N. Abe and M. Hiroshi, Query learning strategies using boosting and bagging, Machine Learning : Proceedings of the Fifteenth International Conference (ICML'98), pp.1-10, 1998.

B. D. Anderson and J. B. Moore, Optimal filtering. Courier Corporation, p.23, 2012.

B. D. Anderson, J. B. Moore, L. S. Di-franco-rmm, and M. Sage, Optimal Filtering, IEEE Transactions on Systems, Man, and Cybernetics, vol.12, issue.2, p.23, 1979.
DOI : 10.1109/TSMC.1982.4308806

E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, Synthetic biology: new engineering rules for an emerging discipline, Molecular systems biology, p.143, 2006.
DOI : 10.1101/SQB.1961.026.01.048

S. Asprey and S. Macchietto, Statistical tools for optimal dynamic model building, Computers & Chemical Engineering, vol.24, issue.2-7, pp.1261-1267, 2000.
DOI : 10.1016/S0098-1354(00)00328-8

A. Atkinson, The usefulness of optimum experimental designs, Journal of the Royal Statistical Society. Series B (Methodological), vol.59, pp.59-76, 1996.

A. Atkinson, A. Donev, T. , and R. , Optimum experimental designs, with SAS, p.59, 2007.

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

S. M. Baker, C. H. Poskar, and B. H. Junker, Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models, EURASIP Journal on Bioinformatics and Systems Biology, vol.12, issue.1, pp.20111-20119, 2011.
DOI : 10.1093/imaman/12.1.23

G. Batt, Design, optimization and control in systems and synthetic biology, p.143, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00958566

G. Batt, B. Yordanov, R. Weiss, and C. Belta, Robustness analysis and tuning of synthetic gene networks, Bioinformatics, vol.57, issue.2, pp.2415-2422, 2007.
DOI : 10.1007/BF02460618

E. B. Baum and K. Lang, Query learning can work poorly when a human oracle is used, International Joint Conference on Neural Networks, pp.8-39, 1992.

M. Bayes and M. Price, An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs, Philosophical Transactions, pp.1683-1775, 1763.

R. E. Bellman, On the Theory of Dynamic Programming, Proceedings of the National Academy of Sciences, vol.38, issue.8, pp.716-719, 1952.
DOI : 10.1073/pnas.38.8.716

R. E. Bellman, Dynamic programming, p.44, 1957.

D. A. Berry and F. B. , Bandit Problems : Sequential Allocation of Experiments, p.66, 1985.
DOI : 10.1007/978-94-015-3711-7

J. Boissel, R. Kahoul, D. Marin, and F. Boissel, Effect Model Law: An Approach for the Implementation of Personalized Medicine, Journal of Personalized Medicine, vol.3, issue.3, pp.177-190, 2013.
DOI : 10.1186/1472-6947-10-20

G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis, 2011.
DOI : 10.1002/9781118033197

G. E. Box and K. Wilson, On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series B (Methodological), vol.13, issue.1, pp.1-45, 1951.
DOI : 10.1007/978-1-4612-4380-9_23

M. Box, Bias in nonlinear estimation, Journal of the Royal Statistical Society. Series B (Methodological), pp.171-201, 1971.

P. Brazhnik, A. De-la-fuente, and P. Mendes, Gene networks: how to put the function in genomics, Trends in Biotechnology, vol.20, issue.11, pp.467-472, 2002.
DOI : 10.1016/S0167-7799(02)02053-X

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.2307/1403680

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling et al., A survey of monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE Transactions on, vol.4, issue.51, pp.1-43, 2012.

B. Brügmann, Monte carlo go, p.50, 1993.

S. Bubeck, R. Munos, and G. Stoltz, Pure Exploration in Multi-armed Bandits Problems, Algorithmic Learning Theory, pp.23-37, 2009.
DOI : 10.1090/S0002-9904-1952-09620-8

S. Bubeck, R. Munos, and G. Stoltz, Pure exploration in finitely-armed and continuous-armed bandits, Theoretical Computer Science, vol.412, issue.19, pp.1832-1852, 2011.
DOI : 10.1016/j.tcs.2010.12.059

URL : https://hal.archives-ouvertes.fr/hal-00609550

M. Campbell, A. J. Hoane, and F. Hsu, Deep Blue, Artificial Intelligence, vol.134, issue.1-2, pp.57-83, 2002.
DOI : 10.1016/S0004-3702(01)00129-1

K. Chaloner and I. Verdinelli, Bayesian Experimental Design: A Review, Statistical Science, vol.10, issue.3, pp.273-304, 1995.
DOI : 10.1214/ss/1177009939

T. Chang, Binding of cells to matrixes of distinct antibodies coated on solid surface, Journal of Immunological Methods, vol.65, issue.1-2, pp.217-223, 1983.
DOI : 10.1016/0022-1759(83)90318-6

T. Chen, H. He, and G. Church, MODELING GENE EXPRESSION WITH DIFFERENTIAL EQUATIONS, Biocomputing '99, p.14, 1999.
DOI : 10.1142/9789814447300_0004

W. W. Chen, M. Niepel, and P. K. Sorger, Classic and contemporary approaches to modeling biochemical reactions, Genes & Development, vol.24, issue.17, pp.1861-1875, 2010.
DOI : 10.1101/gad.1945410

URL : http://genesdev.cshlp.org/content/24/17/1861.full.pdf

H. Chernoff, Sequential design of experiments. The Annals of Mathematical Statistics, pp.755-770, 1959.

H. Chernoff, Sequential designs, 1968.

H. Chernoff, Sequential analysis and optimal design, Society of Industrial and Applied Mathematics, vol.8, p.65, 1972.

H. Chernoff and . Document, Approaches in sequential design of experiments, 1975.

H. Chernoff, Lectures on Optimal Design and Sequential Analyses. Citeseer, p.65, 1981.

O. Chis, J. Banga, E. , and B. , Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods, PLoS ONE, vol.6, issue.11, pp.27755-27786, 2011.
DOI : 10.1371/journal.pone.0027755.s001

D. Cohn, L. Atlas, and R. Ladner, Improving generalization with active learning, Machine Learning, vol.27, issue.4, pp.201-221, 1994.
DOI : 10.1007/BF00993277

URL : https://link.springer.com/content/pdf/10.1007%2FBF00993277.pdf

P. Congdon, Bayesian statistical modelling, p.149, 2007.

A. Cornuéjols and L. Miclet, Apprentissage artificiel : concepts et algorithmes, Editions Eyrolles, vol.36, issue.38, p.40, 2011.

A. Cotillard, Développement d'une méthodologie robuste de sélection de gènes dans le cadre d'une activation pharmacologique de la voie PPAR, p.156, 2009.

F. Crick, Central Dogma of Molecular Biology, Nature, vol.215, issue.5258, p.9, 1970.
DOI : 10.1038/227561a0

A. Culotta and A. Mccallum, Reducing labeling effort for structured prediction tasks, AAAI, pp.746-751, 2005.
DOI : 10.21236/ADA440382

I. Dagan and S. P. Engelson, Committee-Based Sampling For Training Probabilistic Classifiers, Proceedings of the Twelfth International Conference on Machine Learning, pp.150-157, 1995.
DOI : 10.1016/B978-1-55860-377-6.50027-X

A. Buc, F. Brunel, and N. , Estimation of parametric nonlinear odes for biological networks identification, Learning and Inference in Computational Systems Biology, pp.61-96, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00647275

S. Dasgupta, C. Monteleoni, and D. J. Hsu, A general agnostic active learning algorithm, Advances in neural information processing systems, pp.353-360, 2007.

D. Jong and H. , Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology, vol.9, issue.1, pp.67-103, 2002.
DOI : 10.1089/10665270252833208

URL : https://hal.archives-ouvertes.fr/inria-00072606

M. H. Degroot, Optimal Statistical Decisions, p.64, 1970.
DOI : 10.1002/0471729000

S. Dobre, Analyses de sensibilité et d'identifiabilité globales. Application à l'estimation de paramètres photophysiques en thérapie photodynamique, p.57, 2010.

R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.39-43, 1995.
DOI : 10.1109/MHS.1995.494215

J. A. Egea, D. Henriques, T. Cokelaer, A. F. Villaverde, A. Macnamara et al., Meigo : an open-source software suite Bibliographie 167, 2014.

J. A. Egea, R. Martí, and J. R. Banga, An evolutionary method for complex-process optimization, Computers & Operations Research, vol.37, issue.2, pp.315-324, 2010.
DOI : 10.1016/j.cor.2009.05.003

T. Fariza, Bioinformatique des ARNs non-codants : Algorithmes pour leur identification et la prédiction de leur structure, 2014.

Z. Feldman and C. Domshlak, On mabs and separation of concerns in monte-carlo planning for mdps, Twenty-Fourth International Conference on Automated Planning and Scheduling, p.50, 2014.

A. Fouchet, J. Delosme, D. , and F. , Gene regulatory network inference using ensembles of local multiple kernel models, Seventh international workshop on Machine Learning in Systems Biology, satellite meeting of ISMB'2013, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844494

G. Franceschini and S. Macchietto, Model-based design of experiments for parameter precision: State of the art, Chemical Engineering Science, vol.63, issue.19, pp.4846-4872, 2008.
DOI : 10.1016/j.ces.2007.11.034

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, Selective sampling using the query by committee algorithm, Machine Learning, vol.28, issue.2/3, pp.133-168, 1997.
DOI : 10.1023/A:1007330508534

M. Fried and D. M. Crothers, Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis, Nucleic Acids Research, vol.9, issue.23, pp.6505-6525, 1981.
DOI : 10.1093/nar/9.23.6505

F. Galvanin, M. Barolo, F. Bezzo, and S. Macchietto, A backoff strategy for model-based experiment design under parametric uncertainty, AIChE Journal, vol.48, issue.8, pp.562088-2102, 2010.
DOI : 10.1152/ajpendo.00304.2001

F. Galvanin, S. Macchietto, and F. Bezzo, Model-based design of parallel experiments . Industrial & engineering chemistry research, pp.871-882, 2007.

A. Garivier and O. Cappé, The kl-ucb algorithm for bounded stochastic bandits and beyond, COLT, pp.359-376, 2011.

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007.
DOI : 10.1145/1273496.1273531

URL : https://hal.archives-ouvertes.fr/inria-00164003

A. Gelman and D. B. Rubin, Markov chain Monte Carlo methods in biostatistics, Statistical Methods in Medical Research, vol.48, issue.4, pp.339-355, 1996.
DOI : 10.1093/biomet/80.2.267

Z. Ghahramani, Learning dynamic Bayesian networks, Adaptive processing of sequences and data structures, pp.168-197, 1998.
DOI : 10.1007/BFb0053999

URL : http://mlg.eng.cam.ac.uk/pub/pdf/Gha97a.pdf

F. Glover, HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS, Decision Sciences, vol.15, issue.1, pp.156-166, 1977.
DOI : 10.1093/comjnl/16.2.135

D. E. Golberg, Genetic algorithms in search, optimization, and machine learning, p.48, 1989.

S. Guy-bart, Modelling in biology. Imperial College London, p.152, 2015.

B. Hall, A. Limaye, and A. B. Kulkarni, Overview: Generation of Gene Knockout Mice, Current protocols in cell biology, vol.2, issue.6, pp.1217-157, 2009.
DOI : 10.1128/MCB.7.6.2294

S. Hanneke, Theoretical foundations of active learning, Science, p.38, 2009.

P. E. Hart, N. J. Nilsson, R. , and B. , A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol.4, issue.2, pp.100-107, 1968.
DOI : 10.1109/TSSC.1968.300136

J. Hartikainen, A. Solin, and S. Särkkä, Optimal Filtering with Kalman Filters and Smoothers a Manual for the Matlab toolbox EKF/UKF Version 1, p.110, 2011.

M. Hecker, S. Lambeck, S. Toepfer, E. Van-someren, and R. Guthke, Gene regulatory network inference: Data integration in dynamic models???A review, Biosystems, vol.96, issue.1, pp.86-103, 2009.
DOI : 10.1016/j.biosystems.2008.12.004

S. Hengl, C. Kreutz, J. Timmer, and T. Maiwald, Data-based identifiability analysis of non-linear dynamical models, Bioinformatics, vol.32, issue.19, pp.2612-2618, 2007.
DOI : 10.1080/02664760500054517

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban et al., SUNDIALS, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.31363-396, 2005.
DOI : 10.1145/1089014.1089020

C. Ho, M. Tsai, L. , and C. , Active learning and experimental design with svms, Active Learning and Experimental Design@ AISTATS, pp.71-84, 2011.

R. A. Howard, Dynamic programming and markov processes, p.44, 1960.

A. Irrthum, L. Wehenkel, and P. Geurts, Inferring regulatory networks from expression data using tree-based methods, PloS one, vol.5, issue.9, pp.12776-137, 2010.

S. J. Julier and J. K. Uhlmann, New extension of the Kalman filter to nonlinear systems, Signal Processing, Sensor Fusion, and Target Recognition VI, pp.182-193, 1997.
DOI : 10.1117/12.280797

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

E. Kaufmann, O. Cappé, and A. Garivier, On bayesian upper confidence bounds for bandit problems, AISTATS, pp.592-600, 2012.

J. Kiefer, Optimum experimental designs, Journal of the Royal Statistical Society. Series B (Methodological), pp.272-319, 1959.

J. Kiefer, Construction and optimality of generalized youden designs ii. A Survey of Statistical Designs and Linear Models, pp.333-353, 1975.

R. D. King, J. Rowland, S. G. Oliver, P. Pir, W. Aubrey et al., The Robot Scientist Adam, Computer, vol.42, issue.7, pp.4246-54, 2009.
DOI : 10.1109/MC.2009.270

R. D. King, J. Rowland, S. G. Oliver, M. Young, W. Aubrey et al., The Automation of Science, Science, vol.236, issue.5923, 2009.
DOI : 10.1093/jxb/24.6.1172

R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant et al., Functional genomic hypothesis generation and experimentation by a robot scientist, Nature, vol.418, issue.6971, pp.427247-252, 2004.
DOI : 10.1038/nature00935

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

D. E. Knuth and R. W. Moore, An analysis of alpha-beta pruning, Artificial Intelligence, vol.6, issue.4, pp.293-326, 1976.
DOI : 10.1016/0004-3702(75)90019-3

L. Kocsis and C. Szepesvári, Bandit Based Monte-Carlo Planning, Machine Learning : ECML 2006, pp.282-293, 2006.
DOI : 10.1007/11871842_29

URL : http://zaphod.aml.sztaki.hu/papers/ecml06.pdf

A. Kong, J. S. Liu, and W. H. Wong, Sequential Imputations and Bayesian Missing Data Problems, Journal of the American Statistical Association, vol.52, issue.425, pp.278-288, 1994.
DOI : 10.1080/01621459.1987.10478458

C. Kreutz and J. Timmer, Systems biology: experimental design, FEBS Journal, vol.16, issue.Suppl., pp.923-942, 2009.
DOI : 10.1016/S1570-7946(03)80071-8

M. Laguna and R. Martí, Experimental Testing of Advanced Scatter Search Designs for Global Optimization of Multimodal Functions, Journal of Global Optimization, vol.49, issue.4, pp.235-255, 2005.
DOI : 10.1007/978-3-662-07418-3

M. Laguna and R. Marti, Scatter search : methodology and implementations in C, p.29, 2012.

E. L. Lehmann, Reminiscences of a Statistician: The Company I Kept, p.59, 2007.
DOI : 10.1007/978-1-4614-1412-4_98

D. D. Lewis and J. Catlett, Heterogeneous Uncertainty Sampling for Supervised Learning, Proceedings of the eleventh international conference on machine learning, pp.148-156, 1994.
DOI : 10.1016/B978-1-55860-335-6.50026-X

N. Lim, Estimation de modèles autorégressifs vectoriels à noyaux à valeur opérateur : application à l'inférence de réseaux, p.137, 2015.

D. Lindley, On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, pp.986-1005, 1956.

D. V. Lindley, Bayesian Statistics : A Review, Society of Industrial and Applied Mathematics, p.64, 1972.
DOI : 10.1137/1.9781611970654

A. Llamosi, A. Mezine, F. Buc, V. Letort, and M. Sebag, Experimental Design in Dynamical System Identification: A Bandit-Based Active Learning Approach, Machine Learning and Knowledge Discovery in Databases, pp.306-321, 2014.
DOI : 10.1007/978-3-662-44851-9_20

URL : https://hal.archives-ouvertes.fr/hal-01109775

M. A. Luersen, L. Riche, and R. , Globalized Nelder???Mead method for engineering optimization, Computers & Structures, vol.82, issue.23-26, pp.2251-2260, 2004.
DOI : 10.1016/j.compstruc.2004.03.072

URL : https://hal.archives-ouvertes.fr/hal-00299048

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.281-297, 1967.

D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill et al., Wisdom of crowds for robust gene network inference, Nature Methods, vol.11, issue.8, pp.9796-804, 2012.
DOI : 10.1093/nar/gkm815

D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano et al., Revealing strengths and weaknesses of methods for gene network inference, Proceedings of the National Academy of Sciences, pp.6286-6291, 2010.
DOI : 10.1073/pnas.1230759100

J. Mary, Étude de l'Apprentissage Actif, Application à la Conduite d'Expériences, p.66, 2005.

J. Mazur, Bayesian Inference of Gene Regulatory Networks : From parameter estimation to experimental design, p.64, 2012.

A. K. Mccallum and K. Nigamy, Employing em and pool-based active learning for text classification, Proc. International Conference on Machine Learning (ICML), pp.359-367, 1998.

P. Meyer, T. Cokelaer, D. Chandran, K. H. Kim, P. Loh et al., Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach, BMC Systems Biology, vol.8, issue.1, pp.13-16, 2014.
DOI : 10.1016/j.cell.2012.05.044

A. Mezine, A. Llamosi, V. Letort, M. Sebag, and F. Buc, Autonomous learning of parameters in differential equations, p.129, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01272370

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. z, vol.49, pp.333-369352, 1913.

R. S. Michalski, J. G. Carbonell, M. , and T. M. , Machine learning : An artificial intelligence approach, p.36, 2013.
DOI : 10.1007/978-3-662-12405-5

T. M. Mitchell, Generalization as search, Artificial Intelligence, vol.18, issue.2, pp.203-226, 1982.
DOI : 10.1016/0004-3702(82)90040-6

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning, p.44, 2012.

K. P. Murphy, Machine learning : a probabilistic perspective, p.36, 2012.

I. A. Muslea, Active learning with multiple views, p.40, 2002.

N. D. Lawrence, M. Girolami, and M. R. , Learning and Inference in Computational Systems Biology, 2010.

J. A. Nelder and R. Mead, A simplex method for function minimization. The computer journal, pp.308-313, 1965.

É. Parent and J. Bernier, Le raisonnement bayésien : modélisation et inférence, p.149, 2007.

E. Pauwels, Applications de l'apprentissage statistique à la biologie computationnelle, p.141, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00958432

E. Pauwels, C. Lajaunie, and J. Vert, A Bayesian active learning strategy for sequential experimental design in systems biology, BMC Systems Biology, vol.53, issue.12, p.132, 2014.
DOI : 10.1016/j.csda.2009.07.025

URL : https://hal.archives-ouvertes.fr/hal-00943728

B. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet et al., Gene networks inference using dynamic Bayesian networks, Bioinformatics, vol.19, issue.Suppl 2, pp.19-138, 2003.
DOI : 10.1093/bioinformatics/btg1071

URL : https://hal.archives-ouvertes.fr/hal-01176902

R. J. Prill, J. Saez-rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky, Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge, Science Signaling, vol.4, issue.189, p.120, 2011.
DOI : 10.1126/scisignal.2002212

L. Pronzato, S??lection s??quentielle de conditions exp??rimentales non contr??l??es, Journal Europ??en des Syst??mes Automatis??s, vol.40, issue.2, pp.197-209, 2006.
DOI : 10.3166/jesa.40.197-210

M. Quach, N. Brunel, and F. Buc, Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference, Bioinformatics, vol.22, issue.21, pp.3209-3216, 2007.
DOI : 10.1093/bioinformatics/btl443

URL : https://hal.archives-ouvertes.fr/hal-00341950

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling et al., Structural and practical identifiability analysis of partially observed Bibliographie 173, 2009.

A. Raue, C. Kreutz, T. Maiwald, U. Klingmüller, and J. Timmer, Addressing parameter identifiability by model-based experimentation, IET Systems Biology, vol.5, issue.2, pp.120-130, 2011.
DOI : 10.1049/iet-syb.2010.0061

A. Reinberg, Des rythmes biologiques à la chronobiologie. Gauthier-Villars, p.142, 1974.

M. G. Resende, C. C. Ribeiro, F. Glover, and R. Martí, Scatter search and pathrelinking : Fundamentals, advances, and applications, Handbook of metaheuristics, pp.87-107, 2010.
DOI : 10.1007/978-1-4419-1665-5_4

URL : http://www.research.att.com/~mgcr/doc/sspr.pdf

M. Ridout, Three-Stage Designs for Seed Testing Experiments, Applied statistics, pp.153-162, 1995.
DOI : 10.2307/2986341

B. Ristevski, A survey of models for inference of gene regulatory networks, Nonlinear Anal. Model. Control, vol.18, issue.4, pp.444-465, 2013.

H. Robbins, Some aspects of the sequential design of experiments, Herbert Robbins Selected Papers, pp.169-177, 1985.

M. Rodriguez-fernandez, J. A. Egea, and J. R. Banga, Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems, BMC bioinformatics, vol.7, issue.1, pp.1-29, 2006.

P. Rolet, Eléments pour l'Apprentissage et l'Optimisation de Fonctions Chères, p.79, 2011.

P. Rolet, M. Sebag, and O. Teytaud, Boosting active learning to optimality : A tractable monte-carlo, billiard-based algorithm. Machine Learning and Knowledge Discovery in Databases, p.53, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00433866

P. Rolet, M. Sebag, and O. Teytaud, Optimal robust expensive optimization is tractable, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pp.1951-1956, 2009.
DOI : 10.1145/1569901.1570255

URL : https://hal.archives-ouvertes.fr/inria-00374910

H. S. Satz and K. T. , Comparison of batch and kalman filtering for radar tracking, Proceedings of 10th Annual AIAA/BMDO Conference, p.88, 2001.

F. C. Schadd, Monte-carlo search techniques in the modern board game thurn and taxis, p.52, 2009.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, vol.270, issue.5235, pp.467-470, 1995.
DOI : 10.1126/science.270.5235.467

B. Settles, Active learning literature survey, pp.55-6611, 2010.

B. Settles, Active Learning, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.20, issue.4, pp.1-114, 2012.
DOI : 10.1109/TMM.2002.1017738

H. S. Seung, M. Opper, and H. Sompolinsky, Query by committee, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.287-294, 1992.
DOI : 10.1145/130385.130417

R. W. Shirt, T. J. Harris, and D. W. Bacon, Experimental Design Considerations for Dynamic Systems, Industrial & Engineering Chemistry Research, vol.33, issue.11, pp.2656-2667, 1994.
DOI : 10.1021/ie00035a017

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre et al., Mastering the game of Go with deep neural networks and tree search, Nature, vol.34, issue.7587, pp.529484-489, 2016.
DOI : 10.3233/ICG-2011-34302

R. Singh, N. Palmer, D. Gifford, B. Berger, B. et al., Active learning for sampling in time-series experiments with application to gene expression analysis, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.832-839, 2005.
DOI : 10.1145/1102351.1102456

M. Smolensky and L. Lamberg, The Body Clock Guide to Better Health : How to Use Your Body's Natural Clock to Fight Illness and Achieve Maximum Health, p.142, 2015.

E. Snapp, Design and use of fluorescent fusion proteins in cell biology. Current protocols in cell biology, pp.4-157, 2005.

E. D. Sontag, For Differential Equations with r Parameters, 2r+1 Experiments Are Enough for Identification, Journal of Nonlinear Science, vol.12, issue.6, pp.553-583, 2002.
DOI : 10.1007/s00332-002-0506-0

B. Steiert, A. Raue, J. Timmer, and C. Kreutz, Experimental Design for Parameter Estimation of Gene Regulatory Networks, PLoS ONE, vol.7, issue.7, pp.40052-129, 2012.
DOI : 10.1371/journal.pone.0040052.t002

H. Steinhaus, Sur la division des corp materiels en parties, Bull. Acad. Polon, 1956.

G. Stolovitzky, D. Monroe, and A. Califano, Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-Throughput Pathway Inference, Annals of the New York Academy of Sciences, vol.1115, issue.2, pp.1-22, 2007.
DOI : 10.1038/ng881

I. Swameye, T. Müller, J. Timmer, O. Sandra, and U. Klingmüller, Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling, Proceedings of the National Academy of Sciences, pp.1028-1033, 2003.
DOI : 10.1016/S0968-0004(01)01834-5

W. Tinsson, Plans d'expérience : constructions et analyses statistiques, p.62, 2010.

M. Tokic, Adaptive ??-Greedy Exploration in Reinforcement Learning Based on Value Differences, KI 2010 : Advances in Artificial Intelligence, pp.203-210, 2010.
DOI : 10.1016/S0167-9236(03)00061-7

M. Tokic and G. Palm, Value-Difference Based Exploration: Adaptive Control between Epsilon-Greedy and Softmax, KI 2011 : Advances in Artificial Intelligence, pp.335-346, 2011.
DOI : 10.1038/nature04766

Y. Touitou and E. Haus, Biologic rhythms in clinical and laboratory medicine, p.142, 2012.
DOI : 10.1007/978-3-642-78734-8

S. Vajda, K. R. Godfrey, R. , and H. , Similarity transformation approach to identifiability analysis of nonlinear compartmental models, Mathematical Biosciences, vol.93, issue.2, pp.217-248, 1989.
DOI : 10.1016/0025-5564(89)90024-2

L. G. Valiant, A theory of the learnable, Communications of the ACM, vol.27, issue.11, pp.1134-1142, 1984.
DOI : 10.1145/1968.1972

R. Van-de-schoot, A. Kluytmans, L. Tummers, P. Lugtig, J. Hox et al., Facing off with Scylla and Charybdis: a comparison of scalar, partial, and the novel possibility of approximate measurement invariance, Frontiers in Psychology, vol.4, 2013.
DOI : 10.3389/fpsyg.2013.00770

J. Vanlier, C. A. Tiemann, P. A. Hilbers, and N. A. Van-riel, An integrated strategy for prediction uncertainty analysis, Bioinformatics, vol.53, issue.8, pp.281130-1135, 2012.
DOI : 10.1080/10635150490522584

A. F. Villaverde, D. Henriques, K. Smallbone, S. Bongard, J. Schmid et al., Biopredynbench : a suite of benchmark problems for dynamic modelling in systems biology, BMC systems biology, vol.9, issue.1, pp.1-28, 2015.

A. F. Villaverde, J. Ross, F. Morán, and J. R. Banga, MIDER: Network Inference with Mutual Information Distance and Entropy Reduction, PLoS ONE, vol.27, issue.5, 2014.
DOI : 10.1371/journal.pone.0096732.s001

URL : https://doi.org/10.1371/journal.pone.0096732

V. Luxburg and U. , A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1017/CBO9780511810633

A. Wald, Sequential Tests of Statistical Hypotheses, The Annals of Mathematical Statistics, vol.16, issue.2, pp.117-186, 1945.
DOI : 10.1214/aoms/1177731118

E. Walter and L. Pronzato, Identification of parametric models from experimental data. Communications and control engineering, pp.31-56, 1997.

E. Wan and R. Van-der-merwe, The unscented Kalman filter for nonlinear estimation, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), pp.153-158, 2000.
DOI : 10.1109/ASSPCC.2000.882463

S. Zacks, Problems and approaches in design of experiments for estimation and testing in non-linear models, Multivariate AnalysisP. R. Krishnaiah), vol.4, pp.209-223, 1977.

E. Zamora-sillero, M. Hafner, A. Ibig, J. Stelling, and A. Wagner, Efficient characterization of high-dimensional parameter spaces for systems biology, BMC Systems Biology, vol.5, issue.1, pp.142-94, 2011.
DOI : 10.1371/journal.pcbi.0030189