N

N

Modelling and placement optimization of compound
services in a converged infrastructure of cloud
computing and internet of things
Elie Rachkidi

» To cite this version:

Elie Rachkidi. Modelling and placement optimization of compound services in a converged infras-
tructure of cloud computing and internet of things. Networking and Internet Architecture [cs.NI].
Université Paris-Saclay; Université d’Evry-Val-d’Essonne, 2017. English. NNT: 2017SACLE030 .
tel-01761673

HAL Id: tel-01761673
https://hal.science/tel-01761673
Submitted on 9 Apr 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/tel-01761673
https://hal.archives-ouvertes.fr

.,,{hum\/crsitc TELE[:DM
= S VI'L] SudParis

A

Modélisation et Optimisation du
Placement de Services
Composeés dans une
Infrastructure Convergente de
I'Informatique en Nuage et de
I'Internet des Objets

®
universite

PARIS-SACLAY

NNT : 2017SACLEO30

Thése de doctorat de I'Université Paris-Saclay
préparée a L’Université d’Evry Val d’Essonne et Telecom SudParis

Ecole doctorale n°580 sciences et technologies de l'information et de
la communication (STIC)
Spécialité de doctorat : Informatique

Thése présentée et soutenue a Evry, le 24 Octobre 2017, par

Elie EL RACHKIDI

Composition du Jury :

M. Jean-Marc DELOSME

Professeur, Université d’Evry Val d’Essonne, France (AROBAS) Président
M. Joberto MARTINS
Professeur, Universidade Salvador, Brésil Rapporteur

M. Vania CONAN
Responsable du laboratoire réseaux, Thales Communications & Security Rapporteur
M. Djamel BELAID

Professeur, Télécom SudParis, France (SAMOVAR) Examinateur
Mme. Nada CHENDEB

Docteur, Université Libanaise, Liban Examinateur

M. Nazim AGOULMINE

Professeur, Université d’Evry Val d’Essonne, France (COSMO) Directeur de thése
Mme. Amel MAMMAR

Maitre de Conférences, Télécom SudParis, France (SAMOVAR) Invitée

+J
0]
-
@)
)
O
O
L)
()
o
()
7y
D
i -
—







Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors, Prof. Nazim
AGOULMINE, Prof. Djamel BELAID, and Dr. Nada CHENDEB for giving me the
chance to realize my Ph.D. research, for their knowledge, enthusiasm and support
over the years. Without their guidance, this work would not have been achievable.

I am truly grateful to all members of the thesis jury, Prof. Joberto MARTINS,

Prof. Vania CONAN, Prof. Jean-Marc DELOSME, Prof. Djamel BELAID, and Dr.
Nada CHENDERB for their time, encouragement and constructive feedback. Their
comments are very valuable for my future works.

I am thankful for my colleagues in the LRSM team, Elhadi CHERKAOUI, Thi-
ago MOREIRA, and Mustapha AIT-IDIR for sharing a lot of ideas and for their
friendly collaboration.

I would also like to thank my cousins Wissam RACHKIDI and Diana RACHKIDI
for their support throughout the thesis. Their presence makes Paris home.

I am also indebted to my parents who always believe in me and encourage me
to follow my dreams.

Finally, to all my friends, so many that I could not cite their names here, thank
you for being with me for all these years. I greatly value their help and friendship.

Evry, 2017



Publications

E. H. Cherkaoui, E. Rachkidi, M. Santos, P. A. L. Rego, J. Baliosian, and J. N.
De, “SLA4CLOUD : Measurement and SLA Management of Heterogeneous Cloud
Infrastructures Testbeds,” in 3th International Workshop on ADVANCEs in ICT
Infrastructures and Services, pp. 1-6, 2014

T. Moreira, E. Rachkidi, L. M. Gardini, and R. Braga, “An Enhanced Architec-
ture for LARIISA : An Intelligent System for Decision Making and Service Provision
for e-Health using the cloud,” in 4th International Workshop on ADVANCEs in ICT
Infrastructures and Services, 2015

E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. San-
tos, and S. Fernandes, “Towards Efficient Automatic Scaling and Adaptive cost-
optimized eHealth Services in Cloud,” in 2015 IEEE Global Communications Con-
ference: Selected Areas in Communications: E-Health (GC’ 15 - SAC - E-Health),
pp- 1-6, IEEE, dec 2015

E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. San-
tos, and S. Fernandes, “Cooperative dynamic eHealth service placement in Mobile
Cloud Computing,” in 2015 17th International Conference on E-health Networking,
Application € Services (HealthCom), (Boston, USA), pp. 627-632, IEEE, oct 2015

E. Rachkidi, N. Agoulmine, D. Belaid, and N. Chendeb, “Towards an Efficient
Service Provisioning in Cloud of Things (CoT),” in 2016 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1-6, IEEE, dec 2016

T. Moreira, H. Martin, E. Rachkidi, and N. Agoulmine, “An experiment on
deploying a privacy-aware sensing as a service in the Sensor-Cloud,” in 5th Interna-
tional Workshop on ADVANCEs in ICT Infrastructures and Services, pp. 1-8, 2017

E. Rachkidi, N. Agoulmine, N. Chendeb, and D. Belaid, “Resources Optimization
and Efficient Distribution of Shared Virtual Sensors in Sensor-Cloud,” in 2017 IEEE
International Communications Conference (ICC), pp. 1-6, 2017

E. Rachkidi, N. Agoulmine, J. Baliosian, and J. Bustos, “VNET : Towards End-
to-End Network Cloudification,” in 5th International Workshop on ADVANCESs in
ICT Infrastructures and Services, pp. 1-5, 2017

E. Rachkidi, D. Belaid, N. Agoulmine, and N. Chendeb, “Cloud of Things Mod-
eling for Efficient and Coordinated Resources Provisioning,” in 25th International
Conference on COOPERATIVE INFORMATION SYSTEMS, 2017 - Accepted 25
August 2017



Contents

1 Introduction

1.1

1.2
1.3

2.1
2.2

2.3

2.4

2.5

3.1
3.2
3.3
3.4

3.5

3.6

Context and Motivation . . . . . . . . . .. . ... ... ... ...,
1.1.1 General Context of the Research . . . . ... ... ......
1.1.2 Motivation of the Thesis . . . . . . . . . ... . ... .....
Contributions . . . . . . . ...
Thesis Structure . . . . . . . . . ...

State of the Art

Introduction . . . . . ...
Background and Basic Concepts . . . . . . . . ... ... ... ...
2.2.1 Internet of Things. . . . . . . . ... ... ... ... .....
2.2.2 Cloud Computing . . . . . . . . . ... ... ...
2.2.3 Fog Computing . . . . . .. .. ...
Integrating Cloud Computing and the Internet of Things . . . . . . .
2.3.1 Loose Integration . . . . . . .. ... ... L.
2.3.2 Partial Integration . . . .. . ... ...
2.3.3 Full Integration . . . . . .. .. ... .o
Open Issues and Challenges . . . . . . . .. ... ... ... .. ...
2.4.1 Interoperability . . . . . .. . .. ... oo
2.4.2 Resource Provisioning . . . ... ... ... ... ...
Conclusion . . . . . . . ...

Efficient Provisioning of Shared Virtual Objects

Introduction . . . . . . ...
Related Works . . . . . . .. .. o
Problem Statement . . . . . .. .. ... . oo
Static Virtual Objects Placement Optimization Model . . . . . . . ..
3.4.1 Internet of Things Objects Clustering . . . . . . . .. .. ...
3.4.2 Placement Optimization Problem Formulation . . . . . . . ..
Dynamic Virtual Objects Placement Optimization Model . . . . . . .
3.5.1 Internet of Things Objects Clustering . . . . . . . .. ... ..
3.5.2  Domain Variable Definition . . . . .. ... ... ... ....
3.5.3 Placement Optimization Problem Formulation . . . . . . . ..
Implementation and Evaluation . . . . .. .. ... ... ... ....
3.6.1 Evaluation Settings . . . . . . .. .. .. ... ... ...

il

10
11
11
15
16
18
19
20
23
24
24
26
27



3.6.2 Evaluation Results . . . . . . . . . .. . ... ... 49

3.7 Conclusion . . . . . . . . 51
4 Cloud of Things Resources Modelling 57
4.1 Introduction . . . . . . . ... 58
4.2 Existing Models and Standards . . . .. ... ... 0L 59
4.2.1 Internet of Things Environment . . . . . . . . ... ... ... 60
4.2.2 Cloud Infrastructure Management Initiatives . . . . . . . . .. 65
4.3 Cloud of Things Core Model . . . . . .. .. ... ... ... ..... 70
4.3.1 Standards Classification . . . . . ... ... .. .. ... ... 71
4.3.2  Synthesis of Existing Works on Cloud and IoT Models and
Standards . . . . . . ... 72
4.4 Cloud of Things Infrastructure . . . . . . .. .. ... ... ... ... 74
4.4.1 Network Graph Model . . . . . . .. ... ... .. ... ... 74
4.4.2 Sensing and Actuating . . . . .. ..o 75
4.4.3 Things Virtualization . . . . . . . . . ... ... 76
4.4.4 Things Integration Patterns . . . . . . . .. .. .. ... ... 79
4.4.5 Scenarios . . ... 79
4.5 Cloud of Things Platform . . . . .. .. ... ... ... ... .... 82
4.5.1 Cloud of Things Deployment Options . . . . . . . .. ... .. 82
4.5.2 Data Components Sharing . . . . .. .. .. ... ... .... 86
4.6 Conclusion . . . . . . . .. 89
5 Efficient Provisioning in the Cloud of Things 91
5.1 Introduction . . . . . . ..o 92
5.2 Problem Statement . . . . . . ... ... Lo 93
5.3 Proposed Resources Provisioning Model . . . . . . . . . ... ... .. 95
5.3.1 Domain Variable . . . . .. ... .. ... 96
5.3.2 Cloud of Things Infrastructure. . . . . . . .. ... ... ... 99
5.3.3 Cloud of Things Platform . . . . ... ... ... ... .... 101
5.4 Implementation and Evaluation . . . . . . ... ... .. ... .... 103
5.4.1 Evaluation Results . . . . ... ... ... ... ... ..., 103
5.5 Conclusions . . . . . . ... 103

6 General Conclusion and Perspectives 107



List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

3.13

3.14

3.15

4.1
4.2
4.3
4.4

Problem Illustration. . . . . . . . ... ... ... ... ... ..., 5)
Internet of Things Essential Building Blocks. . . . . . . .. ... ... 12
Traditional Cloud Computing Service Layers and Key Characteristics. 15
Fog Computing Conceptual Architecture . . . . . . . ... ... ... 17
Conceptual [oT Framework with Cloud Computing at the Centre . . 19
Difference between Data-Centric and Device-Centric Approaches . . . 21
Cloud of Things Service Models as Defined by Existing Works . . . . 23
Cloud Computing and the [oT Separate Provisioning Processes. . . . 26
Virtual Object Provisioning Approaches. . . . . . . .. ... ... .. 30
Virtual Object Sharing Challenges Examples. . . . . .. .. ... .. 33
Clustering Steps Before the Provisioning Process. . . . . . .. .. .. 35
Network Model of the Placement Problem. . . . . . . ... ... ... 37
Provisioning Scenario with the QoS Index. . . . . . . . . ... .. .. 40
Scenario of A Migration Operation. . . . . . . . ... ... ... ... 43
Scenario of A Provisioning Reconfiguration . . . . . . . .. ... ... 45
Number of Sensors and Clusters for Shared and Unshared Approaches. 50
Time for Solving the Proposed Linear Program . . . . . .. ... .. 50
Cost of Allocated Physical Resources for Applications using Shared

and Unshared Approaches (Simulation 1). . .. ... ... ... ... 53
Cost of Allocated Physical Resources for Applications using Shared

and Unshared Approaches (Simulation 2 & 3). . . . . .. ... .. .. 53
Mean Latency and Cost of Physical Resources for Applications with

and without the QoS Index (Simulation 1). . . . . . ... . ... ... 54
The Relative Gain in terms of Latency and Cost with and without

the QoS Index (Simulation 1). . . . . . ... ... ... ... 54
Mean Latency and Cost of Physical Resources for Applications with

and without the QoS Index (Simulation 2). . . . . . ... .. ... .. 55
The Relative Gain in terms of Latency and Cost with and without

the QoS Index (Simulation 2). . . . . . ... ... .. L. 55
Cloud-Based IoT Platform and and Cloud of Things Architectures . . 58
Internet of Things Web Model Levels . . . . . .. ... ... .. ... 60
SensorThings UML Diagram . . . . . . . .. ... ... ... ..... 61
Overview of the [oT-O Architecture . . . . . . . . ... .. ... ... 63



4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14
4.15

4.16
4.17
4.18

4.19
4.20
4.21
4.22
4.23

5.1
5.2

5.3
5.4
5.5

5.6

CIMI, OCCI, and CAMP Role in Cloud Architecture . . . . . . . .. 65
Resources Forms in CIMI . . . . ... .. .. ... ... ....... 66
OCCI Core Model . . . . . . . .. ... ... . .. 67
OCCI Infrastructure UML Representation . . . . ... ... .. ... 68
CAMP Basic Resources Relationships . . . . . ... .. ... .. ... 69
Cloud and IoT Studied Standards . . . . . . ... ... ... ..... 70
OCCI Extensions (coloured boxes) to Enable a Cloud of Things (CoT)

Graph Representation. . . . . . . . ... .. ... ... ... ... . 75
Extensions of the OCCI Infrastructure for the Cloud of Things. . . . 76
Representation of Node Instances with Different Virtualization Types. 78
Integration Pattern Modelled using the OCCI CoT Infrastructure. . . 80
Cloud of Things Substrate Graph Description with OCCI Infrastruc-

ture Extended Model. . . . . . . . ..o 81
[aaS Mapping Process using the defined OCCI Infrastructure Model. 82
OCCI Platform UML Representation . . . . .. .. .. ... ..... 83
UML Representation of the IoT Environment Services Based on the

IoT-A. . . . 84
Cloud of Things Deployment Options Based on IoT-A. . . . . . . .. 85
X-GSN Container Architecture . . . . . . .. . ... .. ... .... 86
Collector Component Architecture Example . . . . . .. . . ... .. 86
Extensions of the OCCI Platform for the Cloud of Things. . . . . . . 87
Avoiding Mapping Replication Example Scenario. . . . . . . .. . .. 89
Cloud of Things Integral Mapping Scenario . . . . . . . .. ... ... 92
Distribution of Request Nodes with IoT Resources on Multiple Sub-

strate Nodes . . . . . . . . . 93
Re-using IoT Resources and Corresponding Deployed Delivery Services 94
The Mapping of a Request Node with Sensing Resources. . . . . . . . 98
Relative Cost Gain of a One Stage Mapping over a Two Stages Map-

pingin CoT. . . . . . . . .. 105
Cost of a One Stage Mapping Compared to a Two Stages Mapping. . 105



List of Tables

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

Complementary aspects of Cloud Computing and the Internet of Things 18

Notation Table . . . . . . . .. ... ..o 38
Configuration Settings . . . . . . . . . . ... ... 48
Summary of Studied Cloud Computing and IoT Models and Standards 73
Attributes Defined for the NetworkLink Type . . . . . .. ... .. 74
Attributes Defined for the Sensor Type. . . . . . . . .. ... ... 7
Attributes Defined for the Actuator Type . . . . . . . .. .. ... 7
Attributes Defined for the Location Type . . . . . .. ... .. .. 7
Attributes Defined for the SystemProperty Type . . . . .. .. .. 77
Attributes Defined for the CollectorComponent Mixin . . . . . . . 88
Attributes Defined for the DeviceComponent Mixin . . . . . . . .. 88

Equivalence between the Analytical Model and the CoT OCCI model 96
Notation Table . . . . . . . . 97
Prices Definitions Table . . . . . . . . . . . . ... 97

vii






Acronyms

Symbols

6LoWPAN IPv6 over Low-power Wire-
less Personal Area Networks.

A

API Application Programming Inter-
face.

AWS Amazon Web Services.
B
BLE Low Energy Bluetooth.
C

CAMP Cloud Application Management
for Platforms.

ClaaS City Infrastructure as a Service.
CIM Common Information Model.
CIMI Cloud Infrastructure Management
Interface.

CoAP Constrained Application Proto-
col.

CoT Cloud of Things.

CPaaS City Platform as a Service.
CPU Central Processing Unit.
CRUD Create, Read, Update,
Delete.

CSaaS City Software as a Service.

and

D

DMTF Distributed Management Task
Force.

DNS Domain Name System.

DPWS Devices Profile for Web Services.

X

E

EGI European Grid Infrastructure.
EPC Electronic Product Code.

ETSI European Telecommunications
Standards Institute.

EU European Union.

EXIT Efficient XML Interchange.

F

FI Future Internet.
FTP File Transfer Protocol.

G

GE Generic Enabler.
GSN Global Sensor Network.

H
HTTP Hypertext Transfer Protocol.
I

TaaS Infrastructure as a Service.

ID Identifier.

IEEE Institute of Electrical and Elec-
tronics Engineers.

IToT Industrial Internet of Things.

IoT Internet of Things.

IoT-A ARM Internet of Things Archi-
tecture Reference Model.

IoT-A Internet of Things Architecture.
IoT-O Internet of Things Ontology.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

IT Information Technology.

J



JSON JavaScript Object Notation.
L

LAN Local Area Network.

LOV Linked Open Vocabularies.
LOVA4IoT Linked Open Vocabularies for
Internet of Things.

LP Linear Program.

LSM Linked Stream Middleware.

LTE Long Term Evolution.

LTE-A Long Term Evolution Advanced.

M

M2M Machine to Machine.

MCC Mobile Cloud Computing.
MQTT Message Queue Telemetry
Transport.

N

NB-IoT Narrow Band IoT.

NFC Near Field Communication.
NGSI Next Generation Services Inter-
face.

NIST national institute of standards
and technology.

0]

O&M Observations and Measurements.
OASIS Organization for the Advance-
ment of Structured Information Stan-
dards.

OCCI Open Cloud Computing Inter-
face.

OData Open Data.

ODP Ontology Design Patterns.

OFC Open Fog Consortium.

OGC Open Geospatial Consortium.
OGPF Open Grid Forum.

OS Operating System.

OVF Open Virtualization Format.
OWL Ontology Web Language.
OWL-DL Ontology Web Language De-
scription Logic.

P

PaaS Platform as a Service.
PAN Personal Area Network.

Q

Qol Quality of Information.
QoS Quality of Service.

R

RAN Radio Access Network.

RDF Resource Description Framework.
RDF'S Resource Description Framework
Schema.

REST REpresentational State Transfer.
RFID Radio Frequency Identification.
RMI Remote Method Invocation.
RuleML Rule Markup Language.

S

S2aaS Sensing as a Service.

SAaaS Sensor/Actuator as a Service.
SaaS Software as a Service.

SAN Semantic Actuator Network.
SCA Service Component Architecture.
SDD Sensor Device Definition.
SensorML Sensor Model Language.
SLI Service Layer Integration.

SN Substrate Network.

SINPS Sensor Node Plug-in System.
SOA Software Oriented Architecture.
SOaaS Smart Object as a Service.
SOAP Simple Object Access Protocol.
SOS Sensor Observations Service.
SOSA Sensor, Observation, Sample, and
Actuator.

SOSA-O Sensor, Observation, Sample,
and Actuator Ontology.

SPARQL SPARQL Protocol and RDF
Query Language.

SQL Structured Query Language.

SSN Semantic Sensor Network.
SSN-XG Semantic Sensor Network In-
cubator Group.



SSO Stimulus-Sensor-Observation.
SWE Sensor Web Enablement.
SWRL Semantic Web Rule Language.

T

TaaS Things as a Service.
TOSCA Topology and Orchestration
Specification for Cloud Applications.

U

uCode Ubiquitous Code.

UDP User Datagram Protocol.
UML Unified Modeling Language.
UNB Ultra Narrow-Band.

URI Uniform Resource Identifier.
URL Uniform Resource Locator.
UWRB Ultra Wide-Band.

\%

vCPU Virtual Central Processing Unit.
VM Virtual Machine.

VN Virtual Network.

VNE Virtual Network Embedding.
VO Virtual Object.

VOG Virtual Object Group.

A%

W3C World Wide Web Consortium.
WAN Wide Area Network.

WMSN Wireless Mesh Sensor Network.
WoT Web of Things.

WS Web Service.

WS-Discovery Web Services Dynamic
Discovery.

WSN Wireless Sensor Network.
WWW World Wide Web.

X
X-GSN eXtended Global Sensor Net-

work.

XML eXtensible Markup Language.
XMPP eXtensible Messaging and Pres-
ence Protocol.






Chapter 1

Introduction

Contents

1.1 Context and Motivation . ... ... ... .........
1.1.1  General Context of the Research . . . . ... .. ... ..
1.1.2 Motivation of the Thesis . . . . . . ... ... ... ....

1.2 Contributions . . . . . ... ... 000000 oo oo

1.3 Thesis Structure . . . ... ... ... ..o




Page 2 Chapter 1. Introduction

1.1 Context and Motivation

1.1.1 General Context of the Research

The Internet of Things (IoT) paradigm was first coined in 1999 by Kevin Ash-
ton [10]. The term referred to machines enhancement with the ability to provide
contextual and environmental information over the Internet. Such idea aimed to
replace humans and automatically provide data to computer systems with context-
aware objects! (i.e. Things). Unlike humans who are error prone, these connected
objects have better accuracy, reliability, and working time. The [oT evolved to
encompass a broader vision as defined in [11]:

The IoT allows people and things to be connected Any-time, Any-place,
with Any thing and Anyone, ideally using Any path/network and Any
service.

Furthermore, the IoT integrated an extensive range of domains such as health-
care, transportation, agriculture, industry, building management, energy, logistics,
and many others [12-16]. Nowadays, the IoT optimizes processes regarding cost,
efficiency, performance, and effectiveness. It minimizes the operational cost for
businesses and industries by reducing the man power and thriving for autonomic
systems able to operate without human intervention. Moreover, the IoT increases
efficiency using sensor-driven analytics and decision making reasoning for optimiz-
ing real world resources consumption such as the energy, maintenance operations,
and environments monitoring. The prompt reporting and actuation in complex
autonomous systems allow the IoT to increase performance while saving time and
reducing costs.

Benefits mentioned above accelerated the integration of [oT solutions in domestic
environments (e.g. wearables, automated homes), businesses (e.g. retails, factories),
and wide-scope deployments (e.g. smart cities, environmental monitoring). The
quick adoption of the IoT resulted in an unprecedented growth rate of connected
objects which are expected to reach 50 billion units in 2020 based on a study by
Cisco [17]. Moreover, the proliferation of IoT device manufacturers alongside the
diversity of application domains produced heterogeneous connected objects with
different capabilities, properties, and functions. This huge amount of heterogeneous
connected objects interacting over the network has been identified as one of the
major open issues related to the IoT as discussed in several recent studies [12—
16]. Consequently, the ToT produces a significant amount of unstructured data
generated by connected objects [18]. These data need to be managed and handled
by the network between IoT devices and third party applications. As a result, IoT
infrastructures need to be scalable to cope with the huge amount of heterogeneous
devices communicating over the Internet.

” N )

'We use the terms: “objects,” "things,” ”connected objects,” "IoT nodes,” and "IoT devices”
interchangeably in this thesis to give the same meaning as they are frequently used in IoT related
documentation. Other terms are also employed by the research community such as ”"smart objects.”



1.1. Context and Motivation Page 3

In this context, Cloud Computing [19] emerged as a promising solution for the
[oT scalability challenge. Cloud Computing offers on-demand network access to a
theoretically unlimited pool of configurable virtual resources such as networking,
computing, and storage. These resources can be automatically provisioned, scaled,
and released with a pay-per-use business model on the fly . Hence, Cloud Computing
presents several essential characteristics namely: on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured service. Such features are
compatible with the IoT requirements as they transfer the processing power from
resource-constrained devices to powerful data centres. Moreover, the cloud offers
virtually infinite scalability which is needed to encompass large scale IoT infras-
tructures and corresponding big data. In this perspective, existing cloud providers
such as Amazon? and Google? developed IoT related cloud services to ease the man-
agement, development, and maintenance of IoT applications. Besides, new cloud
platforms specializing solely in IoT offerings have appeared [20] such as Xively?.

The convergence of Cloud Computing and the IoT is possible in two distinct
ways [21]: bringing the cloud to connected objects or bringing IoT devices to the
cloud. The first case refers to the conventional approach which consists in using
the cloud to compensate for low-powered connected objects. Such approach treats
[oT devices as data sources with no additional capabilities while using the cloud
to collect, process, store, and visualize generated data. Separately, bringing IoT
devices to the cloud leverages connected objects capabilities with some of the cloud’s
characteristics such as the on-demand provisioning. This integration model provides
a cloud environment aware of the underlying IoT resources (i.e. sensing, actuating)
and able to offer them on-demand alongside cloud resources (i.e. compute, network,
storage). This latter model is sometimes referred to as the Cloud of Things (CoT)
[22].

1.1.2 Motivation of the Thesis

In a CoT context, things are abstracted and offered as cloud services accessible
over the Internet from any place and at any time. Such software representations of
connected objects in the cloud are known as Virtual Objects (VOs). They promote
flexible on-demand provisioning of IoT resources. Indeed, VOs are only deployed
when their corresponding connected objects are used. Furthermore, their allocated
cloud resources can auto-scale as needed to cope with end-users demand. These VOs
interconnect with each other or with traditional cloud services (e.g. data analytics,
storage service, visualization dashboard) to deliver IoT applications. Consequently,
the CoT environment provides means to perform end-to-end IoT applications provi-
sioning, deployment, auto-scaling, and release on the fly with minimal management
efforts. Hence, the CoT is a step closer towards realizing the IoT vision. Figure
1.1 illustrates the process of deploying an [oT application in a CoT infrastructure.
A CoT customer specifies an IoT application request which is consumed by end-

Zhttps://aws.amazon.com /iot /
3https://cloud.google.com /solutions /iot/
“https://www.xively.com/



Page 4 Chapter 1. Introduction

users. We refer to this request as a CoT request. We also might refer to a CoT
infrastructure as a CoT substrate throughout this thesis.

In this thesis, we aim to provide a means for CoT customers to describe their
requests and CoT providers to represent their infrastructure. Furthermore, we pro-
vide a solution for CoT providers to orchestrate an incoming request. Let’s consider
a scenario where a CoT customer requests a weather forecasting application from a
CoT provider to serve end-users. The weather forecasting application (see Figure
1.1) is composed by multiple interconnected atomic services. It contains two data
sources (e.g. temperature sensors), two VOs (i.e. data collection services), and
three distinct cloud services. These cloud services represent a storage service (to
store collected temperature data), a data analytics service (to calculate the weather
forecasting), and a visualization service (to provide a dashboard for end-users). The
solutions proposed in this thesis aim to help CoT providers to represent and deploy
such a CoT request in a CoT infrastructure.

Several challenges should be addressed to realize the described scenario. These
challenges are the following:

e How to efficiently deliver selected IoT resources through VOs to deployed
cloud services (i.e. cloud applications) while reducing the operational cost
and maintaining minimal data transmission latency?

e How to efficiently provision and orchestrate the entire CoT request in a single-
stage (i.e. provision [oT and cloud resources at the same time) while minimiz-
ing the operational cost, considering end-users demands, and respect Quality
of Service (QoS) terms?

The first question addresses the optimization of cloud resources allocated for
VOs as well as their placement across cloud data centres. The orchestration of VOs
should account for the placement of cloud applications across data centres and the
geographical location of corresponding connected objects. On the one hand, data
streams produced by connected objects should be routed via VOs to cloud appli-
cations through least costly network paths with available bandwidth and low data
transmission latency. On the other hand, VOs should be deployed in low cost cloud
data centres to minimize computing and networking costs. Hence, a provisioning
mechanism is needed to determine the optimal placement of VOs across data cen-
tres. Such optimal placement aims to minimize the operational cost for hosting VOs,
the data transmission cost through selected hosts, and the communication latency
over corresponding network links. Therefore, the first problem is, more specifically,
how to optimally distribute VOs over different cloud data centres to minimize cloud
resources cost (i.e. compute, storage, network) and communication latency while
respecting required QoS terms.

This approach is in line with the current trend of major cloud providers such
as Amazon and Google. They provide VOs for abstracting connected objects in
the cloud. These VOs are internally managed and spanned across different geo-
graphically distributed data centres. Furthermore, these VOs can be connected to
available services offered by cloud providers’ catalogues. For example, the Amazon



1.1. Context and Motivation Page 5

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Cloud of Things (CoT) Application
(i.e. Request)

Describes

-

D)
—
=] '
9 o~ | Manages
S o :
= = i
< < |
) - |
s 2 !
&g o |
g = ;
— N 1
~ : .
o © . CoT Provider
(O :

o5 Cloud Data Analytics Storage Visualization

'EJEE’ Centre Service Service Service
Virtual D
VO . ata_Source
Object Service

Figure 1.1: Problem Illustration.

Web Services (AWS) instantiates "device shadows” (i.e. VOs) to connect customers’
[oT devices. It also automates the connection of these device shadows to available
complementary services such as the Amazon storage services. Thus, there is a need
to optimize the provisioning of these VOs to increase profits.

The second problem addressed in this thesis is related to a holistic view of the
[oT application request and the CoT infrastructure. In fact, a CoT request pro-
visioning consists of several steps: (1) the selection of connected objects, (2) the
placement of cloud services, and (3) the orchestration of VOs linking connected ob-
jects and cloud services. These provisioning steps can be performed either without
coordination, in a multiple-stage coordination, or a single-stage coordination. An
uncoordinated provisioning implies that each step is performed independently. A
multiple-stage coordination means the steps are executed separately but the relation
between different steps is considered. For example, the orchestration of VOs is ex-
ecuted while considering the geographical location of selected connected objects. A
single-stage coordination suggests that all steps are performed simultaneously while
taking into account the effect each step has on the other. For example, the selection
of connected objects and the orchestration of VOs are done at the same time. In this
context, the execution of these provisioning steps in uncoordinated or coordinated



Page 6 Chapter 1. Introduction

multiple-stage is inefficient as different placement decisions are based on a partial
view of the infrastructure [23]. Such an approach reduces the provisioning efficiency
compared to a coordinated single-stage provisioning [23]. Therefore, a provisioning
mechanism should map in a single-stage a given CoT request onto the CoT sub-
strate. However, such a provisioning mechanism requires a novel resource-oriented
model which provides a means to describe a requested IoT application. Further-
more, the model should also describe the CoT substrate on which the CoT request
will be deployed.

These problems are the research challenges addressed in this thesis, and their
corresponding solutions constitute the main achieved contributions. These contri-
butions are briefly presented in the following section.

1.2 Contributions

Concerning the challenges identified in the previous section, the first contribution
of this thesis consists in optimizing the provisioning of VOs in a cloud infrastruc-
ture. VOs hide the heterogeneity of underlying IoT resources and connect them
to cloud applications via standardized Application Programming Interfaces (APIs).
Therefore, it becomes crucial to optimize the placement of VOs across cloud data
centres to minimize their operational cost and the network latency between con-
nected objects and cloud applications. There exist different possible strategies when
employing VOs to deliver IoT resources. In fact, each connected object can be linked
to one or multiple VOs. Furthermore, each VO can serve one or several applications.

In our approach, we consider that each connected object is associated with a sin-
gle VO that can be shared among multiple applications. The sharing strategy aims
to minimize the number of connected objects that are needed to satisfy applications’
requirements. Therefore, less VOs are required to be deployed which reduces the
operational cost. However, a shared strategy increases the model complexity since
the placement decision for each VO becomes dependent on multiple applications
QoS requirements. We formulate this problem as a Linear Program (LP) with an
objective function that aims to minimize VOs’ operational cost alongside the data
transmission latency between connected objects and cloud applications. This LP
outputs the optimal placement of VOs in an infrastructure with no previously de-
ployed VOs or cloud applications. We refer to this model as the static model. Once
VOs are deployed in the infrastructure, they can be reused for subsequent cloud
applications. In this case, the provisioning process should remap reused VOs based
on the new cloud applications requirements and configuration. In this perspective,
we introduce a second LP. Its objective function adds the migration cost in addition
to the costs considered in the previous LP. This model aims to orchestrate a set of
VOs which contains previously deployed and newly requested VOs. We refer to the
latter model as the dynamic model.

The second contribution of this thesis focuses on defining a resource-oriented
model able to describe a CoT request and substrate. A CoT request corresponds to
a requested loT application specified by a CoT customer as illustrated in Figure 1.1.



1.3. Thesis Structure Page 7

The CoT substrate corresponds to the interconnected entities on which a CoT re-
quest can be mapped. CoT entities correspond to cloud data centres, connected
objects, gateways, and many others. Moreover, CoT requests and substrates can
be specified on the infrastructure level or the platform level. On the infrastructure
level, only hardware level resources are described such as compute, network, storage,
sensors, and actuators. On the platform level, software components specifications
are described alongside hardware level information. We identify the requirements of
such requests and substrates to define a formalism for describing them at the infras-
tructure and platform levels. We focus on the orchestration aspects in our model.
However, the described model can be extended to perform deployment operations
in the CoT environment. We base our model on the Open Cloud Computing Inter-
face (OCCI) specifications defined by the Open Grid Forum (OGF). We adopt the
OCCI because it is simple, open, and expandable. We adapt and extend the OCCI
infrastructure [24] and platform [25,26] models previously defined for the cloud to
encompass the CoT environment. Since we focus on provisioning aspects, we propose
a graph-based model to represent the CoT requests and substrates. However, an
associated mechanism to perform the mapping between both CoT graphs is needed
which leads to the last contribution in this thesis.

Finally, the third contribution addresses the coordinated single-stage provision-
ing problem of a CoT request onto a CoT substrate. An IoT application request
description includes end-users expected demands, requested cloud services (e.g. an-
alytics, storage, visualization), needed connected objects, and required VOs for con-
necting needed IoT devices to requested cloud services. Nowadays, the provisioning
of these components has been done separately, with or without coordination. For
example, provisioning VOs while considering that connected objects are already se-
lected and cloud services are previously deployed is identical to the first contribution.
Consequently, the provisioning process of a given CoT request is not able to opti-
mize efficiently all resources simultaneously which degrade the QoS and increases
the operational cost. Therefore, we provide a global analytical model which provides
a holistic view of a CoT substrate. We derive a LP able to orchestrate the entire
CoT request at the same time. It also takes into consideration end-users demands
and QoS requirements (i.e. latency).

1.3 Thesis Structure

The thesis is structured as follows:

Chapter 1 introduces the context and the motivation of the research. This chap-
ter identifies the objectives of the thesis and presents the main contributions briefly.

Chapter 2 presents the state of the art on the integration of Cloud Computing
and the IoT. It provides an overview of the basic elements forming the CoT. For
this matter, existing integration strategies are also discussed. They highlight the
different approaches used to integrate Cloud Computing and the IoT. Then, the
main challenges to achieving a seamless convergence are discussed.

Chapter 3 addresses the placement optimization of VOs within a cloud infras-



tructure to deliver IoT resources for cloud applications. Firstly, related works are
discussed to position our work which emphasizes VOs sharing. Then, challenges
related to the placement of shared VOs in the cloud are presented. We propose
two LPs to orchestrate VOs across cloud data centres. The problem is expressed
in function of the average data traffic between connected objects, VOs, and cloud
applications. Both LPs objective functions aim to minimize the operational costs
as well as the data delivery latency. However, one model deals with a CoT environ-
ment without previously deployed VOs. The other considers that VOs are partially
deployed.

Chapter 4 is dedicated to model the resources of a CoT environment. It discusses
existing standards and resource-oriented models specified in the literature. The
purpose is to identify a suitable set of specifications for modelling the CoT requests
and substrates. We select the OCCI standard due to its flexibility and comprehensive
description of the Cloud Computing service models. In this thesis, we propose to
extend and adapt the OCCI standard to encompass the CoT infrastructure and
platform resource models. Finally, several scenarios are provided to show how the
proposed resource-oriented model enables the representation of a CoT request and
substrate, as well as the execution of a single-stage mapping.

Chapter 5 deals with an end-to-end IoT application provisioning in converged
Cloud Computing and IoT environments. It deals with the provisioning of a CoT
request graph onto a CoT substrate graph in a single-stage. Two LPs are devised
for CoT infrastructure and platform service levels mapping. In addition, we demon-
strate by simulations the advantage of a coordinated single-stage provisioning pro-
cess compared to a multiple-stage provisioning process.

Finally, Chapter 6 concludes this thesis. It synthesizes the overall contributions
and highlights some perspectives for this research.



Chapter 2

State of the Art: Convergence of

Cloud Computing and Internet of
Things

Contents
2.1 Imtroduction .. ... ... ... ... 00 ... 10
2.2 Background and Basic Concepts . . .. ... ... .... 11
2.2.1 Imternet of Things . . . ... ... ... ... ... .... 11
2.2.2 Cloud Computing . . . . . ... ... .. ... ...... 15
2.2.3 Fog Computing . . . . . . . ... ... ... ... ... .. 16
2.3 Integrating Cloud Computing and the Internet of Things 18
2.3.1 Loose Integration . . . . . . ... ... ... ... .. 19
2.3.2 Partial Integration . . . . . . ... ... L. 20
2.3.3 Full Integration . . . . . . . ... ... L. 23
2.4 Open Issues and Challenges . . ... ............ 24
2.4.1 Imteroperability . . . . . . ... .00 24
2.4.2 Resource Provisioning . . . ... ... ... ... ..... 26
25 Conclusion ... ... ... oo e e, 27




Page 10 Chapter 2. State of the Art

2.1 Introduction

The Internet of Things (IoT) is a concept which evolved over the years and is
enabled by a growing set of key technologies. Nowadays, the IoT envisions inter-
connecting every thing and person via the Internet. For example, [oT applications
such as smart cities tend to attach sensors and actuators to every object in a city to
facilitate our everyday lives and optimize the city’s management processes such as
transportation, garbage collection, traffic distribution, etc. The realization of such
wide scope IoT applications called for the adoption of technologies including com-
munication, computing, machine learning, data mining, and many others. Actually,
large scale IoT applications promote pervasive computing in any thing, which gen-
erates big data that need to be stored and processed [18]. However, IoT devices are
constrained objects unfit for dealing with the large amount of produced data.

In this context, Cloud Computing has emerged as a suitable technology for over-
coming the technological intrinsic limitations of the [oT. It provides virtually unlim-
ited computing, storage and networking resources with highly resilient energy supply
which are required by IoT applications. Furthermore, such convergence enhances
Cloud Computing service catalogue with IoT application offerings. As a result,
Cloud Computing becomes able to provision [oT resources alongside its computing,
networking, and storage resources.

On this basis, the integration of Cloud Computing and the IoT was inevitable [27]
and resulted in the Cloud of Things (CoT) [28]. This integration has been also
referred to as Sensor Cloud [29] or CloudloT [27] in the literature. Moreover, the
distinct visions of the IoT and Cloud Computing service models resulted in many
possible integration strategies to realize the CoT.

In addition, different applications dictate diverse characteristics (i.e. mobility,
geo-distribution) and requirements (i.e. low latency) which cannot be satisfied only
by the cloud. Moreover, large scale IoT applications produce a large amount of data.
Routing all these data for processing and storage at cloud data centres implies high
bandwidth usage. Consequently, Fog Computing [30] was introduced as an interme-
diary layer between Cloud Computing and the IoT. Fog Computing allows parts of
the application to execute closer to the network edge to reduce latency and band-
width usage. In particular, Fog Computing is used for large-scale, geographically
distributed, and latency sensitive applications.

This chapter aims to present the state of the art on the integration of Cloud Com-
puting and the IoT. It is structured in 4 sections. Section 2.2 presents the basic
concepts and key elements forming the CoT. We introduce the IoT enabling tech-
nologies, Cloud Computing, and Fog Computing. Section 2.3 presents the different
possible integrations of Cloud Computing and the IoT. We highlight the resource
allocation problem related to each integration model. In section 2.4, we present and
discuss open research issues and challenges with respect to the integration of both
paradigms. Finally, in section 2.5, we conclude this chapter.



2.2. Background and Basic Concepts Page 11

2.2 Background and Basic Concepts

As previously mentioned, the CoT includes multiple main components, namely:
the IoT, Cloud Computing, and Fog Computing. Moreover, the IoT is enabled by
multiple key technologies. This section introduces briefly each of these key elements
to clarify the context of this thesis.

2.2.1 Internet of Things

The evolution of embedded devices, communication technologies, and Internet
protocols, eased the enhancement of physical objects with sensing, actuating, pro-
cessing, and communication capabilities [12]. Hence, transforming dumb things into
connected objects able to send and receive data over the Internet, sense their envi-
ronment, and perform actions based on shared information. These connected objects
collaborate with each other and with services over the Internet to deliver what we
call today the IoT. This paradigm promotes [oT applications which rely on sensory
data streams, actuators actions, and services (i.e. data analytics) to provide value-
added information and functionalities for end-users and service providers. These IoT
applications improve many real-world domains such as healthcare [31], ambient as-
sisted living [32], smart cities [33], and many others. Nowadays, for example, instead
of hiring nurses to watch seniors, connected objects and advanced analytics are used
to monitor them in real-time and trigger alerts such as calling an ambulance in case
of health problems [34]. Likewise, connected objects are used in agriculture to mon-
itor climate, soil, and crops to optimize the cultivation process and detect anomalies
without relying on human resources [35]. Several elements are needed however to
deliver the functionality of the IoT [16] as illustrated in Figure 2.1, namely: iden-
tification/addressing, communication, computation, sensing/actuating, semantics,
services.

Identification and Addressing

Connecting IoT devices to applications requires identifying the requested ob-
jects and configuring the network connections between them. Several methods as-
sign Identifiers (IDs) to IoT devices to ensure they are uniquely identifiable. These
identification methods provide universal hardware IDs such as the Electronic Prod-
uct Code (EPC) and Ubiquitous Code (uCode) [36]. Alongside their object IDs,
[oT devices need network addresses to be accessible over the Internet. Addressing
methods applied to connected objects are the Internet Protocol version 4 (IPv4)
and the Internet Protocol version 6 (IPv6). However, IPv6 is better adapted for
the IoT due to its ability to encompass the large anticipated number [17] of con-
nected objects [27,37]. Moreover, the IPv6 over Low-power Wireless Personal Area
Networks (6LoWPAN) mechanism [38, 39] provides a compression of IPv6 head-
ers between the Internet and low power wireless networks to cope with resource-
constrained devices. It reduces the overhead of IPv6 in resource-limited environ-
ments, thus enabling a seamless communication and integration of IoT devices to



Page 12 Chapter 2. State of the Art

the Internet.

Sensing and
Actuating

Computation

Internet of
Things

Communication

Identification
and Addressing

Figure 2.1: Internet of Things Essential Building Blocks.

Communication

The integration of connected objects in multiple domains involves different en-
vironments, hence different needs. Consequently, the IoT relies on several commu-
nication technologies to cope with applications’ bandwidth and range requirements.
Most of these technologies adopt wireless integration of the IoT due to its flexibility.
Some of the communication technologies used for IoT are the following: RFID, Near
Field Communication (NFC), Ultra Wide-Band (UWB), WiFi (i.e. IEEE 802.11
standards), Bluetooth, IEEE 802.15.4, Z-Wave, and Long Term Evolution (LTE).

Radio Frequency Identification (RFID) tags were the first enablers of the IoT.
They emit universal IDs which allow readers to identify objects and rely on existing
databases to retrieve additional information. These tags operate within 200 meters
and can be passive, active, or semi-passive/active [40]. The NFC protocol has a
smaller range (i.e. up to 10 cm) and permits a 424 Kbps transmission rate [41].
Another Personal Area Network (PAN) technology is the UWB. It is suitable for
short range, low power, and high bandwidth transmissions [42]. Similarly, the IEEE
802.15.4 standard targets low-power PANs. It is used alongside the 6LoWPAN to
enable IPv6 over low-powered wireless networks.

IEEE 802.11' standards are more suited to Local Area Network (LAN) such as
home, healthcare, and industrial environments. These connected objects reach the
Internet via access points. The IEEE 802.11ah? [43,44] was introduced specifically

Thttp:/ /standards.ieee.org/findstds/standard /802.11-2016.html
Zhttps://standards.ieee.org/findstds/standard /802.11ah-2016.html



2.2. Background and Basic Concepts Page 13

for the IoT to cope with devices requiring power efficient communications with up
to 1 km range coverage and a minimum data rate of 100 Kbps.

Bluetooth, on the other hand, is used to exchange data between devices over short
distances. Recently, the Low Energy Bluetooth (BLE) was introduced to provide
more efficient power consumption while maintaining the same communication range
and transmission rate. Furthermore, the BLE mesh? profile and model specifications
were released in 2017 to enable many to many communication. The Bluetooth mesh
supports sensor networks.

For long range communication, technologies such as LTE and LTE Advanced
are used for high-speed data transfer, while others such as SigFox*, LoRa’ [45], and
Narrow Band IoT (NB-IoT) [46] are adequate for low-rates and energy efficient data
transfer. SigFox and LoRa are proprietary standards.

Computation

Connected objects are the key components of the emerging loT. Traditionally,
organizations needed to own, configure, and deploy sensors/actuators. Furthermore,
they had to spend additional resources maintaining these connected objects. There-
fore, connected objects were application specific. However, research efforts aim to
decouple applications and underlying sensors/actuators networks to realize the IoT
vision. Such efforts relied on sensing and actuating virtualization to share them
among multiple applications. We notice several approaches in the literature to ad-
dress connected objects virtualization: (1) node level virtualization [47], (2) network
level virtualization [47], and (3) objects virtualization [48-50].

Node level virtualization consists in executing on the connected object, se-
quentially (i.e. event driven programming model) or simultaneously (i.e. thread-
based programming model), several tasks. Each task serves a particular applica-
tion [51]. Event driven solutions (i.e. SenSmart [52]) consist of executing tasks
when an event occurs such as the temperature exceeding a given threshold. Event
driven Operating Systems (OSs) have a simpler implementation. However, tasks
should wait in a queue until previously triggered tasks finish. Thread-based so-
lutions (i.e. RIOT® OS) execute threaded tasks in a time slicing fashion, hence,
different tasks do not block each other. The disadvantage of thread-based OS is
their complexity.

Network level virtualization enables several applications to share connected
objects by dividing them into logical networks. Each application is assigned a logical
network based on its needs. Therefore, formed logical networks contain different
amounts and types of connected objects. Furthermore, logical networks dynamically
change with time as applications needs change. They can be composed of connected
objects belonging to different physical networks. Moreover, connected objects in the
same physical network can be assigned to different virtual networks. However, a

3https://www.bluetooth.com /specifications/mesh-specifications
4https://www.sigfox.com /en
Shttps://www.lora-alliance.org/technology

Shttps://riot-os.org/



Page 14 Chapter 2. State of the Art

connected object belongs solely to one virtual network.

Objects virtualization consists in abstracting connected objects via Virtual
Objects (VOs) which are wrappers encapsulating sensors or actuators to provide
their functionalities to multiple applications. Such abstraction helps to mirror
connected objects while providing additional resources for managing their non-
functional aspects (e.g. availability, reliability). Also, wrappers provide unified
Application Programming Interfaces (APIs) for applications and developers to ease
the interaction with sensors and actuators. Hence, VOs hide the heterogeneity of
connected objects. Generally, middleware solutions [53] manage VOs and provide
necessary functionalities for applications to interact with the underlying IoT infras-
tructure.

Sensing/Actuating

Sensors and actuators constitute primary [oT resources. Sensors translate world
phenomena into digitized information, while actuators transform logical states to
actions in the physical world. Together, they allow information systems to gather
knowledge about things and affect the physical world. Nowadays, the low cost of
sensing and actuating technologies made it possible to integrate sensors and actua-
tors in everyday objects, industrial machines, health devices, etc.

Semantics

The World Wide Web Consortium (W3C) thrives toward a standardized repre-
sentation of knowledge on the web. It defines semantics for various domains and
relationships between different concepts. Such technology enables the semantic in-
teroperability between different systems. Furthermore, semantic web technology
enables discovering, querying, and reasoning on top of available information. There-
fore, the semantic web is seen as an enabler of the [oT. A semantic representation of
heterogeneous connected objects and corresponding data facilitates the integration
of ToT resources with domain oriented applications (e.g. healthcare, agriculture,
transportation). Also, it enables data streams retrieval based on applications re-
quirements. The W3C introduces the Resource Description Framework (RDF) and
the Ontology Web Language (OWL) specifications which can be used to model
concepts and their relationships.

Services

Sensors and actuators provide means to interact with the real world. How-
ever, collecting data or producing actions requires services to deliver needed IoT
resources, aggregate data streams, take decisions, etc. IoT services are categorized
in [54] as follows: identity-related, information aggregation, collaborative aware,
and ubiquitous. Identity-related services focus on delivering the appropriate IoT
resources based on application requests. These services are essential to identify ex-
isting sensors/actuators types, operational region, and properties to expose their



2.2. Background and Basic Concepts Page 15

functionalities for applications. VOs fall under this category of services. Infor-
mation aggregation services summarize collected raw sensory data. Collaborative
aware services analyse received data to provide insights, alerts, notifications, and
decisions which can be presented to the user or transmitted directly to existing ac-
tuators. Ubiquitous services represent the previously described services when offered
any-time and anywhere for end-users and applications.

2.2.2 Cloud Computing

Cloud Computing evolved as the future generation computing paradigm. The
National Institute of Standards and Technology (NIST) presents Cloud Comput-
ing building blocks [19] as illustrated in Figure 2.2. Cloud Computing offers pools
of compute, network, and storage resources which can be accessed from anywhere
on-demand. Cloud Computing offers different service models, (1) Infrastructure
as a Service (IaaS), (2) Platform as a Service (PaaS), and (3) Software as a Ser-
vice (SaaS). Each service model defines the scope of control of the cloud provider
and the cloud customer over the provisioned resources. For an [aaS service model,
the cloud provider offers physical resources (processing, storage, and network), and
the cloud customer can run over it arbitrary operating systems and applications.
A PaaS service model provides the cloud customer an application hosting environ-
ment which is configurable, but the cloud customer does not control the underlying
infrastructure and operating system. Finally, the SaaS offers cloud customers an ap-
plication running in the cloud with limited configuration settings such as Dropbox.
Cloud Computing does not bind clients to a particular service model, enabling a
flexible environment for all I'T needs. However, the benefits of the Cloud go beyond
its service models. In fact, the cloud’s essential characteristics render three major
trends in Information Technology (IT): (1) agility, (2) elasticity, and (3) autonomous
deployment.

Sl 4 Software SaaS
> Q Web Services, Web Applications, Business

‘-E’ é‘ = 3 <LE) Applications, Multimedia

= © o

<5} = —_ -

slglel3Ils Platform PaaS

3 L 8 o E Software Frameworks, Programming Languages,

5 o 5 = o Databases

[72] o o Z

8 T 8 qu i)

Sl )e| 8 Infrastructure laaS
5 oM

Storage Blocks, Processing Units, Operating Systems

Hardware
CPU, Memory, Disk, Bandwidth

Characteristics

Figure 2.2: Traditional Cloud Computing Service Layers and Key Characteristics.

Cloud Computing offers on-demand self-service for cloud customers, allowing
them to provision resources (i.e. networks, servers, storage, applications, and ser-



Page 16 Chapter 2. State of the Art

vices) without human intervention and to only pay for what they consume. Cloud
users could also optimize their cost using cloud’s elasticity to provision new re-
sources on the fly or quickly release some reserved resources to keep the exact
amount needed for satisfying their demand. Moreover, the capacity to measure the
Quality of Service (QoS) of provisioned resources helps cloud providers and users
monitor resources behaviour and state [55]. These characteristics encouraged the
adoption of Cloud Computing and made possible the development of mechanisms
for auto-scaling operations to dynamically optimize resources as the load varies.
Furthermore, errors and faults (e.g. virtualization problems, work flow disruption)
can be reported so appropriate actions can be enforced automatically. As a result,
the cloud enables end-to-end autonomous service composition and delivery on de-
mand, along with dynamic optimization of allocated resources. Such optimization
maintains the QoS with minimal allocated resources. Consequently, the cloud mini-
mizes the cloud customer cost, maximizes the cloud provider’s profit, and optimizes
energy consumption.

The capabilities of the cloud accelerated the adoption of this computing model
by many businesses seeking to reduce their capital expenditure by moving their in-
frastructure to the cloud. Moreover, the "pay-as-you-go” business model of the cloud
reduces the infrastructure cost. Businesses do not have to worry any more about
maintenance, scalability issues, and hiring specialized staff to manage and deploy IT
systems and software, thus reducing their operating expenditure. Furthermore, the
wide range of services provided by service providers in the cloud creates an attrac-
tive marketplace for existing and emerging businesses. In fact, using tuned services
with auto deployment and scaling mechanisms eases the development of IT solu-
tions and allows businesses to focus on their main product without worrying about
the back-end. For example, with Google App Engine Datastore” (No SQL based
storage) and CloudSQL® (SQL based storage) businesses can deploy needed storage
instantly without worrying about scalability, reliability, and disaster recovery.

2.2.3 Fog Computing

Cisco first introduced Fog Computing in 2011 [17,56]. It was further developed
and defined by the Open Fog Consortium (OFC). Fog Computing falls under the
wider definition of Edge Computing which stands for pushing applications and ser-
vices, completely or partially, to the network edge. As a result, some functions (e.g.
processing, temporary storage, data aggregation) become closer to end-users and
connected objects which improves applications and services response time [57]. Al-
though Cloud and Fog Computing paradigms have virtualization as common ground,
their characteristics are different. The cloud infrastructure is composed of large data
centres with virtually unlimited capacity distributed in several countries or regions
of a country. The cloud is a centric solution for service providers [56]. However,
Fog Computing is characterized by highly distributed and location aware virtualized
nodes with limited capacity.

"https://cloud.google.com /datastore/docs/
8https://cloud.google.com /sql/docs/



2.2. Background and Basic Concepts Page 17

Another concept, cloudlets [58,59], coincides with Fog Computing. A Cloudlet
is a resource-rich computer like "cloud in a box,” which is available for use by
nearby mobile devices [30]. However, Fog Computing includes various types of
nodes, differently to servers in the cloud or cloudlets. These nodes can be small-
sized servers [60], gateways [28], routers [61,62], and resource rich machines [58].
Hence, Fog nodes capabilities depend on their type and capacity, which can affect
the nature and size of services these nodes can host. For example, authors in [57]
consider all virtualized nodes between the cloud and connected objects as the Fog,
while authors in [28] consider the Fog as the set of smart gateways at the network
edge.

Internet /Cloud /Servers
(Global)

Core Network /Routers
(Regional)

Access / Edge Nodes
(Neighborhood)

Gateway /CPE
(Building/Street)

’
, ’
‘
’
s
, Fog
\=

D
: \
JFoad ) i y
. S o o
{ - n Fooccoocool TG T
| Aot m | v ) %
I | \
i i/ d ' v \ [ A N
i i ! | ' \ ' \ N
I ' t ' ' \ \ \ .
J ' ' v ' \ \
E me) 0 ' . \
i & fera__ ' ' ) v N
’ ] See——ll Fog ' ! \ o \
. 7 i Flm~ me|-===== —deeeaq CEECEEEE EEE P - .
K i h ' - ) ! J - N
/ | g
s ' \ \
. / [ - = P L \

Figure 2.3: Fog Computing Conceptual Architecture (Source [63]).

Endpoints / Things

Figure 2.3 shows the integration of Fog Computing between the cloud and end
devices. The Fog complements the cloud and provides several benefits. Firstly,
it extends services deployment to the edge of the network, enabling higher QoS
for applications with low latency requirements such as video streaming, augmented
reality, and gaming [61,64]. Secondly. Fog Computing increases resources efficiency
and QoS for widely distributed and large scale applications such as environment
monitoring, and for applications introducing connected objects with high mobility
such as vehicles. For example, it can decrease the traffic load on cloud applications
by aggregating and processing data at the edge. Many uses cases are presented for
Fog Computing in [63] such as IoT applications, mobile network acceleration, and
content delivery networks.



Page 18 Chapter 2. State of the Art

2.3 Integrating Cloud Computing and the Inter-
net of Things

Previous works have presented the benefits of converging Cloud Computing and
the ToT. Botta et al. and Diaz et al. in [27,53] show the importance of integrating
these two domains. In fact, both technologies have complementary characteristics
as represented in Table 2.1. Authors also presented the different drivers for Cloud
Computing and the IoT integration such as Big Data and seamless IoT applications
execution. More precisely, in [27], authors introduced novel applications resulting
from the CoT paradigm and presented the state of the art of some research projects
in this area. Diaz et al. [53] showed the different academic and industrial solutions
enabling such integration with several case studies. They presented existing solutions
which can be combined to deliver the CoT. In this perspective, Diaz et al. surveyed
big data solutions such as Hadoop? and Apache Spark!'®, Cloud Computing platforms
such as OpenNebula [65], and middlewares for the IoT such as the Global Sensor
Network (GSN).

Table 2.1: Complementary aspects of Cloud Computing and the Internet of Things
(Source [27])

Internet of Things | Cloud Computing
Displacement pervasive centralized
Reachability limited ubiquitous
Components real world things virtual resources
Computational Capabilities | limited virtually unlimited
Storage limited or none virtually unlimited
Role of the Internet point of convergence | means for delivering services
Big Data source means to manage

The broad definition of the IoT and the various service models of Cloud Com-
puting made such integration possible using different approaches. As previously
mentioned, there are two main manners to integrate both domains: bringing the
cloud to connected objects or bringing [oT devices to the cloud. When Cloud Com-
puting is used to shift the processing power from connected objects to powerful data
centres, IoT devices become simple data sources. Such integration does not modify
the respective functionalities of both domains. The IoT provides sensory data while
the cloud provide services to process and store these data. We refer to this method
as the loose integration. However, adding IoT devices to the cloud can be done by
enhancing connected objects with cloud characteristics. Such convergence considers
the IoT as part of the service models provided by the cloud. It can happen at the
application level, the platform level, or the infrastructure level. Some works in the

http://hadoop.apache.org/
Ohttps:/ /spark.apache.org/



2.3. Integrating Cloud Computing and the Internet of Things Page 19

literature focused on a single layer integration while others consider multiple-layer
integration resulting respectively in partial or full integration strategies. In the
following, we discuss in details the different levels of integration.

2.3.1 Loose Integration

A loose integration of Cloud Computing and IoT consists in a set of solutions that
use both technologies without introducing a novel service model. Hence, preserving
the traditional purposes of both domains. The IoT provides connected sensors and
actuators, while the cloud offers compute and storage resources to host an applica-
tion managing the latter IoT infrastructure. Moreover, the IoT application might
expose sensors and actuators functionalities via APIs for developers. In the latter
case, the cloud acts as the intermediary layer between the IoT infrastructure and
domain specific applications. The [oT application deployed in cloud data centres
benefits from the cloud characteristics such as the rapid elasticity and the "pay as
you go” business model. For example, allocated resources for the IoT application
might scale up or down based on the applications usage [34]. However, the cloud
platform remains unaware of IoT resources and rely solely on compute, storage,
and network usage in cloud data centres for the decision making. Furthermore, the
cloud characteristics are not transferred to the IoT. Therefore, IoT resources are
not offered on-demand and their usage cannot be optimized. For example, the IoT
application uses cloud resources for storing, analysing, and visualizing collected sen-
sory data at all times without considering users actual needs which lead to inefficient
use of IoT and cloud resources [66-70].

Surveillance Health Monitoring Smart Transportation
Application Application Application
777777777777777777777777777777777777777777777777777777777777777777777777 Cloud Computriirrlg
éualizatio B \/énalytics j
} D andhd
A \/‘)
A SaaS A

PaaS

f/ TN } TaaS

N/ -

Internet of Things Infrastructure

“Jeod e

Connected Object

Figure 2.4: Conceptual IoT Framework with Cloud Computing at the Centre
(Source [34]).

Several works follow a loose integration in their approach. For instance, authors



Page 20 Chapter 2. State of the Art

in [32,34] define a cloud application for managing and collecting sensory data. The
work in [34] considers a general context, while [32] focuses on ambient assisted living.
However, both studies rely on storing sensors data and provide them via APIs or
a web interface to developers or end-users respectively. Furthermore, existing IoT
platforms realize the loose integration of cloud and IoT such as Xively!! [20]. This
kind of platforms provides means to connect IoT devices, store their data, and expose
them via APIs over the Internet. Some of these platforms offer also analytics services
to process collected data and visualization tools to plot stored streams. Figure 2.4
illustrates the cloud and the IoT roles in a loose integration approach. This method
is out of the scope of this thesis as it does not relate to the CoT vision.

2.3.2 Partial Integration

A partial integration consists in introducing a novel service model within Cloud
Computing which delivers IoT resources [21,27]. Such approach extends the cloud
reach to the physical world. Therefore, cloud offerings become wider and include IoT
resources. Furthermore, Cloud Computing characteristics are also passed on to IoT
devices and resources. Hence, the pay as you go business model and the on-demand
provisioning of resources become applicable on the IoT. This partial integration
of Cloud Computing and the IoT is possible through: (1) a data-centric approach
[50,71], (2) a device-centric approach [50,72,73|, or (3) a hybrid approach [50]. A
data-centric approach relies on gathering and storing connected objects generated
data which are shared among multiple applications. In this case, connected objects
are used as data sources. Hence, end-users do not have control over the underlying
[oT infrastructure nor the storage units. A data-centric approach provides additional
service models such as the Sensing as a Service (S?aaS) [74-77] for end-users. It is
considered a PaaS [50] since it forbids access to IoT devices configurations.

Separately, a device-centric approach focuses on delivering Sensor/Actuator as
a Service (SAaaS) [50,72,78-80]. It is also referred to as Smart Object as a Service
(SOaaS) [81] or Things as a Service (TaaS) [82,83]. In this case, a set of connected
objects satisfying requested requirements are selected. Then, appropriate services
such as VOs will be deployed to abstract the functionalities of selected connected
objects via standardized APIs. Hence, the end-user gains control over IoT devices
configurations such as data transmission rate. A device-centric approach allows
end-users to provision IoT devices. A hybrid approach consists of a combination of
the data-centric and device-centric approaches. It realizes the IaaS and PaaS service
models for the IoT and enables the allocation of connected objects as well as sensory
data streams. Figure 2.5 illustrates the difference between the data-centric (a) and
the device-centric (b) approaches.

Despite the selected approach to achieve a partial integration of Cloud Com-
puting and [oT infrastructures, orchestration mechanisms are required to optimize
resource utilization. In contrast to the loose integration, a partial convergence pro-
vides an additional service model in the cloud responsible for delivering needed IoT

Uhttps:/ /www.xively.com/



2.3. Integrating Cloud Computing and the Internet of Things Page 21

Third Party Applications Third Party Applications
A A
Sensory Cloud Computing Resources Cloud Computing Resources
Data
Cloud Applications Cloud Applications
Data A
Request }
\ 4 A Sensor/Actuator
. . — VO .
Sensing as a Service Layer atd as a Service
Sensory Data Connected E: )
) Object
Internet of Things Resources Internet of Things Resources
(a) Data-Centric Approach (b) Device-Centric Approach

Figure 2.5: Difference between (a) the Data-Centric, and (b) the Device-Centric
Approaches.

resources to upper applications as seen in Figure 2.5. Therefore, connected objects
selection techniques are necessary to pick appropriate IoT resources for applications
efficiently. Furthermore, cloud provisioning processes are crucial to optimize allo-
cated compute, storage, and network for abstracting selected IoT resources. These
orchestration mechanisms should be adaptable to the dynamic changes in Cloud
Computing and [oT infrastructures. In the literature, several works have addressed
the resource allocation problem in such an environment. Most techniques for se-
lecting connected objects aim to minimize their energy consumption and extend
their lifetime [66,68-70,84,85]. However, some contributions focus on selecting the
best set of IoT devices based on applications requirements [86,87] without worrying
about energy consumption. These studies perform the selection based on provided
functional and non-functional properties of required connected objects. They con-
sider properties such as accuracy, reliability, energy, availability, and cost. From
the cloud perspective, resources optimization focuses on minimizing bandwidth con-
sumption [68,84,88], storage usage [89], and QoS violation [68,90,91].

We refer throughout this work to platforms performing partial integration of the
cloud and the IoT as cloud-based IoT platforms. There exist many research projects
as well as commercial solutions which provide this kind of IoT platforms. In the
following, we represent some of these works.

OpenloT

The OpenloT [71,92] aims at providing an IoT platform with semantically in-
teroperable data streams generated from heterogeneous IoT devices. This project
presents the eXtended Global Sensor Network (X-GSN) which is an extension of the
GSN middleware. The X-GSN connects to IoT devices and semantically annotates
received raw data points which hide the heterogeneity of collected data, allow the



Page 22 Chapter 2. State of the Art

unification of data description, and link related data. The OpenloT follows a data-
centric approach. It stores annotated collected data in a cloud storage and allows
[oT applications to access them via APIs. The OpenloT has a scheduler component
which receives data streams requests from IoT applications. This component is re-
sponsible for allocating needed cloud resources and deploying appropriate services
to retrieve and deliver needed data streams.

FIWARE

The FIWARE!? project [93] aims to create a cloud-based IoT platform based
on the Internet of Things Architecture (IoT-A) reference model [94]. The IoT-A
defines a set of functional groups needed for a seamless delivery of IoT resources
to third party applications. Some of these functional groups are: abstracting con-
nected objects, discovering IoT resources, and storing sensory data. Furthermore,
they include a set of services for delivering efficiently registered IoT resources. The
FIWARE project implements these functional groups as Generic Enablers (GEs).
Each GE is a software component which provides the key functionalities of a func-
tional group. For example, the Backend Device Management GE is responsible for
abstracting gateways, sensors, and actuators. The set of interconnected GEs com-
pose the FIWARE cloud-based IoT platform. Such approach enables a modular
composition of cloud-based IoT platforms depending on the providers needs. GEs
use the Next Generation Services Interface (NGSI)'® API to communicate with each
other and with third party applications. The FIWARE project also includes GEs
for managing, orchestrating, and provisioning cloud and IoT resources such as the
[aaS GE, the PaaS Manager GE, and the IoT Broker GE.

Commercial Solutions

Multiple commercial solutions provide partial integration of Cloud Computing
and IoT resources. We can cite the Google Cloud IoT!*, the Amazon Web Services
(AWS) ToT", the IBM Watson [0T'¢ platform, and many others. These platforms
offer seamless connection and integration of IoT devices with cloud services such as
storage, analytics, and visualization. They abstract [oT devices, collect their data,
and provide means to manages these data. For example, the AWS IoT platform
abstracts connected objects as virtual shadows (i.e. VOs) and expose their data
via APIs for third party applications. Moreover, it enables the integration of AWS
services to manage collected data within the AWS cloud. Some solutions, such as the
IBM Watson IoT platform, enables even the automatic deployment of IoT workflows
which can be defined using the Node-RED!" tool. Commercial solutions uses also
optimization mechanisms to maximize their infrastructure utilization. However,

Phttps:/ /www.fiware.org/

Bhttp: / /www.openmobilealliance.org/release/NGSI/
Y“https://cloud.google.com /solutions /iot /

5https:/ /aws.amazon.com /iot-platform /how-it-works/

https:/ /www.ibm.com/internet-of-things/platform /watson-iot-platform/
"https:/ /nodered.org/



2.3. Integrating Cloud Computing and the Internet of Things Page 23

they integrate Cloud Computing and IoT technologies solely on the platform level
which remains a partial integration.

2.3.3 Full Integration

A full integration consists in extending all traditional Cloud Computing service
models (i.e. laaS, PaaS, and SaaS) to include the IoT. Such expansion enables cloud
and IoT resources to be consumed seamlessly as integrated cloud services. Hence,
clients are able to provision compute, network, storage, sensing, and actuating re-
sources on-demand from cloud data centres and connected objects. Such resources
allocation is possible at the infrastructure, the platform, or the software level. For
example, a Raspberry PI connected to a virtual machine might be deployed for a
given customer as an laaS offering. Furthermore, a developer can allocate on the fly
an android development environment alongside pollution data streams of multiple
sensors spanned across a particular city. The latter scenario should be provisioned
seamlessly without human intervention in a full Cloud Computing and IoT inte-
gration. In addition, a fully integrated environment must be able to provision IoT
platforms similar to those defined in the loose and partial integrations.

CSaas Intelligence Service SaaS
(Application and User Interface)
CPaaS
PaaS
. . i . . ® Service and Business Operation
City Service Composition City Data Processing e (Service Composition and Business Process
& Middleware)
‘ City Resource Access ‘ 3
g
D
ClaaS }3 laaS
‘ City Infrastructure Management ‘ g
- - - o 5 WoT Infrastructure
‘ Interoperability and City Resources Virtualization ‘ (Network and Computing Resources)
Sensorization and || Internet of Things || Computing and
Actuatorization Kernel Storage
. . Cloud Computing Hardware and Gateways with
Cloud Computing and Internet of Things Hardware RESTful Web Service
(a) ClouT Project Cloud of Things Architecture (b) Cloud of Things Architecture based on Gateways

Figure 2.6: Cloud of Things Service Models as Defined by Existing Works (Sources
[95,96]).

In this perspective, some works have defined a reference architecture for the
CoT [95,96] as depicted in Figure 2.6. Authors in [96] describe the CoT for smart
cities in the context of the ClouT'® project (Figure 2.6.a). They represent the City
Infrastructure as a Service (ClaaS), the City Platform as a Service (CPaaS), and the
City Software as a Service (CSaaS). The ClaaS layer is responsible for delivering
abstraction services for the IoT as well as traditional infrastructure level resources

Bhttp://clout-project.eu/



Page 24 Chapter 2. State of the Art

for the cloud. The CPaaS provides development environments with accessible data
streams. In this layer, developers are able to produce applications which consume
sensory data or actuate in the real world while having a set of available integrated
services such as data processing. The CSaaS layer enables the deployment of IoT
applications for smart cities. Similarly, the study in [95] provides a three layered
architecture to integrate IoT resources with cloud offerings (Figure 2.6.b). It defines
the lowest layer as the Web of Things (WoT) infrastructure which is composed of
gateways exposing underlying connected objects. Each gateway hosts a RESTful
WoT web service. The second layer is the PaaS layer which handles service compo-
sition and business processes deployment. The uppermost layer represents the SaaS
and offer visualization services. To the best of our knowledge, there exists no work
addressing the resource allocation problem in a fully integrated environment.

2.4 Open Issues and Challenges

Although some work has been done to define the CoT, this new paradigm is still
in its infancy. Many open issues still need to be addressed by the research commu-
nity. In this section we present some challenges from the resources management and
provisioning perspectives in the CoT.

2.4.1 Interoperability

Individual Cloud Computing and IoT have interoperability challenges [13,97].
On the one hand, Cloud Computing suffers from vendors lock-in due to proprietary
solutions which prevent applications portability and interoperability between cloud
providers. On the other hand, the IoT encompasses heterogeneous devices with a
wide range of capabilities, types, data encodings, and properties. Such diversity
makes it harder to build interoperable IoT solutions. In this perspective, several ini-
tiatives aimed to enhance interoperability by developing standards for Cloud Com-
puting and the IoT which are discussed with more details in Chapter 4. However,
these standards were designed specifically for each domain which make them unfit
for leveraging the convergence of Cloud Computing and the [oT. Moreover, the lack
of a clear definition and a reference architecture [98] for the CoT resulted in different
solutions for combining both technologies as seen in Section 2.3. This variety of ex-
isting solutions decreases further the interoperability of CoT platforms. Hence, the
need to define a CoT reference architecture and standards for managing compute,
network, storage, sensing, and actuating resources.

Reference Architecture

In the IoT, several reference architectures have been proposed such as the IoT-A
[94] to provide guidelines for developing IoT platforms. They define domain, in-
formation, and functional models alongside needed security measures for the IoT.
Furthermore, Cloud Computing also has a well defined reference model [19] describ-
ing its service models and characteristics. However, integrating Cloud Computing



2.4. Open Issues and Challenges Page 25

and the IoT requires novel reference models which consider both domains simulta-
neously. In fact, existing reference architectures are unfit for representing the CoT.
As a result, current solutions for describing the CoT propose different strategies to
connect IoT devices and cloud applications which do not fit in neither cloud ser-
vice models nor the ToT-A functional blocks. For example, studies in [72,80] used
a software component named the SAaaS framework to deliver IoT resources in a
cloud environment. This component extends the IoT-A functionalities to enable
on-demand and elastic provisioning of sensing and actuation resources in the cloud.
Other works [29,48,81,99] used VOs to link between connected objects and cloud
applications. However, they do not integrate seamlessly cloud service models and
result in additional offerings such as the S?aaS, the SAaaS, the SOaaS, and many
others. Fully integrated solutions provide a clearer representation of IoT offerings
applied to Cloud Computing service models. However, different works [95,96] present
multiple definitions. Since the IoT-A is an established reference architecture for IoT
platforms and has been used in several works such as [72,80] and cloud-based IoT
projects such as OpenloT and FIWARE [93], it can be used as a starting point for
defining a CoT reference architecture. In such case, the IoT-A concepts need to be
adapted for a cloud-like service model and encompass cloud characteristics such as
rapid elasticity, on-demand provisioning, etc.

Standards

Integrating Cloud Computing and the IoT creates a highly heterogeneous envi-
ronment. Firstly, connected objects offer proprietary interfaces which do not follow
any sort of standardization. Secondly, different sensors generate raw data in distinct
formats and different actuators encode their state information variously. Finally,
multiple solutions for connecting IoT devices to cloud applications are presented in
the literature as stated in Section 2.3. However, these methods are not standard-
ized nor compatible with one another. Moreover, CoT platforms need to support
[oT applications portability between different providers to avoid vendors lock-in.
Currently, there exist several standards which address some of the standardization
issues. The Semantic Sensor Network (SSN) ontology, the Sensor Web Enable-
ment (SWE) Sensor Model Language (SensorML), and the SWE Observations and
Measurements (O&M) provide means to describe sensors and their data streams
(see Section 4.2). However, some work is still needed to include actuators descrip-
tion within these standards. Furthermore, the SWE suite of specifications also
defines standardized interfaces to interact with IoT resources such as the Sensor
Observations Service (SOS). Other standards related to Cloud Computing ensure
applications portability such as the OASIS Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA)¥. Also, standardized resources management
interfaces exist for Cloud Computing such as the Open Cloud Computing Inter-
face (OCCI). They can be extended or combined with IoT related interfaces such
as the SWE SOS to provide a CoT resource management interface. As we notice,
existing standards solve interoperability issues in individual Cloud Computing and

Yhttps:/ /www.oasis-open.org/committees/tosca



Page 26 Chapter 2. State of the Art

[oT environments. However, further efforts are needed to adapt existing standards
to a CoT environment similarly to the work in [100] which uses TOSCA to describe
and deploy IoT applications.

2.4.2 Resource Provisioning

Resource provisioning is one of the major challenges in Cloud Computing [101]
and the IoT [102,103]. On the one hand, resource provisioning in Cloud Computing
consists in mapping Virtual Networks (VNs) onto a Substrate Network (SN). the
VN is a set of interconnected nodes which represent Virtual Machines (VMs) in
an laaS deployment, or software components in PaaS and SaaS. Moreover, the
SN represents the cloud infrastructure (i.e. cloud data centres and network links).
Allocating resources consists in mapping the VN nodes onto candidate SN data
centres then selecting the best candidates as illustrated in Figure 2.7.a. Therefore,
the optimal solution is the set of candidates which ensures the mapping of the entire
VN and optimizes the objective function of the cloud provider. This function aims
to maximize the provider’s profit, minimize the energy consumption, etc. On the
other hand, the [oT resource provisioning process aims to choose the set of sensors
and actuators which satisfy applications requests (see Figure 2.7.b). Similarly to
Cloud Computing, IoT devices are picked based on an objective such as maximizing
QoS, minimizing energy consumption, etc.

Request Node
Cloud Request Graph Q Uéer

(Virtual Network)

‘ Cloud Services/Applications

\ : 3 ToT Request and
N \ Response

IoT Wrappers / Middleware / Platform

Cloud Substrate
Graph (Substrate

Network) @ S
. | i Cs3
Physical Link | < i
ysical Lin P O : O IoTN]zzzlce
Cloud Server Node
(a) Cloud Computing (b) Internet of Things
o — — Selected Host Candidate @ Rejected Host Candidate

Figure 2.7: Cloud Computing and the [oT Separate Provisioning Processes.

However, provisioning separately cloud and IoT resources in a CoT environment
prevents reaching an optimal resource utilization and control. In fact, a seamless
integration of Cloud Computing and the IoT requires a holistic approach with global
orchestration mechanisms that consider all CoT resources simultaneously (i.e. com-
pute, network, storage, sensing, actuating). Such holistic provisioning cannot be
reached with previous works as it needs to account for multiple aspects regarding
Cloud Computing and IoT at the same time:



e Selecting the set of connected objects which satisfy the requested functional
(e.g. type) and non-functional (e.g. accuracy) requirements specified by the
IoT application.

e Provisioning cloud services responsible for managing previously selected con-
nected objects across cloud data centres.

e Provisioning connectivity services (e.g. VOs) to link selected connected objects
and deployed cloud services.

These aspects should be considered while aiming to minimize the CoT infras-
tructure resource utilization and maximizing the QoS experienced by end-users con-
suming the deployed IoT applications. In addition, orchestrating [oT connectivity
services such as [oT middlewares or VOs requires the consideration of multiple de-
livery strategies as defined in the IoT-A project [94]. For example, an IoT device
might be connected directly, through a VO, or through an IoT middleware. Other
methods also exist such as the data-centric approach. Therefore, the provisioning
process should be aware of all possible deployment strategies and be able to select
the optimal configuration which reduces the operational cost of the deployment.
Furthermore, these delivery methods can be provisioned to serve one or multiple ap-
plications. Hence, methods for considering previously deployed IoT delivery services
and re-using them are needed to avoid the excessive use of resources. These chal-
lenges are still to be addressed when composing and provisioning IoT applications
in a CoT environment.

2.5 Conclusion

The CoT offers a new scope of IoT applications and services which, in contrast to
traditional [oT infrastructures, can be self-managed, self-configured, and automat-
ically deployed without human intervention. In this chapter, we surveyed several
works in the literature thriving for realizing such vision. We classified these works
based on the way they integrate the IoT and Cloud Computing to realize the CoT.
Such classification resulted in three categories: the loose integration, the partial in-
tegration, and the full integration. We highlighted the resource allocation problem
addressed within each integration strategy. Furthermore, we presented the open
issues related to resource modelling and provisioning in the CoT. More contribu-
tions are needed to achieve autonomous end-to-end IoT applications provisioning
and deployment.






Chapter 3

Efficient Provisioning of Shared
Virtual Objects

Contents
3.1 Imtroduction ... ............. 00000 30
3.2 Related Works . ... ... ... ... 31
3.3 Problem Statement . ... ... ............... 33
3.4 Static Virtual Objects Placement Optimization Model . 34
3.4.1 Internet of Things Objects Clustering . . . ... ... .. 34
3.4.2 Placement Optimization Problem Formulation . .. . .. 36
3.5 Dynamic Virtual Objects Placement Optimization Model 42
3.5.1 Internet of Things Objects Clustering . . . ... ... .. 42
3.5.2 Domain Variable Definition . . . . . ... ... ... ... 43
3.5.3 Placement Optimization Problem Formulation . . .. .. 45
3.6 Implementation and Evaluation . . . . . ... ....... 47
3.6.1 Evaluation Settings. . . . . ... ... ... ........ 47
3.6.2 Evaluation Results . . . . . ... ... ... ... ... .. 49
3.7 Conclusion . ... ... ... .o 51

29



Page 30 Chapter 3. Efficient Provisioning of Shared Virtual Objects

3.1 Introduction

Cloud-based Internet of Things (IoT) platforms were first proposed in [29]. These
platforms aim to take benefit from cloud resources and characteristics to deliver
IoT service models such as the Sensing as a Service (S?aaS) [74,75,77,104] and
the Sensor/Actuator as a Service (SAaaS) [79,80]. These platforms provide IoT
resources to multiple applications running in the Cloud by abstracting heterogeneous
physical and logical IoT devices using Virtual Objects (VOs). A VO is a software
component which abstracts the interaction with a real IoT device. It wraps all
the functionalities of the object (i.e. sensing, actuating, configuration) and provide
them via common Application Programming Interfaces (APIs). Cloud-based IoT
platforms deploy and manage VOs on-demand to provide required IoT resources for
cloud applications. Such platforms benefit from cloud features to scale up/down or
migrate VOs to cope with applications requirements and Quality of Service (QoS)
terms. The dynamic allocation of IoT resources permits also to increase the lifetime
of IoT devices reducing their solicitation when information is already available in
their associated VO [67].

VOs are not deployed individually in independent Virtual Machines (VMs) which
will be inefficient and resources consuming. The large-scale nature of the IoT makes
it impossible to run one VM for each VO. Therefore, IoT middlewares manage
collections of VOs and provide APIs to access them individually. Middlewares are
themselves executed in VMs hosted in a Cloud Computing infrastructure. It starts
and stops VOs as needed. Launching a VO consists on instantiating a wrapper
that connects to a given IoT device. In such context, the distribution of VOs and
VMs within the cloud infrastructure affects the resources utilization efficiency, the
[oT applications QoS, and the operation cost of the overall system. For example,
provisioning two VOs in a single VMs costs less than provisioning them in multiple
VMs. However, if these VOs communicate with different applications, separating
them might have an important impact on the QoS (e.g. latency for each application).
Consequently, provisioning mechanisms are very important and have an important
impact on the QoS and deployment cost of VOs.

Application 1 Application 2 ‘ Application 1 ‘ ‘ Application 2 ‘ ‘ Application 1 ‘ Application 2 ‘
ix Y in A
|~ ' | -~ '

\ /

Vo, | [vou | [vo,] [vo
. \ . -

' @ o @ ‘@
@ | & o - oo -
Tempera‘[®re Sensor @ @

(A) Unshared Virtual Objects (B) Unshared VOs with Shared
with Unshared IoT Devices IoT Devices

|

(C) Shared Virtual Objects

Figure 3.1: Virtual Object Provisioning Approaches.



3.2. Related Works Page 31

Moreover, several applications might request similar IoT resources (e.g. temper-
ature sensing in the same location) and the same IoT object might serve multiple
applications. In such case, there are several possible configurations to abstract sens-
ing and actuating resources in cloud-based IoT platforms. These configurations are
depicted in Figure 3.1. In part (a) of the figure each IoT device connects to one
VO which belongs to a single application, in part (b) connected objects are shared
between applications in contrast to VOs, in part (c) IoT resources and VOs can
be shared. In cases (b) and (c), connected objects might be shared or not based
on their capabilities. To the best of our knowledge, most previous works in the
area have only considered the first case (i.e. case a). However, sharing connected
objects and VOs reduces needed cloud resources to deliver sensing and actuating
functionalities to applications. In this thesis, we highlight the benefit of sharing IoT
resources between different applications in the context of cloud-based IoT platforms.
We propose two analytical formulations of the problem and associated solutions to
optimize the placement of shared IoT resources (i.e. VOs) in the Cloud Computing
in order to satisfy the global system performances.

The chapter is organized as follows. First, We present the specific related works
in Section 3.2. we present the challenges to share efficiently [oT resources in Section
3.3. In Sections 3.4 and 3.5 we present our model to provision shared VOs in the
Cloud Computing. We provide two analytical formulations of the VOs placement
optimization: (a) static (Section 3.4) and (b) dynamic (Section 3.5). Both analytical
models are based on the Linear Program (LP). The static LP considers a new
environment with no previously deployed VOs, while the dynamic model takes into
consideration the previously deployed VOs when placing a new request. Afterwards,
simulations results are discussed in section 3.6. Finally, we conclude the chapter with
an overview outlining the benefits of our approach.

3.2 Related Works

The selection of connected objects is an important functionality of cloud-based
IoT platforms. There are several techniques proposed in the literature [105] to
achieve this selection. Contributions made by [86,87] propose several techniques to
select the best k£ connected objects based on an application request: comparative-
priority based heuristic filtering, relational-expression based filtering and a dis-
tributed object searching technique. The search techniques take into consideration
non functional requirements of IoT devices with distinct priorities in the selection
process. Authors consider accuracy, reliability, energy, availability, and cost of con-
nected objects. However they do not try to optimize the number of used objects.
This issue was addressed later in [68]. The focus of this work is the optimal selec-
tion of connected objects to satisfy the applications requirements while preserving
the efficiency of resource utilization. The authors propose two algorithms CoV-I
and CoV-II addressing two particular cases: when physical objects are homoge-
neous and fall within the same geographical area (i.e. CoV-I), and when objects
are heterogeneous and geographically distributed (i.e. CoV-II). Results show that



Page 32 Chapter 3. Efficient Provisioning of Shared Virtual Objects

both algorithms enhance the resources utilization by selecting only the necessary
[oT devices for each application.

Other related works have addressed the network resources utilization as described
in [3,69,88,90,106]. The approach presented in [70,88] relies on the control of data
transmission rates between different entities in a cloud-based IoT platform to re-
duce the consumption of the network resources and increase the physical connected
objects lifetime. Phan et al. [88] focus on optimizing communication bandwidth in
SC-iPaa$ (Sensor-Cloud Integration PaaS). In SC-iPaaS, IoT devices send data peri-
odically to corresponding sinks, who relay them at different frequency rates to VOs.
When end-users request data streams to their applications running in the cloud,
applications invoke the corresponding VOs. VOs reply directly if the requested data
streams are locally available, otherwise they request up to date information to the
connected objects. Authors seek in this work the Pareto-optimal data transmission
rate for each connected to object and sink node to maximize applications requests
success rate while minimizing objects’ energy consumption and network resource
utilization. Phan et al. define three objective functions: (a) maximizing the objects
data yield (i.e. data availability) for cloud applications, (b) minimizing the band-
width consumption between the cloud layer and the edge layer, and (¢) minimizing
the energy consumption of connected objects in the IoT infrastructure.

Moreover, other related works have addressed the limited processing, storage,
and energy capabilities of connected objects and how to use them in an optimal
manner. In [106], Xu et al. increase [oT devices lifetime by optimizing the data re-
quests from these devices, and the data demand from applications. Authors propose
a bi-directional waterfall optimization framework which relies on data/application
caching. Instead of only caching data while it is moving up to the applications in the
cloud-based IoT platform, authors move parts of the applications logic down to the
edges. Hence, the amount of data to send to the cloud applications decreases which
reduces the bandwidth overhead for data transmission. In [69], authors optimize
the transmission of data streams by assigning the closest data centre to host virtual
objects, then schedule a particular data centre to aggregate data from these VOs.

Finally, several works focused on the QoS in an IoT environment, in particular,
delay and response times. Misra et al. introduced in [90] a gateway selection mech-
anism to establish an efficient, reliable and cost-effective health monitoring system
and to minimize transmission delay with cloud applications. Authors considered
static connected object devices while authors in [3] considered instead a Mobile
Cloud Computing (MCC) environment where IoT devices can be mobile and VOs
deployed in the cloud process the incoming data streams. Authors formulated the
problem as a linear program to jointly optimize the gateway selection and the ser-
vices deployment cost in the cloud. Authors objective was to minimize data flows
fluctuation in each cloud data centre and the rate of required reconfiguration oper-
ations to satisfy the changing load.

In the mentioned related works, several approaches have been used to optimize
network resources when transmitting data streams to applications via virtual ob-
jects, however, all these approaches considered that virtual objects are dedicated
to a particular application and not shared among them. In our work, we consider



3.3. Problem Statement Page 33

that sharing VO is very important and can help to derive a more efficient solution.
Therefore, we take a different approach and we propose that virtual objects can be
shared among multiple applications when they are requesting the same data and
that the objective is to further minimize resources utilization while maintaining the
same level of QoS for the applications. This allows to go one step forward in the
optimization of the resources, QoS assurance and reduction of operational cost for
such applications.

3.3 Problem Statement

A provisioning mechanism of cloud resources to deliver shared IoT devices must
address several challenges. Firstly, the IoT large-scale infrastructure increases sub-
stantially the problem size. Such infrastructure consists of highly distributed nu-
merous connected objects spanned over multiple geographical areas. Consequently,
orchestrating VOs for a large number of allocated sensing and actuating resources
can be time consuming. The provisioning algorithm must cope with such large
scale IoT environment. It should scale with large number of requests and produce
solutions in an acceptable response time. Furthermore, such algorithm should con-
sider two data flows: (a) the data exchange between connected objects and VOs
hosted in cloud data centres, and (b) the data transmission between VOs and cloud
applications.

Application 1 Application 2 Application 1 New Application
ﬁT AN ; J;
: VO4
— \, / \

,,,,,,,,,,

/VO'W\\

l *
. !!
r'*\‘\\
=R
’ - \
@ ‘

\ /

N - Y & .
N

—_— = — —

\

—
—

Geog,raphlcal Geographical Geographical Geographical
Location A Location B Location A Location B

(a) Best Candidate Selection Problem when

Resources Cost is the same for all Candidates (b) VOs Migration Problem

Figure 3.2: Virtual Object Sharing Challenges Examples.

Secondly, sharing VOs amongst multiple applications requires a trade-off be-
tween optimal placements of each application individually. The provisioning process
should optimize the placement of each request without penalizing a particular one.
For example, let’s consider 4 VOs requested by two applications. V0; belongs to one
of these applications, while V03 and V0,4 serve the other one. Each application’s VOs
are deployed in separate data centres as shown in Figure 3.2.a. The V0, sends data



Page 34 Chapter 3. Efficient Provisioning of Shared Virtual Objects

to both applications. In this example, VO, has two possible candidates with already
deployed VMs. Both candidates satisfy applications QoS terms. We consider that
the costs of hosting VO, in both data centres are similar for all types of resources
(i.e. compute, network, and storage). Therefore, the provisioning decision is mainly
impacted by the QoS requirements of each application (e.g. latency). In this partic-
ular case, an efficient orchestration algorithm should find the placement that best
satisfies all the applications QoS requirements instead of finding a placement based
on other criteria.

Finally, a sharing strategy of connected objects might require that new requests
are served by already deployed VOs. However, VOs might need to satisfy some par-
ticular QoS requirements for the initiating applications. In this case, the migration
feature of Cloud Computing might be used to move VOs to a location that permits
to satisfy these QoS requirements instead of creating new VOs. Figure 3.2.b illus-
trates such use case: a new application requires VO, which is already deployed for
another one. Since the previous placement violates the QoS of the new application,
the VO, is migrated to another host that is more appropriate in term of QoS as-
surance. The migration operation induces additional costs for the cloud operator.
Therefore, the proposed model needs to take into account the migration cost and try
to minimize the reconfiguration operations performed on previously deployed VOs.
Additional granularity might be considered as well during the provisioning process.
For example, if the migration cost of a previously deployed VO is high, another
VO is instantiated without performing the migration operation. In such case, two
VOs connect multiple applications to the same IoT device. However, such consid-
erations increase considerably the algorithm complexity and its computation time.
Therefore, we decided to not consider such a solution since we aim to propose only
a scalable algorithm with acceptable time complexity. Therefore, in the proposed
approach, we consider that a VO and an IoT device can be shared between several
applications with the restriction that only one VO can be associated with an IoT
device.

3.4 Static Virtual Objects Placement Optimiza-
tion Model

In this section, we address the challenges of sharing VOs among different appli-
cations. First of all, we formulate an analytical model of the problem which is an
optimization problem under constraints, then we propose solutions to optimize the
placement of VOs in such environment. Table 3.1 is a notation table that illustrates
the significant variables used in the model.

3.4.1 Internet of Things Objects Clustering

In the IoT, connected objects usually belong to various geographical areas. When
[oT devices belong to the same geographical areas, communication costs with their
associated cloud data centre are similar. Indeed, since the data follows the same



3.4. Static Virtual Objects Placement Optimization Model Page 35

routing path, experienced bandwidth capacity and QoS (such as latency) are simi-
lar. Therefore, there is no need to consider each connected object individually and
it is therefore possible to treat them as a collection. We propose therefore to reduce
the problem size by clustering the connected objects in the IoT based on different
geographical areas. Such grouping does not alter the efficiency of the placement
process. However, since selected IoT devices in each geographical area may commu-
nicate with different applications hosted in different data centres, QoS experience
may be different. Therefore, in order to assure the required level of QoS, we propose
to subdivide further the cluster and group together connected objects serving the
same set of applications. Each obtained cluster at the end of the partitioning should
belong to only one geographical area. Each cluster is also associated with the same
group of cloud applications and QoS requirements.

Application 1 Application 2

Requirements

Cluster 1 || Cluster 2 || Cluster 3 || Cluster 4 || Cluster 5 || Cluster 6

M a8 = @ o | & Clustering

Area 1 & Area 2 & () Geographi‘cal
D= & & O 1y & Clustering

Selected Sensors

OO OO0 8 OESE:: X | |1dle ToT Device
Hhea&& OO o O O @ I[[] ToT Device for App 1
OO0 0e o O e e @ = IoT Device for App 2

Geographical Area 1 Geographical Area 2 | i IoT Device for App 1&2

Figure 3.3: Clustering Steps Before the Provisioning Process.

Figure 3.3 shows the proposed clustering process. First, the selected pool of
connected objects is separated into geographical groups. Then, they are further
separated by similar requirements groups (i.e. same set of served applications).
Let’s consider a set of applications A = ayq,...,a, having each a set of associated
connected objects (IoT devices) O = Oy, ..., O,. Each set of connected object has
a cardinality n; and is represented as O; = 0;1,...,0;,,. Having these elements,
we propose the Algorithm 3.1 to compute the set of clusters C. This clustering
approach permits to reduce the size of the problem to derive a solution with a
reduced complexity.



Page 36 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Algorithm 3.1 Clustering Algorithm for the Static Optimization Model

CLUSTER-STATIC(A, O)

In: Set of n applications A = {ay, ..., a,}; Sets of assigned connected objects for
each application O = {0y, ..., O, } = {01, ...}

Out: Sets of clusters C' = {C, ...} where each cluster C; groups connected objects
with similar requirements. Sets of requirements R = { Ry, ...} for each cluster.

- O+ 0; R« 0;
. for all selected connected objects 0; € O do
create a temporary set T' containing the geographical location of o;.
add to T all the cloud applications A; € A served by o;.
if 4R, such that R, =T then
Ck < 0;
else
R < {T} {add the new group of requirements to R}
C < {o;} {create a new cluster for new requirements 7'}
end if
: end for
: return C, R

— = =

3.4.2 Placement Optimization Problem Formulation

CLUSTER-STATIC(A, O) produces a finite number of clusters C' = {C4, ..., Cy, }.
Each cluster C; represents a set of connected objects, has a geographical location
gi € R;, and serves a set of applications A; C R; such that A; = R; \ {¢;}. VOs
mirror connected objects within these clusters in data centres D = {d, ...,d,} and
provide their services to cloud applications. Figure 3.4 shows the network schema
of such environment. We define e and ef? as network links. An edge ef% lies
between a cluster C; and a data centre d;, while e‘i‘} connects a data centre d; and an
application a;. Each network link possesses functional and non-functional properties

such as available bandwidth (b5%, b%) and network latency (I{%, 1{4) respectively.

Network Model

[oT devices exchange data with VOs. Therefore, each cluster C; produces an
average transmission rate represented as A{. The generated average transmission
rate for a cluster C; is equal to the sum of all individual average rates produced by
connected objects within this cluster. However, VOs abstracting IoT devices in one
cluster might not be deployed in the same data centre. Hence, a data centre receives
a portion of a cluster’s average transmission rate. This portion is represented by the
variable «; ;. It corresponds to the fraction of connected objects within the cluster
C; managed by VOs in the data centre d;. As a result, the arrival rate (i.e 953)
generated by a given cluster C; at a data centre d; is:

fojl = Oéi’j)\f (31)



3.4. Static Virtual Objects Placement Optimization Model Page 37

-VO -VO m
ZI“ i,j7“ci
= 1=

’ Virtual Machine VM, | « « « | Virtual Machine VM, ‘ v
| H
N bda /lda
Geographical Location 1 | 8 X4y Data Centre d;  ——=—11 - Application 1
A Y 12 W
LTy max NN -7 /
1 // e 1 \ N - s y
Cluster C, II , \\///\\y/
XX . N o
,/ ~& Data Centre d, - N Vo ﬁ Application 2
. \\ / P 7 \\ \ / //
NE4 / \ X y
. A7 . N AY, .
/ N \< v
. /N VANV
/s \ . / > \ .
c FAY
// e \a 1,p 1 . // / \\ \ .
| 4 A e A
Cluster C,, #— _ \ / “\
I ~~—_ \ ////8 (x1 E}\‘C \
Geographical Location h h \# Data Centre d, (- — %P1 - -% Application n
(&

m
B28; 10
i=1
Figure 3.4: Network Model of the Placement Problem.

Consequently, we can derive the overall ingress rate at any data centre d; as
following;:

J

)

In some cases, VOs hosted in data centres do aggregation operations on data
or add additional information such as semantic annotations. Therefore, the egress
traffic of VOs is not equal to the ingress traffic of connected objects. We use a
coefficient 8 > 0 to represent the effect of VOs operations on received data. If
S € 10, 1], the deployed VOs aggregate data. However, for 5 > 1, the instantiated
VOs provide additional information regarding the data for cloud applications. Also,
the communication overhead difference between ingress and egress traffic can be
handled by the coefficient 3. In our work, we consider that the cloud-based IoT
platform deploys a single type of VOs similarly to existing platforms discussed in
Section 2.3. As a result, the value of § is constant for all VOs. Thus, the egress
traffic for a data centre d; is the following:

A = 5Zai,jA;’ Vi:l—m (3.3)

Each application receives the amount of data transmitted by its assigned con-
nected objects. However, the latter connected objects are spread across different
clusters. Also, they are represented by VOs in cloud data centres. Hence, we can
express the traffic received by each application as a function of: (a) the transmitted
rate of clusters, or (b) the egress traffic of VOs. We define the binary variable d; j.
It equals 1 if the application a belongs to the set A, it is 0 otherwise. As a result,



Page 38 Chapter 3. Efficient Provisioning of Shared Virtual Objects

Table 3.1: Notation Table

Symbol | Definition
C Set of connected objects clusters; C' = {CY, ..., Cy, }.
D Set of data centres; D = {dy, ..., d,}.
A Set of cloud applications; A = {ay, ..., a,}.
A; The set of applications served by the cluster C;.
i ke Binary value equal to 1 if a; € A;, and 0 otherwise.
Ji Geographical location of a cluster C;.
A Total egress traffic of a cluster C;.
b5 Network bandwidth between a cluster C; and a data centre d;.
lffé Network latency between a cluster C; and a data centre d;.
052 Ingress traffic of a data centre d; from a cluster C;.
(93-1 Total ingress traffic of a data centre d;.
«9;{3; Ingress traffic of an application a; from a data centre d;.
b% Network bandwidth between a data centre d; and an application a.
l;{‘}g Network latency between a data centre d; and an application ay.
g Price of a data unit between a cluster C; and a data centre d;.
?f}c Price of a data unit between a data centre d; and an application ay.
i Price of one virtual machine in the data centre d;.
Q; The fraction of VOs mirroring cluster C; and hosted in data centre d;.

the average arrival rate sent by a cluster C; or a data centre d; to an application a
can now be expressed respectively as follows:

i = 0irAf (3.4)
9;{‘}9 = )\% = BZ(SMO% = ﬁZéi,kai,j)\f Vi:1l—=m (3.5)
with:
- 1 if a € Az
Oik = { 0 otherwise (3.6)

As well, the overall traffic received by an application ay, is:
Op =B 6ix; Vi:l—m (3.7)

The traffic between clusters, data centres, and applications, is handled by net-
work links. Transmitted data rates on a given network link should not exceed its



3.4. Static Virtual Objects Placement Optimization Model Page 39

available bandwidth capacity (constraints 3.8 and 3.9). Furthermore, the data cen-
tres has to be capable of handling the received traffic (constraint 3.10). In fact,
each data centre is able to manage a maximal amount of traffic represented by 67"
Also, the received traffic by an application a; should comply with its requested QoS
terms. In our work, we consider the latency of network links as the QoS indicator.
Each application a; QoS is represented by its highest acceptable latency {"** (con-
straint 3.11). These network constraints must be satisfied when mapping VOs to
cloud data centres and are expressed as follows:

cd cd . .,
075 <by5 Vi:l—m, Vj:1—=p (3.8)
0% <bl% Vji:l—p Vk:1l—n (3.9)
09 <07 Vj:l—p (3.10)

Oty (I54 + 199 — 1) <0 Vi:1—m, Vk:1—n, Vj:1—=p (3.11)

Quality of Service Index

During the deployment process, some VOs might have several hosts candidates
with similar cloud resources costs (see Section 3.3) as illustrated in Figure 3.5. In
this case, the provisioning process should select the data centre which provides the
best QoS for all applications. Therefore, we define a normalised parameter, the
QoS index ¢;; € [0,1]. This index reflects the inverse of the QoS level experienced
by the set of applications A; using cluster C; when their VOs are installed in data
centre d;. The lower the value of ¢, ; is, the higher the QoS level is. We use this
to prioritize hosts providing better QoS for cloud applications (See equation 3.16).
The QoS index is expressed as follows:

1995 4 o5 0 k5%

Gd = 1y o)L

VE:1—=n (3.12)
with:

cd

L:malic( l?f;c) Vi:l—m, Vj:1—p, Vk:1—n (3.13)

2¥8

Cost Function

We provide a model for orchestrating VOs in the cloud. The selection of con-
nected objects suitable for each application is out of the scope of this work. Conse-
quently, we do not consider costs related to the allocation of IoT resources. We only
represent costs associated with cloud resources. The basic resource in the cloud is
the VM. As mentioned previously, VMs manage instantiated VOs which are soft-
ware components within VMs. These VOs consume VMs resources based on the



Page 40 Chapter 3. Efficient Provisioning of Shared Virtual Objects

a
111+111+1 21

9 =
3L (da
1,1 ..
cd d ~———=2--—- Application 1
Y -7 Data Centre d; NN § {% /-, pp
Cluster C, <//// . (&\\’f/// li‘nax<1§1’e]1+1;:-dl
eo0 -7 N e Py
=~ s N
= =~ / . .
A Data Centre d; ¥ ——— W A Application : 2
l a
lC +1d +l 2,2 lgnax lda lcd
L I <y +15%

dada
L= maX(ll e 12»11 1=11 2»1 ,112,2

Figure 3.5: Provisioning Scenario with the QoS Index.

traffic they handle. In our work, we consider that all VMs are able to handle the
same arrival rate p. Therefore, we can calculate the total number of VMs needed
in each data centre based on the overall traffic managed by it. Each data centre d;
has a different VM cost represented as ¢;™. As a result, the cost of needed VMs for
orchestrating requested VOs is expressed as follows:

d c
F (o) = ¢¥™ Vﬂ = ot F" O‘”w Vi:l—m, Vj:1—=p (3.14)
j H j H
In order to linearise F*"™(«) we introduce the variable u; to replace the ceiling
function. The relation between the variable u; is defined as u; = [6/p] and mod-
elled with constraints (3.15a), (3.15b), and (3.15¢). The VM cost function is now
represented as follows:

Fa) =Y ¢Mu; Yi:l—=m, YVj:1—=p (3.15)
J
with:

d
uj > E] Vji:1l—p (3.15a)

94
ujgghrl Vi:l—p (3.15D)
€Lt VYji:1—p (3.15¢)

Moreover, the network cost represents the price of data exchanges between con-
nected objects, data centres, and applications. We define the cost of transmitting a
unit of data on a network link between two nodes n; and n; as ¢;';. The network
cost is the following:



3.4. Static Virtual Objects Placement Optimization Model Page 41

Fe) =323 qigd5055 + B3 419550560 A

Vi:l—m, Vj:1—=p, Vk:1—n

(3.16)

Our objective is to calculate the provisioning plan which minimizes the previously
defined costs. Therefore, the objective function is defined as follows:

min F(a) = wF" (o) + 7" (a)

(3.17)
st.wH+y=1
subjected to:
Bandwidth constraints:
cd cd . .,
07 <b% Yi:l—m, Vj:1l—=p (3.17a)
0% <bl% Vi:l—p Vk:1—n (3.17D)
Data centre capacity constraint:
d max .
0; <0 Vi:1l—0p (3.17¢)
QoS related constraint:
6i,kai,j (lchjl + l;i’(]lg - l;nam) S 0
Vi:1l—m, Vj:1—p, Vk:1—>n (3.17d)
Domain variable constraints:
ZO@J =1 Vi:l—m (3176)
J
a, ;>0 Vi:l—=m, Vj:1—=p (3.17f)
94
uj > ;J Vi:1l—=p (3.17g)
d
ujgj—l—l Vi:l—p (3.17h)
u; €T Vji:l—p (3.17i)

w and 7 are coefficients to specify the weight of each cost in the total value of the
function F. The constraint (3.17e) enforces the orchestration of all needed VOs, and
verifies that each connected object is assigned to only one VO. Also, the constraint
(3.17f) limits the values of o ; to positive real numbers only.



Page 42 Chapter 3. Efficient Provisioning of Shared Virtual Objects

3.5 Dynamic Virtual Objects Placement Optimiza-
tion Model

Unlike the static approach described in Section 3.4, a dynamic orchestration
process must adapt to changes at the software and infrastructure levels. Software
level changes are characterized by new applications or variations in previous applica-
tions requests, while infrastructure level changes are initiated by connected objects
mobility or failure (e.g. empty battery). On both levels, the orchestration process
needs to reallocate and adapt continuously cloud and IoT resources to cope with
these variations. In this work, we do not deal with the dynamic selection of IoT
resources. Such problem is well studied in the literature and various solutions are
provided [103]. We focus on the provisioning of cloud resources, and therefore the
distribution of VOs in such a dynamic environment. As a result, changes in the in-
frastructure are presented and processed as variations in existing applications needs.
In this section, we adapt the model presented in Section 3.4 to include the dynamic
aspect of cloud-based IoT platforms.

3.5.1 Internet of Things Objects Clustering

The dynamic arrival of applications requests populates data centres with VOs
over time. These VOs are shareable and therefore might be reused by forthcoming
applications requests. However, the placement of reused VOs might violate the QoS
required by new requests. Therefore, the provisioning process should investigate the
validity of such VOs placement and migrate them to suitable hosts if needed. Such
control is not necessary for unshared VOs. In fact, shared VOs should satisfy all
the QoS requirements of applications consuming them as mentioned in Section 3.4.
Hence, migrating VOs should be performed while accounting for all their connected
applications requirements, and not only new ones. Considering these applications
in the orchestration process enforces their QoS terms.

Figure 3.6 depicts this scenario. It illustrates a new application requesting con-
nected objects 0s, 03, and o4, while an existing application uses o; and oy. Both
applications share the connected object 0, and therefore its related VO (i.e. V0y).
In this example, we notice that the current placement of V0, does not comply with
the QoS required by the new application. Therefore, VO, should be migrated. If the
provisioning process considers solely the QoS requirements of the new application, it
might migrate V0, to the data centre in location B. The latter data centre violates
the QoS terms of the existing application. Hence, the provisioning process should
include both applications requirements in the provisioning process to select the best
placement for both (i.e. data centre at location C).

In this perspective, clustering connected objects in the dynamic model should
not operate