
HAL Id: tel-01758478
https://hal.science/tel-01758478

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study on lane reservation problems in transportation
networks

Peng Wu

To cite this version:
Peng Wu. A study on lane reservation problems in transportation networks. Operations Research
[math.OC]. Université Paris-Saclay; Université d’Evry-Val-d’Essonne; Northwestern Polytechnical
University (Chine), 2016. English. �NNT : �. �tel-01758478�

https://hal.science/tel-01758478
https://hal.archives-ouvertes.fr


 

 

 

NNT : 2016SACLE016 
 
 

 
 

 

 

 

THESE DE DOCTORAT  
DE 

NORTHWESTERN POLYTECHNICAL UNIVERSITY 

ET DE 

L’UNIVERSITE PARIS-SACLAY  

PREPAREE A L’ L’UNIVERSITE D’EVRY VAL-D’ESSONNE  
 
 

ÉCOLE DOCTORALE N°580 

STIC : Sciences et technologies de l’information et de la communication 
 

Spécialité de doctorat : Mathématiques et Informatique 
 

Par 

 

Mr Peng WU 
 

Études de problèmes de réservation de voie dans des réseaux de transport 
 

 
Thèse présentée et soutenue à Evry, le 30 juin 2016 : 

 

Composition du Jury :  
 

M. J. -M. DELOSME, Professeur, Université d’Evry Val d’Essonne, Président du Jury 

M. H. ALLAOUI, Professeur, Université d’Artois, Rapporteur 

M. A. JOUGLET, Maître de Conférences et HDR, Universitéde Technologie de Compiègne, Rapporteur 

M. K. BARKAOUI, Professeur, Cédric Cnam Paris, Rapporteur, Examinateur 

M. S. MAMMAR, Professeur, Université d’Evry Val d’Essonne, Examinateur 

M. W. ZHOU, Maître de Conférences et HDR, ESCP Europe Paris Campus, Examinateur 

Mme F. CHU, Professeur, Université d’Evry Val d’Essonne, Directrice de thèse 

M. A. CHE, Professeur, Northwestern Polytechnical University, Co-Directeur de thèse 
 

 

 



2



A Study on Lane Reservation Problems in

Transportation Networks

by

Peng WU

Laboratoire d’Informatique, Biologie Intègrative et Systèmes
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ALLAOUI (Université d’Artois), Prof. Antoine JOUGLET (Mâıtre des
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Kamel BARKAOUI (Cédric Cnam Paris), Prof. Jean-Marc DELOSME
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Résumé

Aujourd’hui, le transport est devenu indispensable dans la vie quotidi-

enne. Cependant, la congestion du trafic du fait de la forte urbanisation

et de l’augmentation rapide du nombre de véhicules a réduit l’efficacité

du système de transport et a causé d’énorme pollution urbaine. Dans ce

contexte, pour répondre aux besoins spécifiques de transport et améliorer

la performance des systèmes de transport, la réservation de voie, en tant

que stratégie de gestion du trafic flexible, a été largement mise en œuvre.

La majorité des études existantes sur la réservation de voie se focalisent au

niveau microscopique, par exemple, un segment de route principale. Dans

cette thèse, nous nous concentrons sur la réservation optimale des voies

dans un réseau de transport au niveau macroscopique en minimisant son

impact négatif pour deux catégories de problèmes. Nous étudions d’abord

des problèmes de réservation robuste de voie et de grande taille pour les fu-

turs poids lourds intelligents et les grands événements spéciaux. Ensuite,

nous étudions la réservation de voie dans le but d’améliorer la perfor-

mance du transport public avec des hypothèses spécifiques. Pour chaque

problème étudié dans cette thèse, des modèles appropriés sont construits

et leurs complexités sont analysées. Différentes approches de résolution

sont élaborées en fonction des caractéristiques des problèmes, à savoir :

une méthode exacte à deux phases, une méthode de ε-contrainte, une

méthode de “cut and solve”, et une méthode de “kernel search”. La per-

formance des algorithmes proposés est évaluée à l’aide de benchmarks et

d’instances générées aléatoirement. Les expériences numériques montrent

que les algorithmes proposés sont plusperformants que les algorithmes ex-

istant dans la littérature et le progiciel commercial CPLEX.

Mots clés: Planification et gestion des transports, Réservation de voie,

Transport de marchandises, Réseaux de bus, Optimisation combinatoire,

Algorithmes



Abstract

Nowadays, transportation has become an indispensable part in modern

life. However, heavy traffic congestion due to high urbanization and rapid

increase of vehicles has caused low transportation efficiency and huge

amounts of urban pollution. In this context, to meet special transporta-

tion requirements and improve the performance of transportation systems,

lane reservation, as a flexible and economic traffic management strategy,

has been widely implemented in real life. The majority of studies about

lane reservation in the literature focus on the impact at a microscope

level, e.g., a single link or corridor. In this thesis, we focus on optimally

reserving lanes at a macroscopic network level with the objective of min-

imizing negative impact for two categories of problems. We firstly inves-

tigate the large-size and robust lane reservation problems in the contexts

of future automated truck freight transportation and large-scale special

events. Then, we study lane reservation for improving the performance

of bus transit system under different assumptions. For all problems stud-

ied in this thesis, appropriate models are provided and their complexities

are analyzed. Different resolution approaches are developed according to

the characteristics of problems, including exact two-phase method, ex-

act ε-constraint based method, cut-and-solve method, and kernel search

method. The performance of the proposed algorithms is evaluated by

benchmark and randomly generated instances. Extensive numerical ex-

periments show the proposed algorithms outperform the state-of-the-art

algorithms and the commercial software CPLEX.

Keywords: Transportation planning and management; Lane reservation;

Freight transportation; Bus transit systems; Combinatorial optimization;

Algorithms
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Notation

N : set of nodes in the network G and G′

A: set of directed arcs in the network G

K: set of tasks or OD pairs

L: set of bus lines

Nl: set of bus stops with a given passing order on bus line l, l ∈ L

Al: set of arcs in G on bus line l with a given passing order, Al ⊆ A

L(a): set of bus lines containing arc a ∈ A, L(a) ⊆ L

A′ set of arcs in G′

A′l set of arcs on line l, A′l ⊆ A′

A′+i : set of arcs coming into node i ∈ N , A′+i ⊆ A′

A′−i : set of arcs outgoing from node i ∈ N , A′−i ⊆ A′

A′(a) set of arcs in A′ corresponding to arc a ∈ A, A′(a) ⊆ A′

O: set of origin nodes

D: set of destination nodes

ok: origin node of task or OD pair k ∈ K

dk: destination node of task or OD pair k ∈ K

sl: start stop of bus line l ∈ L, sl ∈ Nl

dl: terminal stop of bus line l ∈ L, dl ∈ Nl

fl: number of buses on the l-th bus line per unit of time, l ∈ L

Cij: negative traffic impact due to reserving a lane on arc (i, j) ∈ A

Ca: negative impact of implementing a bus lane on arc a ∈ A

B: available bus operating budget expressed by the total transit time

Dk: amount of passengers of OD pair k ∈ K

v



PT : penalty time per transfer (i.e., changing a line)

Qij: threshold of bus volume per unit time for reserving a lane on arc (i, j) ∈ A

Slij: Slij = 1: bus line l ∈ L passes arc (i, j) ∈ A and 0 otherwise

Tk: travel deadline to accomplish task k ∈ K

Tl: travel deadline for bus line l ∈ L

T0: departure time of buses at start stops

τij: travel time on a reserved lane on arc (i, j) ∈ A

τ ′ij: travel time on arc (i, j) ∈ A without reserved lanes

τ ′′ij: travel time on general-purpose lanes of arc (i, j) ∈ A with a reserved lane

τa travel time on a bus lane on arc a ∈ A,A′

τ ′a travel time on arc a ∈ A,A′ without bus lanes

T−i,l: lower bound on arrival time at the i-th stop on bus line l, i ∈ {2, .., |Nl|},
l ∈ L;

T+
i,l: upper bound on arrival time at the i-th stop on bus line l, i ∈ {2, .., |Nl|},

l ∈ L;

M : a large positive number

vi
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Chapter 1

Introduction

In this thesis, we investigate a new class of transportation planning problem called

lane reservation problem (LRP). It mainly focuses on reconfiguring transportation

networks by introducing the flexible and economic lane reservation strategy in order

to meet special transportation needs or improve the performance of the existing trans-

portation system. The objective of this thesis is to develop a methodology and tool

to support optimal lane reservation decision from the macroscopic network. In this

chapter, we first introduce the research background and then present the contribution

and outline of this thesis.

1.1 Background

With the rapid development of economies, high urbanization has become a reality

in many countries around the world. One of its resulted negative consequences is

heavy traffic congestion due to the rapid increases of vehicles. Traffic situations in

many large cities have been worse than ever before. The increasing traffic congestion

causes many transportation problems, such as low transport efficiency, unpredictable

transport time, traffic accidents, fuel waste and safety issues. These problems in-

creasingly prevent the transportation from being operated in an efficient, reliable and

safe fashion. Faced with such situations, novel transportation planning methods and

tools have to be developed to aid the decision of transportation managers.

One natural and traditional approach for solving these problems is to expand the

transportation network via constructing new traffic infrastructures. However, this

requires a large amount of financial and personnel costs and long duration. In the

meantime, it is usually restricted by limited geographic space. Therefore, reconfigur-

ing transportation network and making full use of the existing transportation infras-

1



tructures via rationalized management ways to improve the traffic situation becomes

increasingly important.

In recent years, lane reservation (LR), as a flexible, efficient, and economic traffic

management strategy has been widely applied in many countries. Its core idea is

to reserve lanes in an existing transportation network for specific users in order to

meet their transportation needs or improve the performance of the transportation

system. These reserved lanes can provide a congestion-free and safer transportation

environment to special users by disallowing other general-purpose vehicles. One fa-

mous example is the bus lane reservation that is employed to free buses from traffic

jams during rush hours such that the bus transit efficiency and schedule adherence

is improved, thereby enhancing the attractiveness of bus transit system. Another ex-

ample is that high-occupancy vehicle lanes have been used to encourage commuters

to carpool and save their travel time. Besides, the LR strategy has also been applied

to large-scale sport events, e.g., Olympic Games in Sydney, Athens and Beijing.

However, reserving lanes in an existing transportation network has negative im-

pact on normal traffic because the available lanes for the general-purpose vehicles

are reduced. This may further worsen already congested city’s traffic. For example,

travel times on the non-reserved lanes may be increased. It has shown in [96] that the

travel time of general-purpose vehicles on A1 motorway in Paris was increased up to

about 26% after one of three lanes was reserved. Therefore, it is necessary to decide

appropriate lanes to be reserved from the transportation network to minimize the

negative traffic impact. Such a transportation planning problem is called lane reser-

vation problem. To the best of our knowledge, only a few studies in the literature

have addressed LRPs, and the proposed approaches fail to solve large-size problems

within reasonable times. Moreover, optimal lane reservation for improving bus transit

service while simultaneously minimizing the impact of reserved lanes have not been

addressed in the literature. Remarkably, LRPs differ from the existing classical trans-

portation planning problems, such as vehicle routing problem (VRP), facility location

problem (FLP), minimum-cost multi-commodity flow problem (MCMCFP), and their

several special cases are classical combinatorial optimization problems. Consequently,

it is of both theoretical and practical significance to further investigate such a new

class of transportation planning problems. This thesis consists of developing new and

efficient methodologies for the above two categories of lane reservation problems for

meeting special transportation needs and improving the performance of bus transit

systems, respectively.
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1.2 Content and contribution

In this thesis, we mainly investigate optimal lane reservation from a macroscopic

transportation network point of view to minimize the negative traffic impact due to

reserved lanes. We firstly devote our attention to addressing large-size and robust lane

reservation in the context of automated truck freight transportation and large-scale

special events. Then, we study three new LRPs for bus transit in different contexts,

which are the bus lane reservation problem (BLRP) where both bus lines and paths

are predetermined, the BLRP where the bus lines are given but the paths need to be

determined, and the BLRP where both bus lines and paths are not known. For each

studied problem, appropriate model is formulated, the complexity is analyzed, and

solution method is developed according to the characteristics of the problem.

The main contribution brought by this thesis is summarized as follows:

1) Large-size and robust lane reservation problems for automated truck freight

transportation and large-scale special events are investigated. Improved math-

ematical models are formulated, some problem properties are derived and then

two-phase exact method and exact ε-constraint method and cut-and-solve com-

bined method are developed based on the characteristics and properties of

the problems. Computational results on benchmarks and randomly generated

larger-size instances indicate that the proposed algorithms outperform the state-

or-the-art algorithms.

2) Study three new bus lane reservation problems in different application contexts

(predetermined bus lines and paths, the bus lines are given but the paths need

to be determined, and both bus lines and paths are not known). These three

problems are investigated successively and the assumptions on bus lines and

paths are relaxed step by step. For these problems, appropriate mathematical

models are formulated, their complexities are shown and then optimal cut-and-

solve method, enhanced cut-and-solve method and kernel search based heuristic

are developed according to the characteristics of the problems. The results

from numerical experiments on extensive randomly generated instances show

the effectiveness and efficiency of the proposed algorithms.

The remainder of this thesis is organized as follows:

In Chapter 2, a review on lane reservation applications is first addressed. Then,

we review lane reservation problems and their state-of-the-arts, including the lane

reservation studies at microscope level and lane reservation at macroscopic network
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level. Then, optimization methods for combinatorial optimization problems, including

single-objective and multi-objective ones, are reviewed, and the principles of the key

techniques to be applied to solving the studied problems are introduced.

Chapter 3 addresses large-size lane reservation for automated truck freight trans-

portation. We first describe the background of the problem. Then, an improved in-

teger linear program is presented for the problem, and some properties of the model

are derived, based on which a fast two-phase exact algorithm is developed for solv-

ing large-size problems. Finally, computational results on benchmark instances and

larger-size instances are reported to evaluate the proposed method.

Chapter 4 investigates robust lane reservation for large-scale special events consid-

ering the uncertain traffic features. The background of the problem is first presented.

Then, a bi-objective mixed-integer program is presented for the problem. An exact

improved ε-constraint and cut-and-solve combined method is developed to obtain the

Pareto front of the problem. Computational results on an instance based on a real

network topology and randomly generated instances are finally reported.

Chapter 5 studies a bus lane reservation problem in which both the bus lines

and paths are predetermined. Its background is first given and then the problem is

formulated as an integer linear program. The complexity of the problem is proved. An

optimal cut-and-solve method is proposed to solve the model. Finally, computational

results on randomly generated instances are presented to evaluate its performance.

Chapter 6 investigates a bus lane reservation problem in which the bus lines and

their stations are given but the paths need to be determined. Compared with the

problem addressed in Chapter 6, the assumption that the bus paths are predetermined

is relaxed. The problem is first formulated as a mixed-integer linear program and an

integer linear program, respectively. The properties of the problem are explored.

Then, an exact enhanced cut-and-solve algorithm and an improved kernel search

based heuristic are developed for the problem, respectively. At last, computational

results are reported to evaluate the performance of the proposed methods.

Chapter 7 addresses a bus lane reservation problem in which both bus lines and

paths need to be determined, which further generalizes the problem studied in Chapter

6 by relaxing the assumption that bus lines are predetermined. For the problem, we

first develop a bi-objective mixed-integer linear program. Several invalid inequalities

are added to reduce the search space. Then, the ε-constraint method is proposed to

derive Pareto optimal solutions. Computational results on a benchmark instance and

randomly generated instances are finally reported.

Chapter 8 concludes this thesis and discusses some future research directions.
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Chapter 2

Literature review

In this chapter, we first review the applications of lane reservation. Then, the theo-

retical studies on lane reservation, including lane reservation at microscopic level as

well as at macroscopic network level are described, respectively. Then, we review op-

timization methods for single- and multi-objective combinatorial optimization prob-

lems, respectively, where the principles of the optimization methods for the studied

LRPs are introduced.

2.1 Review on lane reservation applications

With the dramatic and ongoing increase of vehicles on the roadways, traffic congestion

has become a common phenomenon in many cities around the world. As stated in

the previous chapter, compared with the conventional and direct strategy to expand

the capacity of transportation network via building road lanes or segments, appro-

priate traffic management strategies play a more important role. In recent years,

lane reservation, as a traffic management strategy, has been widely applied in real

life, including bus lane, high-occupancy vehicle (HOV) lane, and temporary reserved

lanes for large-scale special events (e.g., Olympic Games).

As is widely acknowledged, the bus lane reservation, as an important bus priority

strategy, has been widely implemented in many countries. It is to convert some

general-purpose (GP) lanes into exclusive bus lanes in some time periods, such as

morning and afternoon peak hours (see two examples in Fig. 2.1). Its objective is

to improve the performance of bus transit so as to enhance bus transit attractiveness

and promote passengers to shift from private cars to buses, thereby alleviating urban

traffic congestion [106]. The first bus lane in the world can date back to 1940 in

Chicago, American and the first European bus lane was later constructed in 1963 in

Hamburg, German. After that, other European countries such as France and England
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Fig. 2.1: Examples of bus lanes

also began to establish bus lanes. Later, Asian countries also implemented bus lanes

to promote bus priority. The first bus lane was established on Chang’an Avenue in

Beijing, China, in 1970. Nowadays, promoting bus priority via implementing bus lanes

is becoming more and more popular around the globe. Only in China, many cities,

e.g., Beijing, Xi’an, Kunming, Guangzhou, Chengdu, etc, have implemented bus lane

reservation strategies. Obviously, bus lanes can free buses from trapping into traffic

jams to achieve rapid and on-time bus transit service. Thus, many bus rapid transit

(BRT) systems based on bus lanes have been developed in many cities throughout

North America, Latin America, Europe, Asia during the past three decades. One of

the most successful examples is Bogotá BRT system in Colombia, which is delivering

over 198,000 passengers per hour during rush period and with which the average public

transit speed is increased from 15 km/h to 27 km/h [119]. Hidalgo and Gutiérrez [58]

reported that 120 BRT systems are implemented around the globe that cover more

than 4,300 km bus lanes were serving 28,000,000 passengers each day.

Another well-known application of lane reservation strategy is the HOV lane,

which is mainly reserved for the exclusive use of HOV vehicles during peak periods [1]

to save their travel time. A HOV is a vehicle containing multiple occupants. The

representative examples include carpools, vanpools, and buses. Like bus lanes, HOV

lanes are usually marked with special signs to differentiate them from general-purpose

lanes (see two examples in Fig. 2.2). By traveling on HOV lanes, HOVs can rapidly

pass congested urban areas during rush hours. Consequently, travelers, especially

commuters, are encouraged and drew to carpool. As stated in [111], HOV lanes

mainly target at increasing the average number of persons per vehicle. The first

HOV lane in the world can date back to the late 1960s in North America [112], [81]

and developed rapidly during the 1980s to 1990s. HOV lanes were widely installed

in Los Angeles, New York, San Francisco, Seattle, Washington DC. It was reported
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Fig. 2.2: Examples of high-occupancy vehicle (HOV) lanes

in [113] that about 2,300 miles of HOV lanes were installed in 28 metropolitan regions

in the USA in 2000. Nowadays, HOV lanes have been broadly implemented not only

in more than 40 cities of North America, but also in many cities around the world,

such as UK, Spain, Australia, and the Netherlands [82] [99]. Since HOV lanes can

encourage travelers to carpool to avoid traffic jams during rush hours, they contribute

to carrying more people by fewer vehicles. As a consequence, the HOV lane strategy

has been considered as an effective traffic management means of improving the road

use efficiency, alleviating traffic congestion, reducing exhaust emission and saving

energy. More information on the applications of HOV lanes can be found in [41].

Besides the above applications, a lane reservation strategy has also been applied

to large-scale special events, such as large sport events like Olympic Games and

world exposition. These special large-scale special events are held frequently in many

large cites nowadays. For example, approximately 70 large sport events were held

in 2009 [137]. Such events usually require organizers to ship certain people and

materials from athlete villages to dispersed stadiums in a fast, safe, and reliable way.

For example, the organizers of the Guangzhou Asian Games in 2010 were required

to deliver athletes to dispersed stadiums within 30 min [125]. To meet these special

transportation requirements, the organizers resorted to temporarily reserving lanes

on certain road segments for the exclusive use of their participants. In real life,

the strategy of reserving lanes for Olympic buses was adopted during the Sydney

Olympic Games in 2000 [17], the Athens Olympic Games in 2004 [134], and the

Beijing Olympic Games in 2008 where Olympic exclusive lanes were created and

implemented for Olympic buses to deliver athletes to stadiums. Fig. 2.3 gives two

examples of Olympic reserved lanes.
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Fig. 2.3: Examples of exclusive lanes for Olympic Games

2.2 Review on lane reservation studies

In the previous subsection, we have described various applications of lane reservation

strategy in real life, including bus lane, HOV lane and temporarily reserved lanes for

large-scale special events. Due to the widespread applications of lane reservation in

real life, there have been a range of theoretical studies on lane reservation strategies

in the literature, which can be classified into two categories. One focuses on studying

lane reservation at a microscopic road level, i.e., a single road link or corridor, and

the other concerns optimal lane reservation at a macroscopic network level.

2.2.1 Lane reservation studies at microscopic road level

As stated in section 2.1, to promote bus priority and alleviate traffic congestion,

bus lane reservation has been widely implemented in real life. To fully realize the

potentials of bus lane, numerous studies on bus lane implementation type, bus lane

install condition and form, evaluating the benefit impact of bus lane at a microscopic

road level (i.e., a certain road segment or corridor) have been reported by using

empirical, analytical, and simulation approaches.

Bus lane usually has two types: permanent bus lane and intermittent one. Because

a permanent bus lane monopolizes a lane, on which non-bus vehicles are not allowed

to pass in any time, it permanently reduce the traffic capacity of road segment for

non-bus vehicles, which may cause great traffic pressure for non-bus traffic. Therefore,

considerable researchers suggested implementing intermittent bus lanes to increase the

utilization efficiency of road lanes [62], [77], [114], [115], [140]. Jepson and Ferreira [61]

also pointed out that to implement bus lane on a certain road segment should take into

account multiple factors such as traffic volume and road conditions. Seo et al. [102]

established some guidelines to bus lane setting in Seoul. They concluded that bus
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lanes would be useful only when the condition of certain total traffic volume and

bus volume levels is met. In addition to traffic volume and road conditions, Eichler

and Daganzo [38] indicated that installing intermittent bus lane on a road segment

should additionally consider the bus frequency and volume ratio of buses and non-

bus vehicles on this road link. Zhang et al. [135] discussed the install form, size,

and standards of bus lane and the corresponding station on a certain road segment.

Besides, Black [16] proposed an evaluation model for bus lane reservation on a urban

arterial road segment. Gan et al. [51] presented an evaluation and decision model for

bus lane installing on a arterial road link.

Bus lanes reflect the priority of bus transit, which improve the travel speed of buses

and reduce their travel time. Considerable positive results on bus lanes have been

reported. Choi and Choi [27] pointed out that the bus transit time in South Korea was

significantly reduced and about 12% car users were shifted to bus after implementing

bus lane. Wei and Chong [122] reported that the average speed of buses in Kunming,

China was increased up to 58%, from 9.6 to 15.2 km/h with a bus lane reservation

strategy. Shalaby [103] found similar results on the effect of bus lane reservation in

Toronto, Canada, that bus transit performance and attractiveness were improved.

These results have indicated that bus lanes would improve the performance of bus

transit, thereby enhancing bus transit attractiveness and increasing bus ridership. On

the other hand, a bus lane on a road segment may result in negative traffic impact

on its adjacent non-reserved lanes. Arsan and Vedagiri [8], [9] developed microscopic

traffic simulation models to investigate the impact of bus lanes on non-bus vehicles

under heterogeneous traffic flow. The results indicated that after installing bus lanes,

the bus travel speed could significantly increase, but to maintain a minimum level of

service for non-bus vehicles on adjacent lanes, the permissible ratio of non-bus traffic

volume to capacity could not exceed 0.53 for 11.0m wide road and 0.62 for 14.5m wide

road, respectively. Karim [65] evaluated the impact of bus lane on travel time of non-

bus vehicles by adopting floating car technique. It was found that after implementing

bus lane the average travel time of non-bus vehicles was significantly increased during

morning and evening rush hours. Chen et al. [26] studied the impact of weaving

sections on the capacity of non-bus traffic on an urban express way due to bus lanes

via a microscopic traffic simulation. It was reported that the length and headway of

weaving section have three different impact on non-bus traffic under different kinds of

bus lane configurations. Yang and Wang [128] also applied a microscopic simulation

tool to address the impact of dynamic bus lane and general bus lane in terms of traffic

conflicts changes and travel times. The authors reported that both dynamic bus lane
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and general bus lane generate positive benefits (travel time reduction) on buses and

result in negative impact (increase in travel delay and travel conflicts) on adjacent

non-bus vehicles; but the former causes less impact on non-bus traffic than the latter.

In addition, there have also been considerable efforts on evaluating the impact of

HOV lanes by using empirical and analytical methods. Martin et al. [84] investigated

the impact of HOV lane on I-15 highway in Salt Lake through two-year empirical

study. It was reported that 1) during the P.M. peak hours, the HOV lane could

carry the same number of people as a non-HOV lane with only 44% of vehicles of

the latter; 2) the average vehicle occupancy on HOV lane was increased by 17 %;

and 3) the HOV lane saved up to 13% and 30% of travel time during the A.M. and

P.M. peak periods, respectively. Sullivan and Burris [107] evaluated the two HOV

projects: SR-91 in California and QuickRide in Texas in terms of the benefit-costs

including travel time savings, emission reduction, fuel cost savings, operation and

capital investment by using a comparison analytical method. The authors found that

both projects could achieve significant travel time savings and both the benefit-cost

ratios were about 1.5 to 1.7. However, there have also been negative results during

the application of HOV lanes. Fuhs and Obenberger [50] reported that one HOV lane

in New Jersey was closed due to lower utilization in 1998. Kwon and Varaiya [71]

evaluated and analyzed the HOV system in California by using empirical data. The

author found that most HOV lanes could achieve travel time savings but some were

underutilized and had to be closed. Dahlgren [33] also stated that HOV lanes were

not always more effective than non-HOV lanes if installing improperly.

2.2.2 Lane reservation studies at macroscopic network level

Although the studies on lane reservation at a microscopic road level provides valuable

information to aid decision-makers when implementing lane reservation, the results

obtained at the microscopic level cannot precisely guide optimal lane reservation

decision at the macroscopic network level. Considering optimal lane reservation from

a macroscopic network point of view using optimization techniques has increasingly

received attention from researchers and there have been only a few studies on it

reported in the literature maybe due to the complexity of the problem. Note that

Lane reservation studies at macroscopic network level can also be classified into two

categories according to application objectives: improving the performance of bus

transit systems and meeting special transportation requirements.
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To improve the performance of bus transit system through reasonable bus lane

reservation at a macroscopic network level, Mesbah et al. [87] firstly considered opti-

mal bus lane reservation at a network level as a Stackelberg leader-follower game in

which traffic managers act as the leader and the system users act as the follower and

the problem was formulated as a bi-level programming model. The upper level model

aims to minimize the weighted sum of user travel time and vehicle operation cost

via optimally selecting bus lanes while simultaneously satisfying budget constraint.

The lower level can be viewed as the constraints to the upper level and it consists of

three models, which involves modal spilt, traffic and transit assignment, respectively.

A benders decomposition based method was proposed to obtain optimal solutions,

while only one instance with up to 38 nodes and nine bus lines was tested. Mesbah et

al. [86] then proposed a genetic algorithm (GA) for the problem considered in [87] and

an instance with 86 nodes and ten bus lines was tested, but the quality of the obtained

solution was not evaluated. Recently, Yao et al. [131] incorporated the bus frequency

decision into optimal bus lane selection, and developed a bi-level programming model

with the objective of minimizing the weighted sum of user travel and transit operating

costs. They considered a bi-modal transportation network equilibrium model in the

lower level to address the impacts of bus lanes on traffic diversion and mode shift. A

GA was proposed for the problem and one instance with 13 node and six bus lines was

tested. More recently, Khoo et al. [68] examined an integrated problem of bus lane

selection and scheduling with the objectives of simultaneously minimizing the total

travel time of cars and of buses, in which traffic diversion impact and mode shift were

simulated by microscopic traffic simulation. A non-dominated sorting GA (NSGA II)

embedded with a microscopic traffic simulation tool was proposed to obtain Pareto

solutions. Its effectiveness was tested by an instance with the network of Malaysia

and ten bus lines. In addition, Sun et al. [108] developed a tri-level programming

model for optimal bus lane design in given transit network. The impact of bus lanes

on traffic diversion was addressed by simultaneously solving the traffic and transit

assignment sub-models. A GA and Simulated Annealing (SA) combined algorithm

was proposed for the problem and a case with 51 nodes and nine bus lines was tested.

In recent years, some researchers have studied optimal lane reservation at a trans-

portation network level to meet special and time-efficient transportation requirements

for future automated truck freight transportation and large-scale special events. As

stated in the previous subsection, implementing lane reservation on a road segment

may cause negative impact, such as an increase of travel times, on the adjacent non-

reserved lanes. The optimization objective focuses on minimizing the negative traffic
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impact of reserved lanes. Such a new kind of transportation planning problem is

called lane reservation problem. Wu et al. [125] first developed an integer linear

programming model to study an LRP motivated by completing the time-guaranteed

transportation tasks arising from the 2010 Asian Games in Guangzhou, China. The

authors developed a simple heuristic to obtain near-optimal solutions for problems

with up to 22 nodes and 22 tasks. The work [24], [124], [126] proposed efficient meta-

heuristics to obtain better solutions for the LRP in [125]. Later, Fang et al. [45]

extended the LRP studied in [125] to a capacitated LRP by taking into account the

residual capacity constraint on general-purpose lanes. They proposed a cut-and-solve

(CS) method to exactly solve the problem instances with up to 120 nodes and 30

tasks. Fang et al. [44] further improved their proposed CS method by introducing

a cutting plane technique to solve the capacitated LRP more efficiently. Larger-size

problem instances with up to 120 nodes and 40 tasks were solved. Recently, Fang et

al. [42] studied an LRP motivated by performing safe and time-efficient automated

truck freight transportation and proposed CS based exact method as well. Computa-

tional results on instances with up to 150 nodes and 30 tasks were reported. Besides

above studies, Zhou et al. [138],[139] examined the LRP for hazardous material trans-

portation and considered a bi-objective LRP with the two objectives of minimizing

the negative traffic impact due to lane reservation and the transport risk. An ε-

constraint and fuzzy logic combined method was developed to recommend Pareto

optimal solutions. More recently, different from the above LRPs considering constant

link travel times, Fang et al. [43] studied a dynamic LRP considering dynamic travel

times and an improved cut-and-solve method was presented.

By analyzing and summarizing the literature described above, the state-of-the-arts

on lane reservation studies can be concluded as follows.

Firstly, most of the studies are mainly concentrated on the types, install conditions

and forms, and benefits and impact of lane reservation at a microscopic road level.

As stated in section 2.2.2, the obtained results at microscopic road level can provide

valuable information for decision-markers when reserving lanes, but they cannot guide

an optimal lane reservation decision at a macroscopic network level.

Secondly, there have been a few contributions studying optimal bus lane reser-

vation from an existing macroscopic bus transit network to improve bus transit ser-

vice [68], [76], [86], [87], [108], [131]. However, all these studies assume that the bus

paths are predetermined such that the bus lanes are only selected from the given

bus paths. It is understandable that the proposed theories and methods cannot be

directly applied to a bus lane reservation problem in which the bus paths need to
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be optimally determined. In the literature, the optimization objectives mainly focus

on minimizing the total users travel time or/and vehicle operating costs, while the

negative impact due to reserved lanes was not considered. Guaranteeing bus arrival

times at stations is one of the most important factors to evaluate bus transit service

level [109], but it is ignored in the existing studies. Furthermore, the methods pro-

posed in the existing work only solved problem instances with relatively small-size

network and few bus lines. The algorithms in existing studies were tested by one or

two instances and most studies adopted GA to solve their problems but the quality

of the obtained solutions was not evaluated with optimal ones.

Thirdly, a few studies have considered optimally reserving lanes from an exist-

ing network to meet special transportation needs arising in future automated truck

freight transportation and large-scale special events, with the objective of minimizing

the negative impact of reserved lanes [24], [42]–[45], [124]–[126], [138], [139]. However,

we can find that: 1) the proposed methods usually fail to solve large-size problem

instances with reasonable computational times due to the NP-hard nature of the

problem; 2) most of the studies assume that the road travel time is constant and does

not consider its possible changes due to uncertain traffic features, such as dynamic

traffic flow, traffic accidents, and fault of task vehicles; and 3) no studies consider

optimally reserving lanes at a network level to minimize their negative impact in the

context of bus transit.

To address these issues mentioned above, this thesis first investigates large-size

lane reservation for automated truck freight transportation (Chapter 3) and robust

lane reservation for large-scale special events (Chapter 4). For the two problems,

efficient resolution methods are developed and their performance are evaluated on

benchmark instances and large-size newly generated instances. Then, we investigate

several new bus lane reservation problem at macroscopic network level minimizing

negative impact of reserved lanes and guaranteeing bus arrival times at stations for

different application contexts: 1) both bus stations and paths are known (Chapter 5);

2) the bus stations are given but paths need to determined (Chapter 6); and 6) both

stations and paths are must be determined along with lane reservation (Chapter 7).

For these new bus lane reservation problems, we propose new mathematical models,

then efficient resolutions algorithms are developed according the characteristics of

each problem. The proposed methods are evaluated by extensive numerical experi-

ments. As all these studied problems are combinatorial optimization problems. In

the following sections, we will review combinatorial optimization methods, including
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single- and multi-objective ones, where the principles of the optimization methods for

the studied problems are also detailed.

2.3 Single-objective combinatorial optimization

In this section, we will briefly review the widely used methods for solving single-

objective combinatorial optimization problems (generally NP-hard). These meth-

ods can be classified into three categories: exact methods, heuristic methods, and

metaheuristic methods. Without loss of generality, the combinatorial optimization

problems are referred to minimization problems if without special mention.

2.3.1 Exact method

The remarkable advantage of exact methods is that they can guarantee to find an op-

timal solution. However, the computational time usually exponentially increases with

the size of the problem for NP-hard problems. In the following, we will first review

the two widely applied exact methods for single-objective combinatorial optimization

problems and then an exact method for the LRPs is introduced.

2.3.1.1 Dynamic programming

Dynamic programming introduced by Bellman [14] in 1956 is a commonly used exact

method for a class of problems with the particular property that an optimal solution

can be computed from optimal solutions of its subproblems. Specifically, the main

idea is to solve a complex problem by breaking it down into a series of subproblems

which have the same structure with the original problem, and such decomposition is

to be made recursively. Applications of dynamic programming methods can be found

in [13], [25], [28].

2.3.1.2 Branch-and-Bound

Branch-and-bound (B&B) is an enumerative technique [72]. It is usually used to

solve problems, for which there exist no special ways to avoid their large sized search

spaces. The B&B aims to find the best way to effectively organize an enumeration

of the solutions by exploring as much as possible intrinsic properties of the studied

problem, such as efficient lower and upper bounds, powerful dominance rules, such

that the dominated parts of the solution space can be intelligently eliminated and

only a small and reasonable number of solutions are enumerated, those that are not

explored are dominated.
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The procedure of branch-and-bound (B&B) has been popularized by Land and

Doig [72] for general linear programming problems, by Little et al. [78] for the traveling

salesman problem, and by Ignall and Schrage [60] for flowshop scheduling problems.

Moreover, the B&B method was investigated by many researchers, see [11], [73], [89].

B&B method is an iterative method (generally called tree search) that contains two

basic operations: branching and bounding [89].

1) Branching. The branching is to divide the original solution space (root node)

into a set of subspaces (leaf nodes) corresponding to a set of subproblems. Then,

by exactly solving all these subproblems that covers the original problem solution

space, an optimal solution of the original problem can be obtained. The branching is

repetitively applied to each parent node to generate a new set of children nodes until

an optimal solution is obtained. Thus, the sets of nodes (subproblems) construct a

hierarchical tree.

2) Bounding. For a node of the search tree, the bounding is to determine if it

potentially contains an optimal solution by the obtained lower and upper bounds,

dominance rules. If yes, the node will be maintained and be branched in its turn to

find a new leaf (a feasible solution) or a new lower bound. If it proved that this node

does not contain an optimal solution, then the node will be pruned.

In the literature, B&B methods have been widely applied to solving combinatorial

optimization problems, see [3], [12], [23], [80].

2.3.1.3 Cut-and-solve method

For the single-objective combinatorial optimization problems to be addressed in this

thesis, an exact method, cut-and-solve (CS) method, is considered, which was firstly

introduced by Climer and Zhang in 2006 for integer linear programming problem

and was demonstrated that it achieved excellent performance for solving the asym-

metric traveling salesman problem (ATSP) [30]. CS method is a particular branch-

and-bound search strategy, in which only two nodes are branched at each level dur-

ing its search tree [129]. The two nodes correspond to a sparse problem and a

residual problem, respectively. The former problem is exactly solved because of its

small search space. Then the node corresponding to the latter problem need to be

branched.

Different from classical branch-and-bound method branching on one variable at

each iteration, CS method branches on a set of variables [129]. Because of these above

characteristics, CS method enjoys the following advantages: 1) “wrong” choices com-

monly appeared in classical branch-and-bound method can be avoided in CS method;
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Fig. 2.4: Principle of cut-and-solve method

and 2) compared with classical branch-and-bound method in which considerable mem-

ory may be required to store all unexplored nodes in their search tree, the branching

strategy of CS method can effectively maintain the tree size and is of much less

memory requirement. Recently, it has also been successfully applied to solving other

difficult combinatorial optimization problems, such as facility location problem [129]

and lane reservation problem [42], [45]. The above remarkable advantages and suc-

cessful applications of CS method motivate us to apply it to the considered LRPs in

this thesis.

The general principle of CS method is depicted in Fig. 2.4. It can be further

described as follows. Given an integer linear program (ILP), at the n-th level (n ≥ 1)

of CS algorithm, the branching tree has only two nodes, which correspond to a

Sparse Problem (SP n) and a Residual Problem (RP n), respectively. Such separa-

tion is achieved using a so-called piercing cut. The SP n has relatively small solution

space such that it can be exactly solved easily. Since SP n is a subproblem of the

original problem, its optimal solution if it exists provides an upper bound of the ILP,

denoted by UBn. After exactly solving SP n, its search space is cut off from the

current solution space. If UBn is better than the best upper bound UBb found so far,

then UBb is replaced by UBn. It is difficult to exactly solve the RP n since its search

space is large, and a linearly relaxed RP n is exactly solved and a lower bound of RP n

is obtained, denoted by LBn. If UBb is less than or equal to LBn that any optimal

solution of RP n will be greater than or equal to UBb, then the UBb is the ILP’s
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global best value and the CS terminates. Otherwise, the RP n is further separated

into SP n+1 and RP n+1 by the piercing cut, and a new iteration starts. We note that

the root node corresponds to the original problem.

To well understand the cut-and-solve method, several key points are further ex-

plained as follows:

1) The sparse problem at each iteration corresponds to a subproblem of the orig-

inal problem, so its optimal objective value is an upper bound of the original

problem. The best upper bound is updated when it is improved.

2) After a spare problem is solved, its corresponding solution space will be cut off

from the original solution space. Hence, the size of the solution space will be

iteratively reduced.

3) Because the solution space of the residual problem is large, it is difficult to

solve it to optimality. Hence, only the corresponding linear relaxation problem

is solved.

4) If the lower bound of the residual problem is greater than or equal to the best

upper bound found so far, then the optimal objective value of the residual

problem must be greater than or equal to the found best upper bound. This

means that the residual problem has no better solutions than the best solution

found. In this case, the iteration terminates and an optimal solution of the

original problem is obtained.

The optimality and termination of CS method is guaranteed by the following two

theorems owing to [30]. For more details on the proof of the two theorems, please

see [30].

Theorem 1 When the cut-and-solve method terminates, the current incumbent so-

lution is an optimal solution.

Theorem 2 If the solution space for the original problem is finite, and both the

method for solving the relaxed residual problem and the method for selecting and solv-

ing the sparse problem are guaranteed to terminate, then the cut-and-solve method is

guaranteed to terminate.

Piercing cut plays a crucial role for efficiently applying CS method since it drives

the branching of CS method at each iteration and it should be specially designed

for different optimization problems. The solution space of sparse problem should be
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General procedure of cut-and-solve method

1: define current problem CP0 as original problem and solve its linear relaxation
problem. Let n = 0.

2: Define set Un = {variables with reduced costs > αn};
3: define sparse problem SP n as CPn with constraint (sum of variables in Un = 0)

and residual problem RP n as CPn with constraint (sum of variables in Un ≤ 1)
4: solve SP n exactly, and obtain its optimal solution and objective value UBn.

Update UBb if UBn is less than UBb.
5: solve the linear relaxation problem of RP n and obtain its lower bound LBn.
6: if LBn ≥ UBb, return UBb and end; Otherwise, define the current problem
CPn+1 as RP n, let n = n+ 1 and goto step 2.

Fig. 2.5: General procedure of cut-and-solve method

small enough for easy resolution, and it should be also large enough such that it

contains at least a feasible solution of the original problem; otherwise, the best upper

bound cannot be updated. In fact, the efficiency of CS method is highly dependent

on selecting appropriate piercing cuts. Some desirable properties of piercing cuts are

suggested by Climer and Zhang [30], listed as follows:

1) The piercing cut should be able to remove the optimal solutions of the relaxed

residual problem so as to prevent them from being found in next iterations.

2) The subspace cut off by the piercing cut from the solution space of the relaxed

residual problem should be small enough, so that the resulted sparse problem

can be relatively easily solved exactly.

3) The piercing cut should attempt to explore the “promising” solution subspace

involving optimal solutions of the original problem, because the CS method will

not be terminated until an optimal solution of the original problem has been

found in the sparse problem.

4) The subspace cut off by the piercing cut should contain at least one feasible

solution of the original problem to guarantee termination.

In [30], Climer and Zhang defined a variable set that is composed of the decision

variables whose reduced cost values are greater than a given value alpha. Note

that the reduced cost values can be derived from the resolution of the linear relaxed

residual problem (each variable has a reduced cost value). The piercing cut is then
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defined as the sum of the decision variables being greater than or equal to one. Then

a general procedure of cut-and-solve method is presented in Fig. 2.5. In this thesis,

we make a contribution of developing improved cut-and-solve methods by introducing

new methods of generating piercing cuts and acceleration technique to more efficiently

solve the studied problems.

2.3.2 Heuristic method

A heuristic is an algorithm that quickly provides a feasible solution for a NP-hard

optimization problem. Heuristics are experience-based methods, which are normally

designed based on their characteristics. They can produce “good” solutions quickly,

but the solutions are not guaranteed to be optimal. Heuristics can be embedded into

exact methods like branch-and-bound algorithms for the optimum convergence ac-

celeration by providing better bounds as well as metaheuristics by providing “good”

initial solutions for their performance improvement. Well-known heuristics include

greedy heuristic, Lagrangian based heuristic, etc. Examples of heuristics for com-

binatorial optimization problems can be found in [4], [79], [125]. In the following,

a heuristic, kernel search (KS) method, that will be used for the resolution of the

BLRP-PD is described.

2.3.2.1 Kernel search method

Kernel search method is an iterative heuristic firstly introduced by Angelelli et al. [5]

in 2010 for solving ILPs, such as the multi-dimensional knapsack problem (MDKP) [5]

and the portfolio selection problem (PSP) [6]. Its core idea is to identify subsets of

variables and exactly solve a sequence of subproblems restricted to these subsets.

Recently, the KS method has been adapted to the solution of index tracking prob-

lem (IRP), the capacitated facility location problem (CFLP) and the single-source

capacitated facility location problem (SSCFLP) by [54]–[56]. These exciting results

motivate us to apply KS method to solve the studied BLRP-PD. In what follows, the

principle of KS method is first described, then its general procedure is presented.

For the KS method, a kernel is composed of a set of promising variables, in

which each variable is likely to take a positive value in an optimal solution. An ILP

restricted to a subset of variables is referred to as a restricted ILP. Such restriction

is equivalent to setting the values of the other variables to be 0. The KS method

optimally solves a sequence of restricted ILPs to obtain a near-optimal solution of

the original ILP.
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General procedure of kernel search method

1: solve the linear relaxation problem of the original problem.
2: define the kernel K1 and the sequence of buckets Bl, l = 1, 2, ...,m.
3: solve the first ILP restricted to the initial kernel K1 exactly. Let l = 1 and set

parameter m (m ≤ m).
4: while l ≤ m do
5: update the current kernel Kl;
6: solve ILP(Kl

⋃
Bl);

7: end while
8: output the best feasible solution and its objective value.

Fig. 2.6: General procedure of kernel search method

At the first iteration of the KS method, the linear relaxation of the original prob-

lem is optimally solved, and the variables are sorted by a predefined criterion based on

the relaxed solution information, such as the values of variables or/and their reduced

costs. For example, the variables with positive values can be sorted in non-increasing

order of their values and then for null variables (i.e., taking the value of 0) in non-

decreasing order of their reduced costs. Such order aims to sort the variables in non-

decreasing probability in an optimal solution of the original problem. Subsequently,

the initial kernel, denoted by K1, is built by selecting the first C (a given parameter)

variables from the ordered set and the remaining variables are divided into m (a given

parameter) ordered groups referred as to buckets, denoted by {Bl}, l = 1, ...,m. The

buckets may have different lengths. Finally, the first restricted ILP restricted to K1

is optimally solved.

The remaining iterations of the KS method is devoted to sequentially solvem (m ≤
m) restricted ILPs, denoted by ILP(Kl

⋃
Bl), restricted to Kl

⋃
Bl, l = 1, ...,m, where

Kl

⋃
Bl is composed of variables in kernel Kl and bucket Bl. Since the search space

of restricted problems is relatively small, they can be exactly solved. For l ≥ 2, the

kernel Kl is updated as follows:

Kl = Kl−1\K−l−1
⋃

B+
l−1, l ≥ 2 (2.1)

where K−l−1 ⊆ Kl−1 contains variables in Kl−1 have not been selected in the optimal

solution of ILP(Kl−1
⋃
Bl−1) as well as in h of previous iterations since they have

been added to the kernel, where h is a given parameter. These excluded variables

are considered no longer promising. B+
l−1 ⊆ Bl−1 contains variables in Bl−1 taking

positive values in the optimal solution of ILP(Kl−1
⋃
Bl−1).
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The solution of any restricted ILP provides an upper bound of the original ILP

and the best one of these ILPs is output as the solution obtained by the KS method.

The KS stops when the m+ 1 iterations are conducted. The general procedure of KS

method can be depicted in Fig. 2.6. In this thesis, we develop an improved kernel

search based heuristic for the BLRP-PD to be studied in Chapter 6 according to the

characteristic of the problem.

2.3.3 Metaheuristic method

A metaheuristic [92] is a special type of heuristics. Unlike traditional heuristics that

are often designed for specific problems, metaheuristics normally need relatively little

information on the structures of the considered problems and can explore larger solu-

tion space so as to obtain better solutions. Special mechanisms are designed in them

to escape a local optimum and increase the probability of finding optimal solutions.

In general, traditional heuristics are first employed to generate initial solutions. Then,

the initial solutions are iteratively improved according to certain rules. Their termi-

nation often relies on a maximum number of iterations or a given computational time.

Although good performance can often be achieved by metaheuristics, the optimality

of the obtained solutions are also not guaranteed. There have been numerous meta-

heuristics in the literature, which can be classified into two categories. The first one is

based on the exploration of neighbourhoods, including simulated annealing (SA) [70],

tabu search (TS) [53], greedy randomized adaptive search procedure (GRASP) [47],

variable neighbourhood search (VNS) [90], etc. The second one involves population

based metaheuristics, including genetic algorithm (GA) [59], ant colony algorithm

(ACO) [36], particle swarm optimization (PSO) [67], etc. Their applications can be

found in [48], [52], [74], [93], [94], [116], [120].

2.4 Multi-objective combinatorial optimization

Without loss of generality, a general multi-objective combinatorial optimization prob-

lem (MCOP) can be formulated as

min f(x) = {f1(x), f2(x), · · · , fn(x)}, s.t. x ∈ X (2.2)

where X is the set of feasible solutions (also called solution space), and x ∈ X is

the vector of decision variables. f(x) is the objective vector, and Y = f(x)|x ∈ X is

called the objective space.
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An MCOP requires the simultaneous optimization of several objectives. Moreover,

these objectives are usually conflicting. Due to the competing nature of the objectives,

an optimal solution that simultaneously optimizes all the objectives may not exist.

This is the main difficulty in solving MCOPs. A decision maker usually chooses a

most preferred solution from a set of reference solutions that make a good trade-off

among various objectives. The reference solutions are called Pareto optimal solutions.

The following definitions are owing to [88].

Definition 1 (Domination Relation) For any two solutions x1 and x2 ∈ X, x1

dominates x2 if and only if fi(x1) ≤ fi(x2), i = 1, 2, ..., n, where at least one inequality

is strict.

Definition 2 (Weakly Pareto Optimality) A solution x∗ is weakly Pareto optimal

if and only if no x ∈ X exists such that fi(x) < fi(x
∗), i = 1, 2, · · · , n, and f(x∗) is

called a weakly Pareto optimal objective vector or a weakly non-dominated solution

(point) in the objective space.

Definition 3 (Pareto Optimality) A solution x∗ is Pareto optimal if and only if

no x ∈ X exists such that fi(x) ≤ fi(x
∗), i = 1, 2, · · · , n with at least one inequality

being strict, and f(x∗) is called a Pareto optimal objective vector or a non-dominated

solution (point) in the objective space.

The concept of Pareto optimality for MCOPs replaces the optimal solutions in a

single-objective optimization problem. The set of all Pareto optimal solutions is called

the Pareto optimal set. A Pareto optimal solution corresponds to a nondominated point

in the objective space [88]. The set of all non-dominated points is called the non-

dominated set. The image formed by all non-dominated points in the objective space

is referred to as the Pareto front. Two particular points, namely, Ideal and Nadir

points, define the lower and upper bounds on objective values over the Pareto opti-

mal set, respectively. A bi-objective combinatorial optimization problem (BCOP) is a

subclass of MCOP, where only two objectives are considered. Ideal and Nadir points

of BCOPs are defined as follows [15]. Fig. 2.7 describes such two special points for a

BCOP.

Definition 4 (Ideal point) The vector f I = (f I1 , f
I
2 ) with f I1 = min f1(x), s.t.x ∈ X,

and f I2 = min f2(x), s.t. x ∈ X, represents the Ideal point.

Definition 5 (Nadir point) The vector fN = (fN1 , f
N
2 ) with fN1 = min f1(x), s.t.f2(x)

= f I2 , x ∈ X, and fN2 = min f2(x), s.t. f1(x) = f I1 , x ∈ X, represents the Nadir point.

22



f1

f2

Ideal point

Nadir point

1 2( , )I If f

1 2( , )N Nf f

Fig. 2.7: Ideal and Nadir points of a BCOP

There have been many approaches in the literature to solve MCOPs over the past

few decades. They can be mainly classified into two categories based on the strate-

gies for handling objectives: Pareto-based evolutionary algorithm and scalarization

method. The former one introduces Pareto-based ranking schemes into evolutionary

algorithms such as GA. The individuals in evolution population are usually classified

based on their domination relationships. The core idea of the latter is to transform

an MCOP to be a single-objective optimization one.

2.4.1 Pareto-based evolutionary algorithm

Evolutionary algorithms are popular approaches to quickly generate Pareto solutions

of MCOPs. Currently, most multi-objective evolutionary optimization algorithms

use Pareto-based ranking schemes to classify the individuals in the evolution popula-

tion and a mechanism to assign suitable fitness to promote the individual dispersion

in the population. Two representative Pareto-based evolutionary algorithms: non-

dominated sorting genetic algorithm-II (NSGA-II) [34] and strength Pareto evolu-

tionary algorithm 2 (SPEA-2) [141] have been widely used to solve MCOPs. Other

Pareto-based evolutionary algorithms include multi-objective particle swarm opti-

mization algorithm [98] and multi-objective differential evolutionary algorithm [2].

The main advantage of Pareto-based evolutionary algorithms is that multiple so-

lutions can be generated at each iteration, allowing to quickly compute an approxima-
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tion of the Pareto front. However, although their solution efficiencies are usually very

high, their solution effectiveness is highly dependent on the selection of parameters

and initial population generation. Another main disadvantage is the fact that their

obtained solutions are not guaranteed be Pareto optimal. In fact, it is only known

that the obtained solutions cannot be dominated among each other. Applications of

Pareto-based evolutionary algorithms for MCOPs can refer to [49], [83], [110], [118].

2.4.2 Scalarization method

Scalarization methods are usually applied to generating the Pareto front (i.e., all

nondominated solutions) of an MCOP. In the following, two most popular and widely

used scalarization techniques: weighted sum method and ε-constraint method are

described, respectively.

2.4.2.1 weighted sum method

The popular and straightforward scalarization method is the weighted sum method,

which was first introduced by Zadeh [133]. It aims to convert an MCOP to a single-

objective optimization problem by using a linear weighted sum formulation that com-

bines all the objectives, that is

min
n∑
i=1

γifi(x) (2.3)

s.t. x ∈ X (2.4)

The optimal solution of the above single-objective optimization problem would

be Pareto optimal if a proper weight vector (γ1, γ2, ..., γn) is set. The converted

single objective is an aggregation of all objectives of MCOP via a linear weighted

sum. Hence, this method is not appropriate if not all objectives can be reasonably

represented by the linear combination. Moreover, the weighted sum method is ill-

suited for an MCOP with nonconvex objective space [37]. Furthermore, considerable

redundant runs may be caused by inappropriate weight settings.

2.4.2.2 ε-constraint method

Another well-known scalarization technique is the ε-constraint method, which was

first proposed by Haimes et al. [57]. The method aims to optimize only the primary

objective, called the most preferred one, while restricting the others by allowable

values ε’s, called ε-constraints. Suppose that the objective m in (2.2) is selected as
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the most preferred one, with ε-constraint method the MCOP can be transformed into

the single-objective one as follows:

min fm(x)

s.t. fi(x) ≤ εi, i ∈ {1, ..., n}\{m}, (2.5)

x ∈ X

where the value of εi is limited by the ideal and nadir points. For problem P (ε), the

following theorem holds owning to [88].

Theorem 3 If a vector ε = (ε1, ε2, ..., εm−1, εm+1, ..., εn ∈ Rn−1) exists such that x∗

is an optimal solution of problem P (ε), then x∗ is (at least weakly) Pareto optimal.

By systematically modifying the ε vector, a set of Pareto optimal solutions are

obtained by exactly solving a sequence of ε-constraint problems. In theory, the Pareto

front can be derived if the ε vector is mannered in an appropriate way [117]. Compared

with the weighted sum method, the ε-constraint method can avoid the difficulties of

setting appropriate weights and solve MCOP with nonconvex objective space.

In this thesis, two of the studied LRPs are BCOPs, and we are intended to exactly

solve them (i.e., finding the Pareto front) and the ε-constraint method is considered.

For a BCOP, without loss of generality, assume that the first objective is selected as

the primary objective, then it can be transformed into the following single-objective

one.

P (ε) : min f1(x)

s.t. f2(x) ≤ ε, (2.6)

x ∈ X

where the value of ε is bounded by [f I2 , f
N
2 ] obtained by computing the ideal and nadir

points (see Definitions 4 and 5). Pareto optimal solutions can be always found by

optimally solving ε-constraint problems P (ε)’s with given ε values [15]. The Pareto

front can be obtained by solving ε-constraint problems as long as we know how to

systematically modify ε to find at least one solution for each non-dominated point of

the Pareto front [117].

For BCOPs, a traditional method of modifying ε is to uniformly divide the interval

of ε into a number of subintervals and take each interval limit value as the value of ε.

This method is referred to as the equidistant ε-constraint method [139]. Due to its

simplicity of implementation for BCOPs, it has been applied to solve many BCOPs.

25



Exact ε-constraint method for BCOPs with integer objective values

1: Compute f I = (f I1 , f
I
2 ) and fN = (fN1 , f

N
2 )

2: Set Y ′N = {(f I1 , fN2 )}, εj = fN2 − δ and δ = 1, respectively. Let j = 2.
3: while (εj ≥ f I2 ) do
4: Solve problem P (εj) exactly and obtain an optimal solution x∗. Add the corre-

sponding objective vector of the optimal solution x∗: f(εj) = (f1(εj), f2(εj)) to
Y ′N .

5: εj+1 = f2(εj)− δ and j = j + 1.
6: end while
7: Remove dominated points from Y ′N to obtain its Pareto front YN if existing.

Fig. 2.8: Exact ε-constraint method for BCOPs with integer objective values

However, it cannot guarantee that all the non-dominated points are found. Recently,

Bérubé et al. [15] defined a sequence of ε-constraint problems based on a progressive

reduction of the values of ε and proposed an exact method to obtain the Pareto front

of BCOPs with integer objective values [15]. This method overcomes the drawback

of the equidistant ε-constraint method, and we refer to it as the exact ε-constraint

method. Its procedure is outlined in Fig. 2.8.

Bérubé et al. first showed the correctness of the exact ε-constraint method to

generate the Pareto font for BCOPs with integer objective values and applied it

to solving the bi-objective traveling-salesman problem with profits [15]. It solves a

sequence of ε-constraint problems through a progressive reduction of the values of ε

and then obtains the whole non-dominated set after removing dominated solutions.

It has been successfully applied to find the Pareto fronts of some BCOPs, such as the

prize-collecting Steiner tree problem [75], vehicle routing problem [97].

Throughout the exact ε-constraint method for BCOPs, the ε value at iteration

j + 1 is the optimal value of f2 at iteration j minus parameter δ that is set as 1.

This is because the minimum difference of the values of f2 between any two non-

dominated solutions for a bi-objective integer linear program cannot be smaller than

1 due to integer objective values, and thus, no non-dominated points would be lost

by this method. In this thesis, we generalize the exact ε-constraint method for the

BCOPs with either integer objective values or fractional objective values and further

improve the exact ε-constraint method to exactly solve the studied bi-objective LRPs

by introducing acceleration techniques according to the characteristics of the studied

problems.
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2.5 Conclusions

In this chapter, we first review the literature on lane reservation that, as a traffic

management strategy, has many applications in real life, such as bus lane, high-

occupancy lane and temporary reserved lanes for large-scale special events (e.g.,

Olympic Games). Then, we review the literature on lane reservation studies. Con-

siderable studies have been conducted on lane reservation, most of which are con-

centrated on the types, install conditions and forms, and benefits and impact of lane

reservation at a microscopic road level via empirical, analytical and simulation ap-

proaches. On the other hand, there have been a few studies considering optimally

reserving lanes at a macroscopic network level; however, the proposed methods usu-

ally fail to solve large-size problems and most of the studies do not consider the

uncertain traffic features. Moreover, no studies consider optimal bus lane reserva-

tion for improving bus transit system at a network level while minimizing its negative

impact. These above issues motivate us to study the following problems in this thesis.
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Chapter 3

Large-size lane reservation for
automated truck transportation

3.1 Introduction

As stated in Chapter 2, lane reservation, as a flexible traffic management strategy, has

been widely applied in real life, and it has been paid attention by both researchers and

practitioners. Meanwhile, implementing lane reservation may cause negative impact

on normal traffic. Only limited studies in the literature has considered optimally

reserving lanes at a transportation network level to minimize the negative impact of

reserved lanes. Due to the NP-hard nature of the problem, the existing methods failed

to solve large-size problems within acceptable computational time. In this chapter,

we study large-size lane reservation for future automated truck freight transportation.

As is widely acknowledged, freight transportation constitutes an important com-

ponent of the supply chain. It supports economic activities by achieving the effi-

cient movement of raw materials and finished products [31]. As pointed out by [32],

transportation is responsible for a significant part of the final cost of products and

constitutes an important part of the expenditures of a country. As a consequence, the

efficient shipments of cargos has attracted much attention. However, increasing travel

demand results in increasingly severe traffic congestion, which causes many problems

in freight transportation, such as low transport efficiency, unpredictable transport

time, traffic accidents, fuel waste and safety issues. These problems increasingly

prevent the freight transportation from being operated in an efficient, reliable and

safe fashion [42]. As such, transport managers are urging to appropriate solutions

for them. With the development of advanced driver assistance system (ADAS), au-

tomated driving is being brought into our daily life [105]. The automated trucks

could provide remarkable advantages such as improving transport safety, increasing
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transportation efficiency, decreasing drivers’ stress, and reducing fuel consumption.

Therefore, introducing automated driving for trucks would be a promising solution for

efficient, reliable, economic and safe freight transportation. One of the key concerns

of using automated trucks in freight transportation is the transport safety. Therefore,

effective solutions for ensuring safe and time-efficient automated truck transportation

is needed, as unlike manually driven trucks, automated ones must have the ability of

detecting possible dangers and responding to them correctly and promptly. Providing

automated trucks a preferable transportation environment, such as dedicated truck

lanes, would be ideal.

It is also predicable that the automated vehicles and manually driven ones will

coexist during a long time in the future; however, constructing new transportation

network dedicated to future automated trucks is an infeasible way because of the high

costs and limited geographic space. Thus, transportation network reconfiguration and

to make full use of the existing one is an important opinion. A lane reservation strat-

egy, to convert existing general-purpose lanes in the existing transportation network

to dedicated ones (e.g., dedicated truck lanes), provides a good opportunity for safe

and time-efficient automated truck transportation. However, because of the exclusive

use of the reserved lanes by the automated trucks, the available lanes in the net-

work for general-purpose vehicles are reduced and thus negative traffic impact will

be generated on the remaining general-purpose lanes. Therefore, it is necessary to

decide appropriate lanes to be reserved so as to satisfy the safe and time-guaranteed

automated truck freight transportation, while minimizing the negative traffic impact

at the same time.

In this chapter, we study a lane reservation problem for automated truck freight

transportation (called LRP in short hereafter), which aims at designing reserved paths

for a set of automated truck transportation tasks such that they can be completed

within given travel deadlines safely. These reserved lanes ensure the time-guaranteed

and safe automated truck transportation but cause negative impact on normal traffic,

such as an increase in travel times on adjacent non-reserved lanes. The objective of

the LRP is to minimize the negative impact of all reserved lanes. To the best of our

knowledge, the LRP has only been addressed by [42]. However, it is found that the

method proposed in [42] becomes difficult to solve large-size problems within accept-

able computational time due to its NP-hardness. Therefore, more efficient solution

approaches are desired to efficiently solve large-size LRP, which is the main focus of

this chapter. In comparison with [42], we first present several valid inequalities for

the integer linear program proposed by [42]. Experimental comparison results show
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that these valid inequalities are effective in saving computational time. Moreover, we

identify that several special cases of the LRP are classical combinatorial optimiza-

tion problems. Then, to efficiently solve the LRP, especially for large-size instances,

we develop a novel fast two-phase exact algorithm based on the derived properties.

Computational experiments based on 120 benchmark ones and 285 newly generated

larger-size ones with up to 700 nodes and 55 tasks show that the proposed algorithm

is much more efficient as compared with the state-of-art algorithm.

The rest of the chapter is organized as follows. In Section 3.2, problem description

is recalled, its improved integer program is provided and its NP-hardness is formally

proved. In Section 3.3, we derive several optimal properties for the LRP. Based on

the derived properties, a new fast two-phase exact algorithm is developed in Section

3.4. Then, in Section 3.4, numerical experiments on benchmark and newly gener-

ated instances are conducted to evaluate the efficiency of the proposed algorithm by

comparing with the state-of-art algorithm. Section 3.6 concludes this chapter.

3.2 Problem formulation

The LRP is formulated as an integer linear program (ILP), which is defined on a

transportation network that can be represented by a directed graph G(N,A) with a

node set N and an arc set A. A node (resp. an arc) represents a road intersection

(resp. a road segment). Given a set of automated truck transportation tasks to be

accomplished and their corresponding origin-destination (OD) pair, the LRP consists

of optimally selecting lanes from the existing network to be reserved and designing

a reserved path for each task in order to ensure that it can be completed within its

travel deadline safely. However, such lane reservation reduces the available lanes of

general-purpose vehicles such that the negative traffic impact, such as the increase of

travel time on the remaining general-purpose lanes, may be caused. The objective of

the LRP is to minimize the total negative impact caused by all reserved lanes.

As stated in [42], some assumptions are made to facilitate the formulation of the

LRP. Firstly, at most one reserved lane is allowed on each road segment. Secondly,

there is only one path for each task from its origin to destination in order to ensure

the transport safety and the path only consists of reserved lanes. Thirdly, there are at

least two lanes on each road segment allowing one reserved lane. We first summarize

the parameters and decision variables as follows.

Sets and parameters
N : set of nodes, i ∈ N
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A: set of arcs, (i, j), i, j ∈ N
K: set of transportation tasks with |K| tasks, k ∈ K
O: set of origin nodes, O ⊆ N
D: set of destination nodes, D ⊆ N
ok: origin node of task k ∈ K, ok ∈ O
dk: destination node of task k ∈ K, dk ∈ D
Tk: prescribed travel duration to complete task k ∈ K
τij: travel time on a reserved lane on arc (i, j) ∈ A
Cij: negative impact caused by a reserved lane on arc (i, j) ∈ A

Decision variables
zij zij = 1, if arc (i, j) is reserved, and 0 otherwise, (i, j) ∈ A
xkij xkij = 1, if the path of task k pass arc (i, j) which is reserved, and 0

otherwise, (i, j) ∈ A, k ∈ K

Before giving an improved formulation, we first recall the ILP for the LRP pro-

vided by [42] shown below.

Pl : min
∑

(i,j)∈A

Cijzij (3.1)

s.t.
∑

(ok,i)∈A

xkoki = 1,∀k ∈ K, (3.2)

∑
(idk)∈A

xki,dk = 1,∀k ∈ K, (3.3)

∑
j:(i,j)∈A

xkij =
∑

j:(j,i)∈A

xkji,∀j ∈ N\{ok, dk}, ∀k ∈ K, (3.4)

∑
(i,j)∈A

xkijτij ≤ Tk,∀k ∈ K, (3.5)

xkij ≤ zij,∀(i, j) ∈ A, ∀k ∈ K, (3.6)

zij ∈ {0, 1},∀(i, j) ∈ A, (3.7)

xkij ∈ {0, 1},∀(i, j) ∈ A, ∀k ∈ K. (3.8)

Objective (3.1) is to minimize the total negative impact caused by reserved lanes.

Constraints (3.2)-(3.4) guarantee that there exists a feasible path for each OD pair.

To be more specific, constraint (3.2) (resp. (3.3)) implies that there exists only one

arc outgoing from (resp. coming into) origin node ok (resp. destination node dk).

Constraint (3.4) ensures the flow conservation for intermediate nodes between origin

and destination for each task k ∈ K. Constraint (3.5) indicates that the total travel

duration for task k from its origin to destination should not exceed its travel deadline.

Constraint (3.6) ensures that task k can pass a reserved lane on arc (i, j) ∈ A only
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if this arc is reserved. Constraints (3.7) and (3.8) enforce the bounds of all decision

variables.

In the following, we improve this formulation based on the following observations.

Observation 1 For any task k ∈ K, there will be no arcs entering into (resp. out-

going from) its origin ok (resp. destination dk) on its transportation path.

With Observation 1, we add the following valid inequalities into Pl without excluding

optimal solutions.

xkiok = 0,∀(i, ok) ∈ A,∀k ∈ K (3.9)

xkdki = 0,∀(dk, i) ∈ A,∀k ∈ K (3.10)

Obviously, constraints (3.9) and (3.10) reduce the search space of the original problem

since part of variables are prefixed.

Observation 2 For any task k ∈ K, each node in the network will be passed at most

once.

Note that if a node in the network is passed more than once by a task (i.e., cycles exist

on the transport path), this obviously generates larger negative impact compared with

the case without cycles. With Observation 2, we also add the following constraints

into Pl. ∑
j:(i,j)∈A

xkij ≤ 1,∀j ∈ N\{ok, dk},∀k ∈ K (3.11)

∑
j:(j,i)∈A

xkji ≤ 1,∀j ∈ N\{ok, dk},∀k ∈ K (3.12)

Constraints (3.11) and (3.12) are also valid inequalities, which tighten the search

space of the original problem. With the newly obtained constraints, we derive the

following improved program.

P ′l : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (3.2)-(3.12)

Remark 1 The improved formulation employs
∑

k(|A
−
k |+ |A

+
k |)+2|K|(|N |−2) more

constraints as compared with [42]’s formulation, where |A−k |(resp. |A+
k | denotes the

number of arcs entering into origin ok(resp. outgoing from destination dk).

Remark 2 The prefixing of
∑

k(|A
−
k |+|A

+
k |) variables and relatively more constraints

help reduce search space. Computational results in Section 5.1 show that P ′l can save

19.11% average time compared with Pl.
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Fang et al. [42] stated that the considered LRP is NP-hard based on their obser-

vation but the proof was not given. In this chapter, the NP-hardness of the studied

LRP is shown below.

Theorem 4 The LRP is NP-hard.

Proof : The proof is based on the fact that constrained shortest path problem (CSPP)
reduces to the special case of the LRP with only one task. Let us consider the fol-
lowing instance of CSPP. Given a graph G′ = (N ′, A′) associated with two weights
cij > 0 (say, cost) and dij > 0 (say, delay), (i, j) ∈ A′, two distinguished nodes s and
t, s, t ∈ N ′ and a positive value T . The CSPP consists of finding a minimum cost s-t
path with its total delay being equal to or less than T .

We then show how to transform the above CSPP instance into an instance of the
special case of the LRP with only one task. Denote the only task as task 1. Let us
map (N ′, A′) to (N,A) (i.e., N ′ and A′ are mapped to N and A, respectively), s to o1
and t to d1. Cij, τij, and T1 are equal to cij, dij, and T , respectively. Through such
linear transformation, the CSPP is reduced into the special case of the LRP with only
one task. As the CSPP is NP-hard even for acyclic networks [127], the LRP with one
task is consequently NP-hard. Certainly, the LRP in general case is NP-hard. �

3.3 Property analysis

In this section, we first investigate several special cases for the LRP. Note that these

special cases correspond to classical combinatorial optimization problems and can be

tackled using existing techniques. The potential benefits are that if an instance is

recognized as one special case of them, then it can be efficiently solved accordingly.

Then, the LRP in the general case is analyzed.

3.3.1 Special cases

Case 1: The LRP with only one task and large task travel deadline.

When the travel deadline of the task is large enough, then the travel deadline

constraint can be relaxed. Obviously, the special LRP in Case 1 is equivalent to

finding a reserved path with minimum impact. Then, the following proposition is

straightforward.

Proposition 1 The special LRP in Case 1 is equivalent to a shortest path problem.

Remark 3 The special LRP in Case 1 is polynomially solvable as the shortest path

problem that can be efficiently solved by the Dijkstra shortest path algorithm [35] whose

time complexity is O(|N |2).
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Case 2: The single-source LRP with large task travel deadline.

For this case, we have the following proposition.

Proposition 2 The special LRP in Case 2 is equivalent to a directed Steiner tree

problem (DSTP).

Proof : Let us consider an instance of DSTP as follows. Given a directed graph
G = (V,E) with positive weights on the edges, a set of terminal vertices V ′ ⊆ V , a
root node vertex r. i, j ∈ V , edge (i, j) ∈ E and its weight is denoted by wij. The
instance of DSTP consists of finding a minimum weight out-branching tree T rooted
at r, such that the vertices in V ′ are included in T .

We now show how to transform the DSTP instance into an instance of the special
LRP in Case 2. Let us map graph G = (V,E) to graph G = (N,A) (i.e., V and
E are mapped to N and A, respectively), V ′ to D and r to the only origin node.
The weight Cij is equal to wij. Then, designing the task paths with minimal impact
of lane reservation is equivalent to finding a minimum weight out-branching tree T .
With such linear transformation, the DSTP is reduced into the special Case 2 of the
LRP. �

Remark 4 The special LRP in Case 2 is NP-hard, as the DSTP is known to be

NP-hard [66], and it can be efficiently solved by the dual ascent approach [123].

Case 3: The LRP with only one task.

Based on the complexity proof before, we have the following proposition.

Proposition 3 The special LRP in Case 3 is equivalent to a constrained shortest

path problem.

Remark 5 The special LRP in Case 3 is NP-hard and can be efficiently solved by

Lagrangian relaxation algorithm [127].

3.3.2 General case

Generally, an LRP contains multiple tasks and different tasks are allowed to share

reserved lanes. Since the path design of any task may be influenced by other tasks’

paths due to the requirement of minimizing negative impact of reserved lanes. Con-

sequently, the path of any task may be not an optimal path determined by solving

its corresponding constrained shortest path problem. That is to say, solving an LRP

with |K|(|K| > 1) tasks may be not equivalent to independently solving |K| con-

strained shortest path problems. In fact, for the LRP in general case, the following

proposition is straightforward.
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Proposition 4 Solving an LRP with multiple tasks is equivalent to finding an optimal

loopless path respecting travel deadline constraint for each task to form the best path

combination such that the total negative impact of reserved lanes is minimized.

As previously analyzed, we know that our considered problem with only one task

is NP-hard even for acyclic networks. This means that the LRP with multiple tasks in

the network with cycles is even harder to handle. In the following section, a solution

approach to efficiently solve the LRP in general case is developed.

3.4 Solution approach

For the considered LRP in general case, Fang et al. [42] proposed a cut-and-solve

(CS) based optimal algorithm, which can solve problem instances with up to 150

nodes and 30 tasks within 18000 CPU seconds. In this chapter, a new fast two-phase

exact algorithm is developed to efficiently solve the larger-size LRP. The algorithm

is composed of two major phases. In the first phase, all feasible paths respecting

the travel deadline constraint are enumerated for each task k ∈ K. An optimal lane

reservation scheme and task paths are then determined in the second phase. We

detail our new optimal algorithm in what follows.

3.4.1 Task path enumeration

As indicated by Proposition 3, the LRP with one task is a constrained shortest path

problem that consists of finding a loopless reserved path respecting the travel deadline

constraint with minimal negative impact. Thus, for any task k ∈ K, let Pk denote

the set of all loopless paths connecting its origin and destination and respecting its

travel deadline (i.e., the total travel duration is equal to or less than Tk).

Remark 6 The optimal path of the task k ∈ K of the LRP must be in the set Pk.

It is not hard to find that the problem determining the set Pk for each task k ∈ K
is equivalent to finding all loopless paths with their travel duration being equal to

or less than Tk in the direct graph G(N,A). We note that such problem can be

efficiently solved using the well-known Yen’s K-shortest loopless path algorithm [132]

with its time complexity O(K|N |(|A| + |N |log|N |) [18], which belongs to a kind of

deviation algorithms ranking the first K loopless paths for given pair of nodes. To

more efficiently obtain the set Pk,∀k ∈ K, the search space for each k ∈ K is reduced
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before using Yen’s K-shortest loopless path algorithm. For k ∈ K, a ∈ A, we define

the possibly passed arc set Ak as follows.

Ak = {(i, j)|ϕ(ok, i) + τij + ϕ(j, dk) ≤ Tk}, k ∈ K (3.13)

where ϕ(ok, i)(resp. ϕ(j, dk) denotes the shortest path from ok to i(resp. j to dk) when

all the arcs in the network are reserved. Note that arcs belonging to A\Ak would not

be passed by task k, otherwise the travel deadline constraint will be violated. In other

words, set Ak includes all arcs in the network that may be passed by task k ∈ K.

Since set Ak is a subset of A, obviously the resolution of the path enumeration for

task k will be accelerated.

Remark 7 From Proposition 4, we can observe that the path selected for task k ∈ K
in the optimal solution of the LRP may not be the travel deadline constrained path

with minimal negative impact.

As the above remark, after obtaining the set Pk for each k ∈ K, the path for

any task cannot be simply determined to be the one in the set Pk with the minimal

negative impact. According to Proposition 4, the LRP is to find the best task path

combination in order to minimize the total negative impact.

3.4.2 Lane reservation and task path determination

The candidate path sets Pk,∀k ∈ K are determined in the above phase. In the

second phase, we propose an integer programming method to determine the optimal

lane reservation scheme and task path from Pk for each task k ∈ K. To formulate

the model of determining optimal lane reservation and all task paths, we need to

additionally define parameter δkpij, if path p ∈ Pk passes arc (i, j) ∈ Ak, δkpij = 1, and

0 otherwise, and a new variable ykp as follows.

ykp : = 1 if the path p ∈ Pk is selected; and 0 otherwise, ∀k ∈ K.

Then, a new ILP for determining optimal lane reservation and task path is developed

as follows.

P ′′l : min
∑

(i,j)∈A

Cijzij

s.t.
∑
p∈Pk

ykp = 1,∀k ∈ K (3.14)
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Algorithm for large-size LRP

1: Initialize Pk = ∅ for all k ∈ K, k = 0
2: while k ≤ |K|, do
3: let l = 1
4: for task k, define set Ak based on formula (3.13)
5: for OD pair (ok, dk), compute the l-th shortest path using Yen’s K-shortest loop-

less path algorithm, and record the travel duration dkl and its path pkl
6: if dkl ≤ Tk, Pk = Pk ∪ {pkl }, l = l + 1 and goto step 5; otherwise k = k + 1 and

goto step 2
7: end while
8: Output Pk for all k ∈ K
9: Construct model P ′′l with sets Pk,∀k ∈ K obtained in the first phase
10: Solve P ′′l exactly using CPLEX ILP solver
11: Output an optimal lane reservation scheme and the corresponding paths for tasks.

Fig. 3.1: Algorithm LRP: algorithm for large-size LRP

∑
p∈Pk

δkpijy
k
p ≤ zij,∀k ∈ K, ∀(i, j) ∈ A (3.15)

ykp , zij ∈ {0, 1},∀p ∈ Pk,∀k ∈ K, ∀(i, j) ∈ A (3.16)

where constraint (3.14) indicates that only one path is selected from the candidate

path set Pk. Constraint (3.15) ensures that the path of task k,∀k ∈ K involving arc

(i, j),∀(i, j) ∈ A only if this arc is reserved. Constraint (3.16) gives the ranges of

decision variables. Note that the model P ′′l is a linear program which can be tackled

by the optimization software such as CPLEX ILP solver. The overall algorithm for

the LRP, called Algorithm LRP, can be outlined in Fig.3.1.

3.5 Computational results

In this section, we conduct numerical computational experiments to evaluate the

performance of the proposed algorithm. Our algorithm is coded in C++ language and

combined with Yen’s K-shortest loopless path algorithm [132] and CPLEX (version

12.6) ILP solver with default settings. All the experiments are conducted on a PC

with 2.5 GHz and 2.95 GB RAM under Windows 7.

The performance of the proposed algorithm is evaluated on 81 sets of instances

with five instances each set, including 120 benchmark instances [42] and 285 newly

generated instances. The new instances are randomly generated based on the way

in [42] described as follows. Waxman’s network model [121] is used to generate the
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network G(N,A). ρ = 2|A|/|N | is called the average node degree. To be more specific,

the nodes of G(N,A) are randomly distributed in a square area [0, 100]× [0, 100], the

existence of arc (i, j) between nodes i and j is dependent by a probability function

α exp (−Lij/βLmax), where Lij and L are the Euclidean distance between nodes i

and j and the maximum Euclidean distance between any pair of nodes, respectively,

and 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. The origin and destination nodes ok and dk, k ∈ K
are randomly generated from set N . Parameter τij is computed by Lij/V , where

V denotes the average travel speed on a reserved lane of arc (i, j) and is set as 60.

Parameter τ ′ij represents the travel time on arc (i, j) without reserved lanes. It is

computed by Lij/V φij, where φij is randomly generated in the interval [0.5, 0.8]. The

impact of a reserved lane on arc (i, j) is defined as Cij = rijτ
′
ij, where rij is a given

number. The travel deadline for task k is defined as Tk = Lk + λ(L′k −Lk), where Lk

(resp. L′k) is the shortest travel time from origin ok to destination dk when all arcs

in the network are reserved (resp. no lanes in the network are reserved) and λ is a

given parameter. In the default case, rij is set as rij ∈ [0.2, 0.3] and λ is randomly

generated in [0, 1]. Besides, sensitive analysis for the performance of our algorithm is

conducted with different values of rij and λ.

For brevity, let CT0, CTcs and CTtp denote the average computational time (CPU

seconds) spent by CPLEX ILP solver solving P ′l (i.e., solving the LRP with a direct use

of CPLEX), the CS algorithm [42] and by our two-phase algorithm for five instances

of each set, respectively. Besides, let CTtp-f (resp. CTtp-s) denote the average CPU

time (seconds) spent by the first (resp. second) phase of our proposed algorithm.

Note that the computational times of both methods are limited to 18000s (i.e., five

hours), as is the case in [42].

Table 3.1: Comparison results for the instances with |N | = 60-90

Set |N | |K| ρ CT ′0 CT0 (CT ′0 − CT0)/CT ′0(%)
1 60 25 7 9.95 6.75 32.09
2 60 30 7 26.73 22.89 14.37
3 70 25 7 40.99 36.25 11.56
4 70 30 7 93.11 64.78 30.43
5 80 25 7 46.62 36.19 22.36
6 80 30 7 124.76 102.64 17.73
7 90 25 7 171.08 99.24 41.99
8 90 30 7 317.12 302.96 4.47

Average 103.80 83.96 19.11
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To demonstrate that the proposed improved model (see Section 2.2) is more effi-

cient, we compare it with the previous model proposed by [42] by solving a number

of instances. The two models for these instances are both solved by CPLEX. The

comparison results are summarized in Table 3.1. Let CT ′0 denote the computational

time spent by CPLEX for solving Pl. We can observe from Table 3.1 that the com-

putational time of the improved model is less than that of the existing model and the

former saves an average 19.11% time compared with the latter. This indicates that

the model P ′l is more efficient than the previous model proposed by [42].

To evaluate the performance of the proposed algorithm, we first compare it with

benchmark instances with the state-of-the-art algorithm (i.e., the CS algorithm pro-

posed by [42]) in terms of computational time in obtaining optimal solutions. The

computational results are reported in Tables 3.2 and 3.3 and Fig.’s 3.2 and 3.3.

Table 3.2: Comparison results for the instances with |N | = 100

Set |N | |K| ρ CTcs CTtp-f CTtp-s CTtp CTcs/CTtp

9 100 10 5 1.59 3.42 0.39 3.80 0.42
10 100 15 5 1.56 1.52 0.35 1.87 0.84
11 100 20 5 41.82 8.68 0.95 9.64 4.34
12 100 25 5 37.21 57.98 7.05 65.03 0.57
13 100 30 5 63.45 3.80 1.09 4.89 12.98

14 100 10 7 6.41 0.52 0.09 0.62 10.38
15 100 15 7 62.32 2.46 0.26 2.72 22.88
16 100 20 7 315.98 2.87 0.32 3.19 99.10
17 100 25 7 1193.88 1.75 0.24 1.98 601.65
18 100 30 7 1288.72 1.75 0.30 2.05 627.73

19 100 10 12 18.67 2.45 0.22 2.67 7.00
20 100 15 12 78.30 5.79 0.36 6.14 12.75
21 100 20 12 496.89 67.25 16.23 83.48 5.95
22 100 25 12 1590.22 10.61 0.77 11.38 139.72
23 100 30 12 8900.67 197.38 883.58 1080.95 8.23

Average 939.85 24.55 60.81 85.36 11.01

Table 3.2 and Fig. 3.2 report the computational results for instances with fixed

number of nodes |N | = 100 and average node degree ρ ranging from five to twelve.

It can be observed from Table 3.2 that the average CPU time of the CS algorithm

CTcs varies from 1.59s to 8900.67s with its average value being 873.18s, while that of

our algorithm CTtp varies from 0.62s to 1080.95s with its average value being 85.36s.
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Fig. 3.2: Comparison results for the instances with |N | = 100

CTtp is less than CTcs over all sets 9-23 except the small-size sets 9, 10 and 12. On

average, CTcs is eleven times more than CTtp. This indicates that our algorithm is

much more efficient than the CS algorithm in terms of computational time. Moreover,

CTcs increases sharply with |K| for a given average node degree, especially for larger

ρ = 7 and 12, whereas CTtp varies slightly and it does not necessarily increase with

|K|. For example, CTtp for sets 8 and 9 decreases from 3.19s to 1.98s when |K|
increases from 20 to 25. As shown in Fig. 3.2, CTcs increase much sharply for sets

21-23, whereas CTtp increases gradually.

On the other hand, we observe that CTtp-s are positively correlated with CTtp-f

over sets 1-15 (i.e., the larger CTtp-f is, the larger CTtp-s is). For example, CTtp-f ’s

are 8.68s and 57.98s for sets 3 and 4, respectively, and CTtp-s’s are 0.95s and 7.05s,

respectively. The main reason is that a larger CTtp-f implies that more task path

candidates exist for the tasks, which means more integer variables ykp in P ′′l in step

9 of our algorithm such that it is more difficult to be solved. Besides, it can be

seen that generally CTtp-f is larger than CTtp-s, which shows the first phase consumes

more time. An exception is set 23 (i.e., the largest-size set) where CTtp-s is larger

than CTtp-f . The reason is that there exist many task path candidates and it makes

the model formed in second phase much difficult to be solved.

Table 3.3 and Fig. 3.3 present the results when |N | is increased from 110 to 150

and |K| ranges from 10 to 30 for a given average node degree. In Table 3.3, we
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Table 3.3: Comparison results for the instances with |N | = 110-150

Set |N | |K| ρ CTcs CTtp-f CTtp-s CTtp CTcs/CTtp

24 110 10 7 6.27 6.07 0.58 6.65 0.94
25 110 15 7 18.02 7.93 0.85 8.78 2.05
26 120 15 7 103.29 16.20 1.70 17.90 5.77
27 120 20 7 121.68 4.56 0.55 5.11 23.81
28 130 20 7 299.71 7.68 0.59 8.28 36.21
29 130 25 7 1406.91 9.36 0.61 9.97 141.09
30 140 25 7 1575.25 5.19 0.51 5.70 276.35
31 140 30 7 1686.95 17.05 1.31 18.36 91.89
32 150 30 7 1878.07 100.21 8.09 108.31 17.34

Average 788.46 19.36 1.64 21.01 37.54
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Fig. 3.3: Comparison results for the instances with |N | = 110-150
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can see that CTcs varies from 6.27s to 1878.07s with its average value being 788.46,

whereas CTtp ranges from 5.70s to 108.31s with it average value being 21.01s. CTtp

is less than CTcs over sets 24-32, except the smallest-size set 24. The CS algorithm

spends more than 37 times average time of that by our algorithm. This further shows

the efficiency of our algorithm as compared with the CS algorithm proposed by [42].

Moreover, we can observe from Fig. 3.3 that CTcs exponentially increase with the size

of the problem, while CTtp varies very slightly. This shows that the newly proposed

algorithm is more robust for the LRP.

In order to further evaluate the performance of the proposed method for solving

larger-size problems, 57 newly generated larger-size problem sets are tested. Results

are reported in Tables 3.4-3.7.

Table 3.4: Comparison results for the instances with |N | = 160-200

Set |N | |K| CT0 CTcs CTtp-f CTtp-s CTtp

33 160 20 876.44 388.84 9.01 1.05 10.14
34 160 30 4409.98 2294.33 10.72 0.67 11.40
35 170 30 12999.62 6758.82 2.66 0.21 2.87
36 170 35 15864.33 10997.67 2.78 0.23 3.01
37 180 35 - 17341.28 2.45 0.30 2.75
38 180 40 - - 2.50 0.36 2.85
39 190 40 - - 7.05 0.85 7.90
40 190 45 - - 8.03 0.93 9.23
41 200 45 - - 4.43 0.35 4.78
42 200 50 - - 5.72 0.44 6.16

Average >14215.04 >12778.09 5.54 0.54 6.11

Table 3.4 presents the results for large-size instances with |N | increasing from 160

to 200, |K| varying from 20 to 50 and fixed average node degree being seven. We

can observe in Table 3.4 that the CPU time consumed by our algorithm is far less

than those by CPLEX and the CS algorithm over all sets 33-42. As the problem size

increases, CT0 and CTcs increase exponentially, whereas CTtp varies slightly. It is

worthwhile to note that CPLEX and the CS algorithm in [42] can only exactly solve

the four (resp. five) of ten sets within 18000s, whereas our algorithm can exactly

solves all the sets with an average time 6.11s. Besides, we can observe that CTtp-f is

larger than CTtp-s over all the sets 33-42.

Table 3.5 reports the computational results for larger-size instances with |N | in-

creasing from 300 to 700, |K| varying from 30 to 60 under two scenarios ρ = 5 and 10.

It can be found that CPLEX and the CS algorithm in [42] cannot generate optimal
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Table 3.5: Comparison results for the instances with |N | = 300-700

Set |N | |K| ρ CT0 CTcs CTtp-f CTtp-s CTtp

43 300 30 5 - - 23.18 1.70 24.89
44 300 40 5 - - 25.46 2.37 27.82
45 400 40 5 - - 30.20 1.79 31.99
46 400 45 5 - - 30.53 1.73 32.27
47 500 45 5 - - 42.70 17.66 60.36
48 500 50 5 - - 60.07 21.32 81.38
49 600 50 5 - - 298.68 459.74 758.42
50 600 55 5 - - 733.51 620.91 1354.42
51 700 55 5 - - 1740.83 6553.05 8293.88

Average - - 331.68 853.36 1185.05
52 700 60 5 - - - - -

53 300 30 10 - - 73.20 6.33 79.53
54 300 40 10 - - 241.91 19.92 261.83
55 400 40 10 - - 199.15 15.30 214.46
56 400 45 10 - - 175.20 7.70 182.90
57 500 45 10 - - 872.13 100.21 972.34
58 500 50 10 - - 755.42 84.01 839.43

Average - - 386.17 38.91 425.08
59 600 50 10 - - - - -
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solutions for any set within 18000s (i.e., they lose their power for these large-size in-

stances totally), whereas the proposed algorithm is able to exactly solve the instances

with up to 700 nodes and 55 tasks with average node degree ρ = 5 and 500 nodes and

50 tasks with average node degree ρ = 10, respectively. Due to the NP-hardness of

the problem, we find that the proposed algorithm rapidly increases with the problem

size for each given average node degree. For example, CTtp for set 43 is 24.89s, while

for set 51 is 8293.88s. Moreover, it is not hard to find that the increase of CTtp is

mainly caused by the increase of CTtp-s. We also observe that our algorithm con-

sumes more time to solve instances with a larger average node degree when |N | and

|K| are given. For example, CTtp for set 48 is 81.38s, while for set 58 is 839.43s. The

possible reason is that a larger average node degree may result in more task path

candidates for each task, which requires more computational effort for both phases in

the proposed algorithm. We note that the proposed algorithm loses power for solving

sets 52 and 59 due to the lack of memory in the first phase.

Table 3.6: Computational results for sensitive analysis of different Tk

Set λ |N | |K| CTtp-f CTtp-s CTtp

60 0.2 200 20 1.57 0.41 1.98
61 0.2 300 20 2.60 2.00 4.59
62 0.2 400 20 3.61 0.51 4.12
63 0.2 500 20 3.16 0.53 3.69
64 0.2 600 20 4.66 0.61 5.27

Average 3.12 0.81 3.93

65 0.5 200 20 4.50 0.70 5.19
66 0.5 300 20 14.72 2.02 16.74
67 0.5 400 20 11.95 1.22 13.17
68 0.5 500 20 18.70 1.14 19.84
69 0.5 600 20 45.95 2.80 48.75

Average 19.16 1.58 20.74

70 0.8 200 20 23.55 6.42 29.97
71 0.8 300 20 58.38 9.06 67.43
72 0.8 400 20 81.40 7.03 88.44
73 0.8 500 20 326.63 45.59 372.23
74 0.8 600 20 601.74 25.52 627.26

Average 218.34 18.72 237.07

Finally, we conduct sensitive analysis for the input parameters Tk and Cij. Table

3.6 and Fig. 3.4 depict the results for three scenarios regarding the travel deadline
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Tk. It is defined as Tk = Lk +λ(L′k−Lk). The values of λ are set as 0.2. 0.5, and 0.8,

respectively, that attempts to generate small, medium, and large values of Tk. We

can see in Table 3.6 that our algorithm is able to solve all the problem sets within 11

minutes (i.e., 660s). It can be observed that for the three scenarios CTtp varies from

1.98s to 5.27s, 5.19s to 48.75s, and 29.97s to 627.26s, respectively with its average

values being 3.93s, 29.97s, and 237.07s, respectively. The larger λ is the larger CTtp

is. For example, the values of CTtp are 5.27s, 48.75s, and 627.26s for sets 55, 60, and

65, respectively. The main reason is that a tighter Tk results in less feasible path

candidates for task k, which naturally requires less computational effort. In addition,

for each scenario, CTtp increases with |N | and it increases more quickly for a large Tk

as shown in Fig. 3.4.
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Fig. 3.4: Computational results of sensitive analysis of Tk

Table 3.7 and Fig. 3.5 show the results of sensitive analysis for impact parameters

Cij, which is defined as Cij = rijτ
′
ij. It can be found from Table 3.7 that the ranges of

CTtp under the three scenarios are 4.08-72.22s, 2.82-75.04s, and 4.53-89.35s, respec-

tively. Moreover, it can be observed in Fig. 3.5 that the changing trends of CTtp for

the three scenarios are almost the same. Moreover, CTcs’s under the three scenarios

are 26.37s, 21.63s, and 26.83s, respectively. These results indicate that our algorithm

is insensitive to the changes of Cij.
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Table 3.7: Computational results for sensitive analysis of different impact

Set rij |N | |K| CTtp-f CTtp-s CTtp

75 [0.1, 0.2] 200 20 3.78 0.30 4.08
76 [0.1, 0.2] 300 20 8.21 0.61 8.82
77 [0.1, 0.2] 400 20 7.82 0.59 8.41
78 [0.1, 0.2] 500 20 13.15 1.46 14.60
79 [0.1, 0.2] 600 20 68.33 3.90 72.22

Average 20.26 1.37 26.37

80 [0.2, 0.3] 200 20 2.51 0.31 2.82
81 [0.2, 0.3] 300 20 3.08 0.42 3.49
82 [0.2, 0.3] 400 20 17.50 1.33 18.83
83 [0.2, 0.3] 500 20 29.40 2.27 31.67
84 [0.2, 0.3] 600 20 69.15 5.89 75.04

Average 24.33 2.04 21.63

85 [0.3, 0.5] 200 20 4.16 0.37 4.53
86 [0.3, 0.5] 300 20 5.08 0.45 5.53
87 [0.3, 0.5] 400 20 15.82 0.97 16.79
88 [0.3, 0.5] 500 20 16.68 1.28 17.97
89 [0.3, 0.5] 600 20 84.43 4.91 89.35

Average 25.23 1.60 26.83
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3.6 Conclusions

In this chapter, we have studied large-size lane reservation for automated truck freight

transportation. For the problem, we first proposed valid inequalities for the integer

linear program proposed by [42]. Computational comparison results indicated that

these valid inequalities are effective in saving computational time. Furthermore, we

investigated several special cases of the considered problem, which were identified to

be classical combinatorial optimization problems. To efficiently solve the problem ex-

actly, especially large-size problem instances, we devised a new fast two-phase exact

algorithm based on the characteristics of the problem. Computational results demon-

strated that the proposed algorithm significantly outperforms the state-of-the-art

algorithm (i.e., the CS method proposed by [42]) and it can solve large-size instances

with up to 700 nodes and 55 tasks. Furthermore, sensitive analysis experiments for

input parameters was conducted to show their impact on the proposed algorithm.
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Chapter 4

Robust lane reservation for
large-scale special events

4.1 Introduction

In this chapter, we investigate a robust lane reservation problem for large special

events. Such events have the following characteristics [125]: 1) many people partic-

ipate; 2) many activities take place at different venues. In particular, such events

usually require organizers to deliver certain people and materials from athlete vil-

lages to geographically dispersed venues within a given travel duration. For example,

the organizers of the Guangzhou Asian Games in 2010 were committed to deliver

athletes to any stadium within 30 min [125]. However, it is not so easy to meet such

special transportation needs due to the host city’s congested traffic situation. A lane

reservation strategy in an existing transportation network may solve this problem

in a flexible and efficient way. With this strategy, a lane on some road segments

is temporarily reserved for these special transportation tasks such that they can be

completed within the given travel duration. As stated in Chapter 2, lane reservation

strategy has been successfully applied to some large sport events [17],[134]. Neverthe-

less, such lane reservation will generate negative impact on normal traffic. Hence, it

is critical to optimally reserve lanes so as to minimize the impact of lane reservation.

To address the above issues, a lane reservation problem for large-scale special events

was firstly studied by Wu et al. [125] and the work [24], [124], [126] further investi-

gated the problem by proposing efficient meta-heuristics. Fang et al. [45] extended

the LRP in [125] to a capacitated LRP by additionally considering the issue of road

segment residual capacity. We note that the LRP for large-scale special events is a

generalization of the LRP studied in Chapter 3, because the path of a task for the

former problem is not necessary to be entirely reserved.
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One common assumption of all the previous studies on an LRP is that the link

travel time is a constant average value. In real life, uncertain traffic features, such

as dynamic traffic flow, traffic accidents, and fault of task vehicles, may make the

expected link travel time vary. If the travel time of some links on a path exceeds their

average values, the total travel duration on the path may also exceed its deadline, i.e.,

the lane reservation solution obtained may still be infeasible. That is to say, these

uncertain features may make an already-obtained solution impractical. Although

Fang et al. [43] considered dynamic link travel time for the LRP, in which the whole

time period was divided into four intervals, and then, constant average link travel

time for each interval was considered. In reality, the link travel time in such intervals

may also dynamically change due to uncertain traffic features. This means that the

link travel time in such intervals may exceed its constant average value, and the

obtained solution may become infeasible. Therefore, it is necessary to handle the

possible increase in link travel time due to the uncertainties mentioned above, which

was ignored by all the previous studies.

In this chapter, the concept of lane reservation robustness is introduced to handle

the uncertainty in link travel times. The robustness of solutions can be seen as the

ability to cope with the possible increase in link travel times due to the uncertain

traffic features. That is, we try to generate a robust lane reservation solution such

that the tasks may still be completed within their deadlines even if the actual travel

times of tasks increase due to uncertain traffic conditions. We study a robust lane

reservation problem for large-scale special events (called RLRP in short hereafter).

Its aim is to optimally choose lanes to be reserved and design paths for special tasks

to minimize the total negative impact of reserved lanes and maximize the robustness

of the lane reservation solution. Because the lane reservation robustness optimization

is introduced, the problem becomes a multi-objective optimization problem. The

solution methods introduced by the previous studies can not be directly applied to

solving it. For the RLRP, we firstly define a lane reservation robustness. Then, a bi-

objective mixed-integer linear program is presented. An enhanced version of the exact

ε-constraint method is proposed to find its Pareto front. Moreover, we develop an

improved exact ε-constraint and a cut-and-solve combined method, in which several

techniques are developed to improve its computational efficiency.

The remainder of this chapter is organized as follows. Section 4.2 gives the defini-

tion of lane reservation robustness and formulates a bi-objective mixed-integer linear

program. An improved exact ε-constraint method combined with a cut-and-solve
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method is developed to find the Pareto front in Section 4.3. Section 4.3 reports

computational results. Finally, Section 4.5 concludes this chapter.

4.2 Problem formulation

The RLRP can be described as follows. Let a directed graph G = (N,A) represent a

transportation network that is composed of a set of nodes N and a set of directed arcs

A connecting pairs of nodes. The nodes and arcs can be viewed as road intersections

and road links in a transportation network, respectively. Given a set of transportation

tasks and their corresponding to origin-destination (OD) pairs, RLRP aims to select

some lanes from a transportation network to be reserved and design a time-guaranteed

path in the network for each OD pair such that the task will be completed within

its given deadline. The objectives are to minimize the total traffic impact of reserved

lanes and to maximize the lane reservation robustness. We define the robustness of a

given lane reservation solution as follows.

Definition 6 For task k, k ∈ K = {1, 2, · · · , |K|}, the free slack, Sk, is the difference

between its deadline and its total travel duration on the designed task path. The

robustness R of a lane reservation solution is defined as the minimal value among all

its free slacks Sk, k ∈ K(i.e., R = mink∈KSk).

The robustness of a lane reservation solution represents its ability against the increase

in link travel times due to uncertain traffic conditions. To well formulate the problem,

we make some assumptions as follows: First, at least two lanes exist on each road

link such that a lane can be reserved; otherwise, the impact due to lane reservation

will be too heavy. Second, the traffic capacity of reserved lanes is large enough to

allow any special task to use by noting that the special tasks are of limited quantity.

Third, at most one lane on a road link is allowed to be reserved for the tasks, and

each reserved lane can be shared by multiple tasks because the vehicle flow of special

transportation tasks is relatively low. Fourth, the path of each task can be composed

of reserved and non-reserved lanes. That is to say, the task paths can be partially

reserved. The notations for the formulation are listed as follows:

Sets and parameters
N : set of nodes, i ∈ N
A: set of arcs, (i, j), i, j ∈ N
K: set of transportation tasks with |K| tasks, k ∈ K
O: set of origin nodes, O ⊆ N
D: set of destination nodes, D ⊆ N
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ok: origin node of task k ∈ K, ok ∈ O
dk: destination node of task k ∈ K, dk ∈ D
Tk: prescribed travel duration to complete task k ∈ K
τij: travel time on a reserved lane on arc (i, j) ∈ A
τ ′ij: travel time on arc (i, j) ∈ A without reserved lanes
Cij: negative impact caused by a reserved lane on arc (i, j) ∈ A

Decision variables
zij : zij = 1, if arc (i, j) is reserved; otherwise zij = 0, (i, j) ∈ A
xkij : xkij = 1, if there is a reserved lane on arc (i, j) ∈ A, and the path of task

k ∈ K pass the arc; otherwise, xkij = 0
ykij : ykij = 1, if there is no reserved lane on arc (i, j) ∈ A, and the path of task

k ∈ K pass the arc; otherwise, ykij = 0
R : the lane reservation robustness

A bi-objective MILP for the RLRP is formulated as

Pr : f1 : min
∑

(i,j)∈A

Cijzij (4.1)

f2 : max R (4.2)

s.t.
∑

(i,j)∈A

(xkij + ykij) = 1, i = ok,∀k ∈ K, (4.3)

∑
(i,j)∈A

(xkij + ykij) = 1, j = dk, ∀k ∈ K, (4.4)

∑
(i,j)∈A

(xkij + ykij) = 0, j = ok,∀k ∈ K, (4.5)

∑
(i,j)∈A

(xkij + ykij) = 0, i = dk,∀k ∈ K, (4.6)

∑
j:(i,j)∈A

(xkij + ykij) =
∑

j:(j,i)∈A

(xkj,i + ykj,i), ∀j ∈ N\{ok, dk},∀k ∈ K, (4.7)

∑
j:(i,j)∈A

(xkij + ykij) ≤ 1,∀j ∈ N\{ok, dk}, ∀k ∈ K, (4.8)

∑
j:(j,i)∈A

(xkji + ykji) ≤ 1,∀j ∈ N\{ok, dk},∀k ∈ K, (4.9)

∑
(i,j)∈A

(τijx
k
ij + τ ′ijy

k
ij) ≤ Tk, ∀k ∈ K, (4.10)

Sk = Tk −
∑

(i,j)∈A

(τijx
k
ij + τ ′ijy

k
ij),∀k ∈ K, (4.11)

R ≤ Sk,∀k ∈ K, (4.12)

xkij ≤ zij,∀(i, j) ∈ A,∀k ∈ K, (4.13)
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ykij ≤ 1− zij,∀(i, j) ∈ A,∀k ∈ K, (4.14)

zij, x
k
ij, y

k
ij ∈ {0, 1},∀(i, j) ∈ A,∀k ∈ K, (4.15)

R ≥ 0. (4.16)

Objective function (4.1) is to minimize the total impact caused by reserved lanes and

objective function (4.2) is to maximize the robustness of a lane reservation solution.

Constraints (4.3)-(4.9) guarantee that a feasible path for each task from the origin

node ok to its destination dk exists. To be more specific, constraints (4.3) and (4.4)

ensure that there is only one arc outgoing from the origin node ok and one arc coming

into the destination node dk on the travel path of task k, respectively. Constraints

(4.5) and (4.6) guarantee that there are no arcs coming into ok and no arcs outgoing

from dk on the travel path of task k, respectively. Constraint (4.7) is the flow balance

constraint for all the nodes except ok and dk. Constraints (4.8) and (4.9) mean that

any node j, j ∈ N, j 6= ok and j 6= dk, can be visited by task k, k ∈ K, at most once.

Constraint (4.10) ensures that the travel duration of task k, k ∈ K, does not exceed

its deadline Tk. Constraint (4.11) defines the free slack of task k, Sk, k ∈ K, which

represents the difference between its deadline and its total travel duration with a lane

reservation strategy. Constraint (4.12) ensures that the lane reservation robustness is

the minimal value among all the free slacks. Constraint (4.13) guarantees that task k

cannot pass a reserved lane on arc (i, j) if no lane of arc (i, j) is reserved. Constraint

(4.14) ensures that task k can pass a non-reserved lane on arc (i, j) only if there is

no reserved lane on this arc. Constraint (4.15) enforces the binary restrictions on the

decision variables. Constraint (4.16) spells a non-negative R.

Theorem 5 The RLRP is NP-hard.

Proof : Consider a special case of the RLRP that only objective f1 is to be optimized
and the path of a task is entirely reserved. Obviously, such special case of the RLRP
corresponds to the LRP studied in Chapter 3, which have been proved to be NP-hard.
Therefore, the RLRP is also NP-hard. �

There are two strongly conflicting objectives in model Pr. To minimize the total

impact of reserved lanes f1, the number of lanes to be reserved needs to be minimized.

To maximize the robustness of a lane reservation solution f2, more lanes need to be

reserved to reduce the completion time of the special tasks.

P ′r : f1 : min
∑

(i,j)∈A

Ci,jzij

f2 : min −R
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s.t. Constraints(4.1)− (4.16) (4.17)

In the following section, an approach to solve P ′r is developed.

4.3 Solution approach

As previously mentioned, for an MCOP, the concept of Pareto optimality replaces the

optimality in a single-objective optimization problem. The resolution of an MCOP

means to find a set of Pareto optimal (or non-dominated) solutions. For the studied

bi-objective RLRP, we aim to propose an exact approach to find all the non-dominated

points, i.e., the Pareto front. Scalarization techniques have been proposed to exactly

solve MCOPs. The popular and straightforward way is the weighted sum method

[133]. It aims to convert an MCOP to a single-objective optimization problem by

using a linear weighted sum formulation that combines all the objectives. Its optimal

solution would be Pareto optimal if proper weight combinations are used. Note that

the converted single objective is an aggregation of all objectives of MCOP via a

linear weighted sum. Hence, this method is not appropriate if not all objectives can

be represented by the linear combination. Moreover, the weighted sum method is

ill-suited for an MCOP with nonconvex objective space [37].

Another well-known technique to solve MCOPs is the ε-constraint method intro-

duced by Haimes et al. [57]. It aims to optimize only the primary objective, called the

most preferred one, and the others are transformed into constraints. In theory, the

Pareto front of an MCOP can be obtained with the ε-constraint method [117]. Com-

pared with the weighted sum method, this method avoids the drawbacks described

above [85]. Moreover, since the ε-constraint method was first introduced to solve the

bi-objective shortest path problem in 1982 [29], it has been applied to solve most of

BCOPs [139], [15], [46], [64], [75], [97]. The successful applications of the ε-constraint

method and its capability to obtain the Pareto front of BCOPs encourage us to use

it to solve our problem.

4.3.1 An enhanced version of exact ε-constraint method for
BCOPs

As stated in Chapter 2, the algorithm in Fig. 2.8 can find the exact Pareto front of

BCOPs with integer objective values. We have observed that these problems solved

by the algorithm in Fig. 2.8 have the following two characteristics, which guarantee

that the objective values of these problems are always integer:
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i) Integer linear programming problem (i.e., all decision variables are integers).

ii) The coefficients of decision variables in objective functions are all integers.

However, for BCOPs with fractional objective values, non-dominated points may

be lost by directly using it. Recently, Feng et al. [46] proposed an iterative ε-constraint

method to obtain the Pareto front for a bi-objective scheduling problem formulated

as an MILP with fractional objective values. However, their method did not consider

the so-called minimum unit value defined below, and it needs to solve an MILP for

lexicographic optimization at each iteration. Hence, its computational burden may be

heavy. To address this issue, we propose an enhanced version of the exact ε-constraint

method by redefining parameter δ.

Definition 7 (Minimum unit value) For a BCOP, the minimum unit value is the

minimal objective unit value of f2.

The enhanced version of the exact ε-constraint method is defined as the algorithm

in Fig. 2.8 by setting δ as the minimum unit value of a BCOP.

Theorem 6 If δ is set as the minimum unit value in the algorithm in Fig. 2.8, the

Pareto front of a BCOP can be found by the enhanced version of the exact ε-constraint

method.

Proof : The correctness of Theorem 6 can be proved similar to the proof of Theorem
3 in the work of Bérubé et al. [15] with the redefined δ. For more details, please
see [15]. �

Note that the enhanced version can be considered as a generalization of the exact

ε-constraint method introduced by Bérubé et al. [15] to solve BCOPs. With the

definition of a minimum unit value, the enhanced version of the exact ε-constraint

method can find the Pareto fronts of some BCOPs with fractional objective values in

some special cases, such as special integer linear programs and MILPs, as follows:

a) integer linear programming problems, where the coefficients of decision variables

in the objective functions are fractional;

b) MILPs, where the objective functions contain integer variables only and their

coefficients are fractional;

c) MILPs, where the objective functions contain integer and real variables, but

the minimum unit value can be determined.
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Obviously, the minimum unit values of problems in cases a) and b) are the minimal

unit value of the coefficients in f2. If we set ε as the minimum unit value, then their

Pareto fronts can be obtained by using the enhanced version of the exact ε-constraint

method. For the problem in case c), generally, the minimum unit value of a BCOP

may be determined by the values of real decision variables, coefficients in the function

objectives, and coefficients in the constraints. We need to analyze each case to decide

the value of δ. We have not found a general method yet for this case even though

we have made many attempts, thereby demanding more studies in the future. RLRP

addressed in this study belongs to case b) where the minimum unit value can be

determined. In this chapter, we apply the enhanced exact ε-constraint method in

which δ is defined as the minimum unit value to solve the LRP to demonstrate its

applicability.

4.3.2 Improved exact ε-constraint method for the RLRP

An improved exact ε-constraint method is proposed for RLRP. As described above,

RLRP has two conflicting objectives. Its first objective is considered as the primary

one in this study, because the total traffic impact is concerned by more stakeholders

(i.e., all the general-purpose passengers). With the ε-constraint method, the bi-

objective model P ′r can be transformed into the following ε constraint problem:

PC(ε) : min
∑

(i,j)∈A

Cijzij

s.t. −R ≤ ε (4.18)

and constraints(4.3)− (4.16)

To simplify the expression, let C(ε) denote the obtained optimal objective value

by solving PC(ε). Note that if the value of the ε is large enough, the reduced problem

corresponds to the LRP studied in Chapter 4, which is NP-hard. Hence, the PC(ε)

is also NP-hard.

In the following, we propose an improved exact ε-constraint method for RLRP. By

analyzing the problem’s characteristic, we adapt the enhanced version of the exact

ε-constraint method to P1. A cut-and-solve method is proposed to exactly solve

PC(ε) at each iteration of the ε-constraint method. Moreover, the optimal value of

−R in the ideal point can be quickly obtained by a simple polynomial algorithm,

and a strengthening technique is proposed to reduce redundant runs in the exact

ε-constraint method.
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4.3.2.1 Computation of ideal and nadir points

For the exact ε-constraint method, the first step is to compute the ideal and Nadir

points (CI ,−RI) and (CN ,−RN) of P ′r by optimally solving the following four MILPs:

PCI : CI = min
∑

(i,j)∈A

Cijzij

s.t. Constraints (4.3)− (4.16)

PRI : −RI = min−R

s.t. Constraints (4.3)− (4.16)

The problem PCN is formed by adding constraint (4.19) that fixes the optimal

value of R, i.e.,

PCN : CN = min
∑

(i,j)∈A

Cijzij

s.t. R = RI (4.19)

and constraints (4.3)− (4.16)

The final problem is formed by adding constraint (4.20) that fixes the optimal value

of C, i.e.,

PRN : −RN = min−R

s.t.
∑

(i,j)∈A

Cijzij = CI (4.20)

and constraints (4.3)− (4.16)

The following corollary obviously holds by Definition 3.

Corollary 1 (CI , RN) and (CN , RI) are two non-dominated solutions of RLRP.

In this chapter, to speed up the exact ε-constraint method, we compute the opti-

mal value of R (i.e., RI) by using the following polynomial shortest path algorithm.

Let dis(ok, dk), k ∈ K, denote the shortest travel duration from ok and dk.

In 4.1, we use Dijkstra’s shortest path algorithm with its complexity O(|N |2) to

compute the shortest travel duration. Via preliminary tests for 20 randomly generated

instances with 100 nodes and 30 tasks for problem Tk, the average computation time

by using the algorithm in 4.1 is only 0.07% of that by CPLEX. The following corollary

is straightforward.

Corollary 2 RI of PRI is equal to mink∈K{Tk−dis(ok, dk)} by the algorithm described

in Fig. 4.1.
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Calculation of the optimal value of robustness

1: Transform the non-reserved network to an entirely reserved network by replacing
travel time τ ′ij with τij.

2: Find the shortest path from ok to dk and calculate the shortest travel duration
dis(ok, dk) for all tasks by Dijkstra’s shortest path algorithm.

3: Calculate RI = mink∈KTk − dis(ok, dk).

Fig. 4.1: Calculation of the optimal value of robustness

4.3.2.2 Definition of parameter δ

As previously described, the enhanced version of the exact ε-constraint method can be

used to find the Pareto front of an MILP if its minimum unit value can be determined.

Here, we show that the minimum unit value of P ′r can be found. By Definition 7, the

minimum unit value of P ′r is the minimal unit value of f2.

By Definition 6, the second objective function has the following equivalent form:

f2 = max mink∈K{Sk} = max mink∈K{Tk −
∑

(i,j)∈A(τijx
k
ij + τ ′ijy

k
ij)}. Objective func-

tion f2 is a linear combination of integer variables xkij, y
k
ij and their coefficients τij and

τ ′ij. Based on the above analysis, the minimum unit value of RLRP is the minimal

unit value of τij and τ ′ij,∀(i, j) ∈ A. Hence, δ can be set as the minimal unit value

of τij and τ ′ij. For this reason, the enhanced version of the exact ε-constraint method

can be applied to exactly solve RLRP.

4.3.2.3 Strengthening technique

The exact ε-constraint method may generate dominated solutions at some iterations

that are redundant runs. These redundant runs may be time-consuming, particularly

for large-size problems. Via preliminary tests, we have observed that dominated so-

lutions have the following characteristic: optimal solutions of consecutive iterations

may have the same total traffic impact (f1) and different robustness of lane reserva-

tion (f2). To reduce the number of dominated solutions, the following strengthening

technique is proposed at each iteration of the exact ε-constraint method to improve

the obtained optimal solution of PC(ε).

Let vectors (z∗, x∗, y∗) and (C∗,−R∗) denote an optimal solution of PC(ε) and the

corresponding objective vector, respectively. Note that a reserved network is known

if x∗ is fixed. The principal idea of the strengthening technique is to search a shortest

path for any task k in such a known reserved network such that Sk, k ∈ K, and the
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Strengthening technique

1: Obtain the reserved network with x∗ from the optimal solution of PC(ε), i.e.,
(z∗, x∗, y∗).

2: Calculate the shortest travel time for all tasks in the reserved network by Dijk-
stra’s shortest path algorithm.

3: Record all the arcs passed by each task, denoted by (x′, y′).
4: (z∗, x′, y′) and (C ′,−R′) are a new optimal solution and its corresponding objec-

tive vector of P ′r, respectively.

Fig. 4.2: Strengthening technique

robustness of the lane reservation are all maximized and the number of redundant

runs is reduced.

An optimal solution with the best robustness of problem PC(ε), denoted as an

improved solution (z∗, x′, y′), and the new objective vector (C ′,−R′) may be obtained

by the following strengthening technique.

Note that for two solutions (z∗, x∗, y∗) and (z∗, x′, y′), we have C ′ = C∗ due to

the same variable value of Z and R′ ≤ R∗ from Step 2 of the algorithm in Fig. 4.2.

If R′ > R∗, (z∗, x∗, y∗) is dominated by (z∗, x′, y′). Computation results reported in

Section 4.4 show that the strengthening technique is effective in reducing redundant

runs.

4.3.2.4 Cut-and-solve method

As previously presented, a sequence of NP-hard P (ε)’s need be exactly solved in the

exact ε-constraint method. The resolution efficiency of PC(ε) seriously influences the

efficiency of the ε-constraint method. In order to speed it up for solving the problem,

we propose a cut-and-solve method to exactly solve PC(ε) instead of directly using

an optimization software, such as CPLEX and Gurobi. Numerical results presented

in Section 4.4 show that the proposed method is more efficient than CPLEX. Spe-

cially, PCI and PCN are viewed as ε-constraint problems with ε = +∞ and −RI ,

respectively, and they are also solved by the proposed cut-and-solve method.

a) Preprocessing

In order to speed up the resolution of PC(ε), we first conduct a preprocessing

proposed in the previous chapter to reduce the search solution space. For any k ∈ K,
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sets Ak and Ω are defined as follows:

Ak = {(i, j)|l(ok, i) + τij + l(j, dk) > Tk,∀(i, j) ∈ A},∀k ∈ K (4.21)

Ω = {(i, j)|(i, j) ∈ Ak,∀k ∈ K} (4.22)

where l(ok, i)(resp., (j, dk)) denotes the shortest travel time from ok to i(j to dk)

when all arcs in the network are reserved. If an arc in Ak is passed by task k, its

deadline constraint will be violated. Hence, any arc in Ak would not be used by task

k. Moreover, any arc (i, j) in set Ω would not be passed by any task in a feasible

solution. Then, the corresponding decision variables can be fixed to zeros in the

optimal solutions of PC(ε), and an equivalent and tighter model P ′C(ε) is defined as

P ′C(ε) : min
∑

(i,j)∈A

Cijzij

s.t. xkij + ykij = 0,∀k ∈ K, (i, j) ∈ Ak (4.23)

zij = 0,∀(i, j) ∈ Ω (4.24)

and constraints(4.3)− (4.16), (4.18)

Constraints (4.23) and (4.24) can reduce the search space of PC(ε)’s without excluding

any feasible solutions.

b) Cut-and-solve iteration

As discussed previously, the cut-and-solve method is an iterative search strategy

for combinatorial optimization problems. Briefly speaking, a piercing cut (PCn) is

generated at the nth iteration (n ≤ 1) of the cut-and-solve method, and it divides the

solution space of current problem (CPn) into two subspaces. The small solution space

corresponds to a sparse problem (SP n), and the large solution space corresponds to

a residual problem (RP n). Note that CP1 is defined as the original problem. SP n

can be exactly solved easily, and its optimal solution if existing provides an upper

bound (for a minimization problem) of the original problem. The current best upper

bound UBbest is updated in case of improvement of the upper bound and the solution

space of SP n is cut off. Meanwhile, we solve a linear relaxed problem of RP n to

obtain a lower bound LBn because its solution space is so large that it is difficult

to be exactly solved. Obviously, if LBn is greater than or equal to UBbest, then the

solution corresponding to UBbest is an optimal solution of the original problem, and

the algorithm is terminated. Otherwise, CPn+1 is defined as RP n, and a new iteration

repeats. The reader is referred to Chapter 2 for more details.
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PCn critically influences the efficiency of a cut-and-solve method. The solution

space of SP n should be small enough for easy resolution, and it should be also large

enough such that it contains at least a feasible solution of the original problem;

otherwise, the best upper bound cannot be updated. Climer and Zhang [30] and

Fang et al. [42], [45] defined PCn by the reduced cost information and achieved good

performance. In this chapter, we also define PCn via reduced cost as

PCn(n ≤ 1) :
∑
zij∈φn

zij ≤ 1 (4.25)

where set φn = {zij|ψ(zij) > αn,∀(i, j) ∈ A}, ψ(zij) is the reduced cost of zij obtained

by solving CPn’s linear relaxation problem, and αn is a given positive value.

At iteration n(n ≤ 1), CPn+1 is defined as RP n(CP1 is the original problem, i.e.,

P ′C(ε)). Then, for the considered problem, SP n and RP n are defined, respectively,

as

SP n : min
∑

(i,j)∈A

Cijzij

s.t.
∑
zij∈φt

≤ 1, t = 1, 2, ..., n− 1 (4.26)

∑
zij∈φn

= 0 (4.27)

and constraints(4.3)− (4.16), (4.18), (4.23), (4.24)

RP n : min
∑

(i,j)∈A

Cijzij

s.t. Constraints(4.3)− (4.16), (4.18), (4.23)− (4.26)

The overall algorithm for PC(ε) is shown in 4.3.

The improved exact ε-constraint and cut-and-solve combined method to find the

Pareto front of the RLRP is outlined as Algorithm RLRP.

4.4 Computational results

The performance of Algorithm RLRP is evaluated by using an instance based on a

real network topology and 44 randomly generated problem sets with five instances

for each set (i.e., 220 instances). The proposed method is coded in C++ with Visual

Studio 2008 embedded with CPLEX (version 12.4) in default setting mode for the

resolution of PRN , sparse problems, and linear relaxation of residual problems at each
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Cut-and-solve method for PC(ε)

1: Implement preprocessing and obtain an equivalent integer linear program P ′C(ε).
2: Initialize n := 0 and current best upper bound UBbest := +∞ and CP1 := P ′C(ε).
3: Relax all integer variables of CP1 to be continuous ones and solve the linear

relaxation problem, and obtain the reduced cost of variables zij.
4: Let n = n+ 1. If n > 1, CPn = RP n−1. Define set φn and PCn.
5: Cut CPn into two spaces and obtain problems RP n and SP n.
6: Solve SP n exactly and obtain the optimal objective value UBn. Let UBbest =

min{UBn, UBbest}.
7: Solve RP n’s linear relaxation problem and obtain the optimal objective value
LBn and the reduced cost of variables zij.

8: UBbest ≤ LBn, go Step 5, and otherwise go to Step 4.
9: Output UBbest and the corresponding solution as the optimal objective value and

an optimal solution, respectively

Fig. 4.3: Cut-and-solve method for PC(ε).

Algorithm RLRP

1: Initial input: set δ as the minimal unit value of τ ′ij and τij, and Y ′N = ∅
2: Determine −RI directly for PRI by the algorithm described in Fig. 4.1.
3: Solve PC and PCI by the algorithm described in Fig. 4.3 to determine CI and
CN , respectively. Solve PRN by CPLEX to obtain −RN .

4: Set Y ′N = {(CI , RN)}. Let j = 2 and εj = −RN − δ, respectively.
5: while (εj ≤ −RI) do
6: Solve PC(εj) exactly by using the algorithm described in Fig. 4.3, and obtain the

optimal solution and its corresponding objective vector (z∗, x∗, y∗) and (C∗,−R∗),
respectively.

7: Obtain an improved solution (z∗, x′, y′) and its objective vector (C∗,−R′) by using
the algorithm described in Fig. 4.2.

8: Y ′N = Y ′N ∪ (C∗,−R′)
9: εj+1 = −R′ − δ, and j = j + 1
10: end while
11: Remove dominated points from Y ′N to obtain the exact Pareto front YN if existing.

Fig. 4.4: Algorithm RLRP: algorithm for the RLRP.
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iteration of the cut-and-solve method (i.e., the algorithm described in Fig. 4.3). All

experiments are carried out on a PC with a 3.4 GHz processor and 8.0 GB RAM

under windows 7.

For simplicity, Algorithm RLRP′ is denoted as a simple version of Algorithm 5

without the strengthening technique and in which PC(ε) is directly solved by CPLEX

instead of the cut-and-solve method. Let |N |, |K|, and |A| denote the number of

nodes, tasks, and arcs, respectively; |F | denote the average size of the Pareto front of

five instances in a set; CTr and CT ′r denote the average computation time (CPU sec-

onds) for finding the Pareto front by Algorithms RLRP and RLRP′ respectively; and

|J | and |J ′| denote the average number of ε-constraint problems solved by Algorithms

RLRP and RLRP′, respectively. Rp is defined as (|J ′| − |J |)/|F | × 100, which is the

reduction rate of redundant runs by the strengthening technique and measures its

performance. Note that the computation time of each instance is limited to 18000s.

4.4.1 Instance based on a real network topology

We first test an instance based on a real network topology from the city of Ravenna,

Italy. The instance has 270 arcs, 105 nodes, and 12 transportation tasks, i.e., 12 OD

pairs [139]. The number of nodes, arcs, OD pairs, and all related parameters of the

network are generated according to [139]. The results of this instance are shown in

Table 4.1.

Table 4.1: Computational results for instance based on a real network topology

|A| |N | |K| |F | |J | Rp(%) CTr CT ′r CTr/CT
′
r

270 105 12 18 18 33.33 59.54 80.01 0.74

It can be observed from Table 4.1 that our algorithm can find all the non-

dominated solutions within 59.34s, which is only 74% of that spent by Algorithm

RLRP′. Moreover, the number of ε-constraint problems solved in the proposed algo-

rithm is equal to the number of the non-dominated points of the Pareto front, i.e., 18.

For this instance, our algorithm finds a non-dominated point at its each iteration. In

addition, the rate Rp is 33.33% which means that Algorithm RLRP can avoid 33.33%

redundant runs compared with Algorithm RLRP′. This indicates that the proposed

strengthening technique is effective.

The Pareto front for this instance is shown in Fig. 4.5, where vertical ordinate

and horizontal abscissa represent the value of the first and second objective functions,

respectively. Decision makers (DMs) can choose a preferred solution from the Pareto
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Fig. 4.5: Distribution of the Pareto front of the instance based on a real network
topology

front. For example, if DMs prefer a solution with the lowest impact of lane reservation,

they can choose the first point from the Pareto front, but the selected solution will be

impractical if the travel time on the task paths slightly increases (0.1 unit time) due

to uncertain traffic features; on the contrary, if DMs prefer the most reliable solution,

they can choose the last point from the Pareto front, which means that the selected

solution will be still practical even if the travel time of any task path increases 15.62

unit time due to uncertain traffic conditions, but it will cause the largest impact.

In reality, DMs usually choose their preferred solution by some methods such as the

fuzzy-logic based method [139], and the selected solution will be of lower impact

compared with the last point and bigger robustness compared with the first point,

i.e., the obtained solution has not only relatively low impact but also relatively high

reliability.

4.4.2 Randomly generated test instances

To further evaluate the performance of the proposed algorithm, randomly generated

problem instances are tested. They are generated in the following way. The net-

work graph is generated by Waxman’s method [121]. All the nodes are randomly

distributed in a square area, and the existence probability of an arc (i, j) is decided

by a probability function. The ratio |A|/|N | is called as the average node degree of

the network. To simulate the practical transportation network, the ratio |A|/|N | is
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in the interval [3.5, 4]. The OD pairs are randomly generated from the graph. The

given travel deadline for special task Tk is randomly generated in [l′(ok, dk), l(ok, dk)],

where l′(ok, dk)(resp. l(ok, dk)) is the shortest travel duration of a path with no re-

served lanes (resp., with reserved lanes only). The parameters of link travel times

and impact of reserved lanes are estimated as follows.

Estimation of link travel time

To better simulate the practical transportation situation, in this chapter the widely

used Bureau of Public Roads (BPR) function [19] is employed to approximately es-

timate the link travel times τij, τ
′
ij, τ

′′
ij, where τ ′′ij denotes the travel time of general-

purpose vehicles on arc (i, j) when a lane of this arc is reserved, given as:

τ ′ij = t0ij · (1 + α(vgij/mijcij)
β),∀(i, j) ∈ A (4.28)

τij = t0ij · (1 + α(vtaskij /cij)
β),∀(i, j) ∈ A (4.29)

τ ′′ij = t0ij · (1 + α(vgij − /(mij − 1)cij)
β), ∀(i, j) ∈ A (4.30)

where t0ij denotes the free-flow travel time on arc (i, j); vgij and cij are the traffic flow

per unit time in a general traffic situation on arc (i, j), the vehicle flow of special tasks

per unit time on arc (i, j), and the capacity of one lane on arc (i, j), respectively; mij

is the number of lanes on arc (i, j); mijcij and (mij−1)cij are the total capacity of arc

(i, j) without and with a reserved lane, respectively; and α and β are two coefficients.

Like most previous studies [24],[42],[44],[45],[124]–[126],[138],[139], the link travel

time before implementing lane reservation, i.e., τ ′ij, is assumed to be known in advance

and takes an average value in a general traffic situation. Hence, the volume-to-

capacity (v/c) ratio in the BPR function (4.28) is considered as an average value

in a general traffic situation. The data can be estimated by available programs or

obtained from the historical data or simulation results. Because the vehicle flow for

special tasks is relatively low compared with the capacity of the reserved lanes, even all

the tasks simultaneously pass the same reserved lane, τij is approximately estimated

as the free-flow travel time, as is the case in [86]. τ ′ij is approximately estimated as

(4.30) because the remaining mij − 1 lanes will burden all the general-purpose traffic

demand.

The parameters used in (4.28)-(4.30) are listed as follows. The free-flow travel

speed is set as 70 km/h [96], and t0ij is calculated as the Euclidean distance between

nodes i and j divided by the free-flow speed. Capacity cij is assumed to be 900

veh/h [86]. The ratio vgij/mijcij is randomly generated in [0.5, 1.2]. The interval is

65



used to generate different traffic situations from a near free-flow situation to an over

saturated one [96]. Integer mij is randomly generated in [2, 4] and α = 0.15 and

β = 4.

Evaluation of negative impact due to lane reservation

In all previous studies, the negative impact of a reserved lane on arc Cij is defined

as the increased time on the adjacent non-reserved lanes due to lane reservation. In

this chapter, the negative traffic impact is estimated as Cij = Pij(τ
′′
ij − τ ′ij), where Pij

denotes the number of general-purpose travelers on arc (i, j). With the new formula,

the total increased time of all genera-purpose travelers caused by a reserved lane is

estimated.

Parameter Pij is assumed to be known in advance and takes an average value

in a general traffic situation. To some extent, the more the vehicles, the more the

passengers. Hence, Pij is set as bijv
g
ij, where integer bij is defined as the average

passenger count inside each vehicle, and it is randomly generated in [1, 20]. In general,

a number of heterogeneous general-purpose vehicles may exist, and they have different

capacities. Vehicles with larger capacities usually contain more passengers. In China,

for example, a public vehicle usually contains more than 20 passengers, whereas a

private car usually contains one person. Consequently, for brevity, we randomly

generate an average value in the interval [1, 20]. In reality, the data of the number of

general-purpose passengers per unit time passing each road link can be estimated by

available programs to the DMs or obtained from historical data.

The increased link travel time on adjacent lanes due to lane reservation is calcu-

lated as τ ′′ij − τ ′ij. As reported in [96], statistical results show that the travel time

on adjacent lanes increases about 26% after one of three lanes is converted to be

a reserved lane in A1 motorway in Paris. This is very close to the computational

result (27.63%) calculated by (τ ′′ij − τ ′ij)/τ ′ij with an average v/c ratio of this highway

available in [96]. This means that τ ′′ij − τ ′ij is applicable to approximately estimate

the increased time on general-purpose lanes due to lane reservation. Moreover, the

formula can also reflect the impact degree for special traffic situations. For example,

if a two-lane highway is operating in a near-saturated traffic situation (suppose its

v/c ratio is 0.95), then the increased percentage in travel time on the remaining lane

after implementing lane-reservation will be up to 163.31% according to (τ ′′ij − τ ′ij)/τ ′ij.
That is, a reserved lane on this highway will cause a bottleneck. In fact, if reserving a

lane on some links will generate bottlenecks on them or have a high impact, then the

links may not be selected to be reserved since one objective of the considered problem
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is to minimize the total impact due to lane-reservation. Moreover, we have conducted

computational tests to evaluate the sensitivity of different impact parameters on the

performance of our algorithm.

Results for random instances

Table 4.2: Computational results for various types of impact

Set Impact |A| |N | |K| CTr
1 Type 1 240 60 15 19.95
2 Type 1 240 60 20 48.28
3 Type 1 278 70 20 74.59
4 Type 1 278 70 25 119.74
5 Type 1 318 80 20 262.59
6 Type 1 318 80 25 340.56

Average 144.29
7 Type 2 240 60 15 23.73
8 Type 2 240 60 20 43.07
9 Type 2 278 70 20 87.08
10 Type 2 278 70 25 92.52
11 Type 2 318 80 20 171.89
12 Type 2 318 80 25 418.72

Average 139.50
13 Type 3 240 60 15 20.97
14 Type 3 240 60 15 40.17
15 Type 3 278 70 15 117.86
16 Type 3 278 70 15 137.92
17 Type 3 318 80 15 242.16
18 Type 3 318 80 15 377.68

Average 156.13

Table 4.2 gives the computational results for three scenarios regarding the types

of impact, called Types 1, 2, and 3, due to lane reservation. Type 1 impact is

calculated by Pij(τ
′′
ij−τ ′ij) The other two impacts are calculated as RrPij(τ

′′
ij−τ ′ij), r =

1 and 2, where R1 and R2 are randomly generated from the intervals [0.5, 1] and [1,

1.5], respectively. The two intervals are used to simulate smaller impact and larger

impact, respectively. The computational time for these three types of impact ranges

between 19.95s and 340.56s, 23.73s and 418.72s, and 20.97s and 377.68s, respectively.

Moreover, we can see in Fig. 4.6 that the changing trends of CTr for the three

scenarios are almost the same. Furthermore, the average computation times spent by

our algorithm for all scenarios are 144.29s, 139.50s, and 156.13s, respectively, which
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are almost the same. These results show that the performance of our algorithm is

stable to the changes of impact parameters.
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Fig. 4.6: Computational results of sensitive analysis of different impact

Table 4.3: Comparison results for the instances with |N | = 60-90

Set |A| |N | |F | |J | Rp(%) CTr CT ′r CTr/CT
′
r

19 236 60 11.2 11.2 19.64 55.69 74.67 0.75
20 252 65 14.4 14.4 23.61 94.22 127.79 0.74
21 274 70 17.2 17.2 18.60 134.98 200.18 0.67
22 296 75 19.8 19.8 24.24 205.78 380.54 0.54
23 314 80 23.8 23.8 17.65 288.29 481.34 0.60
24 334 85 27.0 27.2 27.41 369.75 753.29 0.49
25 350 90 30.6 30.8 16.99 445.16 921.50 0.48

Average 20.57 20.63 21.11 227.7 419.9 0.54

Table 4.3 reports the results for instances with |K| = 20 and |N | varying from

60 to 90. We first analyze the performance of the proposed strengthening technique.

We can observe from Table 4.3 that the average number of ε-constraint problems

solved by Algorithm BLRP is less than BLRP′ for sets 19-25. Rp varies from 16.99%

to 27.41%, and the average Rp is 21.11%, which means that on average 21.11% re-

dundant runs are avoided by Algorithm BLRP compared with Algorithm BLRP′.

This demonstrates that the proposed strengthening technique is useful for reducing

the number of dominated solutions and the number of ε-constraint problems solved.
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Moreover, in Table 4.3, the gap between |J | and |F | is zero for sets 19-23 and very

small for sets 24 and 25. Hence, a Pareto optimal solution is found at almost each

iteration of the proposed method. By comparing CTr and CT ′r from Table 4.3, we

find that CTr is less than CT ′r all the seven sets. In particular, CTr gradually in-

creases, whereas CT ′r rapidly increases as the number of nodes |N | increases. The

average value of CTr is only 227.7s, which is only 54% of CT ′r. This implies that the

cut-and-solve method is more efficient in solving PC(ε)’s compared with CPLEX.

Table 4.4: Comparison results for the instances with |N | = 100

Set |A| |K| |F | |J | Rp(%) CTr CT ′r CTr/CT
′
r

26 398 5 21.6 21.6 10.19 31.87 43.23 0.74
27 406 10 22.0 22.0 14.55 70.52 125.41 0.56
28 404 15 25.0 25.0 17.60 170.71 358.05 0.48
29 398 20 31.0 31.0 18.06 304.18 565.59 0.54
30 396 25 34.6 34.6 16.18 440.99 701.16 0.63
31 390 30 35.0 35.0 14.29 511.04 1052.84 0.49
32 394 35 45.0 46.2 17.78 819.39 2066.75 0.40
33 396 40 32.0 32.0 14.38 863.08 3410.29 0.25
34 408 50 27.6 27.6 13.04 1221.77 4371.91 0.28

Average 30.42 30.56 15.38 492.62 1410.58 0.35

Table 4.4 presents the results on the instances with a fixed number of nodes

|N | = 100, whereas the number of tasks |K| varies from 5 to 50. From Table 4.4, we

can see that the value of Rp varies from 10.19% to 18.06%, and the average value is

15.38%. This means that the strengthening technique is effective when the number

of tasks varies. It can be seen that |J | is very close to |F |, and its gap is zero over

all sets except for set 32, and the average |F |/|J | is 99.54% (i.e., 30.42/30.56). This

indicates that a Pareto optimal solution is found at almost each iteration of Algorithm

BLRP. On the other hand, we can see from Table 4.4 and Fig. 4.7 that CTr and CT ′r

increase with the number of tasks |K|, but CTr increases more slowly than CT ′r. The

ratio CTr/CT
′
r varies from 0.25 to 0.74, and the average computation time spent by

Algorithm BLRP is only 35% of that spent by Algorithm BLRP′. They imply that

Algorithm BLRP is more efficient than Algorithm BLRP′ in solving instances with

fixed nodes and varying |K|. Take set 33 as an example, Algorithm BLRP spends

less than 900s to find the exact Pareto front, whereas Algorithm BLRP′ spends more

than 3400s. Moreover, Algorithm BLRP is more efficient for large |K| because the

value of CTr/CT
′
r has a decreasing trend.
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Fig. 4.7: Comparison results for the instances with |N | = 100

Table 4.5 presents the results for the instances with |N | varying from 110 to 150

and |K| varying from 20 to 50. CT ′r/|J ′| and CTr/|J | represents the average com-

putational time for solving each PC(ε) by CPLEX and the cut-and-solve method,

respectively. It can be seen from Table 4.5 that the gap between |J | and |F | is very

small, and the average |F |/|J | is 99.82% (i.e., 39.8/39.87). This indicates that Algo-

rithm BLRP can find a non-dominated solution at almost each iteration. Moreover,

8.57% to 24.17% redundant runs and 14.74% on average can be efficiently avoided by

our algorithm compared with Algorithm BLRP′ for sets 35-43. This shows that the

strengthening technique is also useful for these cases. It can be observed from Table

4.5 and Fig. 4.8 that CTr and CT ′r increase with the numbers of tasks and nodes;

however, CT ′r increases much more quickly than CTr, and the average CTr/CT
′
r is

37%. This indicates that our algorithm is more efficient than Algorithm BLRP′ in-

stances with varying |N | and |K|. In addition, due to the NP-hardness of PC(ε)’s, we

can see from Table 4.5 that CT ′r/|J ′| and CTr/|J | both increase with the number of

tasks and nodes, whereas the former increases slower than the latter. This shows that

the proposed cut-and-solve method is more efficient than CPLEX in solving PC(ε)’s.

It is worthwhile to note that Algorithm BLRP′ cannot solve four of five instances

of set 44 within 18000s, whereas our algorithm only spends an average computation

time of 9538.81s to find the Pareto fronts for all of them.
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Fig. 4.8: Comparison results for the instances with |N | = 110-150

4.5 Conclusions

In this chapter, we have investigated a bi-objective robust lane reservation problem

whose optimization goals are to minimize the total impact of reserved lanes and to

maximize robustness of the lane-reservation solution. We developed an improved

exact ε-constraint and cut-and-solve combined method to find its Pareto front. Com-

putational results on an instance based on a real network topology and 220 randomly

generated instances showed the efficiency of the proposed approach. In addition,

we generalized the exact ε-constraint method that was initially designed for BCOPs

with integer objective values. We showed that the enhanced version of the exact

ε-constraint method is able to find the Pareto front for the considered bi-objective

MILP. The corresponding work in this chapter has been published in the following

paper.
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Chapter 5

Bus lane reservation problem

5.1 Introduction

In this chapter, we investigate a bus lane reservation problem (BLRP) motivated by

improving the performance of bus transit system. As mentioned in Chapter 1, traffic

congestion is one of the major challenges all over the world. To alleviate urban traffic

congestion, the most direct means: building new roads is restricted by the geographic

space, high construction cost and long duration. The development of public transport

has been widely accepted as a potential practical solution if it is efficient, effective,

reliable and comfortable. Bus transit as one of the oldest public transport modes has

great advantages in the high flexibility and low fare [68]. However, bus transit appears

to be less attractive due to its inefficient transit caused by heavy traffic congestion,

especially in morning and afternoon pear hours. Bus priority strategy emerged in this

circumstance has been widely used to improve bus transit service.

The bus lane reservation strategy, to convert some general lanes on some road links

(in some time periods, such as peak hours) into be reserved for buses, is an important

bus-priority strategy that has been widely employed in our real life. Its main aim

is to help achieve time-efficient bus transit to enhance its attractiveness. The major

advantage of bus lane reservation is to keep the bus transit from trapping into the

congested traffic and provide a congestion-free transit environment on them. Thus,

bus transit time-efficient can usually be ensured and better schedule adherence can

usually be achieved as well [109]. Despite the potential benefits brought by reserved

bus lanes, once they are implemented, they may make non-bus vehicles on non-

reserved lanes spend more time, i.e., negative impact will be generated by reserved

lanes. Princeton and Cohen [96] concluded that the average travel time on general-

purpose lanes was increased up to 26% after a lane of A1 motorway in Paris was

reserved. Therefore, it is necessary to optimally reserve bus lane since improper bus
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lane reservation may worsen the already congested urban traffic instead of improving

it.

As stated in Chapter 2, there have been a few studies concerning optimal bus

lane reservation at the transportation network level through optimization methods.

These studies provide valuable tools for decision-makers to perform optimal bus lane

reservation. However, some limitations below exist: 1) all the proposed algorithms

were evaluated by only one study case; 2) the size of study cases are limited in

relatively small networks; 3) the proposed non-linear programming models are difficult

to solve due to their non-linearity nature for large-size instances; and 4) negative

impact of bus lanes on normal traffic have not been considered yet.

Different from the existing studies, this chapter studies a new bus lane reservation

problem from the perspective of minimizing negative traffic impact of reserved bus

lanes and guaranteeing time-efficient bus transit. It intends to optimally choose lanes

from an existing bus transit network to be bus lanes for time-guaranteed bus transit.

For the considered problem, we suppose that the total travel time of a bus line from

its origin to terminal must be completed within a given deadline. This aims to im-

prove the service level of a bus transit system and increase bus transit attractiveness.

Different from the previous LRPs addressed in [41], [125] and Chapters 3 and 4, we

suppose that a lane on a road segment can be reserved only when the bus volume per

unit time on it reaches a given volume level. This assumption attempts to maximize

the effectiveness of bus lanes. Similar to the LRPs studied in Chapters 3 and 4, the

objective of the BLRP is to minimize the total negative traffic of reserved lanes.

The remainder of this chapter is constructed as follows. In Section 5.2, we first de-

scribe the BLRP and formulate an integer linear program for it. Then its complexity

is demonstrated. Section 5.3 sketches an optimal algorithm based on cut-and-solve

method. Computational results are presented in Section 5.4. This chapter is con-

cluded in Section 5.5.

5.2 Problem formulation

The BLRP is described as follows. A bus transit network can be represented by a

graph G = {N,A}, where N(resp. A) is a set of nodes (resp. arcs). A node represents

a road intersection or bus station, and an arc represents a road segment connecting

pairs of nodes in the network. Given a set of bus lines K, the BLRP is to select lanes

in the transit network to be reserved such that the total travel time on each bus line

is completed within given deadline. The reserved bus lanes reduces bus transit time
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while it may make the adjacent non-reserved lanes more congested. The objective of

the BLRP is to minimize the total negative impact of all reserved bus lanes.

The following assumptions are made for the BLRP as follows: 1) bus lines are

predetermined and there are at least two lanes on each arc; 2) road segment travel

time can be decreased on a reserved lane; and 3) the bus path passed by each bus

line can be composed of non-reserved and reserved lanes, i.e., the bus paths can be

partially reserved. The parameters and decision variables used for the formulation is

given as follows:

Sets and parameters
N : set of nodes, i ∈ N
A: set of arcs, (i, j), i, j ∈ N
L: set of bus lines, l ∈ L
τij: travel time on a reserved lane on arc (i, j) ∈ A
τ ′ij: travel time on arc (i, j) ∈ A without reserved lanes
Tl: given travel deadline for the bus line l ∈ L
Cij: negative impact caused by a reserved lane on arc (i, j) ∈ A
fl: number of buses on the bus line l, l ∈ L
Qij: threshold of bus volume per unit time for reserving a lane on arc (i, j) ∈ A
Slij: Slij = 1: bus line l ∈ L passes arc (i, j) ∈ A and 0 otherwise

Decision variables
zij : zij = 1, if arc (i, j) is reserved; otherwise zij = 0, (i, j) ∈ A

Then, the BLRP is formulated as the following integer linear program:

Pb : min
∑

(i,j)∈A

Cijzij (5.1)

s.t.
∑

(i,j)∈A

Slij(τijzij + τ ′ij(1− zij)) ≤ Tl, ∀l ∈ L (5.2)

∑
l∈L

Slijfl ≥ zijQij,∀(i, j) ∈ A (5.3)

zij ∈ {0, 1},∀(i, j) ∈ A (5.4)

Objective function (5.1) is to minimize total negative traffic impact of all reserved

lanes. Constraint (5.2) represents that the total travel time of the l-th bus line should

not exceed its given travel deadline. Constraint (5.3) guarantees that the bus volume

on each arc a should exceed a certain level if it is reserved. Constraint (5.4) is a

binary constraint on the decision valuables. The above formulation can be further

simplified as follows.
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Let A′ denote the set of arcs on which the bus volume does not exceed a certain

level, i.e., for ∀(i, j) ∈ A′,
∑

l∈L S
l
ijfl < Qij. Thus, the proposed model Pb can be

easily simplified as the following model P ′b.

P ′B : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (5.2) and (5.4)

zij = 0,∀(i, j) ∈ A′ (5.5)

The complexity of the BLRP is shown as follows.

Theorem 7 The BLRP is NP-hard.

Proof : First, we will show that the special case of the BLRP, where there is only
one bus line, i.e., |L| = 1, and Qij is small enough such that constraint (5.3) can be
relaxed, is NP-hard. The special case of the BLRP (we call it SBLRP) that can be
represented by the following integer linear program:

SPb : min
∑

(i,j)∈As

Cijzij

s.t.
∑

(i,j)∈As

(τijzij + τ ′ij(1− zij)) ≤ TC (5.6)

zij ∈ {0, 1},∀(i, j) ∈ As (5.7)

where As denotes the set of arcs of the path of the only bus line, and TC denotes its
given deadline. Let |As| denote the number of arcs in As. SPB can be easily to the
following equivalent form.

SP ′b : min
∑

(i,j)∈As

Cijzij

s.t.
∑

(i,j)∈As

(τ ′ij − τij)zij ≥
∑

(i,j)∈As

τ ′ij − TC (5.8)

zij ∈ {0, 1},∀(i, j) ∈ As (5.9)

Then, we demonstrate the NP-hardness of SP ′b through a reduction from the 0-1
Knapsack Problem, which is known to be NP-hard [95]. The 0-1 Knapsack Prob-
lem (0-1 KP) is defined as follows: there are n items that have to be packed in a
knapsack, each item j has an associated profit pj and weight w j, given a knap-
sack with capacity c, the objective is to maximize the total profit. Its integer linear
programming model can be constructed as follows:

0-1 KP : max
n∑
j=1

pixi (5.10)
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s.t.
n∑
i=1

wixi ≤ c (5.11)

xi ∈ {0, 1}, i = 1, 2, ..., n (5.12)

Finally, we explain how to transform 0-1 KP to SBLRP. First, n corresponds to
|As|, i(i = 1, 2, ..., n), pi, wi and c correspond to Cij, τ

′
ij − τij, and TC −

∑
(i,j)∈As

τij,
respectively. Second, xi is replaced by 1 − zij. With such linear transformation, the
0-1 KP is reduced into the SBLRP.

As analyzed above, the 0-1 Knapsack Problem known to be NP-hard (5.3) is
reducible to a special case of the BLRP, i.e., SBLRP. Hence, the BLRP is also NP-
hard. �

5.3 Solution approach

In this section, an optimal algorithm based on cut-and-solve method is employed to

solve the BLRP. The principle of cut-and-solve method has been presented in Chap-

ter 2. As stated previously, it is important to define the piercing cut (PCn), sparse

problem (SP n) and residual problem (RP n) when applying the cut-and-solve method.

In the following, these main components designed for the studied BLRP are detailed,

respectively.

5.3.1 Definition of piercing cut, sparse problem and residual
problem

For a cut-and-solve method, an appropriate PCn is critical. It combines a set of

decision variables Un. Un is defined according to the reduced costs of valuables [30],

which is composed of valuables whose reduced costs are greater than a given positive

value, denoted as αn. Due to that the variables in Un are all binary, the sum of them

is either greater than 1 or equal to 0. With such a piercing cut, CP n is separated

into RP n (with the sum of all valuables in Un is greater than 1) and SP n (with the

sum of all valuables in Un is equal to 0).

As indicated in [30], the way defining PCn above achieved good performance

for solving the ATSP. Fang et al. [42], [45] also adopted such a PCn to solve LRP.

Moreover, the objective of the BLRP is directly related with valuables zij, (i, j) ∈ A
like that in [30]. This inspires us to use reduced costs of variables to define the piercing

cut. Therefore, Un is defined as follows:

Un = {zij|ϕ(zij) > αn, ∀(i, j) ∈ A} (5.13)
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where ϕ(zij) is the reduced cost of zij and the choice of the value of αn depends on

the distribution of reduced cost of zij, e.g., 0.1×max{ϕ(zij)|∀(i, j) ∈ A as like that in

Fang et al. [42]. The reduced costs of variables zij, (i, j) ∈ A, are obtained by solving

the linear relaxation problem of the current problem CP n. The PCn is defined as

follows:

(PCn)
∑
zij∈Un

≥ 1 (5.14)

With the piercing cut PCn, two sub-problems SP n and RP n are defined as follows,

respectively.

(SP n) min
∑

(i,j)∈A

Cijzij

s.t. Constraints (5.2), (5.4) and (5.5)∑
zij∈Ut

zij ≥ 1, t = 1, 2, ..., n− 1 (5.15)

∑
zij∈Un

zij = 0 (5.16)

(RP n) min
∑

(i,j)∈A

Cijzij

s.t. Constraints (5.2), (5.4), (5.5), (5.14), (5.15)

5.3.2 Improved piercing cut technique

In order to further improve the performance of the algorithm, the improved piercing

cut PC ′n proposed by Fang et al. [45] based on the basis of PCn is adapted here. A

new definition of Un(n ≥ 2) used for the definition of PC ′n, denoted as U ′n, is given as

follows:

U ′n = {zij|ϕ(zij) > αn, zij ∈ U ′n−1, ∀(i, j) ∈ A} (5.17)

When n = 1, U ′1 = U1.

(PC ′n)
∑
zij∈U ′n

zij ≥ 1 (5.18)

With PC ′n, two new sub-problems SP ′n(n ≥ 2) and RP ′n(n ≥ 2) can be defined as

follows:

(SP ′n) min
∑

(i,j)∈A

Cijzij

s.t. Constraints (5.2), (5.4) and (5.5)∑
zij∈U ′n−1\U ′n

zij ≥ 1 (5.19)
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Algorithm BLRP

1: Initialize n = 1, UBb = +∞, and CP1 = P ′b.
2: Solve CP ′s linear relaxation problem to obtain the reduced costs of all variables.
3: Define PC ′n by (5.18) and obtain SP ′n and RP ′n.
4: Solve problem SP ′n exactly to obtain UBn. If UBn < UBb, UBb = UBn.
5: Solve the linear relaxation problem of RP ′n to obtain LBn. If LBn ≥ UBb, output
UBb and the corresponding solution as the optimal objective function value and
the optimal solution, respectively, and end;

6: Set CPn+1 = RP ′n, n = n+ 1, go back to Step 2.

Fig. 5.1: Algorithm BLRP: algorithm for the BLRP

∑
zij∈U ′n

zij = 0 (5.20)

(RP ′n) min
∑

(i,j)∈A

Cijzij

s.t. Constraints (5.2), (5.4), (5.5), (5.18)

When n = 1, SP ′1 = SP1, and RP ′1 = RP1.

Theorem 8 For n ≥ 2, if U ′1 ⊇ U ′2 ⊇ · · ·U ′n−1 ⊇ U ′n holds, SP ′n and RP ′n are equal

to SP n and RP n, respectively.

Proof : Its correctness can be proved similar to Theorem 3 in [45], for more details,
please see [45]. �

The overall algorithm for the BLRP is summarized as Algorithm BLRP.

5.4 Computational results

This section reports experiment computational results on 15 randomly generated

problems sets with five instances in each, i.e., 75 instances in total, tested on a PC

with 2.5 GHz CPU and 2.95 GB RAM. The proposed method is coded in C++ em-

bedded with the optimization software CPLEX (version 12.4) in default setting used

to optimally solve SP ′n and the relaxation problem of RP ′n. Its performance is eval-

uated by comparing computation time (CPU seconds) with CPLEX. The instances

are randomly generated as follows.

The graph G = (N,A) is generated based on the network model proposed by [121].

The existence of an arc for a pair of nodes depends on a probability function associated
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with the distances of nodes. The parameters of link travel times τ ′ij, τij, and impact of

lane reservation Cij are estimated as those in Chapter 4. To avoid a trivial problem,

the deadline Tl is randomly and uniformly generated between the total travel time

on an entire reserved bus path and on a non-reserved path. Integer fl is randomly

generated in [5, 12], which means that bus service frequency ranges from 5 to 12

minutes, i.e., 5 to 12 vehicles/hour. As pointed out by Seo et al. [102], a reserved lane

with a bus volume in the range of 20-400 vehicles/ hour is useful, so Qij is set as 20

vehicles/hour, which is the lowest level. Let CTb, and CT0 denote the computation

time spent by the proposed algorithm and CPLEX, respectively. The computational

results are summarized in Tables 5.1 and 5.2, and Fig.’s 5.2 and 5.3.

Table 5.1: Comparison results for the instances with |N | = 50-90

Set |N | |L| CTb CT0 CTb/CT0
1 50 20 0.37 0.39 0.94
2 60 20 1.19 1.50 0.79
3 70 20 1.41 1.62 0.87
4 80 20 1.75 2.07 0.85
5 90 20 3.57 4.20 0.85

Average 1.66 1.96 0.85

Table 5.1 reports the computational results for instances with 20 fixed number of

bus lines and number of nodes increasing from 50 to 90. We can see from Table 5.1

that both the proposed algorithm and CPLEX can exactly solve all instances within

relatively short computation time. The computation time by the proposed algorithm,

i.e., CTb is less than CT0, for all sets 1-5. CT0 increases from 0.39s to 4.2s, and its

average value is 1.96s, whereas the CTb increases from 0.37s to 3.57s, and its average

value is 1.66s. We can also see that the value of ratio CTb/CT0 changes between 0.79

and 0.94, and its average value is 0.85. This indicates that the proposed algorithm

only spends 85% average computation time of that spent by CPLEX. This shows that

the proposed algorithm is more efficient than CPLEX.

In addition, it can be seen from Table 5.1 and Fig. 5.2 that CTb and CT0 both

increase with the number of nodes |N |, while CTb increases more gradually than CT0.

This also indicates that the proposed algorithm is more efficient than CPLEX for

instances with fixed number of bus lines |L| and varying number of nodes |N |.
Table 5.2 presents the comparison results of the proposed algorithm and CPLEX

for instances with |N | increasing from 100 to 500 and |L| varying from 20 to 60. It

can be found from Table 5.2 that both methods can obtain optimal solutions for all
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Fig. 5.2: Comparison results for the instances with |N | = 50-90

Table 5.2: Comparison results for the instances with |N | = 100-500

Set |N | |L| CTb CT0 CTb/CT0
6 100 20 4.07 5.56 0.73
7 100 25 14.57 16.68 0.87
8 200 30 20.52 24.44 0.84
9 200 35 197.28 236.57 0.83
10 300 40 228.11 286.11 0.80
11 300 45 379.84 471.16 0.81
12 400 50 537.99 841.95 0.64
13 400 55 1182.38 1761.56 0.67
14 500 60 1438.45 1877.62 0.77

Average 444.80 613.52 0.73
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instances in 1900s. The computation time spent by CPLEX increases from 5.56s to

1877.62s and its average value for all instances is 613.52s, whereas the computation

time spent by the proposed cut-and-solve algorithm increases from 4.07s to 1438.45s

and its average value for all instances is 444.8s. We can find that CTb is less than

CT0 over all sets 6-14 in Table 5.2. In addition, it can be seen in Table 5.2 that

CTb/CT0 ranges between 0.64 and 0.87, and its average value for all the sets is 0.73.

This means that the proposed algorithm can find optimal solution by spending 73%

the computational time of that spent by CPLEX for all the instances on the average.

This indicates that the proposed algorithm is more efficient than CPLEX.
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Fig. 5.3: Comparison results for the instances with |N | = 100-500

Moreover, from Table 5.2 and Fig. 5.3, we can find that the computational time

by the proposed algorithm and CPLEX both increases with the number of bus lines

|L|, but CTb increases more gradually than CT0 from sets 6-11. Note that CTb

increases a bit faster than CT0 from sets. This may because that the solution space

for these larger-size problem sets is larger and the generated piercing cuts in the

proposed algorithm may be not very efficient that influences the convergence of the

algorithm. Although so, it can be found that the computation time spent by the

proposed algorithm is less than that spent by CPLEX for the larger-size problem sets

12-14.
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5.5 Conclusions

In this chapter, we investigate a new bus lane reservation problem. It is to optimally

choose some existing general lanes in a bus transit network and convert them into

bus lanes via lane reservation so that the total travel time of buses on each bus line

is less than a given deadline. This aims to improve the service level of a bus transit

system. Meanwhile, the bus volume on a reserved lane should exceed a certain bus

volume level to maximize its effectiveness. The bus lane reservation problem aims

to minimize the impact caused by reserved lanes. An integer linear programming

model was formulated and the problem was demonstrated to be NP-hard. Then, a

cut-and-solve algorithm was adapted to exactly solve the BLRP. The computational

results on randomly generated instances show that the proposed algorithm is more

efficient than the commercial optimization software CPLEX.
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Chapter 6

Bus lane reservation problem with
path design

6.1 Introduction

One common characteristics of all the existing studies on optimal bus lane reservation

at the macroscopic network level [68], [76], [86], [87], [108], [131] as well as the BLRP

studied in Chapter 5 assume that the bus paths are predetermined, and thus the lanes

to be reserved are only selected from the known bus paths. Clearly, the proposed

theories and methods in the above studies cannot be directly applied to a bus lane

reservation problem in which the bus transit paths need to be optimally determined.

Moreover, although guaranteeing bus station arrival-time is one of the most important

indicators for evaluating a bus transit system, all previous studies do not consider such

issue. As reported by [7], [109], rapidness and reliability have been widely recognized

as the key measures for the service quality of a bus transit system as well as passenger

satisfaction that justifies a bus lane reservation scheme.

Achieving the station arrival-time guaranteed bus transit will improve the service

level of a bus transit system because the setting and guaranteeing of arrival time of bus

at station will clearly reduce the travel time of passengers and avoids or significantly

reduces the excess waiting time. Moreover, as pointed out by [130], when the arrival

times at bus stations are unreliable or not guaranteed, bus passengers, especially

commuters need to accommodate much extra time to their schedules for arriving on

time. The station arrival-time guaranteed bus transit improves bus transit reliability

such that such extra time could be avoided or reduced. On the other hand, for the bus

operators, station arrival-time guaranteed bus transit will not only help them develop

reliable timetable but also reduce the bus operating costs since the total travel time

on each bus line is reduced. Because the bus arrival-times at stations usually are not

85



guaranteed due to the increasingly congested urban traffic environment, appropriate

bus lane reservation may achieve this in a flexible and economic way.

In this chapter, we investigate a new bus lane reservation problem in which the

bus paths need to be designed (BLRP-PD). Compared with the existing studies, the

assumption that bus paths are predetermined is relaxed and guaranteeing bus station

arrival-time issue is considered. The BLRP-PD aims to optimally select lanes to be

reserved for bus use in a transportation network and determine the bus path for each

bus line such that the rapid and station arrival-time guaranteed bus transit can be

ensured, thereby achieving rapid and reliable bus transit service. But negative impact

on non-bus vehicles may be caused by bus lanes. The objective is to minimize the

total negative impact of reserved lanes. Due to the introduction of bus path design,

the resulted new bus lane reservation problem become much more difficult to solve.

The existing solution approaches cannot be directly applied to solving it. An exact

enhanced cut-and-solve based method is developed for it. New piercing cut strategy

and acceleration technique are developed for the CS method. Moreover, to faster solve

large-size problems, a kernel search based heuristic is developed to yield optimal or

near-optimal solutions. Improvement techniques are developed for the KS algorithm

according to the characteristics of the problem.

The remainder of this chapter is organized as follows. In Section 6.2, we present a

problem description and its two formulations. The solution approaches are described

in Section 6.3. Section 6.4 summarizes and discuss the computational results. Finally,

Section 6.4 concludes this chapter.

6.2 Problem formulation

The BLRP-PD is described as follows. Let a directed graph G={N ,A} represent an

urban road network, where N and A are the set of nodes representing road inter-

sections or bus stations, and arcs connecting pairs of nodes, respectively. Let l, L,

and Nl denote the l-th bus line, the set of bus lines, and the set of the bus stations

on bus line l, respectively. We have l ∈ L, and Nl ⊆ N . Given a set of bus lines

and their corresponding bus stations, the BLRP-PD consists of optimally selecting

lanes in the network to be reserved for exclusive use of buses and designing bus paths

such that rapid and station arrival-time guaranteed bus transit is ensured. However,

bus travel time is reduced on bus lanes but the travel time of non-bus road users on

adjacent non-reserved lanes may be increased, i.e., negative impact may be caused
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by bus lanes. The objective is to minimize the total negative impact generated by all

the bus lanes.

To well study the problem, some assumptions are made as follows: 1) transporta-

tion network layout and bus stations and the passing order of stations on each bus

line are assumed to be known; 2) there exist at least two lanes on each road segment

such that one lane can be reserved; and 3) the capacity of a reserved bus lane is

assumed to be large enough and a bus lane can be shared by multiple bus lines to

increase its effectiveness. In addition, the negative impact caused by a reserved lane

is defined by Definition 8.

Definition 8 For arc (i, j) ∈ A, the impact caused by a reserved lane on this arc is

defined as the total increase of travel time of all non-bus users on its non-reserved

lanes caused by this reserved lane (i.e., Pij(τ
′′
ij − τ ′ij)), where Pij and τ ′′ij are estimated

number and travel time of of non-bus users on arc (i, j) ∈ A with a reserved lane,

respectively.

Theorem 9 The BLRP-PD is NP-hard.

Proof : If there is only origin and terminal station (i.e., only two stations) for each
bus transit line and the path is required to be entirely reserved, then such a special
case of the BLRP is reducible to the LRP in Chapter 3 that is proved to be NP-hard.
Therefore, the BLRP is also NP-hard. �

To clearly show the optimal solution obtained for the considered BLRP-PD, a

small example, denoted by Example 1, is presented and analyzed which allows for

easy inspection of the optimal solution. This instance consists of two bus transit lines

with three stations for each in a simple road network with 8 nodes and 24 arcs, as

shown in Fig. 6.1. Each arc is characterized by a three-tuple (τ ′, τ, C), where τ ′, τ and

C are the bus travel time without reserved lanes, the bus travel time on a reserved

lane, and the negative impact of a reserved lane on the arc, respectively. For instance,

from node 1 to 2, (8, 4, 10) means that the bus travel time without reserved lanes,

the bus travel time on a reserved lane, and the negative impact of a reserved lane on

the arc are 8 unit time, 4 unit time, and 10 unit impact, respectively.

In general, buses usually travel between two consecutive stations on its shortest

path in order to ensure the bus transit efficiency. Consequently, the bus paths of the

two bus lines are 1→ 6 → 7 → 4 and 5 → 6 → 7 → 3 → 4 → 8, respectively. The

bus arrival times at stations 6 and 4 (resp. 3 and 8) for bus line 1 (resp. bus line

2) are 15 and 42 (resp. 26 and 47) including both in-vehicle and bus dwell times,

respectively. The bus transit network without reserved lanes is shown in Fig. 6.2.

87



1

5 6

The bus lines 1 and 2 sequentially involve stations 1, 6, 4 and 5,  3,  8, respectively.

The arrival times at bus stations 6 and 4 for bus line 1 (resp. 3 and 8) are guaranteed 

to be less than or  equal to 10 and 34 (resp. 20 and 35), respectively. 
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Fig. 6.1: Network of Example 1

The arcs marked in red (resp. blue) are passed by bus line 1 (resp. bus line 2) and

arcs marked in green are passed by both bus lines. We can find that the required bus

arrival times at stations are not satisfied. we intend to optimally select lanes to be

reserved lanes and design reserved lane based path for each bus line to achieve the

required rapid and station arrival-time guaranteed bus service.
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Fig. 6.2: Bus paths without reserved lanes

For Example 1, the outputs of the problem include: 1) an optimal lane reservation

scheme is (1, 2), (2, 3), (2,6) and (3, 4); 2) the bus arrival-time guaranteed paths for

bus lines 1 and 2 with reserved lanes are 1→ 2 → 6 → 7 → 3 → 4 and 5 → 1 → 2

→ 3 → 4 → 8, respectively; and 3) the minimal negative impact of reserved lanes is

40. The arrival times at stations 6 and 4 (resp. 3 and 8) for bus transit line 1 (resp.
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bus line 2) are 9 and 33 (resp. 19 and 35), respectively, which satisfy the required the

rapid and arrival-time guaranteed bus transit needs. In addition, the average arrival

time at station for lines 1 and 2 are reduced 30.72% and 31.19%, respectively. The

bus transit network with reserved lanes is shown in Fig. 6.3. Note that arcs marked

in red (resp. blue) are passed by bus line 1 (resp. bus line 2) and reserved lanes (1,

2) and (3, 4) marked in green are shared by both bus lines.

1

5 6

3

7 8

42

(9
, 5

, 8
)

(8, 4, 10) (10, 5, 10) (10, 5, 12)

(8
, 4

, 8
)

(1
0
, 5

, 1
0

)

(8
, 5

, 8
)

(10, 5, 15)

Non-reserved arc Reserved arc

Fig. 6.3: Bus paths with reserved lanes

By comparing the results in Fig. 6.2 with Fig. 6.3, we can observe that the bus

paths for both bus transit lines without and with reserved lanes are different. Besides,

the objective of minimizing the negative impact may lead to shared reserved lanes so

as to reduce their negative impact.

6.2.1 MIP formulation

To formulate the problem, the input parameters and decision variables are given and

defined as follows.

Sets and parameters
N : set of nodes, i ∈ N
A: set of arcs, (i, j), i, j ∈ N
L: set of bus lines, l ∈ L
Nl: set of bus stops included in bus line l, l ∈ L;
sl: start stop of bus line l ∈ L, sl ∈ Nl

dl: terminal stop of bus line l ∈ L, dl ∈ Nl

τij: travel time on a reserved lane on arc (i, j) ∈ A
τ ′ij: travel time on arc (i, j) ∈ A without reserved lanes
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T0: departure time of buses at start stops
Cij: negative impact caused by a reserved lane on arc (i, j) ∈ A
T−i,l: lower bound on arrival time at the i-th stop on bus line l, i ∈ {2, .., |Nl|},

l ∈ L;
T+
i,l: upper bound on arrival time at the i-th stop on bus line l, i ∈ {2, .., |Nl|},

l ∈ L;

Decision variables
tli: arrival time on bus line l at node i; tli is set as 0 if node i is not passed,

∀i ∈ N , ∀l ∈ L;
zij: zij = 1, if a lane is reserved on arc (i, j); and otherwise zij = 0, ∀(i, j) ∈

A;
xlij: xlij = 1, if the path of bus line l ∈ L passes arc (i, j) and a lane on this

arc is reserved for buses; and otherwise xlij = 0, ∀(i, j) ∈ A;
ylij: ylij = 1, if the path of bus line l ∈ L passes arc (i, j) and no lanes on this

arc are reserved for buses; and otherwise ylij = 0, ∀(i, j) ∈ A;

With the notations, definition and assumptions given above, the BLRP-PD can

be formulated as the following mixed-integer program P1.

P1 : min
∑

(i,j)∈A

Cijzij (6.1)

s.t.
∑

j:(i,j)∈A

(xlij + ylij) = 1, i 6= dl,∀i ∈ Nl,∀l ∈ L (6.2)

∑
i:(i,j)∈A

(xlij + ylij) = 1, j 6= sl,∀j ∈ Nl, ∀l ∈ L (6.3)

∑
i:(i,j)∈A

(
xlij + ylij

)
=

∑
i:(j,i)∈A

(
xlji + ylji

)
, j ∈ N\Nl,∀l ∈ L (6.4)

tlsl = T0,∀l ∈ L (6.5)

tli =
∑

j:(j,i)∈A

(xlji(t
l
j + τji) + ylji(t

l
j + τ ′ji)),∀i ∈ N, ∀i 6= sl,∀l ∈ L (6.6)

T−i,l ≤ tli − tlsl ≤ T+
i,l,∀i 6= sl,∀i ∈ Nl,∀l ∈ L (6.7)

xlij ≤ zij,∀(i, j) ∈ A, ∀l ∈ L (6.8)

ylij + zij ≤ 1, ∀(i, j) ∈ A,∀l ∈ L (6.9)

tli ≥ 0,∀i ∈ N,∀l ∈ L (6.10)

xlij, y
l
ij ∈ {0, 1},∀(i, j) ∈ A, ∀l ∈ L (6.11)

zij ∈ {0, 1}, ∀(i, j) ∈ A (6.12)

Objective function (6.1) is to minimize the total negative impact caused by reserved

lanes. Constraints (6.2)-(6.4) ensure a feasible bus transit path for each bus line l ∈ L.
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To be more specific, constraint (6.2) (resp. constraint (6.3)) guarantees that there is

one and only one arc outgoing from (resp. entering into) all bus stops except start

stop sl (resp. terminal stop dl) for bus line l,∀l ∈ L. The intermediate nodes on bus

line l,∀l ∈ L, is guaranteed by flow conservation constraint (6.4). Constraint (6.5)

represents the departure time at start bus stop. Constraint (6.6) indicates the arrival

time at node i on bus line l,∀l ∈ L. Constraint (6.7) guarantees the arrival time at

bus stops on each bus line l,∀l ∈ L. Constraint (6.8) ensure that the path of bus

line l cannot pass a reserved lane on arc (i, j) if this arc is not reserved. Constraint

(6.9) implies that zij and ylij cannot both take the value of 1. According to their

definitions, if ylij = 1, then bus line l passes arc (i, j) and this arc is not reserved,

and otherwise bus line l can pass a reserved one; consequently zij = 0. Constraints

(6.10)-(6.12) impose the bounds of decision variables.

6.2.1.1 Model linearisation

It is not difficult to find that the above MIP P1 is non-linear due to the existence

of the non-linear constraint (6.6). In this subsection, we will transform non-linear

model P1 into an equivalent linear one by reformulating constraint (6.6). For any

node i ∈ N, i 6= sl and ∀l ∈ L, there exist two cases to compute the arrival time at

node i, which are (a) the path of bus line l passes node i; and (b) the path of bus

line l does not pass node i. The reformulation based on the above analysis is given

as follows.

a) The path of bus line l passes node i. This case further includes two subcases,

i.e., bus line l passes node i via a non-reserved lane or reserved lane. For the former

subcase, constraint (6.6) can be reformulated as follows:∑
j:(j,i)∈A

(ylji(t
l
i − tlj − τ ′ji)) = 0,∀i 6= sl,∀l ∈ L (6.13)

With (6.13), it can found that each item ylji(t
l
i− tlj− τ ′ji) in (6.13) is equal to 0. Thus,

we can easily obtain the following equation.

ylji(t
l
i − tlj − τ ′ji) = 0,∀(j, i) ∈ A,∀i 6= sl,∀l ∈ L (6.14)

From (6.14), we can find that if ylji = 1, then tli− tlj − τ ′ji = 0; if ylji = 0, (6.14) is still

satisfied. Thus, constraint (6.6) can represented using the following two inequalities.

tli − tlj − τ ′ji ≥M(ylji − 1), ∀(j, i) ∈ A,∀i ∈ N, ∀i 6= sl,∀l ∈ L (6.15)

tli − tlj − τ ′ji ≤M(1− ylji), ∀(j, i) ∈ A,∀i ∈ N,∀i 6= sl,∀l ∈ L (6.16)
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Similarly, for the later subcase, i.e., bus line l passes node i via a reserved lane,

constraint (6.6) can be reformulated using the following two inequalities:

tli − tlj − τji ≥M(xlji − 1), ∀(j, i) ∈ A,∀i ∈ N, ∀i 6= sl,∀l ∈ L (6.17)

tli − tlj − τji ≤M(1− xlji),∀(j, i) ∈ A,∀i ∈ N, ∀i 6= sl, ∀l ∈ L (6.18)

b) The path of bus line l does not pass node i. Thus,
∑

j:(j,i)∈A x
l
ji = 0 and∑

j:(j,i)∈A y
l
ji = 0. Then, constraint (6.6) can be reformulated as follows:

tli ≤M
∑

j:(j,i)∈A

(xlji + ylji),∀i ∈ N, ∀i 6= sl, ∀(j, i) ∈ A,∀l ∈ L (6.19)

With the analysis above, non-linear constraint (6.6) can be equivalently replaced

by constraints(6.15)-(6.19). Then, the non-linear model P1 can be transformed into

the following mixed-integer linear program P ′1.

P ′1 : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.2)− (6.5), (6.7)− (6.12), (6.15)− (6.19)

6.2.1.2 Property analysis of MIP formulation

In order to more efficiently solve the considered problem, a preprocessing is proposed

to reduce the search space for its optimal solutions and several additional constraints

are added to tighten P1 as well.

a) Preprocessing

Note that if the travel time on each road segment in the network is known, the

shortest travel time between any two nodes in the network can be easily calculated

by the well-known Floyd shortest path algorithm with the complexity of O(N3).

Let ϕ(i, j) denote the shortest travel from node i to j when the network is entirely

reserved, i.e., each road link has a bus lane. Then, for each bus line l ∈ L, two sets

Nslm,slm+1
and Aslm,slm+1

, 0 ≤ m ≤ |Nl| − 1 are defined as follows.

Nslm,slm+1
= {i|ϕ(slm, i) + ϕ(i, slm+1) > T+

slm+1,l
− T−

slm,l
,∀i ∈ N},

∀m ∈ {1, ..., |Nl| − 1},∀l ∈ L (6.20)

Aslm,slm+1
= {(i, j)|ϕ(slm, i) + τ(i, j) + ϕ(j, slm+1) > T+

slm+1,l
− T−

slm,l
, (i, j) ∈ A},

∀m ∈ {1, ..., |Nl| − 1},∀l ∈ L (6.21)
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where slm and slm+1 represent two adjacent stops on bus line l. Note that sl1 and

sl|Nl| are equivalent to the start sl and the terminal dl, respectively. With (6.20) and

(6.21), we can obtain two new sets shown as follows:

Nl = {i|i ∈
⋂

m∈{1,...,|Nl|−1}

Nslm,slm+1
},∀l ∈ L (6.22)

Al = {(i, j)|(i, j) ∈
⋂

m∈{1,...,|Nl|−1}

Aslm,slm+1
},∀l ∈ L (6.23)

It can be easily found that the nodes in Nl would not be passed by bus line

l because if they are used the arrival time constraint at bus stop will be violated.

Similarly, the arcs in Al would not be passed by bus line l as well. Based on the

above analysis, the corresponding variables tli, x
l
ij and ylij must be equal to 0, i.e.,

their values can be fixed as 0. Obviously, the search space for optimal solutions of the

problem can be reduced. The corresponding constraints are represented as follows:

tli = 0,∀i ∈ Nl,∀l ∈ L, (6.24)∑
(i,j)∈A

(xlij + ylij) = 0,∀(i, j) ∈ Al, ∀l ∈ L (6.25)

b) Additional constraints

For each bus line l ∈ L, if it passes node i ∈ N\{sl}, the earliest and latest arrival

time at i, tli, are T0 + ϕ(sl, i) and T+
dl,l
− ϕ(i, dl), respectively; and otherwise tli = 0

according to its definition. Thus, two valid inequalities shown as follows hold without

excluding feasible solutions.

tli ≤ (T+
dl,l
− ϕ(i, dl))

∑
j:(j,i)∈A

(xlji + ylji),∀i ∈ N\{sl},∀l ∈ L (6.26)

tli ≥ (T0 + ϕ(sl, i))
∑

j:(j,i)∈A

(xlji + ylji),∀i ∈ N\{sl},∀l ∈ L (6.27)

Besides, we have the following three additional constraints.∑
i:(i,j)∈A

(xlij + ylij) = 0, j = sl,∀l ∈ L (6.28)

∑
j:(i,j)∈A

(xlij + ylij) = 0, i = dL,∀l ∈ L (6.29)

∑
(i,j)∈A

(τijx
l
ij + τ ′ijy

l
ij) ≤ T+

dl,l
− T0,∀l ∈ L (6.30)

Constraints (6.28) (resp. (6.29)) implies that there exist no entering arcs (resp. out-

going arcs) for start stop sl (resp. terminal stop dl), ∀l ∈ L. Constraint (6.30) means
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that the arrival time at terminal bus stop for line l should not be greater than the

largest possible transit duration T+
dl,l
− T0. Note that constraints (6.26)-(6.30) are

all additional, but they may tighten the model P ′1 and generally reduce the tree size

in its resolution via a branch-and-bound based method which is the main technique

used in commercial optimization software like CPLEX. Consequently, they help re-

duce computational time via an MIP solver, as demonstrated in our computational

results in the next subsection. A new model with reduced search space and additional

constraints, denoted by P ′1, is given as follows.

P ′1 : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.2)− (6.5), (6.7)− (6.12), (6.15)− (6.19), (6.26)− (6.30)

6.2.2 ILP formulation

The following parameters and variables are firstly defined as follows.

Sets and parameters
slq: the q-th bus stop on bus line l, slq ∈ Nl, l ∈ L, q ∈ {1, ..., |Nl|}, sl1 and

sl|Nl| are the origin and terminal station, respectively

Decision variables
xlqij: xlqij = 1, if a lane on arc (i, j) is reserved and located on the path between

the q-th and the (q + 1)-th bus station of bus transit line l ∈ L passes
this arc; and 0 otherwise,∀q ∈ {1, ..., |Nl| − 1},∀(i, j) ∈ A;

ylqij: ylqij = 1, if a lane on arc (i, j) is not reserved and located on the path
between the q-th and the (q + 1)-th bus station of bus transit line l ∈ L
passes this arc; and 0 otherwise ∀q ∈ {1, ..., |Nl| − 1},∀(i, j) ∈ A.

With the notations and variables, the BLRP-PD can also be formulated as the

following inter linear program P2.

P2 : min
∑

(i,j)∈A

Cijzij (6.31)

s.t.
∑

(i,j)∈A

(xlqij + ylqij) = 1, i = slq,∀q ∈ {1, ..., |Nl| − 1},∀l ∈ L (6.32)

∑
(i,j)∈A

(xlqij + ylqij) = 1, j = sl,q+1,∀q ∈ {1, ..., |Nl| − 1},∀l ∈ L (6.33)

∑
(i,j)∈A

(xlqij + ylqij) = 0, j = sl1,∀l ∈ L, (6.34)

∑
(i,j)∈A

(xlqij + ylqij) = 0, i = sl,|Nl|,∀l ∈ L (6.35)
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∑
(i,j)∈A

(
xlqij + ylqij

)
=
∑

(ji)∈A

(
xlqij + ylqij

)
,∀i ∈ N\Nl, ∀l ∈ L (6.36)

|Nl|−1∑
q=1

∑
(i,j)∈A

(xlqij + ylqij) ≤ 1,∀j ∈ N, ∀l ∈ L (6.37)

|Nl|−1∑
q=1

∑
(j,i)∈A

(xlqji + ylqji) ≤ 1,∀j ∈ N,∀l ∈ L (6.38)

T−q′,l ≤
q′−1∑
q=1

∑
(i,j)∈A

(τijx
l
qij + τ ′ijy

l
qij) ≤ T+

q′,l, q
′ ∈ {2, ..., |Nl|},∀l ∈ L (6.39)

xlqij ≤ zij,∀(i, j) ∈ A, q ∈ {1, ..., |Nl| − 1},∀l ∈ L, (6.40)

ylqij ≤ 1− zij,∀(i, j) ∈ A, q ∈ {1, ..., |Nl| − 1},∀l ∈ L (6.41)

zij ∈ {0, 1}, ∀(i, j) ∈ A (6.42)

xlqij, y
l
qij ∈ {0, 1},∀(i, j) ∈ A,∀q ∈ {1, ..., |Nl| − 1},∀l ∈ L (6.43)

Objective function (6.31) is to minimize the total negative impact of all reserved

lanes. Constraints (6.32)-(6.38) ensure that there exists a bus path for bus line l,

∀l ∈ L. To be more specific, constraint (6.33) (resp. (6.34)) represents that there is

only one outgoing arc from (resp. entering arc into) the bus stations of bus transit

line l except terminal stop (resp. origin stop), ∀l ∈ L. Constraint 6.34 (resp. (6.35))

ensures that there are no entering arcs into the origin station (resp. outgoing arcs

from the terminal station) for bus line l, ∀l ∈ L. Constraint (6.36) guarantees the

flow conservation for intermediate nodes between bus stations of bus transit line l,

∀l ∈ L. Constraints (6.37) and (6.38) ensure that the bus path for bus line l, ∀l ∈ L
pass any node in the network at most once.

Instead of defining an additional arrival time variable tli like the MIP in the

above section to represent the bus arrival time window constraint, the arrival time

at each bus stop on each bus transit line is guaranteed by a cumulative duration

constraint, as represented by constraint (6.39). We note that in constraint (6.38),∑
(i,j)∈A(τijx

l
qij + τ ′ijy

l
qij) computes the travel duration from station slq to sl,q+1, and

thus
∑q′−1

q=1

∑
(i,j)∈A(τijx

l
qij + τ ′ijy

l
qij) calculates the total travel duration from the ori-

gin to slq′ , ∀q′ ∈ {2, ..., |Nl|}, ∀l ∈ L. Without loss of generality, the start time at

origin station for all bus transit lines is set to be 0. Thus, to guarantee the arrival

times at bus stations is equivalent to restricting the bus travel duration from the origin

to any other bus station for each bus transit line. For instance, for a bus transit line l,

the arrival times at the second and third stations are equal to
∑

(i,j)∈A(τijx
l
1ij+τ

′
ijy

l
1ij)

and
∑

(i,j)∈A(τijx
l
1ij +τ ′ijy

l
1ij)+

∑
(i,j)∈A(τijx

l
2ij +τ ′ijy

l
2ij), respectively. As we will show
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in our computational results, such a formulation is much more efficient than that by

defining arrival time variable.

Constraint (6.40) ensures that the bus transit path from station slq to sl,q+1 can

pass a reserved lane on arc (i, j), (i, j) ∈ A, only if one lane of this arc is reserved.

Constraint (6.41) implies that zij and ylqij cannot both take the value of 1. According

to their definitions, if ylqij = 1, then the bus transit path from station slq to sl,q+1

passes arc (i, j) and this arc is not reserved, and otherwise it can pass a reserved

one; consequently zij = 0. Constraints (6.42)-(6.43) impose the bounds of decision

variables.

6.2.2.1 A tighter model with a valid inequality

Note that if the travel time on each road segment in transportation network is known,

the travel time from ∀i to ∀j, i, j ∈ N can be easily obtained by the existing shortest

path algorithm such as Floyd-Warshall shortest path algorithm. Let ϕ(i, j) and T lq

denote the shortest travel time from node i to j, i, j ∈ N and the earliest arrival

time at station slq on bus transit line l, l ∈ L, q ∈ {1, ..., |Nl|} in an entirely reserved

network, respectively. Then, for ∀l ∈ L,∀q ∈ {1, ..., |Nl| − 1}, a set Alq can be defined

as follows.

Alq = {(i, j)|T lq + ϕ(slq, i) + τij + ϕ(j, sl,q+1) > T+
q,l, (i, j) ∈ A}, ∀q ∈ {1, ..., |Nl| − 1}

(6.44)

According to the definition of Alq, we can easily find that ∀(i, j) ∈ Alq will not be

located on the path between station slq and sl,q+1, l ∈ L, since the sum of the travel

time from station sl1 to sl,q+1 in an entirely reserved network is greater than T+
q,l, i.e.,

the arrival time constraint (6.39) at stop sl,q+1 is violated. Based on above analysis,

the corresponding variables xlqij and ylqij must be equal to be 0, i.e., the values of

these variables can be fixed as 0 without excluding any feasible solution. Then, a

tighter integer linear program P ′2 is defined as follows.

P ′2 : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43)

xlqij + ylqij = 0,∀(i, j) ∈ Alq, q ∈ {1, ..., |Nl| − 1}, l ∈ L (6.45)

Note that constraint (6.45) is a valid inequality since model P ′2 is adequate to de-

fine the considered problem but it greatly reduces the problem search space, as also

shown in our experimental results. The complexity of the BLRP-PD is shown by the

following theorem.
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6.3 Solution approach

In this section, to efficiently solve the BLRP-PD, we first propose an enhanced cut-

and-solve algorithm and an improved kernel search based heuristic is then developed

for large-size problem instances.

6.3.1 Enhanced cut-and-solve algorithm

To exactly solve the BLRP-PD, an enhanced cut-and-solve based optimal algorithm

is proposed in this section. As stated in Chpater 2, cut-and-solve method is a special

branch-and-bound (B&B) iterative search strategy, which was firstly introduced by

[30] to exactly solve the classical ATSP. In the following, we first present several

improvements for the cut-and-solve method, and then the enhanced CS method is

adapted to exactly solve the BLRP-PD.

The principle of the basic CS method has been described in Chapter 2. As pointed

out by [30], to apply the CS method to solve an ILP (without loss of generality, a

minimization problem), piercing cut plays a crucial role since it drives the branching

of CS at each iteration and it should be specially designed for different optimization

problems. In [30], a generic procedure was proposed to generate piercing cut based

on variables’ reduced costs by solving the corresponding linear relaxation problem.

More precisely, the authors aimed to define variables set with large probability to

take the value of 0 in an optimal solution of the ILP. Its core idea is to define a set

of variables, denoted by Un, that have large reduced cost. Then, the current problem

(CPn) is partitioned into SP n (formed by adding the constraint that the sum of the

variables in Un is equal to zero) and RP n (formed by adding the constraint that the

sum of the variables in Un is greater than or equal to one). This idea is subsequently

followed by [45], [42]. We refer to the CS iteration with the above generic piercing

cut as basic CS algorithm. To further improve its performance, an enhanced version

of the CS algorithm is proposed by considering the following improvements.

Enhanced piercing cut: Defining the piercing cut only using decision variables’

reduced costs may result in low solution efficiency for an ILP, as shown in our pre-

liminary experiments for the BLRP-PD, we propose to enhance the piercing cut by

additionally taking into account the parameters influencing the objective function

value. Variables selected by combining the variables’ reduced cost and the related

parameters may have larger probability to take the value of 0 in an optimal solution.

Acceleration of SP n resolution: In the basic CS algorithm, each sparse problem

should be exactly solved. Although a sparse problem is relatively easy to solve, a se-
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quence of sparse problems may be time-consuming, especially for large-size problems.

To save the computational effort, for n ≥ 2 we propose to set the current best upper

bound UBb as an upper bound to the objective function of SP n. Indeed, we are only

interested in finding solution with better upper bound than UBb.

6.3.1.1 Enhanced CS algorithm for the BLRP-PD

The BLRP-PD contains multiple sets of binary decision variables, i.e., zij, x
l
qij, y

l
qij. It

should be very careful to select which variables to form Un for designing CS algorithm.

In the BLRP-PD, we can find that the value of zij greatly influences the values of

xlqij and ylqij by (6.40) and (6.41). For example, if zij = 0, then xlqij = 0 by (6.40) and

if zij = 1, then ylqij = 0 by (6.41). In addition, the objective function value is only

related with zij. For above reasons, only zij is used to define Un. Furthermore, Cij

directly influencing the objective function value is taken into account in defining Un.

It is defined as:

Un = {zij|Cij ẑij > αn},∀(i, j) ∈ A (6.46)

where αn is a given positive value, ẑij is the reduced cost of zij obtained by solving

the corresponding linearly relaxed problem. Parameter αn is decided by the dis-

tribution of values of Cij ẑij, ∀(i, j) ∈ A. Based on preliminary tests, αn is set as

median{Cij ẑij|(i, j) ∈ A} in this chapter. The idea is to select variables zij with large

Cij ẑij to form set Un since they have larger probability to take the value of 0 in an

optimal solution of the BLRP-PD.

In order to further improve the performance of the CS method for the BLRP-PD,

a new variable set U ′n (n ≥ 2) based on (6.46) is defined as follows.

U ′n = {zij|Cij ẑij > αn, zij ∈ U ′n−1}, ∀(i, j) ∈ A (6.47)

For n = 1, U ′1 = U1. Once U ′n is obtained, then piercing cut PCn for the BLRP-PD

is defined as follows.

PCn :
∑
zij∈U ′n

zij ≥ 1 (6.48)

With PCn, according to the principle of the CS method at n (n ≥ 1) iteration,

CP n (CP 1 is defined as P ′2) is divided into SP n and RP n, which can be defined,

respectively, as

SP n : min
∑

(i,j)∈A

Cijzij
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s.t. Constraints (6.32)− (6.43) and (6.45)∑
zij∈U ′t

zij ≥ 1,∀t ∈ {1, ..., n− 1} (6.49)

∑
zij∈U ′n

zij = 0 (6.50)

RP n : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43) and (6.45)∑
zij∈U ′t

zij ≥ 1,∀t ∈ {1, ..., n} (6.51)

Note that the search space of SP n is relatively small since part of its variables are

fixed to be 0 by (6.50). To accelerate the solution of SP n and RP n, the number of

constraints of them are reduced with the following theorem.

Theorem 10 For n ≥ 2, U ′1 ⊇ U ′2 ⊇ ... ⊇ U ′n and constraint (6.49)(resp.(6.51)) in

SP ′n(resp. RP ′n) is equal to the following (6.52)(resp.(6.53)).∑
zij∈U ′n−1\U ′n

zij ≥ 1 (6.52)

∑
zij∈U ′n

zij ≥ 1 (6.53)

Proof : The correctness can be proved similar to the proof of Theorem 2 in [45]. For
details, please refer to [45]. �

According to Theorem 2, for n ≥ 2, SP n and RP n are reduced as SP ′n and RP ′n,

respectively.

SP ′n : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43), (6.45), (6.50) and (6.52)

RP ′n : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43), (6.45) and (6.53)

It can be seen that n−1 inequalities in (6.49) for SP n is reduced to only one inequality

in (6.52) for SP ′n and n− 1 inequalities in (6.51) for SP n is totally removed in (6.53)

for RP ′n.

Furthermore, according to the proposed improvement in the enhanced CS algo-

rithm, for n ≥ 2, the current best upper bound UBb is set as an upper bound to the
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Enhanced cut-and-solve method for the BLRP-PD

1: Initialize n = 1, UBb = +∞, CP 1 = P ′2.
2: Solve the linear relaxation problem CP n and obtain reduced cost of zij, i.e., ẑij,

(i, j) ∈ A.
3: Define set U ′n, PCn, SP ′′n and RP ′n.
4: Solve SP ′′n and (if feasible) obtain its optimal objective function value UBn and
UBb is updated as UBn;

5: Solve the linearly relaxed RP ′n to obtain LBn.
6: if UBb ≤ LBn, output UBb and the corresponding solution as the global objective

function value and solution, respectively, and end;
7: else set n = n+ 1 and go back to Step 3.

Fig. 6.4: Algorithm BLRP-PD: algorithm for the BLRP-PD

objective function of SP ′n, which is represented as follows.∑
(i,j)∈A

Cijzij < UBb (6.54)

Then, for n ≥ 2, SP ′n is redefined as the following SP ′′n .

SP ′′n : min
∑

(i,j)∈A

Cijzij

s.t. Constraints(6.32)− (6.43), (6.45), (6.50), (6.52), and (6.54)

SP ′′1 and RP ′1 are still defined as SP 1 and RP 1, respectively. Via extensive prelim-

inary experiments, it was shown that the computational time of the CS algorithm

were significantly reduced after introducing (6.54).

The enhanced cut-and-solve method to find the optimal solution of the BLRP-PD

is depicted in Fig. 6.4.

6.3.2 Improved kernel search method for the BLRP-PD

In order to solve large-size problem instances within acceptable computational time,

an improved KS based heuristic is proposed to solve the BLRP-PD in this section. The

KS method is an iterative heuristic recently introduced by [5] for solving the multi-

dimensional knapsack problem. Its core idea is to identify subsets of variables and

exactly solve a sequence of subproblems restricted to these subsets. Its exciting results

motivate us to apply the framework of KS to solve the BLRP-PD. The principle of
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kernel search method has been described in Chapter 2. In the following, an improved

KS based heuristic is specially designed for the BLRP-PD.

As discussed previously, one core part of the KS method is to construct appropriate

kernels and buckets. In the literature, kernels and buckets are usually composed of all

sets of variables. However, for complex models with multiple sets of variables like the

BLRP-PD including up to three sets of integer variables, the designed KS method

taking into account all sets of variables may be time-consuming due to excessive

iterations or large-size restricted problems.

The BLRP-PD includes three sets of binary variables and the two sets xlqij and ylqij

(a reserved lane is passed or not) are greatly affected by zij (an arc is reserved or not).

Besides, the objective function value is only related with zij. These characteristics

incite us to form the kernels and buckets only using variables zij, instead of all sets of

variables done in the previous KS methods, which means zij is considered promising

if arc (i, j) is likely to be reserved in an optimal solution of the BLRP-PD.

Let ILP(z, x, y) and LP(z, x, y) denote the original problem, i.e., P ′2, and its linear

relaxation, respectively, and we then present the details of the KS method for the

BLRP-PD in the following.

At the first iteration of the KS method, LP(z, x, y) is optimally solved. If its

optimal solution is integer, then it is an optimal solution of ILP(z, x, y) and the KS

terminates. Otherwise, the initial kernel and the buckets, denoted by K1(z) and

{Bl(z)}, l = 1, ...,m, respectively, are constructed by the following criteria.

Sorting criterion: For the variables zij > 0 in the optimal solution of LP(z, x, y),

they are firstly sorted in non-increasing order of their values, and the variables zij = 0

are subsequently sorted in non-decreasing order of the value of Cij ẑij instead of only

the reduced cost in the literature. Such sorting aims to make the variables zij that

are most likely to take the value of 1 in an optimal solution of ILP(z, x, y) in the first

positions and those with the least probability in the last positions.

Kernel initialization: Initial kernel K1(z) contains the first C variables in the

above sorted list, and C is set as the number of variables zij with zij > 0 in the

optimal solution of LP(x, y, z).

Buckets construction: Overlapping and disjoint buckets have been proposed in

the literature. Based on preliminary experiments, the remaining variables are parti-

tioned into m := d |A|−C
L
e disjoint subsets, in which the first m − 1 buckets have the

same length L and the last one may have a smaller number and |A| is the number of

variables zij, i.e., the number of arcs in the network. The value of L is set equal to

C.
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The first restricted problem, denoted by ILP(K1(z)) (ILP1 in short), can be de-

fined as follows.

ILP1 : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43), and (6.45)

zij = 0,∀zij /∈ K1(z) (6.55)

where constraint (6.55) restricts ILP(z, x, y) to K1(z) by fixing zij /∈ K1(z) as 0. The

optimal solution (if exists) of ILP1 provides an upper bound of ILP(Z,X, Y ) and the

current best upper bound obtained by the KS method, denoted by U b, is set as the

optimal function value of ILP1.

At the l-th iteration, where 2 ≤ l ≤ m + 1, the restricted problem, denote by

ILP(Kl−1(z)
⋃
Bl−1(z)) (ILPl in short), is formed as follows:

ILPl : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43), and (6.45)

zij = 0,∀zij /∈ Kl−1(z)
⋃

Bl−1(z) (6.56)

Cijzij ≤ U b (6.57)∑
zij∈Bl−1

zij ≥ 1 (6.58)

where constraint (6.56) aims to restrict ILP(z, x, y) to Kl−1(z)
⋃
Bl−1(z). Two ad-

ditional constraints (6.57) and (6.58) are added to reduce the computational effort,

which aims to guarantee that the corresponding upper bound is not worse than the

current best upper bound and at least one variable in Bl−1(z) is selected in the optimal

solution, respectively. Indeed, we are only interested in those solutions that improve

the current beset upper bound and involve at least one new variable from the current

bucket. In addition, at the second iteration, the kernel for ILP2 is the initial kernel

K1(z), while for the l(l ≥ 3)-th iteration, the kernel Kl−1 is updated with respect to

the previous iteration. In addition, we decide to analyze all the buckets to find better

solution as far as possible, i.e., m := m and each restricted problem is exactly solved.

Kernel updating: If ILP(Kl−1(z)
⋃
Bl−1(z)) is infeasible, Kl(z) for the next itera-

tion is set equal toKl−1(z), and otherwiseKl(z) is updated asKl−1(z)
⋃
B+
l−1(z)\K−l−1(z),

where B+
l−1(z) consists of zij ∈ Bl−1(z) taking the value of 1 in the optimal solution of

the current problem and K−l−1(z) ⊆ Kl−1(z) contains zij ∈ Kl−1(z) taking the value

of 0 in the optimal solution as well as in h of previous iterations since they have been

added to the kernel. Parameter h is set as 2.
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Via preliminary experiments, it was found that for some large-size instances, their

restricted problems are still not easy to solve due to their large search space. By

analyzing the preliminary experimental results, we found that a large part of variables

zij taking the value of 0 (resp. 1) in the optimal solution of ILP(z, x, y) also take

the value of 0 (resp. 1) in the optimal solution of LP(z, x, y). Based on the above

observation, the following variable fixing strategy is designed to further improve the

performance of the proposed KS method.

Once LP(z, x, y) is solved, variables zij can be partitioned into three subsets:

Z(0), Z(1) and Z(0− 1) with zij = 0, zij = 1, 0 < zij < 1 respectively. Subsequently,

a part of variables that have larger probability to take the same value in an optimal

solution are selected from Z(0) (resp. Z(1)) are fixed as 0 (resp. 1). The fixed

variables sets are defined as the following Zf (0) and Zf (1), respectively.

Zf (0) = {zij|Cij ẑij > λ0,∀zij ∈ Z(0)}, (6.59)

Zf (1) = {zij|ŵij(τ ′ij − τij)/Cij) > λ1,∀zij ∈ Z(1)}, (6.60)

where λ0 and λ1 are two given parameters, which are set as median{Cij ẑij|(i, j) ∈
Z(0)} and median{ŵij(τ ′ij − τij)/Cij|(i, j) ∈ Z(1)}, respectively. ŵij calculates the

total time of reserved arc a passed by all bus transit lines with the optimal solution of

LP(z, x, y) and (τ ′ij−τij)/Cij) represents the reduced time per unit impact. (6.59) aims

to select variables zij with larger Cij ẑij from Z(0) since they have larger probability

to be not reserved, i.e., zij = 0, whereas (6.60) aims to select variables zij with larger

ŵij(τ
′
ij−τij)/Cij) due to lane reservation from Z(1) since they have larger probability

to be reserved, i.e., zij = 1.

With the above strategy, new restricted problem ILP′1 and ILP′l(2 ≤ l ≤ m + 1)

can be defined as follows.

ILP′1 : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43), (6.45) and (6.55)

zij = 0,∀zij ∈ Zf (0) (6.61)

zij = 1,∀zij ∈ Zf (1) (6.62)

ILP′l : min
∑

(i,j)∈A

Cijzij

s.t. Constraints (6.32)− (6.43), (6.45), (6.56)− (6.58), (6.61) and (6.62)

Note that with the variable fixing strategy the previous variable sorting, kernel

initialization and bucket construction are performed after excluding variables in Zf (0)
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Improved KS based heuristic for the BLRP-PD

1: Initialize l := 1 and U b := +∞
2: Solve LP(Z,X, Y ) exactly and if the optimal solution is integer, it is outputted as

an optimal solution of ILP(Z,X, Y ) and stop; and otherwise obtain variables’
values and reduced costs

3: Define Zf (0) and Zf (1) by (6.59) and (6.60) and sort the remaining zij with
Sorting criterion

4: Initialize K1(z) and construct {Bl(z)}, l = 1, ...,m with Kernel initialization
and Bucket construction, respectively. Initialize m = m

5: Solve ILP′1 exactly and if it is feasible, U b is updated as its objective function
value. l = l + 1

6: while l ≤ m+ 1 do
7: Construct Kl−1(z)

⋃
Bl−1(z)

8: Solve ILP′l exactly and if it is feasible, then update U b

9: Define Kl(z) for ILP′l+1 with Kernel updating
10: Let l = l + 1
11: end while
12: Output U b and its solution as the obtained objective function value and solution,

respectively.

Fig. 6.5: Heuristic BLRP-PD: kernel search for the BLRP-PD

and Zf (1), and m := d |A|−|Z
f (0)|−|Zf (1)|−C

L
e buckets are created, where |Zf (0)| (resp.

|Zf (1)|) denotes the number of variables in Zf (0) (resp. Zf (1)). U b is updated when

any ILP′l is feasible. The KS heuristic for the BLRP-PD is sketched in Fig. 6.5.

6.4 Computational results

In this section, numerical experimental results are presented and discussed to demon-

strate the performance of the proposed model and algorithms. They have been im-

plemented in Visual C++ on a PC with 2.5 GHz CPU and 2.95 GB RAM under

Windows 7. The SP ′′n and linearly relaxed RP ′n in Algorithm 1, and LP(z, x, y) and

ILP′l in Algorithm 2 were solved using commercial optimization software CPLEX

(version 12.6). Via preliminary experiments, the parameters of CPLEX are set as

follows. The shifting algorithm is chosen as the LP optimizer (parameter RootAlg).

The dynamic search is used as the ILP optimizer, and furthermore, we choose to

branch based on pseudo costs (parameter Varsel), moderately generate flow cover

(parameter FlowCovers) and mixed integer rounding cuts (parameter MIRCuts), but
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not perform probing (parameter Probe) to save computational efforts. All the other

parameters are in default settings.

The performance of the proposed models and algorithms was evaluated on 82

randomly generated problem sets with five instances for each set (i.e., 410 instances

in total). For each instance, the results of all the proposed model and algorithms will

include both a lane reservation scheme and a designed station arrival-time guaranteed

path for each bus transit line. Since the proposed exact enhanced CS algorithm can

obtain optimal solutions, it is evaluated only in terms of the computational efficiency.

The computational efficiency of the proposed exact CS algorithm is compared with

the well-known commercial ILP solver CPLEX. The obtained solution may be not

unique since there may be multiple optimal ones for a same instance.

For the KS heuristic, since its solution is not guaranteed to be optimal, it is

evaluated in terms of computational time and solution quality. In the literature, to

evaluate the solution quality of a heuristic, the gap between its obtained objective

function value and the optimal one has been widely used. Consequently, to evaluate

the KS heuristic, the gap is calculated by the formula (U b−U∗)/U∗, where U b and U∗

are the objective function values found by the KS and CS algorithms, respectively. For

the evaluation of computational time, we compare it with the CS method because

it is faster than CPLEX for most and large-size instances. Note that as the KS

algorithm is a heuristic, theoretically the obtained solution and its objective function

value cannot be guaranteed to be unique. Therefore, we run the KS heuristic five

runs for each instance and report its average computational results. We observe that

the objective function value for each instance varies slightly for five runs. Note that

the computational time of each method is limited to 18000s (CPU seconds) for each

instance. For simplicity, let CTP ′1 , CTP2 , CTP ′2 denote the computational time spent

by CPLEX for solving P ′1,P2, and P ′2, respectively; CTCS and CTKS denote the

computational time spent by the enhanced CS algorithm and improved KS heuristic

for solving P ′2, respectively. With the notations above, the computational results are

summarized in Tables 6.1-6.6 and Fig.’s 6.6 and 6.7. Note that each value for each

set in the result tables is its average value of the five instances.

In this chapter, to thoroughly evaluate the proposed algorithms, extensive numer-

ical experiments are conducted. For these test instances, the transportation networks

are generated based on the Waxman’s network model [121] and the input parameters

are estimated according to the previous studies due to the lack of benchmark instances

in the literature. The graph G{N,A} generated based on the well-known Waxman’s

network generation method [121] is shown as follows. Given the required network size
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(i.e., the number of nodes |N | and arcs |A|), the nodes are randomly distributed in a

Euclidean plane [0, 100]× [0, 100], and the existence probability of an arc a between

any pair of nodes is decided by a probability function α exp(−Lij/βL), 0 ≤ α, β ≤ 1,

where Lij and L denote the Euclidean distance of arc a and the maximum Euclidean

distance between any pair of nodes in the network, respectively. The parameter α

is proportional to the number of arcs and an increase in parameter β gives a higher

ratio of long arcs to short ones in the graph. To simulate the practical network, the

ratio |N |/|A| falls in [3, 4] as in [43].

Then, with the network and the number of bus transit lines, i.e., |L|, and the num-

ber of stations among each bus transit line, i.e., |Nl|, bus transit lines are generated

as follows. For bus transit line k,∀l ∈ L, its |Nl| stations are generated from set N .

Subsequently, one station is firstly selected from them as the origin station. Finally,

the orders of the rest stations are sequentially determined based on the minimum Eu-

clidean distance away from the previous determined station. For example, the second

station is considered as the one in the remaining |NL| − 1 stations with the minimum

Euclidean distance from the origin station. Travel time parameters τ ′ij and τ ′′ij are

both appropriately estimated using the BPR function, which are considered as the

corresponding average value, respectively, as in Chapter 4. The bus travel time on

the reserved lane on arc a, i.e., τij, is approximately estimated as the free-flow travel

time that is calculated by Lij/Vij, where Vij denotes the free-flow travel speed on arc

a, respectively. The negative impact is estimated as Cij = Pij(τ
′′
ij − τ ′ij). Parameter

Pij is also calculated as bijvij, where vij and bij denote the average number of non-bus

vehicles per unit time on arc a and the average passenger count inside each one, re-

spectively. The arrival time parameter T+
i,l is defined as T+

i,l = T̂ li − rtl(T̂ li −T li ), where

T̂ li (resp. T li ) represents the earliest arrival time at the i-th station in a non-reserved

(resp. entirely reserved) network. T−i,l is set to be T̂ li . In default case, bij is generated

in the interval [1, 3], and rtl is set as 0.2. Computational experiments of sensitive

analysis for bij and rtl have been conducted.

To evaluate the performance of the proposed models, we first solve some instances

through the them using CPLEX. Table 6.1 reports their comparison results.

From Table 6.1, we can see that CTP2 is much smaller than CTP ′1 over all sets 1-14.

The average CTP2 is only 1.13 % and 0.49% of the average CTP ′1 for |Nl| = 5 and 7,

respectively. Moreover, CTP2 gradually increases while CTP ′1 rapidly increases with

the problem size for both |Nl| = 5 and 7. In addition, CTP2/CTP ′1 ranges between

0.48% and 16.34% for |Nl| = 5, while CTP2/CTP ′1 ranges between 0.27% and 9.6% for

|Nl| = 7. This implies that P2 is more efficient than the P ′1 for larger |Nl|. It is worth
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Table 6.1: Comparison results for the proposed formulations

Set |N | |A| |L| |Nl| CTP ′1 CTP2 CTP2/CTP ′1%

1 40 128 5 5 20.24 3.31 16.34
2 45 152 5 5 27.75 4.34 15.34
3 50 174 6 5 45.96 4.85 10.56
4 55 192 6 5 65.20 7.41 10.94
5 60 210 7 5 219.24 11.53 5.26
6 65 226 7 5 1149.21 11.91 1.04
7 70 252 8 5 4000.11 19.40 0.48

Average 789.67 8.92 1.13

8 40 128 5 7 34.90 3.35 9.60
9 45 152 5 7 156.88 4.95 3.16
10 50 174 6 7 261.72 7.39 2.82
11 55 192 6 7 552.70 9.27 1.68
12 60 210 7 7 813.53 16.18 1.99
13 65 226 7 7 2596.57 20.28 0.78
14 70 252 8 7 - 48.10 0.27

Average >3200.33 15.65 0.49

noting that CPLEX cannot obtain an optimal solution using the P ′1 within 18000s

for set 14 while it takes only 48.10s with P ′1. These results show that the proposed

ILP significantly outperforms the proposed MIP, which may be because the former

model is much tighter and more compact than the latter one. Because the proposed

ILP achieves much better performance, only the ILP is considered in the following.

Table 6.2 presents the computational results for small-size instances with |N |
increasing from 40 to 70, |L| increasing from five to eight, and |Nl| increasing from

five to seven. We first analyze the performance of the valid inequality (6.45). It

can be seen from Table 6.2 that CTP2 is much smaller than CTP ′2 over all sets 15-

28, which means that the valid inequality (6.45) is effective in reducing the search

space for solving the considered BLRP-PD. CTP ′2 varies from 1.72s to 51.52s, CTCS

varies from 2.24s to 39.15s, and CTKS varies from 2.86s to 32.67s, which indicate

that all the methods (i.e., CPLEX, CS algorithm and KS heuristic) can solve all the

small-size instances within relatively short computation time. We can see that for

the sets 15-27 CPLEX runs faster than the proposed algorithms which indicates that

the direct use of CPLEX is more efficient for these small-size instances. This may

be because the search space of these small-size instances is relatively small, CPLEX

can easily solve them but both the proposed CS and KS algorithms are based on
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Table 6.2: Comparison results for the instances with |N | = 40-70

Set |N | |A| |L| |Nl| CTP2 CTP ′2 CTCS CTKS Gap %

15 40 128 5 5 5.52 1.75 2.24 2.86 0.05
16 45 152 5 5 5.95 1.72 2.48 3.38 0.31
17 50 174 6 5 8.02 1.85 3.27 4.14 0.82
18 55 192 6 5 9.91 2.14 2.92 7.14 0.07
19 60 210 7 5 23.01 2.91 3.45 8.63 0.02
20 65 226 7 5 36.69 5.64 5.24 7.71 0.73
21 70 252 8 5 42.66 6.40 8.31 9.14 0.56

Average 18.82 3.20 3.99 6.14 0.37

22 40 128 5 7 7.64 2.23 3.26 4.32 0.24
23 45 152 5 7 11.35 2.43 3.52 4.28 0.30
24 50 174 6 7 27.50 5.44 7.06 10.25 0.15
25 55 192 6 7 29.16 6.24 8.78 16.18 0.69
26 60 210 7 7 51.26 7.22 9.10 23.63 0.86
27 65 226 7 7 67.22 13.69 14.95 25.10 0.51
28 70 252 8 7 289.51 51.52 39.15 32.67 0.25

Average 54.81 12.70 12.26 16.62 0.43

the iterative solution of a sequence of the original problem’s sub-problems. For these

small-size instances, the difference in computational time between the subproblem and

the original problem may be very small, which results in their more computational

time, as compared to the direct use of CPLEX. However, it can be observed that for

|Nl| = 5 or 7, the computational time of the three methods increase with |N | and

|L|, while the increasing trend of the CS and KS is more slowly than that of CPLEX.

Take sets 22 and 28 as an example, the computational time of CPLEX increases 22.1

(51.52/2.23-1) times while those of the proposed CS and KS increase 11 (39.15/3.26-

1) and 6.56 (32.67/4.32-1) times, respectively. Moreover, for given |N | and |L|, the

computational time of the three methods increase with |Nl|. Take sets 21 and 28 for

example, CTP ′2 , CTCS and CTKS are 6.40s, 8.31s and 9.14s, respectively for |Nl|=5,

while they are 51.52s, 39.15s and 32.67s, respectively for |Nl| = 7. This implies

that the increase of |Nl| increases the computational time of solving the BLRP-PD.

Besides, the gap varies from 0.02% to 0.86% and the average gap for |Nl|=5 and 7

are 0.37% and 0.43%, respectively, which shows that the proposed KS heuristic can

obtain high-quality near-optimal solutions.

Table 6.3 and Fig. 6.6 report the results for medium-size instances with fixed |Nl|
= 8 and |N | and |L| increasing from 75 to 100 and 7 to 12, respectively, from which

108



Table 6.3: Comparison results for the instances with |N | = 75-100

Set |N | |A| |L| CTP2 CTP ′2 CTCS CTKS Gap %

29 75 274 7 410.21 155.86 72.63 47.70 0.13
30 80 292 8 379.00 163.46 79.16 60.29 0.21
31 80 292 9 526.14 217.89 129.77 66.65 0.04
32 85 312 9 632.15 183.02 153.27 107.59 0.19
33 85 312 10 796.73 259.60 214.94 131.27 1.23
34 90 330 10 1832.22 670.30 459.63 151.04 0.50
35 90 330 11 1819.95 743.57 534.71 195.44 1.12
36 95 350 11 4569.43 930.12 777.12 227.73 1.30
37 95 350 12 7134.53 1143.94 965.93 392.69 0.47
38 100 366 12 9295.05 2273.00 1618.90 441.56 0.63

Average 2739.54 674.08 500.61 182.20 0.58

we can see: 1) CTP ′2 is smaller than CTP2 on all sets 29-38, which means that the valid

inequality (6.45) is effective in reducing the search space of the studied BLRP-PD;

2) CTP ′2 (resp. CTCS) varies from 155.86s (resp. 72.63s) to 2273.00s (resp. 1618.90s)

with the average value 674.08s (resp. 500.61s). CTCS is smaller than CTP ′2 on each

problem set and the average CTCS/CTP ′2 is 74.27% (500.61/674.08). As shown in

Fig. 6.6, CTP ′2 and CTCS both increase with the problem size but the latter increases

more slowly than the former. These results indicate that the CS algorithm is more

efficient than CPLEX in finding optimal solutions; 3) CTKS varies from 47.07s to

441.56s with the average value 182.20s. CTKS is smaller than CTP ′2 and CTCS on

all the problem sets, and the proposed KS heuristic only spends an average 27.03%

(182.20/674.08) (resp. 36.48% (182.20/500.61)) time of that spent by CPLEX (resp.

the CS algorithm). From Fig. 6.6, we can see that CTKS increases much more slowly

with the problem size than CTP ′2 and CTCS. These results show that the proposed

KS heuristic outperforms than CPLEX and the proposed CS algorithm in terms of

computational time. On the other hand, the gap varies between 0.04% to 1.3% with

the average value 0.58%, which indicates that the proposed KS heuristic not only can

obtain high-quality near-optimal solutions, but also is stable in the sense that the gap

varies slightly with the problem size; and 4) for given |N | and |Nl|, CTP ′2 , CTCS and

CTKS increase with |L|. Take sets 36 and 37 for example, the instances in both sets

have same |N | and different |L|, CTP ′2 , CTCS and CTKS on set 37 are greater than

that on set 36, respectively. We can also find that the computational time of all the

methods have an increasing trend with |N | for fixed |L| and |Nl|. Take sets 35 and

36 for example, CTP ′2 , CTCS and CTKS increase with |N |. These results imply that

109



the increases of |N | and |L| also increase the computational time of the BLRP-PD.
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Fig. 6.6: Comparison results for the instances with |N | = 75-100

Table 6.4: Comparison results for the instances with |N | = 110-150

Set |N | |A| |L| CTP2 CTP ′2 CTCS CTKS Gap %

39 110 398 12 8290.09 1494.87 926.52 397.23 0.38
40 115 436 13 - 4342.55 1882.47 632.40 1.99
41 120 452 13 - 3744.84 1897.17 664.82 0.82
42 125 454 14 - 4033.90 1531.12 438.55 0.69
43 130 480 14 - 4318.56 2505.78 952.98 1.11
44 135 512 15 - 8819.48 4958.71 1199.72 0.89
45 140 516 15 - 10677.81 6774.82 1397.03 1.14
46 145 518 16 - - 7032.51 1082.63 1.49

Average >6438.7 3438.64 845.6 1.06
47 150 568 16 - - - 1325.14 1.14

In Table 6.4 and Fig. 6.7, we present the results for larger-size instances with

|Nl| = 8. Some observations can be obtained from the results: 1) CPLEX can only

exactly solve the problem set 39 with P2, while seven sets with P ′2, which further

implies the effectiveness of the valid inequality (6.45); 2) CTCS is smaller than CTP ′2
over sets 39-46 and average CTCS/CTP ′2 is less than 53.41% (3438.64/6438.79). More-

over, CTCS increases more gradually than CTP ′2 with the problem size as shown in

Fig. 6.7. These results show that the proposed CS algorithm is more efficient than
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CPLEX for the larger-size instances in terms of computational time. In addition, it

is worth noting that CPLEX cannot exactly solve all the instances in set 46 within

18000s, whereas the proposed CS algorithm only spends an average time of 6438.79s

to find optimal solutions for all instances; and 3) for the KS heuristic, the gap varies

between 0.38% and 1.99% and its average value is 1.06% on sets 39-46, which demon-

strates that the proposed KS heuristic is stable and can find high-quality near-optimal

solutions for the larger-size instances. On the other hand, CTKS is far smaller than

CTP ′2 and CTCS on all the sets 39-46. On average, the proposed KS heuristic only

spends less than 13.13% (845.67/6438.79) (resp. 24.59% (845.67/3438.64)) time of

CPLEX (resp. the CS algorithm). Moreover, CTKS increases much more slowly than

CTP ′2 and CTCS. Especially, both CPLEX and the proposed CS algorithm cannot

exactly solve all the instances within 18000s due to the NP-hardness of the considered

BLRP-PD, while the proposed KS heuristic obtain the solutions of a small average

gap of 1.14% within 1325.14s. These results demonstrate that the KS heuristic sig-

nificantly outperforms CPLEX and the CS algorithm in terms of computational time

for the large-size instances.
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Fig. 6.7: Comparison results for the instances with |N | = 110-145

To further evaluate the performance of the proposed CS algorithm and KS heuris-

tic, sensitive analysis for parameters bij and rtl are conducted to evaluate the stability

of the proposed algorithms to different input parameters. That is to say, the sensitive

analysis experiments are performed to test whether the CS algorithm can efficiently

obtain the optimal solutions stably and whether the KS heuristic can efficiently find
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high-quality solutions stably for the studied problem. We test three scenarios for each

parameter and the computational results are reported in Tables 6.5 and 6.6.

Table 6.5: Comparison for sensitive analysis of various impact

Set bij |N | |L| CTP ′2 CTCS/CTP ′2 % CTKS/CTP ′2 % Gap %

48 80 8 39.63 77.26 77.73 0.25
49 90 9 52.23 72.93 66.91 0.28
50 [1, 3] 100 10 155.76 79.02 53.23 0.69
51 110 11 210.50 63.99 50.59 1.04
52 120 12 525.88 51.29 23.27 1.35

Average 196.80 60.59 38.37 0.72

53 80 8 30.85 83.27 69.29 0.28
54 90 9 64.23 55.33 50.02 0.12
55 [3, 5] 100 10 132.13 62.98 55.43 1.15
56 110 11 207.72 55.63 44.84 1.07
57 120 12 560.81 48.66 29.72 1.42

Average 199.15 53.52 38.82 0.81

58 80 8 39.22 78.24 74.46 0.48
59 90 9 63.10 98.63 79.12 1.01
60 [1, 5] 100 10 129.64 45.36 41.69 0.79
61 110 11 235.48 54.88 46.62 1.06
62 120 12 520.12 62.53 23.35 0.82

Average 197.51 61.38 36.90 0.83

It can be observed from Table 6.5 that the ranges of CTCS/CTP ′2 for bij ∈
[1, 3], [3, 5] and [1, 5] are 51.29%-79.02%, 48.66%-83.27% and 45.36%-98.63%, respec-

tively. The average CTCS/CTP ′2 ’s for the three scenarios are 60.59%, 53.52% and

61.38%, respectively. These results show that the performance of the proposed CS

algorithm is insensitive to parameter bij. For the proposed KS heuristic, we can see

that CTKS/CTP ′2 for the three scenarios ranges between 23.27% and 77.73%, 29.72%

and 69.29%, 23.25% and 79.12%, respectively and the average values are 38.37%,

38.82% and 36.90%, respectively. Moreover, it can be seen that the gap varies from

0.25% to 1.35% with the average value 0.72% for bij ∈ [1, 3], from 0.12% to 1.42%

with the average value 0.81% for bij ∈ [3, 5], and from 0.48% to 1.06% with the aver-

age value 0.83% for bij ∈ [1, 5], respectively. These results indicate that the proposed

KS heuristic is also stable to the changes of parameter bij.

Table 6.6 presents the results of sensitive analysis of rtl . From Table 6.6, we can

find similar results to those in Table 6.6. This indicates that the performance of our
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Table 6.6: Comparison for sensitive analysis of different time windows

Set rtl |N | |L| CTP ′2 CTCS/CTP ′2 % CTKS/CTP ′2 % Gap %

48 80 8 39.63 77.26 77.73 0.25
49 90 9 52.23 72.93 66.91 0.28
50 0.2 100 10 155.76 79.02 53.23 0.69
51 110 11 210.50 63.99 50.59 1.04
52 120 12 525.88 51.29 23.27 1.35

Average 196.80 60.59 38.37 0.72

63 80 8 30.40 82.34 79.46 0.52
64 90 9 79.80 61.96 57.62 1.07
65 [0.2, 0.3] 100 10 152.27 66.53 56.22 0.89
66 110 11 206.10 72.31 49.28 0.56
67 120 12 464.14 59.53 40.70 0.73

Average 186.54 64.44 47.84 0.75

68 80 8 32.57 79.40 78.24 0.33
69 90 9 82.63 82.31 63.04 0.79
70 [0.3, 0.4] 100 10 141.26 83.93 62.19 0.60
71 110 11 223.54 78.38 45.62 0.93
72 120 12 604.25 57.74 32.78 0.50

Average 216.85 67.93 42.93 0.63
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CS algorithm and KS heuristic is insensitive to the changes of parameters rtl .

6.5 Conclusions

This chapter has investigated a new BLRP motivated by achieving the rapid and

reliable bus transportation with bus lane reservation strategy. For the considered

problem, we first developed a mixed-integer non-linear program, which was subse-

quently transformed to be an equivalent linear one. Valid inequalities were added to

tighten the proposed MIP. Then, an integer linear program was formulated and valid

inequalities were also added to reduce the solution space. Finally, an enhanced cut-

and-solve algorithm with new piecing cut was proposed to exactly solve the considered

problem. To be able to more efficiently tackle large-size instances, an improved kernel

search based heuristic was developed. Computational results demonstrate that: 1)

the proposed ILP is much more efficient than that proposed MIP; 2) the enhanced

CS algorithm outperforms CPLEX in finding optimal solutions; and 3) the improved

KS based heuristic can yield high-quality solutions for large-size instances with up

to 150 nodes and 568 arcs in the network and 16 bus transit lines within acceptable

computational time.
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Chapter 7

Bus lane reservation problem with
line design

7.1 Introduction

The bus transit system design is highly complex and consists of five main stages: line

planning, frequency setting, timetable development, vehicle scheduling and driver

scheduling [21]. It has been pointed out by many researchers that bus line planning

is a strategic (long-term) decision problem and has been identified as the most im-

portant stage in bus transit system design [104], since it would directly determine

the total length of bus lines, thereby influencing the required vehicle fleet size and it

influences the total passenger travel time and transfer times. Moreover, the bus line

planning also influences the decisions of the remaining stages. As reported by [69], ef-

ficient bus lines would increase bus transit service level and reduce the bus company’s

expenditure. The classical bus line planning problem consists of finding an efficient

set of bus lines in an already existing urban transport network, usually with previ-

ously defined bus stops, to cover the travel demand of passengers while respecting

bus operating budget [40]. In the literature, this problem has been well addressed,

see [10], [20], [21], [40], [63], [69], [91], [136]. However, as already stated in Chapter 1,

bus transit service is becoming less and less attractive due to its inefficient service,

such as long travel time and unreliable service, caused by traffic congestion. Bus lane

reservation, as a traffic management strategy for promoting bus priority, has been

widely applied in real life. Thus, it would be of great significance to consider bus

lane reservation into the classic bus line planning. To the best of our knowledge, no

work has addressed the bus line planning considering bus lane reservation, which is

the focus of this chapter.
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In this chapter, we investigate a new bus lane reservation and bus line design

integrated optimization problem (called BLRP-LD in short). The problem consists

of optimally designing bus lines and reserving exclusive bus lanes from the tran-

sit network simultaneously, thereby providing rapid and reliable bus transit system.

Compared with the BLRPs studied in Chapters 5 and 6, the significant difference

is that the bus lines with their stations need to be optimally determined along with

bus lane reservation. Moreover, unlike the previous BLRPs that are single-objective

optimization problems, the objective of the BLRP-LD is to simultaneously minimize

the total negative impact of reserved lanes and the total travel time of all passengers.

Because of the introduction of bus line design, the studied BLRP-LD becomes more

complex than those in the previous chapters and the proposed approaches in previous

BLRPs cannot be directly applied to the problem. In this chapter, to address the

BLRP-LD, we first develop a new bi-objective integer nonlinear programming model.

Then, the nonlinear one is equivalently transformed to be a linear one. Some valid

inequalities are explored to reduce the solution space. Finally, exact ε-constraint

method is then adapted to find its Pareto front.

The remainder of this chapter is organized as follows. In Section 7.2, the formula-

tion of the BLRP-LD is presented and its complexity is analyzed. Exact ε-constraint

method is adapted to solve the problem in Section 7.3. Computational results on an

instance based on a benchmark for the classical bus line planning problem and ran-

domly generated instances are reported in Section 7.4. Finally, Section 7.5 concludes

this chapter.

7.2 Problem formulation

The BLRP-LD can be defined on a directed graph G = {N,A} with a node set

N and an arc set A. A node and an arc represent a road intersection or a bus

station and a road link connecting two nodes, respectively. Let K denote the set of

origin-destination (OD) pairs and (ok, dk), and Dk be the origin, destination, and

the number of passengers of OD pair k ∈ K, respectively. Naturally, ok and dk are

stations. Given a set of candidate bus lines L, each line l ∈ L is specified by a

sequence of arcs. Let Al denote the set of links passed by line l.

To meet the travel demand of a OD pair means finding a feasible travel path

through the bus transit system. More specifically, the travel demand will be satisfied

by one or several bus lines as well as links that are some segments of the bus lines. All

these passed links constitute the travel path. However, different bus lines may contain
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same road links. Thus, to distinguish the same links passed by different lines l ∈ L,

we introduce a new network, G′ = {N,A′}, where A′ is the set of arcs converted by

all lines in L, in which each arc only belongs to a specific bus line. Let A′l denote the

set of arcs passed by line l in G′. A small example (see Fig. 7.1) is given to illustrate

the network G′.

In this example, there exists only one OD pair whose origin and destination are

2 and 5, respectively. According to this OD pair, the line set L is computed, which

contains two candidate lines. Bus line 1 (resp. 2) is 2−1−4−5 (resp. 2−3−4−5),

A1 = {2, 1, 5} and A2 = {3, 4, 5}, as shown in 7.1 (a). Both A1 and A2 contain arc 5 in

G. The corresponding network G′ is shown in Fig. 7.1 (b), with which A′1 = {2, 1, 5}
and A′2 = {3, 4, 6}. We note that the network G is still necessary in order to define

the negative impact of lane reservation, i.e., objective function f2 described later,

which cannot be defined by using G′ since multiple selected lines may pass the same

reserved lane.

Given a passenger OD matrix containing the information of OD pairs and a set

of candidate bus lines L, the considered BLRP-LD consists of optimally choosing

a subset of lines from set L to cover all travel demands and reserving bus lanes in

the transit network to provide rapid and reliable bus system. The objectives are to

minimize the overall passenger travel time and to minimize the total negative impact

of bus lanes.

To well investigate the problem, several assumptions for the considered problem

are made as follows: 1) passengers behave selfish and their choice of lines is based on

shortest travel time including the penalty time of changing lines. Like most previous

studies, e.g., [22], [39], a penalty time of five minutes is set for each transfer; 2) there

will always be sufficient buses on each line to ensure that all passengers can complete

their trips in the fastest way; 3) the bus operating cost is in proportional to the total
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transit time and any bus line is operated in a bidirectional way, as in [100],[101]. It is

understandable that the larger the total travel time on a bus line, the more buses and

drivers to be needed for guaranteeing a given bus service frequency; and 4) at least

two lanes exist on each road link such that one lane can be reserved and a bus lane

is allowed to be shared by multiple bus lines so as to increase its effectiveness. To

formulate the problem, the notations and decision variables are first listed as follows.

Sets and parameters
N set of nodes in G and G′

A set of arcs in G
L set of candidate bus lines, line l ∈ L
Al set of arcs in G on line l with a given passing order, Al ⊆ A
L(a) set of bus lines passing arc a ∈ A, L(a) ⊆ L
A′ set of arcs in G′

A′l set of arcs on line l, A′l ⊆ A′

A′+i set of arcs coming into node i ∈ N , A′+i ⊆ A′

A′−i set of arcs outgoing from node i ∈ N , A′−i ⊆ A′

A′(a) set of arcs in A′ corresponding to arc a ∈ A, A′(a) ⊆ A′

B available bus operating budget expressed by the total transit time
K set of passenger OD pairs, k ∈ K
ok origin node of OD pair k ∈ K
dk destination node of OD pair k ∈ K
Dk amount of passengers of OD pair k ∈ K
PT penalty time per transfer (i.e., changing a line)
τa travel time on a bus lane on arc a ∈ A,A′
τ ′a travel time on arc a ∈ A,A′ without bus lanes
Ca negative impact of implementing a bus lane on arc a ∈ A
M a large positive number

Decision variables
za za = 1 if arc a is reserved; and 0 otherwise, a ∈ A;
uka uka = 1 if the path of OD pair k ∈ K pass arc a ∈ A′ and a bus lane is

reserved on it; and 0 otherwise;
vka vka = 1 if the path of OD pair k pass arc a and no arcs are reserved on

it; and 0 otherwise; a ∈ A′, k ∈ K;
yl yl = 1 if line l is selected from the candidate line pool; and 0 otherwise,

l ∈ L;
xkl xkl = 1 if the path of OD pair k uses line l; and 0 otherwise, l ∈ L, k ∈ K.

With the notations defined above, the BLRP-LD can be formulated as the follow-

ing bi-objective integer nonlinear program.

Pbl :f1 : min
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1) (7.1)
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f2 : min
∑
a∈A

Caza (7.2)

s.t.
∑
l∈L

∑
a∈Al

(τaza + τ ′a(1− za))yl ≤ B (7.3)∑
a∈A′−ok

(uka + vka) = 1,∀k ∈ K (7.4)

∑
a∈A′+dk

(uka + vka) = 1,∀k ∈ K (7.5)

∑
a∈A′−dk

(uka + vka) = 0,∀k ∈ K (7.6)

∑
a∈A′+ok

(uka + vka) = 0,∀k ∈ K (7.7)

∑
a∈A′+i

(uka + vka) =
∑
a∈A′−i

(uka + vka),∀i ∈ N\{ok, dk},∀k ∈ K (7.8)

∑
a∈A′l

(uka + vka) ≤ |A′l|yl,∀k ∈ K, ∀l ∈ L (7.9)

∑
a∈A′l

(uka + vka) ≤ |A′l|xkl ,∀k ∈ K, ∀l ∈ L (7.10)

∑
k∈K

uka′ ≤ |K|za,∀a′ ∈ A′(a),∀a ∈ A (7.11)

za, u
k
a′ , v

k
a′ , yl, x

k
l ∈ {0, 1},∀a ∈ A,∀a′ ∈ A′,∀k ∈ K, ∀l ∈ L (7.12)

Objective (7.1) is to minimize the travel time of all passengers including penalty times

of changing lines. Note that
∑

l∈L x
k
l computes the number of lines taken by OD pair

k, which must be greater than or equal to 1 so as to complete its trip, and thus∑
l∈L x

k
l −1 computes its required number of transfers. Objective (7.2) is to minimize

the negative impact caused by all bus lanes. Constraint (7.3) ensures that the total

operating cost should not exceed the available operating budget B. Constraints (7.4)-

(7.8) guarantee that there exist a path for passengers of each OD pair and this path is a

shortest path due to objective (7.1). To be more specific, constraint (7.4) (resp. (7.5))

implies that there exists only one arc outgoing from (resp. coming into) origin station

ok (resp. destination station dk). Constraint (7.6) (resp. (7.7)) ensures that there are

no arcs coming into (resp. outgoing from) origin station dk (resp. destination station

ok). Constraint (7.8) ensures the flow conservation for intermediate notes between

origin and destination stations for each OD pair k ∈ K. Constraint (7.9) guarantees

that bus line l must be selected if it is used by any OD pair k ∈ K. Constraint (7.10)

determines the bus line taken by OD pair k, ∀k ∈ K. Constraint (7.11) makes sure
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that any OD pair k can pass bus lane on arc a ∈ A′ only if the corresponding arc in

the road network G is reserved. Constraint (7.12) enforces the bounds of all decision

variables.

The complexity of the BLRP-LD is shown by the following theorem.

Theorem 11 The BLRP-LD is NP-hard.

Proof : If the negative impact of reserving a bus lane on each arc is small enough
(i.e., objective f2 can be removed), then the BLRP-LD corresponds to the particular
case, a bus line planning problem, which is well-known to be NP-hard [39]. Therefore,
the BLRP-LD in general case is NP-hard as well. �

7.2.1 Model linearisation

It can be observed that the model Pbl is non-linear due to the existence of non-linear

constraint (7.3). Hence, in this subsection, we will transform it into an equivalent

linear one by reformulating constraint (7.3). Before proceeding, a new variable is

defined as follows.

wl: operating cost on line l; wl is set as 0 if line l is not selected from the candidate

line pool, ∀l ∈ L.

For ∀l ∈ L, there exist two cases, which are a) the bus line l is selected and b)

it is not selected. Therefore, the corresponding operating cost also exist two cases,

i.e., 0 or
∑

a∈Al
(τaza + τ ′a(1 − za)). Then, wl can be easily formulated as follows.

a) Bus line l is not selected. Thus, wl = 0, then

wl ≤ ylM, ∀l ∈ L (7.13)

b) Bus line l is selected. Thus, wl =
∑

a∈Al
(τaza + τ ′a(1− za)), then we have

wl −
∑
a∈Al

(τaza + τ ′a(1− za)) ≥M(yl − 1),∀l ∈ L (7.14)

wl −
∑
a∈Al

(τaza + τ ′a(1− za)) ≤M(1− yl),∀l ∈ L (7.15)

Based on the above analysis, constraint (7.3) can be reformulated as follows.∑
l∈L

wl ≤ B (7.16)

wl ≥ 0, ∀l ∈ L (7.17)

and constraints (7.13)− (7.15)
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Then, the non-linear model Pbl can be transformed into the following mixed-

integer linear program P ′bl.

P ′bl :f1 : min
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1)

f1 : min
∑
a∈A

Caza

s.t. Constraints (7.4)− (7.17)

7.2.2 Valid inequalities

To further tighten the formulated model and reduce its solution space, the following

valid inequalities are introduced.∑
a∈A′+i

(uka + vka) ≤ 1,∀i ∈ N\{ok, dk},∀k ∈ K (7.18)

∑
a∈A′−i

(uka + vka) ≤ 1,∀i ∈ N\{ok, dk},∀k ∈ K (7.19)

za ≤
∑
l∈L(a)

yl,∀a ∈ A (7.20)

∑
k∈K

xkl ≤ |K|yl,∀l ∈ L (7.21)

yl ≤
∑
k∈K

xkl ,∀l ∈ L (7.22)

where constraints (7.18) and (7.19) ensures that the passengers of OD pair k pass

intermediate nodes in the network at most once. Constraint (7.20) states that arc a ∈
A can have a reserved lane only if it is included in the paths of bus lines. Constraint

(7.21) states that bus line l is selected when any OD pair uses it. Constraint (7.22)

bus line l ∈ L is selected only if there exists at least one OD pair uses this line. With

these valid inequalities, we derive the following program.

P ′′bl :f1 : min
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1)

f2 : min
∑
a∈A

Caza

s.t. Constraints (7.4)− (7.22)

7.3 Solution approach

In Chapter 2, we have summarized the techniques for solving a multi-objective op-

timization problem, such as weighted sum method, ε-constraint method and Pareto-
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based evolutionary algorithm. In this section, the exact ε-constraint method intro-

duced in Chapter 4 is adapted to obtain the Pareto front for the BLRP-LD. The

advantages, principle and resolution procedure have been described in Chapter 4.

With the ε-constraint method, the bi-objective model P ′bl can be transformed into a

series of single-objective ones.

As mentioned above, the BLRP-LD has two conflicting objectives. The first ob-

jective is selected as the preferred one in this thesis. With the ε-constraint method,

the P ′bl can be transformed into the following single-objective problem:

P ′bl(ε) : min
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1)

s.t.
∑
a∈A

Caza ≤ ε (7.23)

and constraints (7.4)− (7.17)

where ε denotes an upper bound of f2.

Complexity analysis: If the value of ε is large enough, then the special case of

the single-objective problem P ′bl(ε) can be reduced to a bus line planning problem,

which is known to be NP-hard [39]. Thus, the single-objective problem P ′bl(ε) in

general case is also NP-hard. Note that the model P ′bl(ε) is linear such that it can be

solved by the commercial solvers like CPLEX.

7.3.1 Computation of Ideal and Nadir points

According the principle of the exact ε-constraint method, we first need to compute the

ideal and nadir points to determine the range of ε. By Definitions 3 and 4, they are

obtained by exactly solving the following four single-objective optimization problems.

P(f I1 ) :f I1 = min
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1)

s.t. Constraints (7.4)− (7.17)

P(f I2 ) :f I2 = min
∑
a∈A

Caza

s.t. Constraints (7.4)− (7.17)

The problem P(fN1 )(resp. P(fN2 )) is formed by adding to P(f I1 ) (resp. P(f I2 ))

constraint (7.24) (resp. (7.25)) that fixes the optimal value of f2 (resp. f1).

P(fN1 ) :fN1 = min
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1)
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Algorithm BLRP-LD

1: Transform model P ′bl into P ′bl(ε).
2: Set δ as the minimal unit value of Ca, a ∈ A and Y ′N = ∅
3: Obtain f I = {f I1 , fN2 } and fN = {fN1 , f I2 } by exactly solving P(f I1 ), P(f I2 ), P(fN1 )

and P(fN2 ).
4: Set Y ′N = {(f I1 , fN2 )}. Let j = 2 and ε = fN2 − δ, respectively.
5: while (ε ≤ fN1 ) do
6: Solve P ′bl(ε) exactly, and obtain the optimal solution and the corresponding ob-

jective vector (f1(ε), f2(ε));
7: ε = f2(ε)− δ;
8: end while
9: Remove dominated points from Y ′N (if existing) to obtain the Pareto front YN .

Fig. 7.2: Algorithm BLRP-LD: algorithm for the BLRP-LD.

s.t.
∑
a∈A

Caza = f I2 (7.24)

and constraints (7.4)− (7.17)

P(f I2 ) :fN2 = min
∑
a∈A

Caza

s.t.
∑
k∈K

∑
a∈A′

Dk(τau
k
a + τ ′av

k
a) +

∑
k∈K

DkPT (
∑
l∈L

xkl − 1) = f I1 (7.25)

and constraints (7.4)− (7.17)

Thus, the value of ε is bounded by [f I2 , f
N
2 ].

7.3.2 Defition of paramter δ

Parameter δ is defined as the minimum unit value of f2 according to its definition in

Chapter 4. Hence, the value of parameter δ is set to be the minimal unit value of

Ca,∀a ∈ A. In what follows, the exact ε-constraint method to find the Pareto front

is outlined as Algorithm BLRP-LD.

7.4 Computational results

In this section, we report numerical experiments on a benchmark instance in [20] and

randomly generated instances to evaluate the performance of the proposed algorithm.

The proposed algorithm (i.e., Algorithm BLRP-LD) is coded in Visual C++ embed-

ded with commercial software CPLEX (Version 12.6). All single-objective problems
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in Algorithm BLRP-LD are exactly solved by CPLEX. All the experiments are con-

ducted in a PC with 2.5 GHz CPU and 2.95 GB RAM under Windows 7.

To check whether it is beneficial to reserve bus lanes for bus transit system, we

will compare the travel time with bus lanes with that without bus lanes. To this aim,

we first calculate the travel time of each OD pair k through bus transit system with

bus lanes τk and that without bus lanes τ ′k, then the decreased rate of the travel time

DRk is computed as DRk = (τ ′k − τk)/τ ′k, which indicates how much the travel time

reduces for OD pair k after using bus lanes for the bus transit system. In order to

reflect the benefits of bus lanes for all OD pairs, the average decreased rate of all OD

pairs is computed as:

DR =
1

|K|
∑
k∈K

τ ′k − τk
τ ′k

(7.26)

Similarly, it can also examine how much the average travel time increases due to

bus lane reservation for the private car travelers belonging to the same OD pairs. Let

IR be the average increased rate of the travel time for private car travelers, which is

computed as:

IR =
1

|K|
∑
k∈K

Tk − T ′k
T ′k

(7.27)

where Tk (resp. T ′k) denotes the travel time of OD pair k through private cars after

(resp. without) reserving bus lanes. Note that T ′k is assumed to be the travel time

via the corresponding shortest path and Tk is considered to be the travel time on

the same path after reserving bus lanes. For the sake of convenience, let |F | and

No. denote the number of nondominated points on the Pareto front and the label

of each solution, respectively, and let CTP ′bl (resp. CTP ′′bl) denote the computational

time (CPU seconds) by Algorithm BLRP-LD in which all single-objective models are

without (resp. with) valid inequalities.

7.4.1 A benchmark instance

We first test a small instance generated based on a benchmark instance for the bus

line planning problem [20]. It has eight nodes, 20 arcs and four OD pairs. Fig. 7.3

shows the corresponding network graph G and OD pairs K where the link travel time

τ ′a (resp. demand quantity Dk) is expressed in minutes (resp. trips per minute).

Like most previous studies concerning bus line planning problem [20], we generate

the pool of all candidate lines by computing K-shortest paths between the pair of

nodes corresponding to each OD pair. To this aim, we use Yen’s K-shortest path

algorithm [132]. The resulting bus line set L for this instance has 22 elements. Since
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Fig. 7.3: Network of the benchmark instance

the work [20] has not considered the bus lane reservation. The remaining parameters

related to lane reservation for the BLRP-LD are generated based on [42] as follows:

τa is defined as φaτ
′
a, where φa is randomly generated in the interval [0.5, 0.8] and the

impact of a reserved lane on arc a is defined as Ca = raτ
′
a, where ra is is randomly

generated in the interval [0.2, 0.3]. The travel time of non-bus vehicles on arc a with

a bus lane, denoted by τ ′′a , is calculated as τ ′′a = τ ′a + Ca. Three sets of parameter

B: 200, 300 and 400 are respectively considered to show its impact on the output for

this instance.

Table 7.1: Computational results for the benchmark instance

B |F | CTP ′bl CTP ′′bl CTP ′′bl/CTP ′bl(%)

200 4 3.79 2.90 76.54
300 32 49.62 25.52 51.43
400 35 21.67 17.55 80.99

From Table 7.1, we can observe that the proposed algorithm can find the Pareto

front of the benchmark instance under different scenarios within one minute. More-

over, it can be observed that CTP ′′bl is less than CTP ′bl for each B. This indicates that

the proposed valid inequalities are effective in accelerating the proposed algorithm.

Besides, it can be also seen that the more the bus operating budget, i.e., the bigger

the value of B, the more the number of nondominated solutions. This may be because

that the solution space becomes lager as B increases. In the following, we will present

the obtained nondiminated solutions under each B.

We can see in Table 7.2 that there exist four nondominated solutions for the

benchmark instance with setting B = 200, and the minimal impact of reserved lanes,

i.e., f I2 , is 60.8, which implies that if without considering lane reservation, then no

feasible solution exists due to the violation of constraint (7.3). Note that because
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Table 7.2: Nondominated solutions of the benchmark instance with B = 200

No. f1 f2 DR(%) IR(%)
1 146.75 73.40 35.01 23.44
2 151.85 63.50 36.41 21.44
3 157.85 61.00 32.32 17.68
4 160.65 60.80 34.58 20.74

τ ′k is not available for bus transit system without bus lanes, here DR is computed

according to (7.26) by replacing τ ′k with T ′k, since in this case the passengers can only

travel by private car. It can be found Table 7.2 that DR ranges from 32.32% to

35.01%, while IR ranges from 17.68% to 23.44%.

Table 7.3: Nondominated solutions of the benchmark instance with B = 300

No. f1 f2 DR(%) IR(%) No. f1 f2 DR(%) IR(%)
1 142.15 40.00 41.12 25.19 18 191.70 13.60 21.54 12.06
2 143.50 37.10 39.62 23.38 19 193.30 13.50 22.91 11.29
3 148.90 35.60 36.62 21.63 20 197.45 13.40 20.11 8.17
4 150.20 31.00 35.26 22.69 21 197.95 11.00 19.11 9.35
5 152.90 28.10 33.01 21.63 22 202.10 10.90 17.70 6.22
6 157.55 25.60 30.60 18.93 23 204.05 10.50 18.73 8.17
7 163.65 25.10 28.83 17.75 24 205.75 9.90 9.94 3.13
8 168.15 23.50 26.71 9.35 25 208.70 8.00 16.32 6.22
9 168.30 22.60 26.42 15.81 26 216.50 6.90 5.76 0.00
10 169.90 22.50 26.40 15.04 27 220.50 5.60 6.61 5.83
11 172.30 20.40 27.29 11.29 28 222.10 5.50 6.59 5.07
12 174.55 20.00 23.99 13.10 29 226.25 5.40 5.18 1.94
13 176.30 19.10 28.14 17.13 30 226.75 3.00 5.57 3.13
14 176.95 17.90 24.88 9.35 31 230.90 2.90 2.76 0.00
15 180.95 16.60 25.73 15.18 32 232.85 2.50 3.80 1.94
16 187.05 16.10 23.96 14.00 33 237.50 0.00 0.00 0.00
17 187.70 14.90 20.70 6.22

In Tables 7.3 and 7.4, we can see that if without bus lanes, there still exist feasible

solutions for the bus transit system, as the minimal impact of reserved lanes (f I2 )

is 0. It can be observed in Table 7.3 (resp. 7.4) that DR ranges from 0 to 41.12%

(resp. 0 to 39.30%), while DR’s in both tables range from 0 to 25.19%. Besides, for

each nondominated solution in both tables, the value of DR is greater than that of

IR. These results indicate that bus lane reservation can provide great benefits at a

relatively low cost. To visually show the solutions, Fig. 7.4 gives the Pareto front of
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the benchmark instance with B = 400.

Table 7.4: Nondominated solutions of the benchmark instance with B = 400

No. f1 f2 DR(%) IR(%) No. f1 f2 DR(%) IR(%)
1 142.15 40.00 39.30 25.19 19 185.20 14.90 19.31 6.22
2 143.50 37.10 37.62 23.38 20 189.20 13.60 22.02 12.06
3 145.00 34.40 36.78 22.16 21 190.80 13.50 21.82 11.29
4 147.55 33.70 36.30 23.44 22 194.95 13.40 18.72 8.17
5 147.70 31.00 36.22 22.69 23 195.45 11.00 19.41 9.35
6 148.90 30.80 34.62 21.63 24 199.60 10.90 16.31 6.22
7 150.40 28.10 33.78 20.88 25 201.55 10.50 17.34 8.17
8 155.05 25.60 31.37 18.93 26 203.25 9.90 8.85 3.13
9 161.15 25.10 29.30 17.75 27 206.20 8.00 14.93 6.22
10 165.65 23.50 25.62 9.35 28 214.00 6.90 4.38 0.00
11 165.80 22.60 26.89 15.81 29 218.00 5.60 7.08 5.83
12 167.40 22.50 21.16 15.04 30 219.60 5.50 6.89 5.07
13 169.80 20.40 26.20 11.29 31 223.75 5.40 3.79 1.94
14 172.05 20.00 24.29 13.10 32 224.25 3.00 4.48 3.13
15 173.80 19.10 28.91 17.13 33 228.40 2.90 1.38 0.00
16 174.45 17.90 23.79 9.35 34 230.35 2.50 2.41 1.94
17 178.45 16.60 26.50 15.18 35 235.00 0.00 0.00 0.00
18 184.55 16.10 24.43 14.00

7.4.2 Randomly generated instances

To further evaluate the proposed algorithm, we also test larger-size randomly gen-

erated instance sets. Each set includes five instances, which are generated in the

following way. The network graph G(N,A) is generated based on Waxman’s net-

work model [121]. OD pairs are randomly selected from node set N and the demand

quantity of each OD pair is generated in the interval [1, 5] trips/minute [20]. The

travel time on each arc, τa, is randomly generated in the interval [2, 10] minutes.

The pool of all candidate lines is also obtained by computing K-shortest paths be-

tween the pair of node corresponding to each OD pair with Yen’s K-shortest path

algorithm [132]. The network G′ is constructed according to the candidate lines.

Parameters τa and Ca are generated in the same way as in the previous subsection.

B is defined as 2rb
∑

k∈K l(ok, dk), where l(ok, dk) denotes the travel duration from

ok to dk on a non-reserved shortest path and rb is generated from [0.5, 0.8]. The

computational results are reported in Table 7.5. Due to space limitations, the infor-

mation of the nondominated solutions for each instance are not presented here, but
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Fig. 7.4: Pareto front of the benchmark instance with B = 400

they can be similarly analyzed, as in the previous subsection. In fact, this subsection

mainly focuses on evaluating the computational efficiency and ability of the proposed

algorithm for larger-size instances. Each value for each set in the result table is its

average value of five instances and the computational time of the proposed algorithm

for each instance is limited to 18000s.

Table 7.5: Computational results for different sized instances

Set |N | |A| |K| |F | CTP ′bl CTP ′′bl CTP ′′bl/CTP ′bl(%)

1 9 26 4 10.60 11.69 11.50 98.36
2 9 26 5 43.20 538.16 410.13 76.21
3 10 30 5 56.20 584.25 381.74 65.34
4 10 30 6 27.60 315.14 266.46 84.55
5 11 30 5 23.60 507.87 381.60 75.14
6 11 30 6 45.00 4763.95 2935.25 61.61
7 12 34 6 37.80 14773.87 5428.24 36.74

Average 3070.70 1402.13 71.14
8 12 34 7 - - - -

From Table 7.5, it can be seen that the proposed algorithm can find the Pareto

fronts for problem sets 1-7 within given computational time. We can also observe

that CTP ′′bl is less than CTP ′bl over all sets 1-7 and the former is only 71.14% of the

latter on average, which indicates that the proposed valid inequalities are effective in

reducing the computational time of the proposed algorithm. Furthermore, it can be
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found from Fig. 7.5 that the computational time spent by the proposed algorithm

rapidly increases with the problem size due to its NP-hardness. We note that the

proposed algorithm fails to find the Pareto front for problem set 8 within 18000s.
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Fig. 7.5: Computational results for different sized instances

Due to a restriction of limited research time, the study on the BLRP-LD is in

its beginning step. The preliminary computational results shows that the proposed

algorithm can obtain Pareto fronts for small-size problems. However, as the size of

problem increases, it becomes very difficult to solve. Therefore, it is necessary to

explore more properties for the problem to speed up its resolution and develop more

efficient approaches for larger-size problems in the future.

7.5 Conclusions

In this chapter, we have studied a new bus lane reservation and bus line integrated

optimization problem, whose optimization objectives are to minimize the total travel

time of all passengers and to minimize the total negative impact of all reserved lanes.

For the considered problem, we first developed a bi-objective mixed-integer nonlinear

program and then transformed it to be an equivalent linear one by reformulating its

nonlinear constraints. Some valid inequalities were proposed to reduce the search

space. The problem was shown to be NP-hard. Then, an exact ε-constraint method

was proposed to derive the Pareto front. Preliminary computational result showed

that the proposed method can efficiently find the Pareto front of small-size problems
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and the derived valid inequalities are useful in accelerating its resolution. However,

it becomes quite difficult to solve large-size instances. More efficient methods should

be developed in the future.
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Chapter 8

Conclusions and perspectives

In this thesis, we have investigated two categories of lane reservation problems, which

aim to meet special transportation requirements and improve the performance of bus

transit systems via optimally reserving lanes at a macroscopic network level, respec-

tively. For all the studied problems, appropriate mathematical models are formulated

and all studied problems are proved to be NP-hard. Moreover, according to their

characteristics and the derived problem properties, appropriate resolution methods,

including two-phase algorithm, improved ε-constraint method, cut-and-solve method,

and kernel search, are devised. Computational results on benchmarks and randomly

generated instances demonstrate that the proposed algorithms outperform the state-

of-the-art algorithms and commercial software CPLEX.

First of all, we investigated two lane reservation problems (LRPs) for meeting spe-

cial transportation requirements. The first one is large-size LRP for future automated

truck freight transportation. For the problem, an improved integer linear program

(ILP) was provided. Its several special cases was identified to be classical combi-

natorial optimization problems. Based on the derived properties, a two-phase exact

algorithm was developed. Computational results on benchmark and newly generated

larger-size instances indicated that the proposed algorithm significantly outperforms

the state-of-the-art method, since the computational time by our algorithm is only

11.01% and 37.54% of that by the state-of-the-art algorithm for benchmark instances

under two scenarios, respectively, and our algorithm can solve instances with up to

700 nodes and 55 tasks, while the state-of-the-art method failed to solve instances

with 180 nodes and 40 tasks. The second one is a robust lane reservation problem

(RLRP) for large-scale special events, which extends the existing LRPs by considering

the uncertain traffic features. For the problem, a bi-objective ILP was first presented.

To derive its Pareto front, an improved exact ε-constraint and cut-and-solve combined

method was devised. Computational results on an instance based on a real network
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topology and randomly generated instances showed that the proposed algorithm is

more efficient than CPLEX, since it spends 37% computational time of CPLEX for

different sized problems.

Then, we investigated three bus lane reservation problems (BLRPs) in different

application contexts for improving the performance of bus transit systems. We first

studied a BLRP where bus lines and paths are assumed to be predetermined. An

ILP was formulated and an exact cut-and-solve method with an improved piercing

cut strategy was devised. Computational results indicated that the proposed algo-

rithm is more efficient than CLPEX, since the proposed method spends an average

of 73% computational time of CPLEX for different sized problems. The BLRP is

extended to the BLRP with path design (BLRP-PD) where bus lines with their sta-

tions are known but the bus paths need to be determined. For the BLRP-PD, we

formulated an ILP and valid inequalities were explored for it to reduce the search

space. Finally, an enhanced exact cut-and-solve method with new piecing cut gener-

ation strategy and an improved kernel search method were devised. Computational

results on randomly generated instances confirmed the effectiveness of the proposed

approaches. Finally, we studied a BLRP with line design (BLRP-LD) where both

bus lines need to be determined along with bus lane reservation. For the BLRP-LD,

a bi-objective mixed-integer nonlinear program was first formulated, which was then

equivalently transformed to be an linear one. Several valid inequalities were added

to reduce its search space for Pareto optimal solutions. Its complexity was analyzed.

An exact ε-constraint method was proposed to obtain its Pareto front. Preliminary

computational results indicated that the proposed algorithm can exactly solve small-

size problems. However, the computational time increases rapidly as the size of the

problem increases.

Although models and methods are developed in this thesis for several lane reser-

vation problems, there is still much work to do in our future research.

First of all, one of the main concerns for the investigated LRPs is to optimally

reserve lanes in transportation networks to minimize their negative impact on non-

reserved traffic. In this thesis, the negative impact of a reserved lane is assumed

as a parameter. In practical situations, the estimation for this parameter is quite

challenging because it is related with multiple factors, such as road traffic condition,

type of the reserved lanes, influence among road links and periods of lane reservation.

Due to its complexity, up to now, researchers have not come to a consensus on how

to evaluate the negative impact caused by reserved lanes. Such issue deserves further
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and systemic studies in the future and the research results will provide valuable

information for our future research.

Although the proposed algorithm for each problem has achieved relatively good

performance, the computational time increases with the size of the problem because

of its NP-hardness. Therefore, an important future direction is to further exploit the

properties of the studied problem and develop more efficient and effective problem-

specific algorithms. For example, we can observe for the LRP in Chapter 3 that it

becomes very difficult to solve the problem P ′′l in the second phase with a direct

use of CPLEX for large-size problems, one direction may be to develop more effi-

cient methods for P ′′l to further accelerate the proposed two-phase exact algorithm

and for the RLRP in Chapter 4, more efficient strengthening techniques need to

be studied to increase the efficiency of the proposed ε-constraint and cut-and-solve

combined method. Especially, it becomes much more difficult to solve large-size bus

lane reservation and bus line planning integrated optimization problem (i.e., BLRP-

LD in Chapter 7), efficient and effective multi-objective evolutionary algorithms may

be developed by exploring the properties of the BLRP-LD to yield well-distributed

nondominated solutions for larger-size problems within a short time.

Moreover, we may extend our studied problems from the following aspects:

1) In reality, the link traffic condition may vary with time period of a day. The

concept of robustness was introduced for the RLRP in Chapter 4 to cope with the

uncertain traffic conditions from the “robustness” perspective. In our future research,

we may introduce the concept of lane reservation robustness to the other LRPs.

On the other hand, we may directly formulate such issue to expand the proposed

formulations, giving lane reservation problems with time-varying traffic condition.

2) In this thesis, we considered optimally deciding which lanes in transportation

networks to be reserved. However, deciding appropriate time intervals of implement-

ing lane reservation was not considered. It has been suggested by many researches

that intermittent bus lanes would greatly reduce their negative impact on normal traf-

fic. Therefore, we may extend the investigated problems by considering the temporal

decision of lane reservation.

3) Lane reservation may generate other impact, such as traffic diversion and mode

shift and considering them into the studied BLRPs will be another research future

direction. Besides, traffic congestion results in not only inefficient transportation but

also environment related issues, e.g., the increase in CO2 emissions. The final goal of

bus lane reservation is to alleviate traffic congestion by providing reliable and rapid

bus transit, thereby attracting more people to travel by buses instead of private cars.
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Thus, the total CO2 emissions may be reduced. In our future work, we can add the

CO2 emission evaluation to the studied LRPs.

4) Because of the complexity of the integrated optimization of bus lane reservation

and bus line planning, it is assumed for the BLRP-LD in Chapter 7 that: 1) the

passengers belonging to a same OD pair choose the same shortest paths to arrive

at their destination; and 2) the buses on each line are sufficient enough to support

passengers to complete their trips. We can relax the above assumptions by introducing

passenger transit assignment and considering bus frequency and capacity in the future

research.
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Résumé : Aujourd’hui, le transport est devenu 

indispensable dans la vie quotidienne. 

Cependant, la congestion du trafic du fait de la 

forte urbanisation et de l’augmentation rapide 

du nombre de véhicules a réduit l'efficacité du 

système de transport et a causé d’énorme 

pollution urbaine. Dans ce contexte, pour 

répondre aux besoins spéciques de transport et 

améliorer la performance des systèmes de 

transport, la réservation de voie, en tant que 

stratégie de gestion du trafic flexible, a été 

largement mise en oeuvre. La majorité des 

études existantes sur la réservation de voie se 

focalisent au niveau microscopique, par 

exemple, un segment de route principale. Dans 

cette thèse, nous nous concentrons sur la 

réservation optimale des voies dans un réseau 

de transport au niveau macroscopique en 

minimisant son impact négatif pour deux 

catégories de problèmes. Nous étudions d’abord 

des problèmes de réservation robuste de voie et  

de grande taille pour les futurs poids lourds 

intelligents et les grands événements spéciaux. 

Ensuite, nous étudions la réservation de voie 

dans le but d’améliorer la performance du 

transport public avec des hypothèses 

spécifiques. Pour chaque problème étudié dans 

cette thèse, des modèles appropriés sont 

construits et leurs complexités sont analysées. 

Différentes approches de résolution sont 

élaborées en fonction des caractéristiques des 

problèmes, à savoir : une méthode exacte à deux 

phases, une méthode de -contrainte, une 

méthode de « cut and solve », et une méthode 

de « kernel search ». La performance des 

algorithmes proposés est évaluée à l’aide de 

benchmarks et d’instances générées 

aléatoirement. Les expériences numériques 

montrent que les algorithmes proposés sont plus 

performants que les algorithmes existant dans la 

littérature et le progiciel commercial CPLEX. 
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Abstract: Nowadays, transportation has 

become an indispensable part in modern life. 

However, heavy traffic congestion due to high 

urbanization and rapid increase of vehicles has 

caused low transportation efficiency and huge 

amounts of urban pollution. In this context, to 

meet special transportation requirements and 

improve the performance of transportation 

systems, lane reservation, as a flexible and 

economic traffic management strategy, has 

been widely implemented in real life. The 

majority of studies about lane reservation in the 

literature focus on the impact at a microscope 

level, e.g., a single link or corridor. In this 

thesis, we focus on optimally reserving lanes at 

a macroscopic network level with the objective 

of minimizing negative impact for two 

categories of problems. We firstly investigate 

the large-size and robust lane reservation  

problems in the contexts of future automated 

truck freight transportation and large-scale 

special events. Then, we study lane reservation 

for improving the performance of bus transit 

system under different assumptions. For all 

problems studied in this thesis, appropriate 

models are provided and their complexities are 

analyzed. Different resolution approaches are 

developed according to the characteristics of 

problems, including exact two-phase method, 

exact -constraint based method, cut-and-solve 

method, and kernel search method. The 

performance of the proposed algorithms is 

evaluated by benchmark and randomly 

generated instances. Extensive numerical 

experiments show that the proposed algorithms 

outperform the state-of-the-art algorithms and 

the commercial software CPLEX. 

 

 


	Thesis_Page_1
	MyThesis-2-167
	Thesis_last two pages

