, ZnO Zn, vol.4, issue.3

, Zn 0,51 Sb 0, Sb ZnSb Zn 0Cu Ka) 2q (°) Intensité

, Figure 127 : diffractogrammes des quatre échantillons obtenus par mécanosynthèse ; (|) position des pics de ZnSb, |) position des pics de Sb, (|) position des pics de Zn4Sb3

, Les paramètres de mailles sont en accord avec les données disponibles dans la littérature, Le tableau 46 présente les paramètres de mailles ainsi que les tailles de cristallites déterminés par la méthode de Rietveld pour les 4 échantillons On identifie uniquement ZnSb dans le cas des échantillons 1, 2 et 3 et Zn4Sb3 est mis en évidence dans le cas de l'échantillon 4

, Les tailles de cristallites mises en évidence sont en accord avec les résultats obtenus par Bottger et al

, solidification, les auteurs déterminent par la méthode de Scherrer des tailles de cristallites de 82 nm et 44 nm pour respectivement un échantillon broyé manuellement dans un mortier et pour un échantillon broyé pendant 15 h à 400 rpm dans des jarres et billes en acier. On note, de plus

, C) Caractérisation microstructurale par microscopie électronique dans le cas de l'essai de dopage par l'yttrium

, La composition nominale utilisée dans le cadre de ces essais est : Zn0,49Sb0, pp.50-51

, d'antimoine (3) et d'une phase ternaire non identifiée (4) Le système est hors équilibre même après recuit puisque 4 phases coexistent dans un système à trois constituants. 1. K. Mlynarczyk-Niedziolka, Improving the thermoelectric properties of materials via numerical simulations. The case of zinc antimonides, de Zn4Sb3 Thèse de doctorat Thèse de Doctorat, 2011.

D. R. Lovett, Semimetals and narrow-bandgap semiconductors, 1977.

J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids, 1960.

N. W. Ashcroft and N. D. Mermin, , 2005.

B. Lenoir, J. Michenaud, and A. Dauscher, Thermoélectricité : des principes aux applications. Techniques de l'ingénieur Propriétés électriques et électrochimiques, p.336, 2010.

C. Wood, Materials for thermoelectric energy conversion. Reports on progress in physics, p.459, 1988.
DOI : 10.1088/0034-4885/51/4/001

H. B. Callen, S. N. Mott, and H. Jones, Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials): p. 075204. 11. K. Nishio, T. Hirano, Improvement of the efficiency of thermoelectric energy conversion by utilizing potential barriers Etude de l'influence des paramètres nano et microstructuraux sur les propriétés thermoélectriques des siliciures de magnésium (Mg2(Si, Sn) de type-n The Theory of the Properties of Metals and Alloys, 1A): p. 170-174. 12. P. Bellanger Thèse de doctorat Courier Corporation Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers, pp.73-1349, 1948.

A. F. Ioffe, Physics Today, vol.12, issue.5, pp.19-63, 2010.
DOI : 10.1063/1.3060810

C. Godart, Matériaux à effets thermoélectriques, p.126, 1500.

. S. Hi-ztechnology, D. Hébert, R. Berthebaud, Y. Daou, D. Bréard et al., Metalprices. [Page consultée en 2015; Consultable à l'url:http://www.metalprices.com/metal/tellurium/telluium-99-95-usa.] 20 Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides Natural mineral tetrahedrite as a direct source of thermoelectric materials Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Journal of Physics: Condensed Matter Physical Chemistry Chemical Physics Nature Materials, vol.28, issue.15168, pp.5762-5766, 2013.

M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications, 24. A. Zunger, Practical doping principles, pp.5147-5162, 2003.
DOI : 10.1038/nmat3013

C. Kilic and A. , Zunger, n-type doping and passivation of CuInSe2 and CuGaSe2 by hydrogen, Physical Review B, issue.7, p.68, 2003.

G. A. Slack-27, M. Snyder, E. Christensen, T. Nishibori, B. B. Caillat et al., Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties The best thermoelectric Applied Physical Sciences 93: p. 4. 29 Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials Highly textured Bi2Te3-based materials for thermoelectric energy conversion, CRC handbook of thermoelectrics 113707. 32. J. Seo, C. Lee, K. Park, Effect of extrusion temperature and dopant on thermoelectric properties for hot-extruded p-type Te-doped Bi0.5Sb1.5Te3 and n-type SbI3-doped Bi2Te2.85Se0.15. Materials Science and Engineering Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials, pp.458-463, 1995.

J. Sui, J. Li, J. He, Y. Pei, D. Berardan et al., Texturation boosts the thermoelectric performance of BiCuSeO oxyselenidesNanoparticle-in- Alloy" Approach to Efficient Thermoelectrics: Silicides in SiGe, Energy & Environmental Science Nano Letters, issue.610 92, pp.2916-2920, 2009.

M. S. Dresselhaus, G. Chen, Y. M. Tang, R. Yang, H. Lee et al., New directions for low-dimensional thermoelectric material Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Advanced Materials Physical Review B, vol.19, issue.16, pp.1043-1053, 1996.

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit Quantum dot superlattice thermoelectric materials and devices, Physical Review B Science, issue.5590, pp.47-12727, 1993.

J. P. Heremans, C. M. Thrush, D. T. Morelli, and M. C. Wu, Resistance, Magnetoresistance, and Thermopower of Zinc Nanowire Composites, Physical Review Letters, vol.58, issue.7, p.91, 2003.
DOI : 10.1103/PhysRevB.38.8

K. Kishimoto, M. Tsukamoto, T. Koyanagi, D. Narducci, E. Selezneva et al., Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors Theory of enhancement of thermoelectric properties of materials with nanoinclusions Model of transport properties of thermoelectric nanocomposite materials, Thermopower enhancement in lead telluride nanostructures, pp.5331-5339, 2002.

T. H. Zou, X. Y. Qin, D. Li, B. J. Ren, G. L. Sun et al., Enhanced thermoelectric performance via carrier energy filtering effect in beta-Zn4Sb3 alloy bulk embedded with (Bi2Te3)(0.2)(Sb2Te3)(0.8), Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt-Sb2Te3 Nanocomposites, pp.11-2013, 2011.
DOI : 10.1063/1.4864220

, ACS) All Rights Reserved, pp.2841-2844

K. Berland, X. Song, P. A. Carvalho, C. Persson, T. G. Finstad et al., Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites Significantly Enhanced Thermoelectric Performance in n-type Heterogeneous BiAgSeS Composites, High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping, pp.125103-125152, 2011.

M. Koirala, H. Zhao, M. Pokharel, S. Chen, T. Dahal et al., Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2 102(21): p. 213111. 54. C. Barreteau, D. Berardan, N. Dragoe, Studies on the thermal stability of BiCuSeO Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling Fabrication of thermoelectric materials?thermal stability and repeatability of achieved efficiencies, Applied Physics Letters Journal of Solid State Chemistry Journal of Electronic Materials Journal of Materials Chemistry C, vol.222, issue.39940, pp.53-59, 2010.
DOI : 10.1063/1.4808094

X. Song, K. Valset, J. S. Graff, A. Thøgersen, A. E. Gunnaes et al., Nanostructuring of Undoped ZnSb by Cryo-Milling 2015: p. 1-7. 58. TMR. http://www.transparencymarketresearch.com/pressrelease/thermoelectricmodules-market .htm. [Page consultée en 2015.] 59. Idtechex. http://www.idtechex.com/research/reports/thermoelectric-energy- harvesting-2014-2024-devices-applications-opportunities- 000392.asp?viewopt=showall. [Page consultée en 2015.] 60. International Tables for Crystallography : Mathematical, Physical and Chemical Tables, Journal of Electronic Materials, vol.143, pp.61-62, 2004.
DOI : 10.1007/s11664-015-3708-6

M. Thinice, H. Kishi, T. Nemoto, M. Hamao, S. Yamamoto et al., Micro thermoelectric modules and their application to wristwatches as an energy source Eighteenth International Conference on thermoelectric. 1999. 65. Goodyear. http://www.goodyear.eu/fr_fr/media-and-promotions/news- items/articles The highthroughput highway to computational materials design, Thermoelectricsour-story. [Page consultée en 2015.] 67. C. Maranville, thermoelectric opportunities for light duty vehicles, 2012. 68. G.P. Meisner, Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM. 2011. 69. L. Aixala, RENOTER project presentation. 2012. 70. E. Becquerel, Mémoire sur les pouvoirs thermo-électriques des corps et sur la construction des piles thermo-électriques. Annales de chimie et de physique, pp.1866-389, 1999.

J. Carrete, N. Mingo, S. Wang, S. Curtarolo, and G. K. Madsen, Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab-initio high-throughput statistical study. arXiv.org, e-Print Arch All Rights Reserved [cond-mat.mtrl-sci]. 73 Automated search for new thermoelectric materials: The case of LiZnSb, Condens. Matter Journal of the American Chemical Society, issue.37, pp.1-11, 2006.
DOI : 10.1002/adfm.201401201

URL : http://arxiv.org/pdf/1408.5859

G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal? amorphous-semiconductor transition in germanium, Physical Review B, issue.20, pp.49-14251, 1994.

G. Kresse, D. P. Joubert-76, R. Jund, X. Viennois, K. Tao et al., Physical properties of thermoelectric zinc antimonide using first-principles calculations Theoretical and experimental search for ZnSb-based thermoelectric materials, 365401. 78. K. Niedzio?ka, P. Jund, Influence of the Exchange?Correlation Functional on the Electronic Properties of ZnSb as a Promising Thermoelectric Material, pp.1758-1775, 1999.

G. K. Madsen, D. J. Singh, and . Boltztrap, BoltzTraP. A code for calculating band-structure dependent quantities, Computer Physics Communications, vol.175, issue.1, pp.67-71, 2006.
DOI : 10.1016/j.cpc.2006.03.007

URL : http://arxiv.org/pdf/cond-mat/0602203

V. Izard and V. Izard, Etude du système ternaire Cd-Sb-Zn ; élaboration et caractérisation du composé thermoélectrique, Thèse de Doctorat Thermodynamic modeling of the Cd?Sb?Zn ternary system. Calphad, pp.684-694, 2002.

J. Wang and K. Kovnir, : A New Zinc Antimonide Thermoelectric, Journal of the American Chemical Society, vol.137, issue.39, pp.12474-12477, 2010.
DOI : 10.1021/jacs.5b08214

G. S. Pomrehn, E. S. Toberer, G. J. Snyder, A. Van-de-walle, G. Kieslich et al., Predicted Electronic and Thermodynamic Properties of a Newly Discovered Zn8Sb7 Phase Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis, Journal of the American Chemical Society Applied Physics Letters C.S. Birkel, vol.133, issue.86, pp.11255-11261, 2008.

W. Hermann, A. O. Mozharivskyj, S. Pecharsky, G. J. Bud-'ko, and . Miller, Properties of spark plasma sintered nanostructured Zn1+xSb. physica status solidi (a) A promising thermoelectric material: Zn4Sb3 or Zn6-?Sb5, Its composition, structure, stability, and polymorphs. structure and stability of Zn1-?Sb. Chemistry of Materials, pp.1913-1919, 2004.

V. V. Psareva and . Kirii, All Rights Reserved The effect of tellurium additions on the crystallization and electrical characteristics of the ZnSb compound): p. 88-91. 89. V.I. Psarev, I Fusion and crystallization of the compounds Cd4Sb3 and ZnSb, Growth of ZnSb Single Crystals Growth of ZnSb Single Crystals. physica status solidi (b), pp.1580-1589, 1961.

H. Komiya, K. Masumoto, and H. Y. Fan, Optical and Electrical Properties and Energy Band Structure of ZnSb, Physical Review, vol.5, issue.6A, pp.133-1679, 1964.
DOI : 10.1088/0034-4885/19/1/304

L. Mlna?íková, A. T?íska, and L. ?toura?, The transport phenomena of pure and doped p-type ZnSb, Czechoslovak Journal of Physics, vol.5, issue.1, pp.63-72, 1970.
DOI : 10.1002/pssb.19640050130

G. N. Kozhemyakin, Indium inhomogeneity in InxGa1???xSb ternary crystals grown by floating crucible Czochralski method, Journal of Crystal Growth, vol.220, issue.1-2, pp.39-45, 2000.
DOI : 10.1016/S0022-0248(00)00756-9

D. Eklof, A. Fischer, Y. Wu, E. W. Scheidt, W. Scherer et al., Transport properties of the II???V semiconductor ZnSb, J. Mater. Chem. A, vol.21, issue.4, pp.1407-1414, 2013.
DOI : 10.1021/cm802893v

M. Boström and S. Hovmöller, Preparation and Crystal Structure of the Pseudo-Decagonal Approximant Mn3Ga5, Journal of Solid State Chemistry, vol.153, issue.2, pp.398-403, 2000.
DOI : 10.1006/jssc.2000.8790

M. Bouharkat, F. R. Adjadj-98, E. Venkatasubramanian, T. Watko, and . Colpitts, Experimental Investigation of the Bi-Sb-Zn System: Study of the Isoplethic Sections Bi-SbZn, Bi-Sb3Zn4 and Bi-Sb2Zn3 Journal of Phase Equilibria and Diffusion Thermoelectric Properties of ZnSb Films Grown by MOCVD Crystal growth, characterization and application of II V compounds, MRS Online Proceedings Library, 1997. 478. 99. E.K. Arushanov Progress in Crystal Growth and Characterization, pp.279-283, 1986.

P. J. Shaver and J. Blair, -Type ZnSb, Physical Review, vol.101, issue.2, pp.649-663, 1966.
DOI : 10.1103/PhysRev.101.944

M. V. Kot and I. V. Kretsu, Anisotropy of Certain Electrical Properties of Single Crystals of Zinc Antimonide. Soviet Physics-Solid State, pp.1134-1139, 1960.

W. J. Turner, A. S. Fischler, and W. E. Reese, Physical Properties of Several II-V Semiconductors, Physical Review, vol.2, issue.3, pp.759-767, 1961.
DOI : 10.1021/j100835a504

E. Justi, W. Rasch, and G. Schneider, Untersuchungen an zonengeschmolzenen ZnSbeinkristallen Advanced Energy Conversion, pp.27-38, 1964.

K. Hetteer, E. Justi, and G. Schneider, Die elektrischen Transportgrössen von ZnSb bei höheren Temperatören Advanced Energy Conversion, pp.355-363, 1965.

H. Müller and G. Schneider, Elektrische Transportgrößen von n-und p-ZnSb, Zeitschrift für Naturforschung A, vol.26, issue.8, pp.1316-1322, 1971.

N. L. Kostur and V. I. Psarev, Electrical properties of doped single crystals of ZnSb, Soviet Physics Journal, vol.2, issue.no. 6, pp.21-23, 1967.
DOI : 10.1007/BF00819977

B. Fay, E. Justi, and G. Schneider, Wärmeleitfähigkeit und Thermokraft von ZnSb bei tiefen Temperaturen Advanced Energy Conversion, pp.345-354, 1965.

L. Bjerg, G. K. Madsen, and B. B. Iversen, Ab initio Calculations of Intrinsic Point Defects in ZnSb, Chemistry of Materials, vol.24, issue.11, pp.24-2111, 2012.
DOI : 10.1021/cm300642t

G. Schneider, Preparation and Properties of n-Type ZnSb, physica status solidi (b), vol.21, issue.2, pp.133-136, 1969.
DOI : 10.1002/pssb.19690330264

A. Abou-zeid and G. Schneider, Te-Doped n-Type ZnSb. physica statu solidi (a), pp.101-103, 1971.

A. Abou-zeid and G. Schneider, Various Donors in n-ZnSb and the influence of sample treatment, Z.Naturforsch, vol.30, pp.381-382, 1975.

A. Faghaninia and C. S. Lo, Journal of Physics: Condensed Matter, vol.27, issue.12, pp.27-125502, 2015.
DOI : 10.1088/0953-8984/27/12/125502

C. Park and H. Sohn, Quasi-Intercalation and Facile Amorphization in Layered ZnSb for Li-Ion Batteries, Advanced Materials, vol.46, issue.1, pp.47-52, 2010.
DOI : 10.1007/978-1-4757-5556-5

C. P. Lu, X. B. Zhao, G. S. Cao, and T. J. Zhu, Effects of graphite on Zn-Sb alloys as anode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, pp.204-208, 2000.

S. Saadat, Y. Y. Tay, J. X. Zhu, P. F. Teh, S. Maleksaeedi et al., Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes, Chemistry of Materials, vol.23, issue.4, pp.1032-1038, 2011.
DOI : 10.1021/cm103068v

S. Saadat, J. X. Zhu, M. M. Shahjamali, S. Maleksaeedi, Y. Y. Tay et al., Template free electrochemical deposition of ZnSb nanotubes for Li ion battery anodes, Chemical Communications, vol.22, issue.35, pp.47-9849, 2011.
DOI : 10.1021/cm101663w

S. Schlecht, C. Erk, and M. Yosef, Nanoscale Zinc Antimonides:?? Synthesis and Phase Stability, Inorganic Chemistry, vol.45, issue.4, pp.1693-1697, 2006.
DOI : 10.1021/ic051808t

M. Zhong, X. Meng, and J. Li, Surfactant-assisted solvothermal synthesis of single-crystal zinc antimonide nanorods, Applied Surface Science, vol.332, issue.0, pp.332-76, 2015.
DOI : 10.1016/j.apsusc.2015.01.125

G. Kieslich, C. S. Birkel, A. Stewart, U. Kolb, and W. , Solution Synthesis of Nanoparticular Binary Transition Metal Antimonides, Inorganic Chemistry, vol.50, issue.15, pp.50-6938, 2011.
DOI : 10.1021/ic200074z

Y. Sun, M. Christensen, S. Johnsen, N. V. Nong, Y. Ma et al., Low-Cost High-Performance Zinc Antimonide Thin Films for Thermoelectric Applications, Advanced Materials, vol.45, issue.13, pp.24-1693, 2012.
DOI : 10.1021/ic051808t

URL : http://orbit.dtu.dk/en/publications/low-cost-high-performance-zinc-antimonide-thin-films-for-thermoelectric-applications(69a4f629-80ab-4a8a-a51b-00f360817026).html

Z. Zheng, P. Fan, J. Luo, P. Liu, X. Cai et al., The influence of the transformation of electronic structure and micro-structure on improving the thermoelectric properties of zinc antimonide thin films, Intermetallics, vol.64, issue.0, pp.64-82, 2015.
DOI : 10.1016/j.intermet.2015.04.012

C. Okamura, T. Ueda, and K. Hasezaki, Preparation of Single-Phase ZnSb Thermoelectric Materials Using a Mechanical Grinding Process, MATERIALS TRANSACTIONS, vol.51, issue.5, pp.860-862, 2010.
DOI : 10.2320/matertrans.MH200902

URL : https://www.jstage.jst.go.jp/article/matertrans/51/5/51_MH200902/_pdf

K. Jang, H. Oh, I. Kim, I. Kim, and J. Lee, Thermoelectric Properties of (ZnSb)1-x-(MSb)x Binary Systems, Electronic Materials Letters, vol.6, issue.4, pp.193-199, 2010.
DOI : 10.3365/eml.2010.12.193

P. H. Böttger, K. Valset, S. Deledda, and T. Finstad, Influence of Ball-Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb, Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb, pp.1583-1588, 2010.
DOI : 10.1007/s11664-010-1269-2

X. Song, P. H. Böttger, O. B. Karlsen, T. G. Finstad, and J. Taftø, Impurity band conduction in the thermoelectric material ZnSb, Physica Scripta, vol.148, issue.T148, pp.2012-014001, 2012.
DOI : 10.1088/0031-8949/2012/T148/014001

K. Valset, P. H. Böttger, J. Taftø, and T. G. Finstad, particles, Journal of Applied Physics, vol.111, issue.2, p.23703, 2012.
DOI : 10.1063/1.1723445

J. Sottmann, K. Valset, O. Karlsen, and J. Taftø, Synthesis and Measurement of the Thermoelectric Properties of Multiphase Composites: ZnSb Matrix with Zn4Sb3,??Zn3P2, and Cu5Zn8, Journal of Electronic Materials, vol.81, issue.7, pp.42-1820, 2013.
DOI : 10.1103/PhysRevB.81.245215

D. Xiong, N. L. Okamoto, and H. Inui, Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb, Scripta Materialia, vol.69, issue.5, pp.69-397, 2013.
DOI : 10.1016/j.scriptamat.2013.05.029

L. V. Prokofieva, P. P. Konstantinov, A. A. Shabaldin, D. A. Pshenai-severin, A. T. Burkov et al., Doping and defect formation in thermoelectric ZnSb doped with copper, Semiconductors, vol.517, issue.2, pp.48-1571, 2014.
DOI : 10.1016/j.jallcom.2011.11.130

P. H. Böttger, G. S. Pomrehn, G. J. Snyder, and T. G. Finstad, Doping of p-type ZnSb: Single parabolic band model and impurity band conduction. physica status solidi (a), pp.208-2753, 2011.

D. M. Triches, S. M. Souza, J. C. De-lima, T. A. Grandi, and C. E. Campos, Structural and photoacoustic studies of Zn4Sb3 and ZnSb phases prepared by mechanical alloying, Journal of Applied Physics, vol.105, issue.6, pp.105-013509, 2009.
DOI : 10.1007/BF02704204

Z. Xiao, D. Liu, C. Wang, Z. Cao, X. Zhan et al., Study on the effect of mechanical alloying on properties of Zn-Sb alloy, Journal of Thermal Analysis and Calorimetry, vol.392, issue.2, pp.95-513, 2009.
DOI : 10.1007/s10973-008-9276-8

F. Tseng, S. Li, C. Wu, Y. Pan, and L. Li, Thermoelectric and mechanical properties of ZnSb/SiC nanocomposites, Journal of Materials Science, vol.34, issue.11, pp.1-10
DOI : 10.1016/S0167-6636(02)00129-1

K. Hasezaki, M. Nishimura, M. Umata, H. Tsukua, and M. Araoka, Mechanical alloying of thermoelectric materials, 1993.

H. Yin, M. Christensen, N. Lock, and B. B. Iversen, Zn migration during spark plasma sintering of thermoelectric Zn4Sb3, Applied Physics Letters, vol.101, issue.4, p.43901, 2012.

B. L. Pedersen, H. Birkedal, B. B. Iversen, M. Nygren, and P. T. Frederiksen, Influence of sample compaction on the thermoelectric performance of Zn4Sb3, Applied Physics Letters, vol.89, issue.24, pp.89-242108, 2006.
DOI : 10.1016/j.intermet.2004.02.030

T. Koyanagi, K. Adachi, K. Kishimoto, and K. Matsubara, Thermoelectric Properties of ZnSb Ceramics Prepared by PIES Method. The Transactions of, pp.258-267, 1996.
DOI : 10.1541/ieejfms1990.116.3_258

URL : https://www.jstage.jst.go.jp/article/ieejfms1990/116/3/116_3_258/_pdf

K. Favier, Etude de matériaux composites à base de nanosiliciures de métaux de transition pour la thermoélectricité, Thèse de Doctorat, 2013.

Q. Guo and S. Luo, deficiency, Functional Materials Letters, vol.6, issue.02, pp.8-1550028, 2015.
DOI : 10.1103/PhysRevB.46.6131

URL : https://hal.archives-ouvertes.fr/hal-01424495

P. Ziolkowski, G. Karpinski, T. Dasgupta, and E. Müller, Probing thermopower on the microscale. physica status solidi (a), pp.89-105, 2013.
DOI : 10.1002/pssa.201228512

URL : http://onlinelibrary.wiley.com/doi/10.1002/pssa.201228512/pdf

D. Platzek, G. Karpinski, C. Stiewe, P. Ziolkowski, C. Drasar et al., Potential-Seebeck-microprobe (PSM): measuring the spatial resolution of the Seebeck coefficient and the electric potential, ICT 2005. 24th International Conference on Thermoelectrics, 2005., 2005.
DOI : 10.1109/ICT.2005.1519875

T. Ueda, C. Okamura, Y. Noda, and K. Hasezaki, Effect of Tellurium Doping on the Thermoelectric Properties of ZnSb, Journal of the Japan Institute of Metals, vol.74, issue.2, pp.110-113, 2010.
DOI : 10.2320/jinstmet.74.110

K. Valset, X. Song, and T. G. Finstad, A study of transport properties in Cu and P doped ZnSb, Journal of Applied Physics, vol.1, issue.4, p.45709, 2015.
DOI : 10.1007/s11664-012-2108-4

P. H. Bottger, S. Diplas, E. Flage-larsen, O. Prytz, and T. G. Finstad, Electronic structure of thermoelectric Zn-Sb, Journal of Physics-Condensed Matter, issue.26, p.23, 2011.

A. A. Shabaldin, L. V. Prokof-'eva, G. J. Snyder, P. P. Konstantinov, G. N. Isachenko et al., The Influence of Weak Tin Doping on the Thermoelectric Properties of Zinc Antimonide, Journal of Electronic Materials, vol.2, issue.12, pp.1-4, 2015.
DOI : 10.1016/j.matpr.2015.05.100

M. I. Fedorov, L. V. Prokofieva, Y. I. Ravich, P. P. Konstantinov, D. A. Pshenay-severin et al., Thermoelectric efficiency of intermetallic compound ZnSb. Semiconductors, pp.432-437, 2014.

A. A. Shabaldin, L. V. Prokof-'eva, P. P. Konstantinov, A. T. Burkov, and M. I. Fedorov, Acceptor Impurity of Copper in ZnSb Thermoelectric. Materials Today: Proceedings, 2015, pp.699-704

P. W. Bridgman, Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin, Proceedings of the American academy of arts and sciences, 1925.

D. C. Stockbarger, The Production of Large Single Crystals of Lithium Fluoride, Review of Scientific Instruments, vol.61, issue.3, pp.133-136, 1762.
DOI : 10.2307/25130058

C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, vol.46, issue.1-2, pp.1-184, 2001.
DOI : 10.1016/S0079-6425(99)00010-9

I. Kiyoshi, Method of producing semiconductors and semiconductor elements utilizing electric spark discharge, 1962.

M. Tokita, Mechanism of Spark Plasma Sintering and its application to ceramics Nyn Seramikkasu, pp.43-53, 1997.

G. Delaizir, G. Bernard-granger, J. Monnier, R. Grodzki, O. Kim-hak et al., A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties, Materials Research Bulletin, vol.47, issue.8, pp.47-1954, 2012.
DOI : 10.1016/j.materresbull.2012.04.019

URL : https://hal.archives-ouvertes.fr/emse-00829366

A. B. Blichfeld and B. B. Iversen, Fast direct synthesis and compaction of phase pure thermoelectric ZnSb, Journal of Materials Chemistry C, vol.19, issue.40, pp.10543-10553, 2015.
DOI : 10.1021/cm071435p

P. Gravereau, Introduction à la pratique de la diffraction des rayons X par les poudres, 2011.
URL : https://hal.archives-ouvertes.fr/cel-00671294

J. , Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter, vol.192, issue.1-2, pp.55-69, 1993.
DOI : 10.1016/0921-4526(93)90108-I

J. B. Hastings, W. Thomlinson, and D. E. Cox, Synchrotron X-ray powder diffraction, Journal of Applied Crystallography, vol.17, issue.2, pp.85-95, 1984.
DOI : 10.1107/S0021889884011043

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol.2, issue.2, pp.65-71, 1969.
DOI : 10.1107/S0021889869006558

URL : http://journals.iucr.org/j/issues/1969/02/00/a07067/a07067.pdf

B. H. Toby, R factors in Rietveld analysis: how good is good enough? Powder diffraction, pp.67-70, 2006.
DOI : 10.1154/1.2179804

J. A. Cape and G. W. Lehman, Temperature and Finite Pulse???Time Effects in the Flash Method for Measuring Thermal Diffusivity, Journal of Applied Physics, vol.34, issue.7, pp.34-1909, 1963.
DOI : 10.1063/1.1728417

M. C. Biesinger, L. W. Lau, A. R. Gerson, R. S. Smart, and Z. , Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides, Applied Surface Science, issue.3, pp.257-887, 2010.

K. Masatake, K. Hara, and J. Osugi, Layer growth of ZnSb phase in the Zn-Sb diffusion couple at high pressure, Review of Physical Chemistry of Japan, issue.1, p.47, 1977.

F. Seby and O. Donard, Détermination d'espèces chimiques d'éléments (spéciation) dans l'environnement. Techniques de l'ingénieur. Analyse et caractérisation, p.2007

D. Cadavid and J. E. Rodrìguez, Thermoelectric properties of polycrystalline samples prepared by solid state reaction method, Physica B: Condensed Matter, vol.403, issue.21-22, pp.403-424, 2008.
DOI : 10.1016/j.physb.2008.07.039

G. S. Pomrehn, E. S. Toberer, G. J. Snyder, and A. Van-de-walle, Physical Review B, vol.83, issue.9, p.83, 2011.
DOI : 10.1016/S0925-8388(02)00398-5

J. Lin, X. Li, G. Qiao, Z. Wang, J. S. Carrete et al., Opens the Door to Enhanced Thermoelectric Performance, Journal of the American Chemical Society, vol.136, issue.4, pp.1497-1504, 2014.
DOI : 10.1021/ja410605f

A. Rollet and R. Bouaziz, , 1972.

A. Haloui, Y. Feutelais, and B. Legendre, Experimental study of the ternary system Cd???Te???Zn, Journal of Alloys and Compounds, vol.260, issue.1-2, pp.179-192, 1997.
DOI : 10.1016/S0925-8388(97)00179-5

C. Guo, C. Li, and Z. Du, Thermodynamic Re-modeling of the Sb-Te System Using Associate and Ionic Models, Journal of Electronic Materials, vol.9, issue.Suppl. 7, pp.43-4082, 2014.
DOI : 10.1016/S0364-5916(02)00037-8

R. F. Brebrick, High Temperature Thermodynamic Properties of ZnTe(s), Journal of Phase Equilibria and Diffusion, vol.25, issue.1, pp.525-536, 2011.
DOI : 10.1016/0022-3697(64)90005-8

G. Gulliver, The quantitative effect of rapid cooling upon the constitution of binary alloys, J. Inst. Met, vol.9, issue.1, pp.120-157, 1913.

W. Rostoker and J. R. Dvorak, Interpretation of metallographic structures, 2012.

W. Li, L. Zhou, Y. Li, J. Jiang, and G. Xu, Thermoelectric properties of hot-pressed Zn4Sb3???xTex, Journal of Alloys and Compounds, vol.486, issue.1-2, pp.335-337, 2009.
DOI : 10.1016/j.jallcom.2009.06.145

G. Klancnik and J. Medved, Ternary invariant point at 403 and 455????C in the Al???Sb???Zn system, Journal of Thermal Analysis and Calorimetry, vol.84, issue.1, pp.243-248, 2012.
DOI : 10.1361/105497100770339608

Z. Zhu, X. Su, F. Yin, J. Wang, and C. Wu, Experimental Investigation of the Zn-Al-Sb System at 450????C, Journal of Phase Equilibria and Diffusion, vol.70, issue.3, pp.30-595, 2009.
DOI : 10.2320/matertrans1989.36.432

A. Fischer, E. Scheidt, W. Scherer, D. Benson, Y. Wu et al., Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity, Physical Review B, vol.15, issue.22, pp.91-224309, 2015.
DOI : 10.1002/adfm.201300722

P. Hidnert, Thermal expansion of monocrystalline and polycrystalline antimony, Journal of Research of the National Bureau of Standards, vol.14, issue.5, p.523, 1935.
DOI : 10.6028/jres.014.028

B. L. Zhu, C. S. Xie, A. H. Wang, D. W. Zeng, M. L. Hu et al., Electrical conductivity and gas sensitivity of Zn???Sb???O thick films, Materials Research Bulletin, vol.39, issue.3, pp.39-409, 2004.
DOI : 10.1016/j.materresbull.2003.10.011

J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, Progress in Materials Science, pp.58-2015, 2013.
DOI : 10.1016/j.pmatsci.2013.03.002

, ACS) All Rights Reserved, pp.874-985

A. Iribarren, P. Fernández, and J. Piqueras, Cathodoluminescence study of Te-doped ZnO microstructures grown by a vapour???solid process, Journal of Materials Science, vol.19, issue.12, pp.43-2844, 2008.
DOI : 10.1007/s10853-007-2384-1

F. Jamali-sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Sa?aedi et al., Facile synthesis of different morphologies of Te-doped ZnO nanostructures, Ceramics International, vol.40, issue.6, pp.40-7737, 2014.
DOI : 10.1016/j.ceramint.2013.12.115

G. A. Saunders, C. Miziumski, G. S. Cooper, and A. Lawson, The seebeck coefficients of antimony and arsenic single crystals, Journal of Physics and Chemistry of Solids, issue.8, pp.26-1299, 1965.

A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Special quasirandom structures. physical review letters, pp.353-356, 1990.
DOI : 10.1103/physrevlett.65.353

D. Bernache-assollant, Chimie-physique du frittage, 1993.

F. V. , Powder metallurgy: principles and applications, 1980.

G. Upadhyaya, Powder metallurgy technology, 1997.

U. Anselmi-tamburini, S. Gennari, J. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process, Materials Science and Engineering: A, vol.394, issue.1-2, pp.139-148, 2005.
DOI : 10.1016/j.msea.2004.11.019

S. A. Humphry-baker and C. A. Schuh, Suppression of grain growth in nanocrystalline Bi2Te3 through oxide particle dispersions, Journal of Applied Physics, vol.116, issue.17, pp.116-173505, 2014.
DOI : 10.1201/9780203020647

J. Räthel, M. Herrmann, and W. Beckert, Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST), Journal of the European Ceramic Society, vol.29, issue.8
DOI : 10.1016/j.jeurceramsoc.2008.09.015

, Journal of the European Ceramic Society, vol.29, issue.8, pp.1419-1425, 2009.

W. Yu-cheng, F. Zheng-yi, W. Wei-ming, and Z. Han-xiong, Temperature field distribution in Spark Plasma Sintering of BN, Journal of Wuhan University of Technology-Mater. Sci. Ed., vol.81, issue.3
DOI : 10.2497/jjspm.47.887

. Sci and . Ed, , pp.19-21, 2002.

H. Yin, A. B. Blichfeld, M. Christensen, and B. B. Iversen, ACS Applied Materials & Interfaces, vol.6, issue.13, pp.10542-10548, 2014.
DOI : 10.1021/am502089a

W. Yucheng and F. Zhengyi, Study of temperature field in spark plasma sintering, Materials Science and Engineering: B, vol.90, issue.1-2, pp.34-37, 2002.
DOI : 10.1016/S0921-5107(01)00780-2

J. F. Shackelford and M. K. Muralidhara, Introduction to materials science for engineers, 2005.

G. Danilenko and V. Shevchenko, Thermodynamic Properties of CdSb and ZnSb, Izv. Akad. Nauk SSSR, Neorg. Mater, vol.14, issue.4, pp.627-630, 1978.

K. Mamedova, A. Y. Dzhangirov, O. Dzhafarov, and V. Kostryukov, Study of true heat capacity of ZnSb-CdSb solid solutions in interval from 12 till 300K, 1975.

B. S. De and . Castro, Nanoparticles from Mechanical Attrition, in Synthesis, Functionalization and Surface Treatment of Nanoparticles, 2003.

A. Tonejc, D. Du?evi?, and A. Tonejc, Effects of ball milling on pure antimony, on Ga???Sb alloy and on Ga+Sb powder mixture; oxidation, glass formation and crystallization, Materials Science and Engineering: A, vol.134, pp.1372-1375, 1991.
DOI : 10.1016/0921-5093(91)90993-W

T. Lou, G. Fan, B. Ding, and Z. Hu, The synthesis of NbSi2 by mechanical alloying, Journal of Materials Research, vol.12, issue.05, pp.12-1172, 1997.
DOI : 10.1557/JMR.1997.0162

F. Rouessac and R. Ayral, Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds, Journal of Alloys and Compounds, vol.530, pp.56-62, 2012.
DOI : 10.1016/j.jallcom.2012.03.089

URL : https://hal.archives-ouvertes.fr/hal-00681653

A. Nouri and C. Wen, Surfactants in Mechanical Alloying/Milling: A Catch-22 Situation, Critical Reviews in Solid State and Materials Sciences, vol.29, issue.2, pp.81-108, 2014.
DOI : 10.1016/j.powtec.2011.10.050

Z. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, vol.19, issue.452, pp.41-763, 2006.
DOI : 10.1016/j.msea.2004.11.019

S. Bhattacharya, N. H. Gunda, R. Stern, S. Jacobs, R. Chmielowski et al., Achieving optimum carrier concentrations in p-doped SnS thermoelectrics, Physical Chemistry Chemical Physics, vol.53, issue.14, pp.17-9161, 2015.
DOI : 10.1002/anie.201311125

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Applied Physics Letters, vol.87, issue.25, pp.252102-252102, 2005.
DOI : 10.1063/1.371242

X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng et al., Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition, Applied Surface Science, vol.253, issue.11, pp.5067-5069, 2007.
DOI : 10.1016/j.apsusc.2006.11.014

T. Caillat, J. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, Journal of Physics and Chemistry of Solids, vol.58, issue.7, pp.58-1119, 1997.
DOI : 10.1016/S0022-3697(96)00228-4

L. Bjerg, B. B. Iversen, and G. K. Madsen, Physical Review B, vol.4, issue.2, p.24304, 2014.
DOI : 10.1016/j.ssi.2007.01.026

G. Klan?nik and J. Medved, Ternary invariant point at 403 and 455????C in the Al???Sb???Zn system, Journal of Thermal Analysis and Calorimetry, vol.84, issue.1, pp.243-248, 2012.
DOI : 10.1361/105497100770339608

W. M. Haynes, CRC handbook of chemistry and physics, 2011.

D. Errandonea, A. Segura, D. Martínez-garcía, V. Muñoz-san, and . Jose, Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases, Physical Review B, vol.54, issue.12, pp.79-125203, 2009.
DOI : 10.1080/08957950212802

L. I. Berger, Semiconductor materials, 1996.

A. Bhaskar, Y. Pai, W. Wu, C. Chang, and C. Liu, Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe, Ceramics International, vol.42, issue.1, pp.1070-1076, 2016.
DOI : 10.1016/j.ceramint.2015.09.032