285505

, Eng, vol.158, pp.22-25, 2016.

R. D. Sochol, A. T. Higa, R. R. Janairo, S. Li, L. Lin et al., Unidirectional mechanical cellular stimuli via micropost array gradients, Soft Matter, vol.26, issue.10, p.4606, 2011.
DOI : 10.1016/j.biomaterials.2009.06.042

S. Lee, J. Hong, and J. Lee, Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient, Soft Matter, vol.98, issue.8, pp.2325-2333, 2016.
DOI : 10.1016/j.bpj.2010.03.026

B. Wang, J. Shi, J. Wei, L. Wang, X. Tu et al., Fabrication of elastomer pillar arrays with height gradient for cell culture studies, Microelectronic Engineering, vol.175, pp.175-50, 2017.
DOI : 10.1016/j.mee.2017.01.014

A. Saez, A. Buguin, P. Silberzan, and B. Ladoux, Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?, Biophysical Journal, vol.89, issue.6, pp.52-56, 2005.
DOI : 10.1529/biophysj.105.071217

URL : https://hal.archives-ouvertes.fr/hal-00016455

A. Saez, E. Anon, M. Ghibaudo, O. Du-roure, and J. Meglio,

A. Silberzan, B. Buguin, and . Ladoux, Traction forces exerted by epithelial cell sheets, J. Phys. Condens. Matter, vol.22, 2010.

P. Roca-cusachs, R. Sunyer, and X. Trepat, Mechanical guidance of cell migration: lessons from chemotaxis, Current Opinion in Cell Biology, vol.25, issue.5, pp.543-549, 2013.
DOI : 10.1016/j.ceb.2013.04.010

C. Rotsch, K. Jacobson, and M. Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, Proceedings of the National Academy of Sciences, vol.102, issue.4, pp.96-921, 1999.
DOI : 10.1083/jcb.102.4.1400

M. Gupta, B. R. Sarangi, J. Deschamps, and Y. ,

R. Margadant, C. T. Mège, R. Lim, B. Voituriez, and . Ladoux, Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing, Nat. Commun, vol.6, p.7525, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226836

L. Yang, Y. Yangben, and M. Chiang, Cell Morphology Linked to Substrate Stiffness - A Possible Solution to Determine the Cell Modulus, Biophysical Journal, vol.100, issue.3, p.157, 2011.
DOI : 10.1016/j.bpj.2010.12.1071

B. Geiger, J. P. Spatz, and A. D. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, vol.8, issue.1, pp.21-33, 2009.
DOI : 10.1590/S0100-879X2003000800001

M. Chrzanowska-wodnicka and K. Burridge, Rho-stimulated contractility drives the formation of stress fibers and focal adhesions, The Journal of Cell Biology, vol.133, issue.6, 1996.
DOI : 10.1083/jcb.133.6.1403

Y. Cai, O. Rossier, N. C. Gauthier, N. Biais, M. Fardin et al., Cytoskeletal coherence requires myosin-IIA contractility, Journal of Cell Science, vol.123, issue.3, 2010.
DOI : 10.1242/jcs.058297

URL : http://jcs.biologists.org/content/123/3/413.full.pdf

H. Delanoë-ayari, R. Kurdi, M. Vallade, D. Gulino-debrac, and D. Riveline, Membrane and acto-myosin tension promote clustering of adhesion proteins, Proc
DOI : 10.1038/35074532

, Natl. Acad. Sci. U. S. A, vol.101, pp.2229-2263, 2004.

, References

A. Birgersdotter, R. Sandberg, and I. Ernberg, Gene expression perturbation in vitro???A growing case for three-dimensional (3D) culture systems, Seminars in Cancer Biology, vol.15, issue.5, pp.405-412, 2005.
DOI : 10.1016/j.semcancer.2005.06.009

R. C. Dutta and A. K. Dutta, Cell-interactive 3D-scaffold; advances and applications, Biotechnology Advances, vol.27, issue.4, pp.334-339, 2009.
DOI : 10.1016/j.biotechadv.2009.02.002

L. G. Griffith and M. A. Swartz, Capturing complex 3D tissue physiology in vitro, Nature Reviews Molecular Cell Biology, vol.263, issue.3, pp.211-224, 2006.
DOI : 10.1016/S0955-0674(02)00361-7

K. R. Koehler, A. M. Mikosz, A. I. Molosh, D. Patel, and E. Hashino, Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture, Nature, vol.104, issue.7461, pp.500-217, 2013.
DOI : 10.1073/pnas.0704576104

A. Martins, S. Chung, A. J. Pedro, R. A. Sousa, A. P. Marques et al., Hierarchical starch-based fibrous scaffold for bone tissue engineering applications, Journal of Tissue Engineering and Regenerative Medicine, vol.16, issue.1, pp.37-42, 2009.
DOI : 10.1002/jbm.a.30946

S. C. Owen and M. S. Shoichet, Design of three-dimensional biomimetic scaffolds, Journal of Biomedical Materials Research Part A, vol.18, issue.Part 1, p.94, 2010.
DOI : 10.1385/1592598633

P. Viswanathan, M. G. Ondeck, S. Chirasatitsin, K. Ngamkham, G. C. Reilly et al., 3D surface topology guides stem cell adhesion and differentiation, pp.52-140, 2015.

E. Volkmer, I. Drosse, S. Otto, A. Stangelmayer, M. Stengele et al., Hypoxia in Static and Dynamic 3D Culture Systems for Tissue Engineering of Bone, Hypoxia in Static and Dynamic 3D Culture Systems for Tissue Engineering of Bone, pp.1331-1340, 2008.
DOI : 10.1089/ten.tea.2007.0231

K. M. Woo, V. J. Chen, and P. X. Ma, Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment, Journal of Biomedical Materials Research, vol.30, issue.2, pp.67-531, 2003.
DOI : 10.1016/S8756-3282(01)00634-2

Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. Huang, Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, Journal of Biomedical Materials Research, vol.48, issue.1
DOI : 10.1002/jbm.b.30128

K. Tonsomboon and M. L. Oyen, Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea, Journal of the Mechanical Behavior of Biomedical Materials, vol.21
DOI : 10.1016/j.jmbbm.2013.03.001

, Biomed. Mater, vol.21, pp.185-194, 2013.

W. Li, J. A. Cooper, R. L. Mauck, and R. S. Tuan, Fabrication and characterization of six electrospun poly(??-hydroxy ester)-based fibrous scaffolds for tissue engineering applications, Acta Biomaterialia, vol.2, issue.4, pp.377-385, 2006.
DOI : 10.1016/j.actbio.2006.02.005

W. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering, Journal of Biomedical Materials Research, vol.13, issue.4, pp.60-613, 2002.
DOI : 10.1016/0738-081X(95)00078-T

K. Kim, Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao et al., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactideco-glycolide )-based electrospun nanofibrous scaffolds, J. Control. Release, pp.98-145, 2004.

X. Zhu, W. Cui, X. Li, and Y. Jin, Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering, Biomacromolecules, vol.9, issue.7, pp.1795-1801, 2008.
DOI : 10.1021/bm800476u

B. M. Baker, A. O. Gee, R. B. Metter, A. S. Nathan, R. A. Marklein et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials, vol.29, issue.15, pp.29-2348, 2008.
DOI : 10.1016/j.biomaterials.2008.01.032

J. Rnjak-kovacina and A. S. Weiss, Increasing the Pore Size of Electrospun Scaffolds, Tissue Engineering Part B: Reviews, vol.17, issue.5, pp.365-372, 2011.
DOI : 10.1089/ten.teb.2011.0235

F. A. Sheikh, H. W. Ju, J. M. Lee, B. M. Moon, H. J. Park et al.,

C. H. Kim and . Park, 3D electrospun silk fibroin nanofibers for fabrication of artificial skin, Nanomedicine Nanotechnology, Biol. Med, vol.11, pp.681-691, 2015.

S. Zhong, Y. Zhang, and C. T. Lim, Fabrication of Large Pores in Electrospun Nanofibrous Scaffolds for Cellular Infiltration: A Review, Tissue Engineering Part B: Reviews, vol.18, issue.2, pp.77-87, 2012.
DOI : 10.1089/ten.teb.2011.0390

G. Kim and W. Kim, Highly porous 3D nanofiber scaffold using an electrospinning technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.27, issue.1, pp.81-104, 2007.
DOI : 10.1016/j.colsurfb.2003.12.004

Y. Tang, L. Liu, J. Li, L. Yu, L. Wang et al., Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers, Nanoscale, vol.50, issue.314
DOI : 10.1016/j.biomaterials.2015.01.037

Y. Tang, L. Liu, J. Li, L. Yu, F. P. Severino et al.,

C. , Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers, J. Mater. Chem. B, vol.4, pp.3305-3312, 2016.

S. Lien, L. Ko, and T. Huang, Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering, Acta Biomaterialia, vol.5, issue.2, pp.670-679, 2009.
DOI : 10.1016/j.actbio.2008.09.020

S. Gautam, C. Chou, A. K. Dinda, P. D. Potdar, and N. C. Mishra, Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering, Materials Science and Engineering: C, vol.34, pp.34-402, 2014.
DOI : 10.1016/j.msec.2013.09.043

Y. Nakano, T. Tobe, N. Choi-miura, T. Mazda, and M. Tomita, Isolation and Characterization of GBP28, a Novel Gelatin-Binding Protein Purified from Human Plasma, Journal of Biochemistry, vol.120, issue.4, pp.803-812, 1996.
DOI : 10.1093/oxfordjournals.jbchem.a021483

J. Van-meerloo, G. J. Kaspers, and J. Cloos, Cell Sensitivity Assays: The MTT Assay, pp.2011-237
DOI : 10.1007/978-1-61779-080-5_20

, References

K. Takahashi, K. Tanabe, M. Ohnuki, and M. ,

. Yamanaka, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, pp.861-872, 2007.
DOI : 10.1111/j.1365-2184.2008.00493.x

J. Yu, M. A. Vodyanik, K. Smuga-otto, J. Antosiewicz-bourget, J. L. Frane et al., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, p.318, 2007.

V. K. Singh, M. Kalsan, N. Kumar, A. Saini, and R. Chandra, Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery, Frontiers in Cell and Developmental Biology, vol.7, issue.2, 2015.
DOI : 10.1038/nprot.2012.115

M. Rosner, K. Schipany, and M. Hengstschläger, The Decision on the ???Optimal??? Human Pluripotent Stem Cell, STEM CELLS Translational Medicine, vol.324, issue.5, pp.553-559, 2014.
DOI : 10.1126/science.1173712

J. Li, W. Song, G. Pan, J. Zhou, H. Yu et al.,

S. Yamanaka, E. Hartouni, L. Howie, D. Jakkula, K. Joo et al.,

R. Mazzotta, . Smith, C. Stevens, L. Stuber, R. Tan et al., Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells, J. Hematol. Oncol, vol.7, issue.50, 2014.

P. Joanne, M. Kitsara, S. Boitard, H. Naemetalla, V. Vanneaux et al.,

P. Larghero, Y. Forest, P. Chen, O. Menasché, and . Agbulut, Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy, Biomaterials, pp.80-157, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01250352

M. Asgari, K. Moslem, B. Bagheri-lankarani, M. Pournasr, and . Miryounesi,

. Baharvand, Differentiation and Transplantation of Human Induced Pluripotent Stem Cell-derived Hepatocyte-like Cells, Stem Cell Rev. Reports, vol.9, pp.493-504, 2013.

T. Kondo, M. Funayama, K. Tsukita, A. Hotta, A. Yasuda et al., Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice, Stem Cell Reports, vol.3, issue.2, pp.242-249, 2014.
DOI : 10.1016/j.stemcr.2014.05.017

S. Ahadian, S. Yamada, M. Estili, X. Liang, and R. Banan,

T. Shiku, A. Matsue, and . Khademhosseini, Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation, Biomed. Microdevices, vol.19, issue.57, 2017.

S. Ahadian, S. Yamada, J. Ramón-azcón, and K. ,

T. Matsue, Y. Matsue, H. Sakka, T. Bae, A. Matsue et al., Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique, pp.14-3690, 2014.

A. Higuchi, Q. Ling, S. S. Kumar, and Y. ,

S. Murugan, A. Hsu, and . Umezawa, Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells, J. Mater. Chem. B, vol.3, pp.8032-8058, 2015.

Y. Sun, S. Weng, and J. Fu, Microengineered synthetic cellular microenvironment for stem cells, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.447, issue.4, pp.414-441, 2012.
DOI : 10.1038/nature05824

Y. Shao, J. Sang, and J. Fu, On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology, Biomaterials, vol.52, pp.52-78, 2015.
DOI : 10.1016/j.biomaterials.2015.01.078

J. A. Efe and S. Ding, The evolving biology of small molecules: controlling cell fate and identity, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.108, issue.19, p.366, 2011.
DOI : 10.1073/pnas.1103113108

URL : http://rstb.royalsocietypublishing.org/content/royptb/366/1575/2208.full.pdf

X. Wang, C. Wang, X. Yu, Y. Zhao, J. Li et al., [Scalable production of embryoid bodies with the rotay cell culture system, Sheng Li Xue Bao, pp.57-486, 2005.

M. Winkler, N. Trieu, T. Feng, L. Jin, S. Walker et al., A Quantitative Assay for Insulin-expressing Colony-forming Progenitors, Journal of Visualized Experiments, issue.57, p.3148, 2011.
DOI : 10.3791/3148

URL : https://www.jove.com/pdf/3148/a-quantitative-assay-for-insulin-expressing-colony-forming-progenitors

D. P. Spelke, D. Ortmann, A. Khademhosseini, L. Ferreira, and J. M. Karp, Methods for Embryoid Body Formation: The Microwell Approach, Methods Mol. Biol, pp.151-162, 2011.
DOI : 10.1007/978-1-60761-962-8_10

J. Dahlmann, G. Kensah, H. Kempf, D. Skvorc, A. Gawol et al., The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells, Biomaterials, vol.34, issue.10, pp.34-2463, 2013.
DOI : 10.1016/j.biomaterials.2012.12.024

S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells, Proceedings of the National Academy of Sciences, vol.350, issue.13, pp.11298-303, 2007.
DOI : 10.1056/NEJMsr040330

URL : http://www.pnas.org/content/104/27/11298.full.pdf

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu et al.,

T. J. Thomson and . Kamp, Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells, Circ. Res, vol.104, 2009.

H. Kurosawa, Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells, Journal of Bioscience and Bioengineering, vol.103, issue.5, pp.389-398, 2007.
DOI : 10.1263/jbb.103.389

Y. Tang, L. Liu, J. Li, L. Yu, L. Wang et al.,

R. Fischer, L. Passier, I. Tertoolen, A. Gruh, U. Haverich et al., Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers, Nanoscale, vol.8, pp.14530-14540, 2016.

Y. Tang, L. Liu, J. Li, L. Yu, F. P. Severino et al.,

C. , Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers, J. Mater. Chem. B, vol.4, pp.3305-3312, 2016.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-89, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : https://doi.org/10.1016/j.cell.2006.06.044

S. Musah, P. J. Wrighton, Y. Zaltsman, X. Zhong, S. Zorn et al., Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification, Proc. Natl. Acad. Sci. U. S. A, pp.111-13805, 2014.
DOI : 10.1016/j.devcel.2012.03.013

Y. Sun, L. G. Villa-diaz, R. H. Lam, W. Chen, P. H. Krebsbach et al., Mechanics Regulates Fate Decisions of Human Embryonic Stem Cells, 2012.

A. J. Keung, P. Asuri, S. Kumar, and D. Schaffer, Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells, Integrative Biology, vol.90, issue.9, pp.1049-58, 2012.
DOI : 10.1529/biophysj.105.067496

W. Ronan, V. S. Deshpande, R. M. Mcmeeking, and J. P. Mcgarry, Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion, Biomechanics and Modeling in Mechanobiology, vol.101, issue.9, pp.13-417, 2014.
DOI : 10.1016/j.bpj.2011.09.047

E. A. Papakonstanti and C. Stournaras, Cell responses regulated by early reorganization of actin cytoskeleton, FEBS Letters, vol.17, issue.14, pp.2120-2127, 2008.
DOI : 10.1210/me.2002-0253

P. P. Provenzano and P. J. Keely, Mechanical signaling through the cytoskeleton Reference

X. J. Feng and L. Jiang, Design and Creation of Superwetting/Antiwetting Surfaces, Advanced Materials, vol.376, issue.23, pp.3063-3078, 2006.
DOI : 10.1007/s007060170142

M. Nikkhah, F. Edalat, S. Manoucheri, and A. Khademhosseini, Engineering microscale topographies to control the cell???substrate interface, Biomaterials, vol.33, issue.21, pp.33-5230, 2012.
DOI : 10.1016/j.biomaterials.2012.03.079

URL : http://europepmc.org/articles/pmc3619386?pdf=render

Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang et al., A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification, Lab Chip, vol.40, issue.3, pp.11-398, 2011.
DOI : 10.1128/JCM.40.9.3449-3454.2002

URL : http://europepmc.org/articles/pmc4626018?pdf=render

J. Hu, C. Hardy, C. Chen, S. Yang, A. S. Voloshin et al., Enhanced Cell Adhesion and Alignment on Micro-Wavy Patterned Surfaces, PLoS One, p.104502, 2014.
DOI : 10.1371/journal.pone.0104502

URL : https://doi.org/10.1371/journal.pone.0104502

P. Goel, S. Kumar, J. Sarkar, and J. P. Singh, Mechanical Strain Induced Tunable Anisotropic Wetting on Buckled PDMS Silver Nanorods Arrays, Mechanical Strain Induced Tunable Anisotropic Wetting on Buckled PDMS Silver Nanorods Arrays, pp.8419-8426, 2015.
DOI : 10.1021/acsami.5b01530

P. Lin, S. Yang, J. Q. Sun, J. C. Shen, W. P. Cai et al.,

T. Chen and . Wu, Mechanically switchable wetting on wrinkled elastomers with dualscale roughness, Soft Matter, vol.5, 1011.

G. M. Whitesides, N. Bowden, S. Brittain, A. G. Evans, and J. W. Hutchinson, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, pp.393-146, 1998.

R. Kirchner, V. A. Guzenko, M. Rohn, E. Sonntag, M. Mühlberger et al., Bio-inspired 3D funnel structures made by grayscale electron-beam patterning and selective topography equilibration, Microelectronic Engineering, vol.141, pp.141-107, 2015.
DOI : 10.1016/j.mee.2015.02.014

R. Du, X. Gao, Q. Feng, Q. Zhao, P. Li et al., Microscopic Dimensions Engineering: Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil/Water Separation, pp.28-936, 2016.

P. Zhang, S. Wang, S. Wang, and L. Jiang, Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability, Small, vol.10, issue.16, pp.11-1939, 2015.
DOI : 10.1002/smll.201202659

F. Rupp, R. A. Gittens, L. Scheideler, A. Marmur, B. D. Boyan et al., Geis- Gerstorfer, A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects, Acta Biomater, pp.10-2894, 2014.

S. G. Lee, H. S. Lim, D. Y. Lee, D. Kwak, and K. Cho, Tunable Anisotropic Wettability of Rice Leaf-Like Wavy Surfaces, Advanced Functional Materials, vol.23, issue.5, pp.547-553, 2013.
DOI : 10.1021/la0630357

R. He, S. Wang, G. Andrews, W. Shi, and Y. Liu, Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography, Scientific Reports, vol.16, issue.1, p.21621, 2016.
DOI : 10.1007/s10404-013-1250-5

D. Wu, J. Wang, S. Wu, Q. Chen, S. Zhao et al., Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding, Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding, pp.2927-2932, 2011.
DOI : 10.1016/j.nantod.2009.02.010

B. Wang, J. Shi, and J. Wei, Fabrication of elastomer pillar arrays with height gradient for cell culture studies, Microelectronic Engineering, vol.175, 2017.
DOI : 10.1016/j.mee.2017.01.014

B. Wang, J. Shi, and L. Wang, Spaced gelatin nanofiber layers integration with micro-patterned hydrogel for three-dimensional cell handling

B. Wang, L. Wang, and J. Wei, Elongation and directed cell migration on dense elastomer pillars with stiffness gradient

B. Wang, L. Wang, and X. Tu, Differentiation of human induced pluripotent stem cells (hiPSCs) on micropillar substrates with controlled mechanical property

B. Wang, J. Y. Chen, and H. M. Peng, Investigation on Changes in the Miscibility, Morphology, Rheology and Mechanical Behavior of Melt Processed Cellulose Acetate through Adding Polyethylene Glycol as a Plasticizer, Journal of Macromolecular Science, Part B, vol.124, issue.9, 2016.
DOI : 10.1016/j.polymer.2008.10.059

X. Tu, J. Wei, and B. Wang, Patterned parylene C for cell adhesion, spreading and alignment studies, Microelectronic Engineering, vol.175, 2017.
DOI : 10.1016/j.mee.2017.01.013

J. Wei, J. Shi, and B. Wang, Fabrication of adjacent micropillar arrays with different heights for cell studies, Microelectronic Engineering, vol.158, 2016.
DOI : 10.1016/j.mee.2016.03.008

URL : https://hal.archives-ouvertes.fr/hal-01285505