
HAL Id: tel-01761673
https://hal.science/tel-01761673

Submitted on 9 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and placement optimization of compound
services in a converged infrastructure of cloud

computing and internet of things
Elie Rachkidi

To cite this version:
Elie Rachkidi. Modelling and placement optimization of compound services in a converged infras-
tructure of cloud computing and internet of things. Networking and Internet Architecture [cs.NI].
Université Paris-Saclay; Université d’Evry-Val-d’Essonne, 2017. English. �NNT : 2017SACLE030�.
�tel-01761673�

https://hal.science/tel-01761673
https://hal.archives-ouvertes.fr

Modélisation et Optimisation du
Placement de Services

Composés dans une
Infrastructure Convergente de
l’Informatique en Nuage et de

l’Internet des Objets

Thèse de doctorat de l'Université Paris-Saclay
préparée à L’Université d’Evry Val d’Essonne et Telecom SudParis

École doctorale n°580 sciences et technologies de l'information et de
la communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Evry, le 24 Octobre 2017, par

Elie EL RACHKIDI
Composition du Jury :

Président

Rapporteur

Rapporteur

Examinateur

Examinateur

M. Jean-Marc DELOSME
Professeur, Université d’Evry Val d’Essonne, France (AROBAS)
M. Joberto MARTINS
Professeur, Universidade Salvador, Brésil
M. Vania CONAN
Responsable du laboratoire réseaux, Thalès Communications & Security
M. Djamel BELAÏD
Professeur, Télécom SudParis, France (SAMOVAR)
Mme. Nada CHENDEB
Docteur, Université Libanaise, Liban
M. Nazim AGOULMINE
Professeur, Université d’Evry Val d’Essonne, France (COSMO)
Mme. Amel MAMMAR
Maître de Conférences, Télécom SudParis, France (SAMOVAR)

Directeur de thèse

N
N

T
: 2
01
7S

AC
LE

03
0

Invitée

Acknowledgements
Firstly, I would like to express my sincere gratitude to my advisors, Prof. Nazim

AGOULMINE, Prof. Djamel BELAID, and Dr. Nada CHENDEB for giving me the
chance to realize my Ph.D. research, for their knowledge, enthusiasm and support
over the years. Without their guidance, this work would not have been achievable.

I am truly grateful to all members of the thesis jury, Prof. Joberto MARTINS,
Prof. Vania CONAN, Prof. Jean-Marc DELOSME, Prof. Djamel BELAÏD, and Dr.
Nada CHENDEB for their time, encouragement and constructive feedback. Their
comments are very valuable for my future works.

I am thankful for my colleagues in the LRSM team, Elhadi CHERKAOUI, Thi-
ago MOREIRA, and Mustapha AIT-IDIR for sharing a lot of ideas and for their
friendly collaboration.

I would also like to thank my cousins Wissam RACHKIDI and Diana RACHKIDI
for their support throughout the thesis. Their presence makes Paris home.

I am also indebted to my parents who always believe in me and encourage me
to follow my dreams.

Finally, to all my friends, so many that I could not cite their names here, thank
you for being with me for all these years. I greatly value their help and friendship.

Evry, 2017

Publications
E. H. Cherkaoui, E. Rachkidi, M. Santos, P. A. L. Rego, J. Baliosian, and J. N.

De, “SLA4CLOUD : Measurement and SLA Management of Heterogeneous Cloud
Infrastructures Testbeds,” in 3th International Workshop on ADVANCEs in ICT
Infrastructures and Services, pp. 1–6, 2014

T. Moreira, E. Rachkidi, L. M. Gardini, and R. Braga, “An Enhanced Architec-
ture for LARIISA : An Intelligent System for Decision Making and Service Provision
for e-Health using the cloud,” in 4th International Workshop on ADVANCEs in ICT
Infrastructures and Services, 2015

E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. San-
tos, and S. Fernandes, “Towards Efficient Automatic Scaling and Adaptive cost-
optimized eHealth Services in Cloud,” in 2015 IEEE Global Communications Con-
ference: Selected Areas in Communications: E-Health (GC’ 15 - SAC - E-Health),
pp. 1–6, IEEE, dec 2015

E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. San-
tos, and S. Fernandes, “Cooperative dynamic eHealth service placement in Mobile
Cloud Computing,” in 2015 17th International Conference on E-health Networking,
Application & Services (HealthCom), (Boston, USA), pp. 627–632, IEEE, oct 2015

E. Rachkidi, N. Agoulmine, D. Beläıd, and N. Chendeb, “Towards an Efficient
Service Provisioning in Cloud of Things (CoT),” in 2016 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1–6, IEEE, dec 2016

T. Moreira, H. Martin, E. Rachkidi, and N. Agoulmine, “An experiment on
deploying a privacy-aware sensing as a service in the Sensor-Cloud,” in 5th Interna-
tional Workshop on ADVANCEs in ICT Infrastructures and Services, pp. 1–8, 2017

E. Rachkidi, N. Agoulmine, N. Chendeb, and D. Beläıd, “Resources Optimization
and Efficient Distribution of Shared Virtual Sensors in Sensor-Cloud,” in 2017 IEEE
International Communications Conference (ICC), pp. 1–6, 2017

E. Rachkidi, N. Agoulmine, J. Baliosian, and J. Bustos, “VNET : Towards End-
to-End Network Cloudification,” in 5th International Workshop on ADVANCEs in
ICT Infrastructures and Services, pp. 1–5, 2017

E. Rachkidi, D. Beläıd, N. Agoulmine, and N. Chendeb, “Cloud of Things Mod-
eling for Efficient and Coordinated Resources Provisioning,” in 25th International
Conference on COOPERATIVE INFORMATION SYSTEMS, 2017 - Accepted 25
August 2017

Contents

1 Introduction 1
1.1 Context and Motivation . 2

1.1.1 General Context of the Research 2
1.1.2 Motivation of the Thesis . 3

1.2 Contributions . 6
1.3 Thesis Structure . 7

2 State of the Art 9
2.1 Introduction . 10
2.2 Background and Basic Concepts . 11

2.2.1 Internet of Things . 11
2.2.2 Cloud Computing . 15
2.2.3 Fog Computing . 16

2.3 Integrating Cloud Computing and the Internet of Things 18
2.3.1 Loose Integration . 19
2.3.2 Partial Integration . 20
2.3.3 Full Integration . 23

2.4 Open Issues and Challenges . 24
2.4.1 Interoperability . 24
2.4.2 Resource Provisioning . 26

2.5 Conclusion . 27

3 Efficient Provisioning of Shared Virtual Objects 29
3.1 Introduction . 30
3.2 Related Works . 31
3.3 Problem Statement . 33
3.4 Static Virtual Objects Placement Optimization Model 34

3.4.1 Internet of Things Objects Clustering 34
3.4.2 Placement Optimization Problem Formulation 36

3.5 Dynamic Virtual Objects Placement Optimization Model 42
3.5.1 Internet of Things Objects Clustering 42
3.5.2 Domain Variable Definition 43
3.5.3 Placement Optimization Problem Formulation 45

3.6 Implementation and Evaluation . 47
3.6.1 Evaluation Settings . 47

iii

3.6.2 Evaluation Results . 49
3.7 Conclusion . 51

4 Cloud of Things Resources Modelling 57
4.1 Introduction . 58
4.2 Existing Models and Standards . 59

4.2.1 Internet of Things Environment 60
4.2.2 Cloud Infrastructure Management Initiatives 65

4.3 Cloud of Things Core Model . 70
4.3.1 Standards Classification . 71
4.3.2 Synthesis of Existing Works on Cloud and IoT Models and

Standards . 72
4.4 Cloud of Things Infrastructure . 74

4.4.1 Network Graph Model . 74
4.4.2 Sensing and Actuating . 75
4.4.3 Things Virtualization . 76
4.4.4 Things Integration Patterns 79
4.4.5 Scenarios . 79

4.5 Cloud of Things Platform . 82
4.5.1 Cloud of Things Deployment Options 82
4.5.2 Data Components Sharing . 86

4.6 Conclusion . 89

5 Efficient Provisioning in the Cloud of Things 91
5.1 Introduction . 92
5.2 Problem Statement . 93
5.3 Proposed Resources Provisioning Model 95

5.3.1 Domain Variable . 96
5.3.2 Cloud of Things Infrastructure 99
5.3.3 Cloud of Things Platform . 101

5.4 Implementation and Evaluation . 103
5.4.1 Evaluation Results . 103

5.5 Conclusions . 103

6 General Conclusion and Perspectives 107

List of Figures

1.1 Problem Illustration. 5

2.1 Internet of Things Essential Building Blocks. 12
2.2 Traditional Cloud Computing Service Layers and Key Characteristics. 15
2.3 Fog Computing Conceptual Architecture 17
2.4 Conceptual IoT Framework with Cloud Computing at the Centre . . 19
2.5 Difference between Data-Centric and Device-Centric Approaches . . . 21
2.6 Cloud of Things Service Models as Defined by Existing Works 23
2.7 Cloud Computing and the IoT Separate Provisioning Processes. . . . 26

3.1 Virtual Object Provisioning Approaches. 30
3.2 Virtual Object Sharing Challenges Examples. 33
3.3 Clustering Steps Before the Provisioning Process. 35
3.4 Network Model of the Placement Problem. 37
3.5 Provisioning Scenario with the QoS Index. 40
3.6 Scenario of A Migration Operation. 43
3.7 Scenario of A Provisioning Reconfiguration 45
3.8 Number of Sensors and Clusters for Shared and Unshared Approaches. 50
3.9 Time for Solving the Proposed Linear Program 50
3.10 Cost of Allocated Physical Resources for Applications using Shared

and Unshared Approaches (Simulation 1). 53
3.11 Cost of Allocated Physical Resources for Applications using Shared

and Unshared Approaches (Simulation 2 & 3). 53
3.12 Mean Latency and Cost of Physical Resources for Applications with

and without the QoS Index (Simulation 1). 54
3.13 The Relative Gain in terms of Latency and Cost with and without

the QoS Index (Simulation 1). 54
3.14 Mean Latency and Cost of Physical Resources for Applications with

and without the QoS Index (Simulation 2). 55
3.15 The Relative Gain in terms of Latency and Cost with and without

the QoS Index (Simulation 2). 55

4.1 Cloud-Based IoT Platform and and Cloud of Things Architectures . . 58
4.2 Internet of Things Web Model Levels 60
4.3 SensorThings UML Diagram . 61
4.4 Overview of the IoT-O Architecture 63

v

4.5 CIMI, OCCI, and CAMP Role in Cloud Architecture 65
4.6 Resources Forms in CIMI . 66
4.7 OCCI Core Model . 67
4.8 OCCI Infrastructure UML Representation 68
4.9 CAMP Basic Resources Relationships 69
4.10 Cloud and IoT Studied Standards . 70
4.11 OCCI Extensions (coloured boxes) to Enable a Cloud of Things (CoT)

Graph Representation. 75
4.12 Extensions of the OCCI Infrastructure for the Cloud of Things. . . . 76
4.13 Representation of Node Instances with Different Virtualization Types. 78
4.14 Integration Pattern Modelled using the OCCI CoT Infrastructure. . . 80
4.15 Cloud of Things Substrate Graph Description with OCCI Infrastruc-

ture Extended Model. 81
4.16 IaaS Mapping Process using the defined OCCI Infrastructure Model. 82
4.17 OCCI Platform UML Representation 83
4.18 UML Representation of the IoT Environment Services Based on the

IoT-A. 84
4.19 Cloud of Things Deployment Options Based on IoT-A. 85
4.20 X-GSN Container Architecture . 86
4.21 Collector Component Architecture Example 86
4.22 Extensions of the OCCI Platform for the Cloud of Things. 87
4.23 Avoiding Mapping Replication Example Scenario. 89

5.1 Cloud of Things Integral Mapping Scenario 92
5.2 Distribution of Request Nodes with IoT Resources on Multiple Sub-

strate Nodes . 93
5.3 Re-using IoT Resources and Corresponding Deployed Delivery Services 94
5.4 The Mapping of a Request Node with Sensing Resources. 98
5.5 Relative Cost Gain of a One Stage Mapping over a Two Stages Map-

ping in CoT. 105
5.6 Cost of a One Stage Mapping Compared to a Two Stages Mapping. . 105

List of Tables

2.1 Complementary aspects of Cloud Computing and the Internet of Things 18

3.1 Notation Table . 38
3.2 Configuration Settings . 48

4.1 Summary of Studied Cloud Computing and IoT Models and Standards 73
4.2 Attributes Defined for the NetworkLink Type 74
4.3 Attributes Defined for the Sensor Type 77
4.4 Attributes Defined for the Actuator Type 77
4.5 Attributes Defined for the Location Type 77
4.6 Attributes Defined for the SystemProperty Type 77
4.7 Attributes Defined for the CollectorComponent Mixin 88
4.8 Attributes Defined for the DeviceComponent Mixin 88

5.1 Equivalence between the Analytical Model and the CoT OCCI model 96
5.2 Notation Table . 97
5.3 Prices Definitions Table . 97

vii

Acronyms

Symbols

6LoWPAN IPv6 over Low-power Wire-
less Personal Area Networks.

A

API Application Programming Inter-
face.
AWS Amazon Web Services.

B

BLE Low Energy Bluetooth.

C

CAMP Cloud Application Management
for Platforms.
CIaaS City Infrastructure as a Service.
CIM Common Information Model.
CIMI Cloud Infrastructure Management
Interface.
CoAP Constrained Application Proto-
col.
CoT Cloud of Things.
CPaaS City Platform as a Service.
CPU Central Processing Unit.
CRUD Create, Read, Update, and
Delete.
CSaaS City Software as a Service.

D

DMTF Distributed Management Task
Force.
DNS Domain Name System.
DPWS Devices Profile for Web Services.

E

EGI European Grid Infrastructure.
EPC Electronic Product Code.
ETSI European Telecommunications
Standards Institute.
EU European Union.
EXI Efficient XML Interchange.

F

FI Future Internet.
FTP File Transfer Protocol.

G

GE Generic Enabler.
GSN Global Sensor Network.

H

HTTP Hypertext Transfer Protocol.

I

IaaS Infrastructure as a Service.
ID Identifier.
IEEE Institute of Electrical and Elec-
tronics Engineers.
IIoT Industrial Internet of Things.
IoT Internet of Things.
IoT-A ARM Internet of Things Archi-
tecture Reference Model.
IoT-A Internet of Things Architecture.
IoT-O Internet of Things Ontology.
IP Internet Protocol.
IPv4 Internet Protocol version 4.
IPv6 Internet Protocol version 6.
IT Information Technology.

J

ix

JSON JavaScript Object Notation.

L

LAN Local Area Network.
LOV Linked Open Vocabularies.
LOV4IoT Linked Open Vocabularies for
Internet of Things.
LP Linear Program.
LSM Linked Stream Middleware.
LTE Long Term Evolution.
LTE-A Long Term Evolution Advanced.

M

M2M Machine to Machine.
MCC Mobile Cloud Computing.
MQTT Message Queue Telemetry
Transport.

N

NB-IoT Narrow Band IoT.
NFC Near Field Communication.
NGSI Next Generation Services Inter-
face.
NIST national institute of standards
and technology.

O

O&M Observations and Measurements.
OASIS Organization for the Advance-
ment of Structured Information Stan-
dards.
OCCI Open Cloud Computing Inter-
face.
OData Open Data.
ODP Ontology Design Patterns.
OFC Open Fog Consortium.
OGC Open Geospatial Consortium.
OGF Open Grid Forum.
OS Operating System.
OVF Open Virtualization Format.
OWL Ontology Web Language.
OWL-DL Ontology Web Language De-
scription Logic.

P

PaaS Platform as a Service.
PAN Personal Area Network.

Q

QoI Quality of Information.
QoS Quality of Service.

R

RAN Radio Access Network.
RDF Resource Description Framework.
RDFS Resource Description Framework
Schema.
REST REpresentational State Transfer.
RFID Radio Frequency Identification.
RMI Remote Method Invocation.
RuleML Rule Markup Language.

S

S2aaS Sensing as a Service.
SAaaS Sensor/Actuator as a Service.
SaaS Software as a Service.
SAN Semantic Actuator Network.
SCA Service Component Architecture.
SDD Sensor Device Definition.
SensorML Sensor Model Language.
SLI Service Layer Integration.
SN Substrate Network.
SNPS Sensor Node Plug-in System.
SOA Software Oriented Architecture.
SOaaS Smart Object as a Service.
SOAP Simple Object Access Protocol.
SOS Sensor Observations Service.
SOSA Sensor, Observation, Sample, and
Actuator.
SOSA-O Sensor, Observation, Sample,
and Actuator Ontology.
SPARQL SPARQL Protocol and RDF
Query Language.
SQL Structured Query Language.
SSN Semantic Sensor Network.
SSN-XG Semantic Sensor Network In-
cubator Group.

SSO Stimulus-Sensor-Observation.
SWE Sensor Web Enablement.
SWRL Semantic Web Rule Language.

T

TaaS Things as a Service.
TOSCA Topology and Orchestration
Specification for Cloud Applications.

U

uCode Ubiquitous Code.
UDP User Datagram Protocol.
UML Unified Modeling Language.
UNB Ultra Narrow-Band.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
UWB Ultra Wide-Band.

V

vCPU Virtual Central Processing Unit.
VM Virtual Machine.

VN Virtual Network.
VNE Virtual Network Embedding.
VO Virtual Object.
VOG Virtual Object Group.

W

W3C World Wide Web Consortium.
WAN Wide Area Network.
WMSN Wireless Mesh Sensor Network.
WoT Web of Things.
WS Web Service.
WS-Discovery Web Services Dynamic
Discovery.
WSN Wireless Sensor Network.
WWW World Wide Web.

X

X-GSN eXtended Global Sensor Net-
work.
XML eXtensible Markup Language.
XMPP eXtensible Messaging and Pres-
ence Protocol.

Chapter 1

Introduction

Contents
1.1 Context and Motivation 2

1.1.1 General Context of the Research 2
1.1.2 Motivation of the Thesis 3

1.2 Contributions . 6
1.3 Thesis Structure . 7

1

Page 2 Chapter 1. Introduction

1.1 Context and Motivation

1.1.1 General Context of the Research
The Internet of Things (IoT) paradigm was first coined in 1999 by Kevin Ash-

ton [10]. The term referred to machines enhancement with the ability to provide
contextual and environmental information over the Internet. Such idea aimed to
replace humans and automatically provide data to computer systems with context-
aware objects1 (i.e. Things). Unlike humans who are error prone, these connected
objects have better accuracy, reliability, and working time. The IoT evolved to
encompass a broader vision as defined in [11]:

The IoT allows people and things to be connected Any-time, Any-place,
with Any thing and Anyone, ideally using Any path/network and Any
service.

Furthermore, the IoT integrated an extensive range of domains such as health-
care, transportation, agriculture, industry, building management, energy, logistics,
and many others [12–16]. Nowadays, the IoT optimizes processes regarding cost,
efficiency, performance, and effectiveness. It minimizes the operational cost for
businesses and industries by reducing the man power and thriving for autonomic
systems able to operate without human intervention. Moreover, the IoT increases
efficiency using sensor-driven analytics and decision making reasoning for optimiz-
ing real world resources consumption such as the energy, maintenance operations,
and environments monitoring. The prompt reporting and actuation in complex
autonomous systems allow the IoT to increase performance while saving time and
reducing costs.

Benefits mentioned above accelerated the integration of IoT solutions in domestic
environments (e.g. wearables, automated homes), businesses (e.g. retails, factories),
and wide-scope deployments (e.g. smart cities, environmental monitoring). The
quick adoption of the IoT resulted in an unprecedented growth rate of connected
objects which are expected to reach 50 billion units in 2020 based on a study by
Cisco [17]. Moreover, the proliferation of IoT device manufacturers alongside the
diversity of application domains produced heterogeneous connected objects with
different capabilities, properties, and functions. This huge amount of heterogeneous
connected objects interacting over the network has been identified as one of the
major open issues related to the IoT as discussed in several recent studies [12–
16]. Consequently, the IoT produces a significant amount of unstructured data
generated by connected objects [18]. These data need to be managed and handled
by the network between IoT devices and third party applications. As a result, IoT
infrastructures need to be scalable to cope with the huge amount of heterogeneous
devices communicating over the Internet.

1We use the terms: ”objects,” ”things,” ”connected objects,” ”IoT nodes,” and ”IoT devices”
interchangeably in this thesis to give the same meaning as they are frequently used in IoT related
documentation. Other terms are also employed by the research community such as ”smart objects.”

1.1. Context and Motivation Page 3

In this context, Cloud Computing [19] emerged as a promising solution for the
IoT scalability challenge. Cloud Computing offers on-demand network access to a
theoretically unlimited pool of configurable virtual resources such as networking,
computing, and storage. These resources can be automatically provisioned, scaled,
and released with a pay-per-use business model on the fly . Hence, Cloud Computing
presents several essential characteristics namely: on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured service. Such features are
compatible with the IoT requirements as they transfer the processing power from
resource-constrained devices to powerful data centres. Moreover, the cloud offers
virtually infinite scalability which is needed to encompass large scale IoT infras-
tructures and corresponding big data. In this perspective, existing cloud providers
such as Amazon2 and Google3 developed IoT related cloud services to ease the man-
agement, development, and maintenance of IoT applications. Besides, new cloud
platforms specializing solely in IoT offerings have appeared [20] such as Xively4.

The convergence of Cloud Computing and the IoT is possible in two distinct
ways [21]: bringing the cloud to connected objects or bringing IoT devices to the
cloud. The first case refers to the conventional approach which consists in using
the cloud to compensate for low-powered connected objects. Such approach treats
IoT devices as data sources with no additional capabilities while using the cloud
to collect, process, store, and visualize generated data. Separately, bringing IoT
devices to the cloud leverages connected objects capabilities with some of the cloud’s
characteristics such as the on-demand provisioning. This integration model provides
a cloud environment aware of the underlying IoT resources (i.e. sensing, actuating)
and able to offer them on-demand alongside cloud resources (i.e. compute, network,
storage). This latter model is sometimes referred to as the Cloud of Things (CoT)
[22].

1.1.2 Motivation of the Thesis
In a CoT context, things are abstracted and offered as cloud services accessible

over the Internet from any place and at any time. Such software representations of
connected objects in the cloud are known as Virtual Objects (VOs). They promote
flexible on-demand provisioning of IoT resources. Indeed, VOs are only deployed
when their corresponding connected objects are used. Furthermore, their allocated
cloud resources can auto-scale as needed to cope with end-users demand. These VOs
interconnect with each other or with traditional cloud services (e.g. data analytics,
storage service, visualization dashboard) to deliver IoT applications. Consequently,
the CoT environment provides means to perform end-to-end IoT applications provi-
sioning, deployment, auto-scaling, and release on the fly with minimal management
efforts. Hence, the CoT is a step closer towards realizing the IoT vision. Figure
1.1 illustrates the process of deploying an IoT application in a CoT infrastructure.
A CoT customer specifies an IoT application request which is consumed by end-

2https://aws.amazon.com/iot/
3https://cloud.google.com/solutions/iot/
4https://www.xively.com/

Page 4 Chapter 1. Introduction

users. We refer to this request as a CoT request. We also might refer to a CoT
infrastructure as a CoT substrate throughout this thesis.

In this thesis, we aim to provide a means for CoT customers to describe their
requests and CoT providers to represent their infrastructure. Furthermore, we pro-
vide a solution for CoT providers to orchestrate an incoming request. Let’s consider
a scenario where a CoT customer requests a weather forecasting application from a
CoT provider to serve end-users. The weather forecasting application (see Figure
1.1) is composed by multiple interconnected atomic services. It contains two data
sources (e.g. temperature sensors), two VOs (i.e. data collection services), and
three distinct cloud services. These cloud services represent a storage service (to
store collected temperature data), a data analytics service (to calculate the weather
forecasting), and a visualization service (to provide a dashboard for end-users). The
solutions proposed in this thesis aim to help CoT providers to represent and deploy
such a CoT request in a CoT infrastructure.

Several challenges should be addressed to realize the described scenario. These
challenges are the following:

• How to efficiently deliver selected IoT resources through VOs to deployed
cloud services (i.e. cloud applications) while reducing the operational cost
and maintaining minimal data transmission latency?

• How to efficiently provision and orchestrate the entire CoT request in a single-
stage (i.e. provision IoT and cloud resources at the same time) while minimiz-
ing the operational cost, considering end-users demands, and respect Quality
of Service (QoS) terms?

The first question addresses the optimization of cloud resources allocated for
VOs as well as their placement across cloud data centres. The orchestration of VOs
should account for the placement of cloud applications across data centres and the
geographical location of corresponding connected objects. On the one hand, data
streams produced by connected objects should be routed via VOs to cloud appli-
cations through least costly network paths with available bandwidth and low data
transmission latency. On the other hand, VOs should be deployed in low cost cloud
data centres to minimize computing and networking costs. Hence, a provisioning
mechanism is needed to determine the optimal placement of VOs across data cen-
tres. Such optimal placement aims to minimize the operational cost for hosting VOs,
the data transmission cost through selected hosts, and the communication latency
over corresponding network links. Therefore, the first problem is, more specifically,
how to optimally distribute VOs over different cloud data centres to minimize cloud
resources cost (i.e. compute, storage, network) and communication latency while
respecting required QoS terms.

This approach is in line with the current trend of major cloud providers such
as Amazon and Google. They provide VOs for abstracting connected objects in
the cloud. These VOs are internally managed and spanned across different geo-
graphically distributed data centres. Furthermore, these VOs can be connected to
available services offered by cloud providers’ catalogues. For example, the Amazon

1.1. Context and Motivation Page 5

Figure 1.1: Problem Illustration.

Web Services (AWS) instantiates ”device shadows” (i.e. VOs) to connect customers’
IoT devices. It also automates the connection of these device shadows to available
complementary services such as the Amazon storage services. Thus, there is a need
to optimize the provisioning of these VOs to increase profits.

The second problem addressed in this thesis is related to a holistic view of the
IoT application request and the CoT infrastructure. In fact, a CoT request pro-
visioning consists of several steps: (1) the selection of connected objects, (2) the
placement of cloud services, and (3) the orchestration of VOs linking connected ob-
jects and cloud services. These provisioning steps can be performed either without
coordination, in a multiple-stage coordination, or a single-stage coordination. An
uncoordinated provisioning implies that each step is performed independently. A
multiple-stage coordination means the steps are executed separately but the relation
between different steps is considered. For example, the orchestration of VOs is ex-
ecuted while considering the geographical location of selected connected objects. A
single-stage coordination suggests that all steps are performed simultaneously while
taking into account the effect each step has on the other. For example, the selection
of connected objects and the orchestration of VOs are done at the same time. In this
context, the execution of these provisioning steps in uncoordinated or coordinated

Page 6 Chapter 1. Introduction

multiple-stage is inefficient as different placement decisions are based on a partial
view of the infrastructure [23]. Such an approach reduces the provisioning efficiency
compared to a coordinated single-stage provisioning [23]. Therefore, a provisioning
mechanism should map in a single-stage a given CoT request onto the CoT sub-
strate. However, such a provisioning mechanism requires a novel resource-oriented
model which provides a means to describe a requested IoT application. Further-
more, the model should also describe the CoT substrate on which the CoT request
will be deployed.

These problems are the research challenges addressed in this thesis, and their
corresponding solutions constitute the main achieved contributions. These contri-
butions are briefly presented in the following section.

1.2 Contributions
Concerning the challenges identified in the previous section, the first contribution

of this thesis consists in optimizing the provisioning of VOs in a cloud infrastruc-
ture. VOs hide the heterogeneity of underlying IoT resources and connect them
to cloud applications via standardized Application Programming Interfaces (APIs).
Therefore, it becomes crucial to optimize the placement of VOs across cloud data
centres to minimize their operational cost and the network latency between con-
nected objects and cloud applications. There exist different possible strategies when
employing VOs to deliver IoT resources. In fact, each connected object can be linked
to one or multiple VOs. Furthermore, each VO can serve one or several applications.

In our approach, we consider that each connected object is associated with a sin-
gle VO that can be shared among multiple applications. The sharing strategy aims
to minimize the number of connected objects that are needed to satisfy applications’
requirements. Therefore, less VOs are required to be deployed which reduces the
operational cost. However, a shared strategy increases the model complexity since
the placement decision for each VO becomes dependent on multiple applications
QoS requirements. We formulate this problem as a Linear Program (LP) with an
objective function that aims to minimize VOs’ operational cost alongside the data
transmission latency between connected objects and cloud applications. This LP
outputs the optimal placement of VOs in an infrastructure with no previously de-
ployed VOs or cloud applications. We refer to this model as the static model. Once
VOs are deployed in the infrastructure, they can be reused for subsequent cloud
applications. In this case, the provisioning process should remap reused VOs based
on the new cloud applications requirements and configuration. In this perspective,
we introduce a second LP. Its objective function adds the migration cost in addition
to the costs considered in the previous LP. This model aims to orchestrate a set of
VOs which contains previously deployed and newly requested VOs. We refer to the
latter model as the dynamic model.

The second contribution of this thesis focuses on defining a resource-oriented
model able to describe a CoT request and substrate. A CoT request corresponds to
a requested IoT application specified by a CoT customer as illustrated in Figure 1.1.

1.3. Thesis Structure Page 7

The CoT substrate corresponds to the interconnected entities on which a CoT re-
quest can be mapped. CoT entities correspond to cloud data centres, connected
objects, gateways, and many others. Moreover, CoT requests and substrates can
be specified on the infrastructure level or the platform level. On the infrastructure
level, only hardware level resources are described such as compute, network, storage,
sensors, and actuators. On the platform level, software components specifications
are described alongside hardware level information. We identify the requirements of
such requests and substrates to define a formalism for describing them at the infras-
tructure and platform levels. We focus on the orchestration aspects in our model.
However, the described model can be extended to perform deployment operations
in the CoT environment. We base our model on the Open Cloud Computing Inter-
face (OCCI) specifications defined by the Open Grid Forum (OGF). We adopt the
OCCI because it is simple, open, and expandable. We adapt and extend the OCCI
infrastructure [24] and platform [25, 26] models previously defined for the cloud to
encompass the CoT environment. Since we focus on provisioning aspects, we propose
a graph-based model to represent the CoT requests and substrates. However, an
associated mechanism to perform the mapping between both CoT graphs is needed
which leads to the last contribution in this thesis.

Finally, the third contribution addresses the coordinated single-stage provision-
ing problem of a CoT request onto a CoT substrate. An IoT application request
description includes end-users expected demands, requested cloud services (e.g. an-
alytics, storage, visualization), needed connected objects, and required VOs for con-
necting needed IoT devices to requested cloud services. Nowadays, the provisioning
of these components has been done separately, with or without coordination. For
example, provisioning VOs while considering that connected objects are already se-
lected and cloud services are previously deployed is identical to the first contribution.
Consequently, the provisioning process of a given CoT request is not able to opti-
mize efficiently all resources simultaneously which degrade the QoS and increases
the operational cost. Therefore, we provide a global analytical model which provides
a holistic view of a CoT substrate. We derive a LP able to orchestrate the entire
CoT request at the same time. It also takes into consideration end-users demands
and QoS requirements (i.e. latency).

1.3 Thesis Structure
The thesis is structured as follows:
Chapter 1 introduces the context and the motivation of the research. This chap-

ter identifies the objectives of the thesis and presents the main contributions briefly.
Chapter 2 presents the state of the art on the integration of Cloud Computing

and the IoT. It provides an overview of the basic elements forming the CoT. For
this matter, existing integration strategies are also discussed. They highlight the
different approaches used to integrate Cloud Computing and the IoT. Then, the
main challenges to achieving a seamless convergence are discussed.

Chapter 3 addresses the placement optimization of VOs within a cloud infras-

tructure to deliver IoT resources for cloud applications. Firstly, related works are
discussed to position our work which emphasizes VOs sharing. Then, challenges
related to the placement of shared VOs in the cloud are presented. We propose
two LPs to orchestrate VOs across cloud data centres. The problem is expressed
in function of the average data traffic between connected objects, VOs, and cloud
applications. Both LPs objective functions aim to minimize the operational costs
as well as the data delivery latency. However, one model deals with a CoT environ-
ment without previously deployed VOs. The other considers that VOs are partially
deployed.

Chapter 4 is dedicated to model the resources of a CoT environment. It discusses
existing standards and resource-oriented models specified in the literature. The
purpose is to identify a suitable set of specifications for modelling the CoT requests
and substrates. We select the OCCI standard due to its flexibility and comprehensive
description of the Cloud Computing service models. In this thesis, we propose to
extend and adapt the OCCI standard to encompass the CoT infrastructure and
platform resource models. Finally, several scenarios are provided to show how the
proposed resource-oriented model enables the representation of a CoT request and
substrate, as well as the execution of a single-stage mapping.

Chapter 5 deals with an end-to-end IoT application provisioning in converged
Cloud Computing and IoT environments. It deals with the provisioning of a CoT
request graph onto a CoT substrate graph in a single-stage. Two LPs are devised
for CoT infrastructure and platform service levels mapping. In addition, we demon-
strate by simulations the advantage of a coordinated single-stage provisioning pro-
cess compared to a multiple-stage provisioning process.

Finally, Chapter 6 concludes this thesis. It synthesizes the overall contributions
and highlights some perspectives for this research.

Chapter 2

State of the Art: Convergence of
Cloud Computing and Internet of
Things

Contents
2.1 Introduction . 10
2.2 Background and Basic Concepts 11

2.2.1 Internet of Things . 11
2.2.2 Cloud Computing . 15
2.2.3 Fog Computing . 16

2.3 Integrating Cloud Computing and the Internet of Things 18
2.3.1 Loose Integration . 19
2.3.2 Partial Integration . 20
2.3.3 Full Integration . 23

2.4 Open Issues and Challenges 24
2.4.1 Interoperability . 24
2.4.2 Resource Provisioning . 26

2.5 Conclusion . 27

9

Page 10 Chapter 2. State of the Art

2.1 Introduction

The Internet of Things (IoT) is a concept which evolved over the years and is
enabled by a growing set of key technologies. Nowadays, the IoT envisions inter-
connecting every thing and person via the Internet. For example, IoT applications
such as smart cities tend to attach sensors and actuators to every object in a city to
facilitate our everyday lives and optimize the city’s management processes such as
transportation, garbage collection, traffic distribution, etc. The realization of such
wide scope IoT applications called for the adoption of technologies including com-
munication, computing, machine learning, data mining, and many others. Actually,
large scale IoT applications promote pervasive computing in any thing, which gen-
erates big data that need to be stored and processed [18]. However, IoT devices are
constrained objects unfit for dealing with the large amount of produced data.

In this context, Cloud Computing has emerged as a suitable technology for over-
coming the technological intrinsic limitations of the IoT. It provides virtually unlim-
ited computing, storage and networking resources with highly resilient energy supply
which are required by IoT applications. Furthermore, such convergence enhances
Cloud Computing service catalogue with IoT application offerings. As a result,
Cloud Computing becomes able to provision IoT resources alongside its computing,
networking, and storage resources.

On this basis, the integration of Cloud Computing and the IoT was inevitable [27]
and resulted in the Cloud of Things (CoT) [28]. This integration has been also
referred to as Sensor Cloud [29] or CloudIoT [27] in the literature. Moreover, the
distinct visions of the IoT and Cloud Computing service models resulted in many
possible integration strategies to realize the CoT.

In addition, different applications dictate diverse characteristics (i.e. mobility,
geo-distribution) and requirements (i.e. low latency) which cannot be satisfied only
by the cloud. Moreover, large scale IoT applications produce a large amount of data.
Routing all these data for processing and storage at cloud data centres implies high
bandwidth usage. Consequently, Fog Computing [30] was introduced as an interme-
diary layer between Cloud Computing and the IoT. Fog Computing allows parts of
the application to execute closer to the network edge to reduce latency and band-
width usage. In particular, Fog Computing is used for large-scale, geographically
distributed, and latency sensitive applications.

This chapter aims to present the state of the art on the integration of Cloud Com-
puting and the IoT. It is structured in 4 sections. Section 2.2 presents the basic
concepts and key elements forming the CoT. We introduce the IoT enabling tech-
nologies, Cloud Computing, and Fog Computing. Section 2.3 presents the different
possible integrations of Cloud Computing and the IoT. We highlight the resource
allocation problem related to each integration model. In section 2.4, we present and
discuss open research issues and challenges with respect to the integration of both
paradigms. Finally, in section 2.5, we conclude this chapter.

2.2. Background and Basic Concepts Page 11

2.2 Background and Basic Concepts
As previously mentioned, the CoT includes multiple main components, namely:

the IoT, Cloud Computing, and Fog Computing. Moreover, the IoT is enabled by
multiple key technologies. This section introduces briefly each of these key elements
to clarify the context of this thesis.

2.2.1 Internet of Things
The evolution of embedded devices, communication technologies, and Internet

protocols, eased the enhancement of physical objects with sensing, actuating, pro-
cessing, and communication capabilities [12]. Hence, transforming dumb things into
connected objects able to send and receive data over the Internet, sense their envi-
ronment, and perform actions based on shared information. These connected objects
collaborate with each other and with services over the Internet to deliver what we
call today the IoT. This paradigm promotes IoT applications which rely on sensory
data streams, actuators actions, and services (i.e. data analytics) to provide value-
added information and functionalities for end-users and service providers. These IoT
applications improve many real-world domains such as healthcare [31], ambient as-
sisted living [32], smart cities [33], and many others. Nowadays, for example, instead
of hiring nurses to watch seniors, connected objects and advanced analytics are used
to monitor them in real-time and trigger alerts such as calling an ambulance in case
of health problems [34]. Likewise, connected objects are used in agriculture to mon-
itor climate, soil, and crops to optimize the cultivation process and detect anomalies
without relying on human resources [35]. Several elements are needed however to
deliver the functionality of the IoT [16] as illustrated in Figure 2.1, namely: iden-
tification/addressing, communication, computation, sensing/actuating, semantics,
services.

Identification and Addressing

Connecting IoT devices to applications requires identifying the requested ob-
jects and configuring the network connections between them. Several methods as-
sign Identifiers (IDs) to IoT devices to ensure they are uniquely identifiable. These
identification methods provide universal hardware IDs such as the Electronic Prod-
uct Code (EPC) and Ubiquitous Code (uCode) [36]. Alongside their object IDs,
IoT devices need network addresses to be accessible over the Internet. Addressing
methods applied to connected objects are the Internet Protocol version 4 (IPv4)
and the Internet Protocol version 6 (IPv6). However, IPv6 is better adapted for
the IoT due to its ability to encompass the large anticipated number [17] of con-
nected objects [27,37]. Moreover, the IPv6 over Low-power Wireless Personal Area
Networks (6LoWPAN) mechanism [38, 39] provides a compression of IPv6 head-
ers between the Internet and low power wireless networks to cope with resource-
constrained devices. It reduces the overhead of IPv6 in resource-limited environ-
ments, thus enabling a seamless communication and integration of IoT devices to

Page 12 Chapter 2. State of the Art

the Internet.

Communication

Identification

and Addressing

Computation

Services

Semantics

Sensing and

Actuating

Internet of

Things

Figure 2.1: Internet of Things Essential Building Blocks.

Communication

The integration of connected objects in multiple domains involves different en-
vironments, hence different needs. Consequently, the IoT relies on several commu-
nication technologies to cope with applications’ bandwidth and range requirements.
Most of these technologies adopt wireless integration of the IoT due to its flexibility.
Some of the communication technologies used for IoT are the following: RFID, Near
Field Communication (NFC), Ultra Wide-Band (UWB), WiFi (i.e. IEEE 802.11
standards), Bluetooth, IEEE 802.15.4, Z-Wave, and Long Term Evolution (LTE).

Radio Frequency Identification (RFID) tags were the first enablers of the IoT.
They emit universal IDs which allow readers to identify objects and rely on existing
databases to retrieve additional information. These tags operate within 200 meters
and can be passive, active, or semi-passive/active [40]. The NFC protocol has a
smaller range (i.e. up to 10 cm) and permits a 424 Kbps transmission rate [41].
Another Personal Area Network (PAN) technology is the UWB. It is suitable for
short range, low power, and high bandwidth transmissions [42]. Similarly, the IEEE
802.15.4 standard targets low-power PANs. It is used alongside the 6LoWPAN to
enable IPv6 over low-powered wireless networks.

IEEE 802.111 standards are more suited to Local Area Network (LAN) such as
home, healthcare, and industrial environments. These connected objects reach the
Internet via access points. The IEEE 802.11ah2 [43, 44] was introduced specifically

1http://standards.ieee.org/findstds/standard/802.11-2016.html
2https://standards.ieee.org/findstds/standard/802.11ah-2016.html

2.2. Background and Basic Concepts Page 13

for the IoT to cope with devices requiring power efficient communications with up
to 1 km range coverage and a minimum data rate of 100 Kbps.

Bluetooth, on the other hand, is used to exchange data between devices over short
distances. Recently, the Low Energy Bluetooth (BLE) was introduced to provide
more efficient power consumption while maintaining the same communication range
and transmission rate. Furthermore, the BLE mesh3 profile and model specifications
were released in 2017 to enable many to many communication. The Bluetooth mesh
supports sensor networks.

For long range communication, technologies such as LTE and LTE Advanced
are used for high-speed data transfer, while others such as SigFox4, LoRa5 [45], and
Narrow Band IoT (NB-IoT) [46] are adequate for low-rates and energy efficient data
transfer. SigFox and LoRa are proprietary standards.

Computation

Connected objects are the key components of the emerging IoT. Traditionally,
organizations needed to own, configure, and deploy sensors/actuators. Furthermore,
they had to spend additional resources maintaining these connected objects. There-
fore, connected objects were application specific. However, research efforts aim to
decouple applications and underlying sensors/actuators networks to realize the IoT
vision. Such efforts relied on sensing and actuating virtualization to share them
among multiple applications. We notice several approaches in the literature to ad-
dress connected objects virtualization: (1) node level virtualization [47], (2) network
level virtualization [47], and (3) objects virtualization [48–50].

Node level virtualization consists in executing on the connected object, se-
quentially (i.e. event driven programming model) or simultaneously (i.e. thread-
based programming model), several tasks. Each task serves a particular applica-
tion [51]. Event driven solutions (i.e. SenSmart [52]) consist of executing tasks
when an event occurs such as the temperature exceeding a given threshold. Event
driven Operating Systems (OSs) have a simpler implementation. However, tasks
should wait in a queue until previously triggered tasks finish. Thread-based so-
lutions (i.e. RIOT6 OS) execute threaded tasks in a time slicing fashion, hence,
different tasks do not block each other. The disadvantage of thread-based OS is
their complexity.

Network level virtualization enables several applications to share connected
objects by dividing them into logical networks. Each application is assigned a logical
network based on its needs. Therefore, formed logical networks contain different
amounts and types of connected objects. Furthermore, logical networks dynamically
change with time as applications needs change. They can be composed of connected
objects belonging to different physical networks. Moreover, connected objects in the
same physical network can be assigned to different virtual networks. However, a

3https://www.bluetooth.com/specifications/mesh-specifications
4https://www.sigfox.com/en
5https://www.lora-alliance.org/technology
6https://riot-os.org/

Page 14 Chapter 2. State of the Art

connected object belongs solely to one virtual network.
Objects virtualization consists in abstracting connected objects via Virtual

Objects (VOs) which are wrappers encapsulating sensors or actuators to provide
their functionalities to multiple applications. Such abstraction helps to mirror
connected objects while providing additional resources for managing their non-
functional aspects (e.g. availability, reliability). Also, wrappers provide unified
Application Programming Interfaces (APIs) for applications and developers to ease
the interaction with sensors and actuators. Hence, VOs hide the heterogeneity of
connected objects. Generally, middleware solutions [53] manage VOs and provide
necessary functionalities for applications to interact with the underlying IoT infras-
tructure.

Sensing/Actuating

Sensors and actuators constitute primary IoT resources. Sensors translate world
phenomena into digitized information, while actuators transform logical states to
actions in the physical world. Together, they allow information systems to gather
knowledge about things and affect the physical world. Nowadays, the low cost of
sensing and actuating technologies made it possible to integrate sensors and actua-
tors in everyday objects, industrial machines, health devices, etc.

Semantics

The World Wide Web Consortium (W3C) thrives toward a standardized repre-
sentation of knowledge on the web. It defines semantics for various domains and
relationships between different concepts. Such technology enables the semantic in-
teroperability between different systems. Furthermore, semantic web technology
enables discovering, querying, and reasoning on top of available information. There-
fore, the semantic web is seen as an enabler of the IoT. A semantic representation of
heterogeneous connected objects and corresponding data facilitates the integration
of IoT resources with domain oriented applications (e.g. healthcare, agriculture,
transportation). Also, it enables data streams retrieval based on applications re-
quirements. The W3C introduces the Resource Description Framework (RDF) and
the Ontology Web Language (OWL) specifications which can be used to model
concepts and their relationships.

Services

Sensors and actuators provide means to interact with the real world. How-
ever, collecting data or producing actions requires services to deliver needed IoT
resources, aggregate data streams, take decisions, etc. IoT services are categorized
in [54] as follows: identity-related, information aggregation, collaborative aware,
and ubiquitous. Identity-related services focus on delivering the appropriate IoT
resources based on application requests. These services are essential to identify ex-
isting sensors/actuators types, operational region, and properties to expose their

2.2. Background and Basic Concepts Page 15

functionalities for applications. VOs fall under this category of services. Infor-
mation aggregation services summarize collected raw sensory data. Collaborative
aware services analyse received data to provide insights, alerts, notifications, and
decisions which can be presented to the user or transmitted directly to existing ac-
tuators. Ubiquitous services represent the previously described services when offered
any-time and anywhere for end-users and applications.

2.2.2 Cloud Computing
Cloud Computing evolved as the future generation computing paradigm. The

National Institute of Standards and Technology (NIST) presents Cloud Comput-
ing building blocks [19] as illustrated in Figure 2.2. Cloud Computing offers pools
of compute, network, and storage resources which can be accessed from anywhere
on-demand. Cloud Computing offers different service models, (1) Infrastructure
as a Service (IaaS), (2) Platform as a Service (PaaS), and (3) Software as a Ser-
vice (SaaS). Each service model defines the scope of control of the cloud provider
and the cloud customer over the provisioned resources. For an IaaS service model,
the cloud provider offers physical resources (processing, storage, and network), and
the cloud customer can run over it arbitrary operating systems and applications.
A PaaS service model provides the cloud customer an application hosting environ-
ment which is configurable, but the cloud customer does not control the underlying
infrastructure and operating system. Finally, the SaaS offers cloud customers an ap-
plication running in the cloud with limited configuration settings such as Dropbox.
Cloud Computing does not bind clients to a particular service model, enabling a
flexible environment for all IT needs. However, the benefits of the Cloud go beyond
its service models. In fact, the cloud’s essential characteristics render three major
trends in Information Technology (IT): (1) agility, (2) elasticity, and (3) autonomous
deployment.

Hardware

CPU, Memory, Disk, Bandwidth

Infrastructure

Storage Blocks, Processing Units, Operating Systems

IaaSInfrastructure

Storage Blocks, Processing Units, Operating Systems

IaaS

Platform
Software Frameworks, Programming Languages,

Databases

PaaSPlatform
Software Frameworks, Programming Languages,

Databases

PaaS

Software
Web Services, Web Applications, Business

Applications, Multimedia

SaaSSoftware
Web Services, Web Applications, Business

Applications, Multimedia

SaaS

B
ro

ad
 N

et
w

o
rk

 A
c
ce

ss
B

ro
ad

 N
et

w
o
rk

 A
c
ce

ss

O
n
-D

em
a
n
d
 S

el
f-

S
e
rv

ic
e

O
n
-D

em
a
n
d
 S

el
f-

S
e
rv

ic
e

R
e
so

u
rc

e
P

o
o
li

n
g

R
e
so

u
rc

e
P

o
o
li

n
g

R
a
p
id

 E
la

st
ic

it
y

R
a
p
id

 E
la

st
ic

it
y

M
ea

su
re

d
 S

e
rv

ic
e

M
ea

su
re

d
 S

e
rv

ic
e

Characteristics

Figure 2.2: Traditional Cloud Computing Service Layers and Key Characteristics.

Cloud Computing offers on-demand self-service for cloud customers, allowing
them to provision resources (i.e. networks, servers, storage, applications, and ser-

Page 16 Chapter 2. State of the Art

vices) without human intervention and to only pay for what they consume. Cloud
users could also optimize their cost using cloud’s elasticity to provision new re-
sources on the fly or quickly release some reserved resources to keep the exact
amount needed for satisfying their demand. Moreover, the capacity to measure the
Quality of Service (QoS) of provisioned resources helps cloud providers and users
monitor resources behaviour and state [55]. These characteristics encouraged the
adoption of Cloud Computing and made possible the development of mechanisms
for auto-scaling operations to dynamically optimize resources as the load varies.
Furthermore, errors and faults (e.g. virtualization problems, work flow disruption)
can be reported so appropriate actions can be enforced automatically. As a result,
the cloud enables end-to-end autonomous service composition and delivery on de-
mand, along with dynamic optimization of allocated resources. Such optimization
maintains the QoS with minimal allocated resources. Consequently, the cloud mini-
mizes the cloud customer cost, maximizes the cloud provider’s profit, and optimizes
energy consumption.

The capabilities of the cloud accelerated the adoption of this computing model
by many businesses seeking to reduce their capital expenditure by moving their in-
frastructure to the cloud. Moreover, the ”pay-as-you-go” business model of the cloud
reduces the infrastructure cost. Businesses do not have to worry any more about
maintenance, scalability issues, and hiring specialized staff to manage and deploy IT
systems and software, thus reducing their operating expenditure. Furthermore, the
wide range of services provided by service providers in the cloud creates an attrac-
tive marketplace for existing and emerging businesses. In fact, using tuned services
with auto deployment and scaling mechanisms eases the development of IT solu-
tions and allows businesses to focus on their main product without worrying about
the back-end. For example, with Google App Engine Datastore7 (No SQL based
storage) and CloudSQL8 (SQL based storage) businesses can deploy needed storage
instantly without worrying about scalability, reliability, and disaster recovery.

2.2.3 Fog Computing
Cisco first introduced Fog Computing in 2011 [17, 56]. It was further developed

and defined by the Open Fog Consortium (OFC). Fog Computing falls under the
wider definition of Edge Computing which stands for pushing applications and ser-
vices, completely or partially, to the network edge. As a result, some functions (e.g.
processing, temporary storage, data aggregation) become closer to end-users and
connected objects which improves applications and services response time [57]. Al-
though Cloud and Fog Computing paradigms have virtualization as common ground,
their characteristics are different. The cloud infrastructure is composed of large data
centres with virtually unlimited capacity distributed in several countries or regions
of a country. The cloud is a centric solution for service providers [56]. However,
Fog Computing is characterized by highly distributed and location aware virtualized
nodes with limited capacity.

7https://cloud.google.com/datastore/docs/
8https://cloud.google.com/sql/docs/

2.2. Background and Basic Concepts Page 17

Another concept, cloudlets [58, 59], coincides with Fog Computing. A Cloudlet
is a resource-rich computer like ”cloud in a box,” which is available for use by
nearby mobile devices [30]. However, Fog Computing includes various types of
nodes, differently to servers in the cloud or cloudlets. These nodes can be small-
sized servers [60], gateways [28], routers [61, 62], and resource rich machines [58].
Hence, Fog nodes capabilities depend on their type and capacity, which can affect
the nature and size of services these nodes can host. For example, authors in [57]
consider all virtualized nodes between the cloud and connected objects as the Fog,
while authors in [28] consider the Fog as the set of smart gateways at the network
edge.

Figure 2.3: Fog Computing Conceptual Architecture (Source [63]).

Figure 2.3 shows the integration of Fog Computing between the cloud and end
devices. The Fog complements the cloud and provides several benefits. Firstly,
it extends services deployment to the edge of the network, enabling higher QoS
for applications with low latency requirements such as video streaming, augmented
reality, and gaming [61,64]. Secondly. Fog Computing increases resources efficiency
and QoS for widely distributed and large scale applications such as environment
monitoring, and for applications introducing connected objects with high mobility
such as vehicles. For example, it can decrease the traffic load on cloud applications
by aggregating and processing data at the edge. Many uses cases are presented for
Fog Computing in [63] such as IoT applications, mobile network acceleration, and
content delivery networks.

Page 18 Chapter 2. State of the Art

2.3 Integrating Cloud Computing and the Inter-
net of Things

Previous works have presented the benefits of converging Cloud Computing and
the IoT. Botta et al. and Diaz et al. in [27, 53] show the importance of integrating
these two domains. In fact, both technologies have complementary characteristics
as represented in Table 2.1. Authors also presented the different drivers for Cloud
Computing and the IoT integration such as Big Data and seamless IoT applications
execution. More precisely, in [27], authors introduced novel applications resulting
from the CoT paradigm and presented the state of the art of some research projects
in this area. Diaz et al. [53] showed the different academic and industrial solutions
enabling such integration with several case studies. They presented existing solutions
which can be combined to deliver the CoT. In this perspective, Diaz et al. surveyed
big data solutions such as Hadoop9 and Apache Spark10, Cloud Computing platforms
such as OpenNebula [65], and middlewares for the IoT such as the Global Sensor
Network (GSN).

Table 2.1: Complementary aspects of Cloud Computing and the Internet of Things
(Source [27])

Internet of Things Cloud Computing
Displacement pervasive centralized
Reachability limited ubiquitous
Components real world things virtual resources
Computational Capabilities limited virtually unlimited
Storage limited or none virtually unlimited
Role of the Internet point of convergence means for delivering services
Big Data source means to manage

The broad definition of the IoT and the various service models of Cloud Com-
puting made such integration possible using different approaches. As previously
mentioned, there are two main manners to integrate both domains: bringing the
cloud to connected objects or bringing IoT devices to the cloud. When Cloud Com-
puting is used to shift the processing power from connected objects to powerful data
centres, IoT devices become simple data sources. Such integration does not modify
the respective functionalities of both domains. The IoT provides sensory data while
the cloud provide services to process and store these data. We refer to this method
as the loose integration. However, adding IoT devices to the cloud can be done by
enhancing connected objects with cloud characteristics. Such convergence considers
the IoT as part of the service models provided by the cloud. It can happen at the
application level, the platform level, or the infrastructure level. Some works in the

9http://hadoop.apache.org/
10https://spark.apache.org/

2.3. Integrating Cloud Computing and the Internet of Things Page 19

literature focused on a single layer integration while others consider multiple-layer
integration resulting respectively in partial or full integration strategies. In the
following, we discuss in details the different levels of integration.

2.3.1 Loose Integration
A loose integration of Cloud Computing and IoT consists in a set of solutions that

use both technologies without introducing a novel service model. Hence, preserving
the traditional purposes of both domains. The IoT provides connected sensors and
actuators, while the cloud offers compute and storage resources to host an applica-
tion managing the latter IoT infrastructure. Moreover, the IoT application might
expose sensors and actuators functionalities via APIs for developers. In the latter
case, the cloud acts as the intermediary layer between the IoT infrastructure and
domain specific applications. The IoT application deployed in cloud data centres
benefits from the cloud characteristics such as the rapid elasticity and the ”pay as
you go” business model. For example, allocated resources for the IoT application
might scale up or down based on the applications usage [34]. However, the cloud
platform remains unaware of IoT resources and rely solely on compute, storage,
and network usage in cloud data centres for the decision making. Furthermore, the
cloud characteristics are not transferred to the IoT. Therefore, IoT resources are
not offered on-demand and their usage cannot be optimized. For example, the IoT
application uses cloud resources for storing, analysing, and visualizing collected sen-
sory data at all times without considering users actual needs which lead to inefficient
use of IoT and cloud resources [66–70].

Figure 2.4: Conceptual IoT Framework with Cloud Computing at the Centre
(Source [34]).

Several works follow a loose integration in their approach. For instance, authors

Page 20 Chapter 2. State of the Art

in [32,34] define a cloud application for managing and collecting sensory data. The
work in [34] considers a general context, while [32] focuses on ambient assisted living.
However, both studies rely on storing sensors data and provide them via APIs or
a web interface to developers or end-users respectively. Furthermore, existing IoT
platforms realize the loose integration of cloud and IoT such as Xively11 [20]. This
kind of platforms provides means to connect IoT devices, store their data, and expose
them via APIs over the Internet. Some of these platforms offer also analytics services
to process collected data and visualization tools to plot stored streams. Figure 2.4
illustrates the cloud and the IoT roles in a loose integration approach. This method
is out of the scope of this thesis as it does not relate to the CoT vision.

2.3.2 Partial Integration
A partial integration consists in introducing a novel service model within Cloud

Computing which delivers IoT resources [21, 27]. Such approach extends the cloud
reach to the physical world. Therefore, cloud offerings become wider and include IoT
resources. Furthermore, Cloud Computing characteristics are also passed on to IoT
devices and resources. Hence, the pay as you go business model and the on-demand
provisioning of resources become applicable on the IoT. This partial integration
of Cloud Computing and the IoT is possible through: (1) a data-centric approach
[50, 71], (2) a device-centric approach [50, 72, 73], or (3) a hybrid approach [50]. A
data-centric approach relies on gathering and storing connected objects generated
data which are shared among multiple applications. In this case, connected objects
are used as data sources. Hence, end-users do not have control over the underlying
IoT infrastructure nor the storage units. A data-centric approach provides additional
service models such as the Sensing as a Service (S2aaS) [74–77] for end-users. It is
considered a PaaS [50] since it forbids access to IoT devices configurations.

Separately, a device-centric approach focuses on delivering Sensor/Actuator as
a Service (SAaaS) [50,72,78–80]. It is also referred to as Smart Object as a Service
(SOaaS) [81] or Things as a Service (TaaS) [82,83]. In this case, a set of connected
objects satisfying requested requirements are selected. Then, appropriate services
such as VOs will be deployed to abstract the functionalities of selected connected
objects via standardized APIs. Hence, the end-user gains control over IoT devices
configurations such as data transmission rate. A device-centric approach allows
end-users to provision IoT devices. A hybrid approach consists of a combination of
the data-centric and device-centric approaches. It realizes the IaaS and PaaS service
models for the IoT and enables the allocation of connected objects as well as sensory
data streams. Figure 2.5 illustrates the difference between the data-centric (a) and
the device-centric (b) approaches.

Despite the selected approach to achieve a partial integration of Cloud Com-
puting and IoT infrastructures, orchestration mechanisms are required to optimize
resource utilization. In contrast to the loose integration, a partial convergence pro-
vides an additional service model in the cloud responsible for delivering needed IoT

11https://www.xively.com/

2.3. Integrating Cloud Computing and the Internet of Things Page 21

Figure 2.5: Difference between (a) the Data-Centric, and (b) the Device-Centric
Approaches.

resources to upper applications as seen in Figure 2.5. Therefore, connected objects
selection techniques are necessary to pick appropriate IoT resources for applications
efficiently. Furthermore, cloud provisioning processes are crucial to optimize allo-
cated compute, storage, and network for abstracting selected IoT resources. These
orchestration mechanisms should be adaptable to the dynamic changes in Cloud
Computing and IoT infrastructures. In the literature, several works have addressed
the resource allocation problem in such an environment. Most techniques for se-
lecting connected objects aim to minimize their energy consumption and extend
their lifetime [66, 68–70,84, 85]. However, some contributions focus on selecting the
best set of IoT devices based on applications requirements [86,87] without worrying
about energy consumption. These studies perform the selection based on provided
functional and non-functional properties of required connected objects. They con-
sider properties such as accuracy, reliability, energy, availability, and cost. From
the cloud perspective, resources optimization focuses on minimizing bandwidth con-
sumption [68,84,88], storage usage [89], and QoS violation [68,90,91].

We refer throughout this work to platforms performing partial integration of the
cloud and the IoT as cloud-based IoT platforms. There exist many research projects
as well as commercial solutions which provide this kind of IoT platforms. In the
following, we represent some of these works.

OpenIoT

The OpenIoT [71, 92] aims at providing an IoT platform with semantically in-
teroperable data streams generated from heterogeneous IoT devices. This project
presents the eXtended Global Sensor Network (X-GSN) which is an extension of the
GSN middleware. The X-GSN connects to IoT devices and semantically annotates
received raw data points which hide the heterogeneity of collected data, allow the

Page 22 Chapter 2. State of the Art

unification of data description, and link related data. The OpenIoT follows a data-
centric approach. It stores annotated collected data in a cloud storage and allows
IoT applications to access them via APIs. The OpenIoT has a scheduler component
which receives data streams requests from IoT applications. This component is re-
sponsible for allocating needed cloud resources and deploying appropriate services
to retrieve and deliver needed data streams.

FIWARE

The FIWARE12 project [93] aims to create a cloud-based IoT platform based
on the Internet of Things Architecture (IoT-A) reference model [94]. The IoT-A
defines a set of functional groups needed for a seamless delivery of IoT resources
to third party applications. Some of these functional groups are: abstracting con-
nected objects, discovering IoT resources, and storing sensory data. Furthermore,
they include a set of services for delivering efficiently registered IoT resources. The
FIWARE project implements these functional groups as Generic Enablers (GEs).
Each GE is a software component which provides the key functionalities of a func-
tional group. For example, the Backend Device Management GE is responsible for
abstracting gateways, sensors, and actuators. The set of interconnected GEs com-
pose the FIWARE cloud-based IoT platform. Such approach enables a modular
composition of cloud-based IoT platforms depending on the providers needs. GEs
use the Next Generation Services Interface (NGSI)13 API to communicate with each
other and with third party applications. The FIWARE project also includes GEs
for managing, orchestrating, and provisioning cloud and IoT resources such as the
IaaS GE, the PaaS Manager GE, and the IoT Broker GE.

Commercial Solutions

Multiple commercial solutions provide partial integration of Cloud Computing
and IoT resources. We can cite the Google Cloud IoT14, the Amazon Web Services
(AWS) IoT15, the IBM Watson IoT16 platform, and many others. These platforms
offer seamless connection and integration of IoT devices with cloud services such as
storage, analytics, and visualization. They abstract IoT devices, collect their data,
and provide means to manages these data. For example, the AWS IoT platform
abstracts connected objects as virtual shadows (i.e. VOs) and expose their data
via APIs for third party applications. Moreover, it enables the integration of AWS
services to manage collected data within the AWS cloud. Some solutions, such as the
IBM Watson IoT platform, enables even the automatic deployment of IoT workflows
which can be defined using the Node-RED17 tool. Commercial solutions uses also
optimization mechanisms to maximize their infrastructure utilization. However,

12https://www.fiware.org/
13http://www.openmobilealliance.org/release/NGSI/
14https://cloud.google.com/solutions/iot/
15https://aws.amazon.com/iot-platform/how-it-works/
16https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
17https://nodered.org/

2.3. Integrating Cloud Computing and the Internet of Things Page 23

they integrate Cloud Computing and IoT technologies solely on the platform level
which remains a partial integration.

2.3.3 Full Integration
A full integration consists in extending all traditional Cloud Computing service

models (i.e. IaaS, PaaS, and SaaS) to include the IoT. Such expansion enables cloud
and IoT resources to be consumed seamlessly as integrated cloud services. Hence,
clients are able to provision compute, network, storage, sensing, and actuating re-
sources on-demand from cloud data centres and connected objects. Such resources
allocation is possible at the infrastructure, the platform, or the software level. For
example, a Raspberry PI connected to a virtual machine might be deployed for a
given customer as an IaaS offering. Furthermore, a developer can allocate on the fly
an android development environment alongside pollution data streams of multiple
sensors spanned across a particular city. The latter scenario should be provisioned
seamlessly without human intervention in a full Cloud Computing and IoT inte-
gration. In addition, a fully integrated environment must be able to provision IoT
platforms similar to those defined in the loose and partial integrations.

CIaaS

Sensorization and

Actuatorization

Computing and

Storage

Internet of Things

Kernel

Interoperability and City Resources Virtualization

City Infrastructure Management

CPaaS

City Service Composition City Data Processing

City Resource Access

S
ecu

rity
 an

d
 D

ep
en

d
ab

ility

CSaaS

WoT Infrastructure

(Network and Computing Resources)

IaaS

WoT Infrastructure

(Network and Computing Resources)

IaaS

Service and Business Operation

(Service Composition and Business Process

Middleware)

PaaS

Service and Business Operation

(Service Composition and Business Process

Middleware)

PaaS

Intelligence Service

(Application and User Interface)

SaaSIntelligence Service

(Application and User Interface)

SaaS

Cloud Computing and Internet of Things Hardware

(a) ClouT Project Cloud of Things Architecture (b) Cloud of Things Architecture based on Gateways

Cloud Computing Hardware and Gateways with

RESTful Web Service

Figure 2.6: Cloud of Things Service Models as Defined by Existing Works (Sources
[95,96]).

In this perspective, some works have defined a reference architecture for the
CoT [95, 96] as depicted in Figure 2.6. Authors in [96] describe the CoT for smart
cities in the context of the ClouT18 project (Figure 2.6.a). They represent the City
Infrastructure as a Service (CIaaS), the City Platform as a Service (CPaaS), and the
City Software as a Service (CSaaS). The CIaaS layer is responsible for delivering
abstraction services for the IoT as well as traditional infrastructure level resources

18http://clout-project.eu/

Page 24 Chapter 2. State of the Art

for the cloud. The CPaaS provides development environments with accessible data
streams. In this layer, developers are able to produce applications which consume
sensory data or actuate in the real world while having a set of available integrated
services such as data processing. The CSaaS layer enables the deployment of IoT
applications for smart cities. Similarly, the study in [95] provides a three layered
architecture to integrate IoT resources with cloud offerings (Figure 2.6.b). It defines
the lowest layer as the Web of Things (WoT) infrastructure which is composed of
gateways exposing underlying connected objects. Each gateway hosts a RESTful
WoT web service. The second layer is the PaaS layer which handles service compo-
sition and business processes deployment. The uppermost layer represents the SaaS
and offer visualization services. To the best of our knowledge, there exists no work
addressing the resource allocation problem in a fully integrated environment.

2.4 Open Issues and Challenges
Although some work has been done to define the CoT, this new paradigm is still

in its infancy. Many open issues still need to be addressed by the research commu-
nity. In this section we present some challenges from the resources management and
provisioning perspectives in the CoT.

2.4.1 Interoperability
Individual Cloud Computing and IoT have interoperability challenges [13, 97].

On the one hand, Cloud Computing suffers from vendors lock-in due to proprietary
solutions which prevent applications portability and interoperability between cloud
providers. On the other hand, the IoT encompasses heterogeneous devices with a
wide range of capabilities, types, data encodings, and properties. Such diversity
makes it harder to build interoperable IoT solutions. In this perspective, several ini-
tiatives aimed to enhance interoperability by developing standards for Cloud Com-
puting and the IoT which are discussed with more details in Chapter 4. However,
these standards were designed specifically for each domain which make them unfit
for leveraging the convergence of Cloud Computing and the IoT. Moreover, the lack
of a clear definition and a reference architecture [98] for the CoT resulted in different
solutions for combining both technologies as seen in Section 2.3. This variety of ex-
isting solutions decreases further the interoperability of CoT platforms. Hence, the
need to define a CoT reference architecture and standards for managing compute,
network, storage, sensing, and actuating resources.

Reference Architecture

In the IoT, several reference architectures have been proposed such as the IoT-A
[94] to provide guidelines for developing IoT platforms. They define domain, in-
formation, and functional models alongside needed security measures for the IoT.
Furthermore, Cloud Computing also has a well defined reference model [19] describ-
ing its service models and characteristics. However, integrating Cloud Computing

2.4. Open Issues and Challenges Page 25

and the IoT requires novel reference models which consider both domains simulta-
neously. In fact, existing reference architectures are unfit for representing the CoT.
As a result, current solutions for describing the CoT propose different strategies to
connect IoT devices and cloud applications which do not fit in neither cloud ser-
vice models nor the IoT-A functional blocks. For example, studies in [72, 80] used
a software component named the SAaaS framework to deliver IoT resources in a
cloud environment. This component extends the IoT-A functionalities to enable
on-demand and elastic provisioning of sensing and actuation resources in the cloud.
Other works [29, 48, 81, 99] used VOs to link between connected objects and cloud
applications. However, they do not integrate seamlessly cloud service models and
result in additional offerings such as the S2aaS, the SAaaS, the SOaaS, and many
others. Fully integrated solutions provide a clearer representation of IoT offerings
applied to Cloud Computing service models. However, different works [95,96] present
multiple definitions. Since the IoT-A is an established reference architecture for IoT
platforms and has been used in several works such as [72, 80] and cloud-based IoT
projects such as OpenIoT and FIWARE [93], it can be used as a starting point for
defining a CoT reference architecture. In such case, the IoT-A concepts need to be
adapted for a cloud-like service model and encompass cloud characteristics such as
rapid elasticity, on-demand provisioning, etc.

Standards

Integrating Cloud Computing and the IoT creates a highly heterogeneous envi-
ronment. Firstly, connected objects offer proprietary interfaces which do not follow
any sort of standardization. Secondly, different sensors generate raw data in distinct
formats and different actuators encode their state information variously. Finally,
multiple solutions for connecting IoT devices to cloud applications are presented in
the literature as stated in Section 2.3. However, these methods are not standard-
ized nor compatible with one another. Moreover, CoT platforms need to support
IoT applications portability between different providers to avoid vendors lock-in.
Currently, there exist several standards which address some of the standardization
issues. The Semantic Sensor Network (SSN) ontology, the Sensor Web Enable-
ment (SWE) Sensor Model Language (SensorML), and the SWE Observations and
Measurements (O&M) provide means to describe sensors and their data streams
(see Section 4.2). However, some work is still needed to include actuators descrip-
tion within these standards. Furthermore, the SWE suite of specifications also
defines standardized interfaces to interact with IoT resources such as the Sensor
Observations Service (SOS). Other standards related to Cloud Computing ensure
applications portability such as the OASIS Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA)19. Also, standardized resources management
interfaces exist for Cloud Computing such as the Open Cloud Computing Inter-
face (OCCI). They can be extended or combined with IoT related interfaces such
as the SWE SOS to provide a CoT resource management interface. As we notice,
existing standards solve interoperability issues in individual Cloud Computing and

19https://www.oasis-open.org/committees/tosca

Page 26 Chapter 2. State of the Art

IoT environments. However, further efforts are needed to adapt existing standards
to a CoT environment similarly to the work in [100] which uses TOSCA to describe
and deploy IoT applications.

2.4.2 Resource Provisioning
Resource provisioning is one of the major challenges in Cloud Computing [101]

and the IoT [102,103]. On the one hand, resource provisioning in Cloud Computing
consists in mapping Virtual Networks (VNs) onto a Substrate Network (SN). the
VN is a set of interconnected nodes which represent Virtual Machines (VMs) in
an IaaS deployment, or software components in PaaS and SaaS. Moreover, the
SN represents the cloud infrastructure (i.e. cloud data centres and network links).
Allocating resources consists in mapping the VN nodes onto candidate SN data
centres then selecting the best candidates as illustrated in Figure 2.7.a. Therefore,
the optimal solution is the set of candidates which ensures the mapping of the entire
VN and optimizes the objective function of the cloud provider. This function aims
to maximize the provider’s profit, minimize the energy consumption, etc. On the
other hand, the IoT resource provisioning process aims to choose the set of sensors
and actuators which satisfy applications requests (see Figure 2.7.b). Similarly to
Cloud Computing, IoT devices are picked based on an objective such as maximizing
QoS, minimizing energy consumption, etc.

Figure 2.7: Cloud Computing and the IoT Separate Provisioning Processes.

However, provisioning separately cloud and IoT resources in a CoT environment
prevents reaching an optimal resource utilization and control. In fact, a seamless
integration of Cloud Computing and the IoT requires a holistic approach with global
orchestration mechanisms that consider all CoT resources simultaneously (i.e. com-
pute, network, storage, sensing, actuating). Such holistic provisioning cannot be
reached with previous works as it needs to account for multiple aspects regarding
Cloud Computing and IoT at the same time:

• Selecting the set of connected objects which satisfy the requested functional
(e.g. type) and non-functional (e.g. accuracy) requirements specified by the
IoT application.

• Provisioning cloud services responsible for managing previously selected con-
nected objects across cloud data centres.

• Provisioning connectivity services (e.g. VOs) to link selected connected objects
and deployed cloud services.

These aspects should be considered while aiming to minimize the CoT infras-
tructure resource utilization and maximizing the QoS experienced by end-users con-
suming the deployed IoT applications. In addition, orchestrating IoT connectivity
services such as IoT middlewares or VOs requires the consideration of multiple de-
livery strategies as defined in the IoT-A project [94]. For example, an IoT device
might be connected directly, through a VO, or through an IoT middleware. Other
methods also exist such as the data-centric approach. Therefore, the provisioning
process should be aware of all possible deployment strategies and be able to select
the optimal configuration which reduces the operational cost of the deployment.
Furthermore, these delivery methods can be provisioned to serve one or multiple ap-
plications. Hence, methods for considering previously deployed IoT delivery services
and re-using them are needed to avoid the excessive use of resources. These chal-
lenges are still to be addressed when composing and provisioning IoT applications
in a CoT environment.

2.5 Conclusion
The CoT offers a new scope of IoT applications and services which, in contrast to

traditional IoT infrastructures, can be self-managed, self-configured, and automat-
ically deployed without human intervention. In this chapter, we surveyed several
works in the literature thriving for realizing such vision. We classified these works
based on the way they integrate the IoT and Cloud Computing to realize the CoT.
Such classification resulted in three categories: the loose integration, the partial in-
tegration, and the full integration. We highlighted the resource allocation problem
addressed within each integration strategy. Furthermore, we presented the open
issues related to resource modelling and provisioning in the CoT. More contribu-
tions are needed to achieve autonomous end-to-end IoT applications provisioning
and deployment.

Chapter 3

Efficient Provisioning of Shared
Virtual Objects

Contents
3.1 Introduction . 30
3.2 Related Works . 31
3.3 Problem Statement . 33
3.4 Static Virtual Objects Placement Optimization Model . 34

3.4.1 Internet of Things Objects Clustering 34
3.4.2 Placement Optimization Problem Formulation 36

3.5 Dynamic Virtual Objects Placement Optimization Model 42
3.5.1 Internet of Things Objects Clustering 42
3.5.2 Domain Variable Definition 43
3.5.3 Placement Optimization Problem Formulation 45

3.6 Implementation and Evaluation 47
3.6.1 Evaluation Settings . 47
3.6.2 Evaluation Results . 49

3.7 Conclusion . 51

29

Page 30 Chapter 3. Efficient Provisioning of Shared Virtual Objects

3.1 Introduction
Cloud-based Internet of Things (IoT) platforms were first proposed in [29]. These

platforms aim to take benefit from cloud resources and characteristics to deliver
IoT service models such as the Sensing as a Service (S2aaS) [74, 75, 77, 104] and
the Sensor/Actuator as a Service (SAaaS) [79, 80]. These platforms provide IoT
resources to multiple applications running in the Cloud by abstracting heterogeneous
physical and logical IoT devices using Virtual Objects (VOs). A VO is a software
component which abstracts the interaction with a real IoT device. It wraps all
the functionalities of the object (i.e. sensing, actuating, configuration) and provide
them via common Application Programming Interfaces (APIs). Cloud-based IoT
platforms deploy and manage VOs on-demand to provide required IoT resources for
cloud applications. Such platforms benefit from cloud features to scale up/down or
migrate VOs to cope with applications requirements and Quality of Service (QoS)
terms. The dynamic allocation of IoT resources permits also to increase the lifetime
of IoT devices reducing their solicitation when information is already available in
their associated VO [67].

VOs are not deployed individually in independent Virtual Machines (VMs) which
will be inefficient and resources consuming. The large-scale nature of the IoT makes
it impossible to run one VM for each VO. Therefore, IoT middlewares manage
collections of VOs and provide APIs to access them individually. Middlewares are
themselves executed in VMs hosted in a Cloud Computing infrastructure. It starts
and stops VOs as needed. Launching a VO consists on instantiating a wrapper
that connects to a given IoT device. In such context, the distribution of VOs and
VMs within the cloud infrastructure affects the resources utilization efficiency, the
IoT applications QoS, and the operation cost of the overall system. For example,
provisioning two VOs in a single VMs costs less than provisioning them in multiple
VMs. However, if these VOs communicate with different applications, separating
them might have an important impact on the QoS (e.g. latency for each application).
Consequently, provisioning mechanisms are very important and have an important
impact on the QoS and deployment cost of VOs.

Figure 3.1: Virtual Object Provisioning Approaches.

3.2. Related Works Page 31

Moreover, several applications might request similar IoT resources (e.g. temper-
ature sensing in the same location) and the same IoT object might serve multiple
applications. In such case, there are several possible configurations to abstract sens-
ing and actuating resources in cloud-based IoT platforms. These configurations are
depicted in Figure 3.1. In part (a) of the figure each IoT device connects to one
VO which belongs to a single application, in part (b) connected objects are shared
between applications in contrast to VOs, in part (c) IoT resources and VOs can
be shared. In cases (b) and (c), connected objects might be shared or not based
on their capabilities. To the best of our knowledge, most previous works in the
area have only considered the first case (i.e. case a). However, sharing connected
objects and VOs reduces needed cloud resources to deliver sensing and actuating
functionalities to applications. In this thesis, we highlight the benefit of sharing IoT
resources between different applications in the context of cloud-based IoT platforms.
We propose two analytical formulations of the problem and associated solutions to
optimize the placement of shared IoT resources (i.e. VOs) in the Cloud Computing
in order to satisfy the global system performances.

The chapter is organized as follows. First, We present the specific related works
in Section 3.2. we present the challenges to share efficiently IoT resources in Section
3.3. In Sections 3.4 and 3.5 we present our model to provision shared VOs in the
Cloud Computing. We provide two analytical formulations of the VOs placement
optimization: (a) static (Section 3.4) and (b) dynamic (Section 3.5). Both analytical
models are based on the Linear Program (LP). The static LP considers a new
environment with no previously deployed VOs, while the dynamic model takes into
consideration the previously deployed VOs when placing a new request. Afterwards,
simulations results are discussed in section 3.6. Finally, we conclude the chapter with
an overview outlining the benefits of our approach.

3.2 Related Works
The selection of connected objects is an important functionality of cloud-based

IoT platforms. There are several techniques proposed in the literature [105] to
achieve this selection. Contributions made by [86,87] propose several techniques to
select the best k connected objects based on an application request: comparative-
priority based heuristic filtering, relational-expression based filtering and a dis-
tributed object searching technique. The search techniques take into consideration
non functional requirements of IoT devices with distinct priorities in the selection
process. Authors consider accuracy, reliability, energy, availability, and cost of con-
nected objects. However they do not try to optimize the number of used objects.
This issue was addressed later in [68]. The focus of this work is the optimal selec-
tion of connected objects to satisfy the applications requirements while preserving
the efficiency of resource utilization. The authors propose two algorithms CoV-I
and CoV-II addressing two particular cases: when physical objects are homoge-
neous and fall within the same geographical area (i.e. CoV-I), and when objects
are heterogeneous and geographically distributed (i.e. CoV-II). Results show that

Page 32 Chapter 3. Efficient Provisioning of Shared Virtual Objects

both algorithms enhance the resources utilization by selecting only the necessary
IoT devices for each application.

Other related works have addressed the network resources utilization as described
in [3,69,88,90,106]. The approach presented in [70,88] relies on the control of data
transmission rates between different entities in a cloud-based IoT platform to re-
duce the consumption of the network resources and increase the physical connected
objects lifetime. Phan et al. [88] focus on optimizing communication bandwidth in
SC-iPaaS (Sensor-Cloud Integration PaaS). In SC-iPaaS, IoT devices send data peri-
odically to corresponding sinks, who relay them at different frequency rates to VOs.
When end-users request data streams to their applications running in the cloud,
applications invoke the corresponding VOs. VOs reply directly if the requested data
streams are locally available, otherwise they request up to date information to the
connected objects. Authors seek in this work the Pareto-optimal data transmission
rate for each connected to object and sink node to maximize applications requests
success rate while minimizing objects’ energy consumption and network resource
utilization. Phan et al. define three objective functions: (a) maximizing the objects
data yield (i.e. data availability) for cloud applications, (b) minimizing the band-
width consumption between the cloud layer and the edge layer, and (c) minimizing
the energy consumption of connected objects in the IoT infrastructure.

Moreover, other related works have addressed the limited processing, storage,
and energy capabilities of connected objects and how to use them in an optimal
manner. In [106], Xu et al. increase IoT devices lifetime by optimizing the data re-
quests from these devices, and the data demand from applications. Authors propose
a bi-directional waterfall optimization framework which relies on data/application
caching. Instead of only caching data while it is moving up to the applications in the
cloud-based IoT platform, authors move parts of the applications logic down to the
edges. Hence, the amount of data to send to the cloud applications decreases which
reduces the bandwidth overhead for data transmission. In [69], authors optimize
the transmission of data streams by assigning the closest data centre to host virtual
objects, then schedule a particular data centre to aggregate data from these VOs.

Finally, several works focused on the QoS in an IoT environment, in particular,
delay and response times. Misra et al. introduced in [90] a gateway selection mech-
anism to establish an efficient, reliable and cost-effective health monitoring system
and to minimize transmission delay with cloud applications. Authors considered
static connected object devices while authors in [3] considered instead a Mobile
Cloud Computing (MCC) environment where IoT devices can be mobile and VOs
deployed in the cloud process the incoming data streams. Authors formulated the
problem as a linear program to jointly optimize the gateway selection and the ser-
vices deployment cost in the cloud. Authors objective was to minimize data flows
fluctuation in each cloud data centre and the rate of required reconfiguration oper-
ations to satisfy the changing load.

In the mentioned related works, several approaches have been used to optimize
network resources when transmitting data streams to applications via virtual ob-
jects, however, all these approaches considered that virtual objects are dedicated
to a particular application and not shared among them. In our work, we consider

3.3. Problem Statement Page 33

that sharing VO is very important and can help to derive a more efficient solution.
Therefore, we take a different approach and we propose that virtual objects can be
shared among multiple applications when they are requesting the same data and
that the objective is to further minimize resources utilization while maintaining the
same level of QoS for the applications. This allows to go one step forward in the
optimization of the resources, QoS assurance and reduction of operational cost for
such applications.

3.3 Problem Statement
A provisioning mechanism of cloud resources to deliver shared IoT devices must

address several challenges. Firstly, the IoT large-scale infrastructure increases sub-
stantially the problem size. Such infrastructure consists of highly distributed nu-
merous connected objects spanned over multiple geographical areas. Consequently,
orchestrating VOs for a large number of allocated sensing and actuating resources
can be time consuming. The provisioning algorithm must cope with such large
scale IoT environment. It should scale with large number of requests and produce
solutions in an acceptable response time. Furthermore, such algorithm should con-
sider two data flows: (a) the data exchange between connected objects and VOs
hosted in cloud data centres, and (b) the data transmission between VOs and cloud
applications.

Figure 3.2: Virtual Object Sharing Challenges Examples.

Secondly, sharing VOs amongst multiple applications requires a trade-off be-
tween optimal placements of each application individually. The provisioning process
should optimize the placement of each request without penalizing a particular one.
For example, let’s consider 4 VOs requested by two applications. VO1 belongs to one
of these applications, while VO3 and VO4 serve the other one. Each application’s VOs
are deployed in separate data centres as shown in Figure 3.2.a. The VO2 sends data

Page 34 Chapter 3. Efficient Provisioning of Shared Virtual Objects

to both applications. In this example, VO2 has two possible candidates with already
deployed VMs. Both candidates satisfy applications QoS terms. We consider that
the costs of hosting VO2 in both data centres are similar for all types of resources
(i.e. compute, network, and storage). Therefore, the provisioning decision is mainly
impacted by the QoS requirements of each application (e.g. latency). In this partic-
ular case, an efficient orchestration algorithm should find the placement that best
satisfies all the applications QoS requirements instead of finding a placement based
on other criteria.

Finally, a sharing strategy of connected objects might require that new requests
are served by already deployed VOs. However, VOs might need to satisfy some par-
ticular QoS requirements for the initiating applications. In this case, the migration
feature of Cloud Computing might be used to move VOs to a location that permits
to satisfy these QoS requirements instead of creating new VOs. Figure 3.2.b illus-
trates such use case: a new application requires VO2 which is already deployed for
another one. Since the previous placement violates the QoS of the new application,
the VO2 is migrated to another host that is more appropriate in term of QoS as-
surance. The migration operation induces additional costs for the cloud operator.
Therefore, the proposed model needs to take into account the migration cost and try
to minimize the reconfiguration operations performed on previously deployed VOs.
Additional granularity might be considered as well during the provisioning process.
For example, if the migration cost of a previously deployed VO is high, another
VO is instantiated without performing the migration operation. In such case, two
VOs connect multiple applications to the same IoT device. However, such consid-
erations increase considerably the algorithm complexity and its computation time.
Therefore, we decided to not consider such a solution since we aim to propose only
a scalable algorithm with acceptable time complexity. Therefore, in the proposed
approach, we consider that a VO and an IoT device can be shared between several
applications with the restriction that only one VO can be associated with an IoT
device.

3.4 Static Virtual Objects Placement Optimiza-
tion Model

In this section, we address the challenges of sharing VOs among different appli-
cations. First of all, we formulate an analytical model of the problem which is an
optimization problem under constraints, then we propose solutions to optimize the
placement of VOs in such environment. Table 3.1 is a notation table that illustrates
the significant variables used in the model.

3.4.1 Internet of Things Objects Clustering
In the IoT, connected objects usually belong to various geographical areas. When

IoT devices belong to the same geographical areas, communication costs with their
associated cloud data centre are similar. Indeed, since the data follows the same

3.4. Static Virtual Objects Placement Optimization Model Page 35

routing path, experienced bandwidth capacity and QoS (such as latency) are simi-
lar. Therefore, there is no need to consider each connected object individually and
it is therefore possible to treat them as a collection. We propose therefore to reduce
the problem size by clustering the connected objects in the IoT based on different
geographical areas. Such grouping does not alter the efficiency of the placement
process. However, since selected IoT devices in each geographical area may commu-
nicate with different applications hosted in different data centres, QoS experience
may be different. Therefore, in order to assure the required level of QoS, we propose
to subdivide further the cluster and group together connected objects serving the
same set of applications. Each obtained cluster at the end of the partitioning should
belong to only one geographical area. Each cluster is also associated with the same
group of cloud applications and QoS requirements.

Application 1 Application 2

IoT Infrastructure

Area 1 Area 2

Geographical Area 1 Geographical Area 2

Selected Sensors

Idle IoT Device

IoT Device for App 1

IoT Device for App 2

IoT Device for App 1&2

Geographical
Clustering

Requirements
Clustering

Cluster 1 Cluster 3Cluster 2 Cluster 6Cluster 5Cluster 4

Figure 3.3: Clustering Steps Before the Provisioning Process.

Figure 3.3 shows the proposed clustering process. First, the selected pool of
connected objects is separated into geographical groups. Then, they are further
separated by similar requirements groups (i.e. same set of served applications).
Let’s consider a set of applications A = a1, ..., an having each a set of associated
connected objects (IoT devices) O = O1, ..., On. Each set of connected object has
a cardinality ni and is represented as Oi = oi,1, ..., oi,ni

. Having these elements,
we propose the Algorithm 3.1 to compute the set of clusters C. This clustering
approach permits to reduce the size of the problem to derive a solution with a
reduced complexity.

Page 36 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Algorithm 3.1 Clustering Algorithm for the Static Optimization Model
Cluster-Static(A,O)
In: Set of n applications A = {a1, ..., an}; Sets of assigned connected objects for

each application O = {O1, ..., On} = {o1, ...}.
Out: Sets of clusters C = {C1, ...} where each cluster Ci groups connected objects

with similar requirements. Sets of requirements R = {R1, ...} for each cluster.

1: C ← ∅;R← ∅;
2: for all selected connected objects oi ∈ O do
3: create a temporary set T containing the geographical location of oi.
4: add to T all the cloud applications Aj ∈ A served by oi.
5: if ∃Rk such that Rk = T then
6: Ck ← oi
7: else
8: R← {T} {add the new group of requirements to R}
9: C ← {oi} {create a new cluster for new requirements T}

10: end if
11: end for
12: return C,R

3.4.2 Placement Optimization Problem Formulation
Cluster-Static(A,O) produces a finite number of clusters C = {C1, ..., Cm}.

Each cluster Ci represents a set of connected objects, has a geographical location
gi ∈ Ri, and serves a set of applications ∆i ⊂ Ri such that ∆i = Ri \ {gi}. VOs
mirror connected objects within these clusters in data centres D = {d1, ..., dp} and
provide their services to cloud applications. Figure 3.4 shows the network schema
of such environment. We define ecdi,j and edai,j as network links. An edge ecdi,j lies
between a cluster Ci and a data centre dj, while edai,j connects a data centre di and an
application aj. Each network link possesses functional and non-functional properties
such as available bandwidth (bcdi,j, bdai,j) and network latency (lcdi,j, ldai,j) respectively.

Network Model

IoT devices exchange data with VOs. Therefore, each cluster Ci produces an
average transmission rate represented as λci . The generated average transmission
rate for a cluster Ci is equal to the sum of all individual average rates produced by
connected objects within this cluster. However, VOs abstracting IoT devices in one
cluster might not be deployed in the same data centre. Hence, a data centre receives
a portion of a cluster’s average transmission rate. This portion is represented by the
variable αi,j. It corresponds to the fraction of connected objects within the cluster
Ci managed by VOs in the data centre dj. As a result, the arrival rate (i.e θcdi,j)
generated by a given cluster Ci at a data centre dj is:

θcdi,j = αi,jλ
c
i (3.1)

3.4. Static Virtual Objects Placement Optimization Model Page 37

Figure 3.4: Network Model of the Placement Problem.

Consequently, we can derive the overall ingress rate at any data centre dj as
following:

θdj =
∑
i

θcdi,j =
∑
i

αi,jλ
c
i ∀i : 1→ m (3.2)

In some cases, VOs hosted in data centres do aggregation operations on data
or add additional information such as semantic annotations. Therefore, the egress
traffic of VOs is not equal to the ingress traffic of connected objects. We use a
coefficient β > 0 to represent the effect of VOs operations on received data. If
β ∈]0, 1[, the deployed VOs aggregate data. However, for β > 1, the instantiated
VOs provide additional information regarding the data for cloud applications. Also,
the communication overhead difference between ingress and egress traffic can be
handled by the coefficient β. In our work, we consider that the cloud-based IoT
platform deploys a single type of VOs similarly to existing platforms discussed in
Section 2.3. As a result, the value of β is constant for all VOs. Thus, the egress
traffic for a data centre dj is the following:

λdj = β
∑
i

αi,jλ
c
i ∀i : 1→ m (3.3)

Each application receives the amount of data transmitted by its assigned con-
nected objects. However, the latter connected objects are spread across different
clusters. Also, they are represented by VOs in cloud data centres. Hence, we can
express the traffic received by each application as a function of: (a) the transmitted
rate of clusters, or (b) the egress traffic of VOs. We define the binary variable δi,k.
It equals 1 if the application ak belongs to the set ∆i, it is 0 otherwise. As a result,

Page 38 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Table 3.1: Notation Table

Symbol Definition
C Set of connected objects clusters; C = {C1, ..., Cm}.
D Set of data centres; D = {d1, ..., dp}.
A Set of cloud applications; A = {a1, ..., an}.
∆i The set of applications served by the cluster Ci.
δi,k Binary value equal to 1 if ak ∈ ∆i, and 0 otherwise.
gi Geographical location of a cluster Ci.
λci Total egress traffic of a cluster Ci.
bcdi,j Network bandwidth between a cluster Ci and a data centre dj.
lcdi,j Network latency between a cluster Ci and a data centre dj.
θcdi,j Ingress traffic of a data centre dj from a cluster Ci.
θdj Total ingress traffic of a data centre dj.
θdaj,k Ingress traffic of an application ak from a data centre dj.
bdaj,k Network bandwidth between a data centre dj and an application ak.
ldaj,k Network latency between a data centre dj and an application ak.
φcdi,j Price of a data unit between a cluster Ci and a data centre dj.
φdaj,k Price of a data unit between a data centre dj and an application ak.
φvmj Price of one virtual machine in the data centre dj.
αi,j The fraction of VOs mirroring cluster Ci and hosted in data centre dj.

the average arrival rate sent by a cluster Ci or a data centre dj to an application ak
can now be expressed respectively as follows:

θcai,k = δi,kλ
c
i (3.4)

θdaj,k = λdaj,k = β
∑
i

δi,kθ
cd
i,j = β

∑
i

δi,kαi,jλ
c
i ∀i : 1→ m (3.5)

with:

δi,k =
{

1 if ak ∈ ∆i

0 otherwise (3.6)

As well, the overall traffic received by an application ak is:

θak = β
∑
i

δi,kλ
c
i ∀i : 1→ m (3.7)

The traffic between clusters, data centres, and applications, is handled by net-
work links. Transmitted data rates on a given network link should not exceed its

3.4. Static Virtual Objects Placement Optimization Model Page 39

available bandwidth capacity (constraints 3.8 and 3.9). Furthermore, the data cen-
tres has to be capable of handling the received traffic (constraint 3.10). In fact,
each data centre is able to manage a maximal amount of traffic represented by θmaxj .
Also, the received traffic by an application ak should comply with its requested QoS
terms. In our work, we consider the latency of network links as the QoS indicator.
Each application ak QoS is represented by its highest acceptable latency lmaxk (con-
straint 3.11). These network constraints must be satisfied when mapping VOs to
cloud data centres and are expressed as follows:

θcdi,j ≤ bcdi,j ∀i : 1→ m, ∀j : 1→ p (3.8)

θdaj,k ≤ bdaj,k ∀j : 1→ p, ∀k : 1→ n (3.9)

θdj ≤ θmaxj ∀j : 1→ p (3.10)

δi,kαi,j(lcdi,j + ldaj,k − lmaxk) ≤ 0 ∀i : 1→ m, ∀k : 1→ n, ∀j : 1→ p (3.11)

Quality of Service Index

During the deployment process, some VOs might have several hosts candidates
with similar cloud resources costs (see Section 3.3) as illustrated in Figure 3.5. In
this case, the provisioning process should select the data centre which provides the
best QoS for all applications. Therefore, we define a normalised parameter, the
QoS index qi,j ∈ [0, 1]. This index reflects the inverse of the QoS level experienced
by the set of applications ∆i using cluster Ci when their VOs are installed in data
centre dj. The lower the value of qi,j is, the higher the QoS level is. We use this
to prioritize hosts providing better QoS for cloud applications (See equation 3.16).
The QoS index is expressed as follows:

qi,j =
lcdi,j +∑

k δi,kl
da
j,k

(1 +∑
k δi,k)L

∀k : 1→ n (3.12)

with:

L = max
i,j,k

(lcdi,j, ldaj,k) ∀i : 1→ m, ∀j : 1→ p, ∀k : 1→ n (3.13)

Cost Function

We provide a model for orchestrating VOs in the cloud. The selection of con-
nected objects suitable for each application is out of the scope of this work. Conse-
quently, we do not consider costs related to the allocation of IoT resources. We only
represent costs associated with cloud resources. The basic resource in the cloud is
the VM. As mentioned previously, VMs manage instantiated VOs which are soft-
ware components within VMs. These VOs consume VMs resources based on the

Page 40 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Figure 3.5: Provisioning Scenario with the QoS Index.

traffic they handle. In our work, we consider that all VMs are able to handle the
same arrival rate µ. Therefore, we can calculate the total number of VMs needed
in each data centre based on the overall traffic managed by it. Each data centre dj
has a different VM cost represented as φvmj . As a result, the cost of needed VMs for
orchestrating requested VOs is expressed as follows:

F vm(α) =
∑
j

φvmj

⌈
θdj
µ

⌉
=
∑
j

φvmj

⌈∑
i αi,jλ

c
i

µ

⌉
∀i : 1→ m, ∀j : 1→ p (3.14)

In order to linearise F vm(α) we introduce the variable uj to replace the ceiling
function. The relation between the variable uj is defined as uj = dθdj /µe and mod-
elled with constraints (3.15a), (3.15b), and (3.15c). The VM cost function is now
represented as follows:

F vm(α) =
∑
j

φvmj uj ∀i : 1→ m, ∀j : 1→ p (3.15)

with:

uj ≥
θdj
µ
∀j : 1→ p (3.15a)

uj ≤
θdj
µ

+ 1 ∀j : 1→ p (3.15b)

uj ∈ Z+ ∀j : 1→ p (3.15c)

Moreover, the network cost represents the price of data exchanges between con-
nected objects, data centres, and applications. We define the cost of transmitting a
unit of data on a network link between two nodes ni and nj as φni,j. The network
cost is the following:

3.4. Static Virtual Objects Placement Optimization Model Page 41

F n(α) =
∑
i

∑
j

qi,jφ
cd
i,jθ

cd
i,j + β

∑
i

∑
j

∑
k

qi,jφ
da
j,kδj,kαi,jλ

c
i

∀i : 1→ m, ∀j : 1→ p, ∀k : 1→ n
(3.16)

Our objective is to calculate the provisioning plan which minimizes the previously
defined costs. Therefore, the objective function is defined as follows:

min
α
F (α) = ωF vm(α) + γF n(α)

s.t. ω + γ = 1
(3.17)

subjected to:

Bandwidth constraints:

θcdi,j ≤ bcdi,j ∀i : 1→ m, ∀j : 1→ p (3.17a)

θdaj,k ≤ bdaj,k ∀j : 1→ p, ∀k : 1→ n (3.17b)

Data centre capacity constraint:

θdj ≤ θmaxj ∀j : 1→ p (3.17c)

QoS related constraint:

δi,kαi,j(lcdi,j + ldaj,k − lmaxk) ≤ 0

∀i : 1→ m, ∀j : 1→ p, ∀k : 1→ n (3.17d)

Domain variable constraints:∑
j

αi,j = 1 ∀i : 1→ m (3.17e)

αi,j ≥ 0 ∀i : 1→ m, ∀j : 1→ p (3.17f)

uj ≥
θdj
µ
∀j : 1→ p (3.17g)

uj ≤
θdj
µ

+ 1 ∀j : 1→ p (3.17h)

uj ∈ Z+ ∀j : 1→ p (3.17i)

ω and γ are coefficients to specify the weight of each cost in the total value of the
function F . The constraint (3.17e) enforces the orchestration of all needed VOs, and
verifies that each connected object is assigned to only one VO. Also, the constraint
(3.17f) limits the values of αi,j to positive real numbers only.

Page 42 Chapter 3. Efficient Provisioning of Shared Virtual Objects

3.5 Dynamic Virtual Objects Placement Optimiza-
tion Model

Unlike the static approach described in Section 3.4, a dynamic orchestration
process must adapt to changes at the software and infrastructure levels. Software
level changes are characterized by new applications or variations in previous applica-
tions requests, while infrastructure level changes are initiated by connected objects
mobility or failure (e.g. empty battery). On both levels, the orchestration process
needs to reallocate and adapt continuously cloud and IoT resources to cope with
these variations. In this work, we do not deal with the dynamic selection of IoT
resources. Such problem is well studied in the literature and various solutions are
provided [103]. We focus on the provisioning of cloud resources, and therefore the
distribution of VOs in such a dynamic environment. As a result, changes in the in-
frastructure are presented and processed as variations in existing applications needs.
In this section, we adapt the model presented in Section 3.4 to include the dynamic
aspect of cloud-based IoT platforms.

3.5.1 Internet of Things Objects Clustering
The dynamic arrival of applications requests populates data centres with VOs

over time. These VOs are shareable and therefore might be reused by forthcoming
applications requests. However, the placement of reused VOs might violate the QoS
required by new requests. Therefore, the provisioning process should investigate the
validity of such VOs placement and migrate them to suitable hosts if needed. Such
control is not necessary for unshared VOs. In fact, shared VOs should satisfy all
the QoS requirements of applications consuming them as mentioned in Section 3.4.
Hence, migrating VOs should be performed while accounting for all their connected
applications requirements, and not only new ones. Considering these applications
in the orchestration process enforces their QoS terms.

Figure 3.6 depicts this scenario. It illustrates a new application requesting con-
nected objects o2, o3, and o4, while an existing application uses o1 and o2. Both
applications share the connected object o2 and therefore its related VO (i.e. VO2).
In this example, we notice that the current placement of VO2 does not comply with
the QoS required by the new application. Therefore, VO2 should be migrated. If the
provisioning process considers solely the QoS requirements of the new application, it
might migrate VO2 to the data centre in location B. The latter data centre violates
the QoS terms of the existing application. Hence, the provisioning process should
include both applications requirements in the provisioning process to select the best
placement for both (i.e. data centre at location C).

In this perspective, clustering connected objects in the dynamic model should
not operate solely on new applications. It should consider previously deployed ap-
plications consuming these connected objects as well. Therefore, we consider two
sets of applications At = {at1, ..., atx} and At−1 = {at−1

1 , ..., at−1
y } corresponding to

new and existing applications respectively. The set of new applications At requests
sets of connected objects Ot = {Ot

1, ..., O
t
x}, while existing applications At−1 con-

3.5. Dynamic Virtual Objects Placement Optimization Model Page 43

VO1VO1 VO4VO3 VO4VO3

Application 1

Geographical

Location B

VO2

New Application

Geographical

Location A

VO2

Geographical

Location C

VO2

VOVO

Network link which satisfies the QoS requirement of targeted application

Network link which violates the QoS requirement of targeted application

Deployed VOPotential VO placement Migration operation

Figure 3.6: Scenario of A Migration Operation.

sume sets of connected objects Ot−1 = {Ot−1
1 , ..., Ot−1

y }. Based on these elements, we
propose the Algorithm 3.2 to compute the set of clusters C and their requirements.

3.5.2 Domain Variable Definition
Cluster-Dynamic(At, Ot, At−1, Ot−1) produces a finite number of clusters C =

{C1, ..., Cm}. The notation of clusters is similar to Section 3.4. Hence, each cluster Ci
has a set of requirements Ri containing a geographical location gi and a set of served
applications ∆i ⊂ Ri. Furthermore, a cluster Ci generated an average transmission
rate λci . However, unlike the static model, connected objects in clusters might have
corresponding VOs assigned to different data centres. Therefore, we define αt−1

i,j as
the fraction of connected objects belonging to the cluster Ci and have corresponding
VOs in data centre dj at time t − 1. It describes the previous placement of shared
VOs in the infrastructure. Similarly, we introduce the variable αti,j which represents
the distribution of VOs after orchestrating the new set of applications At. αti,j is
related to αt−1

i,j as follows:

αti,j = αt−1
i,j + rt−1

i,j ∀i : 1→ m, ∀j : 1→ p (3.18)

with:

αti,j ≥ 0∀i : 1→ m, ∀j : 1→ p (3.18a)

Page 44 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Algorithm 3.2 Clustering Algorithm for the Dynamic Optimization Model
Cluster-Dynamic(At, Ot, At−1, Ot−1)
In: Set of x new applications At = {at1, ..., atx}; Sets of assigned connected objects

for each new application Ot = {Ot
1, ..., O

t
x} = {o1, ...}; Set of y existing ap-

plications At−1 = {at−1
1 , ..., at−1

y }; Sets of assigned connected objects for each
existing application Ot−1 = {Ot−1

1 , ..., Ot−1
y } = {o1, ...}.

Out: Sets of clusters C = {C1, ...} where each cluster Ci groups connected objects
with similar requirements. Sets of requirements R = {R1, ...} for each cluster.

1: C ← ∅;R← ∅;
2: for all selected connected objects oi ∈ Ot do
3: create a temporary set T containing the geographical location of oi.
4: add to T all the cloud applications Atj ∈ At and At−1

k ∈ At−1 served by oi.
5: if ∃Rk such that Rk = T then
6: Ck ← oi
7: else
8: R← {T} {add the new group of requirements to R}
9: C ← {oi} {create a new cluster for new requirements T}

10: end if
11: end for
12: return C,R

∑
j

αti,j = 1 ∀j : 1→ p (3.18b)

The variable rt−1
i,j corresponds to the reconfiguration operations to perform on

cluster i with respect to data centre j. A negative reconfiguration operation rt−1
i,j =

−v means that a portion v of VOs in data centre dj mirroring connected objects in
Ci need to be migrated. A positive value rt−1

i,j = +v means that a portion v of VOs
corresponding to the cluster Ci needs to be in data centre dj. Figure 3.7 illustrates
an example of reconfiguration operations between times t− 1 and t.

We can notice that the cluster C1 at time t − 1 has a third partition which
does not correspond to any data centre. This addition part reflects the portion
of unshared VOs in the cluster before the orchestration process. We refer to this
portion at cluster Ci by ni and calculate it as follows:

ni = 1−
∑
j

αt−1
i,j ∀i : 1→ m (3.19)

Moreover, we can see that the 40% fraction was divided between data centres
d1 and d2 with respective portions 35% and 5%. The second cluster suffered from
a migration operation. 55% of connected objects previously mapped to the data
centre d2 were shifted to d1. As we can see, the migration operation is characterized
by a negative rt−1

2,2 and a positive rt−1
2,1 . If a data centre does not satisfy a cluster’s

QoS requirements, all related VOs of the latter cluster in this data centre should be

3.5. Dynamic Virtual Objects Placement Optimization Model Page 45

Figure 3.7: Example of A Provisioning Reconfiguration Between Times t− 1 and t.

moved. This is mandatory because a cluster represents applications with the same
QoS.

Our objective is to find the values of rt−1
i,j which minimize the cost of VOs dis-

tributed on data centres while maintaining the applications QoS requirements. Once
the variables rt−1

i,j are determined, the final distribution values of VOs (αti,j) can be
deduced. The constraint (3.18b) guarantees that each connected object has a VOs
instance in a data centre. Also, the constraint (3.18a) stops migration operations
from exceeding available VOs.

3.5.3 Placement Optimization Problem Formulation
Similarly to the domain variable, the network model variables are computed at

the time t. We distinguish between (1) variables that are not affected by the VOs
distribution across data centres, (2) variables that are affected only by the new
deployment, and (3) variables that represent the global status of the infrastructure.
Variables in category (1) remain as defined in Section 3.4 and are θai,k, θak, and
qi,j. Category (2) variables are related to clusters processed during the provisioning
process such as θcd,ti,j , θda,tj,k , and λda,tj,k . They are adapted by replacing αi,j with αti,j as
follows:

Page 46 Chapter 3. Efficient Provisioning of Shared Virtual Objects

θcd,ti,j = αti,jλ
c
i =

(
αt−1
i,j + rt−1

i,j

)
λci (3.20)

θda,tj,k = λda,tj,k = β
∑
i

δi,kθ
cd,t
i,j = β

[∑
i

δi,k
(
αt−1
i,j + rt−1

i,j

)
λci

]
∀i : 1→ m (3.21)

Category (3) refers to variables θd,tj and λd,tj which represent the overall traffic
handled by each data centre. They are expressed as a function of their value at
the time t − 1 and performed reconfiguration operations rt−1

i,j . Their value might
increase or decrease since the value of rt−1

i,j can be negative or positive. Accordingly,
they are calculated as follows:

θd,tj = θd,t−1
j +

∑
i

rt−1
i,j λ

c
i ∀i : 1→ m (3.22)

λd,tj = βθd,tj = βθd,t−1
j + β

∑
i

rt−1
i,j λ

c
i ∀i : 1→ m (3.23)

Since our objective is to minimize the distribution of VOs, we do not consider the
migration cost of VOs from one data centre to the other. In fact, the migration is
mandatory as it will affect VOs that do not comply with the requested QoS. Based
on these elements, the dynamic objective function is formulated as follows:

min
r
F (r) = ωF vm(r) + γF n(r)

s.t. ω + γ = 1
(3.24)

with:

F vm(r) =
∑
j

φvmj utj ∀j : 1→ p (3.24a)

F n(r) =
∑
i

∑
j

qi,jφ
cd
i,jθ

cd,t
i,j +

β
∑
i

∑
j

∑
k

qi,jφ
da
j,kδi,k

(
αt−1
i,j + rt−1

i,j

)
λci

∀i : 1→ m, ∀j : 1→ p, ∀k : 1→ n (3.24b)

subjected to:

Bandwidth constraints:

θcd,ti,j ≤ bcdi,j ∀i : 1→ m, ∀j : 1→ p (3.24c)

θda,tj,k ≤ bdaj,k ∀j : 1→ p, ∀k : 1→ n (3.24d)

Data centre capacity constraint:

3.6. Implementation and Evaluation Page 47

θd,tj ≤ θmaxj ∀j : 1→ p (3.24e)

QoS related constraint:

δi,k(αt−1
i,j + rt−1

i,j)(lcdi,j + ldaj,k − lmaxk) ≤ 0

∀i : 1→ m, ∀j : 1→ p, ∀k : 1→ n (3.24f)

Domain variable constraints:∑
j

(αt−1
i,j + rt−1

i,j) = 1 ∀i : 1→ m (3.24g)

rt−1
i,j ≥ −αt−1

i,j ∀i : 1→ m, ∀j : 1→ p (3.24h)

utj ≥
θd,tj
µ

∀j : 1→ p (3.24i)

utj ≤
θd,tj
µ

+ 1 ∀j : 1→ p (3.24j)

utj ∈ Z+ ∀j : 1→ p (3.24k)

Constraints (3.24g) and (3.24h) are adaptations of constraints (3.18a) and (3.18b)
presented previously. They hide the term αti,j.

3.6 Implementation and Evaluation
In this section, we investigate the benefit of our static and dynamic approaches

against a non sharing approach through simulations. Furthermore, we evaluate
the role of clustering in reducing the problem size and the processing time of our
algorithm with respect to requested applications and connected objects. We use
JAVA CPLEX to implement our model.

3.6.1 Evaluation Settings
Table 3.2 summarizes simulations setting. We generate 10 interconnected data

centres spanned across 4 geographical areas. We fix the price of a running VM
to 50$ per month in all data centres. We consider no network charges between
data centres in the same availability zone similarly to commercial cloud providers
such as Amazon Web Services (AWS)1. However, we set communications costs
between data centres in different geographical locations at 0.01$ per GB. We refer
to the network between data centres as the intra-cloud network. Links latencies are
selected randomly from the range [100, 300] (milliseconds) if communicating nodes
(i.e. data centres, connected objects) belong to the same region. Otherwise, we pick
a latency value from [200, 500].

1https://aws.amazon.com/

Page 48 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Table 3.2: Configuration Settings

Parameters Values
Number of data centres 10

Data centre network capacity Uniform in [40000, 60000]
Virtual machine capacity 1200

Network latency for data transfer in one region (ms) Uniform in [100, 300]
Network latency for data transfer across regions (ms) Uniform in [200, 500]

Network links available bandwidth (blocks per minute) 2000
Applications requested latency (ms) Uniform in [600, 1000]

Number of geographical locations 4
Total number of connected objects 100000

Connected object throughput (blocks) Uniform in [0.1, 5]
Price of one million blocks($) Uniform in [5, 8]

Price of intra-cloud data transfers ($ per GB) {0, 0.01}
Price of a virtual machine ($ per month) 50

First Simulation
Number of applications 10

Connected objects per application Uniform in [200x, 200(x+ 1)]
x {0, 1, 2, 3, ..., 44}
Second & Third Simulations

Number of applications {4, 6, 8, ..., 50}
Connected objects per application Uniform in [200, 400]

Cloud providers charge for connected objects data units separately. Cloud-based
IoT platforms such as AWS IoT charge for the number of data blocks received from
IoT devices. In particular, the AWS IoT sets the price of a million data blocks
at 5$ to 8$ depending on the geographical location. One data block corresponds
to 512 bytes. We use the same pricing strategy. Moreover, we simulate up to
100K connected objects spread across the 4 geographical areas. Their throughput
is expressed in number of blocks per minute and is generated randomly from the
range [0.1, 5]. We consider that the traffic handled by a data centre cannot exceed
a maximal value selected from the range [40000, 60000] (blocks per minute). Also,
a VM can manage up to 1200 blocks per minute. Furthermore, the bandwidth
capacity for all network links is fixed at 2000 blocks per minute.

We perform three simulations. In the first one, we fix the number of appli-
cations to 10 while varying the number of connected objects per application. At
each iteration, applications select a random number of connected objects in range
[200x, 200(x+ 1)] with x = 0 → 44. We use the static approach for provisioning
VOs cloud resources. In the second and third simulations, we fix the range of con-
nected objects per application to [200, 400] while varying the number of applications
from 4 to 50 with a step 2. We use the static approach to map VOs for all applica-
tions at each step in the second simulation, while we rely on the dynamic approach
to orchestrate VOs dynamically for applications as they arrive in the final simula-
tion. In all simulations, the latency requested by an application belong to the range
[600, 1000] (ms). In this context, we measure in simulations 1 and 2 the effect of the

3.6. Implementation and Evaluation Page 49

QoS index on the provisioning process.

3.6.2 Evaluation Results
Overall Performance

As argued, clustering connected objects reduces the problem size and decreases
the needed processing time to calculate a mapping solution. Figure 3.8 shows the
number of clusters against the number of connected objects in simulations 1 and 2.
We notice the considerable reduction in the problem size when relying on clusters
to solve the provisioning problem. Furthermore, the numbers of clusters increases
in the shared approach even though the number of selected IoT devices decreases.
In fact, the clustering algorithm groups connected objects with the same served
applications which leads to additional clusters when these IoT devices are shared.
Furthermore, when the number of applications increases linearly, the number of
clusters increase rapidly (Figure 3.8.a) but remains lower than connected objects
amount. However, increasing the number of connected objects per application has
minimal effect of clusters numbers (Figure 3.8.b).

It is obvious in Figure 3.9 that the processing time of the LP solver increases
proportionally to the number of applications (i.e. clusters). However, such time can
be reduced using the dynamic approach. In real life scenarios, applications are not
requested simultaneously. In fact, they are distributed in time and therefore are
not considered collectively when mapping VOs to cloud data centres. However, as
mentioned in Section 3.5, previously deployed applications need to be considered
in the provisioning process when their connected objects are shared with incoming
applications.

As a result, even if only one new application is being requested, multiple applica-
tions might be considered during the orchestration process. However, the number of
applications considered at each orchestration process did not exceed 15 applications
in our simulations which kept the performance time acceptable and slightly higher
than the unshared approach (Figure 3.9). Therefore, the dynamic model provides
faster mapping than the static approach. Moreover, algorithms applied for select-
ing connected objects can be tuned to maximize shared connected objects while
minimizing the number of shared sets of connected objects between applications.

Cost

Since the number of allocated connected objects decreases with the shared ap-
proach as seen in Figure 3.8, the physical resources needed for VOs decrease. Figures
3.10 and 3.11 show the cost of VMs and bandwidth reserved to deliver IoT services
for cloud applications. The costs related to the dynamic approach are similar to the
static one. The main difference between both approaches is the way applications
are considered during the mapping as mentioned earlier.

We notice that the cost of physical resources in the shared approach increases
slowly when the number of applications or connected objects increases. In contrast,
this cost increases rapidly with the unshared approach. It is worth noting that

Page 50 Chapter 3. Efficient Provisioning of Shared Virtual Objects

0 2000 4000 6000 8000
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of Connected Objects Per Application

N
um

be
r

of
 C

lu
st

er
s

/ N
um

be
r

of
 C

on
ne

ct
ed

 O
bj

ec
ts

(a) First Simulation

Shared − Clusters
Shared − Connected Objects
Unshared − Clusters
Unshared − Connected Objects

0 10 20 30 40 50
0

5000

10000

15000

Number of Applications

N
um

be
r

of
 C

lu
st

er
s

/ N
um

be
r

of
 C

on
ne

ct
ed

 O
bj

ec
ts

(b) Second Simulation

Shared − Clusters
Shared − Connected Objects
Unshared − Clusters
Unshared − Connected Objects

Figure 3.8: Number of Sensors and Clusters for Shared and Unshared Approaches.

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Applications

T
im

e
(m

s)

Shared/Static − Solving LP Time
Unshared − Solving LP Time
Shared/Dynamic − Solving LP Time

Figure 3.9: Time in (ms) for Solving the LP with Shared and Unshared Approaches.

3.7. Conclusion Page 51

connected objects can be linked directly to applications without using VOs in the
unshared approach. This is not possible when sharing connected objects. Since
IoT devices are resource-constrained, they are not able to manage requests from
multiple applications at the same time. However, Figure 3.10 shows that when the
number of connected objects increases significantly, the bandwidth cost exceeds the
network and compute costs combined for the shared approach. Therefore, it is more
profitable to use VOs to share IoT resources between applications.

Quality of Service Index

As mentioned, the QoS index provides means to balance the latency between
different applications. Hence, the analytical model can satisfy applications latency
constraints without prioritizing an application placement over the other. The results
in Figures 3.12, 3.13, 3.14, and 3.15 show the effect of the QoS index on VOs
resources cost and the mean latency experienced by cloud applications. The similar
results in simulations 1 and 2 indicate that the QoS index affects the provisioning
whether we increase the number of applications, the number of connected objects
per application, or both.

We notice in Figures 3.12 and 3.14 that the latency perceived by applications
is lower if the QoS index is included in the model. However, achieving a better
deployment regarding the QoS (i.e. latency) leads to greater resources allocation
cost. As a result, the cost of provisioning shared VOs can be reduced even more
while satisfying the applications QoS requirements. However, such approach would
penalize some applications. It is clear that without the QoS index, applications
suffer from high latencies. Moreover, when the number of selected connected objects
increases, the effect of the QoS index decreases. Such behavior appears better in
Figures 3.13 and 3.15. The relative gain plots for resources cost and latency, with
and without the QoS index, become closer to 0 when the number of applications or
connected objects increases. This evolution of relative gains is due to the reduction
of available resources which decreases possible candidates and therefore converges
for similar solutions. Therefore, the QoS index effect on the provisioning decreases.

3.7 Conclusion
In this chapter, we proposed a mechanism to share VOs among multiple IoT

applications deployed in cloud-based IoT infrastructure. We aimed to optimize
network and system resources utilization as well as satisfy the applications’ QoS re-
quirements (i.e. latency). This proposition was made to leverage previous solutions
that do not permit VOs to be shared among applications, which could lead to a
waste of resources and increase operational cost. We formulated the problem as an
optimization problem under constraints. The problem was described as a Linear
Programming Problem with an objective function. The latter function formulates
the relation between physical resources usage and the data transmission rate of con-
nected objects to each application. The proposed algorithm aims to optimize the

Page 52 Chapter 3. Efficient Provisioning of Shared Virtual Objects

distribution of VOs and VMs across data centres taking into consideration the in-
frastructure’s capacity and the applications’ QoS requirements. We provided two
models: a static model for the initial deployment of VOs and a dynamic model for
reconfiguring VOs as needed to cope with incoming applications requirements. We
implemented the solution and performed several simulations that show how such
an approach reduces the number of deployed VMs (system resources saving) while
satisfying the QoS constraints of the applications deployed in the Cloud Computing
infrastructure. Our solution was calculated based on the placement of applications
within the cloud data centre, and the selected connected objects. The orchestration
processes of latter elements happen in separate phases and therefore prevent a holis-
tic optimization of cloud and IoT resources. However, cloud-based IoT platforms
are not able to provide the global vision of Cloud Computing and IoT infrastruc-
tures needed for such a global optimization. Hence, the need for a full integration of
cloud and IoT platforms to enable a seamless deployment and optimization of IoT
applications.

3.7. Conclusion Page 53

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

8
x 10

4

Number of Connected Objects Per Application

T
ot

al
 D
ep
lo
ym

en
t C

os
t

Shared − Total Cost
Shared − Compute Cost
Shared − Network Cost
Unshared − Total Cost
Unshared − Compute Cost
Unshared − Network Cost

Figure 3.10: Cost of Allocated Physical Resources for Applications using Shared and
Unshared Approaches (Simulation 1).

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

Number of Applications

T
ot

al
 D
ep
lo
ym

en
t C

os
t

Shared − Total Cost
Shared − Compute Cost
Shared − Network Cost
Unshared − Total Cost
Unshared − Compute Cost
Unshared − Network Cost

Figure 3.11: Cost of Allocated Physical Resources for Applications using Shared and
Unshared Approaches (Simulation 2 & 3).

Page 54 Chapter 3. Efficient Provisioning of Shared Virtual Objects

0 2000 4000 6000 8000
550

600

650

700

750

800

850

900

950

1000

Number of Connected Objects Per Application

La
te

nc
y

(m
s)

Mean Latency − QoS Index
Max Latency − QoS Index
Mean Latency − No QoS Index
Max Latency − No QoS Index

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number of Connected Objects Per Application

T
ot

al
 D
ep
lo
ym

en
t C

os
t

QoS Index
No QoS Index

Figure 3.12: Mean Latency and Cost of Physical Resources for Applications with
and without the QoS Index (Simulation 1).

0 1000 2000 3000 4000 5000 6000 7000 8000
−40

−30

−20

−10

0

10

20

30

40

Number of Connected Objects Per Application

R
el

at
iv

e
G

ai
n

(%
)

Latency
Resources Cost

Figure 3.13: The Relative Gain in terms of Latency and Cost with and without the
QoS Index (Simulation 1).

3.7. Conclusion Page 55

0 10 20 30 40 50
550

600

650

700

750

800

850

900

950

1000

Number of Applications

La
te

nc
y

(m
s)

Mean Latency − QoS Index
Max Latency − QoS Index
Mean Latency − No QoS Index
Max Latency − No QoS Index

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Applications

T
ot

al
 D
ep
lo
ym

en
t C

os
t

QoS Index
No QoS Index

Figure 3.14: Mean Latency and Cost of Physical Resources for Applications with
and without the QoS Index (Simulation 2).

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

−20

−10

0

10

20

30

40

Number of Applications

R
el

at
iv

e
G

ai
n

(%
)

Latency
Resources Cost

Figure 3.15: The Relative Gain in terms of Latency and Cost with and without the
QoS Index (Simulation 2).

Page 56 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Chapter 4

Cloud of Things Resources
Modelling

Contents
4.1 Introduction . 58
4.2 Existing Models and Standards 59

4.2.1 Internet of Things Environment 60
4.2.2 Cloud Infrastructure Management Initiatives 65

4.3 Cloud of Things Core Model 70
4.3.1 Standards Classification 71
4.3.2 Synthesis of Existing Works on Cloud and IoT Models and

Standards . 72
4.4 Cloud of Things Infrastructure 74

4.4.1 Network Graph Model . 74
4.4.2 Sensing and Actuating . 75
4.4.3 Things Virtualization . 76
4.4.4 Things Integration Patterns 79
4.4.5 Scenarios . 79

4.5 Cloud of Things Platform 82
4.5.1 Cloud of Things Deployment Options 82
4.5.2 Data Components Sharing 86

4.6 Conclusion . 89

57

Page 58 Chapter 4. Cloud of Things Resources Modelling

4.1 Introduction
Nowadays, proposed Cloud of Things (CoT) platforms [95,96] are either domain-

specific or represent a simplified view of the Internet of Things (IoT) infrastructure.
Furthermore, these works do not provide a resource management framework to deal
with an integrated Cloud Computing and IoT infrastructure. Currently, cloud plat-
forms and cloud-based IoT platforms are used alongside one another to manage
end-to-end IoT applications provisioning and deployment. Figure 4.1.a illustrates
the roles of these two types of platforms in the management and orchestration of
IoT applications. Cloud-based IoT platforms abstract connected objects capabilities
and offer them on-demand as cloud services; while cloud platforms provide means
to manage the life cycle of end-users oriented cloud services such as data analytics
services and web applications. We can then state that existing platforms do not
achieve a holistic approach of the integration of Cloud Computing and the IoT and
there is a need to leverage them to build the CoT vision.

IaaS

PaaS

IaaS

PaaS

Cloud Data Centers Hardware Connected Objects

C
lo

u
d

 P
la

tf
o

rm

SaaS

IoT Service

OSOS

Cloud Service

(a) Cloud-Based IoT Paradigm

Virtual Machine

Cloud and Fog Hardware Connected Objects

C
lo

u
d

 o
f

T
h

in
g

s

P
la

tf
o

rm

SaaS

Cloud-Based IoT

Platform

Network Connection

OS

(b) Cloud of Things Paradigm

OS

Figure 4.1: Cloud-Based IoT Platform and and Cloud of Things Architectures

As previously introduced, CoT envisions the seamless integration of Cloud Com-
puting and IoT. It promotes a holistic management of both domains. Figure 4.1.b
depicts the environment architecture of CoT platforms. Such platforms might man-
age in a homogeneous way resources hosted in cloud data centres as well as connected
objects. They might intervene at all Cloud Computing layers namely: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Moreover, CoT platforms provide IoT related service models such as the Sensing as
a Service (S2aaS) [74, 75] and the Sensor/Actuator as a Service (SAaaS) [80] might
as part of the PaaS and SaaS. The CoT platforms should be able to orchestrate
in one stage requests involving both Cloud Computing and IoT resources. Such
integrated orchestration mechanism will permit a global optimization of underlying
infrastructures resources and eventually the introduction of new types of services.
However, existing Cloud Computing and IoT management platforms are not able
to describe such an integrated CoT resource model [21]. Also, they prevent a one
stage provisioning mechanism for CoT requests. Therefore, there is a clear need to

4.2. Existing Models and Standards Page 59

leverage existing resource models to design a new one that is able to support the
CoT vision and its service provisioning models for the infrastructure (i.e. IaaS), the
development environment (i.e. PaaS), and the CoT applications (i.e. SaaS). It is
worth noting that the SaaS and PaaS models are similar. Their difference will only
be in the scope of the control each model provides over deployed applications. This
chapter will then focus on the proposition of a new model for CoT IaaS and PaaS.

The chapter is organized as follows. First, we present and discuss existing ap-
proaches for modelling Cloud Computing and the IoT in Section 4.2. We compare
existing models and select a suitable design pattern for the foundation of our CoT
model in Section 4.3. In the following section 4.4, we study the CoT infrastructure
requirements and extend the core model accordingly. We provide scenarios to show
the capability of our proposed design to describe a CoT infrastructure and perform
resource provisioning in one stage IaaS level orchestration. Afterwards, we detail
possible data delivery methods at the PaaS layer in Section 4.5. In particular, we
present a model that is capable of (1) capturing different possible data delivery
configurations, and (2) mapping a CoT request graph considering the different con-
figurations. Finally, we conclude the chapter with an overview outlining key aspects
of our contribution.

4.2 Existing Models and Standards

To the best of our knowledge, there exist no standards for the CoT. Current
works dealing with the convergence of Cloud Computing and the IoT are significantly
different from one to another [21]. They focus also on the functional and architec-
tural aspects of the CoT. Moreover, proposed management platforms in each domain
have distinct resource models and Application Programming Interfaces (APIs), even
though they offer sometime similar functionality. This heterogeneity of approach
that exists already in each domain has motivated several standardization initia-
tives to be launched mainly focusing on platform architectures and resource models.
These standardized models for Cloud Computing and the IoT have been specified
independently without having in mind that these two domains may converge in the
future.

These models indeed do have part of the information that is required to build
the CoT model since several concepts are similar. Therefore, the objective of this
work was to analyse, reuse, extend, and adapt current standards to leverage them
to the level that is required in CoT. Moreover, we aimed to remain aligned with
existing specifications to ensure the compatibility with standardized models and
definitions. However, we only considered standards which focus on the modelling of
the orchestration process in Cloud Computing and the IoT. The two sections 4.2.1
and 4.2.2 detail the considered IoT and cloud standards.

Page 60 Chapter 4. Cloud of Things Resources Modelling

4.2.1 Internet of Things Environment
IoT related specifications could be divided into three categories as depicted in

Figure 4.2: (1) sensor web, (2) sensor semantic web, and (3) IoT middlewares. These
groups of solutions are complementary and can work alongside one another. Basi-
cally, in a heterogeneous IoT environment, sensor web solutions provide syntactic
interoperability, sensor semantic web ontologies apply more meaningful representa-
tion of sensory data, while IoT middlewares provide further management operations
such as resource orchestration.

IoT Proprietary

Interface

IoT Device

Hardware

Sensor Web Enabled IoT

Device

Semantic Sensor Web

Annotated IoT Device

IoT Middleware

L
o
w

In

te
ro

p
er

ab
il

it
y

 H

ig
h

L
o
w

In

te
ro

p
er

ab
il

it
y

 H

ig
h

Figure 4.2: Internet of Things Web Model Levels

Sensor Web Initiatives

The Open Geospatial Consortium (OGC) established the Sensor Web Enable-
ment (SWE) [107, 108] suite of specifications. These standards define models to
describe the IoT environment and web service interfaces to offer a high-level manage-
ment layer over low-level sensing and actuating resources. The main adopted SWE
framework standards are the Sensor Model Language (SensorML)1, the Observations
and Measurements (O&M)2 model, and the Sensor Observations Service (SOS)3 in-
terface. The SensorML describes sensor systems capabilities, properties, measure-
ments, and processes. It provides information which helps to manage, discover,
locate, and identify sensors. Moreover, it provides an eXtensible Markup Lan-
guage (XML) document model to represent this information. The O&M offers an
XML schema for encoding connected objects observed and measured data. The
SOS interface describes methods (e.g. DescribeSensor(), GetObservation()) for

1http://www.opengeospatial.org/standards/sensorml
2http://www.opengeospatial.org/standards/om
3http://www.opengeospatial.org/standards/sos

4.2. Existing Models and Standards Page 61

managing, discovering, requesting, filtering, and retrieving sensor descriptions and
their generated data. The SOS methods use O&M and SensorML schemata to en-
code exchanged messages. There exist several implementations of the OGC SWE
specifications [109,110].

The OGC SWE suite is relatively complex as it supports a wide variety of sensor
types ranging from simple Wireless Sensor Networks (WSNs) to earth imaging satel-
lites. Therefore, it is heavyweight and unfit for resource-constrained IoT devices.
Accordingly, the OGC presents SensorThings4 [111] APIs which are lightweight and
designed specifically for the IoT. The SensorThings APIs are based on existing
SWE standards hence easily integrated with OGC services such as the SOS. In con-
trast to prior specifications, SensorThings is RESTful5 and adopts the OASIS Open
Data (OData) URL pattern and query options. Moreover, it uses JSON encoding
instead of XML and supports the MQTT messaging protocol. Figure 4.3 illustrates
the SensorThings data model.

ObservedProperty

+ defninition: URI
+ description: CharacterString
+ name: CharacterString

Sensor

+ description: CharacterString
+ encodingType: ValueCode
+ metadata: Any
+ name: CharacterString

Datastream

+ description: CharacterString
+ name: CharacterString
+ observationType: ValueCode
+ observedArea: GM_Envelope[0..1]
+ phenomenonTime: TM_Period[0..1]
+ resultTime: TM_Period[0..1]
+ unitOfMeasurement: JSON_Object Observation

+ parameters: NamedValue[0..*]
+ phenomenonTime: TM_Object
+ result: Any
+ resultQuality: DQ_Element[0..*]
+ resultTime: TM_Instant
+ validTime: TM_Period[0..1]

FeatureOfInterest

+ description: CharacterString
+ encodingType: ValueCode
+ feature: Any
+ name: CharacterString

ValueCodeHistoricalLocation

+ time: TM_Instant
Location

+ description: CharacterString
+ encodingType: ValueCode
+ location: Any
+ name: CharacterString

Thing

+ description: CharacterString
+ name: CharacterString
+ properties: JSON_Object[0..1]

0..*

1

1

0..*

0..*1

1

0..*

1
0..*

1..*

0..*

0..*

0..* 1

0..*

Figure 4.3: SensorThings UML Diagram (Source [111])

Another model, the Web of Things (WoT), is based on work undertaken within
the COMPOSE European project [78] and submitted to the World Wide Web Con-
sortium (W3C) for processing. The WoT [112, 113] aims to seamlessly integrate
connected objects to the World Wide Web (WWW) by applying on them the
REpresentational State Transfer (REST) architectural style. Consequently, each
IoT device becomes a uniquely identified resource via a Uniform Resource Identi-
fier (URI) on which HTTP operations can be performed (e.g. GET, POST, PUT,

4https://github.com/opengeospatial/sensorthings
5follows the REpresentational State Transfer specifications.

Page 62 Chapter 4. Cloud of Things Resources Modelling

DELETE). Furthermore, each resource links to other related resources. For exam-
ple, an IoT device might connect to multiple sensors (e.g. temperature, humidity)
or can reference its model description on a remote machine. For further interoper-
ability, the WoT proposes a common model to describe connected objects resources
on the WWW, called the Web Things Model6. It defines a set of APIs and syntactic
messages data structures. The evrythng7 platform supports the WoT concept.

Similarly, the Devices Profile for Web Services (DPWS) [114, 115] brings Web
services to resource-limited connected objects. It is based on the W3C Web services8

standards. However, the DPWS uses a minimal set of Web services specifications
to enable messaging, discovery, description, and eventing for resource-constrained
devices. Moreover, it adopts the SOAP-over-UDP binding9 to minimize connection
overhead and to use multicast addressing for discovery mechanisms. In fact, the
DPWS uses the Web Services Dynamic Discovery (WS-Discovery). It applies a
decentralized discovery mechanism adapted for large scale networks with resource-
limited devices and no centralized registry. This mechanism employs an ad-hoc
mode to leverage networks with minimal networking services (e.g. no DNS). It
can switch to managed mode with multicast suppression behaviour if networking
services exist to reduce network traffic. Web services joining or leaving the network
send announcement messages to minimize the need for polling. Therefore, DPWS
is suitable for IoT devices. Although the DPWS is lightweight and can operate on
low-power devices [116], several issues still need to be addressed [37] such as its
integration with the IPv6 and 6LoWPAN [117, 118]. The DPWS is used with the
Constrained Application Protocol (CoAP) to minimize the communication cost on
constrained devices.

Sensor Semantic Web Initiatives

Sensor web solutions provide syntactic interoperability but not a domain seman-
tic compatibility [119]. In fact, semantic technologies add a shared domain knowl-
edge layer that gives common meaning to data across different platforms. The work
in [120] extends an SWE SOS implementation with an O&M-OWL ontology. An
O&M-XML to O&M-OWL adapter integrates the ontology with other SWE com-
ponents such as the SOS. The O&M ontology enables reasoning on top of sensor
observations. It was further studied and aligned with upper ontologies in [121,122].
However, the resulting ontology is limited to measurements and observations and
does not represent the IoT domain knowledge.

Subsequently, the W3C Semantic Sensor Network Incubator Group (SSN-XG)
produced the Semantic Sensor Network (SSN) ontology [119]. The SSN10 ontology
includes the O&M vocabulary. It is capable of describing sensors (e.g. location,
type), their properties (e.g. precision, resolution, unit), and the measurements ob-

6http://www.w3.org/Submission/wot-model/
7https://evrythng.com
8http://www.w3.org/TR/ws-arch/
9http://schemas.xmlsoap.org/ws/2004/09/soap-over-udp

10http://purl.oclc.org/NET/ssnx/ssn

4.2. Existing Models and Standards Page 63

served by a sensor (e.g. values). Furthermore, the SSN enables context awareness
by linking sensor observations to features of interest and events. Hence, data evolve
from a sensor measurement (e.g. temperature, humidity) to a part of a broader
context (e.g. soil condition) enabling a higher level of knowledge representation.
Consequently, the SSN improves and simplifies sensors identification and selection
processes. The OpenIoT11 project [71] uses the SSN ontology to annotate collected
data semantically and store them in an RDF cloud store managed by the LSM mid-
dleware [123]. Therefore, applications can use high-level SPARQL queries to fetch
data streams originally generated as raw data by various underlying sensors.

Observation Model

IoT:Thing

SSN:Device

IoT:Manager DUL:PhysicalObject

DUL:Quality

QU:QuantityKind

DUL:Amount

DUL:UnitOfMeasure

QU:Unit

MSM:MessageContent

MSM:Operation

HRESTS:URITemplate

HRESTS:Method

MSM:Service

DUL:InformationObject

DUL:Situation

ACT:ActuatorInput

ACT:Actuation

TIME:Instance

DUL:Region

ACT:ActuationValue

DUL:InformationObject DUL:Situation

DUL:Region

TIME:Instance SSN:Observation

SSN:ObservationValue

SSN:SensorOutput

SSN:Sensor

DUL:Quality

SSN:MeasurementCapability

SSN:MeasurementRange

SSN:ResponseTime

SSN:MeasurementProperty

POWERONT:Consumption

ACT:Actuator

DUL:Quality

ACT:ActuatingCapability

ACT:ActuatingRange

ACT:ActuatingTime

ACT:ActuatingProperty

Service Model Actuation Model

Sensor Model Actuator Model

hasDateTime

subClass

hasAddress

hasValue

forProperty

subClass

isClassifiedBy

subClass

subClass

hasMeasurementProperty

hasPowerConsumption

actsOn

observationValue
subClass

subClass

hasOperation

forProperty

subClass

hasValue

subClass

hasMethod

subClass

subClass

actuationInput

hasMeasurementCapability

subClass

controlledBy

hasDateTime

hasService

observes
hasActuatingCapability

observedBy

subClass

subClass

hasActuatingProperty

hasValue

subClass

subClass

subClass

hasOutput

subClass

subClass

isClassifiedBy

subClass

hasInput

hasValue

Figure 4.4: Overview of the IoT-O Architecture (Source [124])

However, the SSN does not capture the full extent of the IoT which stimulated
several initiatives for creating an IoT ontology. Although many ontologies were
designed for the IoT (e.g. OWL-IoT-S12, IoT-Lite13 [125]), not all of them apply
good practices. In fact, they do not follow the Ontology Design Patterns (ODP)
introduced in [126,127], reuse existing sources, align with upper ontologies, or com-

11http://www.openiot.eu/
12http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/ontology/OWL-IoT-S.owl
13http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lit

Page 64 Chapter 4. Cloud of Things Resources Modelling

ply with the Linked Open Vocabularies (LOV)14 for IoT (LOV4IoT15). Authors
in [128] study these aspects for several ontologies and present the Internet of Things
Ontology (IoT-O)16. It respects previously mentioned design rules, defines some
missing concepts relevant to the IoT such as Thing, Actuator, and Actuation.
The IoT-O reuses the SSN, the Semantic Actuator Network (SAN)17, the Stimulus-
Sensor-Observation (SSO) [129], and several other ontologies as illustrated in Figure
4.4. Although the IoT-O is not an approved standard, it aligns with existing on-
tologies. Similarly, the W3C is integrating the SSN and the Sensor, Observation,
Sample, and Actuator (SOSA)18 ontologies for a better representation of the IoT.

Internet of Things Middlewares

The complex nature of IoT devices put in motion several attempts, from indus-
try and academia, to encapsulate connected objects and offer their resources on the
web. Wrapping an IoT device hides its vendor specific interface thus simplifying
IoT resources discovery, management, and access. However, the large-scale nature
of IoT makes it impossible to manage functional and non-functional aspects of each
IoT device separately via its wrapper. Consequently, many middlewares for IoT
were developed [53, 103] to aggregate connected objects, hide their heterogeneity,
and optimize their utilization. IoT middlewares act as virtual gateways and offer
management, querying, and configuration operations for the myriad of underlying
heterogeneous connected objects. Furthermore, they implement optimization oper-
ations on managed IoT resources such as orchestration, search techniques, and data
aggregation. There exist indeed no specific standard for IoT middlewares. In fact,
they reuse previously presented sensor web and semantic web solutions to provide
IoT resources for applications.

Cloud4Sens [50] middleware implements the previously mentioned OGC SWE
suite of specifications to connect, discover, and provision sensors. It provides a
uniform interface for third party applications based on the eXtensible Messaging
and Presence Protocol (XMPP). Cloud4Sens defines two provisioning options for
IoT consumers: (1) data-centric, and (2) device-centric. The first option provisions
only sensory data streams without giving direct access to connected objects, while
the second allocates sensor devices instead and enables the client to access them
(pull produced data, configure properties).

The Sensor Node Plug-in System (SNPS) middleware [130] offers sensors re-
sources following Software Oriented Architecture (SOA). It provides a Service Layer
Integration (SLI) which transforms underlying sensors into web services. Accord-
ingly, the SNPS implements a registry which holds sensors information (e.g. geo-
graphic position), deployed wrapper components, and other provided services. As a
result, the sensors composition service component of the middleware is now able to

14http://lov.okfn.org
15http://www.sensormeasurement.appspot.com/?p=ontologies
16http://www.irit.fr/recherches/MELODI/ontologies/IoT-O
17https://www.irit.fr/recherches/MELODI/ontologies/SAN
18http://www.w3.org/ns/sosa/

4.2. Existing Models and Standards Page 65

aggregate sensors based on a given request and expose them to third party appli-
cations. The SNPS implements methods for searching, retrieving, composing, and
configuring sensors. It uses the SensorML and O&M specifications as data models
for describing sensors and exchanging sensor observations.

The eXtended Global Sensor Network (X-GSN) middleware [131] uses system-
generated wrappers based on XML sensor descriptions documents described in [132]
to enable automatic connection to sensors. The X-GSN semantically annotates
collected sensory data using the SSN ontology. It stores collected data in Resource
Description Framework (RDF) format. Therefore, SPARQL Protocol and RDF
Query Language (SPARQL) queries can be used to fetch desired data streams based
on sensors properties (e.g. location, type, precision). Similarly, the SemSOS [120]
uses semantic technology with the SWE specifications suite. It extends the SOS
with the O&M ontology enabling a high-level knowledge of the environment.

4.2.2 Cloud Infrastructure Management Initiatives
Cloud Computing standards19 deal with management interfaces (e.g. CIMI),

applications portability (e.g. TOSCA20), virtual appliances packaging (e.g. OVF21),
and many others. In our work, we focus on standards providing a comprehensive
view of Cloud Computing resources. Therefore, we consider management interfaces
specifications. They specify entity-relationship models for manageable resources
in the cloud. Also, these specifications provide standardized APIs and protocols
to manage these resources as depicted in Figure 4.5. In this perspective, we study
current cloud resource management interfaces. We identify the Cloud Infrastructure
Management Interface (CIMI), the Open Cloud Computing Interface (OCCI), and
the Cloud Application Management for Platforms (CAMP).

Service Provider Domain

Resources

Resource

Management

Framework

OCCI / CIMI /

CAMP

Proprietary API

Service Consumer

Communication

Related to Framework

Internal

Communication

HTTP Communication

High Interoperability LowHigh Interoperability Low

Figure 4.5: CIMI, OCCI, and CAMP Role in Cloud Architecture

19http://cloud-standards.org/
20https://www.oasis-open.org/committees/tosca/
21https://www.dmtf.org/standards/ovf

Page 66 Chapter 4. Cloud of Things Resources Modelling

Cloud Infrastructure Management Interface

CIMI is a standard developed by the Distributed Management Task Force
(DMTF) to describe the IaaS model in Cloud Computing. The CIMI specification
defines a data model and a RESTful communication protocol for cloud platforms.
The responsible working group is also considering a Simple Object Access Proto-
col (SOAP) interface. The CIMI represents the cloud infrastructure as a set of
resources based on key entities managed at the IaaS layer. It defines such basic re-
sources as machines, storage volumes, networks, and cloud environment monitoring
components.

Chooses Fills In

Resource

Template

Resource

Configuration

Resource

Instance

Service Consumer

Figure 4.6: Resources Forms in CIMI (Source [133])

The CIMI model captures the steps a cloud consumer undergoes to deploy a
resource in the cloud. It includes selecting the product from the cloud operator’s
catalog, tuning the product, and validating the process for the deployment phase.
Accordingly, each resource has three forms as illustrated in Figure 4.6: (1) template
resource, (2) configuration resource, and (3) resource instance. The template is the
operator’s predefined resources properties which belong to the operator’s catalogue
of offerings. A configuration resource is the client’s modified version of an existing
template. However, an instantiated resource is a deployed resource in the cloud
infrastructure.

These resources follow a RESTful architectural style. Thus, they are uniquely
addressable via URIs and can be created, retrieved, updated, and deleted using
Hypertext Transfer Protocol (HTTP) methods. Furthermore, CIMI resources are
interconnected via embedded URIs links. The root endpoint is the CloudEntity-
Point which describes and locates the resources available in the cloud infrastructure.
Moreover, the CIMI model describes an additional class named System. It repre-
sents a set of interconnected machines, storage volumes, networks, and monitoring
components to form a more complex composition of deployable resources.

4.2. Existing Models and Standards Page 67

Open Cloud Computing Interface

The OCCI22 is a set of specifications delivered by the Open Grid Forum (OGF)23

and led by community contributions. The OCCI defines a RESTful protocol and
APIs for resource management frameworks. An extensible and domain independent
core model is at the heart of the OCCI specifications as depicted in Figure 4.7. It
can be extended to describe various resources, relations, and possible actions on
both. The core’s essential classes are the Kind, Entity, Action, and Mixin.

Category

+ scheme: URI
+ term: String
+ title: String

Kind

Attribute

+ default: Enum {Object, List, Hash} [0..1]
+ description: String [0..1]
+ mutable: Boolean
+ name: String
+ pattern: Object [0..1]
+ required: Boolean
+ type: Enum {Object, List, Hash}

Entity

+ id: URI
+ title: String

Action

Mixin

Link

+ target: URI
+ target.kind: Kind [0..1]

Resource

+ summary: String

1

0..*

0..*

attributes

1

0..*
applies

0..*
0..*

0..*

0..*

parent

0..1

0..* actions 1

1source0..*

0..*

depends

0..*

0..*actions0..1

Figure 4.7: Open Cloud Computing Interface Core Model (Source [134])

The Kind class classifies managed resources. Each Kind instance represents a
type of resource with related attributes and possible associated actions. The At-
tribute and Action classes provide details about attributes and actions respec-
tively. For example, a Cloud Computing infrastructure has the compute Kind. It
defines compute attributes (e.g. cores), attributes properties (e.g. name, type, re-
quired), and possible actions (e.g. start, stop).

The Entity is an abstract class with Resource and Link sub-classes. In contrast
to Kind instances which specify a platform’s types of resources, entity instances
represent available resources within the platform. Each entity has one Kind instance
which defines its properties and invocable actions. Moreover, Link instances bind
together related Resource instances. For example, in the Cloud Computing case,

22http://occi-wg.org/
23https://www.ogf.org/ogf/doku.php

Page 68 Chapter 4. Cloud of Things Resources Modelling

the compute Kind induces a Compute class which inherits the Resource class. Each
Compute instance mirrors a Virtual Machine (VM) in the cloud which can be started
or stopped. Also, the VM might be linked to other Resource instances using Link
items.

The Mixin class is an extension mechanism which provides additional flexibility
to the OCCI model. It defines attributes and actions that can be associated with
Kind and Entity instances at creation time or run time. Therefore, a Mixin adds
new capabilities for available resources without changing the predefined model.

Entity

Core::Link

+ target: URI
+ target.kind: Kind [0..1]

Entity

Core::Resource

+ summary: String

Network

+ occi.network.label: Token[0..1]
+ occi.network.state: Enum
+ occi.network.vlan: int[0..1]

Compute

+ occi.compute.architecture: Enum[0..1]
+ occi.compute.cores: int[0..1]
+ occi.compute.hostname: String[0..1]
+ occi.compute.memory: float[0..1]
+ occi.compute.share: int[0..1]
+ occi.compute.state: Enum

Storage

+ occi.storage.size: float
+ occi.storage.state: Enum

NetworkInterface

+ occi.networkinterface.interface: String
+ occi.networkinterface.mac: String
+ occi.networkinterface.state: Enum

StorageLink

+ occi.storagelink.deviceid: String
+ occi.storagelink.mountpoint: String[0..1]
+ occi.storagelink.state: Enum

1

source

0..*

Figure 4.8: OCCI Infrastructure UML Representation (Source [24])

At first, the OCCI was used to create an interface for managing IaaS [24] re-
sources for cloud platforms. Such initiative enabled IaaS level operations such as
the deployment to have standard APIs. The OCCI IaaS specification promotes
interoperability between distinct platforms. Several frameworks adopted it such
as OpenStack, OpenNebula24, cloudStack25, European Grid Infrastructure (EGI)26,
and FI-WARE27. Figure 4.8 shows the OCCI infrastructure classes. Then, the com-
munity extended existing models to manage additional aspects of the cloud (e.g.
PaaS [135], IaaS monitoring and automatic scaling [26]).

OCCI specifications are nowadays more adopted than the CIMI model [133,136]
by cloud management frameworks (e.g. OpenStack, OpenNebula) and European
projects (e.g. FI-WARE, OCCIware28 [137], EGI). Also, many libraries29 imple-
menting the OCCI protocol exist in numerous programming languages such as JAVA,

24https://opennebula.org/
25https://cloudstack.apache.org/
26https://www.egi.eu/
27https://www.fiware.org/
28http://www.occiware.org
29http://occi-wg.org/author/alansill/

4.2. Existing Models and Standards Page 69

Ruby, and Erlang.

Cloud Applications Management Initiatives

The Organization for the Advancement of Structured Information Standards
(OASIS) advances the CAMP [138, 139] specification. It describes APIs, models,
mechanisms, and protocols for packaging and deploying applications in the cloud.
It enables a cloud provider independent interface to perform PaaS level activities
such as provisioning, monitoring, and control on applications. Therefore, CAMP
eliminates vendor lock-in by providing a standardized application description model.
CAMP promotes interoperability among PaaS clouds by specifying artefacts and
defining APIs which are necessary to manage the building, running, administration,
monitoring and patching of applications in any PaaS cloud. It defines resources in a
PaaS environment as depicted in Figure 4.9. Main resources are: platform, plan,
assembly, service, component, and collection.

camp_resource
platform

+ assembly_factory: URI
+ extension_collection: URI
+ implementation_version: String [0..1]
+ plan_factory: URI [0..1]
+ platform_endpoint_collection: URI
+ service_collection: URI
+ specification_version: String
+ supported_format_collection: URI
+ type_definition_collection: URI

camp_resource
service

+ characteristics: CharacteristicSpecArray [0..1]
+ parameter_definition_collection: URI [0..1]

camp_resource
assembly

+ component_collection: URI
+ operation_collection: URI [0..1]
+ plan: URI [0..1]
+ sensor_collection: URI [0..1]

camp_resource
component

+ artifact: URI [0..1]
+ assembly_collection: URI
+ operation_collection: URI [0..1]
+ related_component_collection: URI [0..1]
+ sensor_collection: URI [0..1]
+ service: URI [0..1]
+ status: String

camp_resource
plan

+ artifacts: PlanArtifactArray [0..1]
+ camp_version: String
+ origin: String [0..1]
+ services: PlanServiceArray [0..1]

collection
assembly_factory

+ parameter_definition_collection: URI

collection
plan_factory

+ parameter_definition_collection: URI

camp_resource
sensor

+ documentation: URI [0..1]
+ operation_collection: URI [0..1]
+ sensor_type: StringOrURI
+ target_resource: URI
+ timestamp: Timestamp [0..1]
+ units: String [0..1]
+ value: CampCommonType [0..1]

1

linkedPlan

*1

serviceCollectionMember

*

*

relatedComponentMember
*

*

assemblyMember

*

*
service

*

1
sensorMember

*

1 linkedAssembly
*

1
planFactory

1

1

service

0..1

*instantiatedFrom

0..1

1.. assemblyFactory

1

*

componentMember

*

*

sensorMember

*

Figure 4.9: CAMP Basic Resources Relationships (Source [139])

Page 70 Chapter 4. Cloud of Things Resources Modelling

They inherit the root resource camp resource. The platform represents the
primary view of the platform and reference provided services, running applications
(i.e. assembly resources), supported resources. Furthermore, it provides sharing
permissions across deployed applications. The component resources are dynamic
atomic elements composing assembly items (e.g. database instance), while plan
resources describe static artefacts required for an application (e.g. SQL script).
Moreover, the service resource defines a blueprint of a component or exposes a
platform-provided service. A collection instance represents a homogeneous set
of any resource described in CAMP. Figure 4.9 shows the relations between these
resources.

Also, operation and sensor elements are defined. Their objective is to provide
means of interacting with a deployed application via the CAMP APIs. On the one
hand, the operation resource describes a set of actions which can be performed on a
resource. On the other hand, the sensor class represents dynamic data produced by
a resource (e.g. state). It does not abstract a connected object, however, it is used
to expose a provided information or a configurable property of a camp resource.

4.3 Cloud of Things Core Model

A myriad of separate standards exists for respectively cloud and IoT environ-
ments. We cited related specifications in Section 4.2. Figure 4.10 illustrates the
standards landscape. Our objective is to identify the proper standard for modelling
the CoT. Once selected, we aim to adapt and extend it as necessary to enable
a one-stage provisioning process in CoT for IaaS and PaaS levels. Also, we reuse
concepts from other existing standards when possible to stay aligned with current
specifications and vocabulary. First, we classify studied specifications based on sev-
eral criteria. Table 4.1 summarizes the classification synthesis. Then, we select the
appropriate standard and define the core model which will be used in the rest of the
Chapter.

Cloud Computing Internet of Things

Software as a Service

Platform as a Service

Infrastructure as a Service

OCCI
Application

Platform

Infrastructure

CIMI

CAMP

Sensor Web Semantic

Web

Integrate

SWE

SmartThings

WoT

DPWS

SWE IoT-O

O&M

Cloud and Fog Servers Connected Objects

(Not Defined)

Figure 4.10: Cloud and IoT Studied Standards

4.3. Cloud of Things Core Model Page 71

4.3.1 Standards Classification
Cited standards cover Cloud Computing and the IoT. They were designed for

different environments with distinct properties and challenges. For example, Cloud
Computing standards target the vendor lock-in problem for various service models.
However, IoT specifications aim to homogenize connected objects description and
semantics. Also, these standards target precise domain-dependent issues and do
not provide a comprehensive overview of all the domain aspects. For instance, the
CAMP specification targets application description and deployment in the PaaS.
Mentioned specifications use different technologies as well, such as W3C Web Ser-
vices and W3C Ontology Web Language (OWL). Moreover, they define different
structures which are incompatible with one another. Hence the necessity to select
one standard as the foundation of our model. Afterwards, we extend the chosen
standard to cope with the CoT provisioning model requirements.

Classification Criteria

The CoT combines Cloud Computing and the IoT. Each studied standard en-
compasses a partial part of the CoT. Thus, we aim to identify the correlation
between these standards and required factors for the CoT model. In particular, we
focus on factors related to the provisioning aspect. We select the standard with the
highest correlation. Also, we determine specifications which are complementary to
the selected core model. The defined classification criteria are the following:

• Resources: We consider compute, network, storage, sensing, and actuating
resources which represent Cloud Computing and IoT infrastructures offerings.
They are the core elements of the provisioning process at the IaaS level. We
add the feature of interest resource which shows the ability of the standard
to provide a high-level representation of data. It allows users to request con-
nected objects using their context. Furthermore, we include the component
resource. It implies that the standard adopts the Service Component Archi-
tecture (SCA) model and adapts it to Cloud Computing or IoT environments.
We are interested in the component resource because the provisioning process
deals with software components at the PaaS level.

• Service Models: Since the CoT inherits the cloud’s characteristics, it pro-
vides resources on different service levels. Furthermore, our objective is to
model the CoT environment on infrastructure and platform layers. Therefore,
the provisioning of resources in the CoT requires a separation of service mod-
els. We consider the IaaS and PaaS levels for the classification. There exist
other IoT related service models such as the S2aaS model [22, 74, 75, 80, 105].
However, they belong to the broader PaaS level. Hence, we do not include
them.

• Extensibility: The selected base standard will be extended to model the
CoT. Therefore we define an extensibility property which indicates how much
the standard is flexible and extensible. It is low (L) if the standard is rigid

Page 72 Chapter 4. Cloud of Things Resources Modelling

and any extension requires major modifications to the model’s structure. An
average (A) value represents standards that are not hard to expand but require
several extensions and considerable effort to achieve the CoT model. A high
(H) extensibility refers to standards which are easily extended, require no
modifications to their core model, and already cover a large part of the CoT
aspects. Thus, they minimize the effort needed to model the CoT.

• Graph Modelling: Orchestration mechanisms for network based environ-
ments rely on the graphical representation [23] of requests and their targeted
substrate. The CoT falls under this category. It consists of a network of in-
terconnected cloud data centres, fog elements, and IoT devices. Therefore,
a standard which enables networks modelling facilitates describing the CoT
environment and requires no further extensions.

4.3.2 Synthesis of Existing Works on Cloud and IoT Models
and Standards

Sensor and semantic web models are similar. They focus on describing con-
nected objects capabilities and represent their data in a unified manner. Most of
these models represent sensing and actuating resources except SSN and O&M spec-
ifications. They model these resources on the PaaS and SaaS levels. However, they
achieve their objectives with different technologies. Sensor web standards use syn-
tactic approaches to enforce interoperability while semantic web specifications rely
on technology standards defined by the W3C (e.g. RDF, OWL) to design and de-
scribe data on the web. Syntactic approaches are rigid and difficult to extend. In
particular, sensor web approaches are focus on modelling data types rather than de-
vice networks. They are not flexible, and their extensibility is low. On the contrary,
ontologies are extensible and able to describe complex systems. Moreover, they rely
on the W3C standards to encode defined classes, properties, and relations. Hence,
existing models are easily expandable. However, extending ontologies requires some
effort to validate new classes and properties’ alignment with existing definitions.
Therefore, we consider that semantic web standards have an average level of ex-
tensibility. It is worth noting that the DPWS and the IoT-O offer the component
resource.

On the cloud’s side, OCCI and CIMI standards focus on the IaaS level, while
the CAMP aims to model the PaaS. However, community contributions to the
OCCI model has expanded its reach today all service layers. In the IaaS level,
cloud specifications consider the compute, network, and storage resources. The
component resource exists on higher service layers such as the PaaS. It is provided
by the OCCI and the CAMP. Since the CAMP standard focuses on application
description, packaging and deployment, it does not support cloud infrastructure
modelling. Moreover, CIMI and CAMP standards enable a graphical representation
of IaaS and PaaS resources respectively.

The OCCI core separates Resource and Link entities thus loosely coupling re-
sources and their relations. This split makes the OCCI defined models more ex-

4.3. Cloud of Things Core Model Page 73

Table 4.1: Summary of Studied Cloud Computing and IoT Models and Standards

Resources Service Models

C
om

pu
te

N
et

wo
rk

St
or

ag
e

Se
ns

in
g

A
ct

ua
tin

g

Fe
at

ur
e

of
In

te
re

st

C
om

po
ne

nt

Ia
aS

Pa
aS

G
ra

ph
M

od
el

in
g

Ex
te

ns
ib

ili
ty

IoT

Sensor
Web

SWE SensorML X X X (L)
SWE O&M X X (L)
SmartThings X X X X (L)
WoT X X X (L)
DPWS X X X X (L)

Semantic
Web

SSN X X X (A)
IoT-O X X X X X (A)
SWE O&M-OWL X X (A)
SSN & SOSA X X X X X (A)

Cloud

OCCI X X X X X X (H)
CIMI X X X X X (L)
CAMP X X X (L)

tensible and reusable with no major changes to their structure. Unlike the OCCI,
the CIMI and the CAMP standards are more rigid with tightly coupled resources
and links. Furthermore, they define complete data model structures in contrast to
the OCCI which introduces the Mixin concept [133, 136]. The Mixin class enables
augmenting a given data model with additional capabilities without affecting its
initial structure. For example, VM images are added as Mixin objects to the OCCI
infrastructure Compute instances. Such addition does not change the predefined
standard but enables cloud management frameworks to link a Compute instance
with an Operating System (OS) image. We consider that the OCCI has a high
extensibility. It describes most of the needed resources and has specifications for all
service layers. Therefore, it covers a large part of the CoT. Moreover, it is the most
adopted standard for the cloud.

The OCCI provides a high extensibility in contrast to other cloud specifications
and IoT related standards. Also, it is the only analysed standards which describes
PaaS and IaaS service models simultaneously. Therefore, we select the OCCI spec-
ifications to model the CoT environment. However, we reuse cloud and IoT specifi-
cations when necessary to stay aligned with predefined concepts and vocabulary.

Some recent works [140, 141] extended existing OCCI models to represent the
IoT. Ciuffoletti et al. [140] define an Aggregator and RealWorldObject Resources
with a Sensor Link. They consider that one or multiple sensors observe a real
world object and report measured information to aggregators. They perform an
orchestration scenario to show how their model can be used to deploy a CoT request

Page 74 Chapter 4. Cloud of Things Resources Modelling

in a converged cloud and IoT environments. However, their approach does not
consider actuators nor represent the IaaS service model in the CoT environment.
Furthermore, authors in [141] define an extension of the OCCI model to fill the gap
between the cloud and the robotics world. The work focuses on developing an OCCI
enabled gateway to hide underlying heterogeneous and mobile robots. Unlike our
approach, they consider solely a gateway integration pattern (see Section 4.4) and
define a domain specific extension.

4.4 Cloud of Things Infrastructure
Cloud infrastructure includes servers with virtualization support, power source,

and high bandwidth connections. However, integrating IoT devices with cloud
servers alters the infrastructure’s homogeneity. Consequently, deploying IaaS level
request graphs requires a more granular representation of the infrastructure. In fact,
the IoT physical nodes belong to various categories (sensors, gateways, Fog nodes)
and objects within the same category represent different hardware capabilities. In
this section, we describe the OCCI CoT infrastructure model.

4.4.1 Network Graph Model
The provisioning process in the CoT is similar to the Virtual Network Em-

bedding (VNE) problem described in [23]. The set of requested virtual machines,
sensors, actuators, and the relations between them can be considered as the Virtual
Network (VN) (i.e. CoT request graph). Furthermore, the set of cloud data cen-
tres, IoT devices, and network links can be mapped as the Substrate Network (SN)
(i.e. CoT substrate graph). Hence, the OCCI CoT should enable a network graph
representation of its resources.

Table 4.2: Attributes Defined for the NetworkLink Type

Attribute Type Mult. Mutability Description
occi.networklink.bandwidth Double 0..1 Mutable Bit-rate of available or consumed in-

formation capacity (Mbps).
occi.networklink.hops Integer 0..1 Mutable Number of intermediate devices

(routers) through which data must
pass.

occi.networklink.latency Double 0..1 Mutable Delay that happens in data commu-
nication over the link.

A graph is a set of interconnected nodes. In the CoT, nodes represent cloud
data centres, Fog elements, and IoT devices. Moreover, edges are network links
connecting these nodes. Hence, we add Node and NetworkLink entities as shown
in Figure 4.11. A Node instance uses Link items to identify its available and pro-
vided resources (e.g. Compute, Component). A NetworkLink instance connects
two Node objects and provides their network connection attributes such as latency

4.4. Cloud of Things Infrastructure Page 75

(NetworkLink.latency) and bandwidth (NetworkLink.bandwidth). Table 4.2 de-
tails the NetworkLink type. Section 4.4.5 illustrates an infrastructure CoT graph
created using the Node and NetworkLink entities.

NetworkLink

+ occi.networklink.bandwidth: double
+ occi.networklink.hops: int
+ occi.networklink.latency: double

Entity
Core::Link

+ target: URI
+ target.kind: Kind [0..1]

Entity
Core::Resource

+ summary: String

Node

10..*

Figure 4.11: OCCI Extensions (coloured boxes) to Enable a CoT Graph Represen-
tation.

4.4.2 Sensing and Actuating
Sensors and actuators are the main functional blocks of IoT that permit to

interact with the real world. Sensors observe a physical or logical object property
and provide therefore sensing resources. Observable properties can be logical (e.g.
system state) or physical (e.g. temperature, humidity). On the other side, actuators
act on a property of an object. They do offer therefore actuating resources. In this
case, the resource property must be changeable and its modification should trigger
a modification in the corresponding physical object (e.g. turn light on/off) or logical
one (e.g. tweet).

Hence, we added Sensor and Actuator resources to represent sensor and
actuator properties in the CoT model as illustrated in Figure 4.12. The sen-
sor entity is presented in CAMP, SSN, and SmartThings under different names
but they all represent sensors. A sensor is identified by the type of observation
(Sensor.quantityKind), the measurement unit (Sensor.unit), the feature of in-
terest (Sensor.featureOfInterest), and the geographical location. In our model,
we adopted the vocabulary used by the SSN ontology. These elements are the same
for an actuator. Tables 4.3 and 4.4 detail the attributes of sensing and actuating
resources.

A sensing or actuating resource might need to be bound to a geographical area.
For example, climate temperature measurement is irrelevant if not bound to a loca-
tion. However, a location is not a resource in the system and it does not exist on its
own. The location is always attached to an existing resource in the model. There-
fore, the added Location class inherits Mixin and can be associated with sensors
or actuators. A location point is represented with Location.longitude and Lo-
cation.latitude attributes as specified in Table 4.5. Moreover, the CoT includes

Page 76 Chapter 4. Cloud of Things Resources Modelling

Core::Resource

+ summary: String

Core::Link

+ target: URI
+ target.kind: Kind [0..1]

Sensor

+ occi.sensor.featureOfInterest: string
+ occi.sensor.quantity: int
+ occi.sensor.quantityKind: string
+ occi.sensor.unit: string

Actuator

+ occi.actuator.featureOfInterest: string
+ occi.actuator.quantity: int
+ occi.actuator.quantityKind: string
+ occi.actuator.unit: string

Location

+ occi.location.lattitude: float
+ occi.location.longitude: float

Core::Entity

+ id: URI
+ title: String

Category

Core::Mixin

SystemProperty

+ occi.property.accuracy: double
+ occi.property.resolution: double
+ occi.property.responseTime: double

Node

0..* 0..*

0..1

1..*

0..1

1..*

0..* 1..*

1

source

0..*

Figure 4.12: Extensions of the OCCI Infrastructure for the Cloud of Things.

devices with several sensing and actuating resources such as high-powered connected
objects (e.g. Raspberry PI). Consequently, we added the Sensor.quantity and
Actuator.quantity to avoid representing similar sensors and actuators (i.e. with
same properties) several times for the same device. This is possible since we focused
on the provisioning aspects of the CoT, hence there is no need to model each sensor
as a separate instance. In fact, aggregating the information decreases the network
overhead since the amount of data to update a device’s information is reduced.

Previously described properties represent functional requirements. However, sev-
eral non-functional requirements such as accuracy, response time, and resolution can
be associated with sensors and actuators. The SSN ontology considers these require-
ments as subclasses of the SystemProperty class. We did not model all possible
non-functional requirements, however, we illustrate how additional attributes are
added with a SystemProperty Mixin. Table 4.6 shows considered attributes in
details.

4.4.3 Things Virtualization
IoT devices have different capabilities regarding virtualization resulting in dis-

tinct characteristics, thus the need to specify how to model this aspect in the CoT.
It is possible that an IoT device does not retain any virtualization capabilities incur-
ring no pool of available compute and storage resources. However, it still provides
sensing and actuating resources through an API. Another type of possible virtual-
ization is the network-level virtualization [47]. This kind of virtualization aims to

4.4. Cloud of Things Infrastructure Page 77

Table 4.3: Attributes Defined for the Sensor Type

Attribute Type Mult. Mutability Description
occi.sensor.featureOfInterest String 0..1 Mutable Object whose property is being mea-

sured, estimated, or calculated
occi.sensor.quantity Integer 1 Mutable Number of sensor objects.
occi.sensor.quantityKind String 1 Mutable Kind of quantity that can be measured

using defined and unrestricted units of
measurement.

occi.sensor.unit String 0..1 Mutable Definite magnitude of a the measured
quantity.

Table 4.4: Attributes Defined for the Actuator Type

Attribute Type Mult. Mutability Description
occi.actuator.featureOfInterest String 0..1 Mutable Object whose property is being ma-

nipulated
occi.actuator.quantity Integer 1 Mutable Number of actuator objects.
occi.actuator.quantityKind String 1 Mutable Kind of quantity that can be

manipulated.
occi.actuator.unit String 0..1 Mutable Definite magnitude of a quantity be-

ing manipulated.

Table 4.5: Attributes Defined for the Location Type

Attribute Type Mult. Mutability Description
occi.location.longitude Double 1 Mutable Lines between the North and South

Poles. They measure east-west posi-
tion.

occi.location.latitude Double 1 Mutable Angle which ranges from 0◦ at the
Equator to 90◦ (North or South) at
the poles.

Table 4.6: Attributes Defined for the SystemProperty Type

Attribute Type Mult. Mutability Description
occi.property.accuracy Double 0..1 Mutable Maximum difference in percentage

that will exist between the actual
value and measured value.

occi.property.resolution Double 0..1 Mutable Smallest reliable measurement that
a system can make.

occi.property.responseTime Double 0..1 Mutable Time for a sensor to respond from
no load to a step change in load.

Page 78 Chapter 4. Cloud of Things Resources Modelling

create sub-networks by deploying an overlay network on top of connected objects or
by physically clustering a group of IoT devices. The latter virtualization type is per-
formed during the deployment process and does not affect the resource provisioning
step thus it is not considered in the model.

VirtNode : Node

c1 : Compute

occi.compute.cores = 4
occi.compute.memory = 1.0

s1 : Sensor

occi.sensor.quantity = 2
occi.sensor.quantityKind = temp

noVirtNode : Node

s2 : Sensor

occi.sensor.quantity = 2
occi.sensor.quantityKind = temp

tempService : Component

occi.component.state = Active

appVirtNode : Node

s2 : Sensor

occi.sensor.quantity = 2
occi.sensor.quantityKind = temp

tempMeanService : Component

occi.component.state = Inactive

tempService : Component

occi.component.state = Inactive

tempEventService : Component

occi.component.state = Inactive

(c) Application-based and Threading Virtualization

(a) Hypervisor-based and OS-based
Containers Virtualization

(b) No Virtualization Support

Figure 4.13: Representation of Node Instances with Different Virtualization Types.

The last kind is the node-level virtualization. It defines the virtualization tech-
nology supported on top of the node’s hardware. As illustrated in Figure 4.13,
it consists of: (1) hypervisor-based, (2) OS-based containers, (3) application-based
containers, and (4) threading virtualization. On the one hand, hypervisor-based and
OS-based containers virtualization are on the infrastructure level. Nodes capable
of such virtualization are able to provide compute, storage, network, sensing, and
actuating resources. Figure 4.13.a shows such a node representation. Furthermore,
they allow VMs or OS containers deployment over the latter resources. On the other
hand, the application-based containers and threading virtualization are on the plat-
form service level. Therefore, related nodes do not have virtualized infrastructure
resources such as compute and storage. However, they can host concurrent soft-
ware components (e.g. containers, threads). Hence, they are linked to Component
instances. The Component class is defined in the OCCI platform specification as
shown in Figure 4.17.

It’s worth noting that the main difference between nodes with no virtualization

4.4. Cloud of Things Infrastructure Page 79

support, and nodes with application-based virtualization is the possibility to deploy
software components in this node. A node with no virtualization support has no
compute or storage resources therefore it should be linked in the model to only
one Component instance which is already deployed. The latter Component instance
offers sensing and actuating resources via a web interface. Figure 4.13.b shows a
node with no virtualization support. In contrast, a node with application-based
virtualization has multiple associated software components which can be deployed
on-demand as illustrated in Figure 4.13.c. Even though Component instances are
visible at the PaaS level, they can also be offered in the IaaS layer. Anyhow, in
the latter case, Component instances are not shared between different applications,
and provide full control over the allocated sensing and actuating resources (e.g.
configuration settings).

4.4.4 Things Integration Patterns
Integration patterns represent different ways IoT devices connect to the Internet

and get accessed by third party applications. There exist three integration patterns:
(1) direct connectivity, (2) gateway-based connectivity, and (3) cloud-based connec-
tivity. Figure 4.14 depicts these integration patterns. Direct connectivity means
that the IoT device has an Internet Protocol (IP) address and is able to commu-
nicate directly over the Internet. The device might be a high-powered connected
object with compute, storage, sensing and actuating resources (e.g. Raspberry PI)
as illustrated in Figure 4.14.a. It might be also a constrained device offering sensing
and actuating resources via an HTTP or WS interface with no compute resources.

Gateway-based connectivity represents connected objects in a non-IP network
(e.g. IEEE 802.15.4). These IoT devices lie behind a gateway which performs
protocol translation between the Internet and its internal network. Attached con-
nected objects might be uniquely identified and accessible from the Internet (Figure
4.14.b) or hidden behind the gateway (Figure 4.14.c). In the first case, we rep-
resented them individually in the infrastructure (e.g. gatewayBasedSensor1 and
gatewayBasedSensor2 in Figure 4.14.c). In the second case, there is no need to
model them independently. Therefore, we represented the gateway as the association
of attached connected objects (e.g. s4 in Figure 4.14.b). It describes all the sensing
and actuating resources provided by abstracted IoT devices. Such aggregation of
available resources reduces the number of nodes within the infrastructure. Likewise,
the cloud-based connectivity consists of a virtual gateway in the cloud such as IoT
middlewares. Its representation is identical to gateway-based connectivity in both
cases.

4.4.5 Scenarios
The OCCI CoT infrastructure model enables representing CoT IaaS requests

and substrates as a network graphs. Also, it facilitates mapping incoming requests
on available resources during the provisioning process. We illustrate two scenarios
to show the ability of the proposed model to describe the CoT.

Page 80 Chapter 4. Cloud of Things Resources Modelling

directConnectivitySensor : Node

s1 : Sensor

occi.sensor.quantity = 1
occi.sensor.quantityKind = temperature

link1 : Link

(a) Direct Connectivity

gateway1 : Node

s2 : Sensor

occi.sensor.quantity = 1
occi.sensor.quantityKind = temperature

gatewayBasedSensor1 : Node

networkLink1 :
NetworkLink

s3 : Sensor

occi.sensor.quantity = 1
occi.sensor.quantityKind = temperature

gatewayBasedSensor2 : Node

c1 : Compute

occi.compute.architecture = x86
occi.compute.cores = 4
occi.compute.memory = 1.0

link2 : Link

networkLink2 :
NetworkLink

link2 : Link link3 : Link

gateway2 : Node

s4 : Sensor

occi.sensor.quantity = 20
occi.sensor.quantityKind = temperature

link1 : Link

c1 : Compute

occi.compute.architecture = x86
occi.compute.cores = 4
occi.compute.memory = 4.0

link2 : Link

(b) Gateway/Cloud based Connectivity (hidden
connected objects)

(c) Gateway/Cloud based Connectivity (uniquely identified connected objects)

Figure 4.14: Integration Pattern Modelled using the OCCI CoT Infrastructure.

Resources Description

We define only a substrate graph for the demonstration, however, creating a
CoT request graph is similar. The main difference is that a request graph represents
needed resources, while a substrate graph describes available resources. Figure 4.15
illustrates the needed OCCI instances and their relations for representing a CoT
substrate. The described infrastructure graph corresponds to two physical nodes
infra n1:Node and infra n2:Node. The first one is a Raspberry PI with four
cores and 1 GB of RAM. The other one is a cloud server. The Raspberry PI has 10
connected temperature sensors, while the cloud server has a 1000 GB storage unit.
We can associate nodes with the Location Mixin to extend their attributes. Fur-
thermore, both physical nodes are connected with a 100 Gbps network link having
a latency of 20 ms.

4.4. Cloud of Things Infrastructure Page 81

compute : Kind

scheme = http://schemas....
term = compute

c1 : Compute

occi.compute.cores = 4
occi.compute.memory = 1.0

node : Kind

scheme = http://schemas....
term = node

s1 : Sensor

occi.sensor.quantity = 2
occi.sensor.quantityKind = temp

sensor : Kind

scheme = http://schemas....
term = sensing

infra_n2 : Node

c2 : Compute

occi.compute.architecture = x86
occi.compute.cores = 48
occi.compute.memory = 144.0

st1 : Storage

occi.storage.size = 1000.0

Location : Mixin

scheme = http://schemas....
term = location

storage : Kind

scheme = http://schemas....
term = storage

infra_n1 : Node

occi.location.latitude = 48.85
occi.location.longitude = 2.35

n1_n2 : NetworkLink

occi.networklink.bandwidth = 100
occi.networklink.latency = 20
source = infra_n2
target = infra_n1
target.kind = node

infra_n1_s1 : Link

source = infra_n1
target = s1
target.kind = sensing

Figure 4.15: Cloud of Things Substrate Graph Description with OCCI Infrastruc-
ture Extended Model.

Mapping Process

Moreover, the proposed OCCI CoT model enables mapping requests onto a CoT
infrastructure. In order to simplify the mapping example in Figure 4.16, we rep-
resented graphically the OCCI CoT instances and their relations. We give a brief
description for nodes as well. It includes their Node.id attribute and attached infras-
tructure resources. Moreover, NetworkLink instances are presented as inter-nodes
connectors.

In the mapping process, candidate hosts are identified for each requested node
based on infrastructure resources. We noticed that nodes requiring sensing and actu-
ation resources are mapped towards IoT devices and gateways in the infrastructure.
However, nodes demanding more computational power are mapped to cloud servers.
Furthermore, the request node C (i.e. requestDataAgg1) has an additional resource
constrained connected object (i.e infraDataSource2) candidate. Consequently, we
achieved a one-stage mapping. In fact, Cloud Computing and IoT requests are com-
bined, and they can be mapped to available hosts in both domains infrastructures
simultaneously.

Furthermore, the gateway (i.e. infraGateway1) is exposing the sensors resources
collectively. This model is similar to a WoT enabled gateway with temperature and
humidity sensors. As a result, we minimized the problem size. Otherwise, request
nodes A and B would have been mapped to additional candidate hosts. In large-scale
IoT infrastructures, such aggregation of available resources reduces considerably the

Page 82 Chapter 4. Cloud of Things Resources Modelling

Figure 4.16: IaaS Mapping Process using the defined OCCI Infrastructure Model.

problem size and the solution computation time. After the mapping, a selection
process picks the best candidates to host a given CoT request. This stage of the
provisioning process is studied in Chapter 4.

4.5 Cloud of Things Platform
A PaaS level request consists of interconnected atomic components. In a cloud

environment, the provisioning process identifies appropriate hosts based on com-
ponents and infrastructure resources availability. Also, it decides whether software
elements mapped to the same potential host should be deployed in a single or multi-
ple VMs. Afterwards, the provisioning process identifies the best candidate host and
deployment configuration (i.e. install multiple components on one or several VMs).
Anyhow, a CoT application at the PaaS layer requires data streams from connected
objects towards some of its components. Even though different IoT devices deliver
similar resources, they host device-specific software with proprietary APIs. Also,
connected objects can be accessed individually or collectively via IoT middlewares.
Therefore, additional aspects such as data delivery methods, IoT devices selection,
components compatibility check, and many others should be considered during the
CoT PaaS provisioning process. In this section, we describe the OCCI CoT platform
model which enables such operations.

4.5.1 Cloud of Things Deployment Options
The heterogeneous nature of IoT devices leads to distinct architecture specifica-

tions for different IoT systems and use cases. Consequently, different deployment

4.5. Cloud of Things Platform Page 83

Entity

Core::Resource

+ summary: String

Entity

Core::Link

+ target: URI
+ target.kind: Kind [0..1]

Application

+ occi.app,name: String
+ occi.app.context: URL
+ occi.app.state: Enum
+ occi.app.url: URL

Component

+ occi.component.state: Enum

ComponentLink

+ occi.componentlink.state: Enum

0..*

compose

1

1

source

0..*

Figure 4.17: OCCI Platform UML Representation

models were introduced to link IoT devices and applications. The diverse approaches
motivated several academic and industrial projects [142] to define reference mod-
els for the IoT and offer generic guidelines for implementing IoT platforms. Al-
though these reference models differ in some aspects, their deployment models are
similar. However, the Internet of Things Architecture (IoT-A) project [94] pro-
vides a more thorough and abstract representation in contrast to industrial ap-
proaches [143, 144] which focus more on business features. Furthermore, the IoT-A
Reference Model (IoT-A ARM) is adopted by several European projects (e.g. FI-
WARE [93], OpenIoT [71]) and illustrates a reverse mapping to validate its ability
to model existing standards (ETSI M2M [145], EPCgobal30) and concrete architec-
tures.

IoT-A Deployment Configurations

IoT devices have various manufacturers and offer distinct capabilities. Hence,
consuming IoT devices requires deploying hardware-dependent software components
to access their sensing and actuation capabilities. The IoT-A ARM defines these
components as device-specific (i.e. DeviceComponent) which act on physical en-
tities. However, DeviceComponents are bound to particular devices and specific
hardware architecture and expose a proprietary interface. Therefore, they do not
allow easily interoperability. Two types of device-specific components could exist:
(1) network (i.e. NetworkComponent) and (2) on-device (i.e. OnDeviceComponent).
Network components are usually deployed on remote hardware such as gateways to
access IoT devices (e.g. WSN). Such approach is needed whenever the IoT devices
cannot be accessed individually and directly via a public network. Whilst, on-device

30http://www.gs1.org/epcglobal

Page 84 Chapter 4. Cloud of Things Resources Modelling

software components are deployed locally and are bound to the devices’ capabilities.

WrapperService

DeviceService

VirtualEntityService

NetworkService OnDeviceService Device

Service

Sensor

Actuator

1..*

represents

0..*

0..*

is associated with

0..*

0..*

encapsulates

0..*

0..*

contains

0..1
0..*

hosts

1

0..*

is associated with

0..*

0..*

contains

0..1

Figure 4.18: UML Representation of the IoT Environment Services Based on the
IoT-A.

The shortcomings of device-specific components are overcome by using IoT wrap-
pers that encapsulate their proprietary functionality and provide a standard API.
The wrappers also aim to manage the related non-functional aspects as seen in Sec-
tion 4.2.1. In fact, IoT wrapper components can be hosted on powerful hardware
(e.g. capable devices, fog nodes, cloud servers), therefore, they can perform addi-
tional processing such as aggregation, filtering, access control, etc. to reduce band-
width, energy consumption, and enhance security. Furthermore, wrappers handle
non-functional aspects for device-specific components. They are divided into two
categories: (1) wrapper components (WrapperComponent) and (2) virtual entity
components (VirtualEntityComponent). The first category accesses IoT devices
directly, connects to them, and manages quality aspects of device’s resources such
as dependability, resilience, security, and performance. However, virtual entity com-
ponents offer higher level of abstraction and manage multiple wrapper instances or
other virtual entities without connecting directly to things. They may add additional
processing for underlying IoT devices such as data streams querying. Virtual enti-
ties imitate a virtual gateway for virtual IoT devices (wrapped connected objects).
Therefore, WrapperComponent and VirtualEntityComponent portray cloud-based
connectivity for connected objects. The difference is the multiplicity of managed
sensors and the level of abstraction and management enabled by each. Figure 4.18
illustrates the relation between described services while Figure 4.19 depicts the pos-
sible deployment options for the IoT based on the IoT-A.

It’s worth mentioning that since the device-specific components have propri-
etary APIs, establishing a connection between these components and wrappers can
be challenging. However, multiple researchers have already addressed this issue and
provided valuable solutions. For example, the Global Sensor Network (GSN) mid-

4.5. Cloud of Things Platform Page 85

IoT Device
Cloud and Fog Nodes

OnDevice
Component

Wrapper
Component

OnDevice
Component

Wrapper
Component

VirtualEntity
Component

VirtualEntity
Component

Internal

Remote Access
Internal

Remote API
Invocation

Remote API Invocation

Remote API
Invocation

Network
Component

OnDevice
Component

Remote API
Invocation

IoT
Application

IoT Device

IoT DeviceIoT Device
(Gateway)
IoT Device
(Gateway)

Figure 4.19: Cloud of Things Deployment Options Based on IoT-A.

dleware [132] generates device-specific wrappers relying on a devices’ description
file known as the Sensor Device Definitions (SDDs). Furthermore, recent specifica-
tions for constrained devices such as DPWS enable more standardized and defined
interfacing with constrained devices [37].

Provisioning Deployment Configurations

Even though multiple delivery methods are referenced by the IoT-A project as
illustrated in Figure 4.19, the provisioning process does not require such granular-
ity. Mapping a CoT request graph aims to select candidates for cloud components,
data delivery components, and data sources. At the PaaS layer, DeviceComponents
represent data sources, while VirtualEntityComponents and WrapperComponents
perform data delivery operations. Moreover, WrapperComponents are generally de-
ployed alongside the VirtualEntityComponents as seen in Chapter 2. For example,
wrappers are instantiated within the X-GSN to abstract sensors as illustrated in Fig-
ure 4.20.

Also, CoT users have no control over infrastructure resources and the deployment
architecture on the PaaS level. Consequently, IoT applications request data streams
without constraints on deployed delivery methods. CoT operators are responsible
for managing data delivery for cloud applications and should avoid inefficient deploy-
ment configurations. Authors in [68] show that using virtual entities to aggregate
multiple data streams and distribute them among cloud applications consumes less
energy than individual IoT devices access. Therefore, we used VirtualEntity-
Components to deliver data streams and did not rely on WrapperComponents which
manage devices independently.

As a result, WrapperComponents connect solely IoT devices to VirtualEnti-
tyComponents which relay data streams to applications. Therefore, the explicit
description of WrapperComponents in the CoT request increases the problem size
and the provisioning phase complexity without affecting its decision. We defined

Page 86 Chapter 4. Cloud of Things Resources Modelling

Figure 4.20: X-GSN Container Architecture. Sources [131,146]

CollectorComponent

VirtualEntityComponent

DeviceWrapperB :
WrapperComponent

DeviceWrapperA :
WrapperComponent

DeviceWrapperC :
WrapperComponent

DeviceTypeB :
DeviceComponent

DeviceTypeA :
DeviceComponent

DeviceTypeC :
DeviceComponent

Figure 4.21: Collector Component Architecture Example

the CollectorComponent as illustrated in Figure 4.21. Consequently, we only rep-
resented DeviceComponents and CollectorComponents in the CoT request. Such
representation does not affect the provisioning phase result and global cost. The
ComponentLink indicates whether a DeviceComponent connects to a particular
CollectorComponent such as X-GSN or not.

4.5.2 Data Components Sharing
In CoT, data streams should be reused to maximize resources utilization and

minimize energy consumption. Several works [7, 57, 67–69, 84] show that sharing
sensing and actuating resources among various applications increases usage effi-
ciency. Hence, CollectorComponents instances which already exist in the CoT
environment should be reused. They result from previous deployed requests or from
instances provided by third party data providers. These instances can be partially or
completely reused by incoming requests based their sensing/actuating needs. Fur-
thermore, reusing existing components speeds up the deployment process.

4.5. Cloud of Things Platform Page 87

Core::Link

+ target: URI
+ target.kind: Kind [0..1]

AccessLink

+ occi.accesslink.latency: double

Core::Entity

+ id: URI
+ title: String

Category

Core::Mixin

CollectorComponent

+ occi.component.maxRequestsPerVCPU: int
+ occi.component.maxWrappersPerVCPU: int
+ occi.component.shareable: boolean

DeviceComponent

+ occi.component.maxConnections: int

Resource

Component

+ occi.component.shareable: boolean
+ occi.component.state: Enum

0..*

1..*

0..*0..*

0..*

1..*

Figure 4.22: Extensions of the OCCI Platform for the Cloud of Things.

As a result, during the provisioning process, already deployed CollectorCom-
ponent and DeviceComponent entities should be considered. The already defined
Component.state attribute specifies whether components are instantiated or not.
Also, these components should be shareable among applications. However, a newly
requested application might require IoT resources which are not all managed by ex-
isting CollectorComponents. In such case, it is possible to utilize already deployed
services and add missing resources to them. Therefore, the provisioning process
should be aware of existing services and their maximal capacity.

We added the CollectorComponent Mixin attributes which enables to extend
the capabilities of the existing Component resource in the OCCI platform. It is
described in Table 4.7. The CollectorComponent includes the CollectorCompo-
nent.shareable boolean attribute to indicate whether an instance is shareable or
not. Furthermore, the capacities of the component are given by CollectorCom-
ponent.maxRequestsPerVCPU and CollectorComponent.maxWrappersPerVCPU.
They represent the maximal number of data streams it can collect from devices
or dispatch to applications based on its allocated infrastructure resources. In some
cases, a connected object might be linked to two different CollectorComponents.
Therefore, we needed to know how many connections it can accept. If it only ac-
cepts one connection, it means the connected object cannot be shared among data
delivery components. We represented the DeviceComponent Mixin to describe IoT
devices related Components. It is described in Table 4.8.

Page 88 Chapter 4. Cloud of Things Resources Modelling

Table 4.7: Attributes Defined for the CollectorComponent Mixin

Attribute Type Mult. Mutability Description
occi.component.shareable Boolean 0..1 Mutable Indicates whether the component

is shared among multiple applica-
tions or not.

occi.component.maxRequestsPerVCPU Integer 1 Mutable Maximal request rate supported
per an allocated VCPU unit.

occi.component.maxWrappersPerVCPU Integer 1 Mutable Maximal managed connected ob-
jects wrappers per an allocated
VCPU unit.

Table 4.8: Attributes Defined for the DeviceComponent Mixin

Attribute Type Mult. Mutability Description
occi.component.maxConnections Integer 0..1 Mutable Maximal number of concurrent

connections.

Mapping Replication

CoT request graphs describe needed IoT device components. However, if a de-
ployed CollectorService component satisfies requested sensing and actuating re-
sources, there is no need to redo the mapping of IoT device components. Let’s con-
sider two separate requests needing an X-GSN component delivering a temperature
data stream as illustrated in 4.23. When the first request arrives, the provisioning
process will search for a suitable X-GSN host and a connected device able to mea-
sure the temperature. Once the first request is satisfied, the cloud operator will have
an interconnected temperature sensor and an X-GSN instance. However, when the
second request is received, the orchestration process will redo the same steps even
though it can directly reuse the already deployed X-GSN instance. Such operation
is time and resources consuming which is inefficient. Therefore, it should not be
replicated for each request.

To solve this problem, we attached in the proposed model each existing Col-
lectorComponents to managed sensing and actuating resources via an AccessLink
entity instance. The AccessLink instance provides information about already pro-
visioned resources. Therefore, the provisioning process checks directly if existing
collector instances satisfy user request or not without scanning further existing com-
ponents. In the previous example, with this change in the model, the orchestration
process will be able to detect that the X-GSN instance is already attached to a
temperature data stream and therefore select it directly instead of creating another
instance. This not only speeds up the provisioning process but reduces the resources
utilization.

4.6. Conclusion Page 89

Figure 4.23: Avoiding Mapping Replication Example Scenario.

4.6 Conclusion
Combining the cloud and the Internet of Things evolved over the years. At first,

IoT middlewares managed data collection on premise while distant cloud compo-
nents analysed gathered data on-demand. Then, IoT components were migrated
to the cloud to benefit from its characteristics (e.g. elasticity). However, sensing
and actuating resources were still managed separately from cloud resources. In fact,
provisioning mechanisms were divided into two stages: (1) the cloud components
orchestration, and (2) the IoT resources selection and integration. Such partition-
ing prevented a global optimization of both domains infrastructures. Therefore,
the next logical evolution of such convergence is the unified management of Cloud
Computing and IoT resources. The seamless integration of both domains is referred
to as the Cloud of Things. In this chapter, we modelled the CoT resources on the
IaaS and PaaS levels. Our objective is to enable a joint management of underly-
ing resources. In this perspective, we studied existing standards for the cloud and
the IoT to identify the most suitable one for modelling the CoT. We selected the
OCCI standard due to its extensibility and comprehensive modelling of the cloud.
We extended the existing OCCI model with respect to the CoT characteristics for
IaaS and PaaS. Also, we showed through scenarios how the proposed model enables

Page 90 Chapter 4. Cloud of Things Resources Modelling

the management of CoT resources and allows CoT mapping processes to interpret
resources description.

Chapter 5

Efficient Provisioning in the Cloud
of Things

Contents
5.1 Introduction . 92
5.2 Problem Statement . 93
5.3 Proposed Resources Provisioning Model 95

5.3.1 Domain Variable . 96
5.3.2 Cloud of Things Infrastructure 99
5.3.3 Cloud of Things Platform 101

5.4 Implementation and Evaluation 103
5.4.1 Evaluation Results . 103

5.5 Conclusions . 103

91

Page 92 Chapter 5. Efficient Provisioning in the Cloud of Things

5.1 Introduction
In a partially integrated Cloud Computing and Internet of Things (IoT) environ-

ments, orchestrating an IoT application undergoes three separate stages: (1) cloud
services provisioning, (2) connected objects selection, and (3) Virtual Objects (VOs)
placement in cloud data centres. Even though these steps might be coordinated to
achieve a more efficient provisioning, they are still executed in multiple phases which
prevents a global optimization of resources. Therefore, the use of Cloud Computing
and IoT resources becomes less efficient. Moreover, state of the art mechanisms for
selecting connected objects are separated from the placement decisions which can
be inefficient [68,87,103].

Figure 5.1: Cloud of Things Integral Mapping Scenario

The Cloud of Things (CoT) needs to support and facilitate end-to-end IoT ap-
plications delivery. However, such vision requires novel mechanisms for resource
allocation and optimization. Such mechanism should consider the entire IoT ap-
plication and CoT infrastructure in a single stage. Recently, several approaches
were proposed to optimize bandwidth usage, energy consumption, and sensors life-
time. However, to the best of our knowledge, none of these approaches have tackled
the problem of an IoT application deployment in a CoT infrastructure in a holistic
manner.

In this chapter, we propose an efficient solution to address the mentioned chal-
lenge. We formulate the problem as a graph mapping problem similarly to Figure
5.1 illustration. We represent graphically the required cloud services, connected
objects, and VOs. We then use a Linear Program (LP) to calculate the optimal
solution which minimizes the cost of the deployment.

This chapter is organized as follows. In Section 5.2, we highlight the different
challenges regarding the resource allocation problem of services/applications in a
CoT infrastructure. In Section 5.3, we present the analytical model of the prob-
lem which optimizes the mapping process of the CoT request graph onto the CoT
substrate. The model has two instances. The first considers infrastructure level re-
sources while the other addresses platform level resources. In section 5.4, we present
our simulation environment and discuss the obtained results. Finally, the chapter is
concluded in Section 5.5.

5.2. Problem Statement Page 93

5.2 Problem Statement
An abstract CoT request is composed of a set of nodes related to either the

cloud computing environment or to the IoT environment as depicted in Figure 5.2.a.
Let us consider that data request nodes indicate how many temperature sensing
services the CoT customer wants to deploy, while the cloud service indicates the
number of requested vCPUs to process the data. In a traditional Cloud Computing
provisioning model, one request node is mapped to one substrate node that satisfies
the requested resources. Consequently, the cloud service in Figure 5.2.a is mapped
to a single substrate node. However, such mapping is not necessarily efficient for
IoT resources. In fact, the requested temperature sensing services can be allocated
from different substrate nodes. As we notice, the data request node in Figure 5.2.a
is mapped to two different substrate nodes.

Figure 5.2: Distribution of Request Nodes with IoT Resources on Multiple Substrate
Nodes

Some request nodes might require IoT resources alongside with compute and
storage resources as depicted in Figure 5.2.b. Indeed, there exist some high-powered
connected objects able to offer compute and storage resources beside sensing and
actuating. For example, a gateway offering temperature sensing services might have
also available virtualized computing and storing resources. Such gateway is able
to host a service requiring a limited amount of the compute resource and providing
temperature sensing data. In such case, we can also collect temperature sensing data
from different substrate nodes. However, we must make sure that these nodes can
also provide the requested vCPU resources. In contrast to IoT resources, Virtual
Central Processing Units (vCPUs) cannot be divided. In Figure 5.2.b, a request
node with 10 temperature sensors and 1 vCPU can be mapped to multiple substrate
nodes. The IoT resources are divided between these substrate nodes, while vCPUs
need to be satisfied entirely at each host as illustrated in Figure 5.2.b.

The provisioning process of a CoT request onto a CoT substrate should take into
consideration the possibility of dividing a request node into a set of IoT resources

Page 94 Chapter 5. Efficient Provisioning in the Cloud of Things

on multiple substrate nodes. Otherwise, the CoT customer has to define himself
multiple data request nodes and assign to each one a portion of needed IoT resources.
In this case, the request might get rejected because its data request node requires
to interact with too many connected objects. In addition, such approach is not
efficient regarding the complexity of the process since it increases the CoT request
size and therefore the problem size. Furthermore, it requires a prior knowledge of
the infrastructure topology and available resources.

Figure 5.3: Re-using IoT Resources and Corresponding Deployed Delivery Services

As previously stated in Chapter 3, IoT resources might be shared among appli-
cations. It is therefore necessary that the provisioning process should be able to
verify whether delivery services such as VOs has been already deployed and check if
it is possible to reuse them for new incoming requests. As illustrated in Figure 5.3.b
(i.e. time t + 1) the services deployed in 5.3.a (i.e. time t) can be reused for the
request at time t+ 1. If sharing IoT resources was not possible, the second request
at time t+ 1 would not have been satisfied because there are not enough resources
available in the infrastructure at that time.

We argue therefore that deploying an IoT application in a CoT infrastructure
is different from the traditional Cloud Computing deployment. There is a need
to consider the possibility of mapping one request node to multiple nodes while
verifying the availability of each resource type differently. This is due to the fact
that some resources are partitioned across a set of nodes, while others should be
entirely made available in each selected node. Moreover, the provisioning process in
the CoT environment should consider previously allocated resources and reuse them
in future deployments if possible to minimize the resources utilization and therefore
the deployment cost.

5.3. Proposed Resources Provisioning Model Page 95

5.3 Proposed Resources Provisioning Model

A unified representation of Cloud Computing and IoT allows a holistic view of the
infrastructure. Such a unified model of available resources will eventually facilitate
the one stage coordinated provisioning. To highlight the proposed approach, let’s
consider a substrate node element nsi which represents either a cloud data centre,
a fog node, or a connected object. Each node nsi is attached to a set of resources
rsi which identify its nature and geographical location gi. In this model, on one
hand, we identify the compute (ci), storage (ti), sensing (Si), and actuating (Ai)
resources. On the other hand, we identify the communication (network) resources
that are represented as the available bandwidth bsi,j between any two nodes nsi and
nsj . Cloud data centres possess large (virtually unlimited) amounts of compute,
storage, and network resources.

Fog nodes are characterized by the same type of cloud resources but in contrast
to cloud data centres, these resources are limited. Not to mention that Fog nodes
have also relatively lower latencies to connected objects since they are geographically
closer to them. IoT devices do have communication capabilities and therefore net-
work resources to connect to the network. High powered connected objects might be
deployed to provide on-device compute and storage resources. It’s worth noting that
all connected objects have processing and storage capabilities even limited, however,
low-powered connected objects reserve them for their sensing and actuating opera-
tions. Such resources are not available for external use. In the latter case, the node
is represented without compute and storage resources in our model. With the same
logic, a request node (i.e. virtual node) nv represents an element which needs to be
mapped and deployed into a substrate node.

A request node in the CoT Infrastructure as a Service (IaaS) level might represent
a Virtual Machine (VM), a sensor, or an actuator. A VM request node is not
attached to any sensing and actuating resources. Furthermore, the same request
node in the CoT Platform as a Service (PaaS) level might represent a cloud service,
a sensing service, data stream, etc. However, in the CoT PaaS level, infrastructure
level resources are also represented as software components might be requested with
minimal hardware requirements. We define the set of available atomic services at
each substrate node nsi as ∆s

i = {δsi,1, δsi,2, ...}. Similarly, the requested service by
a requested node nvj is noted as δvj . δs.d and δs.s indicate respectively whether a
substrate service δs is deployed or not, and is shareable or not. δs and δv represent
the service ID, hence, we can check if two services are the same by the simple
comparison δs − δv = 0.

Let us consider a request graph (N v, Ev) and a substrate graph (N s, Es). The
request graph needs to be mapped onto the substrate graph. N v and N s correspond
to the sets of requested nodes and infrastructure nodes respectively. A request
graph has mv nodes, while the substrate graph has a cardinality ms. A substrate
node nsi ∈ N s offers a set of available resources rsi = {csi , tsi , Ssi , Asi}, while a request
node requires a set of resources rvi = {cvi , tvi , Svi , Avi }. Unlike compute, storage,
and network resources, a node can have multiple types of sensing and actuating
resources. For example, a connected object might offer several temperature and

Page 96 Chapter 5. Efficient Provisioning in the Cloud of Things

humidity sensors. Therefore, we represent sensing and actuating resources at a
given node ni as a set of sensors Si and actuators Ai. We consider that the CoT
infrastructure includes k types of sensors and p types of actuators. Hence, the
sensing and actuation resources of a substrate node nsi can be represented as Ssi =
{ssi,1, ..., ssi,k} and Asi = {asi,1, ..., asi,p} respectively. ssi,1 is the number of sensors of
type 1 available at the substrate node nsi .

For example, a Raspberry PI node having only one compute resource and two
sensors of type 1 has rs = {1, 0, {2, 0, ..., 0}, {0, ..., 0}}. Sensing and actuating re-
sources are represented similarly for request nodes. Such grouped representation
of IoT resources decreases the request and infrastructure sizes in terms of nodes,
and therefore reduces the problem size. Furthermore, it allows the representation
of complex infrastructure nodes providing large amounts of IoT resources such as
gateways. Es and Ev represent requested network edges and substrate nodes inter-
connections. A substrate edge esi,j connects two substrate nodes ni and nj. It has
an available bandwidth bsi,j and a latency lsi,j. Similarly, a request edge evi,j links two
request nodes nvi and nvj . Such request edge requires a minimal available bandwidth
bvi,j and a maximal latency lvi,j. A summary of variables is presented in Table 5.2.

The defined variables can be also identified from the previous defined model
which helps parsing described CoT requests and substrates using our OCCI model
for IaaS and PaaS. We show in Table 5.1 the equivalence between the OCCI model
and the analytical model.

Table 5.1: Equivalence between the Analytical Model and the CoT OCCI model

Parameter OCCI CoT Equivalence
nsi , nvj The Node Class
esi,j, evi,j The NetworkLink Class
lsi,j, lvi,j The NetworkLink attribute occi.networklink.latency
bsi,j, bsi,j The NetworkLink attribute occi.networklink.bandwidth
ssi,h, svj,h The Sensor attribute occi.sensor.quantity
asi,h, avj,h The Actuator attribute occi.actuator.quantity
h The Actuator or Sensor attribute quantityKind
gi The Location Class
δsi,j, δvi The Component class
δsi,j.t, δvi The Component attribute occi.component.state
δsi,j.s, δvi The Component attribute occi.component.shareable

5.3.1 Domain Variable
Once the request and substrate graphs are modelled using previous notations, the

request graph should be mapped onto the substrate graph. Such mapping aims to
optimize a given objective function such as minimizing the resources utilization. We
consider αi,j ∈ [0, 1] as the domain variable which indicates whether a request node
nvi is mapped onto a substrate node nsj or not. However, different types of resources

5.3. Proposed Resources Provisioning Model Page 97

Table 5.2: Notation Table

Symbol Definition
(N s, Es) CoT Substrate Graph.
(N v, Ev) CoT Request Graph.
N s Set of substrate nodes. nsi ∈ N s. |N s| = ms.
N v Set of request nodes. nvi ∈ N v. |N v| = mv.
rsi , rvj Set of available resources at nsi , Set of requested resources for nvj .
csi , cvj Available amount of compute at nsi , Requested amount of compute for nvj .
tsi , tvj Available amount of storage at nsi , Requested amount of storage for nvj .
Ssi , Svj Set of available sensors at nsi , Set of requested sensors for nvj .
Asi , Avj Set of available actuators at nsi , Set of requested actuators for nvj .
∆s
i , δvj Set of available services in substrate node nsi , Requested service for nvj .

ssi,h, svj,h Available amount of sensor type h at nsi , The requested amount for nvj .
asi,h, avj,h Available amount of actuator type h at nsi , The requested amount for nvj .
k The total number of sensor types in the CoT infrastructure.
p The total number of actuator types in the CoT infrastructure.
Es Set of edges between substrate nodes.
Ev Set of edges between request nodes.
esi,j Network edge between two substrate nodes nsi and nsj .
bsi,j Network bandwidth between two substrate nodes nsi and nsj .
lsi,j Network latency between two substrate nodes nsi and nsj .
evi,j Network edge between two request nodes nvi and nvj .
bvi,j Minimal required network bandwidth between two request nodes nvi and nvj .
lvi,j Maximal tolerated network latency between two request nodes nvi and nvj .
lui,j Acceptable latency between the users group uvi and the request node nvj .
αi,j The fraction of request node nvi mapped to substrate node nsj .
βi,j dαi,je.

Table 5.3: Prices Definitions Table

Symbol Definition
φci The price of a compute unit at substrate node nsi .
φti The price of a storage unit at substrate node nsi .
φsi,h The price of a sensor ssi,h of type h at substrate node nsi .
φai,h The price of an actuator asi,h of type h at substrate node nsi .
φei,j The price of a data unit on edge ei,j connecting nodes nsi and nsj .
φδi,h The price of hth service δsi,h at substrate node nsi .

Page 98 Chapter 5. Efficient Provisioning in the Cloud of Things

require different mapping strategies. For example, several gateways can be used to
satisfy a request node operating several temperature and humidity sensors. Unlike
the classical Cloud Computing mapping [23, 147], a CoT request node might be
mapped to multiple substrate nodes as illustrated in Figure 5.4. We can notice
that the sensing resources are here retrieved from different substrate nodes while
the compute resource is retrieved entirely from each used substrate node.

Figure 5.4: The Mapping of a Request Node with Sensing Resources.

It is important to notice that some resources such as compute cannot be frag-
mented. As a result, the constraints for verifying resources availability when map-
ping request nodes should take into consideration such specificity in the mapping
strategies. Constraints (5.1) and (5.2) illustrate two constraint models. The first
model is used for resources which must be made available as a whole in the sub-
strate node, even though a fraction of the request node is mapped to it. This first
model will be used to verify the availability of the compute resources for example.
The second model is more appropriate for resources which can be fragmented across
several substrate nodes. In this case, we only verify the availability of the required
fraction at the substrate host. The constraint (5.2) is used for sensing and actuating
resources.

∑
i

βi,jx
v
i ≤ xsj ∀j : 1→ ms (5.1)

∑
i

αi,jx
v
i ≤ xsj ∀j : 1→ ms (5.2)

with:

βi,j =
{

1 if αi,j > 0
0 otherwise (5.3)

5.3. Proposed Resources Provisioning Model Page 99

The relation between βi,j and αi,j can be expressed through the following con-
straints:

βi,j ≥ αi,j ∀i : 1→ mv, j : 1→ ms

βi,j ∈ {0, 1} ∀i : 1→ mv, j : 1→ ms

Since αi,j is a numeric variable (i.e. αi,j ∈ [0, 1]), cloud services will be mapped
also onto multiple data centres. In such case, once the mapping is finished, we
obtain a set of values indicating the fraction of the cloud service mapped to each
data centre. We select the data centre with the larger fragment. We verify during
the mapping that only data centres with sufficiently available compute, storage, and
network resources are selected.

5.3.2 Cloud of Things Infrastructure
We formulate our placement problem similarly to the Cloud Computing VM

placement problem formulation presented in [148]. The latter formulation lin-
earises the traditional quadratic problem for VM placement [149]. Considering a
binary mapping variable xi,j that indicates whether a request node i should be
hosted on a substrate j, it is possible to introduce a new variable yi,j,v,w such that
yi,j,v,w = xi,jxv,w. Such variable represents edges mapping while hiding the quadratic
expression as follows:

min
x
F (x) = γF ct(x) + ωF n(x) s.t. γ + ω = 1 (5.4)

with:

F ct(x) =
∑
i

∑
j

xi,j(φcicvi + φtit
v
i) ∀i : 1→ mv, ∀j : 1→ ms (5.4a)

F n(x) =
∑
i

∑
j

∑
v

∑
w

yi,j,v,wφ
e
i,jb

v
i,v ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.4b)

subjected to: ∑
i

∑
v

yi,j,v,wb
v
i,v ≤ bsj,w ∀j, w : 1→ ms (5.4c)∑

j

∑
w

yi,j,v,wl
s
j,w ≤ lvi,v ∀i, v : 1→ mv (5.4d)

∑
i

xi,jc
v
i ≤ csj ∀j : 1→ ms (5.4e)∑

i

xi,jt
v
i ≤ tsj ∀j : 1→ ms (5.4f)∑

i

xi,j = 1 ∀j : 1→ ms (5.4g)∑
i

xi,jl
s
i,d(uv

v) ≤ lui,j ∀j : 1→ ms, ∀v : 1→ z (5.4h)

xi,j ∈ {0, 1} ∀i : 1→ mv,∀j : 1→ ms (5.4i)

Page 100 Chapter 5. Efficient Provisioning in the Cloud of Things

∑
j

yi,j,v,w = xv,w ∀i, v : 1→ mv, ∀j : 1→ ms (5.4j)

yi,j,v,w = yv,w,i,j ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.4k)

0 ≤ yi,j,v,w ≤ 1 ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.4l)

The functions F ct(x) (5.4a) consists of compute and storage allocated resources
while F n(x) (5.4a) corresponds to the network utilization price. φci , φti, and φni,j are
compute, storage and network unit prices as defined in Table 5.3. Firstly, constraints
(5.4c), (5.4e), and (5.4f) make sure that requested nodes are mapped to substrate
nodes with sufficient resources. Secondly, constraints (5.4d) and (5.4h) preserve the
Quality of Service (QoS) required by the CoT request graph in terms of communi-
cation latency. Finally, constraints (5.4g), (5.4i), (5.4j), (5.4k) and (5.4l) verify that
all requested resources are mapped, define the relation between xi,j and yi,j,v,w, and
specify the boundaries of domain variables.

We adapt and extend this model to include sensor and actuator resources. More-
over, there is no need to consider the possibility of sharing IoT resources for the IaaS.
In fact, at the IaaS level, customers have full control over the resources and their
configuration. Therefore, it would not be possible to share IoT resources among
multiple applications as it limits the ability of the customer to configure them as
pleased. Under these assumptions, the model is formulated as follows:

min
α
F (α) = γF ct(α) + σF o(α) + ωF n(α) s.t. γ + σ + ω = 1 (5.5)

with:

F ct(α) =
∑
i

∑
j

βi,j(φcicvi + φtit
v
i) ∀i : 1→ p, ∀j : 1→ m (5.5a)

F o(α) =
∑
i

∑
j

∑
h

αi,j(svi,hφsj,h + avi,hφ
a
j,h)

∀i : 1→ mv, ∀j : 1→ ms, ∀h : 1→ z (5.5b)
F n(α) =

∑
i

∑
j

∑
v

∑
w

yi,j,v,wb
v
i,vφ

n
j,w ∀i, v : 1→ p, ∀j, w : 1→ m (5.5c)

subjected to:

∑
i

∑
v

yi,j,v,wb
v
i,v ≤ bsj,w ∀j, w : 1→ ms (5.5d)∑

j

∑
w

yi,j,v,wl
s
j,w ≤ lvi,v ∀i, v : 1→ mv (5.5e)

∑
i

βi,jc
v
i ≤ csj ∀j : 1→ ms (5.5f)∑

i

βi,jt
v
i ≤ tsj ∀j : 1→ ms (5.5g)∑

i

αi,js
v
i,h ≤ ssj,h ∀j : 1→ ms, ∀h : 1→ z (5.5h)

5.3. Proposed Resources Provisioning Model Page 101

∑
i

αi,ja
v
i,h ≤ asj,h ∀j : 1→ ms, ∀h : 1→ z (5.5i)∑

i

αi,j = 1 ∀j : 1→ ms (5.5j)

αi,j ∈ [0, 1] ∀i : 1→ mv, ∀j : 1→ ms (5.5k)∑
j

yi,j,v,w = αv,w ∀i, v : 1→ mv, ∀j : 1→ ms (5.5l)

yi,j,v,w = yv,w,i,j ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.5m)

0 ≤ yi,j,v,w ≤ 1 ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.5n)

βi,j ≥ αi,j ∀i : 1→ mv, j : 1→ ms (5.5o)

βi,j ∈ {0, 1} ∀i : 1→ mv, j : 1→ ms (5.5p)

F ct (5.5a), F o (5.5b), and F n (5.5c) correspond to the compute, IoT, and net-
work resources costs respectively. Firstly, constraints (5.5f), (5.5g), (5.5h), and
(5.5i) make sure that requested nodes are mapped to substrate nodes with sufficient
resources. Secondly, constraints (5.5e) preserve the QoS requested by the CoT re-
quest graph in terms of communication latency. Also, constraint (5.5j) verify that
all requested resources are mapped while constraints (5.5k) and (5.5n) verify that
domain variables remain in their value range. Constraints (5.5l) and (5.5m) define
the relation between βi,j and yi,j,v,w while constraints (5.5o) and (5.5p) define the
relation between αi,j and βi,j.

5.3.3 Cloud of Things Platform
For the CoT PaaS mapping we have to consider the availability of requested

services at each substrate node. However, we need to account for previously de-
ployed services as well. Therefore, a substrate node has additional constraints. The
constraint aims for checking whether a requested service is available at the sub-
strate node or not, whether this service is deployed or not, and whether this service
is shareable or not. A mapping is possible only in two cases when the service is
available at the substrate node: (1) the service is not deployed, or (2) the service is
deployed and shareable. This constraint is represented as follows:

αi,jδ
s
i,h.d(δsi,h − δvj)(1− δsi,h.s) = 0 ∀i : 1→ ms,∀j : 1→ mv,∀h : 1→ |∆s

i | (5.6)

with:

δs.d =
{

1 if the service is deployed
0 otherwise (5.7)

δs.s =
{

1 if the service is shareable
0 otherwise (5.8)

Therefore the model for the CoT PaaS model becomes as follows:

Page 102 Chapter 5. Efficient Provisioning in the Cloud of Things

min
α
F (α) = γF ct(α) + σF o(α) + ωF n(α) s.t. γ + σ + ω = 1 (5.9)

with:

F ct(α) =
∑
i

∑
j

βi,j(φcicvi + φtit
v
i) ∀i : 1→ p, ∀j : 1→ m (5.9a)

F o(α) =
∑
i

∑
j

∑
h

αi,j(svi,hφsj,h + avi,hφ
a
j,h)

∀i : 1→ mv, ∀j : 1→ ms, ∀h : 1→ z (5.9b)
F n(α) =

∑
i

∑
j

∑
v

∑
w

yi,j,v,wb
v
i,vφ

n
j,w ∀i, v : 1→ p, ∀j, w : 1→ m (5.9c)

subjected to:

αi,jδ
s
i,h.d(δsi,h − δvj)(1− δsi,h.s) = 0

∀i : 1→ ms,∀j : 1→ mv,∀h : 1→ |∆s
i | (5.9d)∑

i

∑
v

yi,j,v,wb
v
i,v ≤ bsj,w ∀j, w : 1→ ms (5.9e)∑

j

∑
w

yi,j,v,wl
s
j,w ≤ lvi,v ∀i, v : 1→ mv (5.9f)

∑
i

βi,jc
v
i ≤ csj ∀j : 1→ ms (5.9g)∑

i

βi,jt
v
i ≤ tsj ∀j : 1→ ms (5.9h)∑

i

αi,js
v
i,h ≤ ssj,h ∀j : 1→ ms, ∀h : 1→ z (5.9i)∑

i

αi,ja
v
i,h ≤ asj,h ∀j : 1→ ms, ∀h : 1→ z (5.9j)∑

i

αi,j = 1 ∀j : 1→ ms (5.9k)

αi,j ∈ [0, 1] ∀i : 1→ mv,∀j : 1→ ms (5.9l)∑
j

yi,j,v,w = αv,w ∀i, v : 1→ mv, ∀j : 1→ ms (5.9m)

yi,j,v,w = yv,w,i,j ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.9n)

0 ≤ yi,j,v,w ≤ 1 ∀i, v : 1→ mv, ∀j, w : 1→ ms (5.9o)

βi,j ≥ αi,j ∀i : 1→ mv, j : 1→ ms (5.9p)

βi,j ∈ {0, 1} ∀i : 1→ mv, j : 1→ ms (5.9q)

5.4 Implementation and Evaluation
We use IBM CPLEX to implement the proposed model in JAVA. The simulation

compares between a global one stage mapping in the CoT and a two-stage mapping
of Cloud Computing and IoT resources. We generate CoT request graphs with
ms = 5→ 20 requesting a total number u = 20→ 320 of connected objects. We only
consider sensors during the simulation. The created CoT graphs are then divided
into separate cloud and IoT graphs which are also mapped with the proposed model.
This is possible since the model takes into consideration cloud and IoT resources
simultaneously. This way, we simulate a two-stage mapping. We measure the gain
of both orchestration approaches as well as different compute, IoT, and network
costs. Results are shown in Figures 5.5 and 5.6.

5.4.1 Evaluation Results
We notice the benefit of mapping the CoT graph with a global representation of

the infrastructure. This difference is mainly due to the cost of data units exchanged
between cloud and IoT nodes. During a two-stage mapping, such information can-
not be accounted for. Either nodes in both graphs are mapped separately, or one of
the two mappings uses the results of the other to coordinate its nodes placement.
However, in the latter cases, at least one of the mappings will aim for less expen-
sive hosts while ignoring the network cost. Hence, when the number of connected
objects increase, the transmitted data between the cloud data centres and IoT de-
vices increases, leading to additional costs. Our model captures the network state
between cloud and IoT resources and therefore is able to adapt the orchestration
of resources accordingly to minimize the overall cost. When the number of nodes
increases, the gain decreases because the one stage mapping process selects more
costly nodes when the network links bandwidth is not sufficient. However, the two-
stage mapping does not consider these constraints because it is not aware of the
bandwidth consumption between IoT and cloud resources. Hence, it always maps
to the less costly substrate nodes.

5.5 Conclusions
With the growing market of the Internet of Things, a huge number of physical

devices is expected to be deployed worldwide which will generate a very large amount
of data that could constitute a huge value added if correctly managed. To manage
these IoT devices and the corresponding generated data, it is necessary to create new
efficient efficient CoT services/applications deployment and resources allocation.

Many research efforts focused on creating IoT platforms to address the chal-
lenges of IoT following a data-centric approach (e.g. OpenIoT and FI-WARE). In
this research work, we proposed an alternative solution that provides a coordinated
one-stage provisioning of IoT application in the CoT infrastructure. We argue that
this approach while introducing some level of complexity (holistic management of

Page 104 Chapter 5. Efficient Provisioning in the Cloud of Things

the environment), it also enables more refined optimization of the resource alloca-
tion of both Cloud Computing and IoT resources along with the optimization of the
network resources. We formulated the problem as an optimization problem identify-
ing the objective function and the constraints. We specified the problem as a linear
programming problem and solve it (in a specified use case) using IBM CPLEX. The
results show that a holistic provisioning process proves to be 10%−20% more efficient
than two separate orchestration processes for cloud and IoT resources respectively.

5.5. Conclusions Page 105

5 10 15 20
10

20

30

40

50

60

70

80

90

Number of Connected Objects Requested in The Virtual Graph

R
el

at
iv

e
G

ai
n

(%
)

Figure 5.5: Relative Cost Gain of a One Stage Mapping over a Two Stages Mapping
in CoT.

5 10 15 20
−2000

0

2000

4000

6000

8000

10000

12000

Number of the CoT Request Graph Nodes

D
ep
lo
ym

en
t C

os
t

Total Cost − One Stage
Compute Cost − One Stage
Network Cost − One Stage
IoT Cost − One Stage
Total Cost − Two Stages
Compute Cost − Two Stages
Network Cost − Two Stages
IoT Cost − Two Stages

Figure 5.6: Cost of a One Stage Mapping Compared to a Two Stages Mapping.

Page 106 Chapter 5. Efficient Provisioning in the Cloud of Things

Chapter 6

General Conclusion and
Perspectives

The integration of Cloud Computing and the Internet of Things (IoT) realizes the
Cloud of Things (CoT). Such integration makes possible the autonomous delivery
of end-to-end IoT applications. In this thesis, we addressed the resources modelling
and provisioning aspects in a CoT environment. First, we considered a partially
integrated Cloud Computing and IoT infrastructures. In this context, we aimed at
provisioning Virtual Objects (VOs) responsible for connecting a set of IoT devices to
their corresponding cloud applications. Unlike existing approaches, we considered
that connected objects and corresponding VOs could be shared among multiple
applications to reduce the total amount of needed connected objects for a set of
applications requirements. Such consideration increases the Quality of Service (QoS)
constraints on each VO to deploy. To simplify the problem, we group VOs with
identical constraints together and map grouped VOs instead of individual ones. We
formulate the latter problem as two Linear Program (LP)s which aim to reduce the
computing and networking cost of deployed VOs. The first deals with provisioning
VOs for a set of application in an empty CoT environment, while the other considers
that the CoT infrastructure contains previously deployed VO that can be reused. We
introduce within the objective function a QoS index to minimize the communication
latency between connected objects and cloud applications as well. As we notice,
grouping VOs reduces the problem size and speeds up the execution of the LPs.
Simulation results show that the shared approach is less costly than an unshared
one. We show how the QoS index reduces the overall communication latency and
achieves a better QoS concerning latency for all applications. However, employing
the QoS index increases the cost as it forces a trade-off between cost and QoS.

Second, we surveyed existing standards for modelling the IoT and Cloud Com-
puting. We synthesized the efforts to model the resources for IoT and cloud infras-
tructures to select a mature standard for modelling the CoT. We singled out the
Open Cloud Computing Interface (OCCI) model. This model provides a complete
representation of the cloud and has been adopted widely by researchers and existing
cloud platforms such as OpenNebula. Then, we identified the basic resources which
need to be added to the OCCI model to enable a representation of the CoT envi-

107

Page 108 Chapter 6. General Conclusion and Perspectives

ronment at the Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)
levels. Such model constitutes the first step towards the auto-deployment of IoT ap-
plications in a CoT infrastructure. We present some example scenarios to illustrate
how the model can be used to represent resources in the CoT. Furthermore, the
model can be used to describe CoT request graphs and the CoT infrastructure. Such
graphical representation of resources allows provisioning processes to parse directly
incoming CoT request graphs and map them to the infrastructure.

Finally, we provided a model to specify analytically a CoT request and infras-
tructure as graphs. Such representation allows to map the CoT request on the
infrastructure similarly to the virtual network embedding problem. We formulated
an objective function with constraints to perform the optimal mapping of the CoT
request onto the infrastructure. Such request contains interconnected cloud services
and connected objects. Hence, the model can map cloud services to cloud data cen-
tres and perform a selection of IoT devices simultaneously. Simulations show that
the provisioning of the CoT request in a single-stage outperforms the mapping in
two separate stages considering cloud and IoT resources separately.

Several directions have been identified for future works:
In chapter 3, we do not take into consideration the selection of connected objects

and consider they are already picked. However, as discussed in Chapter 3, combining
the selection of connected objects and the deployment of VOs knowing the applica-
tions placement helps to enhance further the QoS. In fact, sharing VOs reduces the
cloud resources utilization which minimizes the customers overall cost and increases
the CoT provider profits as he becomes able to serve additional customers. However,
sharing VOs among applications should consider the QoS requested by all applica-
tions. In our approach, such constraints cannot be altered which results in the
rejection of some requests if the constraints are not met. Therefore, the provision-
ing process should be able to decide on sharing or not VO during the provisioning
process to be able to satisfy applications constraints when it is not possible using
a shared approach. Such flexibility in the model avoids rejecting incoming requests
while minimizing as much as possible the resource utilization. Furthermore, sharing
VOs can be tuned with the selection of connected objects to optimize the execution
time while maintaining the cost reduction. As we notice, when the number of VO
clusters increases, the execution time of the provisioning process increases. However,
the number of clusters increases when connected objects do not have many similar
sets of applications in common which can be controlled by the IoT selection process.
A selection process can be employed to optimize the set of connected objects for
each application in such a way as to minimize the number of clusters formed but
maintain the total number of connected objects used to satisfy applications.

In chapter 4, the proposed model is a backbone for representing a CoT infras-
tructure. However, appropriate Mixins should be defined by the CoT provider to
personalize the model based on the properties of available components in his infras-
tructure (e.g. OpenStack data centre, Raspberry PI gateway). Works in [140, 141]
can be used as an inspiration for extending our model. The objective of such model
is to enable the automatic deployment of end-to-end IoT applications. Several cloud
orchestration software exists which rely on the OCCI model. These models can be

Page 109

used as a base for developing a CoT orchestrator. Such model can also be linked
with the node-RED project which helps define a workflow that can be then deployed
automatically within the CoT infrastructure. IBM uses this project to facilitate
the creation of workflows and enables their deployment in its cloud infrastructure
(Bluemix). It also allows the deployment of IoT applications. However, such de-
ployment is not yet fully automated as the connected objects are not provisioned on
the fly. Intel is going in the same direction by adding an IoT module in its platform
architecture. Such trends have been applied with OCCI PaaS for Cloud Comput-
ing to enable autonomous management and deployment of applications. The same
approach can be applied for IoT applications. However, such approach is challeng-
ing in the CoT environment as self-configuration and self-adaptation mechanisms
should consider different nature of hardware components which do not permit the
same flexibility and scalability as cloud data centres.

Page 110 Chapter 6. General Conclusion and Perspectives

Bibliography

[1] E. H. Cherkaoui, E. Rachkidi, M. Santos, P. A. L. Rego, J. Baliosian, and
J. N. De, “SLA4CLOUD : Measurement and SLA Management of Hetero-
geneous Cloud Infrastructures Testbeds,” in 3th International Workshop on
ADVANCEs in ICT Infrastructures and Services, pp. 1–6, 2014.

[2] T. Moreira, E. Rachkidi, L. M. Gardini, and R. Braga, “An Enhanced Archi-
tecture for LARIISA : An Intelligent System for Decision Making and Service
Provision for e-Health using the cloud,” in 4th International Workshop on
ADVANCEs in ICT Infrastructures and Services, 2015.

[3] E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. San-
tos, and S. Fernandes, “Towards Efficient Automatic Scaling and Adaptive
cost-optimized eHealth Services in Cloud,” in 2015 IEEE Global Communi-
cations Conference: Selected Areas in Communications: E-Health (GC’ 15 -
SAC - E-Health), pp. 1–6, IEEE, dec 2015.

[4] E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. San-
tos, and S. Fernandes, “Cooperative dynamic eHealth service placement in Mo-
bile Cloud Computing,” in 2015 17th International Conference on E-health
Networking, Application & Services (HealthCom), (Boston, USA), pp. 627–
632, IEEE, oct 2015.

[5] E. Rachkidi, N. Agoulmine, D. Beläıd, and N. Chendeb, “Towards an Effi-
cient Service Provisioning in Cloud of Things (CoT),” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, IEEE, dec 2016.

[6] T. Moreira, H. Martin, E. Rachkidi, and N. Agoulmine, “An experiment on
deploying a privacy-aware sensing as a service in the Sensor-Cloud,” in 5th
International Workshop on ADVANCEs in ICT Infrastructures and Services,
pp. 1–8, 2017.

[7] E. Rachkidi, N. Agoulmine, N. Chendeb, and D. Beläıd, “Resources Optimiza-
tion and Efficient Distribution of Shared Virtual Sensors in Sensor-Cloud,” in
2017 IEEE International Communications Conference (ICC), pp. 1–6, 2017.

[8] E. Rachkidi, N. Agoulmine, J. Baliosian, and J. Bustos, “VNET : Towards
End-to-End Network Cloudification,” in 5th International Workshop on AD-
VANCEs in ICT Infrastructures and Services, pp. 1–5, 2017.

111

Page 112 Bibliography

[9] E. Rachkidi, D. Beläıd, N. Agoulmine, and N. Chendeb, “Cloud of Things
Modeling for Efficient and Coordinated Resources Provisioning,” in 25th Inter-
national Conference on COOPERATIVE INFORMATION SYSTEMS, 2017.

[10] K. Ashton, “That ’Internet of Things’ Thing,” RFiD Journal, p. 4986, 2009.

[11] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi,
I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, P. Doody, F. Peter,
G. Patrick, G. Sergio, B. Harald, Sundmaeker Alessandro, J. Ignacio Soler,
M. Margaretha, H. Mark, E. Markus, and D. Pat, “Internet of Things Strategic
Research Roadmap,” tech. rep., 2009.

[12] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, pp. 2787–2805, oct 2010.

[13] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:
Vision, applications and research challenges,” Ad Hoc Networks, vol. 10,
pp. 1497–1516, sep 2012.

[14] E. Borgia, “The Internet of Things vision: Key features, applications and open
issues,” Computer Communications, vol. 54, pp. 1–31, dec 2014.

[15] J. A. Stankovic, “Research Directions for the Internet of Things,” IEEE In-
ternet of Things Journal, vol. 1, pp. 3–9, feb 2014.

[16] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “In-
ternet of Things: A Survey on Enabling Technologies, Protocols, and Appli-
cations,” IEEE Communications Surveys & Tutorials, vol. 17, pp. 2347–2376,
jan 2015.

[17] D. Evans, “The Internet of Things - How the Next Evolution of the Internet
is Changing Everything,” Tech. Rep. April, 2011.

[18] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a Service and
Big Data,” Proceedings of the International Conference on Advances in Cloud
Computing (ACC-2012), pp. 21–29, jan 2013.

[19] P. M. Mell and T. Grance, “The NIST definition of cloud computing,” tech.
rep., National Institute of Standards and Technology, Gaithersburg, MD, dec
2011.

[20] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and Infor-
matics Journal, pp. 1–12, mar 2017.

[21] E. Cavalcante, J. Pereira, M. P. Alves, P. Maia, R. Moura, T. Batista,
F. C. Delicato, and P. F. Pires, “On the interplay of Internet of Things and
Cloud Computing: A systematic mapping study,” Computer Communications,
vol. 89-90, pp. 17–33, sep 2016.

Bibliography Page 113

[22] S. Distefano, G. Merlino, and A. Puliafito, “Enabling the Cloud of Things,” in
2012 Sixth International Conference on Innovative Mobile and Internet Ser-
vices in Ubiquitous Computing, pp. 858–863, IEEE, jul 2012.

[23] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual
network embedding: A survey,” IEEE Communications Surveys and Tutorials,
vol. 15, no. 4, pp. 1888–1906, 2013.

[24] T. Metsch, A. Edmonds, and B. Parák, “Open Cloud Computing Interface -
Infrastructure,” tech. rep., Open Grid Forum, 2016.

[25] T. Metsch and M. Mohamed, “Open Cloud Computing Interface - Platform,”
tech. rep., Open Grid Forum, 2016.

[26] M. Mohamed, D. Beläıd, and S. Tata, “Extending OCCI for autonomic man-
agement in the cloud,” Journal of Systems and Software, vol. 122, pp. 416–429,
dec 2016.

[27] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of Cloud
computing and Internet of Things: A survey,” Future Generation Computer
Systems, vol. 56, pp. 684–700, mar 2016.

[28] M. Aazam, I. Khan, A. A. Alsaffar, and E. N. Huh, “Cloud of Things: Inte-
grating Internet of Things and cloud computing and the issues involved,” in
Proceedings of 2014 11th International Bhurban Conference on Applied Sci-
ences and Technology, IBCAST 2014, pp. 414–419, 2014.

[29] M. Yuriyama and T. Kushida, “Sensor-Cloud Infrastructure - Physical Sensor
Management with Virtualized Sensors on Cloud Computing,” in 2010 13th
International Conference on Network-Based Information Systems, pp. 1–8,
IEEE, sep 2010.

[30] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing,” in Proceedings of the
2015 Workshop on Mobile Big Data - Mobidata ’15, (New York, New York,
USA), pp. 37–42, ACM Press, 2015.

[31] G. Suciu, V. Suciu, A. Martian, R. Craciunescu, A. Vulpe, I. Marcu,
S. Halunga, and O. Fratu, “Big Data, Internet of Things and Cloud Conver-
gence - An Architecture for Secure E-Health Applications,” Journal of Medical
Systems, vol. 39, p. 141, nov 2015.

[32] J. Cubo, A. Nieto, and E. Pimentel, “A Cloud-Based Internet of Things Plat-
form for Ambient Assisted Living,” Sensors, vol. 14, pp. 14070–14105, aug
2014.

[33] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutier-
rez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and D. Pfisterer,
“SmartSantander: IoT experimentation over a smart city testbed,” Computer
Networks, vol. 61, pp. 217–238, mar 2014.

Page 114 Bibliography

[34] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future Gener-
ation Computer Systems, vol. 29, pp. 1645–1660, sep 2013.

[35] M. Serrano, H. N. M. Quoc, D. Le Phuoc, M. Hauswirth, J. Soldatos, N. Ke-
falakis, P. P. Jayaraman, and A. Zaslavsky, “Defining the Stack for Service
Delivery Models and Interoperability in the Internet of Things: A Practical
Case With OpenIoT-VDK,” IEEE Journal on Selected Areas in Communica-
tions, vol. 33, pp. 676–689, apr 2015.

[36] N. Koshizuka and K. Sakamura, “Ubiquitous ID: Standards for Ubiquitous
Computing and the Internet of Things,” IEEE Pervasive Computing, vol. 9,
no. 4, pp. 98–101, 2010.

[37] S. N. Han, I. Khan, G. M. Lee, N. Crespi, and R. H. Glitho, “Service composi-
tion for IP smart object using realtime Web protocols: Concept and research
challenges,” Computer Standards & Interfaces, vol. 43, pp. 79–90, jan 2016.

[38] N. C. Kushalnagar, G. M. C. Montenegro, and C. A. Schumacher, “RFC4919:
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals,” 2007.

[39] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6
Packets over IEEE 802.15.4 Networks, RFC 4944,” Network Working Group,
pp. 1–30, 2007.

[40] R. Want, “An Introduction to RFID Technology,” IEEE Pervasive Computing,
vol. 5, pp. 25–33, jan 2006.

[41] R. Want, “Near field communication,” IEEE Pervasive Computing, vol. 10,
no. 3, pp. 4–7, 2011.

[42] R. S. Kshetrimayum, “An introduction to UWB communication systems,”
IEEE Potentials, vol. 28, no. 2, pp. 9–13, 2009.

[43] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “IEEE 802.11AH: the
WiFi approach for M2M communications,” IEEE Wireless Communications,
vol. 21, pp. 144–152, dec 2014.

[44] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, “A survey on IEEE
802.11ah: An enabling networking technology for smart cities,” Computer
Communications, vol. 58, pp. 53–69, mar 2015.

[45] L. Vangelista, A. Zanella, and M. Zorzi, “Long-Range IoT Technologies: The
Dawn of LoRa,” in Future Access Enablers of Ubiquitous and Intelligent Infras-
tructures (V. Atanasovski and A. Leon-Garcia, eds.), vol. 159 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, pp. 51–58, Cham: Springer International Publishing,
2015.

Bibliography Page 115

[46] J. Gozalvez, “New 3GPP Standard for IoT [Mobile Radio],” IEEE Vehicular
Technology Magazine, vol. 11, pp. 14–20, mar 2016.

[47] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
“Wireless Sensor Network Virtualization: A Survey,” IEEE Communications
Surveys & Tutorials, vol. 18, pp. 553–576, jan 2016.

[48] S. Kabadayi, A. Pridgen, and C. Julien, “Virtual Sensors: Abstracting Data
from Physical Sensors,” in 2006 International Symposium on a World of Wire-
less, Mobile and Multimedia Networks(WoWMoM’06), vol. 2006, pp. 587–592,
IEEE, 2006.

[49] S. Madria, V. Kumar, and R. Dalvi, “Sensor Cloud: A Cloud of Virtual
Sensors,” IEEE Software, vol. 31, pp. 70–77, mar 2014.

[50] M. Fazio and A. Puliafito, “Cloud4sens: a cloud-based architecture for sensor
controlling and monitoring,” IEEE Communications Magazine, vol. 53, pp. 41–
47, mar 2015.

[51] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor Networks.
2010.

[52] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “SenSmart: Adaptive Stack Manage-
ment for Multitasking Sensor Networks,” IEEE Transactions on Computers,
vol. 62, pp. 137–150, jan 2013.

[53] M. Dı́az, C. Mart́ın, and B. Rubio, “State-of-the-art, challenges, and open
issues in the integration of Internet of things and cloud computing,” Journal
of Network and Computer Applications, pp. 1–19, jan 2016.

[54] M. Gigli and S. Koo, “Internet of Things: Services and Applications Catego-
rization,” Advances in Internet of Things, vol. 01, no. 02, pp. 27–31, 2011.

[55] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, “Cloud monitoring: A
survey,” Computer Networks, vol. 57, pp. 2093–2115, jun 2013.

[56] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the first edition of the MCC workshop
on Mobile cloud computing - MCC ’12, (New York, New York, USA), p. 13,
ACM Press, 2012.

[57] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of Fog
Computing in the Context of Internet of Things,” IEEE Transactions on Cloud
Computing, vol. 7161, no. c, pp. 1–1, 2015.

[58] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-
Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing, vol. 8,
pp. 14–23, oct 2009.

Page 116 Bibliography

[59] U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet deployment in lo-
cal wireless networks: Motivation, architectures, applications, and open chal-
lenges,” Journal of Network and Computer Applications, vol. 62, pp. 18–40,
feb 2016.

[60] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia, “A survey on virtual machine migration and server consolidation frame-
works for cloud data centers,” Journal of Network and Computer Applications,
vol. 52, pp. 11–25, jun 2015.

[61] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe,
“Mobile fog,” in Proceedings of the second ACM SIGCOMM workshop on Mo-
bile cloud computing - MCC ’13, (New York, New York, USA), p. 15, ACM
Press, 2013.

[62] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog Computing: Principles, architectures, and applications,” in Internet of
Things: Principles and Paradigms, pp. 61–75, 2016.

[63] OpenFog Consortium Architecture Working Group, “OpenFog Reference Ar-
chitecture for Fog Computing,” no. February, pp. 1–162, 2017.

[64] A. Brogi and S. Forti, “QoS-aware Deployment of IoT Applications Through
the Fog,” IEEE Internet of Things Journal, pp. 1–1, 2017.

[65] D. Milojičić, I. M. Llorente, and R. S. Montero, “OpenNebula: A Cloud Man-
agement Tool,” IEEE Internet Computing, vol. 15, pp. 11–14, mar 2011.

[66] G. Tanganelli, C. Vallati, and E. Mingozzi, “Energy-Efficient QoS-aware Ser-
vice Allocation for the Cloud of Things,” in 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science, vol. 2015-Febru,
pp. 787–792, IEEE, dec 2014.

[67] S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Modeling of Sen-
sor Cloud: A Paradigm Shift From Wireless Sensor Network,” IEEE Systems
Journal, pp. 1–10, 2014.

[68] S. Chatterjee and S. Misra, “Optimal composition of a virtual sensor for ef-
ficient virtualization within sensor-cloud,” IEEE International Conference on
Communications, vol. 2015-Septe, pp. 448–453, 2015.

[69] S. Chatterjee, S. Sarkar, and S. Misra, “Energy-efficient data transmission
in sensor-cloud,” 2015 Applications and Innovations in Mobile Computing
(AIMoC), pp. 68–73, 2015.

[70] L. Ben Saad and B. Tourancheau, “Lifetime optimization of sensor-cloud sys-
tems,” in 2015 7th International Conference on New Technologies, Mobility
and Security (NTMS), pp. 1–5, IEEE, jul 2015.

Bibliography Page 117

[71] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-p. Calbimonte, M. Ri-
ahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, I. P. Žarko, L. Skorin-Kapov,
and R. Herzog, “OpenIoT: Open Source Internet-of-Things in the Cloud,”
in Interoperability and Open-Source Solutions for the Internet of Things,
vol. 9001, pp. 13–25, 2015.

[72] S. Distefano, G. Merlino, and A. Puliafito, “A utility paradigm for IoT: The
sensing Cloud,” Pervasive and Mobile Computing, vol. 20, pp. 127–144, jul
2015.

[73] S. Bose and N. Mukherjee, “SensIaas: A Sensor-Cloud Infrastructure with
Sensor Virtualization,” in 2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud), pp. 232–239, IEEE, jun 2016.

[74] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Sensing as a Service: Challenges,
Solutions and Future Directions,” IEEE Sensors Journal, vol. 13, pp. 3733–
3741, oct 2013.

[75] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as a
service model for smart cities supported by Internet of Things,” Transactions
on Emerging Telecommunications Technologies, vol. 25, pp. 81–93, jan 2014.

[76] J. Barbaran, M. Diaz, and B. Rubio, “A Virtual Channel-Based Framework
for the Integration of Wireless Sensor Networks in the Cloud,” in 2014 In-
ternational Conference on Future Internet of Things and Cloud, pp. 334–339,
IEEE, aug 2014.

[77] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Cloud of Things for
Sensing-as-a-Service: Architecture, Algorithms, and Use Case,” IEEE Internet
of Things Journal, vol. 3, pp. 1099–1112, dec 2016.

[78] C. Doukas and F. Antonelli, “COMPOSE: Building smart context-aware mo-
bile applications utilizing IoT technologies,” in Global Information Infrastruc-
ture Symposium - GIIS 2013, pp. 1–6, IEEE, oct 2013.

[79] A. Puliafito, “SensorCloud: An Integrated System for Advanced Multi-risk
Management,” in 2014 IEEE 3rd Symposium on Network Cloud Computing
and Applications (ncca 2014), pp. 1–8, IEEE, feb 2014.

[80] S. Distefano, G. Merlino, and A. Puliafito, “Towards the Cloud of Things
Sensing and Actuation as a Service, a Key Enabler for a New Cloud Paradigm,”
in 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, pp. 60–67, IEEE, oct 2013.

[81] S. H. Kim and D. Kim, “Multi-tenancy Support with Organization Manage-
ment in the Cloud of Things,” in 2013 IEEE International Conference on
Services Computing, pp. 232–239, IEEE, jun 2013.

Page 118 Bibliography

[82] B. Christophe, M. Boussard, M. Lu, A. Pastor, and V. Toubiana, “The web
of things vision: Things as a service and interaction patterns,” Bell Labs
Technical Journal, vol. 16, pp. 55–61, jun 2011.

[83] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, “Combining Cloud
and sensors in a smart city environment,” EURASIP Journal on Wireless
Communications and Networking, vol. 2012, p. 247, dec 2012.

[84] T. Dinh and Y. Kim, “An Efficient Interactive Model for On-Demand Sensing-
As-A-Services of Sensor-Cloud,” Sensors, vol. 16, p. 992, jun 2016.

[85] M. Lemos, C. de Carvalho, D. Lopes, R. Rabelo, and R. H. Filho, “Reducing
Energy Consumption in Provisioning of Virtual Sensors by Similarity of Het-
erogenous Sensors,” in 2017 IEEE 31st International Conference on Advanced
Information Networking and Applications (AINA), pp. 415–422, IEEE, mar
2017.

[86] C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopou-
los, “Context-aware sensor search, selection and ranking model for internet of
things middleware,” Proceedings - IEEE International Conference on Mobile
Data Management, vol. 1, pp. 314–322, 2013.

[87] C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Geor-
gakopoulos, “Sensor search techniques for sensing as a service architecture for
the internet of things,” IEEE Sensors Journal, vol. 14, no. 2, pp. 406–420,
2014.

[88] D. H. Phan, J. Suzuki, S. Omura, K. Oba, and A. Vasilakos, “Multiobjective
Communication Optimization for Cloud-Integrated Body Sensor Networks,” in
2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 685–693, IEEE, may 2014.

[89] G. Skourletopoulos, C. X. Mavromoustakis, G. Mastorakis, J. N. Sahalos,
J. M. Batalla, and C. Dobre, “Cost-benefit analysis game for efficient storage
allocation in cloud-centric Internet of Things systems: A game theoretic per-
spective,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp. 1149–1154, IEEE, may 2017.

[90] S. Misra, H.-C. Chao, R. Tirkey, A. Mondal, S. Bera, and S. Chattopadhyay,
“Optimal gateway selection in sensor-cloud framework for health monitoring,”
IET Wireless Sensor Systems, vol. 4, no. 2, pp. 61–68, 2014.

[91] S. Chatterjee and S. Misra, “QoS estimation and selection of CSP in oligopoly
environment for Internet of Things,” in 2016 IEEE Wireless Communications
and Networking Conference, vol. 2016-Septe, pp. 1–6, IEEE, apr 2016.

[92] J. Kim and J.-W. Lee, “OpenIoT: An open service framework for the Internet
of Things,” in 2014 IEEE World Forum on Internet of Things (WF-IoT),
pp. 89–93, IEEE, mar 2014.

Bibliography Page 119

[93] S. Sotiriadis, K. Stravoskoufos, and E. G. Petrakis, “Future Internet Systems
Design and Implementation: Cloud and IoT Services Based on IoT-A and
FIWARE,” in Designing, Developing, and Facilitating Smart Cities, pp. 193–
207, Cham: Springer International Publishing, 2017.

[94] T. Kramp, R. van Kranenburg, and S. Lange, Enabling Things to Talk. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013.

[95] Zhenyu Wu, T. Itala, Tingan Tang, Chunhong Zhang, Yang Ji,
M. Hamalainen, and Yunjie Liu, “Gateway as a service: A cloud comput-
ing framework for web of things,” in 2012 19th International Conference on
Telecommunications (ICT), no. Ict, pp. 1–6, IEEE, apr 2012.

[96] J. A. Galache, T. Yonezawa, L. Gurgen, D. Pavia, M. Grella, and
H. Maeomichi, “ClouT: Leveraging Cloud Computing Techniques for Improv-
ing Management of Massive IoT Data,” in 2014 IEEE 7th International Con-
ference on Service-Oriented Computing and Applications, pp. 324–327, IEEE,
nov 2014.

[97] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art
and research challenges,” Journal of Internet Services and Applications, vol. 1,
no. 1, pp. 7–18, 2010.

[98] E. Y. Nakagawa, F. Oquendo, and J. C. Maldonado, “Reference Architec-
tures,” in Software Architecture 1, pp. 55–82, Chichester, UK: John Wiley &
Sons, Ltd, may 2014.

[99] S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual sensors,”
IEEE Software, vol. 31, no. 2, pp. 70–77, 2014.

[100] F. Li, M. Vogler, M. Claessens, and S. Dustdar, “Towards Automated IoT
Application Deployment by a Cloud-Based Approach,” in 2013 IEEE 6th
International Conference on Service-Oriented Computing and Applications,
no. January 2016, pp. 61–68, IEEE, dec 2013.

[101] K. T. Tran, Efficient complex service deployment in cloud infrastructure. PhD
thesis, Universite d’Evry Val d’Essonne, 2013.

[102] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information
Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[103] Y. Zhou, S. De, W. Wang, and K. Moessner, “Search Techniques for the Web
of Things: A Taxonomy and Survey,” Sensors, vol. 16, p. 600, apr 2016.

[104] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Cloud of Things for
Sensing as a Service: Sensing Resource Discovery and Virtualization,” in 2015
IEEE Global Communications Conference (GLOBECOM), pp. 1–7, IEEE, dec
2015.

Page 120 Bibliography

[105] K. B. and M. H.T., “Sensing services in cloud-centric Internet of Things: A
survey, taxonomy and challenges,” 2015 IEEE International Conference on
Communication Workshop, ICCW 2015, pp. 1865–1870, 2015.

[106] Y. Xu and S. Helal, “An Optimization Framework for Cloud-Sensor Systems,”
in 2014 IEEE 6th International Conference on Cloud Computing Technology
and Science, vol. 2015-Febru, pp. 38–45, IEEE, dec 2014.

[107] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC R© Sensor Web En-
ablement: Overview and High Level Architecture,” in GeoSensor Networks,
pp. 175–190, 2008.

[108] A. Broring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang,
and R. Lemmens, “New Generation Sensor Web Enablement,” Sensors, vol. 11,
pp. 2652–2699, mar 2011.

[109] N. Chen, L. Di, G. Yu, and M. Min, “A flexible geospatial sensor observa-
tion service for diverse sensor data based on Web service,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 64, pp. 234–242, mar 2009.

[110] M. E. Poorazizi, S. H. L. Liang, and A. J. S. Hunter, “Testing of sensor ob-
servation services,” in Proceedings of the First ACM SIGSPATIAL Workshop
on Sensor Web Enablement - SWE ’12, no. c, (New York, New York, USA),
pp. 32–38, ACM Press, 2012.

[111] S. Liang, C.-y. Huang, and T. Khalafbeigi, “OGC SensorThings API Part
I:Sensing,” tech. rep., OGC Implementation Standard, 2016.

[112] D. Guinard and V. Trifa, “Towards the Web of Things : Web Mashups for Em-
bedded Devices,” Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), pp. 1–8, 2009.

[113] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet of Things
to the Web of Things: Resource-oriented Architecture and Best Practices,” in
Architecting the Internet of Things, pp. 97–129, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011.

[114] D. Driscoll and A. Mensch, “Devices Profile for Web Services Version 1.1,”
Tech. Rep. July, jul 2009.

[115] G. Moritz, E. Zeeb, S. Prüter, F. Golatowski, D. Timmermann, and R. Stoll,
“Devices profile for web services and the REST,” IEEE International Confer-
ence on Industrial Informatics (INDIN), pp. 584–591, 2010.

[116] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Timmer-
mann, “Implementing powerful Web Services for highly resource-constrained
devices,” in 2011 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), pp. 332–335, IEEE, mar
2011.

Bibliography Page 121

[117] I. K. Samaras, G. D. Hassapis, and J. V. Gialelis, “A modified DPWS protocol
stack for 6LoWPAN-based wireless sensor networks,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 209–217, 2013.

[118] G. Moritz, F. Golatowski, C. Lerche, and D. Timmermann, “Beyond 6LoW-
PAN: Web Services in Wireless Sensor Networks,” IEEE Transactions on In-
dustrial Informatics, vol. 9, no. 4, pp. 1795–1805, 2013.

[119] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz,
W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov,
K. Page, A. Passant, A. Sheth, and K. Taylor, “The SSN ontology of the W3C
semantic sensor network incubator group,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 17, pp. 25–32, dec 2012.

[120] C. A. Henson, J. K. Pschorr, A. P. Sheth, and K. Thirunarayan, “SemSOS:
Semantic sensor Observation Service,” in 2009 International Symposium on
Collaborative Technologies and Systems, pp. 44–53, IEEE, 2009.

[121] S. J. D. Cox, “An explicit OWL representation of ISO/OGC observations and
measurements,” CEUR Workshop Proceedings, vol. 1063, pp. 1–18, 2013.

[122] S. J. Cox, “Ontology for observations and sampling features, with alignments
to existing models,” Semantic Web, vol. 8, pp. 453–470, dec 2016.

[123] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth, “A mid-
dleware framework for scalable management of linked streams,” Web Seman-
tics: Science, Services and Agents on the World Wide Web, vol. 16, pp. 42–51,
nov 2012.

[124] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, “Toward semantic interop-
erability in oneM2M architecture,” IEEE Communications Magazine, vol. 53,
pp. 35–41, dec 2015.

[125] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-Lite: A
Lightweight Semantic Model for the Internet of Things,” UIC-ATC-ScalCom-
CBDCom-IoP-SmartWorld, pp. 1–8, 2016.

[126] A. Gangemi, Ontology design patterns for Semantic Web content, vol. 3729,
pp. 262–276. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[127] F. Scharffe, J. Euzenat, and D. Fensel, “Towards design patterns for ontology
alignment,” in Proceedings of the 2008 ACM symposium on Applied computing
- SAC ’08, (New York, New York, USA), p. 2321, ACM Press, 2008.

[128] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, “IoT-O, a Core-Domain
IoT Ontology to Represent Connected Devices Networks,” in Knowledge Engi-
neering and Knowledge Management, 20th International Conference, EKAW
2016, Bologna, Italy, Proceedings (E. Blomqvist, P. Ciancarini, F. Poggi, and

Page 122 Bibliography

F. Vitali, eds.), vol. 10024 of Lecture Notes in Computer Science, pp. 561–576,
Cham: Springer International Publishing, 2016.

[129] K. Janowicz and M. Compton, “The stimulus-sensor-observation ontology de-
sign pattern and its integration into the semantic sensor network ontology,”
CEUR Workshop Proceedings, vol. 668, 2010.

[130] M. Jansen, O. Koch, and M. Schellenbach, SNPS: An OSGi-Based Middleware
for Wireless Sensor Networks, vol. 393 of Communications in Computer and
Information Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[131] J.-p. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, “XGSN : An Open-
source Semantic Sensing Middleware for the Web of Things,” 7th International
Workshop on Semantic Sensor Networks, 2014.

[132] C. Perera, A. Zaslavsky, P. Christen, A. Salehi, and D. Georgakopoulos,
“Connecting mobile things to global sensor network middleware using system-
generated wrappers,” in Proceedings of the 11th ACM International Workshop
on Data Engineering for Wireless and Mobile Access (MobiDE’12), (New York,
New York, USA), p. 23, ACM Press, 2012.

[133] M. Waschke, Cloud Standards: Agreements That Hold Together Clouds. Berke-
ley, CA: Apress, 2012.

[134] T. Metsch, A. Edmonds, R. Nyrén, and R. Nyr, “Open Cloud Computing
Interface - Core,” tech. rep., Open Grid Forum, 2011.

[135] S. Yangui and S. Tata, “An OCCI Compliant Model for PaaS Resources De-
scription and Provisioning,” The Computer Journal, vol. 59, pp. 308–324, mar
2016.

[136] R. Boutaba and N. L. S. da Fonseca, Cloud Services, Networking, and Man-
agement, vol. 53. Hoboken, NJ: John Wiley & Sons, Inc, apr 2015.

[137] J. Parpaillon, P. Merle, O. Barais, M. Dutoo, and F. Paraiso, “OCCIware -
A formal and tooled framework for managing everything as a service,” CEUR
Workshop Proceedings, vol. 1400, pp. 18–26, 2015.

[138] J. Durand, A. Otto, G. Pilz, and T. Rutt, “Cloud Application Management for
Platforms Version 1.1,” tech. rep., OASIS Committee Specification 01, 2014.

[139] J. Durand, A. Otto, G. Pilz, and T. Rutt, “Cloud Application Management
for Platforms Version 1.2,” tech. rep., OASIS Committee Specification Draft
01, 2017.

[140] A. Ciuffoletti, “OCCI-IOT: an API to deploy and operate an IoT infrastruc-
ture,” IEEE Internet of Things Journal, vol. 4662, no. c, pp. 1–1, 2017.

[141] P. Merle, C. Gourdin, and N. Mitton, “Mobile Cloud Robotics as a Service with
OCCIware,” Proceedings of the 2nd IEEE International Congress on Internet
of Things, IEEE ICIOT 2017, vol. 1, 2017.

[142] M. Weyrich and C. Ebert, “Reference Architectures for the Internet of Things,”
IEEE Software, vol. 33, pp. 112–116, jan 2016.

[143] P. Fremantle, “A Reference Architecture for the Internet of Things (White
Paper).,” Tech. Rep. October, WSO2, 2015.

[144] S.-W. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Martin, B. Mur-
phy, and M. Crawford, “The Industrial Internet of Things Volume G1: Refer-
ence Architecture,” tech. rep., 2017.

[145] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward a standard-
ized common M2M service layer platform: Introduction to oneM2M,” IEEE
Wireless Communications, vol. 21, no. 3, pp. 20–26, 2014.

[146] K. Aberer, M. Hauswirth, and A. Salehi, “A Middleware For Fast and Flexible
Sensor Network Deployment,” Proceedings of the 32nd international confer-
ence on Very large data bases, pp. 1199–1202, 2006.

[147] F. Stefanello, V. Aggarwal, L. S. Buriol, and M. G. C. Resende, “Hybrid
Algorithms for Placement of Virtual Machines across Geo-Separated Data
Centers,” European Journal of Operational Research, 2016.

[148] F. Stefanello, V. Aggarwal, L. S. Buriol, J. F. Gonçalves, and M. G. Resende,
“A Biased Random-key Genetic Algorithm for Placement of Virtual Machines
across Geo-Separated Data Centers,” in Proceedings of the 2015 on Genetic
and Evolutionary Computation Conference - GECCO ’15, no. August, (New
York, New York, USA), pp. 919–926, ACM Press, 2015.

[149] C. G. Lee and Z. Ma, “The generalized quadratic assignment problem,” tech.
rep., 2004.

Titre : Modélisation et Optimisation du Placement de Services Composés dans une
Infrastructure Convergente de l’Informatique en Nuage et de l’Internet des Objets.

Keywords : Cloud Computing, Internet des Objects, Cloud des Objects, Optimisation des
Resources, Modélisation des Resources.

Résumé : La convergence de l’Internet des Objets IdO (Internet of Things) et de
l’Informatique en Nuage (Cloud Computing) est une approche prometteuse. D’une part,
l’Informatique en Nuage fournit des ressources de calcul, de réseau, et de stockage théoriquement
illimitées, et d’autre part, l’IdO permet l’interaction des services en nuage avec des objets du
monde réel. Une convergence efficace de ces deux technologies aura un impact certainement
important sur les innovations dans les domaines des services IT par l’introduction de nouveaux
modèles de services d’IdO à la demande. Dans un tel contexte, les objects connectés sont vitu-
alisés et offerts comme étant des services en nuage accessibles sur Internet depuis n’importe où
et à n’importe quel moment. Ces services sont connus sous le nom d’Objets Virtuels (OVs). Ils
cachent l’hétérogénéité de l’IdO et lient les objects connectés aux services en nuage traditionnels
(i.e. services de stockage) pour fournir des applications IdO.

Dans cette thèse, nous considérons d’abord une intégration partielle de l’IdO et de
l’Informatique en Nuage. Cette intégration fournit l’IdO au sein d’un seul niveau de service de
l’Informatique en Nuage. Dans ce cas, les ressources de l’IdO et de l’Informatique en Nuage
sont approvisionnées séparément. Nous nous concentrons dans ce travail sur l’orchestration des
OVs dans une infrastructure en Nuage. Nous définissons un algorithme d’approvisionnement
basé sur une stratégie de partage où chaque objet connecté est associé à un seul OV et peut être
consommé par plusieurs applications. Nous proposons deux programmes linéaires pour effectuer
l’approvisionnement des OVs. Le premier en cas où il n’y a pas des OVs précédemment déployés
dans l’infrastructure, tandis que l’autre prend en compte le cas où il y a des OVs déjà déployés.
Notre approche minimise les coûts opérationnels des OVs et la latence de communication par
rapport aux approches qui considèrent une stratégie de non-partage.

La deuxième partie de cette thèse considère une intégration complète de l’IdO et de
l’Informatique en Nuage. Nous appelons cette intégration le Nuage des Objects (NdO). Dans
ce contexte, un client sera capable de demander un approvisionnement, un déploiement, et
une mise à l’échelle automatique d’une application IdO de bout en bout à la volée avec un
minimum d’efforts de gestion. En particulier, nous abordons l’aspect de l’approvisionnement.
Nous définissons un modèle orienté ressources capable de décrire une demande d’une appli-
cation IdO et une infrastructure NdO sur différents niveaux de service. Nous basons notre
modèle sur les spécifications OCCI définies par l’OGF. En outre, nous définissons un algo-
rithme d’approvisionnement en une étape coordonnée pour orchestrer une application IdO dans
une infrastructure NdO. L’algorithme considère les ressources de l’IdO et de l’Informatique en
Nuage simultanément. Les simulations montrent qu’un processus d’approvisionnement en une
étape coordonnée est 10%−20% plus efficace que deux processus d’orchestration des ressources
de l’IdO et de l’Informatique en Nuage séparés.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title : Modelling and Placement Optimization of Compound Services in a Con-
verged Infrastructure of Cloud Computing and Internet of Things.

Keywords : Cloud Computing, Internet of Things, Cloud of Things, Resource Optimization,
Resource Modeling.

Abstract : The convergence of the Internet of Things (IoT) and Cloud Computing technolo-
gies is a promising approach. On the one hand, Cloud Computing provides virtually unlimited
computing, networking, and storage resources for constrained IoT devices. On the other hand,
the IoT enables the interaction of cloud services with real world things. Such integration stim-
ulates innovation in both areas and provides novel service delivery models such as the Sensing
as a Service in different application domains (i.e. healthcare, transportation, smart-city, smart-
building). In such convergence, things are abstracted and offered as cloud services accessible
over the Internet from any place and at any time. Such abstractions are known as Virtual
Objects (VOs) and connect things to traditional cloud services (e.g. data analytics, storage
services) to deliver IoT applications.

In this thesis, we consider first a partial integration of the IoT and Cloud Computing.
Such integration focuses on delivering the IoT within a single service level of Cloud Computing,
namely: the application, the platform, or the infrastructure level. In this context, IoT and Cloud
Computing resources are provisioned separately. We focus in this work on the orchestration
of VOs in a cloud infrastructure. For this purpose, we define a provisioning algorithm based
on a sharing strategy where each connected object is associated with a single VO and can be
consumed by multiple applications. We propose two linear programs to perform the provisioning
of VOs. The first considers no previously deployed VOs in the infrastructure, while the other
takes into consideration pre-deployed VOs. Our approach minimizes VOs operational cost and
communication latency in both cases compared to those with a non-sharing strategy.

The second part of this thesis considers a full integration of the IoT and Cloud Computing.
We refer to such integration as the Cloud of Things (CoT). In this context, a customer should be
able to request end-to-end IoT application provisioning, deployment, auto-scaling, and release
on the fly with minimal management efforts. In this thesis, we address the provisioning aspect.
We define a resource-oriented model able to describe an IoT application request and a CoT
infrastructure on different service levels. We base our model on the OCCI specifications defined
by the OGF. Furthermore, we define a single stage provisioning algorithm to orchestrate a
described IoT application into a CoT infrastructure. The algorithm considers cloud and IoT
resources simultaneously. Simulations show that a one-stage provisioning process is 10%− 20%
more efficient than two separate orchestration processes for cloud and IoT resources.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Context and Motivation
	General Context of the Research
	Motivation of the Thesis

	Contributions
	Thesis Structure

	State of the Art
	Introduction
	Background and Basic Concepts
	Internet of Things
	Cloud Computing
	Fog Computing

	Integrating Cloud Computing and the Internet of Things
	Loose Integration
	Partial Integration
	Full Integration

	Open Issues and Challenges
	Interoperability
	Resource Provisioning

	Conclusion

	Efficient Provisioning of Shared Virtual Objects
	Introduction
	Related Works
	Problem Statement
	Static Virtual Objects Placement Optimization Model
	Internet of Things Objects Clustering
	Placement Optimization Problem Formulation

	Dynamic Virtual Objects Placement Optimization Model
	Internet of Things Objects Clustering
	Domain Variable Definition
	Placement Optimization Problem Formulation

	Implementation and Evaluation
	Evaluation Settings
	Evaluation Results

	Conclusion

	Cloud of Things Resources Modelling
	Introduction
	Existing Models and Standards
	Internet of Things Environment
	Cloud Infrastructure Management Initiatives

	Cloud of Things Core Model
	Standards Classification
	Synthesis of Existing Works on Cloud and IoT Models and Standards

	Cloud of Things Infrastructure
	Network Graph Model
	Sensing and Actuating
	Things Virtualization
	Things Integration Patterns
	Scenarios

	Cloud of Things Platform
	Cloud of Things Deployment Options
	Data Components Sharing

	Conclusion

	Efficient Provisioning in the Cloud of Things
	Introduction
	Problem Statement
	Proposed Resources Provisioning Model
	Domain Variable
	Cloud of Things Infrastructure
	Cloud of Things Platform

	Implementation and Evaluation
	Evaluation Results

	Conclusions

	General Conclusion and Perspectives

