, 15, where the standard view results is compared with the image original randomly acquired. The implementation of these two ideas shows an accuracy of 86, 45% compared to amelard et al. [105] where the authors used illumination, asymmetry and border irregularities and obtained only 81.26%. REFERENCES

G. Capdehourat, A. Corez, A. Bazzano, R. Alonso, and P. Musé, Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions, Pattern Recognition Letters, vol.32, issue.16, pp.2187-2196, 2011.
DOI : 10.1016/j.patrec.2011.06.015

, Skin Cancer Fundation Skin cancer information [Online; accessed on 2016, 2016.

S. Alzubi, N. Islam, and M. Abbod, Multiresolution Analysis Using Wavelet, Ridgelet, and Curvelet Transforms for Medical Image Segmentation, International Journal of Biomedical Imaging, vol.357, issue.1760, 2011.
DOI : 10.1016/j.compbiomed.2006.08.002

, [Online; accessed on 2015, Dermatology Information System, 2015.

. Dermquest, [Online; accessed on 2015, 2015.

. World and O. Health, How common is skin cancer?, 2015. [Online ; accessed on 08, 2016.

, Collection état des lieux et des connaissances, ouvrage collectif édité par l'inca, 2013.

, Catalogue-des-publications/Les-cancers-en-France-Edition, 2013.

J. L. , G. Arroyo, and B. García-zapirain, Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis, Computers in biology and medicine, vol.44, pp.144-157, 2014.

W. Y. Haur-yueh-lee, . Chay, . Tang, S. Chio, and . Tan,

, Melanoma: differences between asian and caucasian patients, Ann Acad Med Singapore, vol.41, issue.1, pp.17-20, 2012.

S. Darrell, J. Rigel, R. Russak, and . Friedman, The evolution of melanoma diagnosis: 25 years beyond the abcds, CA: a cancer journal for clinicians, vol.60, issue.5, pp.301-316, 2010.

, American cancer society available online, statistics 2013

K. Korotkov and R. Garcia, Computerized analysis of pigmented skin lesions: A review, Artificial Intelligence in Medicine, vol.56, issue.2, pp.69-90, 2012.
DOI : 10.1016/j.artmed.2012.08.002

J. Robert, . Friedman, S. Darrell, A. W. Rigel, and . Kopf, Early detection of malignant melanoma: The role of physician examination and self-examination of the skin, CA: a cancer journal for clinicians, vol.35, issue.3, pp.130-151, 1985.

W. Stolz, . Riemann, . Cognetta, . Pillet, . Abmayr et al., Abcd rule of dermatoscopy-a new practical method for early recognition of malignant-melanoma, European Journal of Dermatology, vol.4, issue.7, pp.521-527, 1994.

A. Gadeliya-goodson and D. Grossman, Strategies for early melanoma detection: Approaches to the patient with nevi, Journal of the American Academy of Dermatology, vol.60, issue.5, pp.719-735, 2009.
DOI : 10.1016/j.jaad.2008.10.065

I. Maglogiannis, N. Charalampos, and . Doukas, Overview of Advanced Computer Vision Systems for Skin Lesions Characterization, IEEE Transactions on Information Technology in Biomedicine, vol.13, issue.5, pp.721-733, 2009.
DOI : 10.1109/TITB.2009.2017529

G. Argenziano, G. Fabbrocini, P. Carli, V. D. Giorgi, E. Sammarco et al., Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions, Archives of Dermatology, vol.134, issue.12, pp.1563-1570, 1998.
DOI : 10.1001/archderm.134.12.1563

R. Mackie and V. Doherty, Seven-point checklist for melanoma, Clinical and Experimental Dermatology, vol.60, issue.2, pp.151-152, 1991.
DOI : 10.1038/bjc.1989.298

L. R. , B. Paniagua, D. Natalia-leguizamón-correa, D. P. Pinto-roa, J. Luis-vázquez-noguera et al., Computerized medical diagnosis of melanocytic lesions based on the abcd approach, CLEI Electronic Journal, vol.19, issue.2, pp.6-6, 2016.

Z. She, A. Liu, and . Damatoa, Combination of features from skin pattern and ABCD analysis for lesion classification, Skin Research and Technology, vol.13, issue.1, pp.25-33, 2007.
DOI : 10.1016/B0-12-227240-4/00132-5

URL : http://collections.crest.ac.uk/200/1/fulltext.pdf

G. Argenziano, C. Catricalà, . Ardigo, . Buccini, . De-simone et al., Seven-point checklist of dermoscopy revisited, British Journal of Dermatology, vol.62, issue.4, pp.785-790, 2011.
DOI : 10.1016/j.jaad.2009.08.049

J. L. , G. , and B. Garcia-zapirain, Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels. Computer methods and programs in biomedicine, pp.61-69, 2018.

G. Argenziano, I. Zalaudek, R. Corona, and F. Sera,

H. Wellenhof and . Peter-soyer, Vascular structures in skin tumors: a dermoscopy study, Archives of dermatology, vol.140, issue.12, pp.1485-1489, 2004.

K. Doi, Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized medical imaging and graphics, pp.198-211, 2007.

H. Leila, P. Eadie, . Taylor, P. Adam, and . Gibson, A systematic review of computer-assisted diagnosis in diagnostic cancer imaging, European journal of radiology, vol.81, issue.1, pp.70-76, 2012.

H. Greenspan and T. Syeda-mahmood, Medical content-based retrieval for clinical decision support, 2012.
DOI : 10.1007/978-3-642-36678-9

K. Doi, Current status and future potential of computer-aided diagnosis in medical imaging. The British journal of radiology, 2014.

K. Korotkov, Automatic change detection in multiple pigmented skin lesions, 2014.

, [Online; accessed on 10, Cancer Resarch UK. Treating skin cancer, vol.14, 2016.

K. Nabin, M. Mishra, and . Celebi, An overview of melanoma detection in dermoscopy images using image processing and machine learning, 2016.

R. Naheed, . Abbasi, M. Helen, . Shaw, S. Darrell et al., Early diagnosis of cutaneous melanoma: revisiting the abcd criteria, Jama, issue.22, pp.2922771-2776, 2004.

A. Masood and A. , Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms, International Journal of Biomedical Imaging, vol.9, issue.2, 2013.
DOI : 10.1097/00008390-199904000-00009

M. Emre-celebi, . Quan-wen, . Iyatomi, . Shimizu, G. Zhou et al., A state-of-the-art survey on lesion border detection in dermoscopy images, 2015.

M. Fiona, T. Walter, J. Prevost, . Vasconcelos, N. Per et al., Using the 7- point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study, Br J Gen Pract, issue.610, pp.63-345, 2013.

C. Dolianitis, J. Kelly, R. Wolfe, and P. Simpson, Comparative Performance of 4 Dermoscopic Algorithms by Nonexperts for the Diagnosis of Melanocytic Lesions, Archives of Dermatology, vol.141, issue.8, pp.1008-1014, 2005.
DOI : 10.1001/archderm.141.8.1008

P. Carli, . Quercioli, . Sestini, . Stante, . Ricci et al., Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology, British Journal of Dermatology, vol.3, issue.5, pp.981-984, 2003.
DOI : 10.1001/archderm.137.10.1343

M. Emre-celebi, H. Iyatomi, G. Schaefer, V. William, and . Stoecker, Lesion border detection in dermoscopy images. Computerized medical imaging and graphics, pp.148-153, 2009.

T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. Mclean, Dullrazor R : A software approach to hair removal from images. Computers in biology and medicine, pp.533-543, 1997.
DOI : 10.1016/s0010-4825(97)00020-6

P. Wighton, K. Tim, S. Lee, and . Atkins, Dermascopic hair disocclusion using inpainting, Medical Imaging 2008: Image Processing, pp.691427-691427, 2008.
DOI : 10.1117/12.770776

URL : http://www.cs.sfu.ca/~stella/papers/2008/spie.pdf

K. Kiani, R. Ahmad, and . Sharafat, E-shaver: An improved dullrazor R for
DOI : 10.1016/j.compbiomed.2011.01.003

, itally removing dark and light-colored hairs in dermoscopic images. Computers in biology and medicine, pp.139-145, 2011.

M. Taghi, B. Toossi, H. R. Pourreza, H. Zare, M. Sigari et al., An effective hair removal algorithm for dermoscopy images, Skin Research and Technology, vol.19, issue.3, pp.230-235, 2013.

H. Nhi, . Nguyen, K. Tim, S. Lee, and . Atkins, Segmentation of light and dark hair in dermoscopic images: a hybrid approach using a universal kernel, SPIE Medical Imaging. International Society for Optics and Photonics, pp.76234-76234, 2010.

F. Xie, Z. Shi-yin-qin, R. Jiang, and . Meng, PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma, Computerized Medical Imaging and Graphics, vol.33, issue.4, pp.275-282, 2009.
DOI : 10.1016/j.compmedimag.2009.01.003

M. Fiorese, A. Peserico, and . Silletti, VirtualShave: Automated hair removal from digital dermatoscopic images, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5145-5148, 2010.
DOI : 10.1109/IEMBS.2011.6091274

A. Huang, W. Shun-yuen-kwan, M. Chang, M. Liu, G. Chi et al., A robust hair segmentation and removal approach for clinical images of skin lesions, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3315-3318, 2013.
DOI : 10.1109/EMBC.2013.6610250

Q. Abbas, I. F. Celebi, and . García, Hair removal methods: A comparative study for dermoscopy images, Biomedical Signal Processing and Control, vol.6, issue.4, pp.395-404, 2011.
DOI : 10.1016/j.bspc.2011.01.003

Q. Abbas, I. Fondón, and M. Rashid, Unsupervised skin lesions border detection via two-dimensional image analysis. Computer methods and programs in biomedicine, pp.1-15, 2011.
DOI : 10.1016/j.cmpb.2010.06.016

Q. Abbas, I. F. Garcia, W. Celebi, and . Ahmad, A Feature-Preserving Hair Removal Algorithm for Dermoscopy Images, Skin Research and Technology, vol.4, issue.1, pp.27-36, 2013.
DOI : 10.1109/TSMC.1974.5408463

C. Barata, J. S. Marques, and J. Rozeira, A System for the Detection of Pigment Network in Dermoscopy Images Using Directional Filters, IEEE Transactions on Biomedical Engineering, vol.59, issue.10, pp.592744-2754, 2012.
DOI : 10.1109/TBME.2012.2209423

D. Delgado-gómez, C. Butakoff, W. Bjarne-kjaer-ersboll, and . Stoecker, Independent Histogram Pursuit for Segmentation of Skin Lesions, IEEE Transactions on Biomedical Engineering, vol.55, issue.1, pp.157-161, 2008.
DOI : 10.1109/TBME.2007.910651

M. Emre-celebi, H. Iyatomi, and G. Schaefer, Contrast enhancement in dermoscopy images by maximizing a histogram bimodality measure, 16th IEEE International Conference on Image Processing (ICIP), pp.2601-2604, 2009.

A. Madooei, S. Mark, M. Drew, S. Sadeghi, and . Atkins, Automated pre?processing method for dermoscopic images and its application to pigmented skin lesion segmentation, Color and Imaging Conference, pp.158-163, 2012.

J. Koehoorn, C. André, D. Sobiecki, A. Boda, S. Diaconeasa et al., Automated Digital Hair Removal by Threshold Decomposition and Morphological Analysis, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.15-26, 2015.
DOI : 10.1007/978-3-319-18720-4_2

H. Mirzaalian, K. Tim, G. Lee, and . Hamarneh, Hair Enhancement in Dermoscopic Images Using Dual-Channel Quaternion Tubularness Filters and MRF-Based Multilabel Optimization, IEEE Transactions on Image Processing, vol.23, issue.12, pp.5486-5496, 2014.
DOI : 10.1109/TIP.2014.2362054

URL : http://www.cs.sfu.ca/%7Ehamarneh/ecopy/tip2014.pdf

F. Alejandro, . Frangi, J. Wiro, . Niessen, L. Koen et al., Multiscale vessel enhancement filtering, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.130-137

A. Huang, W. Chang, H. Liu, and G. Chen, Capillary detection for clinical images of basal cell carcinoma, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.306-309, 2012.
DOI : 10.1109/ISBI.2012.6235545

A. Telea, An Image Inpainting Technique Based on the Fast Marching Method, Journal of Graphics Tools, vol.93, issue.4, pp.23-34, 2004.
DOI : 10.1073/pnas.93.4.1591

URL : https://pure.rug.nl/ws/files/14404904/2004JGraphToolsTelea.pdf

K. Tim, E. Lee, and . Claridge, Predictive power of irregular border shapes for malignant melanomas, Skin Research and Technology, vol.11, issue.1, pp.1-8, 2005.

S. Lankton and A. Tannenbaum, Localizing Region-Based Active Contours, IEEE Transactions on Image Processing, vol.17, issue.11, pp.2029-2039, 2008.
DOI : 10.1109/TIP.2008.2004611

URL : http://www.shawnlankton.com/wp-content/uploads/articles/lankton-lrbac-TIP-2008.pdf

F. Tony, . Chan, A. Luminita, and . Vese, Active contours without edges, IEEE Transactions on image processing, vol.10, issue.2, pp.266-277, 2001.

A. Luminita, . Vese, F. Tony, and . Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International journal of computer vision, vol.50, issue.3, pp.271-293, 2002.

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1109/TPAMI.1984.4767596

URL : https://dash.harvard.edu/bitstream/handle/1/3637121/Mumford_OptimalApproxPiece.pdf?sequence=1

A. Safi, M. Baust, O. Pauly, V. Castaneda, T. Lasser et al., Computer???Aided Diagnosis of Pigmented Skin Dermoscopic Images, MICCAI International Workshop on Medical Content-Based Retrieval for Clinical Decision Support, pp.105-115, 2011.
DOI : 10.1017/CBO9780511801389

F. Li, C. Shen, and C. Li, Multiphase Soft Segmentation with Total Variation and H 1 Regularization, Journal of Mathematical Imaging and Vision, vol.18, issue.3, pp.98-111, 2010.
DOI : 10.1007/s10851-010-0195-5

URL : https://link.springer.com/content/pdf/10.1007%2Fs10851-010-0195-5.pdf

S. H. Kang and R. March, Multiphase image segmentation via equally distanced multiple well potential, Journal of Visual Communication and Image Representation, vol.25, issue.6, pp.1446-1459, 2014.
DOI : 10.1016/j.jvcir.2014.04.008

M. Silveira, C. Jacinto, J. S. Nascimento, . Marques, R. André et al., Comparison of Segmentation Methods for Melanoma Diagnosis in Dermoscopy Images, IEEE Journal of Selected Topics in Signal Processing, vol.3, issue.1
DOI : 10.1109/JSTSP.2008.2011119

, IEEE Journal of Selected Topics in Signal Processing, vol.3, issue.1, pp.35-45, 2009.

F. Adjed, I. Faye, and F. Ababsa, Segmentation of skin cancer images using an extension of Chan and Vese model, 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), pp.442-447, 2015.
DOI : 10.1109/ICITEED.2015.7408987

URL : https://hal.archives-ouvertes.fr/hal-01319727

H. Castillejos, V. Ponomaryov, L. Nino-de-rivera, and V. Golikov, Wavelet transform fuzzy algorithms for dermoscopic image segmentation. Computational and mathematical methods in medicine, 2012.

G. Stephane and . Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, vol.11, issue.7, pp.674-693, 1989.

L. Ma, B. Qin, W. Xu, and L. Zhu, Multi-scale descriptors for contour irregularity of skin lesion using wavelet decomposition, 2010 3rd International Conference on Biomedical Engineering and Informatics, pp.414-418, 2010.
DOI : 10.1109/BMEI.2010.5639551

L. Ma, C. Richard, and . Staunton, Analysis of the contour structural irregularity of skin lesions using wavelet decomposition, Pattern Recognition, vol.46, issue.1, pp.98-106, 2013.
DOI : 10.1016/j.patcog.2012.07.001

G. Strang and T. Nguyen, Wavelets and filter banks, SIAM, 1996.

S. Mallat, A wavelet tour of signal processing. Academic press, 1999.

J. Starck, J. Emmanuel, . Candès, L. David, and . Donoho, The curvelet transform for image denoising, IEEE Transactions on Image Processing, vol.11, issue.6, pp.670-684, 2002.
DOI : 10.1109/TIP.2002.1014998

M. Mahmoud, M. Jumaily, and . Takruri, The automatic identification of melanoma by wavelet and curvelet analysis: Study based on neural network classification, 2011 11th International Conference on Hybrid Intelligent Systems (HIS), p.2013
DOI : 10.1109/HIS.2011.6122188

B. Erkol, H. Randy, J. Moss, . Stanley, V. William et al., Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes, Skin Research and Technology, vol.8, issue.1, pp.17-26, 2005.
DOI : 10.1007/978-1-4612-6333-3

URL : http://europepmc.org/articles/pmc3184888?pdf=render

P. Alan, . Mangan, T. Ross, and . Whitaker, Partitioning 3d surface meshes using watershed segmentation, IEEE Transactions on Visualization and Computer Graphics, vol.5, issue.4, pp.308-321, 1999.

F. Meyer and S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation, vol.1, issue.1, pp.21-46, 1990.
DOI : 10.1016/1047-3203(90)90014-M

V. Grau, . Mewes, R. Alcaniz, . Kikinis, K. Simon et al., Improved Watershed Transform for Medical Image Segmentation Using Prior Information, IEEE Transactions on Medical Imaging, vol.23, issue.4, pp.447-458, 2004.
DOI : 10.1109/TMI.2004.824224

M. Pesaresi and J. A. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.2, pp.309-320, 2001.
DOI : 10.1109/36.905239

K. Sirts and S. Goldwater, Minimally-supervised morphological segmentation using adaptor grammars, Transactions of the Association for Computational Linguistics, vol.1, pp.255-266, 2013.

M. Emre-celebi, Q. Wen, S. Hwang, H. Iyatomi, and G. Schaefer, Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods, Skin Research and Technology, vol.27, issue.1, pp.252-258, 2013.
DOI : 10.1016/S0010-4825(97)00020-6

H. Ganster, R. Pinz, E. Rohrer, M. Wildling, H. Binder et al., Automated melanoma recognition, IEEE Transactions on Medical Imaging, vol.20, issue.3, pp.233-239, 2001.
DOI : 10.1109/42.918473

URL : http://www.emt.tu-graz.ac.at/~pinz/onlinepapers/IEEETMI01.pdf

P. Schmid, Lesion detection in dermatoscopic images using anisotropic diffusion and morphological flooding, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), pp.449-453, 1999.
DOI : 10.1109/ICIP.1999.817154

. Jagat-narain-kapur, K. Prasanna, . Sahoo, K. Andrew, and . Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics, and image processing, pp.273-285, 1985.

M. Emre-celebi, . Aslandogan, V. William, H. Stoecker, H. Iyatomi et al., Unsupervised border detection in dermoscopy images, Skin Research and Technology, vol.1, issue.4, pp.454-462, 2007.
DOI : 10.1034/j.1600-0846.2002.00334.x

R. Garnavi, M. Aldeen, G. Celebi, S. Varigos, and . Finch, Border detection in dermoscopy images using hybrid thresholding on optimized color channels, Computerized Medical Imaging and Graphics, vol.35, issue.2, pp.105-115, 2011.
DOI : 10.1016/j.compmedimag.2010.08.001

Q. Abbas, I. F. Garcia, W. Celebi, Q. Ahmad, and . Mushtaq, Unified approach for lesion border detection based on mixture modeling and local entropy thresholding, Skin Research and Technology, vol.43, issue.3, pp.314-319, 2013.
DOI : 10.1088/0031-9155/43/8/023

I. Md-amran-hossen-bhuiyan, M. Azad, and . Kamal-uddin, Image processing for skin cancer features extraction, International Journal of Scientific & Engineering Research, vol.4, issue.2, pp.1-6, 2013.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

URL : http://work.caltech.edu/amrit/papers/nsga2.ps.gz

F. Xie and A. C. Bovik, Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm, Pattern Recognition, vol.46, issue.3, pp.1012-1019, 2013.
DOI : 10.1016/j.patcog.2012.08.012

M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision, Cengage Learning, 2014.
DOI : 10.1007/978-1-4899-3216-7

H. Wang, X. Chen, H. Randy, J. Moss, . Stanley et al., Watershed segmentation of dermoscopy images using a watershed technique, Skin Research and Technology, vol.16, issue.3, pp.378-384, 2010.
DOI : 10.1111/j.1600-0846.2010.00445.x

URL : http://europepmc.org/articles/pmc3160671?pdf=render

H. Zhou, G. Schaefer, H. Abdul, . Sadka, and . Celebi, Anisotropic Mean Shift Based Fuzzy C-Means Segmentation of Dermoscopy Images, IEEE Journal of Selected Topics in Signal Processing, vol.3, issue.1, pp.26-34, 2009.
DOI : 10.1109/JSTSP.2008.2010631

URL : https://pure.qub.ac.uk/portal/files/589373/IEEE_JSTSP_2009.pdf

A. Sobiecki, A. Jalba, D. Boda, A. Diaconeasa, and A. Telea, Gap-sensitive segmentation and restoration of digital images, TPCG, pp.1-8, 2014.

J. Glaister, A. Wong, A. David, and . Clausi, Segmentation of Skin Lesions From Digital Images Using Joint Statistical Texture Distinctiveness, IEEE Transactions on Biomedical Engineering, vol.61, issue.4, pp.1220-1230, 2014.
DOI : 10.1109/TBME.2013.2297622

H. Zhou, M. Chen, L. Zou, R. Gass, L. Ferris et al.,

, Biomedical Imaging: From Nano to Macro 5th IEEE International Symposium on, pp.800-803, 2008.

J. Qi, M. Le, C. Li, and P. Zhou, Global and local information based deep network for skin lesion segmentation, 2017.

M. Kathy, P. Clawson, and . Morrow, , p.142

. Dolan, Analysis of pigmented skin lesion border irregularity using the harmonic wavelet transform, Machine Vision and Image Processing Conference, 2009.

, IMVIP'09. 13th International, pp.18-23, 2009.

E. David and . Newland, Harmonic wavelet analysis, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp.203-225, 1993.

R. Chakravorty, S. Liang, M. Abedini, and R. Garnavi, Dermatologistlike feature extraction from skin lesion for improved asymmetry classification in ph 2 database, 2016 IEEE 38th Annual International Conference of the, pp.3855-3858, 2016.

T. Vincent, . Ng, Y. Benny, . Fung, K. Tim et al., Determining the asymmetry of skin lesion with fuzzy borders. Computers in biology and medicine, pp.103-120, 2005.

S. Sankaran and G. Sethumadhavan, Quantifications of asymmetries on the spectral bands of malignant melanoma using six sigma threshold as preprocessor, Third International Conference on Computational Intelligence and Information Technology (CIIT 2013), pp.80-86, 2013.
DOI : 10.1049/cp.2013.2575

W. Chang, A. Huang, C. Yang, C. Lee, Y. Chen et al., Computer-Aided Diagnosis of Skin Lesions Using Conventional Digital Photography: A Reliability and Feasibility Study, PLoS ONE, vol.8, issue.11, p.76212, 2013.
DOI : 10.1371/journal.pone.0076212.s003

R. Amelard, J. Glaister, A. Wong, A. David, and . Clausi,

, Melanoma decision support using lighting-corrected intuitive feature models, Computer Vision Techniques for the Diagnosis of Skin Cancer, pp.193-219

M. Jafari, . Samavi, . Karimi, . Smr-soroushmehr, K. Ward et al., Automatic detection of melanoma using broad extraction of features from digital images, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.1357-1360, 2016.
DOI : 10.1109/EMBC.2016.7590959

J. Jaworek-korjakowska and R. Tadeusiewicz, Determination of border irregularity in dermoscopic color images of pigmented skin lesions, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.6459-6462, 2014.
DOI : 10.1109/EMBC.2014.6945107

K. Tim, . Lee, I. David, S. Mclean, and . Atkins, Irregularity index: a new border irregularity measure for cutaneous melanocytic lesions, Medical image analysis, vol.7, issue.1, pp.47-64, 2003.

T. Holmstrom, A survey and evaluation of features for the diagnosis of malignant melanoma, 2005.

S. Benjamin, E. Aribisala, and . Claridge, A border irregularity measure using a modified conditional entropy method as a malignant melanoma predictor, International Conference Image Analysis and Recognition, pp.914-921

Y. Zhou, M. Smith, L. Smith, and R. Warr, A new method describing border irregularity of pigmented lesions, Skin Research and Technology, vol.16, issue.1, pp.66-76, 2010.
DOI : 10.1111/j.1600-0846.2009.00403.x

Y. Cheng, R. Swamisai, E. Scott, . Umbaugh, H. Randy et al., Skin lesion classification using relative color features, Skin Research and Technology, vol.12, issue.0, pp.53-64, 2008.
DOI : 10.1067/mjd.2001.110395

URL : http://europepmc.org/articles/pmc3184884?pdf=render

J. Andrew, . Round, W. Andrew, . Duller, J. Peter et al., Lesion classification using skin patterning, Skin research and technology, vol.6, issue.4, pp.183-192, 2000.

Y. Chang, J. Stanley, H. Randy, W. Moss, and . Van-stoecker, A systematic heuristic approach for feature selection for melanoma discrimination using clinical images, Skin Research and Technology, vol.12, issue.5, pp.165-178, 2005.
DOI : 10.1067/mjd.2001.110395

URL : http://europepmc.org/articles/pmc3193077?pdf=render

R. Stanley, R. H. Moss, W. Van-stoecker, and C. Aggarwal, A fuzzy-based histogram analysis technique for skin lesion discrimination in dermatology clinical images, Computerized Medical Imaging and Graphics, vol.27, issue.5, pp.387-396, 2003.
DOI : 10.1016/S0895-6111(03)00030-2

URL : http://europepmc.org/articles/pmc3184460?pdf=render

J. Chen, J. Stanley, H. Randy, W. Moss, and . Van-stoecker, Colour analysis of skin lesion regions for melanoma discrimination in clinical images, Skin Research and Technology, vol.14, issue.2, pp.94-104, 2003.
DOI : 10.1001/archderm.111.10.1291

E. Claridge, S. Cotton, P. Hall, and M. Moncrieff, From colour to tissue histology: Physics-based interpretation of images of pigmented skin lesions, Medical Image Analysis, vol.7, issue.4, pp.489-502, 2003.
DOI : 10.1016/S1361-8415(03)00033-1

URL : http://www.cs.bham.ac.uk/~exc/Research/Papers/miccai2002.pdf

O. Abuzaghleh, D. Buket, M. Barkana, and . Faezipour, Automated skin lesion analysis based on color and shape geometry feature set for melanoma early detection and prevention, IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, pp.1-6, 2014.
DOI : 10.1109/LISAT.2014.6845199

. Brian-d-'alessandro, P. Atam, N. Dhawan, and . Mullani, Computer aided analysis of epi-illumination and transillumination images of skin lesions for diagnosis of skin cancers, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3434-3438, 2011.

S. Khakabi, P. Wighton, K. Tim, S. Lee, and . Atkins, Multilevel feature extraction for skin lesion segmentation in dermoscopic images, Medical Imaging 2012: Computer-Aided Diagnosis, 2012.
DOI : 10.1117/12.911664

Q. Abbas, , p.145

G. Ma, Pattern classification of dermoscopy images: A perceptually uniform model, Pattern Recognition, vol.46, issue.1, pp.86-97, 2013.

N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern et al., Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images, International Workshop on Machine Learning in Medical Imaging, pp.118-126, 2015.
DOI : 10.1109/ICPR.2010.751

URL : https://doi.org/10.1007/978-3-319-24888-2_15

T. Ojala, K. Valkealahti, E. Oja, and M. Pietikäinen, Texture discrimination with multidimensional distributions of signed gray-level differences, Pattern Recognition, vol.34, issue.3, pp.727-739, 2001.
DOI : 10.1016/S0031-3203(00)00010-8

T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

V. González-castro, J. Debayle, Y. Wazaefi, M. Rahim, C. Gaudy et al., Automatic classification of skin lesions using geometrical measurements of adaptive neighborhoods and local binary patterns, 2015 IEEE International Conference on Image Processing (ICIP), pp.1722-1726, 2015.
DOI : 10.1109/ICIP.2015.7351095

F. Adjed, I. Faye, F. Ababsa, J. Syed, S. C. Gardezi et al., Classification of skin cancer images using local binary pattern and SVM classifier, AIP Conference Proceedings, p.80006, 2016.
DOI : 10.1023/B:STCO.0000035301.49549.88

URL : https://hal.archives-ouvertes.fr/hal-01423330

M. Sadeghi, K. Tim, D. Lee, H. Mclean, S. Lui et al., Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions, IEEE Transactions on Medical Imaging, vol.32, issue.5, pp.849-861, 2013.
DOI : 10.1109/TMI.2013.2239307

M. Takruri, M. Jumaily, and . Mahmoud, Automatic recognition of melanoma using Support Vector Machines: A study based on Wavelet, Curvelet and color features, 2014 International Conference on Industrial Automation, Information and Communications Technology, p.146
DOI : 10.1109/IAICT.2014.6922110

, 2014 International Conference on, pp.70-75, 2014.

G. Pablo, J. Cavalcanti, and . Scharcanski, Automated prescreening of pigmented skin lesions using standard cameras, Computerized Medical Imaging and Graphics, vol.35, issue.6, pp.481-491, 2011.

S. Sabbaghi, M. Aldeen, and R. Garnavi, A deep bag-of-features model for the classification of melanomas in dermoscopy images, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.1369-1372, 2016.
DOI : 10.1109/EMBC.2016.7590962

S. Sabbaghi, M. Aldeen, R. Garnavi, G. Varigos, C. Doliantis et al., Automated colour identification in melanocytic lesions, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3021-3024, 2015.
DOI : 10.1109/EMBC.2015.7319028

L. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham, Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.1055-1058, 2016.
DOI : 10.1109/ISBI.2016.7493447

Y. Li and L. Shen, Skin lesion analysis towards melanoma detection using deep learning network. arXiv preprint, 2017.
DOI : 10.3390/s18020556

URL : http://www.mdpi.com/1424-8220/18/2/556/pdf

Y. Gal, R. Islam, and Z. Ghahramani, Deep bayesian active learning with image data. arXiv preprint, 2017.

A. Romero-lopez, X. Giro-i-nieto, J. Burdick, and O. Marques, Skin Lesion Classification from Dermoscopic Images Using Deep Learning Techniques, Biomedical Engineering, pp.49-54, 2017.
DOI : 10.2316/P.2017.852-053

A. Esteva, B. Kuprel, A. Roberto, J. Novoa, . Ko et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, issue.7639, p.542115, 2017.
DOI : 10.1038/nature21056

C. Noel, Q. Codella, S. Nguyen, . Pankanti, B. Da-gutman et al., Deep learning ensembles for melanoma recognition in dermoscopy images, IBM Journal of Research and Development, vol.61, issue.4, pp.5-6, 2017.

T. Joachims, Text categorization with Support Vector Machines: Learning with many relevant features, European conference on machine learning, pp.137-142, 1998.
DOI : 10.1007/BFb0026683

URL : http://ranger.uta.edu/~alp/ix/readings/SVMsforTextCategorization.pdf

B. Yegnanarayana, Artificial neural networks, PHI Learning Pvt. Ltd, 2009.

C. Barata, M. Ruela, M. Francisco, T. Mendonça, and J. S. Marques, Two Systems for the Detection of Melanomas in Dermoscopy Images Using Texture and Color Features, IEEE Systems Journal, vol.8, issue.3, pp.965-979, 2014.
DOI : 10.1109/JSYST.2013.2271540

C. Barata, J. S. Celebi, and . Marques, Improving dermoscopy image classification using color constancy, IEEE journal of biomedical and health informatics, vol.19, issue.3, pp.1146-1152, 2015.

M. Ferri and I. Stanganelli, Size Functions for the Morphological Analysis of Melanocytic Lesions, International Journal of Biomedical Imaging, vol.25, issue.6, 2010.
DOI : 10.1159/000018308

URL : http://downloads.hindawi.com/journals/ijbi/2010/621357.pdf

G. Surowka and K. Grzesiak-kopec, Different Learning Paradigms for the Classification of Melanoid Skin Lesions Using Wavelets, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3136-3139, 2007.
DOI : 10.1109/IEMBS.2007.4352994

G. Ilias, . Maglogiannis, P. Elias, and . Zafiropoulos, Characterization of digital medical images utilizing support vector machines, BMC Medical Informatics and Decision Making, vol.4, issue.11, 2004.

G. Surowka, Supervised learning of melanocytic skin lesion images, 2008 Conference on Human System Interactions, pp.121-125, 2008.
DOI : 10.1109/HSI.2008.4581420

E. La-torre, B. Caputo, and T. Tommasi, Learning methods for melanoma recognition, International Journal of Imaging Systems and Technology, vol.27, issue.4, pp.316-322, 2010.
DOI : 10.1148/radiology.143.1.7063747

H. Iyatomi, H. Oka, M. Celebi, M. Hashimoto, M. Hagiwara et al., An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm, Computerized Medical Imaging and Graphics, vol.32, issue.7, pp.566-579, 2008.
DOI : 10.1016/j.compmedimag.2008.06.005

S. Dreiseitl, L. Ohno-machado, H. Kittler, S. Vinterbo, H. Billhardt et al., A Comparison of Machine Learning Methods for the Diagnosis of Pigmented Skin Lesions, Journal of Biomedical Informatics, vol.34, issue.1, pp.28-36, 2001.
DOI : 10.1006/jbin.2001.1004

T. Mendonça, M. Pedro, J. S. Ferreira, . Marques, R. André et al., Ph 2-a dermoscopic image database for research and benchmarking, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.5437-5440, 2013.

G. Argenziano, . Soyer, D. V-de-giorgi, P. Piccolo, M. Carli et al., Interactive atlas of dermoscopy (book and cd-rom, 2000.

J. Kawahara and G. Hamarneh, Multi-resolution-Tract CNN with Hybrid Pretrained and Skin-Lesion Trained Layers, International Workshop on Machine Learning in Medical Imaging, pp.164-171, 2016.
DOI : 10.1007/s11263-015-0816-y

L. Bar, F. Tony, G. Chan, M. Chung, N. Jung et al., Mumford and shah model and its applications to image segmentation and image restoration, Handbook of Mathematical Methods in Imaging, pp.1-52, 2014.
DOI : 10.1007/978-0-387-92920-0_25

J. Duan, Z. Pan, X. Yin, W. Wei, and G. Wang, , p.149

, Some fast projection methods based on chan-vese model for image segmentation, EURASIP Journal on Image and Video Processing, vol.2014, issue.1, p.7, 2014.

A. Grinsted, C. John, S. Moore, and . Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, pp.561-566, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00302394

J. Ribeiro-kleber-mariano, S. Roberto-alves-braga, H. Thelma, and . Graham, Comparison between fourier and wavelets transforms in biospeckle signals, Applied Mathematics, 2013.

A. Grossmann and J. Morlet, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM Journal on Mathematical Analysis, vol.15, issue.4, pp.723-736, 1984.
DOI : 10.1137/0515056

N. Minh, M. Do, and . Vetterli, The finite ridgelet transform for image representation, IEEE Transactions on image Processing, vol.12, issue.1, pp.16-28, 2003.

J. Emmanuel, . Candès, L. David, and . Donoho, Ridgelets: A key to higherdimensional intermittency?, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.357, pp.2495-2509, 1760.

J. Emmanuel, . Candes, L. David, and . Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges, 2000.

E. Candes, L. Demanet, D. Donoho, and L. Ying, Fast Discrete Curvelet Transforms, Multiscale Modeling & Simulation, vol.5, issue.3, pp.861-899, 2006.
DOI : 10.1137/05064182X

T. Guha and Q. Wu, Curvelet Based Feature Extraction, 2010.
DOI : 10.5772/8940

T. Ahonen, A. Hadid, and M. Pietikainen, , p.150

, local binary patterns: Application to face recognition, IEEE transactions on pattern analysis and machine intelligence, vol.28, issue.12, pp.2037-2041, 2006.

A. Porebski, N. Vandenbroucke, and L. Macaire, Haralick feature extraction from LBP images for color texture classification, 2008 First Workshops on Image Processing Theory, Tools and Applications, pp.1-8, 2008.
DOI : 10.1109/IPTA.2008.4743780

URL : https://hal.archives-ouvertes.fr/hal-01937686

M. Heikkilä, M. Pietikäinen, and C. Schmid, Description of Interest Regions with Center-Symmetric Local Binary Patterns, ICVGIP, pp.58-69, 2006.
DOI : 10.1007/11949619_6

L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Li, Face detection based on multi-block lbp representation Advances in biometrics, pp.11-18, 2007.

L. Wolf, T. Hassner, and Y. Taigman, Descriptor based methods in the wild In Workshop on faces in'real-life'images: Detection, alignment, and recognition, 2008.

M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer vision using local binary patterns, 2011.

K. Anil, R. P. Jain, J. Duin, and . Mao, Statistical pattern recognition: A review, IEEE Transactions on pattern analysis and machine intelligence, vol.22, issue.1, pp.4-37, 2000.

J. Alex, B. Smola, and . Schölkopf, A tutorial on support vector regression, Statistics and computing, vol.14, issue.3, pp.199-222, 2004.

S. Haykin and N. Network, A comprehensive foundation, Neural Networks, vol.2, 2004.

A. Abraham, Artificial neural networks. handbook of measuring system design, 2005.

D. Kriesel, A brief Introduction to Neural Networks. dkriesel.com, 2005.

H. Peter, R. Sydenham, and . Thorn, Handbook of measuring system design, 2005.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Ijcai, pp.1137-1145, 1995.

P. Burman, -fold cross-validation and the repeated learning-testing methods, Biometrika, vol.76, issue.3, pp.503-514, 1989.
DOI : 10.1093/biomet/76.3.503

J. Jianhong and . Shen, A stochastic-variational model for soft mumford-shah segmentation, International Journal of Biomedical Imaging, 2006.

T. Mendonça, F. , M. Ferreira, P. , A. Marcal et al., PH2: A Public Database for the Analysis of Dermoscopic Images, Dermoscopy Image Analysis (M. E. Celebi, T. Mendonca, and J. S
DOI : 10.1201/b19107-14

. Marques, , pp.419-439, 2015.

X. Wang, D. Huang, and H. Xu, An efficient local Chan???Vese model for image segmentation, Pattern Recognition, vol.43, issue.3, pp.603-618, 2010.
DOI : 10.1016/j.patcog.2009.08.002

W. Liu, P. John, . Dowling, K. William, . Murray et al., Rate of Growth in Melanomas, Archives of Dermatology, vol.142, issue.12, pp.1551-1558, 2006.
DOI : 10.1001/archderm.142.12.1551

S. Li and B. Yang, Multifocus image fusion by combining curvelet and wavelet transform, Pattern Recognition Letters, vol.29, issue.9, pp.1295-1301, 2008.
DOI : 10.1016/j.patrec.2008.02.002

M. Jalal, J. Fadili, and . Starck, Curvelets and ridgelets, 2009.