Query learning strategies using boosting and bagging, Machine Learning : Proceedings of the Fifteenth International Conference (ICML'98), pp.1-10, 1998. ,
Optimal filtering. Courier Corporation, p.23, 2012. ,
Optimal Filtering, IEEE Transactions on Systems, Man, and Cybernetics, vol.12, issue.2, p.23, 1979. ,
DOI : 10.1109/TSMC.1982.4308806
Synthetic biology: new engineering rules for an emerging discipline, Molecular systems biology, p.143, 2006. ,
DOI : 10.1101/SQB.1961.026.01.048
Statistical tools for optimal dynamic model building, Computers & Chemical Engineering, vol.24, issue.2-7, pp.1261-1267, 2000. ,
DOI : 10.1016/S0098-1354(00)00328-8
The usefulness of optimum experimental designs, Journal of the Royal Statistical Society. Series B (Methodological), vol.59, pp.59-76, 1996. ,
Optimum experimental designs, with SAS, p.59, 2007. ,
Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002. ,
DOI : 10.1023/A:1013689704352
Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models, EURASIP Journal on Bioinformatics and Systems Biology, vol.12, issue.1, pp.20111-20119, 2011. ,
DOI : 10.1093/imaman/12.1.23
Design, optimization and control in systems and synthetic biology, p.143, 2014. ,
URL : https://hal.archives-ouvertes.fr/tel-00958566
Robustness analysis and tuning of synthetic gene networks, Bioinformatics, vol.57, issue.2, pp.2415-2422, 2007. ,
DOI : 10.1007/BF02460618
Query learning can work poorly when a human oracle is used, International Joint Conference on Neural Networks, pp.8-39, 1992. ,
An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs, Philosophical Transactions, pp.1683-1775, 1763. ,
On the Theory of Dynamic Programming, Proceedings of the National Academy of Sciences, vol.38, issue.8, pp.716-719, 1952. ,
DOI : 10.1073/pnas.38.8.716
Dynamic programming, p.44, 1957. ,
Bandit Problems : Sequential Allocation of Experiments, p.66, 1985. ,
DOI : 10.1007/978-94-015-3711-7
Effect Model Law: An Approach for the Implementation of Personalized Medicine, Journal of Personalized Medicine, vol.3, issue.3, pp.177-190, 2013. ,
DOI : 10.1186/1472-6947-10-20
Bayesian inference in statistical analysis, 2011. ,
DOI : 10.1002/9781118033197
On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series B (Methodological), vol.13, issue.1, pp.1-45, 1951. ,
DOI : 10.1007/978-1-4612-4380-9_23
Bias in nonlinear estimation, Journal of the Royal Statistical Society. Series B (Methodological), pp.171-201, 1971. ,
Gene networks: how to put the function in genomics, Trends in Biotechnology, vol.20, issue.11, pp.467-472, 2002. ,
DOI : 10.1016/S0167-7799(02)02053-X
Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996. ,
DOI : 10.2307/1403680
A survey of monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on, vol.4, issue.51, pp.1-43, 2012. ,
Monte carlo go, p.50, 1993. ,
Pure Exploration in Multi-armed Bandits Problems, Algorithmic Learning Theory, pp.23-37, 2009. ,
DOI : 10.1090/S0002-9904-1952-09620-8
Pure exploration in finitely-armed and continuous-armed bandits, Theoretical Computer Science, vol.412, issue.19, pp.1832-1852, 2011. ,
DOI : 10.1016/j.tcs.2010.12.059
URL : https://hal.archives-ouvertes.fr/hal-00609550
Deep Blue, Artificial Intelligence, vol.134, issue.1-2, pp.57-83, 2002. ,
DOI : 10.1016/S0004-3702(01)00129-1
Bayesian Experimental Design: A Review, Statistical Science, vol.10, issue.3, pp.273-304, 1995. ,
DOI : 10.1214/ss/1177009939
Binding of cells to matrixes of distinct antibodies coated on solid surface, Journal of Immunological Methods, vol.65, issue.1-2, pp.217-223, 1983. ,
DOI : 10.1016/0022-1759(83)90318-6
MODELING GENE EXPRESSION WITH DIFFERENTIAL EQUATIONS, Biocomputing '99, p.14, 1999. ,
DOI : 10.1142/9789814447300_0004
Classic and contemporary approaches to modeling biochemical reactions, Genes & Development, vol.24, issue.17, pp.1861-1875, 2010. ,
DOI : 10.1101/gad.1945410
URL : http://genesdev.cshlp.org/content/24/17/1861.full.pdf
Sequential design of experiments. The Annals of Mathematical Statistics, pp.755-770, 1959. ,
Sequential designs, 1968. ,
Sequential analysis and optimal design, Society of Industrial and Applied Mathematics, vol.8, p.65, 1972. ,
Approaches in sequential design of experiments, 1975. ,
Lectures on Optimal Design and Sequential Analyses. Citeseer, p.65, 1981. ,
Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods, PLoS ONE, vol.6, issue.11, pp.27755-27786, 2011. ,
DOI : 10.1371/journal.pone.0027755.s001
Improving generalization with active learning, Machine Learning, vol.27, issue.4, pp.201-221, 1994. ,
DOI : 10.1007/BF00993277
URL : https://link.springer.com/content/pdf/10.1007%2FBF00993277.pdf
Bayesian statistical modelling, p.149, 2007. ,
Apprentissage artificiel : concepts et algorithmes, Editions Eyrolles, vol.36, issue.38, p.40, 2011. ,
Développement d'une méthodologie robuste de sélection de gènes dans le cadre d'une activation pharmacologique de la voie PPAR, p.156, 2009. ,
Central Dogma of Molecular Biology, Nature, vol.215, issue.5258, p.9, 1970. ,
DOI : 10.1038/227561a0
Reducing labeling effort for structured prediction tasks, AAAI, pp.746-751, 2005. ,
DOI : 10.21236/ADA440382
Committee-Based Sampling For Training Probabilistic Classifiers, Proceedings of the Twelfth International Conference on Machine Learning, pp.150-157, 1995. ,
DOI : 10.1016/B978-1-55860-377-6.50027-X
Estimation of parametric nonlinear odes for biological networks identification, Learning and Inference in Computational Systems Biology, pp.61-96, 2009. ,
URL : https://hal.archives-ouvertes.fr/hal-00647275
A general agnostic active learning algorithm, Advances in neural information processing systems, pp.353-360, 2007. ,
Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology, vol.9, issue.1, pp.67-103, 2002. ,
DOI : 10.1089/10665270252833208
URL : https://hal.archives-ouvertes.fr/inria-00072606
Optimal Statistical Decisions, p.64, 1970. ,
DOI : 10.1002/0471729000
Analyses de sensibilité et d'identifiabilité globales. Application à l'estimation de paramètres photophysiques en thérapie photodynamique, p.57, 2010. ,
A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.39-43, 1995. ,
DOI : 10.1109/MHS.1995.494215
Meigo : an open-source software suite Bibliographie 167, 2014. ,
An evolutionary method for complex-process optimization, Computers & Operations Research, vol.37, issue.2, pp.315-324, 2010. ,
DOI : 10.1016/j.cor.2009.05.003
Bioinformatique des ARNs non-codants : Algorithmes pour leur identification et la prédiction de leur structure, 2014. ,
On mabs and separation of concerns in monte-carlo planning for mdps, Twenty-Fourth International Conference on Automated Planning and Scheduling, p.50, 2014. ,
Gene regulatory network inference using ensembles of local multiple kernel models, Seventh international workshop on Machine Learning in Systems Biology, satellite meeting of ISMB'2013, p.110, 2013. ,
URL : https://hal.archives-ouvertes.fr/hal-00844494
Model-based design of experiments for parameter precision: State of the art, Chemical Engineering Science, vol.63, issue.19, pp.4846-4872, 2008. ,
DOI : 10.1016/j.ces.2007.11.034
Selective sampling using the query by committee algorithm, Machine Learning, vol.28, issue.2/3, pp.133-168, 1997. ,
DOI : 10.1023/A:1007330508534
Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis, Nucleic Acids Research, vol.9, issue.23, pp.6505-6525, 1981. ,
DOI : 10.1093/nar/9.23.6505
A backoff strategy for model-based experiment design under parametric uncertainty, AIChE Journal, vol.48, issue.8, pp.562088-2102, 2010. ,
DOI : 10.1152/ajpendo.00304.2001
Model-based design of parallel experiments . Industrial & engineering chemistry research, pp.871-882, 2007. ,
The kl-ucb algorithm for bounded stochastic bandits and beyond, COLT, pp.359-376, 2011. ,
Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007. ,
DOI : 10.1145/1273496.1273531
URL : https://hal.archives-ouvertes.fr/inria-00164003
Markov chain Monte Carlo methods in biostatistics, Statistical Methods in Medical Research, vol.48, issue.4, pp.339-355, 1996. ,
DOI : 10.1093/biomet/80.2.267
Learning dynamic Bayesian networks, Adaptive processing of sequences and data structures, pp.168-197, 1998. ,
DOI : 10.1007/BFb0053999
URL : http://mlg.eng.cam.ac.uk/pub/pdf/Gha97a.pdf
HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS, Decision Sciences, vol.15, issue.1, pp.156-166, 1977. ,
DOI : 10.1093/comjnl/16.2.135
Genetic algorithms in search, optimization, and machine learning, p.48, 1989. ,
Modelling in biology. Imperial College London, p.152, 2015. ,
Overview: Generation of Gene Knockout Mice, Current protocols in cell biology, vol.2, issue.6, pp.1217-157, 2009. ,
DOI : 10.1128/MCB.7.6.2294
Theoretical foundations of active learning, Science, p.38, 2009. ,
A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol.4, issue.2, pp.100-107, 1968. ,
DOI : 10.1109/TSSC.1968.300136
Optimal Filtering with Kalman Filters and Smoothers a Manual for the Matlab toolbox EKF/UKF Version 1, p.110, 2011. ,
Gene regulatory network inference: Data integration in dynamic models???A review, Biosystems, vol.96, issue.1, pp.86-103, 2009. ,
DOI : 10.1016/j.biosystems.2008.12.004
Data-based identifiability analysis of non-linear dynamical models, Bioinformatics, vol.32, issue.19, pp.2612-2618, 2007. ,
DOI : 10.1080/02664760500054517
SUNDIALS, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.31363-396, 2005. ,
DOI : 10.1145/1089014.1089020
Active learning and experimental design with svms, Active Learning and Experimental Design@ AISTATS, pp.71-84, 2011. ,
Dynamic programming and markov processes, p.44, 1960. ,
Inferring regulatory networks from expression data using tree-based methods, PloS one, vol.5, issue.9, pp.12776-137, 2010. ,
New extension of the Kalman filter to nonlinear systems, Signal Processing, Sensor Fusion, and Target Recognition VI, pp.182-193, 1997. ,
DOI : 10.1117/12.280797
A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960. ,
DOI : 10.1115/1.3662552
On bayesian upper confidence bounds for bandit problems, AISTATS, pp.592-600, 2012. ,
Optimum experimental designs, Journal of the Royal Statistical Society. Series B (Methodological), pp.272-319, 1959. ,
Construction and optimality of generalized youden designs ii. A Survey of Statistical Designs and Linear Models, pp.333-353, 1975. ,
The Robot Scientist Adam, Computer, vol.42, issue.7, pp.4246-54, 2009. ,
DOI : 10.1109/MC.2009.270
The Automation of Science, Science, vol.236, issue.5923, 2009. ,
DOI : 10.1093/jxb/24.6.1172
Functional genomic hypothesis generation and experimentation by a robot scientist, Nature, vol.418, issue.6971, pp.427247-252, 2004. ,
DOI : 10.1038/nature00935
Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983. ,
DOI : 10.1126/science.220.4598.671
An analysis of alpha-beta pruning, Artificial Intelligence, vol.6, issue.4, pp.293-326, 1976. ,
DOI : 10.1016/0004-3702(75)90019-3
Bandit Based Monte-Carlo Planning, Machine Learning : ECML 2006, pp.282-293, 2006. ,
DOI : 10.1007/11871842_29
URL : http://zaphod.aml.sztaki.hu/papers/ecml06.pdf
Sequential Imputations and Bayesian Missing Data Problems, Journal of the American Statistical Association, vol.52, issue.425, pp.278-288, 1994. ,
DOI : 10.1080/01621459.1987.10478458
Systems biology: experimental design, FEBS Journal, vol.16, issue.Suppl., pp.923-942, 2009. ,
DOI : 10.1016/S1570-7946(03)80071-8
Experimental Testing of Advanced Scatter Search Designs for Global Optimization of Multimodal Functions, Journal of Global Optimization, vol.49, issue.4, pp.235-255, 2005. ,
DOI : 10.1007/978-3-662-07418-3
Scatter search : methodology and implementations in C, p.29, 2012. ,
Reminiscences of a Statistician: The Company I Kept, p.59, 2007. ,
DOI : 10.1007/978-1-4614-1412-4_98
Heterogeneous Uncertainty Sampling for Supervised Learning, Proceedings of the eleventh international conference on machine learning, pp.148-156, 1994. ,
DOI : 10.1016/B978-1-55860-335-6.50026-X
Estimation de modèles autorégressifs vectoriels à noyaux à valeur opérateur : application à l'inférence de réseaux, p.137, 2015. ,
On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, pp.986-1005, 1956. ,
Bayesian Statistics : A Review, Society of Industrial and Applied Mathematics, p.64, 1972. ,
DOI : 10.1137/1.9781611970654
Experimental Design in Dynamical System Identification: A Bandit-Based Active Learning Approach, Machine Learning and Knowledge Discovery in Databases, pp.306-321, 2014. ,
DOI : 10.1007/978-3-662-44851-9_20
URL : https://hal.archives-ouvertes.fr/hal-01109775
Globalized Nelder???Mead method for engineering optimization, Computers & Structures, vol.82, issue.23-26, pp.2251-2260, 2004. ,
DOI : 10.1016/j.compstruc.2004.03.072
URL : https://hal.archives-ouvertes.fr/hal-00299048
Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.281-297, 1967. ,
Wisdom of crowds for robust gene network inference, Nature Methods, vol.11, issue.8, pp.9796-804, 2012. ,
DOI : 10.1093/nar/gkm815
Revealing strengths and weaknesses of methods for gene network inference, Proceedings of the National Academy of Sciences, pp.6286-6291, 2010. ,
DOI : 10.1073/pnas.1230759100
Étude de l'Apprentissage Actif, Application à la Conduite d'Expériences, p.66, 2005. ,
Bayesian Inference of Gene Regulatory Networks : From parameter estimation to experimental design, p.64, 2012. ,
Employing em and pool-based active learning for text classification, Proc. International Conference on Machine Learning (ICML), pp.359-367, 1998. ,
Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach, BMC Systems Biology, vol.8, issue.1, pp.13-16, 2014. ,
DOI : 10.1016/j.cell.2012.05.044
Autonomous learning of parameters in differential equations, p.129, 2015. ,
URL : https://hal.archives-ouvertes.fr/hal-01272370
Die kinetik der invertinwirkung, Biochem. z, vol.49, pp.333-369352, 1913. ,
Machine learning : An artificial intelligence approach, p.36, 2013. ,
DOI : 10.1007/978-3-662-12405-5
Generalization as search, Artificial Intelligence, vol.18, issue.2, pp.203-226, 1982. ,
DOI : 10.1016/0004-3702(82)90040-6
Foundations of machine learning, p.44, 2012. ,
Machine learning : a probabilistic perspective, p.36, 2012. ,
Active learning with multiple views, p.40, 2002. ,
Learning and Inference in Computational Systems Biology, 2010. ,
A simplex method for function minimization. The computer journal, pp.308-313, 1965. ,
Le raisonnement bayésien : modélisation et inférence, p.149, 2007. ,
Applications de l'apprentissage statistique à la biologie computationnelle, p.141, 2013. ,
URL : https://hal.archives-ouvertes.fr/pastel-00958432
A Bayesian active learning strategy for sequential experimental design in systems biology, BMC Systems Biology, vol.53, issue.12, p.132, 2014. ,
DOI : 10.1016/j.csda.2009.07.025
URL : https://hal.archives-ouvertes.fr/hal-00943728
Gene networks inference using dynamic Bayesian networks, Bioinformatics, vol.19, issue.Suppl 2, pp.19-138, 2003. ,
DOI : 10.1093/bioinformatics/btg1071
URL : https://hal.archives-ouvertes.fr/hal-01176902
Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge, Science Signaling, vol.4, issue.189, p.120, 2011. ,
DOI : 10.1126/scisignal.2002212
S??lection s??quentielle de conditions exp??rimentales non contr??l??es, Journal Europ??en des Syst??mes Automatis??s, vol.40, issue.2, pp.197-209, 2006. ,
DOI : 10.3166/jesa.40.197-210
Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference, Bioinformatics, vol.22, issue.21, pp.3209-3216, 2007. ,
DOI : 10.1093/bioinformatics/btl443
URL : https://hal.archives-ouvertes.fr/hal-00341950
Structural and practical identifiability analysis of partially observed Bibliographie 173, 2009. ,
Addressing parameter identifiability by model-based experimentation, IET Systems Biology, vol.5, issue.2, pp.120-130, 2011. ,
DOI : 10.1049/iet-syb.2010.0061
Des rythmes biologiques à la chronobiologie. Gauthier-Villars, p.142, 1974. ,
Scatter search and pathrelinking : Fundamentals, advances, and applications, Handbook of metaheuristics, pp.87-107, 2010. ,
DOI : 10.1007/978-1-4419-1665-5_4
URL : http://www.research.att.com/~mgcr/doc/sspr.pdf
Three-Stage Designs for Seed Testing Experiments, Applied statistics, pp.153-162, 1995. ,
DOI : 10.2307/2986341
A survey of models for inference of gene regulatory networks, Nonlinear Anal. Model. Control, vol.18, issue.4, pp.444-465, 2013. ,
Some aspects of the sequential design of experiments, Herbert Robbins Selected Papers, pp.169-177, 1985. ,
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems, BMC bioinformatics, vol.7, issue.1, pp.1-29, 2006. ,
Eléments pour l'Apprentissage et l'Optimisation de Fonctions Chères, p.79, 2011. ,
Boosting active learning to optimality : A tractable monte-carlo, billiard-based algorithm. Machine Learning and Knowledge Discovery in Databases, p.53, 2009. ,
URL : https://hal.archives-ouvertes.fr/inria-00433866
Optimal robust expensive optimization is tractable, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pp.1951-1956, 2009. ,
DOI : 10.1145/1569901.1570255
URL : https://hal.archives-ouvertes.fr/inria-00374910
Comparison of batch and kalman filtering for radar tracking, Proceedings of 10th Annual AIAA/BMDO Conference, p.88, 2001. ,
Monte-carlo search techniques in the modern board game thurn and taxis, p.52, 2009. ,
Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, vol.270, issue.5235, pp.467-470, 1995. ,
DOI : 10.1126/science.270.5235.467
Active learning literature survey, pp.55-6611, 2010. ,
Active Learning, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.20, issue.4, pp.1-114, 2012. ,
DOI : 10.1109/TMM.2002.1017738
Query by committee, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.287-294, 1992. ,
DOI : 10.1145/130385.130417
Experimental Design Considerations for Dynamic Systems, Industrial & Engineering Chemistry Research, vol.33, issue.11, pp.2656-2667, 1994. ,
DOI : 10.1021/ie00035a017
Mastering the game of Go with deep neural networks and tree search, Nature, vol.34, issue.7587, pp.529484-489, 2016. ,
DOI : 10.3233/ICG-2011-34302
Active learning for sampling in time-series experiments with application to gene expression analysis, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.832-839, 2005. ,
DOI : 10.1145/1102351.1102456
The Body Clock Guide to Better Health : How to Use Your Body's Natural Clock to Fight Illness and Achieve Maximum Health, p.142, 2015. ,
Design and use of fluorescent fusion proteins in cell biology. Current protocols in cell biology, pp.4-157, 2005. ,
For Differential Equations with r Parameters, 2r+1 Experiments Are Enough for Identification, Journal of Nonlinear Science, vol.12, issue.6, pp.553-583, 2002. ,
DOI : 10.1007/s00332-002-0506-0
Experimental Design for Parameter Estimation of Gene Regulatory Networks, PLoS ONE, vol.7, issue.7, pp.40052-129, 2012. ,
DOI : 10.1371/journal.pone.0040052.t002
Sur la division des corp materiels en parties, Bull. Acad. Polon, 1956. ,
Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-Throughput Pathway Inference, Annals of the New York Academy of Sciences, vol.1115, issue.2, pp.1-22, 2007. ,
DOI : 10.1038/ng881
Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling, Proceedings of the National Academy of Sciences, pp.1028-1033, 2003. ,
DOI : 10.1016/S0968-0004(01)01834-5
Plans d'expérience : constructions et analyses statistiques, p.62, 2010. ,
Adaptive ??-Greedy Exploration in Reinforcement Learning Based on Value Differences, KI 2010 : Advances in Artificial Intelligence, pp.203-210, 2010. ,
DOI : 10.1016/S0167-9236(03)00061-7
Value-Difference Based Exploration: Adaptive Control between Epsilon-Greedy and Softmax, KI 2011 : Advances in Artificial Intelligence, pp.335-346, 2011. ,
DOI : 10.1038/nature04766
Biologic rhythms in clinical and laboratory medicine, p.142, 2012. ,
DOI : 10.1007/978-3-642-78734-8
Similarity transformation approach to identifiability analysis of nonlinear compartmental models, Mathematical Biosciences, vol.93, issue.2, pp.217-248, 1989. ,
DOI : 10.1016/0025-5564(89)90024-2
A theory of the learnable, Communications of the ACM, vol.27, issue.11, pp.1134-1142, 1984. ,
DOI : 10.1145/1968.1972
Facing off with Scylla and Charybdis: a comparison of scalar, partial, and the novel possibility of approximate measurement invariance, Frontiers in Psychology, vol.4, 2013. ,
DOI : 10.3389/fpsyg.2013.00770
An integrated strategy for prediction uncertainty analysis, Bioinformatics, vol.53, issue.8, pp.281130-1135, 2012. ,
DOI : 10.1080/10635150490522584
Biopredynbench : a suite of benchmark problems for dynamic modelling in systems biology, BMC systems biology, vol.9, issue.1, pp.1-28, 2015. ,
MIDER: Network Inference with Mutual Information Distance and Entropy Reduction, PLoS ONE, vol.27, issue.5, 2014. ,
DOI : 10.1371/journal.pone.0096732.s001
URL : https://doi.org/10.1371/journal.pone.0096732
A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007. ,
DOI : 10.1017/CBO9780511810633
Sequential Tests of Statistical Hypotheses, The Annals of Mathematical Statistics, vol.16, issue.2, pp.117-186, 1945. ,
DOI : 10.1214/aoms/1177731118
Identification of parametric models from experimental data. Communications and control engineering, pp.31-56, 1997. ,
The unscented Kalman filter for nonlinear estimation, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp.153-158, 2000. ,
DOI : 10.1109/ASSPCC.2000.882463
Problems and approaches in design of experiments for estimation and testing in non-linear models, Multivariate AnalysisP. R. Krishnaiah), vol.4, pp.209-223, 1977. ,
Efficient characterization of high-dimensional parameter spaces for systems biology, BMC Systems Biology, vol.5, issue.1, pp.142-94, 2011. ,
DOI : 10.1371/journal.pcbi.0030189