, Bibliographiques

R. Thèse-de and . Monthéard, Récupération d'énergie aéroacoustique et thermique pour capteurs sans fil embarqué sur avion

Y. S. Yoon, *. , W. I. Cho, J. H. Lim, and D. J. Choi, Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films, Journal of Power Sources, vol.101, issue.1, pp.126-129, 2001.
DOI : 10.1016/S0378-7753(01)00484-0

H. J. In, S. Kumar, Y. Shao-horn, *. , and G. Barbastathis, Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes, Applied Physics Letters, vol.88, issue.8, p.83104, 2006.
DOI : 10.1016/S0013-4686(00)00354-6

C. C. Ho, D. Steingard, J. Evans, and P. Wright, Tailoring Electrochemical Capacitor Energy Storage Using Direct Write Dispenser Printing, ECS Transactions, pp.35-47, 2008.
DOI : 10.1149/1.2985625

H. Thèse-de and . Durou, Vers l'autonomie énergétique des réseaux de capteurs embarqués : conception et intégration d'un générateur piézoélectrique et d'un micro-dispositif de stockage capacitif en technologie silicium

T. De and P. Huang, On-chip micro-supercapacitors based on nano-structured carbon materials

D. Pech, M. Brunet, *. , P. L. Taberna, P. Simon et al., Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, pp.1266-1269, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

D. Pech, M. Brunet, *. , H. Durou, P. Huang et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, vol.4, issue.9, pp.651-654, 2010.
DOI : 10.1038/nnano.2010.162

URL : https://hal.archives-ouvertes.fr/hal-00869530

D. Pech, *. , C. Lethien, and T. Brousse, Nouveaux types d'électrodes pour les microsupercondensateurs, Techniques de l'Ingénieur, pp.1-12, 2017.

N. A. Kyeremateng, T. Brousse, D. Pech, and *. , Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nature Nanotechnology, vol.9, issue.1, pp.7-15, 2017.
DOI : 10.1039/C6EE00615A

URL : https://hal.archives-ouvertes.fr/hal-01720883

]. H. Nishide, K. Oyaizu, and *. , MATERIALS SCIENCE: Toward Flexible Batteries, Science, vol.319, issue.5864, pp.737-738, 2008.
DOI : 10.1126/science.1151831

]. M. Brunet and D. Pech, Micro-supercondensateurs : enjeux technologiques et applications, Techniques de l'Ingénieur, pp.1-10, 2012.

D. Pech, M. Brunet, *. , P. L. Taberna, P. Simon et al., Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, pp.1266-1269, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

Y. Gogotsi, *. , A. Nikitin, H. Ye, W. Zhou et al., Nanoporous carbide-derived carbon with tunable pore size, Nature Materials, vol.53, issue.9, pp.591-594, 2003.
DOI : 10.1063/1.1674108

J. Chmiola, G. Yushin, Y. Gogotsi, *. , C. Portet et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.
DOI : 10.1126/science.1132195

P. Huang, M. Heon, D. Pech, M. Brunet, *. et al., Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips, Journal of Power Sources, vol.225, pp.240-244, 2013.
DOI : 10.1016/j.jpowsour.2012.10.020

URL : https://hal.archives-ouvertes.fr/hal-01159879

P. Huang, D. Pech, R. Lin, J. K. Mcdonough, M. Brunet et al., On-chip micro-supercapacitors for operation in a wide temperature range, Electrochemistry Communications, vol.36, pp.53-56, 2013.
DOI : 10.1016/j.elecom.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-00977350

T. Brousse, *. , D. Bélanger, and J. W. Long, To Be or Not To Be Pseudocapacitive?, Journal of the Electrochemical Society, vol.162, issue.5, pp.5185-5189, 2015.
DOI : 10.1149/2.0201505jes

URL : https://hal.archives-ouvertes.fr/hal-01725986

C. C. Hu, *. , K. H. Chang, M. C. Lin, and Y. T. Wu, for Next Generation Supercapacitors, Nano Letters, vol.6, issue.12, pp.2690-2695, 2006.
DOI : 10.1021/nl061576a

D. Pech, *. , M. Brunet, T. M. Dinh, K. Armstrong et al., Influence of the configuration in planar interdigitated electrochemical micro-capacitors, Journal of Power Sources, vol.230, pp.230-235, 2013.
DOI : 10.1016/j.jpowsour.2012.12.039

URL : https://hal.archives-ouvertes.fr/hal-01753174

T. M. Dinh, K. Armstrong, D. Guay, D. Pech, and *. , High-resolution on-chip supercapacitors with ultra-high scan rate ability, J. Mater. Chem. A, vol.96, issue.20, pp.7170-7174, 2014.
DOI : 10.1016/S0378-7753(00)00682-0

J. H. Lima, D. J. Choi, H. K. Kim, W. I. Choc, Y. S. Yoon et al., Thin Film Supercapacitors Using a Sputtered RuO[sub 2] Electrode, Journal of The Electrochemical Society, vol.19, issue.3, pp.275-278, 2001.
DOI : 10.1002/sia.740190187

M. Thèse-de-ty and . Dinh, Développement de filières technologiques pour la réalisation de micro-supercondensateurs intégrés sur silicium, p.75

T. M. Dinh, F. Mesnilgrente, V. Conédéra, N. A. Kyeremateng, D. Pech et al., Realization of an Asymmetric Interdigitated Electrochemical Micro-Capacitor Based on Carbon Nanotubes and Manganese Oxide, Journal of The Electrochemical Society, vol.162, issue.10, pp.2016-2020, 2015.
DOI : 10.1149/2.0431510jes

URL : http://jes.ecsdl.org/content/162/10/A2016.full.pdf

Y. Gogotsi and P. Simon, True Performance Metrics in Electrochemical Energy Storage, Science, vol.1, issue.5977, pp.917-918, 2011.
DOI : 10.1002/aenm.201100152

URL : https://hal.archives-ouvertes.fr/hal-00714212

S. Makino, Y. Yamauchi, *. , and W. Sugimoto, Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors, Journal of Power Sources, vol.227, pp.153-160, 2013.
DOI : 10.1016/j.jpowsour.2012.11.032

H. Durou, D. Pech, D. Colin, P. Simon, P. L. Taberna et al., Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy, Microsystem Technologies, vol.32, issue.1, pp.467-473, 2012.
DOI : 10.1109/TADVP.2008.2006757

URL : https://hal.archives-ouvertes.fr/hal-01151753

A. Ferris, B. Reig, A. Eddarir, J. F. Pierson, S. Garbarino et al., Nanosupercapacitors, ACS Energy Letters, vol.2, issue.8, pp.1734-1739, 2017.
DOI : 10.1021/acsenergylett.7b00435

D. Pech, D. Guay, T. Brousse, D. Bélanger, and *. , Concept for Charge Storage in Electrochemical Capacitors with Functionalized Carbon Electrodes, Electrochemical and Solid-State Letters, vol.24, issue.11, pp.202-205, 2008.
DOI : 10.1021/jp054513+

S. Osswald, M. Have, Y. Gogotsi, and *. , Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy, Journal of Raman Spectroscopy, vol.21, issue.465, pp.728-736, 2007.
DOI : 10.1002/jrs.1686

URL : http://onlinelibrary.wiley.com/doi/10.1002/jrs.1686/pdf

G. L. O-', H. In, E. Crumlin, G. Barbastathis, Y. Shao-horn et al., Recent advances in microdevices for electrochemical energy conversion and storage, International Journal of Energy Research, vol.31, pp.548-575, 2007.

B. Russ and J. Talbot, An Analysis of the Binder Formation in Electrophoretic Deposition, Journal of The Electrochemical Society, vol.145, issue.4, pp.1253-1257, 1998.
DOI : 10.1149/1.1838447

N. A. Kyeremateng, T. M. Dinh, D. Pech, and *. , nanoparticles with a novel additive for Li-ion microbatteries, RSC Advances, vol.244, issue.76, pp.61502-61507, 2015.
DOI : 10.1016/j.jpowsour.2012.11.037

M. Beidaghi, C. Wang, and *. , Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Advanced Functional Materials, vol.4, issue.21, pp.4501-4510, 2012.
DOI : 10.1109/MPRV.2005.9

J. R. Miller, *. , R. A. Outlaw, and B. C. Holloway, Graphene Double-Layer Capacitor with ac Line-Filtering Performance, Science, vol.65, issue.10, pp.1637-1639, 2010.
DOI : 10.1016/j.jpcs.2003.10.017

K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi et al., Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Scientific Reports, vol.115, issue.1, p.247, 2012.
DOI : 10.1021/jp203848e

URL : http://www.nature.com/articles/srep00247.pdf

Z. Wu, L. Li, Z. Lin, B. Song, Z. Li et al., Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene, Scientific Reports, vol.150, issue.1, p.10983, 2015.
DOI : 10.1149/1.1543948

URL : http://www.nature.com/articles/srep10983.pdf

Z. S. Wu, Z. Liu, K. Parvez, X. Feng, K. Müllen et al., Ultrathin Printable Graphene Supercapacitors with AC Line-Filtering Performance, Advanced Materials, vol.23, issue.24, pp.3669-3675, 2015.
DOI : 10.1002/adma.201100261

. Master-d-'erwan-bertin, Croissance de nanostructures par électrodéposition dans une membrane poreuse d'alumine (AAO)

E. Bertin, S. Garbarino, M. Brunet, D. Pech, D. Guay et al., Electrodeposition and Characterization of Pt(100) Nanostructures, ECS Meeting Abstract, pp.2016-2018, 2016.

. Master-de-lotfi-benali and . Karroubi, Réalisation de microsupercondensateurs RuO2 à base de nanostructures de silicium

L. Benali-karroubi, S. Sadki, P. Gentile, A. Ferris, A. Eddarir et al., 3D RuO2 microsupercapacitor electrodes based on Si nanowires, nanotrunks and nanotrees, th International Symposium on Enhanced Electrochemical Capacitors (ISEE'Cap17), pp.10-14, 2017.

T. M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor et al., Hydrous RuO 2 /carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors, Nano Energy, vol.10, pp.288-294, 2014.
DOI : 10.1016/j.nanoen.2014.10.003

H. Gao, K. Lian, and *. , Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors, Journal of Materials Chemistry, vol.33, issue.4, pp.21272-21278, 2012.
DOI : 10.1107/S0567740877005330

. Thèse-d-'anaïs and . Ferris, Structuration de collecteurs de courant d'or pour la réalisation de micro-supercondensateurs à base d'oxyde de ruthénium

A. Ferris, S. Garbarino, D. Guay, *. , D. Pech et al., Microsupercapacitors with Remarkable Areal Energy, Advanced Materials, vol.22, issue.42, pp.6625-662978, 2015.
DOI : 10.1039/c2jm34840c

M. Monthéard, V. Bafleur, J. M. Boitier, J. M. Dilhac, and . Lafontan, Self-adaptive switched ultracapacitors: a new concept for efficient energy harvesting and storage, PowerMEMS, pp.2-5, 2012.

J. L. Souquet, *. , and M. Duclot, Thin film lithium batteries, Solid State Ionics, vol.148, issue.3-4, pp.375-379, 2002.
DOI : 10.1016/S0167-2738(02)00076-0

URL : https://hal.archives-ouvertes.fr/hal-00418200

W. Hart, H. S. White, *. , B. Dunn, D. R. Rolison-d et al., 3-D Microbatteries, Electrochemistry Communications, vol.5, issue.2, pp.120-123, 2003.
DOI : 10.1016/S1388-2481(02)00556-8

J. W. Long, B. Dunn, D. R. Rolison, H. White, and *. , Three-Dimensional Battery Architectures, Chemical Reviews, vol.104, issue.10, pp.4463-4492, 2004.
DOI : 10.1021/cr020740l

J. Dillon, *. , and K. Sun, Microstructural design considerations for Li-ion battery systems, Current Opinion in Solid State and Materials Science, vol.16, issue.4, pp.153-162, 2012.
DOI : 10.1016/j.cossms.2012.03.002

H. Pikul, Z. H. Gang, J. Cho, P. V. Braun, *. et al., High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes, Nature Communications, vol.19, issue.1, pp.1732-1737, 2013.
DOI : 10.1002/adma.200602792

URL : http://www.nature.com/articles/ncomms2747.pdf

T. S. Sun, B. Y. Wei, J. Y. Ahn, S. J. Seo, *. Dillon et al., 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Advanced Materials, vol.458, issue.33, pp.4539-4543, 2013.
DOI : 10.1038/nature07853

L. Ellis, P. Knauth, T. Djenizian, and *. , Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage, Advanced Materials, vol.159, issue.250, pp.3368-3397, 2014.
DOI : 10.1149/2.052203jes

URL : https://hal.archives-ouvertes.fr/hal-01418540

J. H. Ning, R. Pikul, X. Zhang, S. Li, J. Xu et al., Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries, Proceedings of the National Academy of Sciences, pp.6573-6578, 2015.
DOI : 10.1088/0960-1317/13/3/305

URL : http://www.pnas.org/content/112/21/6573.full.pdf

*. Ferrari, M. Loveridge, S. D. Beattie, M. Jahn, R. J. Dashwood et al., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, Journal of Power Sources, vol.286, pp.25-46, 2015.
DOI : 10.1016/j.jpowsour.2015.03.133

URL : http://wrap.warwick.ac.uk/67788/1/WRAP_Ferrari_review-final_R1-.pdf

E. Létiche, J. Eustache, A. Freixas, V. Demortière, L. De-andrade et al., Atomic Layer Deposition of Functional Layers for on Chip 3D Li-Ion All Solid State Microbattery, Advanced Energy Materials, vol.21, issue.5, p.1601402, 2017.
DOI : 10.1107/S1600577514013939

Q. Liu, *. Weng, X. Lu, X. Sun, L. Zhang et al., Advances on Microsized On-Chip Lithium-Ion Batteries, Small, vol.45, issue.45, p.170184779, 2017.
DOI : 10.1039/C5CS00869G

URL : http://onlinelibrary.wiley.com/doi/10.1002/smll.201701847/pdf

A. Elia, *. , K. Marquardt, K. Hoeppner, S. Fantini et al.,

S. Drillet, R. Passerini, and *. Hahn, An Overview and Future Perspectives of Aluminium Batteries, Advanced Materials, 2016.

, References

J. R. Miller and P. Simon, MATERIALS SCIENCE: Electrochemical Capacitors for Energy Management, Science, vol.321, issue.5889, pp.651-652, 2008.
DOI : 10.1126/science.1158736

B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, vol.45, issue.15-16, pp.2483-2498, 2000.
DOI : 10.1016/S0013-4686(00)00354-6

A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta, vol.53, issue.3, pp.1083-1091, 2007.
DOI : 10.1016/j.electacta.2007.01.011

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

URL : https://hal.archives-ouvertes.fr/hal-02020693

N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, and G. A. Amaratunga, Synthesis of carbon 'onions' in water, Nature, vol.10, issue.6863, pp.506-507, 2001.
DOI : 10.1021/cm9802189

Y. Gogotsi, Carbon NanomaterialsCRC, 2006.

J. Chmiola, C. Largeot, P. Taberna, P. Simon, and Y. Gogotsi, Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors, Science, vol.5, issue.5794, pp.480-483, 2010.
DOI : 10.1126/science.1132195

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.81, issue.8, pp.359-367, 2001.
DOI : 10.1016/S0378-7753(98)00241-9

A. S. Aricò, P. Bruce, B. Scrosati, J. Tarason, and W. Van-schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, vol.351, issue.98, pp.366-377, 2005.
DOI : 10.1016/S0925-8388(02)01030-7

S. Woo-lee, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nature Nanotechnology, vol.8, issue.7, pp.531-537, 2010.
DOI : 10.1557/mrs2002.195

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, Three-Dimensional Battery Architectures, Chemical Reviews, vol.104, issue.10, pp.4463-4492, 2004.
DOI : 10.1021/cr020740l

H. J. In, S. Kumar, Y. Shao-horn, and G. Barbastathis, Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes, Applied Physics Letters, vol.88, issue.8, p.831041, 2006.
DOI : 10.1016/S0013-4686(00)00354-6

D. Pech, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, pp.1266-1269, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

A. Kajdos, A. Kvit, F. Jones, J. Jagiello, and G. Yushin, Tailoring the Pore Alignment for Rapid Ion Transport in Microporous Carbons, Journal of the American Chemical Society, vol.132, issue.10, pp.3252-3253, 2010.
DOI : 10.1021/ja910307x

URL : http://www.nano-tech.gatech.edu/ja910307_ASAP.pdf

R. Dash, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, vol.44, issue.12, pp.2489-2497, 2006.
DOI : 10.1016/j.carbon.2006.04.035

URL : http://repository.upenn.edu/cgi/viewcontent.cgi?article%3D1132%26context%3Dmse_papers

D. N. Futaba, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature Materials, vol.128, issue.12, pp.987-994, 2006.
DOI : 10.1021/ja0643772

URL : http://www.nature.com/nmat/journal/v5/n12/pdf/nmat1782.pdf

X. Li, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, vol.9, issue.12, pp.4359-4363, 2009.
DOI : 10.1021/nl902623y

E. G. Bushueva, Double layer supercapacitor properties of onion-like carbon materials, physica status solidi (b), vol.359, issue.10, pp.2296-2299, 2008.
DOI : 10.1038/359707a0

S. Park, K. Lian, and Y. Gogotsi, Pseudocapacitive Behavior of Carbon Nanoparticles Modified by Phosphomolybdic Acid, Journal of The Electrochemical Society, vol.156, issue.11, pp.921-926, 2009.
DOI : 10.1007/s00339-005-3404-0

M. E. Plonska-brzezinska, A. Palkar, K. Winkler, and L. Echegoyen, Electrochemical Properties of Small Carbon Nano-Onion Films, Electrochemical and Solid-State Letters, vol.72, issue.4, pp.35-38, 2010.
DOI : 10.1021/ja00863a002

D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature, vol.359, issue.6397, pp.707-709, 1992.
DOI : 10.1038/359707a0

V. L. Kuznetsov, Effect of explosion conditions on the structure of detonation soots: Ultradisperse diamond and onion carbon, Carbon, vol.32, issue.5, pp.873-882, 1994.
DOI : 10.1016/0008-6223(94)90044-2

C. Portet, G. Yushin, and Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, vol.45, issue.13, pp.2511-2518, 2007.
DOI : 10.1016/j.carbon.2007.08.024

C. Du and N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition, Nanotechnology, vol.17, issue.21, pp.5314-5318, 2006.
DOI : 10.1088/0957-4484/17/21/005

C. Portet, J. Chmiola, Y. Gogotsi, S. Park, and K. Lian, Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique, Electrochimica Acta, vol.53, issue.26, pp.7675-7680, 2008.
DOI : 10.1016/j.electacta.2008.05.019

R. Lin, Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors, Journal of The Electrochemical Society, vol.112, issue.1, pp.7-12, 2009.
DOI : 10.1021/la060860e

R. Lin, Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores, Electrochimica Acta, vol.54, issue.27, pp.7025-7032, 2009.
DOI : 10.1016/j.electacta.2009.07.015

URL : https://hal.archives-ouvertes.fr/hal-01281977

M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes, Nano Letters, vol.9, issue.5, pp.1872-1876, 2009.
DOI : 10.1021/nl8038579

P. Taberna, P. Simon, and J. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors, Journal of The Electrochemical Society, vol.9, issue.3
DOI : 10.1007/978-1-4757-3058-6

URL : https://hal.archives-ouvertes.fr/hal-00420564

, J. Electrochem. Soc, vol.150, pp.292-300, 2003.

J. Huang, Curvature effects in carbon nano-materials: exohedral versus endohedral supercapacitors, J. Mater. Res, p.195, 2010.

P. Banerjee, I. Perez, L. Henn-lecordier, S. B. Lee, and G. W. Rubloff, Nanotubular metal???insulator???metal capacitor arrays for energy storage, Nature Nanotechnology, vol.25, issue.5, pp.292-296, 2009.
DOI : 10.1038/nnano.2009.37

, Adv. Mater, vol.24, pp.280-285, 2012.

J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors, Science, vol.5, issue.5794, pp.480-483, 2010.
DOI : 10.1126/science.1132195

W. Gao, N. Singh, L. Song, Z. Liu, A. L. Mohana-reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nature Nanotechnology, vol.8, issue.8, pp.496-500, 2011.
DOI : 10.1021/nl802558y

M. F. El-kady and R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nature Communications, vol.11, issue.1, p.1475, 2012.
DOI : 10.1021/cm981085u

URL : http://www.nature.com/articles/ncomms2446.pdf

Q. Meng, H. Wu, Y. Meng, K. Xie, and Z. Wei, High-Performance All-Carbon Yarn Micro-Supercapacitor for an Integrated Energy System, Advanced Materials, vol.24, issue.24, pp.4100-4106, 2014.
DOI : 10.1002/adma.201202930

I. Nam, G. P. Kim, S. Park, J. W. Han, and J. Yi, All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues, Energy & Environmental Science, vol.9, issue.3, pp.1095-1102, 2014.
DOI : 10.1038/nmat2879

S. K. Kim, H. J. Koo, A. Lee, and P. V. Braun, Selective Wetting-Induced Micro-Electrode Patterning for Flexible Micro-Supercapacitors, Advanced Materials, vol.4, issue.30, pp.5108-5112, 2014.
DOI : 10.1063/1.3466882

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, vol.4, issue.9, pp.651-654, 2010.
DOI : 10.1038/nnano.2010.162

URL : https://hal.archives-ouvertes.fr/hal-00869530

K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi et al., , 2012.

A. Ghosh, V. T. Le, J. J. Bae, and Y. H. , TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor, Scientific Reports, vol.5, issue.1, p.2939, 2013.
DOI : 10.1142/S1793292010001809

Z. Wu, K. Parvez, X. Feng, and K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nature Communications, vol.24, issue.1, p.2487, 2013.
DOI : 10.1002/adma.201201948

D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet et al., Influence of the configuration in planar interdigitated electrochemical micro-capacitors, Journal of Power Sources, vol.230, pp.230-235, 2013.
DOI : 10.1016/j.jpowsour.2012.12.039

URL : https://hal.archives-ouvertes.fr/hal-01753174

T. M. Dinh, K. Armstrong, D. Guay, and D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability, J. Mater. Chem. A, vol.96, issue.20, pp.7170-7174, 2014.
DOI : 10.1016/S0378-7753(00)00682-0

URL : https://hal.archives-ouvertes.fr/hal-01874490

Z. S. Wu, K. Parvez, X. Feng, and K. Müllen, Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers, Journal of Materials Chemistry A, vol.335, issue.22, pp.8288-8293, 2014.
DOI : 10.1126/science.1216744

H. Zhang, X. Yu, and P. V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes, Nature Nanotechnology, vol.140, issue.5, pp.277-281, 2011.
DOI : 10.1149/1.2221101

J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun, and W. P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes, Nature Communications, vol.19, issue.1, p.1732, 2013.
DOI : 10.1002/adma.200602792

N. A. Kyeremateng, , pp.1442-1467, 2014.

W. Deng, X. Ji, Q. Chen, and C. E. Banks, Electrochemical capacitors utilising transition metal oxides: an update of recent developments, RSC Advances, vol.159, issue.7, pp.1171-1178, 2011.
DOI : 10.1016/j.jpowsour.2005.07.095

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

URL : https://hal.archives-ouvertes.fr/hal-02020693

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li et al., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, vol.1, issue.1, pp.107-131, 2012.
DOI : 10.1016/j.nanoen.2011.11.001

W. Wang, S. Guo, I. Lee, K. Ahmed, and J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Sci. Rep, vol.4, p.4452, 2014.

X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, vol.147, issue.4, pp.232-236, 2011.
DOI : 10.1149/1.1393216

T. C. Hung, C. F. Chen, and W. T. Whang, Deposition of Carbon Nanowall Flowers on Two-Dimensional Sheet for Electrochemical Capacitor Application, Electrochemical and Solid-State Letters, vol.44, issue.6, pp.41-44, 2009.
DOI : 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.3.CO;2-7

D. H. Seo, S. Kumar, and K. Ostrikov, Control of morphology and electrical properties of self-organized graphenes in a plasma, Carbon, vol.49, issue.13, pp.4331-4339, 2011.
DOI : 10.1016/j.carbon.2011.06.004

S. Vizireanu, G. Dinescu, L. C. Nistor, M. Baibarac, G. Ruxanda et al., Physica E, pp.47-59, 2013.

Z. González, S. Vizireanu, G. Dinescu, C. Blanco, and R. Santamaría, Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries, Nano Energy, vol.1, issue.6, pp.833-839, 2012.
DOI : 10.1016/j.nanoen.2012.07.003

S. Hassan, M. Suzuki, S. Mori, and A. A. , MnO2/carbon nanowalls composite electrode for supercapacitor application, Journal of Power Sources, vol.249, pp.21-27, 2014.
DOI : 10.1016/j.jpowsour.2013.10.097

S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu et al., Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma, Plasma Sources Science and Technology, vol.19, issue.3, p.34016, 2010.
DOI : 10.1088/0963-0252/19/3/034016

S. Ardizzone, G. Fregonara, and S. Trasatti, ???Inner??? and ???outer??? active surface of RuO2 electrodes, Electrochimica Acta, vol.35, issue.1, pp.263-267, 1990.
DOI : 10.1016/0013-4686(90)85068-X

D. Baronetto, N. Krstaji?, and S. Trasatti, Reply to ???note on a method to interrelate inner and outer electrode areas??? by H. Vogt, Electrochimica Acta, vol.39, issue.16, pp.2359-2362, 1994.
DOI : 10.1016/0013-4686(94)E0158-K

A. Achour, J. B. Ducros, R. L. Porto, M. Boujtita, E. Gautron et al., Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors, Nano Energy, vol.7, pp.104-113, 2014.
DOI : 10.1016/j.nanoen.2014.04.008

URL : https://hal.archives-ouvertes.fr/hal-01521867

M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors, Energy & Environmental Science, vol.3, issue.103, pp.867-884, 2014.
DOI : 10.1093/nsr/nwt003

L. Wei, N. Nitta, and G. Yushin, Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices, ACS Nano, vol.7, issue.8, pp.6498-6506, 2013.
DOI : 10.1021/nn4028129

P. Huang, M. Heon, D. Pech, M. Brunet, P. L. Taberna et al., Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips, Journal of Power Sources, vol.225, issue.2, pp.240-244, 2013.
DOI : 10.1016/j.jpowsour.2012.10.020

URL : https://hal.archives-ouvertes.fr/hal-01159879

B. Hsia, M. S. Kim, M. Vincent, C. Carraro, and R. Maboudian, Photoresist-derived porous carbon for on-chip micro-supercapacitors, Carbon, vol.57, pp.395-400, 2013.
DOI : 10.1016/j.carbon.2013.01.089

M. Beidaghi and C. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Advanced Functional Materials, vol.4, issue.21, pp.4501-4510, 2012.
DOI : 10.1109/MPRV.2005.9

C. Shen, X. Wang, W. Zhang, and F. , Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices, Scientific Reports, vol.21, issue.1, p.2294, 2013.
DOI : 10.1002/adma.200801492

H. Gao and K. Lian, Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors, Journal of Materials Chemistry, vol.33, issue.4, pp.21272-21278, 2012.
DOI : 10.1107/S0567740877005330

F. Chamran, Y. Yeh, H. S. Min, B. Dunn, and C. Kim, Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries, Journal of Microelectromechanical Systems, vol.16, issue.4, pp.844-852, 2007.
DOI : 10.1109/JMEMS.2007.901638

H. S. Min, B. Y. Park, L. Taherabadi, C. Wang, Y. Yeh et al., Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery, Journal of Power Sources, vol.178, issue.2, pp.795-800, 2008.
DOI : 10.1016/j.jpowsour.2007.10.003

M. Nathan, D. Golodnitsky, V. Yufit, E. Strauss, T. Ripenbein et al., Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS, Journal of Microelectromechanical Systems, vol.14, issue.5, pp.879-885, 2005.
DOI : 10.1109/JMEMS.2005.851860

M. Kotobuki, Y. Suzuki, H. Munakata, K. Kanamura, Y. Sato et al., Effect of sol composition on solid electrode/solid electrolyte interface for all-solid-state lithium ion battery, Electrochimica Acta, vol.56, issue.3, pp.1023-1029, 2011.
DOI : 10.1016/j.electacta.2010.11.008

T. M. Dinh, D. Pech, M. Brunet, and A. Achour, High resolution electrochemical micro-capacitors based on oxidized multi-walled carbon nanotubes, Journal of Physics: Conference Series, vol.476, p.12106, 2013.
DOI : 10.1088/1742-6596/476/1/012106

URL : http://iopscience.iop.org/article/10.1088/1742-6596/476/1/012106/pdf

P. Huang, D. Pech, R. Lin, J. K. Mcdonough, M. Brunet et al., On-chip micro-supercapacitors for operation in a wide temperature range, Electrochemistry Communications, vol.36, pp.53-56, 2013.
DOI : 10.1016/j.elecom.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-00977350

E. Eustache, R. Frappier, R. L. Porto, S. Bouhtiyya, J. F. Pierson et al., Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes, Electrochemistry Communications, vol.28, pp.104-106, 2013.
DOI : 10.1016/j.elecom.2012.12.015

URL : https://hal.archives-ouvertes.fr/hal-00950602

Z. L. Wang, A. J. Koomey, H. S. Matthews, and E. Williams, Annu. Rev. Environ. Resources, vol.38, issue.21, p.17, 2012.

X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong et al., Flexible Energy-Storage Devices: Design Consideration and Recent Progress, Advanced Materials, vol.26, issue.28, p.4763, 2014.
DOI : 10.1002/adma.201304319

M. Beidaghi and Y. Gogotsi, Energy Environ. Sci, 2014.

J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter et al., , 1423.

W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen, and Q. J. Xue, Superior Micro-Supercapacitors Based on Graphene Quantum Dots, Advanced Functional Materials, vol.2, issue.33, p.4111, 2013.
DOI : 10.1039/c2ra20182h

P. Huang, D. Pech, R. Lin, J. K. Mcdonough, M. Brunet et al., Electrochem. Commun, vol.36, pp.2013-53

P. Huang, M. Héon, D. Pech, M. Brunet, P. L. Taberna et al., Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips, Journal of Power Sources, vol.225, p.240, 2013.
DOI : 10.1016/j.jpowsour.2012.10.020

URL : https://hal.archives-ouvertes.fr/hal-01159879

T. M. Dinh, D. Pech, M. Brunet, A. Achour, and J. , , pp.476-012106

D. Pech, M. Brunet, P. L. Taberna, P. Simon, N. Fabre et al., Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, p.1266, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin et al., Nat. Nanotechnol

, Adv. Mater. 2015, vol.27, pp.6625-6629

Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li et al., Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors, ACS Nano, vol.9, issue.6, p.5868, 2015.
DOI : 10.1021/acsnano.5b00436

T. Brousse, D. Bélanger, and J. W. Long, J. Electrochem. Soc, pp.162-5185, 2015.

W. Deng, X. Ji, Q. Chen, and C. E. Banks, , 1171.

C. C. Liu, D. S. Tsai, S. Susanti, W. C. Yeh, Y. S. Huang et al., Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods, Electrochimica Acta, vol.55, issue.20, p.5768, 2010.
DOI : 10.1016/j.electacta.2010.05.015

T. M. Dinh, K. Armstrong, D. Guay, and D. Pech, J. Mater. Chem. A, issue.2, p.7170, 2014.

S. Li, X. Wang, H. Xing, and C. Shen, Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes, Journal of Micromechanics and Microengineering, vol.23, issue.11, p.114013, 2013.
DOI : 10.1088/0960-1317/23/11/114013

B. L. Ellis, P. Knauth, and T. Djenizian, Adv. Mater. 2014, vol.26, p.3368

X. Lang, A. Hirata, T. Fujita, and M. Chen, Nat. Nanotechnol, 2011.

J. Han, Y. C. Lin, L. Chen, Y. C. Tsai, Y. Ito et al., Adv. Sci, 2015.

X. Wang, Y. Yin, and X. Li, Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures, Journal of Power Sources, vol.252, p.64, 2014.
DOI : 10.1016/j.jpowsour.2013.11.109

A. Ponrouch, S. Garbarino, and D. Guay, Ultra high capacitance values of Pt@RuO2 core???shell nanotubular electrodes for microsupercapacitor applications, Journal of Power Sources, vol.221, p.228, 2013.
DOI : 10.1016/j.jpowsour.2012.08.033

W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong et al., Nano Energy, vol.10, p.288, 2014.

B. J. Plowman, A. P. O-'mullane, P. R. Selvakannan, and S. K. Bhargava, Honeycomb nanogold networks with highly active sites, Chemical Communications, vol.18, issue.48, p.9182, 2010.
DOI : 10.1007/BF03215520

S. Cherevko and C. H. Chung, Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution, Electrochemistry Communications, vol.13, issue.1, p.16, 2011.
DOI : 10.1016/j.elecom.2010.11.001

J. Liu, L. Cao, W. Huang, and Z. Li, Preparation of AuPt Alloy Foam Films and Their Superior Electrocatalytic Activity for the Oxidation of Formic Acid, ACS Applied Materials & Interfaces, vol.3, issue.9, p.3552, 2011.
DOI : 10.1021/am200782x

L. D. Burke, P. F. Nugent, and G. Bull, , p.43, 1997.

C. C. Hu and Y. H. Huang, Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors, Journal of The Electrochemical Society, vol.146, issue.7, p.2465, 1999.
DOI : 10.1149/1.1391956

J. J. Jowa, H. J. Lee, H. R. Chena, M. S. Wu, and T. Y. Wei, Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochimica Acta, vol.52, issue.7, p.2625, 2007.
DOI : 10.1016/j.electacta.2006.09.018

W. G. Pell and B. E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, Journal of Power Sources, vol.96, issue.1, p.57, 2001.
DOI : 10.1016/S0378-7753(00)00682-0

S. Ardizzone, G. Fregorana, and S. Trasatti, ???Inner??? and ???outer??? active surface of RuO2 electrodes, Electrochimica Acta, vol.35, issue.1, p.263, 1990.
DOI : 10.1016/0013-4686(90)85068-X

J. Gaudet, A. Tavares, S. Trasatti, and D. Guay, Chem. Mater, pp.17-1570, 2005.

C. C. Hu, W. C. Chen, and K. H. Chang, J. Electrochem. Soc, pp.151-281, 2004.

J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun, and W. P. King, Nat. Commun, 1732.

H. Gao and K. Lian, J. Mater. Chem, 2012.

Z. L. Wang, Self-Powered Nanosensors and Nanosystems. Adv

M. Hu, F. Cai, Q. Liao, F. Shao, M. Lee et al., Recent Advancements in Nanogenerators for Energy Harvesting Nanobatteries: Decreasing Size Power Sources for Growing Technologies, Recent Pat. Nanotechnol. J. H, vol.24, issue.26, pp.5611-5628, 2008.

Y. Yamauchi, R. R. Salunkhe, J. Tang, Y. Kamachi, and J. H. Kim, Large-Scale Synthesis of Coaxial Carbon Nanotube/ Ni(OH) 2 Composites for Asymmetric Supercapacitor Application, Nano Energy, vol.11, issue.7, 2015.

Y. Yamauchi, B. Rotenberg, and K. Naoi, Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal- Organic Framework, ACS Nano, vol.2015, issue.9, pp.6288-6296

C. P. Grey, B. Dunn, and P. Simon, Efficient Storage Mechanisms for Building Better Supercapacitors, Pech, D. Microsupercapacitors as Miniaturized Energy-Storage Components for On-Chip Electronics, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

N. Armstrong, K. Guay, and D. , Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges Pech, D. High- Resolution On-Chip Supercapacitors with Ultra-High Scan Rate Ability, Adv. Mater. 2017 J. Mater. Chem. A, vol.12, issue.2, pp.7-15, 2014.

, Miniaturized Supercapacitors: Focused Ion Beam Reduced Graphene Oxide Supercapacitors with Enhanced Performance Metrics

E. Mater, , 2015.

K. C. Wu, L. Chen, Y. Yamauchi, and K. Ariga, Nanoporous Carbons through Direct Carbonization of a Zeolitic Imidazolate Framework for Supercapacitor Electrodes, Fabrication of Symmetric Supercapacitors Based on MOF-Derived Nanoporous Carbons. J, pp.7259-7261

C. Mater, X. Zhuang, X. Feng, P. Huang, C. Lethien et al., Silicon-Compatible Carbon-Based Micro- Supercapacitors On- Chip and Freestanding Elastic Carbon Films for Micro-Supercapacitors, Brousse, T. MnO 2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with ?Bulk? Carbon Electrodes. Adv. Energy Mater. 2015, pp.6136-6138, 2014.

S. Bouhtiyya, R. Lucio-porto, and B. Laïk, Adv. Mater. 2015 6625?6629, vol.27

J. P. Pereira-ramos, T. Brousse, and J. Pierson, Application of Sputtered Ruthenium Nitride Thin Films as Electrode Material for Energy-Storage Devices, Scr. Mater, vol.68, issue.20, pp.659-662, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00950598

Y. Gogotsi, P. Taberna, P. Simon, and Q. J. Xue, Ultrahigh-Power Micrometre- Sized Supercapacitors Based on Onion-Like Carbon, 651?654. (21), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00869530

, Superior Micro-Supercapacitors Based on Graphene Quantum Dots

. Adv, . Funct, F. Mater-thissandier, P. Gentile, T. Brousse et al., Are Tomorrow's Micro-Supercapacitors Hidden in a Forest of Silicon Nanotrees Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO 2 Using Ionic Liquid Gel Electrolytes, J. Power Sources ACS Appl. Mater. Interfaces, vol.23, issue.269, pp.4111-4122, 2013.

D. 8. Guay, C. C. Hu, W. C. Chen, K. H. Chang, J. R. Miller et al., Capacitive Energy Storage in Micro- Scale Devices: Recent Advances in Design and Fabrication of Micro- Supercapacitors How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors Graphene Double- Layer Capacitor with AC Line-Filtering Performance Ultrahigh-Rate Supercapacitors Based on Electrochemically Reduced Graphene Oxide for AC Line-Filtering. Sci, Planar Interdigitated Electrochemical Micro-Capacitors. J. Power Sources 2013 1637?1639. (28) ShengL. Alternating Current Line-Filter Based on Electrochemical Capacitors Utilizing Template-Patterned Graphene. Sci, pp.230-235, 2004.

L. Acs-energy, D. Letter, . Acs-energy, Z. S. Wu, Z. Liu et al., Mu? llen, K. Ultrathin Printable Graphene Supercapacitors with AC Line-Filtering Performance Electrochemical Behavior of Amorphous and Crystalline Ruthenium Oxide Electrodes, 41?46. (32) Dai Z. Cell Voltage Versus Electrode Potential Range in Aqueous Supercapacitors, pp.3669-3675, 2002.

. Sci and . Rep, 33) Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors, p.9854, 2015.

N. Mater, 8. Bard, A. J. Faulkner, and L. , Electrochemical Method: Fundamentals and Applications, 2004.

L. Acs-energy and D. Letter, , pp.1734-1739

Z. L. Wang, Self-Powered Nanosensors and Nanosystems, Advanced Materials, vol.5, issue.2, pp.280-285, 2012.
DOI : 10.1016/j.nantod.2010.10.008

J. G. Koomey, H. S. Matthews, and E. Williams, Smart Everything: Will Intelligent Systems Reduce Resource Use?, Annual Review of Environment and Resources, vol.38, issue.1, pp.311-343, 2013.
DOI : 10.1146/annurev-environ-021512-110549

Z. L. Wang and W. Wu, Nanotechnology-enabled energy harvesting for selfpowered micro-/nanosystems, Angew. Chem. Int. Ed, vol.51, pp.2-24, 2012.
DOI : 10.1002/anie.201201656

J. F. Oudenhoven, L. Baggetto, and P. H. Notten, All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts, Advanced Energy Materials, vol.104, issue.239
DOI : 10.1021/cr020719k

URL : http://onlinelibrary.wiley.com/doi/10.1002/aenm.201000002/pdf

, Adv. Energy Mater, vol.1, pp.10-33, 2011.

N. A. Kyeremateng, Self-organised TiO 2 nanotubes for 2D or 3D Li-ion microbatteries, pp.1442-1467, 2014.

B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
DOI : 10.1007/978-1-4757-3058-6

T. Brousse, D. Bélanger, and J. W. Long, To Be or Not To Be Pseudocapacitive?, Journal of the Electrochemical Society, vol.162, issue.5, pp.5185-5189, 2015.
DOI : 10.1149/2.0201505jes

URL : https://hal.archives-ouvertes.fr/hal-01725986

Z. Wu, X. Feng, and H. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage, National Science Review, vol.4, issue.2, pp.277-292, 2014.
DOI : 10.1038/ncomms2747

M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors, Energy & Environmental Science, vol.3, issue.103
DOI : 10.1093/nsr/nwt003

, Energy Environ. Sci, vol.7, pp.867-884, 2014.

M. J. Cima, Next-generation wearable electronics, Nature Biotechnology, vol.32, issue.7, pp.642-643, 2014.
DOI : 10.1517/14656566.6.7.1205

S. Hong and S. Myung, A flexible approach to mobility, Nature Nanotechnology, vol.128, issue.4, pp.207-208, 2007.
DOI : 10.1038/nnano.2007.89

L. Yuan, Paper-Based Supercapacitors for Self-Powered Nanosystems, Angewandte Chemie International Edition, vol.115, issue.20, pp.4934-4938, 2012.
DOI : 10.1021/jp203852p

K. Jost, G. Dion, and Y. Gogotsi, Textile energy storage in perspective, Journal of Materials Chemistry A, vol.12, issue.12, pp.10776-10787, 2014.
DOI : 10.1021/nl300799d

Y. Zhang, Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage, Chemical Society Reviews, vol.85, issue.15, pp.5181-5199, 2015.
DOI : 10.1021/ac4001496

Y. S. Yoon, W. I. Cho, J. H. Lim, and D. J. Choi, Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films, Journal of Power Sources, vol.101, issue.1
DOI : 10.1016/S0378-7753(01)00484-0

, J. Power Sources, vol.101, pp.126-129, 2001.

J. H. Lim, D. J. Choi, H. K. Kim, W. I. Cho, and Y. S. Yoon, Thin Film Supercapacitors Using a Sputtered RuO[sub 2] Electrode, Journal of The Electrochemical Society, vol.19, issue.3, pp.275-278, 2001.
DOI : 10.1002/sia.740190187

H. K. Kim, S. H. Cho, Y. W. Ok, T. Y. Seong, and Y. S. Yoon, All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.3, pp.949-952, 2003.
DOI : 10.1116/1.1565348

J. H. Sung, S. J. Kim, and K. H. Lee, Fabrication of all-solid-state electrochemical microcapacitors, Journal of Power Sources, vol.133, issue.2, pp.312-319, 2004.
DOI : 10.1016/j.jpowsour.2004.02.003

J. H. Sung, S. J. Kim, S. H. Jeong, E. H. Kim, K. H. Lee et al., Flexible micro-supercapacitors, Journal of Power Sources, vol.162, issue.2, pp.1467-1470, 2006.
DOI : 10.1016/j.jpowsour.2006.07.073

A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, and S. Passerini, Ionic liquids in supercapacitors, MRS Bulletin, vol.2, issue.07, pp.554-559, 2013.
DOI : 10.1016/j.jpowsour.2006.12.048

H. Gao and K. Lian, Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review, RSC Adv., vol.2, issue.4, pp.33091-33113, 2014.
DOI : 10.1038/srep00247

L. Bideau, J. Viau, L. Vioux, and A. , Ionogels, ionic liquid based hybrid materials, Chem. Soc. Rev., vol.46, issue.2, pp.907-925, 2011.
DOI : 10.1039/b907462g

URL : https://hal.archives-ouvertes.fr/hal-00555712

L. Bideau, J. Ducros, J. Soudan, P. Guyomard, and D. , Solid-State Electrode Materials with Ionic-Liquid Properties for Energy Storage: the Lithium Solid-State Ionic-Liquid Concept., Advanced Functional Materials, vol.4, issue.21, pp.4073-4078, 2011.
DOI : 10.1149/1.1413182

URL : https://hal.archives-ouvertes.fr/hal-00849686

M. F. El-kady and R. B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nature Communications, vol.11, issue.1, p.1475, 2012.
DOI : 10.1021/cm981085u

URL : http://www.nature.com/articles/ncomms2446.pdf

S. Wang, B. Hsia, C. Carraro, and R. Maboudian, High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte, J. Mater. Chem. A, vol.6, issue.1, pp.7997-8002, 2014.
DOI : 10.1021/nn2041279

M. Brachet, T. Brousse, and J. Le-bideau, All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte, ECS Electrochemistry Letters, vol.3, issue.11, pp.112-115, 2014.
DOI : 10.1149/2.0051411eel

URL : http://eel.ecsdl.org/content/3/11/A112.full.pdf

M. Brachet, Solder-reflow resistant solid-state micro-supercapacitors based on ionogels, Journal of Materials Chemistry A, vol.23, issue.30, pp.11835-11843, 2016.
DOI : 10.1088/0957-4484/23/21/215702

URL : https://hal.archives-ouvertes.fr/hal-01723631

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, pp.845-854, 2008.
DOI : 10.1038/nmat2297

Y. Gogotsi, Nanoporous carbide-derived carbon with tunable pore size, Nature Materials, vol.53, issue.9, pp.591-594, 2003.
DOI : 10.1063/1.1674108

URL : https://repository.upenn.edu/cgi/viewcontent.cgi?article=1069&context=mse_papers

J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.
DOI : 10.1126/science.1132195

J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors, Science, vol.5, issue.5794, pp.480-483, 2010.
DOI : 10.1126/science.1132195

P. Huang, Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips, Journal of Power Sources, vol.225, pp.240-244, 2013.
DOI : 10.1016/j.jpowsour.2012.10.020

URL : https://hal.archives-ouvertes.fr/hal-01159879

P. Huang, On-chip and freestanding elastic carbon films for micro-supercapacitors, Science, vol.47, issue.18, pp.691-695, 2016.
DOI : 10.1002/anie.200704894

URL : https://hal.archives-ouvertes.fr/hal-01489186

S. Makino, Y. Yamauci, and W. Sugimoto, Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors, Journal of Power Sources, vol.227, pp.153-160, 2013.
DOI : 10.1016/j.jpowsour.2012.11.032

T. M. Dinh, K. Armstrong, D. Guay, and D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability, J. Mater. Chem. A, vol.96, issue.20, pp.7170-7174, 2014.
DOI : 10.1016/S0378-7753(00)00682-0

C. C. Ho, Dispenser printed electrochemical capacitors for power management of millimeter scale lithium ion polymer microbatteries for wireless sensors, 6th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp.219-222, 2006.

D. Pech, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, pp.1266-1269, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

H. Durou, Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy, Microsystem Technologies, vol.32, issue.1, pp.467-473, 2012.
DOI : 10.1109/TADVP.2008.2006757

URL : https://hal.archives-ouvertes.fr/hal-01151753

R. Article, . Nanotechnology, and . Doi, NATURE NANOTECHNOLOGY, vol.12, p.10, 0196.

Z. Liu, Ultraflexible In-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene, Advanced Materials, vol.9, issue.11, pp.2217-2222, 2016.
DOI : 10.1021/nn5060442

D. Pech, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nature Nanotechnology, vol.4, issue.9, pp.651-654, 2010.
DOI : 10.1038/nnano.2010.162

URL : https://hal.archives-ouvertes.fr/hal-00869530

J. Lin, Laser-induced porous graphene films from commercial polymers, Nature Communications, vol.49, issue.1, p.5714, 2014.
DOI : 10.1103/PhysRevB.49.16223

J. B. In, Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide, Carbon, vol.83, pp.144-151, 2015.
DOI : 10.1016/j.carbon.2014.11.017

H. Huang, C. Chung, C. Hsieh, P. Kuo, and H. Teng, Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon, Nano Energy, vol.21, pp.90-105, 2016.
DOI : 10.1016/j.nanoen.2015.12.012

W. Gao, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nature Nanotechnology, vol.8, issue.8, pp.496-500, 2011.
DOI : 10.1021/nl802558y

M. F. El-kady, V. Strong, S. Dubin, and R. B. Kaner, Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors, Science, vol.9, issue.5, pp.1326-1330, 2012.
DOI : 10.1021/nl8038579

C. Shen, X. Wang, W. Zhang, and F. Kang, Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices, Scientific Reports, vol.21, issue.1, p.2294, 2013.
DOI : 10.1002/adma.200801492

L. Wei, N. Nitta, and G. Yushin, Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices, ACS Nano, vol.7, issue.8, pp.6498-6506, 2013.
DOI : 10.1021/nn4028129

X. Wang, Manganese oxide micro-supercapacitors with ultra-high areal capacitance, Nanoscale, vol.22, issue.10, pp.4119-4122, 2013.
DOI : 10.1039/c2jm32456c

X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, vol.147, issue.4, pp.232-236, 2011.
DOI : 10.1149/1.1393216

X. Tian, Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities, Advanced Materials, vol.5, issue.45, pp.7476-7482, 2015.
DOI : 10.1039/c2ee21745g

J. Han, On-Chip Micro-Pseudocapacitors for Ultrahigh Energy and Power Delivery, Advanced Science, vol.4, issue.5, p.1500067, 2015.
DOI : 10.1038/ncomms3923

L. Li, High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene, Advanced Materials, vol.6, issue.5, pp.838-845, 2015.
DOI : 10.1021/nn304178b

J. Sung, S. Kim, and K. Lee, Fabrication of microcapacitors using conducting polymer microelectrodes, Journal of Power Sources, vol.124, issue.1, pp.343-350, 2003.
DOI : 10.1016/S0378-7753(03)00669-4

Z. Wu, Alternating Stacked Graphene-Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High-Energy Micro-Supercapacitors, Advanced Materials, vol.4, issue.27, pp.4054-4061, 2015.
DOI : 10.1016/j.jpowsour.2009.08.085

N. Kurra, M. K. Hota, and H. N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering, Nano Energy, vol.13, pp.500-508, 2015.
DOI : 10.1016/j.nanoen.2015.03.018

M. Esashi, Wafer level packaging of MEMS, Journal of Micromechanics and Microengineering, vol.18, issue.7, p.73001, 2008.
DOI : 10.1088/0960-1317/18/7/073001

K. Marquardt, Development of near hermetic silicon/glass cavities for packaging of integrated lithium micro batteries, Microsystem Technologies, vol.81, issue.82, pp.1119-1129, 2010.
DOI : 10.1007/s00542-009-0954-7

K. Marquardt, R. Hahn, T. Luger, and H. Reichl, Assembly and Hermetic Encapsulation of Wafer Level Secondary Batteries, 19th IEEE International Conference on Micro Electro Mechanical Systems, pp.954-957, 2006.
DOI : 10.1109/MEMSYS.2006.1627959

K. U. Laszczyk, Lithographically Integrated Microsupercapacitors for Compact, High Performance, and Designable Energy Circuits, Advanced Energy Materials, vol.196, issue.18
DOI : 10.1016/j.jpowsour.2010.06.092

, Adv. Energy Mater, vol.5, p.1500741, 2015.

C. Shen, X. Wang, W. Zhang, and F. Kang, A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials, Journal of Power Sources, vol.196, issue.23, pp.10465-10471, 2011.
DOI : 10.1016/j.jpowsour.2011.08.007

J. Pu, High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite, Nanotechnology, vol.27, issue.4, p.45701, 2016.
DOI : 10.1088/0957-4484/27/4/045701

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, Three-Dimensional Battery Architectures, Chemical Reviews, vol.104, issue.10, pp.4463-4492, 2004.
DOI : 10.1021/cr020740l

T. M. Dinh, Hydrous RuO 2 /carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors, Nano Energy, vol.10, pp.288-294, 2014.
DOI : 10.1016/j.nanoen.2014.10.003

URL : https://hal.archives-ouvertes.fr/hal-01873388

A. Ferris, S. Garbarino, D. Guay, and D. Pech, Microsupercapacitors with Remarkable Areal Energy, Advanced Materials, vol.22, issue.42, pp.6625-6629, 2015.
DOI : 10.1039/c2jm34840c

URL : https://hal.archives-ouvertes.fr/hal-01872878

D. P. Dubal, 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid, Scientific Reports, vol.23, issue.1, p.9771, 2015.
DOI : 10.1088/0957-4484/23/21/215702

URL : https://hal.archives-ouvertes.fr/hal-01589960

A. Ponrouch, S. Garbarino, E. Bertin, and D. Guay, Ultra high capacitance values of Pt@RuO2 core???shell nanotubular electrodes for microsupercapacitor applications, Journal of Power Sources, vol.221, pp.228-231, 2013.
DOI : 10.1016/j.jpowsour.2012.08.033

M. Beidaghi and C. Wang, Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes, Electrochimica Acta, vol.56, issue.25, pp.9508-9514, 2011.
DOI : 10.1016/j.electacta.2011.08.054

X. Wang, Y. Yin, X. Li, and Z. You, Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures, Journal of Power Sources, vol.252, pp.64-72, 2014.
DOI : 10.1016/j.jpowsour.2013.11.109

E. Eustache, C. Douard, R. Retoux, C. Lethien, and T. Brousse, Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with ???Bulk??? Carbon Electrodes, Advanced Energy Materials, vol.4, issue.18, p.1500680, 2015.
DOI : 10.1002/aenm.201301612

URL : https://hal.archives-ouvertes.fr/hal-01725486

Y. Liu, (M = Ni, Co, Mn) core???shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode materials, Journal of Materials Chemistry A, vol.1, issue.7, pp.3676-3682, 2015.
DOI : 10.1039/c3ta11949a

M. F. El-kady, Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage, Proc. Natl Acad. Sci. USA, pp.4233-4238, 2015.
DOI : 10.1039/c3nr00210a

S. He, Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage, Journal of Power Sources, vol.299, pp.408-416, 2015.
DOI : 10.1016/j.jpowsour.2015.09.029

J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun, and W. P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes, Nature Communications, vol.19, issue.1, p.1732, 2013.
DOI : 10.1002/adma.200602792

Y. Gogotsi and P. Simon, True Performance Metrics in Electrochemical Energy Storage, Science, vol.1, issue.5977, pp.917-918, 2011.
DOI : 10.1002/aenm.201100152

URL : https://hal.archives-ouvertes.fr/hal-00714212

D. E. Lobo, P. C. Banerjee, C. D. Easton, and M. Majumder, Miniaturized Supercapacitors: Focused Ion Beam Reduced Graphene Oxide Supercapacitors with Enhanced Performance Metrics, Advanced Energy Materials, vol.22, issue.19, p.1500665, 2015.
DOI : 10.1002/adma.201002312

N. Berton, Wide-voltage-window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte, Electrochemistry Communications, vol.41, pp.31-34, 2014.
DOI : 10.1016/j.elecom.2014.01.010

URL : https://hal.archives-ouvertes.fr/hal-02166231

D. Aradilla, SiNWs-based electrochemical double layer micro-supercapacitors with wide voltage window (4 V) and long cycling stability using a protic ionic liquid electrolyte, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol.6, issue.1, p.15004, 2015.
DOI : 10.1088/2043-6262/6/1/015004

URL : https://hal.archives-ouvertes.fr/hal-01580612

P. Huang, On-chip micro-supercapacitors for operation in a wide temperature range, Electrochemistry Communications, vol.36, pp.53-56, 2013.
DOI : 10.1016/j.elecom.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-00977350

C. Chang, High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte, ACS Applied Materials & Interfaces, vol.7, issue.48, pp.26658-26665, 2015.
DOI : 10.1021/acsami.5b08423

B. E. Conway, W. G. Pell, and T. C. Liu, Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries, Journal of Power Sources, vol.65, issue.1-2, pp.53-59, 1997.
DOI : 10.1016/S0378-7753(97)02468-3

M. Beidaghi and C. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance, Advanced Functional Materials, vol.4, issue.21, pp.4501-4510, 2012.
DOI : 10.1109/MPRV.2005.9

J. Lin, 3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance, Nano Letters, vol.13, issue.1, pp.72-78, 2013.
DOI : 10.1021/nl3034976

Z. S. Wu, K. Parvez, X. Feng, and K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nature Communications, vol.24, issue.1, p.2487, 2013.
DOI : 10.1002/adma.201201948

URL : http://www.nature.com/articles/ncomms3487.pdf

B. Shen, J. Lang, R. Guo, X. Zhang, and X. Yan, Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO 2 using ionic liquid gel electrolytes
DOI : 10.1021/acsami.5b07909

, ACS Appl. Mater. Interfaces, vol.7, pp.25378-25389, 2015.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, The properties and applications of nanodiamonds, Nature Nanotechnology, vol.3, issue.1, pp.11-23, 2012.
DOI : 10.1126/scitranslmed.3002137

J. K. Mcdonough and Y. Gogotsi, Carbon Onions: Synthesis and Electrochemical Applications, Interface magazine, vol.22, issue.3, pp.61-66, 2013.
DOI : 10.1149/2.F05133if

M. Zeiger, N. Jäckel, V. Mochalin, and V. Presser, Review: carbon onions for electrochemical energy storage, Journal of Materials Chemistry A, vol.14, issue.20, pp.3172-3196, 2016.
DOI : 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O

B. E. Russ and J. B. Talbot, An Analysis of the Binder Formation in Electrophoretic Deposition, Journal of The Electrochemical Society, vol.145, issue.4, pp.1253-1256, 1998.
DOI : 10.1149/1.1838447

J. Ji, Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage, Advanced Materials, vol.22, issue.36, pp.5264-5279, 2015.
DOI : 10.4028/www.scientific.net/AMR.518-523.3699

D. Pech, Influence of the configuration in planar interdigitated electrochemical micro-capacitors, Journal of Power Sources, vol.230, pp.230-235, 2013.
DOI : 10.1016/j.jpowsour.2012.12.039

URL : https://hal.archives-ouvertes.fr/hal-01753174

A. Ghosh, V. T. Le, J. J. Bae, and Y. H. Lee, TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor, Scientific Reports, vol.5, issue.1, p.2939, 2013.
DOI : 10.1142/S1793292010001809

W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen, and Q. J. Xue, Superior Micro-Supercapacitors Based on Graphene Quantum Dots, Advanced Functional Materials, vol.2, issue.33, pp.4111-4122, 2013.
DOI : 10.1039/c2ra20182h

F. Gao, M. T. Wolfer, and C. Nebel, Highly porous diamond foam as a thin-film micro-supercapacitor material, Carbon, vol.80, pp.833-840, 2014.
DOI : 10.1016/j.carbon.2014.09.007

Z. Wu, K. Parvez, X. Feng, and K. Müllen, Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers, Journal of Materials Chemistry A, vol.335, issue.22, pp.8288-8293, 2014.
DOI : 10.1126/science.1216744

P. Yang, Ultrafast-Charging Supercapacitors Based on Corn-Like Titanium Nitride Nanostructures, Advanced Science, vol.341, issue.6, p.1500299, 2016.
DOI : 10.1126/science.1241488

R. Article, . Nanotechnology, and . Doi,

F. Thissandier, P. Gentile, T. Brousse, G. Bidan, and S. Sadki, Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?, Journal of Power Sources, vol.269, pp.740-746, 2014.
DOI : 10.1016/j.jpowsour.2014.05.060

W. G. Pell and B. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, Journal of Power Sources, vol.96, issue.1, pp.57-67, 2001.
DOI : 10.1016/S0378-7753(00)00682-0

W. Liu, C. Lu, X. Wang, R. J. Tay, and B. K. Tay, High-Performance Microsupercapacitors Based on Two-Dimensional Graphene/Manganese Dioxide/Silver Nanowire Ternary Hybrid Film, ACS Nano, vol.9, issue.2, pp.1528-1542, 2015.
DOI : 10.1021/nn5060442

J. R. Miller, R. A. Outlaw, and B. C. Holloway, Graphene Double-Layer Capacitor with ac Line-Filtering Performance, Science, vol.65, issue.10, pp.1637-1639, 2010.
DOI : 10.1016/j.jpcs.2003.10.017

K. Sheng, Y. Sun, C. Li, W. Yuan, and G. Shi, Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering

, Sci. Rep, vol.2, p.247, 2012.

Z. Wu, Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene, Scientific Reports, vol.150, issue.1, p.10983, 2015.
DOI : 10.1149/1.1543948

Z. S. Wu, Z. Liu, K. Parvez, X. Feng, and K. Müllen, Ultrathin Printable Graphene Supercapacitors with AC Line-Filtering Performance, Advanced Materials, vol.23, issue.24, pp.3669-3675, 2015.
DOI : 10.1002/adma.201100261

M. Zhang, An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering, Energy & Environmental Science, vol.8, issue.6
DOI : 10.1039/C4EE03685A

, Energy Environ. Sci, vol.9, 2005.