
HAL Id: tel-01742424
https://hal.science/tel-01742424

Submitted on 24 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Implementation of Pseudo Random Number
Generator Based on Chaotic Iterations

Mohammed Bakiri

To cite this version:
Mohammed Bakiri. Hardware Implementation of Pseudo Random Number Generator Based on
Chaotic Iterations. Cryptography and Security [cs.CR]. Université Bourgogne Franch-Comté, 2018.
English. �NNT : �. �tel-01742424�

https://hal.science/tel-01742424
https://hal.archives-ouvertes.fr

Thèse de Doctorat

■

Hardware Implementation of
Pseudo Random Number Generator
Based on Chaotic Iteration
Implémentation matérielle de générateurs de nombres
pseudo-aléatoires basés sur les itérations chaotiques

MOHAMMED BAKIRI

Thèse de Doctorat

THÈSE présentée par

MOHAMMED BAKIRI

pour obtenir le

Grade de Docteur de
l’Université de Bourgogne Franche-Comté

Département d’Informatique des Systèmes Complexes (DISC)

Ecole doctorale no ED 37

Sciences Pour l’Ingénieur et Microtechniques
Spécialité : Informatique

Hardware Implementation of Pseudo Random
Number Generator Based on Chaotic Iteration

Implémentation matérielle de générateurs de nombres pseudo-aléatoires
basés sur les itérations chaotiques

Soutenue publiquement à Belfort le 8 janvier 2017 devant le Jury composé de :

M, ENRICO FORMENTI Professeur à l’Université Nice Sophia Antipolis Président

M, SYLVAIN CONTASSOT-VIVIER Professeur à l’Universités de Lorraine Rapporteur

M, FRÉDÉRIC MAGOULÈS Professeur à l’Universite Paris-Saclay Rapporteur

M, CHRISTOPHE GUYEUX Professeur à l’Université Bourgogne Franche-Comté Examinateur

M, JEAN-FRANÇOIS COUCHOT Maître de Conférences et HDR à l’Université Directeur de thèse

Bourgogne Franche-Comté

M, ABDELKRIM KAMEL OUDJIDA Maitre de Recherche et HDR à Centre de Développement Co-Directeur de thèse

des Technologies Avancées, Alger

N◦ A A A A U B F C X X X

ACKNOWLEDGEMENTS

Je souhaite avant toutes choses remercier deux personnes pour leur encadrement, leur
disponibilité et leur amitié: Prof. Christophe Guyeux mon premier directeur de thèse
puis Dr. Jean-François Couchot présent dès le début en tant que co-directeur puis
directeur exclusif sur la dernière période. Ils ont su, malgré un emploi du temps bien
chargé, être toujours présents à mes côtés, et me faire profiter de leur expérience, leur
intelligence, et leurs connaissances des objets de ma recherche. Le travail que j’ai pu
mener et ce document ne seraient pas ce qu’ils sont sans leur motivation et leurs en-
couragements, leur patience, leur recul, leur regard critique et la pertinence de leurs
conseils. Ce fut un grand plaisir de travailler avec eux, et j’espère pouvoir continuer à le
faire longtemps encore.

Je tiens également à remercier aussi Dr. Abdelkrim Oudjida ainsi que les membre de
l’équipe IPLS pour leurs encouragements, leurs conseils, et leur expertise dans le do-
maine du digital aux sein du Centre de Développement des Technologies Avancées. Je
suis infiniment reconnaissant envers Nouma Izeboudjen, Sabrina Titri, Samir Tagzout,
Ibrahim Bouzouia et Mohand Tahar Belaroussi pour leur soutien, leurs encouragements,
leur disponibilité et leur confiance. Ces quelques lignes de remerciement ne sont rien par
rapport a ce que ce document leur doit.

Je tiens également à remercier les membres de mon jury de thèse particulièrement, Prof.
Sylvain Contassot-Vivier et Prof. Frédéric Magoules qui m’ont fait l’honneur d’être les
rapporteurs de cette thèse. Que Prof. Enrico Formenti soit aussi remercié pour avoir
accepté d’être examinateur. Merci pour leurs suggestions et leurs précieux conseils, qui
ont permis de clarifier et donc d’améliorer ce mémoire.

Je tiens aussi à remercier tous les membres de l’équipe AND à Belfort pour leur amitié
et la bonne ambiance qu’ils contribuent à créer, spécialement Amor Lalama, Neserine
Khernane et Prof. Raphaël Couturier.

Je ne remercierai jamais assez mes parents et mon épouse Radhia qui ont toujours été à
mes cotés, mes frère et soeurs (Soumia, Foued, Karima et Walid), pour avoir toujours été
présents, m’avoir toujours aidé et soutenu, et pas seulement durant mes études. Sans
eux, sans leur gentillesse, leurs encouragements et leur dévouement, je n’en serais pas
là.

CONTENTS

List of Abbreviations 7

I General Introduction 9

II Scientific Background 17

1 Random Number Generators on FPGA 19

1.1 General presentation . 19

1.2 Linear Pseudorandom Number Generators 22

1.2.1 Linear Congruential Generators . 23

1.2.2 Linear Feedback Shift Register generators 24

1.2.3 Look-up Table Optimized Generators 26

1.2.4 Twisted Generalized Feedback Shift Register PRNG 27

1.2.5 Cellular Automata based PRNGs . 30

1.3 Non-Linear Pseudorandom Number Generators 33

1.4 True Random Number Generators . 37

1.4.1 Phase-Locked Loop TRNGs . 37

1.4.2 Ring Oscillator TRNGs . 38

1.4.3 Self-Timed Ring TRNG . 39

1.4.4 Metastability TRNG . 39

1.5 Experimental Results and Hardware Analysis 41

1.5.1 Methodology . 41

1.5.2 Hardware Comparison . 42

1.6 Statistical Test Analysis . 43

1.6.1 Statistical results of FPGA based RNG 47

1.7 Conclusion . 48

2 Chaotic Iteration based PRNG 49

2.1 Preliminaries . 49

4 CONTENTS

2.1.1 Boolean domain . 50

2.1.2 Iteration Graphs . 51

2.2 Unary and Parallel chaotic scheme . 51

2.3 Generalized scheme . 54

2.4 Conclusion . 55

III Quantifying Hardware Performance of PRNGs on FPGA Platform 57

3 Quantifying Hardware Performance of Linear PRNGs 59

3.1 Methodology . 59

3.2 Linear Complexity . 59

3.3 Jump Complexity . 60

3.4 Arithmetic Operators and Dynamic Range 62

3.5 Throughput and Latency . 63

3.6 Experimental Results . 65

3.7 Conclusion . 66

4 Hardware Test Platform and Comparison 67

4.1 FPGA Platform based on Zynq-EPP for PRNG 67

4.1.1 General Presentation . 67

4.1.2 Hardware Platform . 68

4.1.3 SDK Firmware . 69

4.2 New Reconfigurable FPGA Platform for CIPRNG 69

4.2.1 General Presentation . 70

4.2.2 Hardware Platform . 70

4.2.3 Firmware . 71

4.3 FPGA Global Comparison . 72

4.4 ASIC Platform for PRNG . 72

4.4.1 General Presentation . 72

4.4.2 ASIC Analysis . 72

4.5 Conclusion . 74

IV From Unary to Parallel Chaotic Iteration PRNG 75

5 Unary Chaotic Iteration PRNG: CIPRNG Multi-Cycle and XOR 77

CONTENTS 5

5.1 CIPRNG Multi-Cycle . 77

5.2 CIPRNG-XOR . 79

5.3 FPGA Implementation . 80

5.3.1 Global Comparison . 80

5.3.2 Comparison . 81

5.4 ASIC Implementation . 82

5.4.1 ASIC Comparison . 82

5.5 Statistical tests results . 84

5.6 Conclusion . 84

V Generalized Chaotic Iteration PRNG 87

6 Generalized Chaotic Iteration 89

6.1 General idea . 89

6.1.1 Iterated Function . 91

6.2 Mixing Function . 91

6.3 Chaotic behavior of our generator . 92

6.4 FPGA Implementation . 93

6.4.1 Statsistical tests results . 95

6.5 Conclusion . 95

VI General Conclusion 97

7 General Conclusion 99

7.1 Contribution Synthesis . 99

7.2 Perspectives . 100

VII Annexes 103

A Mathematical Proofs 105

A.1 Further investigations of the chaotic behavior of “chaotic iterations” 105

A.2 Mathematical chaos of the proposed design of GCIPRNG 109

A.2.1 First considerations . 109

A.2.2 Proof of chaos: the internal process 109

B PRNG implented on FPGA 115

6 CONTENTS

B.1 Linear PRNG on FPGA . 115

B.2 Software part of SoC based Zynq . 117

B.3 Software part of AXI-Platform . 118

Bibliography 121

List of Figures 134

List of Tables 135

ABBREVIATIONS

RNG Random Number Generator

PRNG Pseudo Random Number Generator

TRNG True Random Number Generator

CPRNG Chaotic Pseudo Random Number Generator

LPRNG Linear Pseudo Random Number Generator

CI Chaotic Iteration

CIG Chaotic Iteration Generalized

NIST National Institute of Standard and Technologies

FIPS Federal Information Processing Standard

FPGA Field Programmable Gate Array

ASIC Application-Specific Integrated Circuit

HDL High Description Language

RTL Register Transfert Level

HLS High-Level Synthesis

SDK Software Development Kit

SoC System on Chip

IP Intellectual Property (semiconductor)

CLB Configurable Logic Block

IOB Input Output Block

LUT Look-Up Table

FF Flip-Flop

SR Shift Register

DSP Digital Signal Processing

RAM Random Access Memory

BRAM Block of RAM

FIFO First-In First-Out

8 abbreviations

LFSR Linear Feedback Shift Register generator

LCG Linear Congruential Generator

MT Mersenne Twister

TGFSR Twisted Generalized Feedback Shift Register

CA Cellular Automata

BBS Blum Blum Shub generator

PLL Phase-Locked Loop

RO Ring Oscillator Generators

VCO Voltage Controlled Oscillator

PS Peripheral System

PL Programmable Logic

AXI Advanced eXtensible Interface

UART Universal Asynchronous Receiver Transmitter

DMA Direct Memory Access

S2MM Slave to Memory Map

MM2S Memory-Map to Slave

GE Gate Equivalent

P&R Place and Route

Gbps Gyga Byte Per Second

I
GENERAL INTRODUCTION

INTRODUCTION

MOTIVATION AND PROBLEM STATEMENT

Despite its long history, random generation still remains a hot topic, with the emergence
of the so-called Random or Entropy as Service [1] needs. It also becomes a key element
in lightweight security core for IoT devices. Despite the common use of these generators
in many applications as described above, their integration into System on Chip becomes
highly desirable, particularly for IoT and Smart Cards. Therefore, the practical purpose of
current research works in this field is to provide compact, with high throughput, secure,
and reconfigurable pseudorandom generators for hardware applications.

Let us recall that a random number generator algorithm can be defined by the state space
S of the generator, the transition mapping function f , the output extractor function g from
a given state, and the seed x0.The random output sequence is y1, y2, . . . , where each yt

is generated by the two main steps described thereafter. The first step applies the tran-
sition function according to the recurrence xt+1 = f (xt), where xt and xt+1 both belong
to S . The mapping function f can be either an algorithm that deterministically produces
random-like numbers in a discrete and finite state space. Such generators are denoted
as pseudorandom number generators (PRNGs). On the opposite, f can be based on a
physical source of entropy to produce randomness, thus making S a continuous space.
The whole approach is thus called a “True” random number generator (TRNG). The sec-
ond step consists in applying the function generator to the new internal state leading to
the output yt, that is, yt = g(xt). There is a large variety of such recursive generators,
which can be either linear or not, chaotic, and so on.

Pseudorandom number generation is more studied in mathematics and for software as-
pects, whereas hardware and semiconductor solutions are deeply investigated for true
random generation. On the one hand, linear PRNGs (LPRNG) are a special case of
linear recurrence modulo 2 (that is, S is F2). Many research works and solutions are reg-
ularly proposed to increase their performance and statistical profile, and their linearity and
security are investigated accordingly. Unfortunately, only a few of these linear PRNGs are
analyzed in details at the hardware level, such as FPGA and ASIC. On the other hand,
chaotic pseudorandom number generators (CPRNGs) are non-linear generators of the
form: x0 ∈ R and xt+1 = f (xt), where f is a chaotic map. They are an attractive application
of the mathematical theory of chaos. Reasons explaining such an interest encompass
their sensitivity to initial conditions, and their unpredictability. Truly chaotic generators are
a good demonstration of these characteristics: their period is infinite, hardware resources
are compact, and statistical tests are often succeeded quite reasonably [2,3].

One natural question that arises is: how can we inject disorder in a deterministic digital
system, while respecting the mathematical definitions of chaos provided by Devaney [4]
on such finite state machines? A usual answer in digital embedded systems is to consider
pseudo-chaotic generators instead of truly chaotic ones [5,6]. In spite of the quality of the

12 Introduction

TRNG output based on a chaotic phenomenon, most of these techniques are however
produced in a manner that is either slow (i.e, in a range of some Kbps to Mbps, to extract
noise or jitter from a given component [7]) or costly (e.g., extracting or measuring some
noise using oscilloscope or laser [3]). Additionally, to embed these TRNGs in a pure dig-
ital platform is an extreme challenge, where the main concern is calibration of the bias
phenomenon coming from analog inputs. Digital TRNGs lead thus to an uncontrollable
uniformity and performance of the outputs compared to the theory. Conversely, chaotic
PRNG (CPRNG) appears as a convenient solution in SoC platforms such as Zynq based
FPGA [8]. However, due to the finite precision and quantization of floating point numbers,
this latter may exhibit both deflated periods and non uniformly distributed outputs. Addi-
tionally, these PRNGs have various drawbacks, particularly they fail some statistical tests,
and from a cryptographer point of view, chaos is not related to security [9]. Thus, avoid-
ing floating approximation and its consequences is a major research objective, which has
been investigated in various state-of-the-art proposals.

A recent software approach has been developed within the DISC department of the
FEMTO-ST Institute. Formally speaking, this is a random walk in the graph of iterations
of a specific binary function. The direction to take and the path length are defined by the
embedded generator(s). Practically, it can be seen as post processing treatment which
adds chaos (as defined by Devaney) to the embedded PRNG. A first application of such
an approach was presented in the PRNG framework, leading to the so-called chaotic
iterations based pseudorandom number generators (CIPRNG, [10,11]). Since then, vari-
ous improved versions have been proposed, one of them being designed specifically for
FPGAs.

The objective of this thesis is to study the approach of generating pseudorandom numbers
using chaotic iterations, in order to present the widest possible application coverage in
terms of hardware implementation. Our interest focuses on using our skills on hardware/-
software design with FPGA and ASIC facilities in Microelectronics department of CDTA
research center to integrate, and implement on SoC/FPGA/ASIC, new chaotic iterations
process as random number generator. In other words, the goal is to propose a series of
chaotic post processing of pseudorandom generator, which increases their statistical pro-
prieties, adds chaos, while preserving a large throughput, being cryptographically secure
on hardware and software supports, and finally independent on the technology.

REQUIREMENTS AND SPECIFICATIONS

A number of specifications are considered for our research in the field of hardware random
number generators. They are summarized as follows:

• An initial FPGA implementation of CIPRNG has been proposed in previous re-
search [11], where the generator is based on PRNGs that have already been proven
their cryptographic security and their good behavior faced to statistical tests (BBS,
ISAAC).

• Most statistical test analyses of the proposed CIPRNGs are only executed on soft-
ware level, with a basic FPGA implementation.

• As already stated, PRNGs based on chaotic iterations (CIPRNGs) use a PRNG
as a strategy to select which bit(s) are to be iterated. These PRNGs are weakly

Introduction 13

investigated and analyzed at hardware level. Moreover, most of them do not pass
statistical tests.

• Most ASIC implementations of random number generators are based on true ran-
dom number generators (TRNG), which use physical sources (laser, transistors,
noise, ...). Conversely, pseudorandom generators are also weakly implemented,
and have difficulties to pass statistical tests.

• Finally, none of hardware chaotic PRNGs on FPGA can pass the reputed BigCrush
statistical test from TestU01 (319 tests), with the exception of our CIPRNGs.

Therefore, the new hardware chaotic PRNGs need to establish these requirements:

• Inject most of the theory of chaotic iterations on digital system, where only fixed
point representation and positive numbers are considered.

• The hardware implementations are technology-independent (no DSP or bloc mem-
ories) and are easy to integrate on system on chip for FPGA and ASIC application.

• A high throughput, small area, and low power consumption are required.

• Various range of data width (8, 16, 32, and 64 bits), period length, and k-dimension
chaotic PRNG.

• Finally, a high rate of statistical test success including the hardest ones (e.g.,
BigCrush of TestU01).

CONTRIBUTION OF THE THESIS

This manuscript reports the design and evaluation of (generalized) Chaotic Iterations
based PRNGs as a possible post-processing for hardware PRNGs, demonstrating its
benefits compared to other linear and chaotic PRNGs. This proposal focuses on adding
chaos on linear PRNGs as a post-processing, in which at each iteration, only a subset of
components of the iteration vector is updated.

Our contributions in this thesis are summarized as follows:

• It presents a survey of a large set of selected hardware implementations of random
number generators on FPGA. Both pseudorandom and true random generators are
investigated, while linear and non-linear generators are discussed in the PRNG
case. Each approach is explained in details, and a discussion of the results on
both implementations and statistical tests are systematically given. Performance
with respect to frequency, area size, weaknesses, and statistical evaluations are
presented, if they are available.

• In order to investigate the strategy properties, 18 linear PRNGs belonging to 4 fami-
lies (xorshift, LFSR, TGFSR, and LCG) have been physically implemented in FPGA
and compared in terms of area, throughput, and statistical tests. Therefore, two
design flows of conception are used for Register Transfer Level (RTL) and High-
level Synthesis (HLS). Based on this study, the relations between linear complexity,

14 Introduction

seeds, and arithmetic operations on the one hand, and the resources deployed in
FPGA on the other hand, are deeply investigated. To the best of our knowledge,
no published work has really deeply investigated hardware implementations of such
linear PRNGs.

• It provides two FPGA test platforms based on Zynq and AXI interconnection BUS.
They are used for implementation and randomness tests. Additionally, ASIC imple-
mentations are proposed using UMC-65nm Low Leakage Technology and Cadence
tools.

• Implementation and tests of these new families of post-processing PRNGs are pro-
posed based on chaotic iterations for FPGA and ASIC. The first one is an up-
date of CIPRNG [10], in which three CIPRNG variants for FPGA have been de-
signed, namely the XOR-CIPRNG, the CIPRNG-MultiCycle, and Multi-Cycle Multi-
Dimension (CIPRNG-MCMD) (see [12]). These hardware pseudorandom number
generations can reach a very large throughput/latency ratio.

• A new chaos-based pseudorandom number generator implemented in FPGA, which
is mainly based on the deletion of a Hamilton cycle within the N-cube (or on the vec-
torial negation) plus one single permutation, is detailed. By doing so, the obtained
generator has a better statistical profile than its input, while running at a similar
speed. This generation can also reach a very large throughput/latency ratio.

This thesis has led to the submission and/or the publication of the following articles [12–
14].

PEER-REVIEWED INTERNATIONAL JOURNALS

• Bakiri Mohammed, Jean-François Couchot, Christophe Guyeux. "CIPRNG: A VLSI
Family of Chaotic Iterations Post-Processings for F2-Linear Pseudorandom Number
Generation Based on Zynq MPSoC", IEEE Transactions on Circuits and Systems
I: Regular Papers (2017), vol.PP, no.99, pp.1-14. doi:10.1109/TCSI.2017.2754650,
Accepted (12 Septembre 2017)

• M. Bakiri, C. Guyeux, J.-F. Couchot, and A. K. Oudjida, “Survey on hardware imple-
mentation of random number generators on fpga: Theory and experimental analy-
ses,” Computer Science Review, vol. 27, pp. 135–153, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013716302271

PEER-REVIEWED INTERNATIONAL CONFERENCES

• Mohammed B., Couchot J. and Guyeux C. (2016). "FPGA Implementation
of F2-Linear Pseudorandom Number Generators based on Zynq MPSoC: A
Chaotic Iterations Post Processing Case Study". In Proceedings of the 13th In-
ternational Joint Conference on e-Business and Telecommunications - Volume
4: SECRYPT, (ICETE 2016) ISBN 978-989-758-196-0, pages 302-309. DOI:
10.5220/0005967903020309

Introduction 15

• Mohammed B., Couchot J. and Guyeux C. (2017). "One random jump and one per-
mutation: sufficient conditions to chaotic, statistically faultless, and large throughput
PRNG for FPGA". .In Proceedings of the 14th International Joint Conference on
e-Business and Telecommunications - Volume 6: SECRYPT, (ICETE 2017) ISBN
978-989-758-259-2, pages 295-302. DOI: 10.5220/0006418502950302

NATIONAL CONFERENCES AND CONGRESS

• Bakiri Mohammed, Couchot Jean-François and Guyeux Christophe. "FPGA and
ASIC Implementation of a Pseudorandom Number Generator based on Chaotic
Iterations". XIIème Colloque du GDR SoC-SiP, 14-16 June 2017, Bordeaux, France

OTHER PEER-REVIEWED PAPER

• A. K. Oudjida, A. Liacha, M. Bakiri and N. Chaillet, "Multiple Constant Multiplication
Algorithm for High-Speed and Low-Power Design," in IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 63, no. 2, pp. 176-180, Feb. 2016. doi:
10.1109/TCSII.2015.2469051

• Ahmed Liacha, Abdelkrim K. Oudjida, Farid Ferguene, Mohammed Bakiri, and
Mohamed L. Berrandjia, "Design of High-Speed, Low-Power, and Area-Efficient
FIR Filters ," in IET Circuits, Devices & Systems, ACCEPTED MANUSCRIPT,
23/08/2017, DOI: 10.1049/iet-cds.2017.0058, Print ISSN 1751-858X, Online ISSN
1751-8598

• G.Abdellaoui, S.Abeb, A.cheli, H.Adams, d.Ahmad, A.hriche, J-N.Albert, .D.Allard,
A.lonso, L.Anchordoqui, V.Andreev, A.Anzalonel, W.Aouimeur, Y.Arain, N.Arsene,
K. Asan, R.Attallah, H.Attoui, M.Ave Pernas, S.Bacholle, M.Bakiri, et al, "Meteor
studies in the framework of the JEM-EUSO program", Planetary and Space Science
143 (2017): 245-255.

• G.Abdellaoui, S.Abeb, A.cheli, H.Adams, d.Ahmad, A.hriche, J-N.Albert, D.Allard,
A.lonso, L.Anchordoqui, V.Andreev, A.Anzalonel, W.Aouimeur, Y.Arain, N.Arsene,
K. Asan, R.Attallah, H.Attoui, M.Ave Pernas, S.Bacholle, M.Bakiri, "Cosmic ray ori-
ented performance studies for the JEM-EUSO first level trigger." Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment (2017).

ORGANIZATION OF THE THESIS

The remainder of this manuscript is divided in four parts, as detailed below.

The first part consists of two scientific background chapters. The first chapter describes
a state-of-the-art of random number generators, from mathematical considerations to
FPGA implementation. Linear and non-linear PRNGs are presented, and true random
ones too. Additionally, recalls regarding statistical batteries of tests are given, while
scores of some well-known RNGs on FPGA are summarized at the end of this survey. In

16 Introduction

the second chapter, an overview of the mathematical foundation concerning chaotic iter-
ations based PRNGs, which are the main objects regarded during our thesis, is provided.
In particular, we will recall two theoretical schemes of these discrete dynamical systems:
the unary scheme [15] and the generalized one [16].

In the second part, Chapter 3 will analyze the FPGA implementation of a set of selected
linear pseudorandom number generators. Frequency, area size, weaknesses, and com-
putation complexity are investigated to select which linear PRNGs can be used as a
strategy for our post-processing. Then, Chapter 4 reviews two hardware platforms used
for all our implementations and test comparison: FPGA and ASIC.

The third part focuses on adding chaos on linear PRNGs studied in Chapter 3 as a post-
processing (CIPRNG), in which at each iteration, only a subset of components of the
iteration vector is updated. Therefore, three CIPRNGs (namely: CIPRNG-XOR, CIPRNG
Multi-Cycle, and CIPRNG Multi-Cycle Multi Dimension) are reviewed, implemented, and
tested on FPGA and ASIC. The final part (Chapter 6) describes our new proposed design
for a new chaotic PRNG, targeting FPGA and ASIC implementations. It resumes new
iterative functions based on chaotic iterations whose graph of generalized iterations is
strongly connected and which has been obtained by removing a balanced Hamiltonian
cycle in a N-cube following the method suggested in [16].

Finally, this manuscript ends by a conclusion section, in which the contribution is summa-
rized and the intended future work is outlined.

ABBREVIATIONS FOR RANDOM NUMBER GENERATORS

Abbreviation Definition
RNG Random Number Generator
TRNG True Random Number Generator
PRNG Pseudo Random Number Generator
LPRNG Linear Pseudo Random Number Generator
CPRNG Chaotic Pseudo Random Number Generator
CSPRNG Cryptographically Secure Pseudo Random Number Generator

II
SCIENTIFIC BACKGROUND

1
RANDOM NUMBER GENERATORS ON

FPGA

This chapter is a comprehensive survey on random number generators implemented on
Field Programmable Gate Arrays (FPGAs). A rich and up-to-date list of generators specif-
ically mapped to FPGA are presented with deep technical details on their definitions and
implementations. A classification of these generators is presented, which encompasses
linear and nonlinear (chaotic) pseudo and truly random number generators. A compar-
ison of their statistical evaluation through usual batteries of tests and of their area and
speed performances is finally outlined. This chapter is mainly issued from an article in
submission to ACM Elsevier Computer Science Review.

1.1/ GENERAL PRESENTATION

Randomness is a common word used in many applications [17] such as simulations [18],
numerical analysis [19], computer programming, cryptography [20], decision making,
sampling, etc. The general idea lying behind this generic word most of the times refers
to sequences, distribution, or uniform outputs generated by a specific source of entropy.
In other words, the probabilities to generate the same output are equal (50% to have “0”
or “1”). If we take the security aspect, many cryptosystem algorithms rely on the genera-
tion of random numbers. These random numbers can serve for instance to produce large
prime numbers which are at the origin of cipher key construction [21] (for example, in RSA
algorithm [22], in Memory Encryption [23] or Rabin signatures [24]). Furthermore, when
the generators satisfy some very stringent properties of security, the generated num-
bers can act as stream cyphers in symmetric crytosystems like the one-time pad, proven
cryptographically secure under some assumptions [25]. Randomization techniques are
especially critical since these keys are usually updated for each exchanged message.
Even if an adversary has partial knowledge about the random generator, the behavior of
this latter should remain unpredictable to preserve the overall security.

From a historical point of view, numerical tables and physical devices have provided the
first sources of randomness designed for scientific applications. On the one hand, ran-
dom numbers were extracted from numerical tables like census reports [26], mathemat-
ical tables [27] (like logarithm or trigonometric tables, of integrals and of transcendental
functions, etc.), telephone directories, and so on. On the other hand, random numbers
were extracted also from some kind of mechanical or physical computation like the first

20 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

Figure 1.1: General random number generator architecture

machine of Kendall and Babington-Smith [28], Ferranti Mark 1 computer system [29] that
uses the resistance noise as a physical entropy to implement the random number in-
struction in the accumulator, the RAND Corporation [30] machine based on an electronic
roulette wheel, or ERNIE (Electronic Random Number Indicator Equipment [31]), which
was a famous random number machine based on the noise of neon tubes and used in
Monte Carlo simulations [32,33].

These techniques cannot satisfy today’s needs of randomness due to their mechanical
structure, size limitation when tables are used [27], and memory space. Furthermore, it
may be of importance to afford to reproduce exactly the same “random sequence” given
an initial condition (called a “seed”), for instance in numerical simulations that must be
reproducible – but physical generation of randomness presented above does not allow
such a reproducibility. With the evolution of technologies leading to computer machines,
researchers start searching for low cost, efficient, and possibly reproducible Random
Number Generators (RNGs). This search historically began with John von Neumann,
who presented a generation way based on some computer arithmetic operations. Neu-
mann generated numbers by extracting the middle digits from the square of the previously
generated number and by repeating this operation again and again. This method called
mid-square is periodic and terminates in a very short cycle. Therefore, periodicity and
deterministic outputs that use an operator or arithmetic functions are the main difference
with the earlier generators. They are known in literature as “pseudorandom” or “quasiran-
dom” number generators (PRNGs), while circuits that use a physical source to produce
randomness are called “true” random number generators (TRNGs).

In most cases a random number generator algorithm can be defined by a tuple (S , f ,
g, U, x0), in which S is the state space of the generator, U is the random output space,
f : S → S is the transition mapping function, g : S → U is the output extractor function
from a given state, and x0 is the seed [34], see Figure 1.1. The random output sequence
is y1, y2, . . . , where each yt ∈ U is generated by the two main steps described thereafter.
The first step applies the transition function according to the recurrence xt+1 = f (xt),
where f is an algorithm in the PRNG case and a physical phenomenon in the TRNG one.
Then, the second step consists in applying the function generator to the new internal state
leading to the output xt, that is, yt = g(xt). The period of a PRNG is the minimum number
of iterations needed to obtain twice a given output (a PRNG being deterministic, it always
finishes to enter into a cycle).

1.1. GENERAL PRESENTATION 21

As stated previously, the old hardware manner to build such RNGs was to use a mechan-
ical machine or a physical phenomenon as entropy source, which can thus be based on
noise [35], metastability (frequency instability [36]), semiconductor commercial or indus-
trial component circuit (PLL [37], amplifier, filters [38], inverter,. . .), or a variation in the
CMOS/MEMS process technologies (transistor). In spite of the quality of the generated
randomness, most of these techniques are however, either slow processes (i.e, extract-
ing noise from a component) or costly (e.g., extracting or measuring noise may require
specific equipment like an oscilloscope). All these previous drawbacks are the motivation
behind the development of hardware generators based on a software design. The latter
consist of developing deterministic algorithms by targeting a specific hardware system,
like a Field Programmable Gate Array (FPGA), before automatically deploying it on the
hardware architecture by using ad hoc tools.

FPGA devices are reconfigurable hardware systems. They allow a rapid prototyping, i.e.,
explore a number of hardware solutions and select the best one in a shorter time [39].
The design methodology on FPGA relies on the use of a High Description Language
(i.e, Verilog, VHDL, or SystemC) and a synthesis tool. Because of this, FPGA has be-
come popular platforms for implementing random generators or complete cryptographic
schemes, due to the possibility to achieve high-speed and high-quality generation of ran-
dom. The general architecture of a FPGA presented in Figure 1.2 is based on LCA
(Logic Cell Array), which is composed of three parts, namely: Configurable Logic Block
(CLB) [40], Input Output Block (IOB), and interconnect switches. FPGA could addition-
ally include more complex components like a Digital Signal Processing (DSP), a Random
Access Memory (RAM), a Digital Clock Manager (DCM), or an Analog-Digital Converter
(ADC/DAC). The nomination of the internal blocks depends on the FPGA vendors (Xil-
inx, Altera, Actel . . .) even they have a similar functionality. The CLB structure is mainly
based on Look-Up Tables (LUTs [41]), additionally with a Flip-Flop and some multiplex-
ers. A K-input LUT is a 2K × 1-bit memory array based on a truth table of K-bits inputs.
These later can executes any logic functions as XOR/ADD/SHIFT. . .

Different implementations of RNG on FPGA have diverse characteristics. First of all,
does it provide true random or pseudorandom numbers? In the second reproducible
case, which algorithm is implemented? The next characteristic is the way each block is
deployed on the FPGA, namely by computing or in a hardware manner. For instance, for
a polynomial division, there is a choice between look-up table in software and a hardware
shift register. Furthermore, the quality of the FPGA model that implements a random
number generator can be evaluated according to many criteria. In a statistical perspec-
tive, the output has to be verified against some well-known test suite like the NIST [42],
DieHARD [43], or TestU01 [44] ones. From the hardware perspective, one objective is
to provide the highest frequency per randomly generated bit with less FPGA hardware
resources (CLB, IOB, ...).

This chapter surveys a large set of selected hardware implementations of random number
generators on FPGA. Both pseudorandom and true random generators are investigated,
while linear and non-linear generators are discussed in the PRNG case. Each approach
is explained in details, and a discussion on the choices of both implementations and
generations are systematically given. Performance with respect to frequency, area size,
weaknesses, and statistical evaluations are finally presented, when they are available.

The remainder of the chapter is as follows. Section 1.2 describes FPGA implementation
of linear PRNGs (LPRNG), whereas the next section 1.3 focuses on non-linear ones

22 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

Figure 1.2: General structure of a FPGA by Xilinx

(CPRNG). The true random ones are detailed in Section 1.4. Each of these three sections
ends by a FPGA implementations comparison regarding area resources and throughput
(see Section 1.5). While, we recalls statistical batteries of tests and scores of some RNGs
on FPGA are provided in Section 1.6. This chapter ends by a conclusion section, in which
the review is summarized and future investigative directions are outlined.

1.2/ LINEAR PSEUDORANDOM NUMBER GENERATORS

This section and the next one are devoted to pseudorandom number generators on
FPGA. Recall that the latter are defined by a tuple containing a recurrent equation of
the form xt+1 = f (xt). This recurrence may be linear or not. The linear case is investigated
in the current section, while the non-linear case is detailed in Section 1.3.

Linear PRNGs are a special case of linear recurrence modulo 2. They are convenient
for low power and high speed requirement but, due to the limitation of the shift register
state (two possibilities: 0 and 1), the period of these generators is usually short. Be-
cause of this, many hardware optimizations are proposed to increase the period (they will
be detailed thereafter). A linear PRNG of w bits can be defined by the following Equa-
tions (1) [45]:

xt+1 = A × xt (a)
yt = B × xt (b)

rt =
w∑̀
=1

yt
`−1 2−`(c)

(1)

Indeed the first equation (a) defines the function f , where xt = (xt
0, . . . , x

t
k−1) ∈ S = Fk

2 is

1.2. LINEAR PSEUDORANDOM NUMBER GENERATORS 23

the k-bit vector at step t (F2 is the finite field of cardinality 2 and S is the internal state
space of the generator). The other equations (b) and (c) define the function g, where
yt = (yt

0, . . . , y
t
w−1) ∈ U = Fw

2 is the w-bit output vector at step t, and U is the state space
of the output. Additionally, A is a k × k transition matrix, B is a w × k output transformation
matrix, which produces the output bits which corresponds to the internal RNG state, and
rt ∈ [0, 1] is the output at step t. All the elements of A and of B are in F2.

In the simplest case we have w = k and B is the identity matrix, which means that the
state bits are directly used as random output bits. In case where w < k, the output are
either propagating in another circuit, or multiple state bits are XORed together to produce
each output bit, as in the case of Mersenne Twister [46]. These linear generators are cov-
ering Tausworthe or Linear Feedback Shift Register [47], polynomial Linear Congruential
Generators [48], Generalized Feedback Shift Register (GFSR [49]), twisted GFSR [50],
Mersenne Twister, linear cellular automaton, and combinations between them. More de-
tails will be presented regarding each of these generators in this survey.

1.2.1/ LINEAR CONGRUENTIAL GENERATORS

Linear Congruential Generators (LCGs) [48] are founded on system of linear recurrence
equations defined as:

xt+1 = (axt + b) mod 2k, (2)

where a (the “multiplier”), b (the “increment”), s.t. 0 ≤ a, b ≤ 2k−1 are parameters of the
generator,

This latter is often called a Multiplicative Congruential Generator [51] (MCG) if b = 0, and
Mixed Linear Congruential Generator, otherwise.

In [52], two optimized LCGs are proposed, namely the Ranq1 and Ran [53]. Ranq1 is
a MCG working modulo 264, while its seed is produced by a 64-bits right XORshift [54].
Let us first recall that the XORshift takes an input and iteratively executes an exclusive
or (XOR) of the binary number with a bit shifted translation (left and right) of itself. The
second one, the Ran generator, combines a LCG generator with two XORshifts, and
the results are XORed by a Multiply with Carry (MWC) generator [55]. In MWC, the
equation (2) is modified as follows: the constant b is replaced by the carry bt which is

defined by b0, the initial carry, is less than a and bt+1 = b
axt + bt

232 c.

Authors of [52] optimized the implementation of the 64-bits constant coefficient multiplier
a × xt. However the 64-bit multiplication is problematic due to DSP macro limitations that
support only 18-bit operations in Xilinx’s FPGA. This is why these authors proposed a
pipeline of multiplier-adder architecture, which takes 5 cycles for Ran and 4 for Ranq1,
while the output is the least significant 32 bits. Comparisons realized in their article
showed that these two new optimized implementations have a lower cost in the area than
other PRNGs like the Mersenne Twister [46], which use memories or multiplier macros of
the FPGA. But the authors were wrong when they assumed that the multiplication by a
constant is similar to the multiplication by a variable. In the former (Oudjida et al [56–58]),
the multiplication is implemented in a multiplierless way, i.e., using only additions, sub-
tractions, and left shifts.

24 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

Authors of [59] have presented a coupling of two Coupling Linear Congruential Genera-
tors (CLCG), further denoted as CLCG-1 and CLCG-2. Each one generates a separate
output with different parameters described as follow:

xt+1
1 = (a1xt

1 + b1) mod 2k

xt+1
2 = (a2xt

2 + b2) mod 2k

Ct+1
1 =

{
1 if xt+1

1 > xt+1
2

0 otherwise.

(3)

xt+1
3 = (a3xt

3 + b3) mod 2k

xt+1
4 = (a4xt

4 + b4) mod 2k

Ct+1
2 =

{
1 if xt+1

3 > xt+1
4

0 otherwise.

(4)

The first CLCG-1 of [59] is characterized by {xt+1
1 , xt+1

2 ,Ct+1
1 } while the second CLCG-2 is

defined with {xt+1
3 , xt+1

4 ,Ct+1
2 } (Ct

1 and Ct
2 are bit sequences). CLCG-2 aims at selecting

which bit must be taken from CLCG-1 as a final output yt: yt = Ct
1 if Ct

2 = 0, otherwise
the bit Ct

1 is ignored. For instance, the authors assume a simple format of the multipliers:
a1 = a3 = 2δ1 + 1 and a2 = a4 = 2δ2 + 1, where 1 < δ1, δ2 < k. Indeed, the new format of xt+1

1
for CLCG-1 (and similarly for x2, x3, and x4) is as follow:

xt+1
1 = ((2δ1 × xt

1 mod 2k) + xt
1 + b1) mod 2k, (5)

where 2δ1 × xt is the result of shifting xt exactly δ1 times to the left, and the modulation is
computed as the k least significant bits of what is in parentheses. However, a large value
of k leads to a large latency. To solve this problem, an implementation of P stages of
addition and comparison for the two CLCGs has been proposed in this article. It divides
the k-bits numbers into P-pipeline parts, processes each k/P-bits part in a pipeline stage,
and finally generates 1-bit of C1 and C2 simultaneously. Additionally, it takes the results of
each stage and sends them to both the previous and the next stages, in order to produce
the current and the next outputs.

1.2.2/ LINEAR FEEDBACK SHIFT REGISTER GENERATORS

Linear Feedback Shift Register generators (LFSR) or Tausworthe [47] are linear recurrent
generators. An LFSR uses a sequence of Flip-Flop (FF) as shift registers to generate
one bit per iteration. Each register is connected to its neighborhoods, the binary value in
each register is shifted at each iteration, while the last register produces the output (see
Figure 1.3). A XOR is operated on some designed registers to build a feeadback input
to the first register, which is expressed by a characteristic polynomial. As depicted in
Figure 1.3, two configurations are usually considered, namely the Galois and Fibonacci
setups. These two aforementioned implementations are synchronized with a main clock
(CLK), in which at each edge the maintained data (1-bit) in FF is released and a new
input is stored. The matrix A of Equation. (1) is in this case:

A =

(
0 Ik−1
ak ak−1, . . . , a1

)
. (6)

The characteristic polynomial of the matrix A is xt+1 = a1xt + · · · + akxt+1−k. In the above
equations, a1, . . . , ak represent the LFSR coefficients, each in F2. Accordingly, if any of
these coefficients exists, it deploys a XOR operand on the output (remark that the matrix
B of Equation (1) is the identity matrix I).

Even though many FPGA implementations of such LFSRs can be found in the literature,
only few of them are really optimized for this architecture. In [60], the authors present
two types of LFSRs. The first one, called Shrinking Generator (SG), it uses two LFSRs

1.2. LINEAR PSEUDORANDOM NUMBER GENERATORS 25

(a) A 4-bits Galois LFSR architecture using Flip-Flop (FF)

(b) A 4-bits Fibonacci LFSR architecture using Flip-Flop (FF)

Figure 1.3: A 4-bits linear feedback shift register generator with a feedback polynomial
a0 ∗ X4 + a1 ∗ X3 + a2 ∗ X2 + a3 ∗ X + a4 (a0 = a4 = 1).

of 67 bits (LFSR-1 and LFSR-2). At each clock cycle, the SG directly takes the value of
the output bit which is generated by the second LFSR-2 if the output bit from the first
LFSR-1 is equal to 1; if not, both outputs are discarded. The second version, named
Alternating Step Generator (ASG), considers a third LFSR-3 of 141 bits in addition of the
two previous ones. This latter is used to control which output bit will be taken from the two
first LFSRs of 131/137-bits. For comparison purposes, if T1, T2, and T3 are the periods of
LFSR-1, LFSR-2, and LFSR-3 respectively, let us note that the SG has a total period of
TS G = (2T1 − 1) × (2T2 − 1) (length ' 64 bits), while it is TAS G = 2T1(2T2 − 1) × (2T3 − 1) for
ASG (length ' 128 bits).

LFSR based Accumulator Generator proposed in [61] is a PRNG based on Digital Sigma-
Delta Modulator [62] made from accumulator circuits. This latter is used to divide the fre-
quency in a Fractional-n Frequency Synthesizer [63]. Authors of [61] propose a pipeline
of N = 9 serial digital accumulators of w = 8 bits based FPGA as described in Figure 1.4.
Each accumulator, which can produce M = 2w possible values, is a self-recursive struc-
ture based on quantization error mapping function formalized in Equation. (8), where
the accumulator’s feedback coefficients are time-varying, using another linear feedback
shift register. The accumulator, which is presented in Equation (7), is parameterized by
the input seed x0, the accumulator sum p, the carry output acc, the quantization error
e, and the feedback coefficients c = 2−w of the accumulators as outputs. The input of
each n = 0, . . . , (N − 1) stage during the processing uses the quantization error et−1 of the
previous stage. Therefore, the PRNG gives a better uniform outputs by propagating the
latter (e) at all stages following the Equation (7). The accumulator feedback coefficient c

26 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

source [61]

Figure 1.4: Block-level model of a w-bit digital accumulator PRNG comprising n stages

is implemented with another accumulator. The latter are multiplied by a binary variable
dw ∈ {0, 1} of the LFSR to control the feedback depending on the period of LFSR. The final
output yt = eout is the last generated et

N−1 evaluated in Equation (8).

pt+1
n =


x0 + et

0 + acct
1dt

0, n = 0
et+1

n−1 + et
n + acct

n+1dt+1
w−1, 0 < n < N − 1

et+1
n−1 + et

n, n = N − 1
(7)

et+1
n = pt+1

n mod 2w and acct
n =

{
1 pt

n ≥ M
0 pt

n < M
(8)

1.2.3/ LOOK-UP TABLE OPTIMIZED GENERATORS

Look-up Table (LUT [41]) optimized generators use logic block as a digital component de-
fined in a CLB provided by the FPGA vendors. It is used for implementing many function
and operation generators for a hardware optimization purpose. A LUT consists of a block
of RAM (Random Access Memory) implemented as a truth table that is indexed by the
LUT inputs.

In [64–66], the authors present a series of LUT PRNGs based on F2 linear matrix recur-
sive algorithms (see Figure 1.5). The main idea is to produce a maximum efficiency at
area level. The authors associate either Flip-Flops (FF), Shift Registers (SR), or block
of RAMs (RAM) with LUT to perform shift/multiplication operations in FPGA. However,
creating long period sequences T = 2w with this method is a difficult task. To solve this
problem, large optimized LUT based {FF, SR, RAM} pairs are investigated.

The first proposed PRNG is called LUT-OPT (LUT optimized, (a) in Figure 1.5). It maps
each row of the recurrence matrix A as a XOR gate using just LUT and FF. To generate w
bits per cycle requires w LUT-FFs in a single LUT of k-bits during a period of T = 2w where
w = k (see Figure 1.5). Their estimations of the FPGA resources conclude that even if
an application requires 64 bits for each cycle, their implementations necessarily use 512
LUT-FFs to produce a period of 2512 − 1. The second one, the LUT-FIFO (b), is used to
increase the period up to T = 2(w+k∗L) without using the pair LUT-FF, which uses RAM

1.2. LINEAR PSEUDORANDOM NUMBER GENERATORS 27

source [66]

Figure 1.5: LUT based shift-register and FIFO FPGA optimized PRNG: (a) maps each
row of the recurrence matrix as a XOR gate using LUT-FF, (b) uses RAM block memory
as k × k FIFO to store the recursive sequences, (c) loads the state in FIFO based shift-
register SR instead of BRAM, (d) cascading of any number of Xilinx SRL32 to create a
k-bit SR

block memory (dual-port RAM) of FPGA as L × k FIFO to store the recursive sequences.
In this case, each new output bit is depending on one bit from the last iteration. They next
propose a FIFO based shift-register SR (c) with a fixed length L of 1-bit, to load the w-bit
state in parallel instead of using dual-port RAM. They also propose a LUT-SR PRNG (d)
that turns the use of LUT as a k-bit Shift-Register using “Xilinx SRL32”, with the length of
each “SR” varying as follows: 1 < Li < L. The “Xilinx SRL32”, allows the cascading of any
number up to 32-bit shift registers to create a shift register with any size needed.

1.2.4/ TWISTED GENERALIZED FEEDBACK SHIFT REGISTER PRNG

Twisted Generalized Feedback Shift Register (TGFSR) proposed in [50] is an extension of
Generalized Feedback Shift Register “GFSR” [49], which uses an array of shift registers
to generate more than one bit for each state change. Therefore, a TGFSR is based
on recurrence of N sequences of words, x0, . . . , xN−1, each containing k-bits and two
parameters, namely a bitmask size c, such that c 6 k − 1 and a initial median position m
with 1 ≤ m ≤ N.

TGFSR computes the t + N-th word (t = 0, 1, . . .) by operating with three words: the first
two words xt and xt+1 with the median word xt+m. More precisely (see Figure 1.6):

1. It computes the c least significant bits (LSB) of xt+1 and the k − c most significant
(MSB) ones of xt. These two vectors are obtained thanks to the two following bit-
mask vectors: S c for (0, . . . , 0, 1, . . . , 1) and S k−c for (1, . . . , 1, 0, . . . , 0).

2. These two vectors are further concatenated through (xt&S k−c) | (xt+1&S c).

28 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

Figure 1.6: Twisted Generalized Feedback Shift Register architecture: at each recurrence
operation t, it computes xt+N thanks to the three words xt, xt+1, and xt+m and generates
the output with tempering function

3. The result x′ is then "multiplied" with a matrix A, caracterized with values
(a0, a1, . . . , aw−1) as defined in Equation. (10).

4. The final results of the previous calculations are then XORed with the median word
xt+m.

By putting c = 0, then the Equation (9) represents the TGFSR PRNG [50], conversely it is
Mersenne Twister [46].

xt+N = xt+m ⊕ (((xt&S k−c) | (xt+1&S c)) × A), where (9)

x′ × A =

{
x′ � 1 if x′0 = 0
(x′ � 1) ⊕ (a0, a1, . . . , aw−1) otherwise

(10)

Consider c1 and c2 as given bitmasks and b1, b2, b3, and b4 are constant integer param-
eters. At each iteration t, the value xt+N resulting of the recurrence Equation (9) serves
as input of the tempering module of the TGFSR. This step improves the equidistribution
of the output. This step, which is described a sequence of bitwise/shift computation is
equivalent to a matrix product as formaized in Equation. (1)(b).

This one is defined in Equation (11) where c1, c2 (resp. b1, b2) are tempering bitmasks
(resp. bit shifts).

z = xt+N ⊕ (xt+N � b1),
z = z ⊕ ((z � b2)&c1),
z = z ⊕ ((z � b3)&c2),
yt = z ⊕ (z � b4).

. (11)

1.2. LINEAR PSEUDORANDOM NUMBER GENERATORS 29

Mersenne Twister (MT) is proposed as a special case of TGFSR that has a long period
of 2wN−c − 1. To achieve this, the authors in [46] propose two MT configurations:

• “MT11213” with a period of 211213 − 1 that has w = 32, N = 351, m = 175, c =

19, and a = 0xE4BD75F5 as recurrence parameters, and c1 = 0x655E5280, c2 =

0xFFD58000, b1 = 11, b2 = 7, b3 = 15, and b4 = 17 for tempering ones

• “MT19937”, which has a period of 219937 − 1, has w = 32, N = 624, m = 397, c =

31, and a = 0x9908B0DF as recurrence parameters, and c1 = 0x9D2C5680, c2 =

0xEFC60000, b1 = 11, b2 = 7, b3 = 15, and b4 = 18] for Tempering ones.

Two FPGA implementations of Mersenne Twisters MT19937 and MT11213 are proposed
in [52] for Monte Carlo applications in finance. The authors implement many Block
RAM memory or namely “BRAM” for matrix multiplications: a single dual-port BRAM
for MT11213 and two dual-port BRAM for MT19937. The RAM memory, configured in
the read-before-write mode, operates like a feedback shift register. In this mode, the new
inputs are stored in memory at appropriate write address, while the previous data are
transferred to the output ports. This latter coming from BRAM are then processed follow-
ing the Equation (6). The same approach has been proposed in [67] for MT19937 using 2
BRAM. Authors of [68], for their part, have implemented the MT11213 in three platforms
for the sake of comparison, namely: FPGA, CPU, and GPU. Remark that, for testing the
FPGA performances, initial and Tempering matrix parameters have been extracted from a
PC software, due to the hardware cost consuming by the initialization stage of MT. How-
ever, both transformation and Tempering modules are executed in FPGA. In this case,
two dual-port BRAMs are necessary for the other stages. This structure reduces the area
compared to other MT implementations in FPGA, and the speed up is about ≈ 9× and
≈ 25× compared to GPU and CPU respectively.

In [69], the authors have proposed two parallel PRNG implementations with many levels
of three different Mersenne Twisters: the MT19937-32bits, the MT19937-64bits, and the
SIMD-oriented Fast Mersenne Twister SFMT19937 [70]. The first one is the Interleaved
Parallelization (IP), that generates w-bits for each P memory block separately.

In the IP configuration, the N = 624-words state vector is located across multiple memory
banks of the same size. Each P memory bank has d input/output ports I/O of w-bits,
while each I/O port generates v-bits per clock cycle every q read operation. Therefore,
the number of clock cycle τ required to generate a random number is equal to τ = (w ∗
(q + 1))/v ∗ d. The second one is the Chunked Parallelization (CP), that uses the output
bits of each RAM bank as the far recurrence input for the next RAM bank. Therefore,
the N-words state vector is sequentially split into chunks across a number of banks of
different size. Even though the IP version has a better throughput than the CP one, the
latter uses lesser RAM blocks compared to the IP version (3 levels of CP use 2 BRAMs
while IP uses 3).

Authors of [71] give more hardware details for the deployment of RAM memories. Their
MT19937 implementation consists of a transform unit, a Temper Unit, a control unit “Cross-
bar" implemented using 7 multiplexers, a 3R/1W RAM, and an address unit for RAM ac-
cess (3 read addresses and 1 address for writing). The main key of the latter is the
implementation of 624 states of 32-bits register using BRAM memory of the FPGA (see
Figure 1.7). Therefore, instead of fetching the 3 state vectors using 3 BRAM as in [69],
two dual-port BRAMs of 312 × 32-bits can perform in each cycle 3 read operations and 1

30 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

source [71]

Figure 1.7: Mersenne Twister MT19937 architecture using 3R/1W BRAM: at each cycle,
R/W address is even address for BRAM0 and odd for BRAM1

write one. The R/W for the first BRAM operates with an even address, while the second
R/W is in the odd address.

In [72], various degrees of parallelization of the MT19937 architecture (of degrees 2, 3, 4,
and 6) implemented in [71] and used for Monte-Carlo based simulations are proposed.
In this case, the configuration of BRAM is the key of the parallelism, where each degree
corresponds to the number of BRAM that are used (4 degrees = 4 implemented RAMs).
The authors use one 206 × 32-bit, two 207 × 32-bit dual-port BRAM, and four registers to
provide state consistency for the given parallelized states for 3 degrees as an example.
Here, all I/O ports of three BRAM are in read mode during initialization, while in the
runtime just one is in read mode (the others being in write mode).

Finally, a recent FPGA implementation of Mersenne Twisters is presented in [73]. The
authors propose an alternative solution of the use of RAMs, which is named Circular
Buffer (CB). It is implemented for MT19937 (see Figure 1.8). The solution is based on
the fixed relationship between word indices. Words xt

j, xt
j+1, and xt

j+m written in the buffer
are passed to the transform unit. At each iteration, the first word xt

j is clocked out of the
buffer while new data xt+1

j is written to the free location. By this way, the linear recurrence
and the buffer of registers can be considered as a circular buffer. The linear recurrence
is carried out by some combinational logic between the input and the output of the buffer.
Therefore, the architecture is simplified since no logic operation for the table indices is
needed.

1.2.5/ CELLULAR AUTOMATA BASED PRNGS

Cellular Automata (CA) is a discrete model, proposed by John von Neumann and Stan
Ulam [74] as formal models of self-reproducing robots. The basic representation of one
dimensional CA PRNG includes N cells with an internal state machine that can be a

1.2. LINEAR PSEUDORANDOM NUMBER GENERATORS 31

(a) BRAM configured as 3R/1W (b) Circular Buffer

source [73]

Figure 1.8: Different deployments of the linear recurrence (L.R) for Mersenne Twister
PRNG: (a) using BRAM configured as 3R/1W, (b) using Circular Buffer of registers (L.R
is linear recurrence of transferring function of MT)

Boolean function rule and k = 1-bit output as described in Equation (12). The latter
consider the function f : {0, 1}N → {0, 1} as the local transition rule, and the cells neigh-
borhood size N is 2∗rd+1, where rd is the radius that represents the standard 1-D cellular
neighborhood. Therefore, at each iteration t, the CA structure can hold and update the
internal state for each cell, depending on the local rules and the states xt ∈ {0, 1} of their
neighborhoods j (j = 1, . . . ,N). There are 2N (rd = 1 and N = 3) states for a single CA
producing 256 (28) possible rules classed by the Wolfram code [75].

xt+1
j = f (xt

j−rd . . . xt
j . . . xt

j+rd) (12)

As an example, let us consider that N = 3, which leads to xt+1
j = f (xt

j−1, x
t
j, x

t
j+1). The

184 rule updates the middle bit xt
j and then left shifts the input in the next iteration t as

follows: f (111) = 1, f (110) = 0, f (101) = 1, f (100) = 1, f (011) = 1, f (010) = 0, f (001) = 0,
f (000) = 0 (i.e. 11101011→ 101011).

Hybrid CA generator (HCA) is defined with more than one rule and can be integrated as a
state transition machine of 2N/2 cycles between 2N rules. Each transition cycle has a 2×2N

length cycle. Two hybrid CAs are proposed in [76] as part of an encryption system. The
first one is a PRNG of single state transition using rules 90, defined by f (xt

1, x
t
2, x

t
3) = xt

1⊕xt
3,

and 150, defined by f (xt
1, x

t
2, x

t
3) = xt

1 ⊕ xt
2 ⊕ xt

3 to generate an encrypting real-time key
stream. The second one is a block cipher of two state transitions, each having 8 cycles
length with 51/153/195 rules. The aim of this application is to use the first HCA to select
the transition sequences between rules used by each cell of the second HCA in the block
cipher. The FPGA implementation of each CA is done with a logic combinational circuit
(LCC) to define the rules. Then it uses LCG to control the loading operation of the CA
and stores the data into a D flip-flop. Authors of [77], for their part, create an automatic
software tool to generate the RTL code of any HCA configuration. Finally, in [78], authors
increase the ratio of frequency/area and the security of their previous PRNG [77] by using
a chain of HCAs instead of a single one.

Mixed CA generator is proposed in [79], where the author mixes the outputs of a 37-bits
hybrid CA (rules 90 and 150) with a 43-bits LFSR to obtain a large period. However, some

32 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

source [81]

Figure 1.9: Self-Programmable cellular automata generator: uses a super-rule 90/156 to
dynamically determines when the rules have to change in each CA cell

drawbacks of this implementation are revealed during statistical evaluation, which can be
surpassed only if the two PRNGs are clocked at different clock frequencies. This is why
a new solution is presented in [80]. In this article, authors propose to XOR the last bit
of HCA with the last bit of LFSR to generate 1-bit per clock cycle. As a repercussion,
they found that the optimal combination for a PRNG of high quality is 16-bits for CA with
a 37-bits LFSR.

Self-Programmable CA (SPA) was presented first as a new rules for CA generator in [81].
The topological behavior of the generator proposed in [82] is the use of a super-rule
90/156 to dynamically determine when the rules have to change in each CA cell (see
Figure 1.9). In practice, the input rules of each neighbor cell are also a second CA
which is executed in parallel with the main cellular automata. Remark that, despite SPA
gives a better throughput than the LFSR/HCA combination PRNG [80], it fails to pass the
statistical tests of DIEhard battery.

Another cellular automata based PRNG is proposed in [83]. This latter combines a CA
with a Non-LFSR (NSFR) generator based on A2U2 stream cipher design. Recall that the
stream cipher A2U2 [84] was presented as a new key cryptographic generator of 56-bits
for RFID tags application. It has a LFSR counter of 7-bits and two non-linear feedback
shift registers (NFSRs, 17 and 9-bits). However, NFSR is known for its short period length.
Hence, their main contribution is to associate a CA PRNG of 9-bits to increase the period
of NFSR, both having feedback between them (which means that the seed of NFSR is
provided by CA and vise versa). This approach improves resistance to various forms of
cryptanalysis like correlation attacks and algebraic ones. For the sake of completeness,
notice that the authors of [85] have proposed a different implementation concept of the
usual rules in CA. In their proposal, the initial state configuration of CA and its length
depend on the current date.

1.3. NON-LINEAR PSEUDORANDOM NUMBER GENERATORS 33

1.3/ NON-LINEAR PSEUDORANDOM NUMBER GENERATORS

Chaotic generators (CPRNGs) are non-linear generators of the form x0 ∈ R: xt+1 = f (xt),
where f is a chaotic map. They are attractive applications of the mathematical theory
of chaos. Reasons explaining such an interest encompass their sensitivity to initial con-
ditions, their unpredictability, and their ability of reciprocal synchronization [86]. From
a cryptographer point of view, these chaotic PRNGs have major drawbacks often re-
ported [9].

Chaotic Mapping PRNG are based on a polynomial mapping that uses a non-linear
dynamic transformation, which is a quadratic mapping. Most of these generators are
based on the Logistic Chaotic Map called also “LCG” map [87], defined as follows:
xt+1 = α × xt(1 − xt), where 0 < xt+1 < 1 and α is the biotic potential (3.57 < α < 4.0).
The logistic map is mainly depending on the parameter α: its chaotic behavior is lost
when α is out of the range provided above. Moreover, if α > 4 and for almost all initial
values, the outputs diverge and leave the interval [0, 1]. The second most frequently used
function is the Hénon chaotic map [88], which takes a point (xt,yt) within the plan square
unit and maps it into a new point (xt+1, yt+1). This map is defined by these equations:
xt+1 = 1 + yt − a(xt)2 and yt+1 = bxt, where a and b are called canonical parameters.

In [89], the authors have used fixed point representation [90] to implement the logistic
map using Matlab DSP System Toolbox software. Fixed-point format is an approximation
of real numbers, with much less precision and dynamique range than the floating-point
format. Nevertheless, it has the merit of being very efficient in high-speed and low-power
applications. This unit requires less power and cost to manipulate such kind of numbers
than usual floating-point circuitry. They generate many designs with different lengths
from 16 to 64 bits, where the resources are depending on the precision (24 to 53 bits).
The multiplication is implemented with DSP blocks of FPGA that perform 18x25 bits mul-
tiplications, while the multiplication by a constant α is a simple series of add and left-shift
operations.

Authors of [91] compare the implementation of logistic map with the Hénon one. Unlike
the logistic map, the 64 bits multiplication in Hénon [88] map cannot be implemented
with a left shift operation, which leads to the use of DSPs blocks of the FPGA for all
multiplications needed to implement ax2. Two optimized versions of PRNGs based on
chaotic logistic map are proposed in [92], which aim to reduce resources and increase
frequency, unlike in [89,91]. The first one is based on LUT and DSP blocks of the FPGA.
The second one rewrites the logistic map equation as follows: xt+1 = αxt − α(xt)2. The
objective of these two PRNGs is to pipeline the multiplication operations and synchronize
them while adding some delays into each stage, in order to ensure a parallel execution
of sequences. The outputs are generated for each 8-16 clock cycles and in each cycle a
new seed is inserted.

In [93], the authors vary the biotic potential α and observe the divergence of random
for almost all initial values. Accordingly, they propose a range of the form [α, 1 − α],
where the biotic potential is α < 0.5. Another way to select the parameter α is presented
in [94]. They propose a couple of two logistic map PRNGs, each having different seed and
parameter (x0, α1 and y0, α2 respectively), where both generates pseudorandom numbers
synchronously. The main idea is to recycle the pseudorandom number generated by
the first chaotic map, namely xt+1, as the biotic potential α2 for the second one (yt+1)
when either 3.57 < xt+1 < 4 is satisfied or the sequence output is divergent. Another

34 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

coupling chaotic map is presented in [95]. In this work, the former is based on the Hénon
map and the latter is an 1-dimension logistic map. The former is used to generate a
random sequence, and the latter controls a multiplexer to choose the output of the first
one according to the value generated by the logistic map. The output of the logistic map
generator is then decomposed in 32 bits; the first most significant bit is XORed with its
neighbor bit. The result is then XORed again with the next bit until reaching the least
significant one.

Finally, in [96] four different chaotic maps are implemented in FPGA, namely, the so-called
Bernoulli, Chebychev [97], Tent, and Cubic chaotic maps. The implementation is done
with and without FPGA’s DSP blocks for the multiplication operations. The results show
that the Bernoulli chaotic map gives a higher ratio of area/power compared to the other
chaotic generators.

Spatiotemporal Chaotic PRNG is a temporally chaotic system which is an extension of
chaotic maps. It is also spatially chaotic (many mathematical models can be used to rep-
resent this type of generator). For instance, in [98] the authors present a spatiotemporal
chaotic PRNG , which is based on a coupled chaotic map lattices defined as

xt+1
i = (1 − ε) f (xt

i) +
ε

2
(f (xt

i−1) + f (xt
i+1)). (13)

In this equation, t (resp. i = 1, . . . , k) is a temporal (resp. a spatial) index of discrete
lattice, ε is the couple parameter, and f is a logistic map. They first deal with continuous
domain digitizing of all operands to be suited for hardware implementation. To achieve
this, they consider a particular version of Equation (13) where x ranges over {0, 1, . . . , 2k −

1} and f is a modified logistic map, f (x) = b
4x(2k − x)

2k c for a k-bits precision. Secondly,

to avoid the finite precision chaotic map problem, they compute only the insignificant bit
which is subject to be an output. Indeed, for each 25 clock cycles, only the w = 16
most insignificant bits of the random numbers would be used from each lattice and the
computational precision k = 32.

Chaotic based Timing Reseeding (CTR) proposed first in [99] aim at removing the short
period problem due to the quantization error from a nonlinear chaotic map PRNG. Instead
of initializing the chaotic PRNG with a new seed, the seed can be selected by masking the
current state xt+1 at a specific time (see Figure 1.10). More precisely, the reseeding unit
compares the two register states to check whether a fixed point has been reached. In this
case xt+1 is not streamed out. It is masked with a constant and the result is stored in the
initial register state. Additionally, it increases the period each time the condition is true or
the reseed period is reached (counter). This main concept of CTR was first implemented
in FPGA [100], in which the Carry Lookahead Adder [101] has been used to optimise the
critical path of the partial products of the multiplication operation. Unlike [100], authors
of [102] present more hardware details for reducing multiplication operation resources.
They also mix the output xt+1 with an auxiliary generator zt+1 to improve statistical tests.
The mixer module is a DX generator [103], whose output is as follows: zt+1 = (zt + (228 +

28)zt−7) mod (231 − 1). Then, the authors add the MSB-bit of xt+1 (32th bit) to the 31 LSB-
bits of the final output yt+1[30 : 0] = xt+1[30 : 0] ⊕ zt+1[30 : 0], which generates a full 32-bits
output state and has a full period. Both uses Circular Left Shift [104] (CLS) and End-
Around Carry Adder [105] (ECA) to optimize the multiplication operations. They finally
suggest to choose a reseeding period that must be not only prime, but also not a multiple
of the nonlinear chaotic map PRNG. The same approach has been used in [106] for

1.3. NON-LINEAR PSEUDORANDOM NUMBER GENERATORS 35

source [100]

Figure 1.10: Chaotic based Timing Reseeding PRNG: masking the current state xt+1 at a
specific time (fixed point between the two register states is reached)

plaintext encrypting/decrypting application system.

Differential Chaotic PRNG is a digitized implementation of a nonlinear chaotic oscillator
system in Rössler format [107]. It uses an approximated numerical solution to solve the
dynamic system generalization of the Lörenz hyperchaos. More precisely, a chaotic sys-
tem with multiple Positive Lyapunov Exponents (PLE [108]) is also known as hyperchaotic
system. Lyapunov exponents are a quantity that characterize the rate of separation of in-
finitesimally close trajectories. That is, a higher order of hyperchaotic system can be gen-
erated from a higher number of variables of PLE (order mhyperchaotic needs nPLE = 2m + 1
variables [109]). A basic representation of the dynamical system is proposed in [110,111]
Equation. (14).

−
...
X = Ẍ + B(Ẋ) + X

B(Ẋ) =

{
α1, if Ẋ > 1
α2, otherwise,

(14)

where, α1, α2 are integer values in the switch condition. The idea is to create a chaotic
system with a unique equilibrium point at the origin. Indeed, to guaranties a chaotic
generation, B value must switch between α1 >1 and α2 < 1.

This latter can expand in more than one direction (i.e., Euler approximation where Y = Ẋ
and Z = Ẍ) and generates a much more complex attractor compared to other chaotic
systems.

The resolution of Equation (14) was the main study done in [112] (with other differential
systems as the Chen [113] and Elwakil [110] ones). The authors deploy three different
numerical methods for each system: 4th order Runge-Kutta [114], mid-point [115], and
Euler techniques [116]. Unlike the Euler techniques that only require one calculus per

36 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

iteration, the mid-point provides more precise results but longer calculation paths. Addi-
tionally, the Runge-Kutta 4th-order have the longest calculation path but it has the most
accurate numerical approximation. Obviously, Euler techniques show better results for
implementation of differential chaotic methods in FPGA, with respects area and through-
put perspectives.

More details regarding implementation and optimization of the multiplication by a constant
in Equation (14) are provided in [117]. In this article, authors proposed to use the Euler
approximation, as illustrated in Equations (15), where the oscillation margins are within a
time interval [h, α1] (h is the Euler step).

Xt+h = Xt + hY t, where Y = Ẋ
Y t+h = Y t + hZt, where Z = Ẍ
Zt+h = Zt − h(Zt + Y tB(Y t) + Xt)

(15)

Their optimization is based on transformation of the parameters h = 2−a and α1 = 2b,
α2 = 0 to simplify the multiplication to a simple shift operation (a and b are positive pa-
rameters). They use a Carry Lookahead Adder (CLA) [101] and a Carry Save Adder
(CSA) [118] for the multiplication in the first two Equations. (15), and a Carry Propagate
Adder (CPA) [119] for the last one. Additionally, a post-processing is integrated for better
results in statistical tests, which specifically discards the most significant bits. Authors
of [91], for their part, have implemented the so-called Oscillator Frequency Dependent
Negative Resistors (OFDNR) [111], which uses the same Euler approximation illustrated
in Equations (15). However they have not detailed the resources they used for such
multiplication on their FPGA (e.g., DSP, LUT, . . .).

In [120] is presented a non-autonomous four-dimensional hyperchaotic PRNG based on
Rössler differential equations. In such a chaotic system some undesirable behaviors can
appear. Thus, an advanced process-control is necessary in order to delay the occurrence
of the hyperchaos. Therefore, the authors used Euler approximation and a control func-
tion of 256 bits Linear Feedback Shift Register (LFSR), whose outputs are multiplied by
the appropriate coefficient of the control function. However, a post-processing of 256-bits
based Fibonacci LFSR is used to remove the short-term predictability of hyperchaotic
generator and to successfully undergo the statistical tests of NIST batteries. The post
processing combines two loops of rotation and XOR feedback loops. The first one uses
a fixed 1-bit static rotation to suppress the short-term predictability. The second one is
based on a variable rotation controlled by a Fibonacci series of k-bits. The differential
sensitivity problem is solved by changing any bit while the other bits is propagating during
n-cycles.

Chaotic Iteration based PRNG (CI) is a pseudorandom number post treatment proposed
in [10,11] and based on Chaotic Iterations (CIs [15]). It is based on Devaney’s [4] theory
of chaos. This theory focuses on recurrent sequences of the form x0 ∈ R: xt+1 = f (xt). It
tries to find functions f which present elements of complexity and disorder.We will recall
the mathematical definition of this theory in the next Chapter 2.

1.4. TRUE RANDOM NUMBER GENERATORS 37

(a) PLL architecture (b) PLL timing

Figure 1.11: Phase-Locked Loop TRNG: detecting the jitter by sampling the reference
clock signal TCLK using a correlated signal TCLJ synthesized in the PLL

1.4/ TRUE RANDOM NUMBER GENERATORS

We focus now on FPGA implementations of truly random number generators (TRNGs).
FPGA based TRNGs are physical generators that use various hardware components of
FPGAs to produce random-like numbers in a faster way than using software. These
TRNGs use, as entropy source, either the electronic noise of embedded components
or some environmental sensors (temperature, noise, and so on). FPGAs are thus effi-
cient and inexpensive random number generators. Various techniques and hardware op-
timizations have already been proposed in the literature, while FPGA components have
been used in RNG context for optimization, mixing with external components, or as post-
processors.

1.4.1/ PHASE-LOCKED LOOP TRNGS

The Phase-Locked Loop (PLL) [37] is a circuit derived from an external clock generator
source like a quartz or a “Resistor Capacitor” circuit, which can be configured to produce
a signal whose phase is associated to the phase of the input signal (see Figure 1.11(a)).
This latter depends on the physical environment (power, temperature, or any other physi-
cal quantity), and it uses a jitter extraction technique as random stream, which is indeed
a short-term variation of the clock propagation. Analog PLLs use the jitter caused by
Voltage Controlled Oscillator (VCO) noise, while digital PLL [121] generators extract their
randomness from synchronous/asynchronous Flip-Flop components. The most common
jitter measurements used by FPGA vendors are, namely, the period jitter and the cycle-
to-cycle one. The first jitter is defined as the difference between the n-th clock period
and the mean clock period, while cycle-to-cycle jitter consists of the difference between
adjacent clock cycles in the collection of sampled clock periods.

The authors of [122] have proposed an analysis about extracting randomness from the
jitter of a PLL implemented on an Altera FPGA. Their study is based on detecting the jitter
by sampling the reference clock signal TCLK using a correlated signal TCLJ synthesized in
the PLL, where TCLJ = TCLK × (KM/KD) with KM and KD as PLL multiplier and divider that
must be prime number constants. According to [122], the maximum distance, further de-
noted as max(∆Tmin), between the two clocks CLK and CLJ must satisfy max(∆Tmin) < σ jit

to be able to extract randomness. Indeed, according to the authors, in ideal environmental

38 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

conditions, we have σ jit = 0 (we do not have any jitter). In that situation, the sampled out-
puts are deterministic and can be represented by a series of a bitwise addition of KD input.
According to these authors, the period in that situation is equal to TQ = KDTCLK = KMTCLJ.
Contrarily, in real case conditions, σ jit is necessarily negative, and so the output loses its
deterministic character and becomes random. Indeed, the maximum distance max(∆Tmin)
between the two clocks is dependent on the jitter distribution, while the outputs has a
direct impact by this latter following the expression [122]:

xt(nTCLK) = x
(
(nTCLK) −

i∑
j=0

Jτ j

)
, (16)

where τ is the jitter and J is the value of the output influenced by the jitter. The period is
changed in max(∆Tmin) = TCLK × GCD(2KM,KD)/(4KM), where KD is odd and max(∆Tmin)
is divided by 2.

This research work has been deepened in [123] by combining more than one PLL either
in parallel or in series. By doing so and due to this combination, the sensitivity S to the
jitter effect is significantly increased according to the formula:

S = TCLK max(∆Tmin). (17)

As expected, the lowest sensitivity is achievable by using only one PLL. In that case, the
number of random samples and their entropy are low, due to a low value of S . To solve this
problem, the authors add a second PLL, either in parallel or in a cascaded configuration,
the objective being to increase the entropy without increasing too much the sensitivity.

Authors of [124] have tested the impact of “environmental” PLL conditions (encompassing
its temperature, its bandwidth, etc.) on the statistical quality of the produced output. They
have deduced that a low bandwidth of PLL causes a higher number of critical samples,
which decreases the output jitter, and consequently increases the tracking jitter. Finally,
authors in [125] propose two configurations of PLL based TRNGs in embedded systems.

1.4.2/ RING OSCILLATOR TRNGS

A Ring Oscillator (RO) is a series of an odd number of NOT gates, whose outputs states
are balanced between two voltage levels, i.e., between bit 0 an bit 1. The NOT gates, or
Inverter Ring Oscillators IROs, are cascaded, while the output of the last inverter is fed
back to the first inverter of that chain (see Figure 1.12). In [126, 127], the authors have
proposed a TRNG based on two ring oscillators. This latter is rated by different clocks
generated by an internal PLL implemented on FPGA. The authors have also extracted
the jitter of the 2 ROs implemented in only one CLB slice.

Similarly, the authors of [128], have proposed an approach that combines ROs based on
inverters with XOR gates. Their approach is close to the LFSR one, except that they use
inverters, the latter being combined either using the Fibonacci setup or the Galois one.
The result also has an analog feedback to the input, where the feedback polynomial form
is f (xt) =

∑k
i=0 fixt+i, with f0 = fk = 1. However, the inverter does not reach a fixed state

if f (xt) = (1 + xt)h(xt) and the primitive polynomial is such that h(1) = 1. Authors have
finally demonstrated their ability to extract a better stable state compared to classical RO
TRNG, from which randomness can be produced.

1.4. TRUE RANDOM NUMBER GENERATORS 39

Figure 1.12: Inverters based ring oscillator

source [129]

Figure 1.13: Self-Timed ring architecture: at each ring stage L (Muller gate and an in-
verter), the jitter is propagated forward if yt = yt+1 or conversely backward, when the
output is the XOR of each extracted jitter by a Flip-Flop

1.4.3/ SELF-TIMED RING TRNG

Self-Timed Ring (STR) proposed in [129–131] is an alternative approach to generate
clock jitter compared to the inverter RO based TRNG. The structure of STR consists of
a micropipeline architecture [132], as described in Figure 1.13. In this latter, a ring of L
stages can generate k-bits outputs, denoted by yt (0 6 k 6 L − 1), at each stage and
with a propagation phase equal to ∆ϕ = T/2L. A stage consists of a Muller gate and an
inverter. Therefore the jitter period in STRs, for each ring stage, can be considered as
an independent entropy source compared to the propagation of one event all around the
ring in IRO.

Two situations can occur. If the outputs of two successive stages are equal (yt = yt+1),
then the clock jitter is propagated forward. Conversely, in case where yt , yt−1, then the
jitter is propagated backward. The final output sequence (yt)16k6L−1 is extracted at each
ring stage output using a Flip-Flop, and the result is combined according to the following
XOR operation: ψ = y1 ⊕ y2 ⊕ · · · ⊕ yt+k−1.

1.4.4/ METASTABILITY TRNG

Metastability is a phenomenon that can occur when a signal is transferred between cir-
cuitry in unrelated or asynchronous clock domains. This short time phenomenon can
cause system failures in digital devices.

Authors of [133] have presented a way to use such metastability phenomena as entropy
sources generated by 5 IRO (Ring Oscillator based Inverters) stages. Their goal is to
maintain metastability as long as possible, while extracting randomness from this entropy
source. To achieve this objective, the authors have firstly implemented inverters as loop
rings, and have used a clock generator controller module to switch the connectivity be-

40 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

tween the IRO stages following two modes, namely the metastability mode “MS” and the
generation one, as described in Figure 1.14. By doing so, the output converges to the
metastability level, and it stays a longer time in that state than when using a bi-stable
circuit (Flip-Flop), causing thus a high entropy. Secondly, the authors wanted to estimate
the robustness of the system after applying the sampling process in various environmen-
tal variation modes on FPGA. To achieve this second objective and for a higher quality
output, they have added another stage to decrease the operation rate, by applying a Von-
Neumann post-processing. Such a post-processing stage influences the loads of the last
inverter (RC parasitic). Let us finally note that, operationally speaking, the end of the IRO
was implemented in ASIC while the post-processing process was achieved by using a
FPGA in order to test the global device.

(a) Metastability based TRNG architecture

(b) Metastability timing switching based TRNG

source [133]

Figure 1.14: (a) TRNG based on the metastability of multistage architecture inverter ring
oscillator, (b) The timing switching connectivity between the IRO stages following the
metastability mode “MS” and the generation mode.

Another metastability circuit used as a TRNG has been proposed in [134]. Authors of
this article have proposed to use the Flip-Flop metastability when there is a violation
in setup/hold time [135] (see Figure 1.15). The setup time ST is the amount of time a
synchronous input of the Flip-Flop must be stable before the active edge of the clock.
The hold time HT is the amount of time a synchronous input of the Flip-Flop must remain
stable after this active edge of the clock (c.f. Figure 1.15). The violation occurs when
the input data is between these two times. However, due to their short time (ST/HT), the
output must converge rapidly to a stable state 0 or 1 if the input is stable during this two
times. Their system is based on a closed-loop feedback mechanism for auto-adjustment
on delay ∆, controlled by the Programmable Delay Lines (PDLs) stage based on a LUT,
in order to avoid violation and maintain metastability.

The proposed system uses at-speed monitor to keep tracking the output bit probability
and the Proportional-Integral (PI) controller, in order to decide to add or subtract the delay
difference. As for the updated/corrected delay difference ∆, it is the difference between

1.5. EXPERIMENTAL RESULTS AND HARDWARE ANALYSIS 41

(a) Metastability creating in FF (b) Metastability timing of FF

source [136]

Figure 1.15: (a) The setup (ST) and hold (HT) scenarios operations in Flip-Flop, (b) the
output probability depending the delay difference (∆) of the input signal

the bias/skew caused by the asymmetric routing ∆b, with delay issued by environment
changes (temperature, etc.), and the delay ∆ f corresponds to the “corrected feedback
delay difference” injected by PDL, according to the following formula:

∆ = ∆p + ∆b − ∆ f . (18)

Their method consist of tuning sampling and signal arrival times by setting ∆ to 0, which
leads to the metastability of the D-Flip-Flop.

An updated version of this TRNG has finally been proposed in [136]. Thanks to an anal-
ysis of probability, they reach some metastable states for a long period and prevents de-
terministic states. To do so, they have used an additional hardware resource as memory
for storing the outputs, and a Hamming weight to calculate the history of the probability
bits.

1.5/ EXPERIMENTAL RESULTS AND HARDWARE ANALYSIS

1.5.1/ METHODOLOGY

Formally speaking, the space represents the allocation cost of most objects used in the
algorithm (tables, indexes, loops, etc.). It can also be combination of many PRNG algo-
rithms. In terms of FPGAs, the latter can be translated in memories, registers, and LUT
resources, etc. These resources can be a single basic operation (like addition or sub-
traction, multiplication of variables or constants), algebraic functions (division, modulo,
etc.), or any other elementary function. The question raised in this section is thus: how
much hardware resources are needed to provide pseudorandom numbers with a good
statistical profile? And which algorithms outperform the other ones in terms of internal
resources, while providing higher throughput?

Almost aforementioned (P)RNGs have been evaluated regarding their hardware perfor-
mance according to three parameters: (1) the area, which is the result of (LUT + FF)× 8,
(2) the throughput being the frequency (clock-to-setup) multiplied by the RNG output

42 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

length for one clock cycle, and (3)the ratio between throughput over area in Mega bits
per area unit.

1.5.2/ HARDWARE COMPARISON

Hardware implementation resources required by linear (P)RNGs, their throughput, and
the rate area over throughput are presented in Figure 1.16, when nonlinear ones are in
Figure 1.17. Finally, the TRNGs are represented in Figure 1.18. We can notice from
these figures that not all research papers consulted in our investigation offer the three
elements of comparison (area, throughput, and statistical tests). Moreover, most research
of PRNG in FPGA level focus on linear PRNG than others, which is explained by an easier
implementations of these latter. Indeed, Chapter 3 describes some implementations of
these generators on FPGA within a common FPGA platform.

Let us start start to discuss the results obtained with linear PRNGs, as illustrated in Fig-
ure 1.16. It appears clearly that the cellular automata has the lowest area, when com-
pared to the other approaches. Such results can be explained by the need of a low
amount of resources to store both the states and the rules in the cellular automata. Con-
versely, the TGFSR family deploys BRAM block memories to read 3 word and write the
output in one cycle, whereas LFSR family uses more LUTs in order to parallelize the
shifting process based on the polynomial equation. Another parameter is the use of black
box as DSP and block memories. The latter optimize the logic operation as multiplication,
support the floating point, store internal process in a multidimensional bloc, and finally
read and write multiple states in parallel from the BRAM. These advantages, leading to
the difficulty to compare such designs to other ones that do not have that, lead naturally to
further area bloc consumption in the case of an ASIC implementation. As a consequence,
we will consider that (P)RNGs without black boxes are better and more recommended for
cryptographic applications.

In terms of area, the PRNGs based on cellular automata [80, 82, 85] have the lowest re-
source occupation of FPGA, if we compare them to the other ones (see Figure 1.16(a)).
By comparison, the PRNG based on LFSR [59] is 76 times larger. We can also remark
that most TGFSR implementations do not consider the seed process, while its computing
increases the area and decreases the throughput, during the load of 632 words sequen-
tially in the block memories. The throughput, for its part, is completely related to both
data path and width (dynamic range) of the design. Additionally, we must take under
consideration the fact that most linear PRNGs are 32 bits ones, while the throughput
increases with generators manipulating more than 64 bits. However, as stated previ-
ously, disabling DSPs and Block memories induces a decrease in the frequency and
the throughput respectively. Figure 1.16(b) illustrates opposed results for the through-
put, where the LFSR based LUT family has the largest throughput of 343 Gbps, while it
is 5 Gbps for the Mersenne Twister. However, the latter are for 1, 042 bits and 128 bits
respectively, when for 32 bits, we have 128 Gbps for the LFSR-LUT [66].

Let us focus now on the Throughput/Area ratio (see Figure 1.16(c)). Here, the LUT and
shift register based design [66] outperforms all the other linear PRNGs: the ratio is twice
as efficient as the second best one [72], which is the Mersenne Twister based PRNG with
parallel BRAM.

The performance of PRNGs belonging in the chaotic category are illustrated in Fig-
ure 1.17. The one that is based on the logistic map has the lowest area occupation.

1.6. STATISTICAL TEST ANALYSIS 43

Results obtained concerning area (Figure 1.17(a)) can be explained by the use of a ba-
sic operation (the shift one), and because the bionic coefficient α can be considered
as a constant when implementing the logistic map. PRNGs based on chaotic itera-
tions, for their part, need to embed linear PRNGs for their strategies: on the one hand,
CIPRNG-XOR uses 3 PRNGs, while on the other hand ICGPRNG manipulates only one,
but with a permutation function. Figure 1.17(b) illustrates a good performance of the
first version chaotic iterations family compared to the differential PRNG based Euler opti-
mization [120], an optimized logistic map [92], and these PRNG based chaotic Bernoulli
map [96] have the largest throughput in this category of chaotic generators. Regarding
the Throughput/Area ratio in Figure 1.17(c), the chaotic PRNG based on LCGM [91] out-
performs all the other linear PRNGs (we consider the lowest ratio for comparison): the
ratio is 4.1 times more efficient than the second best one [10], which is a chaotic iterations
generator based on BBS and XORshift.

Finally, considering the TRNG analysis, only a throughput comparison is provided in Fig-
ure 1.18. Indeed, all the considered authors prefer not to discuss about area... which is
so low when compared with PRNGs. Hence, even with this main advantage of optimized
resources usage, the throughput is too low and it ranges from Hz to just a few kHz. Com-
pared to PRNGs, TRNGs are probably more secure, while PRNGs can be deploied as
fast generators.

As a conclusion, linear PRNGs can play an important role for FPGA applications, due to
their rapidity and parallel generation, if we compare them to other pseudorandom gen-
erators. Chaotic PRNGs, for their part, are more secure. They are non linear PRNGs
and have low hardware resources compared to the linear ones. Finally, despite the low
throughput generated by the TRNG, they are still consuming only a few logic while gen-
erating a real random output.

1.6/ STATISTICAL TEST ANALYSIS

Statistical tests are used to evaluate whether the output of a given RNG can be separated
from a real random sequence obtained, for instance, by rolling a dice. Such tests are
usually grouped in “Batteries”, like the FIPS [137], DieHARD [43], NIST SP800− 22 [138],
TestU01 [44], or AIS [139] ones. In what follows, the content of these tests is recalled,
for completeness purpose so as to make our article self-contained..Indeed, all the afore-
mentioned test batteries generate a common estimated value named the p-value. This
latter assesses the statistical behaviors for each test applied in a sequence generated
from RNGs.

The National Institute of Standard and Technologies introduced their first test battery
namely Federal Information Processing Standard (FIPS) 140-1 [137] in 1994. These quick
result tests have been further updated to the FIPS 140-2 [140] version, which covers more
complex test batteries (focused for instance on security level).

Meanwhile, the DieHARD battery has been proposed by George Marsaglia [43]. It con-
tains 18 tests of randomness. It was designed to provide a better way of analysis in
comparison to the previously released NIST tests. Unlike this latter, the p-values have
now to belong to some fixed chosen interval [α, 1 − α], with a signification level of α for
5% for instance. An example of these batteries are: “Birthday spacings”, “Overlapping
permutations”, “Ranks of matrices”, “Monkey tests”, “Count the 1′s”, “Parking lot”, “Min-

44 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

[60
]-S

G

[60
]-A

SG

[59
]-S

G

[59
]-P

L

[66
]-L

UT

[66
]-F

IF
O

[66
]-S

R
[68

]
[71

]

[72
]-2

d

[72
]-6

p
[80

]
[82

]
[85

]
0

1

2

3

·104

6,
33

6 12
,3

36

7,
39

2 10
,7

12 16
,3

84

25
,5

84

19
,9

68

3,
24

8

2,
36

0

2,
12

8

5,
35

2

47
2

34
4

98
4

LFSR TGFSR CA

(a) Area ((LUT+FF)×8)

[60
]-S

G

[60
]-A

SG

[52
]-R

an

[52
]-R

an
1

[59
]-S

G

[59
]-P

L

[66
]-L

UT

[66
]-F

IF
O

[66
]-S

R

[52
]-M

T19
93

7

[52
]-M

T11
21

3
[67

]
[68

]

[69
]-M

T-3
2ip

[69
]-M

T-3
2c

p

[69
]-M

T-6
4ip

[69
]-M

T-6
4c

p

[69
]sf

mt-1
28

cp [71
]

[72
]-2

d

[72
]-6

p

[73
]-c

b

[73
]-3

p
[76

]
[78

]
[80

]
[82

]
[85

]
0

200

400

3.
26

6.
46

10
.2

4
12
.8

4.
7 13
.3

12
8.

6
48

34
3.

2
4.

9
5.

5
0.

78 8.
5 22
.3

24 43
.9

42
.6

10
7.

5
14
.4

16
.7 44
.6

10
.8

11 2
·
10
−

2

2.
4
·
10
−

2

2.
3

5
·
10
−

2

0.
24

LFSR
TGFSR

CA

(b) Throughput (Gbps)

[60
]-S

G

[60
]-A

SG

[59
]-S

G

[59
]-P

L

[66
]-L

UT

[66
]-F

IF
O

[66
]-S

R
[68

]
[71

]

[72
]-M

T-2
d

[72
]-M

T-6
p

[80
]

[82
]

[85
]

0

2,000

4,000

6,000

8,000

1,
94

3.
56

1,
90

9.
6

1,
57

2.
76

80
5.

41

12
7.

4

53
3

58
.1

8

38
2.

12

16
3.

89

12
7.

42

12
0

20
5.

22

6,
88

0

4,
16

9.
49

LFSR TGFSR CA

(c) Ratio (Throughput/Area) (Mbit per area)

Figure 1.16: Linear PRNGs FPGA hardware analysis.

imum distance”, “Random spheres”, “The squeeze”, “Overlapping sums”, “Runs”, and
“The craps”.

The AIS-31 battery [139] is a German standard to test and evaluate the security properties

1.6. STATISTICAL TEST ANALYSIS 45

[89
]

[91
]-L

CGM

[91
]-H

en
on

[91
]-F

NDR
[92

]
[93

]
[94

]
[95

]

[10
2]-

CTR

[11
2]-

LR
Z-E

UL

[11
2]-

LR
Z-M

P

[11
2]-

LR
Z-R

K4

[11
2]-

Che
n-

EUL

[11
2]-

Che
n-

MP

[11
2]-

Che
n-

RK4

[11
2]-

ELW
-E

UL

[11
2]-

ELW
-M

P

[11
2]-

ELW
-R

K4
[11

7]
[12

0]

[10
]-C

I

[11
]-C

I
0

1

2

·104

1,
28

8

64
0

4,
56

8

2,
43

2

9,
24

0

6,
42

4

18
,8

12

1,
32

0

11
,9

03

3,
06

4

4,
28

8

10
,5

04

2,
76

0

5,
31

2

13
,6

72

2,
89

6

5,
14

4

13
,9

68

2,
14

4

9,
44

8

3,
65

2

6,
11

4

Chaotic Map
Differential Chaotic

Chaotic Iteration

(a) Area ((LUT+FF)×8)

[89
]

[91
]-L

CGM

[91
]-H

en
on

[91
]-F

NDR
[92

]
[93

]
[94

]
[95

]

[96
]-B

[96
]-C

he
n
[96

]-T

[98
]-S

pa
tio

[10
0]-

CTR

[10
2]-

CTR

[11
2]-

LR
Z-E

UL

[11
2]-

LR
Z-M

P

[11
2]-

LR
Z-R

K4

[11
2]-

Che
n-

EUL

[11
2]-

Che
n-

MP

[11
2]-

Che
n-

RK4

[11
2]-

ELW
-E

UL

[11
2]-

ELW
-M

P

[11
2]-

ELW
-R

K4
[11

7]
[12

0]

[10
]-C

I

[11
]-C

I
0

5

10

15

2.
12

4.
84

1.
86

5.
86

11
.2

1.
5

0.
57 0.
81

8.
5

3.
76

3.
58

0.
51

6.
4

6.
4

1.
71

0.
9

0.
42

3.
9

2.
3

0.
9

4.
06

2.
48

1.
07 2.

1
13
.2

6.
4

6.
4

Chaotic Map
Timing Reseeding

Differential Chaotic

Chaotic Iteration

(b) Throughput (Gbps)

[89
]

[91
]-L

CGM

[91
]-H

en
on

[91
]-F

NDR
[92

]
[93

]
[94

]
[95

]
[10

2]

[11
2]-

LR
Z-E

UL

[11
2]-

LR
Z-M

P

[11
2]-

LR
Z-R

K4

[11
2]-

Che
n-

EUL

[11
2]-

Che
n-

MP

[11
2]-

Che
n-

RK4

[11
2]-

ELW
-E

UL

[11
2]-

ELW
-M

P

[11
2]-

ELW
-R

K4
[11

7]
[12

0]

[10
]-C

I

[11
]-C

I
0

2

4

·104

60
7.

55

13
2.

37

2,
45

3.
28

41
5.

3

82
5 4,
28

2.
67

32
,9

45
.7

1

1,
62

1.
62

1,
85

9.
84

1,
79

1.
81

4,
76

4.
44

25
,0

09
.5

2

70
7.

69

2,
30

9.
57 15
,1

91
.1

1

71
3.

3

2,
07

4.
19 13
,0

54
.2

1

1,
02

0.
95

71
7.

66

57
0.

63

95
5.

31

Chaotic Map
Differential Chaotic

Chaotic Iteration

(c) Ratio (Throughput/Area) (Mbit per area)

Figure 1.17: Non-lineair PRNGs FPGA hardware analysis.

of truly random number generators. It uses 9 statistical tests for the evaluation of a TRNG.
AIS can be divided in two categories: the first one consists of T0-T4, which are the same
function of FIPS 140-1 [137]. These later are mostly used to test the outputs of a post-

46 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

[12
2]-

PLL

[12
3]-

PLL

[12
5]-

PLL

[12
6]-

RO

[12
7]-

RO

[12
8]-

RO

[12
9]-

STR

[13
3]-

Meta
-R

O

[13
4]-

Meta
-F

F
0

20

40

60

80

69

1.
92

12
.8

0.
59

12
.5

13
.8

10

50

2

PLL RO Self Timed Ring Metastability

Figure 1.18: TRNGs FPGA implementation analysis: Throughput (Mbps).

processing. T0 is the “disjointedness test”, which collects 65536 of 48-bit and verifies that
two adjacent values must not be equal. T1 is the monobit test, T2 is the poker test, T3
is the run test, and T4 is the longest run test. The T5 is the auto-correlation test, where
T6 is a “uniform distribution test” including of 2 sub-tests. T7 is a “comparative test for
multinomial distributions”, and finally T8 is an entropy test (Coron’s test).

In the other side, National Institute of Standard and Technologies introduces a new test
battery known as “NIST SP800 − 22” [138]. This one aims at testing the random profile
of a given sequence using 15 tests. More precisely, it evaluates a long binary sequences
generated by the RNG for the randomness and a higher security testing level than the
FIPS 140-2. The tested sequences must have a fixed length N, where the parameter
N is such that 103 < N < 107. Then, for each statistical test, a set of s sequences is
produced by the RNG under test, and p-values are obtained. They all need to be larger
than 0.0001 to reasonably consider the associated sequences as uniformly distributed and
cryptographically secure according to NIST standards.

Following “NIST SP800− 22” [138], the tests are: “Frequency monobit”, “Frequency within
a block”, “Runs Test”, “Longest run of ones in a block”, “Binary matrix rank”, “Discrete
Fourier transform (spectral)”, “Non-overlapping template matching”, “Overlapping tem-
plate matching”, “Maurer’s universal statistical test”, “Serial test”, “Approximate entropy”,
“Cumulative sums”, “Random excursions”, and “Random excursions variant”.

TestU01, for its part, is currently the most complete and stringent battery of tests for
RNGs [44], which groups more than 516 tests inside 7 sub-batteries. In this section,
we focus on three major sub-batteries, that encompass 319 tests and which are specific
to PRNGs. They are, namely, the SmallCrush, Crush, and BigCrush batteries of tests.
Big Crush is the most difficult sub-battery in TestU01. This latter uses approximately 238

pseudorandom numbers and applies 160 statistical tests (it computes 160 p-values, that
must belong to [0.001, 0.999] in order to pass the considered test).

The 7 sub-batteries are listed below.

• Small crush: The first battery to check, with 15 p-values reported. This is a fast
collection

• Crush: This battery includes many difficult tests, like those described in [141]. It
computes a total of 144 tests and p-values, which resume a total of 235 random

1.6. STATISTICAL TEST ANALYSIS 47

numbers and 96 statistical tests.

• Big crush: A suite of very stringent statistical tests, and the most difficult battery
to pass. It computes a total of 160 tests and p-values, which resume a total of 238

random numbers and 106 statistical tests.

• Rabbit: This battery of tests reports 38 p-values.

• Alphabit: Alphabit and AlphabitFile have been designed primarily to test hardware
random bits generators. A 17 p-values are reported.

• Pseudo-DieHARD: This battery implements most of the tests contained in
DieHARD or, in some cases, close approximations to them. It is not a very stringent
battery. Indeed, there is no generator that can pass Crush and Big crush batteries
and fail Pseudo-DieHARD, while the converse occurs for several defective genera-
tors. 126 p-values are reported here.

• FIPS_140_2: The NIST battery, recalled previously.

1.6.1/ STATISTICAL RESULTS OF FPGA BASED RNG

In Table 1.1 and 1.2, a number of generators are classified according to the battery test
they have undergone. As it can be observed, the most stringent battery (Big crush)
has only been applied twice in the literature, namely [10, 127]. Let us notice that most
(P)RNGs pass the Diehard and NIST batteries, while only a few PRNGs have been tested
using the FIPS that has been integrated latter inside the NIST. Considering the TestU01
one, only crush batteries are usually considered. All generators fail at least one test, with
the exception of chaotic iterations generators that can pass the whole battery.

Authors in [12, 14] investigate the related problem for linear PRNGs. They show too that
usual chaotic PRNGs are not passing the BigCrush when they consider its non linearity.
However, being linear does not lead to a high linear complexity, which is defined by the
degree of their polynomial characteristic function. However, most random number gen-
erators are linear recursive, and so they fail in the so-called statistical Linear Complexity
Test of TestU01 [44]. This test characterizes the (P)RNGs by their longest LFSR model:
non randomness is claimed when the model is too short. This model is estimated by using
the well-known Berlekamp-Massey algorithm [142]. It determines the shortest polynomial
of a linearly recurrent finite output sequence in GF2. Note that all the other generators fail
too the linear complexity test, except for PCG32 and MRG32K3a: indeed, only PRNGs
based on chaotic iterations are passing TestU01. Under this category, the authors pro-
pose too an extended internal space of 64 bits (CIPRNG-XOR) for 32 bits generators,
when they increase the number of internal iterations to be uniformly distributed and to
pass statistical tests.

Finally, TRNGs are hard to test with TestU01 (specially the BigCrush battery), as it needs
1038 random bits for a full test. Figure 1.18 shows a general throughput of the order
of Kbps, which makes it difficult to collect the minimum amount of data needed in such
tests. Under these conditions, only the TRNG of [127] based on ring oscillators has
been proven to pass with success the BigCrush battery. Note finally that other batteries
offer more flexibility and need a lower amount of bits for their embedded tests (namely,
Diehard, NIST, and AIS), but they are less stringent and trustworthy than TestU01.

48 CHAPTER 1. RANDOM NUMBER GENERATORS ON FPGA

Table 1.1: Statistical Tests Analysis: Diehard, FIPS, and NIST
RNG Diehard FIPS NIST

PRNG

[143]
[144]
[145]

[71,72]
[52,69]
[80,82]
[83,85]

[98]
[146]

[60]
[59]

[61,145]
[11,117]
[98,120]
[78,85]

Li and Chen [146,147]
[148]

TRNG [127]
[129]

[124]
Cherkaoui [129,131]

[133]

[122]
[123]
[126]
[125]

Cherkaoui [129,131]
[134,136]

Table 1.2: Statistical Tests Analysis: TestU01 Crush and BigCrush, AIS

RNG TestU01
Crush

TestU01
BigCrush AIS

PRNG

[143]
Thomas [64,144,149]

[71,72]
[69]

[150]
[89,92]

[95]

[10]

TRNG [127] Cherkaoui [129,131]
[133]

1.7/ CONCLUSION

We have provided a widespread coverage of the current research in hardware implemen-
tation of random number generators on FPGA. We have first recalled well known “linear
generators”, encompassing LCGs, LFSRs, look-up table optimised ones, twisted gener-
alized feedback shift registers, and cellular automata. We next have deeply investigated
the non-linear ones, based on Blum-Blum-Shub or on chaotic maps. Then a large review
of the true random number generators for FPGA has been proposed, encompassing re-
spectively the phase-locked loop, the ring oscillator, the self-timed ring, and the stability
TRNG. As a first step, we intents in chapter 3 to implement on the same FPGA platform
the most efficient generators with respect to the area [85] [82] [151], wrt. the through-
put [149] [120] [92], wrt. the ratio between these two criteria [149] [151] [10], and wrt. the
statistical property [10] [149]. A second stage would consist in mixing some of them and
to see how their expected properties may be preserved.

2
CHAOTIC ITERATION BASED PRNG

This section introduces the preliminaries and the mathematical proofs used for our pro-
posals based on chaotic iteration. In this chapter, we recall the Boolean domain, the
different iteration pattern, and their graph representation. In second part, we present all
the mathematical theory related to our contributions for chaotic iterations PRNGs, which
is based on unary and parallel pattern. Then, it will be the turn of the mathematical be-
haviours of the second contribution based on generalized iteration pattern. All these back-
ground and the mathematical demonstration of chaos are inspired from the contribution
of Jean-François Couchot (HDR reports [152]), Christophe Guyeux (Phd thesis [153]),
and our submitted papers.

2.1/ PRELIMINARIES

In what follows, we consider the Boolean algebra on the set B = {0, 1} with the classical
operators of conjunction � . �, of disjunction � + �, and of unary negation � �.

Let N be a natural number. We introduce some notations about elements of BN. The set
{1, . . . ,N} will be denoted by [N]. The ith component of an element x ∈ BN is written as
xi. If the set I is a part of [N], then xI is the y ∈ BN such that yi = (1 − xi) if i ∈ I and
yi = xi otherwise. We consider the two abbreviations x for x[N] (each component of x is
negated: it is a component to component negation) and xi to x{i} for i ∈ [N] (only xi is
denied in x). For any x and y in BN, the set ∆(x, y) contains the i ∈ [N] such that xi , yi.
Indeed, for f : BN → BN, the ith component if f is named fi, which is a BN function in B.
Finally, for each x in BN, the set ∆ f (x) is defined by ∆ f (x) = ∆(x, f (x)). We can assume
that f (x) = x∆ f (x).

Example. Let consider N = 3 and f : B3 → B3 such that f (x) = (f1(x), f2(x), f3(x)) with

f1(x1, x2, x3) = (x1 + x2).x3,
f2(x1, x2, x3) = x1.x3 et
f3(x1, x2, x3) = x1 + x2 + x3.

The Table 2.1 illustrates the mapping of each element of x ∈ B3. For x = (0, 1, 0), the
following assertions can be deduced directly from the table:

• f (x) = (0, 0, 1),

• for I = {1, 3}, xI = (1, 1, 1) and x = (1, 0, 1),

50 CHAPTER 2. CHAOTIC ITERATION BASED PRNG

x f (x)
x1 x2 x3 f1(x) f2(x) f3(x)
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 0 1
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 0 0 1
1 1 1 0 1 1

Table 2.1: Map of (x1, x2, x3) 7→ ((x1 + x2).x3, x1.x3, x1 + x2 + x3)

• ∆(x, f (x)) = {2, 3}.

2.1.1/ BOOLEAN DOMAIN

A Boolean domain maps a function f from Boolean domain to itself and it is defined by:

f : BN → BN, x = (x1, . . . , xN) 7→ f (x) = (f1(x), . . . , fN(x)),

and an iterative scheme or an updating mode.

From an initial configuration x0 ∈ BN, the (xt)t∈N sequence of the system configurations is
constructed according to one of the following schemes:

• Synchronous parallel scheme: based on the recurrence relation xt+1 = f (xt). All xi,
1 ≤ i ≤ N are thus updated at each iteration using the previous global state xt of the
system.

• Unary scheme: this scheme is sometimes called chaotic in the literature. It consists
in modifying the value of a single element i, 1 ≤ i ≤ N, at each iteration. The choice
of the element that is modified at each iteration is defined by a sequence S =

(
st)t∈N

which is a sequence of indices in [N]. This sequence is called unary strategy. This
mode is set for any i ∈ [N] by:

xt+1
i =

{
fi(xt) if i = st,

xt
i otherwise.

(19)

• Generalized scheme: in this scheme, the values of a set of elements of [N] are
modified at each iteration. In the particular case where the value of a singleton
{k}, 1 ≤ k ≤ N, is modified at each iteration, we find the unary mode. In the second
particular case where the values of all the elements of {1, . . . ,N} are modified at each
iteration, we find the parallel mode. This mode thus generalizes the two previous
modes. More formally, at tth iteration, only the elements of the st ∈ P([N]) part
are updated. The sequence S =

(
st)t∈N is a sequence of sub-sets of [N] called

generalized strategy. This scheme is based on the relation defined for all i ∈ [N] by:

xt+1
i =

{
fi(xt) if i ∈ st,

xt
i otherwise.

(20)

2.2. UNARY AND PARALLEL CHAOTIC SCHEME 51

Where
F f : {N,BN} → BN, (i, x) 7→ (x1, . . . , xi−1, fi(x), xi+1, . . . , xN),

The following section describes how to graph the evolution of such Boolean domain.

2.1.2/ ITERATION GRAPHS

Let N a set of positive integer and f : BN → BN, several evolutions are possible according
to the iterative scheme retained. These latter are represented by an oriented graph whose
nodes are the elements of BN (see FIGURE 2.1)

• The graph of the synchronous iterations of f , denoted GIS(f), is the oriented graph
of BN which contains an edge x→ y if and only if y = f (x)

• The graph of unary iterations of f , denoted GIU(f), is the oriented graph of BN which
contains an edge x → y if and only if there exists i ∈ ∆ f (x) such that y = xi. If ∆ f (x)
is empty, we add the edge x→ x.

• The graph of generalized iteration of f , denoted GIG(f), is the oriented graph of BN

which contains an edge x → y if and only if there exists a set I ⊆ ∆ f (x) such that
y = xI. We can notice that this graph contains as subgraph both the one of the
synchronous iterations and that of the unary iterations.

Example. Lets takes the example of the preliminaries section (Section 2.1) as an illus-
trative example with its mapping table (Table 2.1). The Figure 2.1 shows three iteration
graphs associate to f .

000

001

101

010

011

100

111

110

(a) GIS(f)

000

001

101

010

011

111

100 110

(b) GIU(f)

000

001

101

010

011

111

100 110

(c) GIG(f)

Figure 2.1: Graphs of iterations function f : B3 → B3 such that (x1, x2, x3) 7→ ((x1 +

x2).x3, x1.x3, x1 + x2 + x3). We notice the cycle ((101, 111), (111, 011), (011, 101)) in FIG-
URE (2.1(a)).

2.2/ UNARY AND PARALLEL CHAOTIC SCHEME

In this section, a recent theoretical approach, namely the so-called Chaotic Iterations
(CIs [15]) of discrete dynamical systems, is reviewed. It is based on the reputed math-

52 CHAPTER 2. CHAOTIC ITERATION BASED PRNG

ematical theory of chaos, historically defined by Devaney [4] and Li-Yorke [154] using
mathematical topology and measure theories. This framework focuses on recurrent se-
quences of the form x0 ∈ R, xt+1 = f (xt), and it studies for which function f , such
sequences present elements of complexity and disorder. Such chaotic sequences are
candidate to provide pseudorandomness, leading to the field of chaotic pseudorandom
number generators (CPRNGs). Investigating in which extent topological properties of dis-
order can lead to random is an attractive application of the mathematical theory of chaos.
Reasons explaining such an interest encompass their sensitivity to initial conditions, their
unpredictability, and their ability of reciprocal synchronization [86].

With more details, the mathematical theory of chaos, as defined by Devaney [4], takes
place into a topological space (X, τ). It studies the iterations x0 ∈ X, and ∀t ∈ N, xt+1 =

f (xt), where f : X → X is continuous for the topology τ. A discrete dynamical system is
said chaotic when it satisfies the three following properties:

1. Transitivity: For each couple of open sets A, B ⊂ X, there exists k ∈ N such that
f (k)(A) ∩ B , ∅. In other words, the dynamics is intrinsically complicated, it cannot
be studied using a divide and conquer approach that focuses on simpler subsets.

2. Regularity: Periodic points are dense in X. That is, beside transitivity, we still have
elements of regularity.

3. Sensibility to the initial conditions: There exists ε > 0 (constant of sensitivity) such
that: ∀x ∈ X, ∃y ∈ X, ∃n > 0 ∈ N, such that d(x, y) < ε and d(f (n)(x), f (n)(y)) > ε.

Due to the two opposite tendencies of the system (transitivity and regularity), two
close points can behave in a totally different manner through iterations, the first one
having a regular orbit while the second one visits the whole space. Consequently,
the effects on a small error on the initial condition cannot be predicted.

Note that mathematical chaos is a very rich and well established theory comprising nu-
merous approaches to define what is a “chaotic” or disordered, unpredictable orbit of a
dynamical system. In this framework, the aforementioned definition of chaos is one of
the oldest and most reputed notion of such complex dynamics; other approaches are
not equivalent but complementary, defining mathematically different ways for a dynamical
system to appear as “disordered”, or chaotic.

To realize the junction between this framework and iteration schemes in Section 2.1.1,
the following material has been introduced [153,155].

In the unary scheme, at each iteration t, we update the component whose index is con-
tained in the first term of the strategy s = (st)t∈N. Thus, the topological disorder of chaotic
iterations can be studied by defining the following:

• the function F fu : BN × [N] towards BN is defined by:

F fu(x, i) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xN). (21)

• the shift function σ : [N]N −→ [N]N which shifts the provided strategy as an element
argument to the left by removing the leading element. This is formalized

σ((st)t∈N) = (st+1)t∈N.

2.2. UNARY AND PARALLEL CHAOTIC SCHEME 53

Next, starting from the initial configuration x0 ∈ BN and the strategy (st)t∈N 7→ s0. The
configurations of xt are defined by the recurrence

xt+1 = F fu(xt, st), xt ∈ BN. (22)

Thus, the chaotic iteration function G fu can be modeled by the discrete dynamic system:

Xu = BN × [N]N, G fu(x, s) = (F fu(x, s0), σ(s)). (23)

That is, performing unary iterations on the function f according to a strategy s amounts
to performing parallel iterations of the function G fu in Xu. Once we have establish the
topological disorder of chaotic iterations, we define now the relevant distance d between
the points X = (x, s) and X′ = (x′, s′) of Xu by

d(X, X′) = dH(x, x′) + dS (s, s′), où


dH(x, x′) =

N∑
i=1

|xi − x′i |

dS (s, s′) =
9
N

∑
t∈N

|st − s′t |
10t+1 .

. (24)

Note that in the calculation of dH(x, x′) called the Hamming distance between x and x′,
the terms xi and x′i are considered natural integers equal to 0 or 1 and the calculation is
done in Z. In addition, the integer part bd(X, X′)c is equal to dH(x, x′) be the distance of
Hamming between x and x′. We note also that the decimal part is less than 10−l if and
only if the first l elements of the two strategies are equal. Moreover, if the (l + 1)th decimal
of dS (s, s′) is not zero, then sl is different from s′l .

Indeed, it has been proven that d is really a distance on X, and that G f is continuous on
the metric space (X, d). We are then left to investigate on which conditions the iterations
of G f satisfy the three conditions of chaos. Such work has been achieved in [153, 156],
by establishing the inclusion relations between sets T of topologically transitive functions,
regular functions R and C of the chaotic functions defined respectively below:

• T =
{
f : BN → BN such as G fu is transitive

}
,

• R =
{
f : BN → BN such as G fu is regular

}
,

• C =
{
f : BN → BN such as G fu is chaotic

}
.

The following successive theorems are given, the proof of which is given in [153].

Theorem 2.2.1. G fu is transitive if and only if GIU(f) is strongly connected.

Theorem 2.2.2. T ⊂ R.

It can be concluded that C = R ∩ T = T . We then have the following characterization:

Theorem 2.2.3. Let f : BN → BN. The functions G fu is chaotic if and only if GIU(f) is
strongly connected.

54 CHAPTER 2. CHAOTIC ITERATION BASED PRNG

At this point, we know which function f makes the output of G f iterations have a chaotic
behaviours, as defined by Devaney. Note that the iteration space X is constituted by
Boolean vectors and sequences of subsets of J1,NK. It is thus infinite, while only bounded
integers are required to represent its elements. G f only manipulates Boolean numbers
and bounded integers, we can thus achieve a true chaos on finite state machines.

Finally, we have recalled already obtained results regarding the Devaney’s chaos of gen-
eral chaotic iterations. However, this definition is not the only possible approach to for-
malize unpredictability and disorder aspects of an iterated system. Indeed, since four
decades, mathematicians have proposed various other formulations of a chaotic dynamic,
and these formulations are complementary but not equivalent: each definition provides a
specific description of the complex behavior of such particular “chaotic” discrete dynam-
ical systems. Further investigations of the real chaotic nature of the proposed chaotic
iterations as mixing topology and Knudsen’s definition of chaos [157] are in Annex A.1 or
in [14].

2.3/ GENERALIZED SCHEME

In the generalized scheme, at tth iteration, it is the set of the elements of st (included in
[N]) that are updated (see Equation 20). The function is defined by:

F fg : BN × P({1, . . . ,N})→ BN with

F fg(xt, st)i =

{
fi(xt) if i ∈ st;
xt

i otherwise.

In this generalized iteration scheme, for an initial configuration x0 ∈ BN and a strategy
S =

(
st)t∈N

∈ P({1, . . . ,N})N, the configurations of xt are defined by the recurrence

xt+1 = F fg(xt, st). (25)

Then let G fg be a function of BN × P({1, . . . ,N})N in itself defined by

G fg(x, S) = (F fg(x, s0), σ(S)),

In this definition, the function σ : [N]N −→ [N]N shifts the provided strategy as an element
argument to the left by removing the leading element (as previously).

Again, generalized iterations of f induced by x0 and the strategy S describe the same
orbit as the parallel iterations of G fg from an initial point X0 = (x0, S). This time, the space
is Xg = BN × P({1, . . . ,N})N.

Let consider the space Xg = BN × P({1, . . . ,N})N, where we define the new distance d
between the points X = (x, S) and X′ = (x′, S ′) of Xg with

d(X, X′) = dH(x, x′) + dS (S , S ′), où


dH(x, x′) =

N∑
i=1

|xi − x′i |

dS (S , S ′) =
9
N

∑
t∈N

|S t∆S ′t |
10t+1 .

. (26)

2.4. CONCLUSION 55

where |X| is the cardinality of a set X and A∆B denotes the symmetric difference, defined
for sets A, B: A ∆ B = (A \ B) ∪ (B \ A).

The function d is a sum of two functions. The function dH is the Hamming distance; it is
also established that the sum of two distances is a distance. Thus, to show that d is also
a distance, it is enough to show that dS is one too.

For S , S ′ ∈ P({1, . . . ,N}), we define

dS (S , S ′) =
9
N

∑
t∈N

|S t∆S ′t |
10t+1 .

Let us show that dS is a distance on P({1, . . . ,N}) and so that d defined in Equation (26) is
a distance.

Let S , S ′ and S ′′ three parts of [N].

• Obviously, ds(S , S ′) is null if and only if S and S ′ are equal.

• Since the symmetric difference is commutative, the value of dS (S , S ′) is equal to that
of dS (S ′, S).

• Finally, we have the following elements:

S ∆S ′ = (S ∩ S ′) ∪ (S ∩ S ′)
= (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′)
⊆ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′)∪

(S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′) ∪ (S ∩ S ′ ∩ S ′′)
= (S ′ ∩ S ′′) ∪ (S ∩ S ′′) ∪ (S ∩ S ′′) ∪ (S ′ ∩ S ′′)
= (S ∆S ′′) ∪ (S ′′∆S ′)

From this, we deduce that |S ∆S ′| ≤ |S ∆S ′′| + |S ′′∆S ′| and therefore that triangular equality
dS (S , S ′) ≤ dS (S , S ′′) + dS (S ′′, S ′) is established.

Similarly to unary iteration, we investigate on which conditions the generalized scheme
G fg in Xg satisfies the three conditions of chaos. We consider first the following prop-
erty [152]:

Theorem 2.3.1. G fg is transitive if and only if GIG(f) is strongly connected.

Theorem 2.3.2. T ⊂ R.

It can be concluded that C = R ∩ T = T . We then have the following characterization:

Theorem 2.3.3. Let f : BN → BN. The function G fg is chaotic if and only if GIG(f) is
strongly connected.

2.4/ CONCLUSION

This chapter has shown that the unary and parallel iterations are chaotic if and only if the
graph GIU(f) is strongly connected and the generalized iterations are chaotic if and only
if the graph GIG(f) is also strongly connected. We thus have a priory an infinite collection
of chaotic functions, where negation and generated functions are investigated. The next
chapter quantifies hardware performance of PRNGs on FPGA platform, which some of
them will be chosen latter as a strategy for our chaotic iteration PRNGs.

III
QUANTIFYING HARDWARE PERFORMANCE OF

PRNGS ON FPGA PLATFORM

3
QUANTIFYING HARDWARE

PERFORMANCE OF LINEAR PRNGS

This chapter resumes a deep analysis of linear PRNG (LPRNG) stated in chapter 1. This
study, will help us to identify the main characteristics and proprieties that contribute to
the hardware performance of each linear PRNG, using the two digital flows of High-Level
Synthesis and Register-Transfer Level (HLS & RTL) as support. These proprieties are: (1)
the space, timing, and computational complexity, (2) the seed and period of the generator,
and (3) the arithmetic operators and dynamic range in FPGA resources. Discussion
on choices of both implementation and generation are systematically given using FPGA
support platform. Performance with respect to frequency, area size, weaknesses, and
statistic tests are presented also.

3.1/ METHODOLOGY

The Table 3.2 presents the hardware resources, area, speed, and statistical tests of al-
most all aforementioned linear PRNGs in chapter 1, which will be used later for com-
parison with other approaches. The design methodology relies on the use of two high
levels of implementation, namely the traditional Register-Transfer Level (RTL) flow and
the High-Level Synthesis (HLS [158]). HLS frameworks (Vivado, HandelC, and SystemC)
accelerate the semiconductor Intellectual Property (IP) creation by enabling C, C++, and
SystemC specifications and by generating the RTL level. The question raised in this
chapter is thus: how much space states are needed to provide pseudorandom numbers
with a good statistical profile? And which algorithms outperform the other ones in terms
of internal resources and time, whilst providing higher complexity?

3.2/ LINEAR COMPLEXITY

Previously presented hardware LPRNGs and CPRNG must be evaluated regarding their
randomness, which can be done using statistical tests presented in Section 1.6 (NIST,
DieHARD, and TestU01). After applying our experiments, we have obtained that almost
all PRNGs pass NIST test but only PCG32, MRG32, and XOR64∗ generators can pass
the Big-Crush of TestU01, the most stringent part of this battery, which is coherent with
the literature. Obtained test results have shown that a particular and common test called

60 CHAPTER 3. QUANTIFYING HARDWARE PERFORMANCE OF LINEAR PRNGS

linearity complexity is very frequently failed, which is recalled hereafter.

For a given k-length finite binary sequence in Fk
2 issued from a RNG, its linear complexity

Lk is defined as the degree of the shortest characteristic polynomial of the LFSR that
can generate the same sequence. Intuitively, non linearity is observed when this degree
Lk is small. Figure 3.1 presents the linear complexity profiles of some PRNGs when
applying the Berlekamp-Massey algorithm [142]. PCG32 and XOR64∗, which can pass
the whole TestU01, have the linear complexity property. Conversely, other PRNGs like
XOR64, WELL512, TT800, and LUT-SR, fail to exhibit such a property.

Figure 3.1: Linear Complexity profiles Lk(xi) using Berlekamp-Massey algorithm

3.3/ JUMP COMPLEXITY

TestU01 battery additionally calculates the number of jumps that occur in the linear com-
plexity for each local subsequence. This number of jumps represents how many bits must
be added to the sequence to increase its linear complexity. It has been proven [159] that
ideal PRNGs have a linear complexity profile symmetric to the k/2-line as in a perfect
linear complexity, with maximum jump heights of k/4, and close to b(k + 1)/2c for each
k-length sequence.

Lets us first illustrate some of these properties using Figure 3.2. We compute the lin-
ear complexity profiles of the first 32 bits (k = 32) of generators LFSR258, XOR64∗, and
PCG32 using the Berlekamp-Massey algorithm, where the complexity level Lk(xi) is ex-
pressed as follows: L1(xi), L2(xi), . . . , Lk−1(xi), where L1(xi) = L(x1), L2(xi) = L(x1, x2) . . .
Each of these PRNGs performs jumps symmetric to the k/2-line as illustrated in Fig-

3.3. JUMP COMPLEXITY 61

ure 3.2. Let us however explain some differences within these jumps. We first notice
that the Lk(x0, x1, x2, x3) is stable for LFSR258 and XOR64∗. When we add x4 to compute
Lk(x0, x1, x2, x3, x4), LFSR258 jumps from 1 to 4 whereas XOR64∗ is still stable. PCG32,
for its part, is stable for less bits and jump by 2 levels in the same interval, where the first
jump happens on the x7 and with more than 8 levels for XOR64∗.

Let us consider a stream of random bits xi = x0, x1, . . . , xn, in which the perfect jump is
the difference between two successive linear complexity levels Lk applied to xi and that
satisfies 0 < Lk(xi) − Lk(xi−1) ≤ 2 (e.g., PCG32 has Lk(x0, x1) − Lk(x0) = (1 − 1) = 0 and
Lk(x0, x1, x2) − Lk(x0, x1) = (2 − 1) = 1 . . .).

0 5 10 15 20 25 30

0

5

10

15

Firt 32 bits under Tests Xi

Li
ne

ar
co

m
pl

ex
ity

le
ve

lL
k(

x i
)

XOR64*
PCG32

LFSR258
Perfect(N/2)

Figure 3.2: Jump Computation for 32 bits of random: number of jumps < 2 lead to a
perfect b(k + 1)/2c) for k-sequences

Regarding FPGAs, these jumps determine how much resources are required in order to
have a perfect complexity profile. For illustration purposes, some of these PRNG jumps
have been computed in Figure 3.3, by starting from the linear complexity profile Lk il-
lustrated in Figure 3.2. More precisely, we computed the jump complexity of 200 linear
complexity degrees Lk(x) (k = 200 bits = 6 words), on the one hand for XOR64∗ and
PCG32 that can pass TestU01, and on the other hand for XOR32, TT800, and LUT-SR,
who failed this battery.

Let us take XOR64∗ and LUT-SR as demonstrators of each category from Figure 3.3. The
aforementioned 200 complexity linear levels illustrate that XOR64∗ needs a minimum of
total jumps of 52 to perform a symmetric k/2-line (maximum jump heights of k/4). How-
ever, only 38 jumps are “perfect” (< 2), where Lk(x) can possibly be repeated between
jumps. In addition, we consider stable situations where no jump has occurred (streams
of repeated L(x) = L(x − 1)), where unstable jump is repeated only once. Indeed, we
conclude that useful bits are the minimum unique bits, which does not present any form
of stability in complexity profile Lk.

We can see that LUT-FF is 4 perfect jumps lower in total than XOR64∗. The LUT-FF PRNG
will be propagated for a long period of time, which conducts to a less useful bits contri-
bution for passing linear tests. It is more obvious for XOR32, which confirms the need to
another process to face this issue. Indeed, PRNGs that fail to pass TestU01 have the low-
est number of useful bits and of perfect jumps, when compared to successful ones with

62 CHAPTER 3. QUANTIFYING HARDWARE PERFORMANCE OF LINEAR PRNGS

the exception of TGSRF family and PCG32. Note that XOR64∗ uses a multiplication as a
kind of output scrambling. PCG32 has the same use in its multiplication use, so why it has
less useful bits at the end while passing linearity test? To answer this question, we can
focus on Figure 3.1, which illustrates the existence of stability in linear complexity starting
from shorter periods of time (XOR64, LFSR258, and LUT-FF with Lk = 4096, 16512, 34849
successively).

Some periods can be long, as in the case of PCG32 for instance. When the PRNGs are
running, the states space used is constant for any operation. Such property is obvious
in 32 bitsLCG generators like the PCG32. The PCG32 deploys 64 bits multiplications
(128-bit state), but it uses only 36-bit of state while always dropping the most significant
bits (MSB) parts. This fact means a loss of information that can create a new jump in
complexity. This is why PCG32 applies a permutation function to scramble the weak
least significant bits (LSBs) after the multiplication. In other words, it needs some time
to be perfectly linear. In hardware level, doing the same complex operation leads to
unnecessary area and power consumption.

Ju
mp<

=
2

Ju
mp>

2

Uns
tab

le

Stab
le

To
tal

-Ju
mp

Use
ful

-B
its

0

20

40

60

30

15

9

37

45

18

34

15
12

38

49

24

44

11
16

39

55

3231

14
11

34

45

22

38

14 15

36

52

30

Li
ne

ar
co

m
pl

ex
ity

le
ve

lL
k(

x i
) XOR32

LUT-FF

TT800

PCG32

XOR64*

Figure 3.3: Jump computation before TestU01 of 200 linear complexity Level: a) Perfect
Jump = [0 < L(k) − L(k − 1) ≤ 2], b) other Jump =[L(k) − L(k − 1) > 2], c) Unstable
Jump= [L(k) − L(k − 1) , L(k)], d) stable jump= [L(k) − L(k − 1) = L(k − 1)], e) Useful
bits=[L(k) − L(k − 1) = 1], f) Total Jump

Let us now consider the XOR64∗ generators, which also use 64 bits multiplications. Their
linear complexity is close to the perfect one. The key difference here is the permutation
function used for multiplication. In LCG family, this is the main function applied to perform
an uniform scrambling operation, whereas in XOR64∗, they are deployed to inject bias
in randomness. Finally, we can notice the uniform distribution of Mersenne Twister, with
an unique maximum perfect jump. But it has the largest stable jumps, that will finally be
stable once and for all. This indicates the limitation of tempering unit (similar to XOR32
or LFSR) in terms of performance of transition unit.

3.4/ ARITHMETIC OPERATORS AND DYNAMIC RANGE

The arithmetic operators area is a key issue at hardware level, which can be considered
as a major factor of the quality of the final implementation. In the binary field F2, the bi-

3.5. THROUGHPUT AND LATENCY 63

nary representation has a direct impact at hardware level, as each bit will turn ON or OFF
one transistor. Consequently, in spite of the existence of many coding representations at
mathematical level, bit lengths are physical constants1. More precisely, most PRNGs use
only positive integer values and fixed point representations in hardware level. Regarding
arithmetical operators, for instance glue logic defined as Distributed Arithmetic (DA [160])
or Digital Signal Processing (DSP48E1) slices, are usually chosen as optimal implemen-
tation of (partial) products. Their size and performance depend on both the word length
(addressing the LUT increases the table exponentially) and their binary representations,
regarding dynamic range and precision. Indeed, the dynamic range represents the ratio
between the largest and the smallest nonzero and positive number that can be repre-
sented (integer), which is expressed as follow: DRfxpt = rn − 1 where r is in binary format
(Radix-2) and n is the number of digits in fixed-point precision.

Table 3.1 illustrates the multiplication complexity using LUT or DA resources in FPGA, in
which 0 < ε ≤ 1 and d is the digit size (fixed or floating point). Indeed, using LUT for
multiplications decreases the number of clock cycles to generate the final output (which
means a higher throughput). However, it has the longest critical path (latency), which
increases the area n × 22n

(FF used to store intermediate results). In the other hand,
multiplication based DA reduces the logic deployments, which is depending only on the
dynamic range (d) and its binary representation. On the opposite, using DA increases the
number of clock cycles for the output (lowest rate of throughput/latency).

Table 3.1: Multiplication Complexity using FPGA

Architecture
Logic gates or

RAM cells Flip Flops Critical Path Delay Clock Cycles

Full LUT n × 22n
0 O(n) 1

Fully parallel O(n1+ε) 0 O(log(n)) 1
Digit-sequential O(n × d) O(n) O(log(d)) n/d
Bit-sequential O(n) O(n) O(1) n

source [161]

The aforementioned PRNGs in this section have a fixed DR and internal space of 32 or
64 bits. The multiplications are widely implemented with DSP blocks in FPGA, which can
be used as a 25 × 18-bit multiplier and can be pipelined. Its complexity is linear with the
“DA”, otherwise it jumps higher with the use of more complicated logic as LUT or DSPs.
Let us take for instance the KISS127 of DR = 264 as an example, which is implemented
with DA (KISS-DA) or DSP blocks (KISS-DSP). It is clear from Table 3.2 that disabling
DSP will induce a huge area extension and a drop in frequency while presenting the
same latency. As a conclusion, DSP blocks can be a convenient alternative for FPGA
application. However when ASIC implementation is targeted, these DSP blocs have to be
manually implemented, giving rise to a direct loss of performance.

3.5/ THROUGHPUT AND LATENCY

Let us recall two proprieties based on the frequency, which are namely the latency and the
throughput. Many research papers deal with board frequency, clock input, or synthesis

1Dynamic allocation is however possible for modern FPGA

64 CHAPTER 3. QUANTIFYING HARDWARE PERFORMANCE OF LINEAR PRNGS

frequency, but few of them illustrate the effect of the design frequency in terms of latency
and throughput.

Latency is the number of iterations required to compute a new output from a given input.
The throughput, for its part, is the number of iterations needed to produce new output or
to consume a new input. In FPGA design, an iteration is the clock cycle or the period
(the inverse of the frequency). Latency and throughput are linked to the delay expressed
as a duration or as the number of clock cycles to have an output. To sum up, latency
is the delay from the input to the output, whereas the throughput is the delay to get one
new output. Finally, rate is the number of bits that are treated or transferred in each delay
unit (Bps). Note that the throughput delay can be equal to the latency, which lead us to
use the throughput/latency value to estimate the real throughput of the PRNG. Finally,
let us recall that many techniques can improve these properties, like pipelining, parallel
computation, and retiming techniques.

Latency and throughput in the RTL and HLS flows can be formalized as follows.

RTL Delay = (#Clock Cycle) × (Clock Period)
HLS Delay = (#Clock Cycle + 2) × (Clock Period)

Thus,

Design Latency : [Delay from Input to Output]
OutputLatency : [Delay for each Output]

Throughput :
[

Output Size
Output Latency

] (27)

Let us explain this fact with the Mersenne Twister implementation in RTL level. Mersenne
Twister deploys two dual-port 1 × 312 BRAM memories, M0 and M1, which operate like
a feedback shift register and which are configured in the read-before-write mode. Ad-
ditionally, an address controller is used to read the three words (X0, X1, and XM) and
write the result according to Equation (9). The Mersenne Twister follows a permutation
mode (Memory SELect “MSEL”) to choose on which memory the R/W operation will be
operated. In this context, Figure 3.4 presents an example of two R/W modes, illustrating
the difference between throughput and latency. The first mechanism reads one word per
cycle and writes the output in the third clock cycle. It reads the first word X0 from M0 in
the first cycle when MSEL=0, and X1 from M1 in the second cycle when MSEL=1, where
final cycle reads the middle word XM and writes the output in the same address of X0 in
M0. In this case, the throughput is equal to the latency, and the final rate (throughput/la-
tency) is divided by latency delay (i.e., by a factor 3). Conversely, the second mechanism
of Figure 3.4 produces a new output at each clock cycle, which summarizes read and
write operations in one clock cycle. Therefore, if the memory select mode MSEL is equal
to 0, it reads X0 from M0 and {X1, XM} from M1 following the read address controller. It
writes the output in the same address of the first word and we increment all addresses.
The opposite happens when MSEL=1: {X2, XM + 1} is read from M0 and X1 from M1.
So, the rate (throughput/latency) in the last implementation is calculated for one cycle, as
reported in Table 3.2.

3.6. EXPERIMENTAL RESULTS 65

(a) Throughput/latency is 3 cycle

(b) Throughput/latency is one cycle

Figure 3.4: Latency vs. throughput in two MT implementations: read three words Xi, Xi+1,
and XM (middle) from two BRAM memories M0 and M1 and write the output.

3.6/ EXPERIMENTAL RESULTS

The aforementioned PRNGs have been studied according to: (1) the space, timing, and
computational complexity, (2) the seed and period, (3) the arithmetic operators and dy-
namic range FPGA resources, and (4) latency and throughput. All the linear PRNGs have
been implemented in RTL flow, except TT800 and PCG2, for which we followed a HLS
flow. Concerning the synthesis platform, Vivado synthesis for RTL flow of Xilinx v16.4 and
Vivado HLS tool for HLS flow have been used, with the default configuration and without
any optimisation. Additionally, the FPGA target was Zybo Zynq-7000 ARM/FPGA SoC
Trainer Board from digilent (125Mhz).

Table 3.2 summarizes the obtained results with these PRNG implementations. In RTL im-
plementations, LUT-SR, Taus88, and XOR64 require the lowest amount of area resource,
whereas combined PRNGs like KISS124 and MRG32 have a large area consumption.
Conversely, LCG and TGFSR families have large area consumption due to their imple-
mentation of arithmetic multiplication with complex logic.

The throughput performance depends on two parameters, namely the logic critical path
and the output range (32 or 64 bits). On the one hand, for 32 bits generators (resp. for
64 bits ones), Taus88 and LUT-SR with LFSR113 (resp. XOR64 and LFSR258) have the
largest throughput performance. On the other hand, the LCG and TGFSR families are

66 CHAPTER 3. QUANTIFYING HARDWARE PERFORMANCE OF LINEAR PRNGS

Table 3.2: FPGA implementation of linear PRNG in term of: Area, Speed, and Statistical
tests

Linear PRNG

Familly LFSR xorshift TGFRS LCG

PRNG LFSR113 Taus88 LFSR258 LUT-SR XOR128 XOR64 XOR128+ XOR64∗ MT_WS MT_NS Well512 TT800 KISS-DA KISS-DSP MRG PCG32

A
R

E
A

Output Rang (n) 32 32 64 32 32 64 64 64 32 32 32 32 64 64 64 32

LUT 79 68 171 64 36 55 131 298 523 184 94 184 271 2038 1055 345

FF 162 130 386 64 194 130 194 390 120 179 108 483 746 1277 1359 418

RAM 0 0 0 0 0 0 0 10 2 2 0 6 0 0 0 10

DSP 0 0 0 0 0 0 0 4 3 0 2 2 7 0 8 0

Total Area (LUT+FF)*8 2072 1584 4456 576 1840 1480 2600 5504 5144 3272 1616 5336 8136 26520 19312 6104

S
P

E
E

D

Frequences (Mhz) 443,26 448,63 396,98 609 429,36 457,45 250,81 231 118 462 213 169 154 112 175 179

Design Latency 2 2 2 2 2 2 2 21 3 2 5 4 9 9 14 20

Output Latency 1 1 1 1 1 1 1 21 1 1 5 4 9 9 14 20

Throughput/Latency (Gbps) 14,18 14,35 12,70 19.5 13,73 14,63 8,02 0.7 3.8 13.2 1.3 1.3 1.1 0.8 0.8 0,286

TE
S

TS NIST (16 Tests) PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS NO PASS PASS PASS PASS

TestU01 (319 Tests) NO NO NO NO NO NO NO PASS NO NO NO NO NO NO PASS PASS

a HLS Implementation, 1. MT_WS: Mersenne Twister with Seed, 2. MT_NS: Mersenne
Twister without Seed.

expected to have the lowest throughput performance, as they operate large arithmetic
operations like 64 bits multiplications using DSP. Besides that, using memories for TGFSR
automatically drops the PRNG frequency to the half without counting other logic. Once
again, the combined generators have the weakest throughput performances.

Additionally, two implementations of Mersenne Twister generators have been designed
with and without the seed, respectively denoted as MT_WS and MT_NS. We have re-
marked that, when considering the seed, frequency is reduced to less than 200MHz com-
pared to the case where we do not use it. Therefore, to increase performances, most
PRNGs do not include the seed internally (a software is used).

To put it in a nutshell, if we take the ratio of area/throughput as main criterion, we are
balancing between high performance (XOR64 and LFSR113) and the ability to pass sta-
tistical tests (PCG32 and XOR64∗), which is not surprising. Another result is that combin-
ing PRNGs leads to a performance decrease in hardware level. Such combinations do
not take into account the Chaotic Iterations post-processing, which appears as promis-
ing [10, 11]. Effects of such a post-processing on performances at hardware level are
detailed in the following chapters.

3.7/ CONCLUSION

An implementation of various linear PRNGs in FPGA is detailed in this chapter, in which
two flows of conception (RTL and HLS) demonstrate the performance level of each PRNG
in terms of area throughout and statistical tests. Our study has shown that these perfor-
mances are related to linear complexity, seed size, and arithmetic operations. On the one
hand, for 32 bits generators (resp. for 64 bits ones), Taus88 and LUT-SR with LFSR113
(resp. XOR64 and LFSR258) have outperformed the other candidates when considering
hardware performance, while PCG32 and XOR64∗ are the best when studying statistical
ones (they succeeded to pass the whole TestU01 batteries). In order to investigate these
parameters, two FPGA test platform (hardware and firmware) has been developed to ac-
celerate the implementation and tests of various PRNGs. These platforms are presented
in the next chapter.

4
HARDWARE TEST PLATFORM AND

COMPARISON

This chapter presents all hardware platform of FPGA and ASIC deployed to implement,
analyze, and test all PRNGs in this thesis.

The first section describes two hardware platforms based on FPGA, in which each has its
limitations and advantages during their use in our thesis. The first FPGA platform is based
on Xilinx Zynq-7000 Extensible Processing Platform (EPP) (Section 4.1). It is mainly used
in the first time to accelerate the hardware implementation and test of the PRNGs in an
embedded system (SoC) using an automated flow of tools on FPGA. However the main
limitations of the Zynq platform are its ability to produce data in real time for statistical
tests, the hardware/software time complexity using embedded SoC, and the transition
into ASIC implementations. Therefore, we propose a second platform based an AXI Bus
compatible to ARM CPU (Section 4.2) as an alternative of the first platform. The new
FPGA platform is indeed more reconfigurable, compatible to any SoC based FPGA, and
generic to ASIC applications. Moreover one major reason for using the AXI Platform is
the capability of testing in real time any PRNGs on FPGA under TestU01. Finally, this
chapter ends with the ASIC platform (Section 4.4) based on the process node of 65-nm
UMC, which is an indispensable flow for fabricating a real chip based PRNG.

4.1/ FPGA PLATFORM BASED ON ZYNQ-EPP FOR PRNG

4.1.1/ GENERAL PRESENTATION

Xilinx Zynq-7000 Extensible Processing Platform (EPP) [8] is a silicon system on chip
(SoC) for FPGAs, which has been proposed by Xilinx. This SoC deploys the latest tech-
nologies of ARM processors with a large set of peripherals (DDR, PCI, etc.). The zynq
platform is defined as Peripheral System (PS), which is a sub-system with ARM. The
full FPGA is the Programmable Logic (PL) that is connected with PS through an Ad-
vanced eXtensible Interface (AXI) protocol interface. We have used the Xilinx Zybo board
(XC7Z010 − 1CLG400C) whose clock input is configured at 125Mhz as a prototype kit for
our experiments.

Figure 4.1 illustrates the Xilinx Zynq-7000 EPP block diagram. Obviously, the AXI in-
terface plays an important role for communication and synchronization between the two
parts. This interface can be a master or a slave of the PS, each having a specific port.

68 CHAPTER 4. HARDWARE TEST PLATFORM AND COMPARISON

Indeed, AXI-4 is part of ARM AMBA Bus 4.0 (Advanced Microcontroller Bus Architecture).

Meanwhile, the CPU initializes and reads/writes data of an IP in PL (i.e., PRNG) over the
AXI master using General Purpose (GP) ports. The AXI slave is used for PL master IP
over High Performance (HP) ports. Each of these interfaces can handle up to 16 bytes of
data.

The AXI interface protocol, for its part, can be configured either as Stream for high-speed
streaming data, or as Lite/Full for high-performance memory-mapped requirements (data
transactions over an address). We will focus in this manuscript on the stream protocol.
Therefore, we have developed a complete infrastructure divided in two parts: hardware
and firmware.

Figure 4.1: Xilinx Zynq-7000 EPP Block Diagram

4.1.2/ HARDWARE PLATFORM

Figure 4.2 and Figure 4.3 show the detailed hardware architecture of our system used
to integrate and test PRNGs. It contains, respectively: the ARM Cortex-A9 dual cores
MPSoC, the high performance DDR3 512Mb, an UART, and finally the PRNGs (RTL or
HLS implementation). Additionally, to read the random output on the CPU, we have used
both an AXI-PRNG interconnect and an AXI Direct Memory Access controller engine
(DMA). The total space of the logic part (PL) on Zybo board is: 2, 982 LUT (19% among
the 56658 available ones), 4, 071 FF (11% among the 44781 available ones), 7 DSPs, and
3 memories respectively.

The AXI-PRNG interconnect can handle many PRNGs at the same time and it activates
the one that is currently tested. This interconnect component is re-configurable using the
firmware, which deploys two GPIO IPs for this task. GPIO-0 is used to select one PRNG
at a time, and GPIO-1 is used for the data burst size of the PRNG. As said previously,
the AXI bus can handle many master and slave IPs, where the data transaction and
the interfacing between IPs can be done following the three protocols cited earlier. For
instance, all PRNGs implemented in HLS or RTL including the AXI-PRNG interconnect
are AXI Stream Interface, while the CPU is Memory-Mapped Interface. Additionally to
CPU, the AXI-DMA engine, which oversees the data transaction between the slave and
master IPs, deploys the receiver channel Slave to Memory Map (S2MM) connected to a

4.2. NEW RECONFIGURABLE FPGA PLATFORM FOR CIPRNG 69

slave port and the transmitter channel Memory-Map to Slave (MM2S) connected with the
master. The DMA engine needs to be configured first depending on its burst transaction
setup, which can handle up to 256 data transfers (total length of 1MB). As can be deduced
from the explanations above, the process is unidirectional for pseudorandom generation:
the final outputs are displayed in an external terminal via the UART protocol. Indeed,
Vivado tools are used for hardware platform, while the firmware will help to synchronize
all these processes and transactions using another platform.

Contrôleur DRAM
(DDRMPMC)

Périphériques
(UART, SPI, ETH)

AXI Périphériques

AXI Interconnexion

HP

GP

AXI DMA
(S2MM)
AXI DMA
(S2MM)

AXI PRNG
Interconnexion

(RTL/HLS)

AXI GPIO-0AXI GPIO-0AXI GPIO-1AXI GPIO-1

AXI
Stream
 PRNG_0

AXI
Stream
PRNG_N

EN

Figure 4.2: PRNG platform based on Zynq FPGA

4.1.3/ SDK FIRMWARE

As what has been said previously, the firmware is used to initialize the system, for trans-
action synchronization, and for the interface with an external peripheral. SDK software
from Xilinx is used for this purpose. It imports first the address map of all hardware IPs
that are used, and then it creates their equivalent in software. The system is interrupted
to initialize the CPU and the DMA following their base address, and GPIOs are initialized
to configure the PRNGs. Finally, we start transferring data using DMA to DDR memory
controller and then to UART. The transaction bandwidth can reach 2GBps working with
125MHz FPGA (Zybo), and 4Gbps in DDR.

4.2/ NEW RECONFIGURABLE FPGA PLATFORM FOR CIPRNG

In this section, we propose a new FPGA test platform specially for the proposals based
on chaotic iteration CIPRNG (unary and generalized) presented in Chapter 2.

70 CHAPTER 4. HARDWARE TEST PLATFORM AND COMPARISON

Figure 4.3: Detailed Zynq based SoC implementation for PRNG

4.2.1/ GENERAL PRESENTATION

The new platform presents an alternative hardware and test concept of the Zynq one
that has been proposed in our previous research work [12]. However, now, the platform
becomes fully independent of any CPU (Zynq) and it is fully reconfigurable with a main
software. It is also based on AXI-4, which makes it flexible and easy to integrate with Zynq
platform for SoC applications (we named it an AXI-test platform). This pool of resources
is typically independent of the technology, and can thus be implemented in an ASIC for
instance.

4.2.2/ HARDWARE PLATFORM

Figure 4.4 presents the main architecture of the AXI-test platform, which consists of the
following components. A Decoder Command Controller Unit (DCCU), a Design Under
Test (DUT) controller based on the GCIPRNG, and an Universal Asynchronous Receiver
Transmitter (UART) serial port. All these units are compatible with the AXI-4 Lite bus
protocol, which resumes the data transition and handshaking communication between
units. Additionally, each of these units has an address map and an identifier (ID), which
can be read and reconfigured. On the one hand, the DCCU decodes all commands re-
ceived from both UART (PC-FPGA-PC) and DUT controller. It also chooses the strategy
used in the GCIPRNG. Additionally, the DCCU defines latency of the final outputs, and
the read&write operations in the internal registers of the platform (UART, strategy, and
GCIPRNG that is tested). On the other hand, the DUT controller is an AXI-4 lite wrapper

4.2. NEW RECONFIGURABLE FPGA PLATFORM FOR CIPRNG 71

of GCIPRNG, which decodes the commands received from the DCCU to enable a strat-
egy (a linear PRNG), read/write to internal registers, and controls internal latency for any
GCIPRNG configuration. The UART, for its part, is a simple serial communication to the
personal computer, with 115200Kbps bandwidth configuration. Finally, a software appli-
cation is deployed with this platform, to have a full control and access to the GCIPRNGs
tested in FPGA. Note that this AXI-test platform allows too the runs of TestU01 statistical
tests in real time.

For the experiments, the test platform is designed and implemented using Xilinx Vivado
tools and two FPGA prototype boards, namely the ZYBO board and Nexys V.4 Artix−7.
The system is embedded with at least 3 strategies for the GCIPRNG core (unary, parallel,
or generalized chaotic iterations), where the hardware resources are 2.5 times lower than
in the Zynq platform (see Section 4.1.2), with 1211 LUT (1.19%), 1467 FF (1.16%), and
211Mhz respectively.

Contrôleur des
commandes et décodeur

Contrôleur DUT

Contrôleur AXI-Lite de
UART

(Transfert série à l’extérieur)

Contrôleur
de récepteur

(SYN-ACK)

Contrôleur
d'émetteur

(SYN-ACK)

C
o

n
tr ô

le
u

r A
X

I-L
ite

(C
o

m
m

u
n

icatio
n

)

Stratégie
1

CIPRNG
 Fonctions

Stratégie
N

Contrôleur AXI-Lite
(Communications)

Figure 4.4: CIPRNG platform based on AXI BUS FPGA

4.2.3/ FIRMWARE

Unlike the SDK firmware embedded in Zynq platform, the new firmware is completely
independent from third software part (SDK). Having said that, the firmware consists of
three main parts and can be summarized as follows. Firstly, the UART communication
setups a serial communication between the platform and PC (opens and closes a USB
virtual serial port). In order to establish that, the firmware must be synchronized with
hardware configuration of UART implemented in FPGA (i.e. same set speed to 115200bps,
8n1 (no parity)). The second part is the configuration of the platform internal registers
for different operations for the initial setup. In other words, it executes a serie of reads
and write operations in parallels. Concerning the write operation, it targets the internal
registers for configuration, as: defines if it writes or reads operations to internal states,
defines latency, selects a strategy (linear PRNG), or resets to initial states. The read
operation for instance, captures any responses type from platform after write operation.
Finally, the third part runs the PRNG as a random number generator, with in mind, write
and read are running in parallel.

72 CHAPTER 4. HARDWARE TEST PLATFORM AND COMPARISON

Lets takes an example of read an ID for UART. Firstly, we write to the platform to indicate
that it is a read operation on the internal register using series of commands. Then, the
platform answers back by sending the write address to confirm write operation. Finally,
it sends after in one packet the read address to confirm the read operation in one hand
and the ID of the UART in terminal in other hand. Each packet concatenates two bytes
to indicate the beginning and the end of the packet, in which they are in different size
depending on operations (READ&WRITE).

4.3/ FPGA GLOBAL COMPARISON

As stated previously, the objective is to determine the performance of PRNG implemen-
tations in terms of area (space) and throughput (speed). Therefore, for all our results, the
FPGA based comparison is as follows. The Xilinx tool calculates all resources used in
FPGA as logic gates, LUT, Flip-Flop (register), additionally to DSP and memory blocks.
Despite the fact that Xilinx calculates the area by counting slices (1 Slice = 4× LUT + 2×
FF+interconnection), it uses the same LUT of 6-inputs for all its technologies for mod-
ern FPGAs (Virtex5, Virtex6, Virtex7, and Zynq). Hence, for our area comparison, we
only calculated LUT and FF as [(LUT + FF) × 8], since DSPs and RAM memories are
hard blocks that can mostly affect time performances. The throughput performance is
calculated as in Equation (27). It depends on two parameters, namely the logic critical
path that defines the period (design frequency) used and the output range (32 or 64 bits).
Additionally to the single throughput, the throughput over the latency is a complementary
parameter to deeply analyze the speed of the generators.

4.4/ ASIC PLATFORM FOR PRNG

4.4.1/ GENERAL PRESENTATION

Compared to FPGA flow, the ASIC one consists of implementing our design in a specific
process technology at transistor level or known as RTL2GDS Flow (see Figure 4.5). The
ASIC flow summarizes in digital the use of what is called standard cells, which include
combinatorial and sequential basic circuits. Thus, the size and their physical character-
istics determines the level of results. In our case, UMC-65nm LL represents the process
technology node, where the Cadence tools v14 are the main software for the implemen-
tation purpose.

4.4.2/ ASIC ANALYSIS

The figure 4.6 summarizes the ASIC flow for digital circuit, which uses two global flows:
the synthesis flow using Cadence RTL Compiler, and physical place and route (P&R) flow
in a second step, with Cadence Encounter Digital Implementation. Both flows include
Switching Activity Interchange information generated from simulation process for timing
and dynamic power estimation (1 million samples). In addition, signoff verification flow
is used to close timing and power requirements. The condition operation mode for the
technologies deployed in each flow is as follows: the synthesis is based on one mode

4.4. ASIC PLATFORM FOR PRNG 73

Figure 4.5: ASIC implementation goal

using the Worst Case library (WC=108◦C and 1.08 Volt), while Multi Mode Multi Corner
is applied for P&R flow including both worst and best case library (BC=−40◦C and 1.32
Volt). The analysis results of ASIC implementation of various PRNG can be summarized
as follow.

Figure 4.6: General ASIC Flow based on Cadence Tools

4.4.2.1/ AREA ANALYSIS

When dealing with ASIC implementations, two measures can be considered to evaluate
area consumption: either the Gate Equivalent (GE) or the number of transistors, which

74 CHAPTER 4. HARDWARE TEST PLATFORM AND COMPARISON

are recalled hereafter. The former is used as a generic result. The number of GEs is
obtained by dividing the area of the circuit in µm2, obtained using P&R tools, by the area
of a basic logic NAND gate (in µm2 too). The total number of transistors, for its part, is
equal to GE×4, as the number of transistors in an AND gate is 4. UMC-65 Low Leakage
being our process technology, its AND area is equal to 1.44µm2.

4.4.2.2/ STATIC TIMING ANALYSIS

Physical implementation flow introduces a large amount of changes when compared with
RTL design (i.e., datapath transformation). Additionally, static timing analysis (STA) alone
does not cover all design aspects, and we cannot be sure that the physical place and route
have not broken the design. This limitation cover only the synchronous part and not the
asynchronous part of the design. Therefore, the Gate-Level Simulation is a full time one,
when accurate net delay is known using back-annotation information delay (SDF). This
static timing analysis not only checks the functional mode, but also collects the switching
activity information for power analysis.

4.4.2.3/ POWER ANALYSIS

Each power pin can carry a limited amount of power. The more power the chip consumes,
the more package pins are required to power the chip. This contributes to larger pack-
age costs. Also, the higher the power requirements of the chip, the denser the power
grid will be in order to distribute power across the chip. This means more power lines,
which reduce the wire tracks available for routing signals. Two type of power analysis
are used: the Average Power Analysis based on toggling rate (nbr of toggles/time) is
collected from simulation level (RTL/Gate); in other hand, the Peak Power Analysis which
calculates power for each event collected also from simulation and estimates glitch power.
Concerning power analysis, we estimate both static and dynamic power, which computes
leakage and switching&internal power of the design, respectively. The leakage power
measures each cell (logic) in various states, while dynamic power depends on the initial
state of cells, the toggling input, the transition rate, and the output capacitive load.

4.5/ CONCLUSION

This chapter focuses on differences between hardware platforms used for our implemen-
tation and test of all PRNGs presented in this thesis. Despite Zynq FPGA platform accel-
erates the prototyping and the SoC based ARM integration, it is fully dependent on FPGA
and hard to adapt to ASIC applications. In addition, the only way to test with TestU01
the PRNG with the Zynq platform is to generate up to 238 sequences and save them
into a file (up to 1̃Terabit for BigCrush). Therefore, the new platform gives that opportu-
nity with less resources and with a simpler software control. Where, the statistical tests
with TestU01 is done in real time in software level (each call function for the PRNG from
TestU01 is equivalent to a successive read and write to the platform with no file or storage
needed). Additionally to FPGA platform, ASIC platform is also deployed to the analysis
for all PRNGs in this thesis.

IV
FROM UNARY TO PARALLEL CHAOTIC

ITERATION PRNG

5
UNARY CHAOTIC ITERATION PRNG:

CIPRNG MULTI-CYCLE AND XOR

In this chapter, we have presented a new family of post-processing PRNGs based on
chaotic iterations for FPGA and ASIC. Where, the results of linear PRNG in the previ-
ous Chapter 3 are used as sources of information in the design of an hardware post-
processing treatment based on chaotic iterations. Therefore, the main contribution of this
chapter is to propose two post-processing modules in hardware, to improve the random-
ness of linear PRNGs while succeeding in passing the TestU01 statistical battery of tests.
They are based on chaotic iterations and are denoted by CIPRNG-MC and CIPRNG-
XOR. They have various interesting properties, encompassing the ability to improve the
statistical profile of the generators on which they iterate. Such post-processing have
been implemented on FPGA and ASIC without inferring any blocs (RAM or DSP). Finally,
a comparison in terms of area, throughput, and statistical tests, is performed.

5.1/ CIPRNG MULTI-CYCLE

As described in Chapter 2 (Section 2.2), the general chaotic iterations PRNG receives an
integer sequence as input (and the first internal state, a binary vector), and it produces
a sequence of binary vectors. In other words, chaotic iterations translate a sequence
in another sequence. This is a way to obtain a new pseudorandom number generator
from a former one. Both the kind of embedded generator and the iteration function f
are parameters of this post-treatment, while the first vector x0 and the first term S 0 act
as seeds. Both x0 and S 0 are the initial condition of the discrete dynamical system of
Equation. (19). Finding f such that this dynamical system behaves chaotically seems to
be interesting in a pseudorandom generation context. In other words, we hope that chaos
bring by the iteration function will lead to a more disordered output (xt)t∈N than the input
(S t)t∈N. Even if there is, stricto sensu, no theoretical relation between randomness and
chaos (similarly, there is no relation between security and chaos), numerous simulations
have illustrated [153, 155] that, due to chaos, the output sequence is in general more
random than the input one, according to the number of statistical tests they can pass. It
is as if this post-treatment rectifies the input signal by adding extreme sensitivity due to
the chaotic property of G f , and that this high sensitivity improves the statistical profile of
the output.

Such chaotic iterations based post-treatment over existing PRNGs can be designed as

78CHAPTER 5. UNARY CHAOTIC ITERATION PRNG: CIPRNG MULTI-CYCLE AND XOR

follows. As we need to generate a sequence
(
S t)

t∈N of subsets of J1,NK, we can consider
two input generators, both producing numbers in J1,NK. The aim of the first generator is
to provide, at each iterate t, the size of the subset S t, while the second generator pro-
duces the content of S t. This way to post-operate over the input generators is what we
called CIPRNG Multi-Cycles (CIPRNG-MC). The aforementioned CIPRNG-MC is already
chaotically proved is previous work in [162]. However, we only concentrate on the hard-
ware implementations with optimization of this version with much larger statistical tests
bench.

Indeed, the CIPRNG-MC which is a sub-category of our CIPRNG post-treatment, can
be summarized as follows [156]. x0 is the initial Boolean vector of size N, and (S t)t∈N is
the sequence resulting from the irregular decimation ds of (PRNG1, PRNG2). We suppose
that this latter produces numbers belonging to J0, 2N − 1K. Operating G f with the vectorial
negation on such sequences can be directly rewritten as follows [156]:

xt+1 = xt ⊗ S t, (28)

where S t is expressed in the base-2 numeral system as a binary vector of size N, while ⊗
is the bitwise XOR operation over binary vectors. In other words, CIPRNG-MC is equal to
the chaotic iterations with the vectorial negation and the decimation S of the two inputted
generators m = PRNG1 and b = PRNG2.

The basic design procedure of this latter is summarized in Algorithm 1. The internal state
is x, the output state is r. The internal values a and b are computed by the two input
PRNGs. Lastly, the value g(a) is an integer, defined as in Equation. 29. To do so, a
sequence ds (= (d1, d2, . . . , dN) ∈ {0, 1}N) called a irregular decimation is provided for the
second generator b, which insures that we do not have two successive permutations of
the same bit within a given iteration. This latter will update the i-th bit of b at iteration mt,
and by using the strategy, if and only if dbi

, 1, otherwise it is discarded. For instance,
let us consider the input x = {x1, x2, x3, x4}, the number of iterations mt = {4, 3, 4, 1}, and
b = {2, 3,1,1,4,4, 3, 1, 2, 3,2,2,4,4, 1, 2}. Due to the first value of mt, we have to iterate 4
times b, and then 3 and 4 times. We then have to operate the decimation on b so that
we will not modify twice a same component in a given iteration: this leads to the strategy
S = {{2, 3, 1, 4}{4, 3, 1}{2, 3, 2, 4}{4}} extracted from b. As can be seen, the duplicated entry
2,2,4,4 has been decimated to 2,4, while it is not the case for the first 4,4, as according
to m0 this duplication falls between two iterates. This constraint explains the general form
of mt provided in Equation. 29.

mt = g(yt) =



0 if 0 6 yt < C0
32,

1 if C0
32 6 yt <

∑1
i=0 Ci

32,

2 if
∑1

i=0 Ci
32 6 yt <

∑2
i=0 Ci

32,
...

...

N if
∑N−1

i=0 Ci
32 6 yt < 1.

(29)

Note that, most of the time, we need to iterate the second generator more than the car-
dinality of S t, as we can obtain twice the same number. This weakness is at the origin of
the second proposal, namely the CIPRNG-XOR. We resume hereafter the foundations of
this algorithm already presented in [156].

Finally, a new extended version of CIPRNG-MC can be applied as post-processing
for TGFSR family (as Mersenne twister and TT800) named CIPRNG Multi-Cycle Multi-

5.2. CIPRNG-XOR 79

Algorithm 1 CIPRNG-MC proposal. At each iteration, only the S t-th component of state
xt is updated, as follows: xt+1

i = xt
i if i , S t, else xt+1

i = xt
i.

Input: the internal state x (32 bits)
Output: a state r of 32 bits

1: for i = 0,. . . ,N do
2: di ← 0
3: a← PRNG1()
4: m← g(a)
5: while i = 0, . . . ,m do
6: b← PRNG2() mod N
7: S ← b
8: if dS = 0 then
9: xS ← xS

10: dS ← 1
11: else
12: m← m + 1
13: return (r ← x)

Dimention (CIPRNG-MCMD). Therefore, the CIPRNG-MCMD aims to replace the tem-
pering function of the TGFSR PRNG (see Section 11) to pass statistical tests, when it
does not without. This latter offers to us a well-uniform and multi-dimensional distribution
as illustrated in Section 3.3 and using all techniques described earlier (seed and latency
from Section 3.6 3.5).

5.2/ CIPRNG-XOR

Conversely to CIPRNG Multi-Cycles, this CIPRNG-XOR only needs one inputted gen-
erator. It operates on it using the vectorial negation. It was establish in [163] that G f

satisfies various properties of chaos with such iteration function, one of them being the
notion of chaos according to Devaney. Another interesting property proven in the afore-
mentioned article is that, if the inputted generator is cryptographically secure, then the
resulted CIPRNG-XOR generator, obtained after post-processing, still present this prop-
erty. Such CIPRNG-XOR, which is a sub-category of our CIPRNG post-treatment, can
be summarized as follows [156]: x0 is the initial Boolean vector of size N, and (S t)t∈N is
the sequence generated by the inputted generator. We suppose that this latter produces
numbers belonging into J0, 2N − 1K, then operating G f with the vectorial negation on such
sequences can obviously be rewritten as Equation. (28) [156].

The main requirement is to prevent the machine from working in silos, by randomly picking
a subset of the inputs at each iteration using another generator S t. We recall here that
the strategy S t is expressed in the base-2 numeral system as a binary vector of size
N, which takes at each iteration a new input from another generator (an entropy source
like a physical white noise or some digits in the CPU temperature, can be considered
for instance). By doing so, the finite state machine does not necessarily enter into a
loop: a same state can be visited twice, but with two completely different future evolution,
depending on the inputs.

80CHAPTER 5. UNARY CHAOTIC ITERATION PRNG: CIPRNG MULTI-CYCLE AND XOR

Algorithm 2 presents details of this approach, which consists of deploying three different
PRNGs to compute the strategy. In this version, two inputted PRNGs of 64 bits denoted
by xi and yi are used for defining the chaotic strategy S . Furthermore, we added a third
inputted set generator zi of 32 bits for more complexity. The zi generator will pick randomly
a subset of the inputs at each iteration, as described in Equation 28, in which only the
log(log(n)) least significant bits (in this case, 3 bits) are used.

Algorithm 2 CIPRNG-XOR proposal: it randomly picks a subset of the inputs at each
iteration, whose index is contained in the first term of the strategy
Input: the internal state x (32 bits)
Output: a state r of 32 bits

1: ui ← PRNG1,
2: yi ← PRNG2,
3: zi ← PRNG3
4: if (zi&1) , 0 then
5: x← x ⊗ (ui&0x0FFFFFFFF)
6: if (zi&2) , 0 then
7: x← x ⊗ (ui � 32)
8: if (zi&4) , 0 then
9: x← x ⊗ (yi&0x0FFFFFFFF)

10: r ← x ⊗ (yi � 32)
11: return r

5.3/ FPGA IMPLEMENTATION

5.3.1/ GLOBAL COMPARISON

Let us recall the three CIPRNG described from previous sections, where each deploys
a certain number of embedded PRNGs as strategies. Initially the strategies used for
each CIPRNG type is as follows ({PRNG}, {pass or not for TestU01}): the XOR64
(NO), XOR128+ (NO), XOR64∗ (PASS), KISS64P124 (NO), and is LFSR258 (NO) are
candidate for 64 bits generators, where MRG32k3a (PASS), MWC1038 (NO), TAUS88
(NO), LFSR113 (NO), MWC256 (NO), TT800 (NO), PCG32 (PASS), WELLRNG512 (NO),
Mersenne Twister (NO), XOR128 (NO), CMWC4096 (NO), KISS32P124 (NO) are for 32
bits strategies.

Regarding CIs based post-processing, we tested more than 275 configurations of strate-
gies for CIPRNG-XOR (three of 64 bits and one 32 bits) on our Mésocentre supercom-
puter facilities (170 were able to pass TestU01) and 169 of CIPRNG-MC/MCMD using two
strategies of 32 bits (93 pass the TestU01). Only are recalled hereafter those who pass
the recommended statistical TestU01 battery. To reach a fair comparison, we disabled
the use of DSP blocs for linear PRNGs. Additionally, having the ASIC implementations in
mind, we excluded each CIPRNG combination that deploys BRAM or DSP macros (MT,
TT800), to be independent from the technology.

Results concerning CIPRNG-XOR and CIPRNG-MC (respectively CIPRNG-MCMD) are
summarized in Table 5.2 and Table 5.1 (resp. in Table 5.3). The FPGA resources are
calculated following the Section 4.3. In the former table, we specify which combination

5.3. FPGA IMPLEMENTATION 81

has been studied. In examples contained in these tables, “A" is for XOR64, “B" means
XOR128+, and “C" is LFSR258. Values 1,2,3, and 4 correspond to Taus88, LFSR113,
XOR128, and XOR32 generators respectively. Additionally, as declared previously, we
deploy the new AXI-test platform with Zynq or Atlys board (see Section 4.2 for further
information).

Table 5.1: FPGA Implementation of CIPRNG-MC iteration post-processing using different
linear PRNG as strategy
CIPRNG (32Bits) CIPRNG Mult-Cycle [PRNG-32bits, Strategy-32Bits]

PRNG [1-2] [1,3] [2,1] [2-3] [3-1] [4-1] [1,1] [2,2] [3,3]

A
R

E
A

LUT 194 201 187 194 175 119 197 211 175

FF 386 386 388 418 373 252 356 418 403

DSP 0 0 0 0 0 0 0 0 0

RAM 0 0 0 0 0 0 0 0 0

Total Area (LUT+FF)*8 4640 4696 4600 4896 4384 2968 4424 5032 4744

S
P

E
E

D

Frequency (Mhz) 304 322 327 307 312 326 300 330 288

Design Latency 3→330 3→330 3→330 3→330 3→330 3→330 3→330 3→330 3→330

Output Latency 3→330 3→330 3→330 3→330 3→330 3→330 3→330 3→330 3→330

Throughput/Latency (Gbps) 3.2→0.03 3.4→0.03 3.5→0.03 3.3→0.03 3.3→0.03 3.478→0.03 3.196→0.03 3.523→0.03 3.069→0.03

a Values 1,2,3, and 4 correspond to Taus88, LFSR113, XOR128, and XOR32.

Table 5.2: FPGA Implementation of CIPRNG-XOR post-processing using different linear
prng as strategy

CIPRNG (32Bits) CIPRNG-XOR [PRNG-64bits, PRNG-64Bits, Strategy-32Bits]

PRNG [A,B,2] [A,B,3] [B,B,1] [B,B,2] [B,B,3] [B,C,2] [B,A,2]

A
R

E
A

LUT 364 357 237 222 226 502 345

FF 582 586 454 424 458 838 582

DSP 0 0 0 0 0 0 0

RAM 0 0 0 0 0 0 0

Total Area (LUT+FF)*8 7568 7544 5528 5168 5472 10720 7416

S
P

E
E

D

Frequency (Mhz) 257.7 250 250.9 251.8 250 266 257.5

Design Latency 3 3 3 3 3 3 3

Output Latency 1 1 1 1 1 1 1

Throughput/Latency (Gbps) 8.246 8.0 8.028 8.057 8.0 8.512 8.24

a “A" is for XOR64, 1. “B" means XOR128+, 2. “C" is LFSR258,
b Values 1,2, and 3 correspond to Taus88, LFSR113, XOR128.

5.3.2/ COMPARISON

CIPRNG Multi-Cycle: As recalled previously, this particular version of chaotic iterations
post-treatment is based on two inputted PRNGs. For FPGA implementation, 7 CIPRNG
combinations have been selected for their hardware performance. At each iteration, the
CIPRNG-MC updates only the bit which is selected by the strategy. The throughput will be

82CHAPTER 5. UNARY CHAOTIC ITERATION PRNG: CIPRNG MULTI-CYCLE AND XOR

then divided by the number of iterations (cycles) to update a subset of the input mt. That
is, the number of iterations is variable, which corresponds to a range of throughput/latency
values. According to results presented in Table 5.1, throughput of CIPRNG Multi-Cycle
is larger than those of almost all linear PRNGs that pass TestU01 (PCG, MRG32, and
XOR64*). Additionally, the consumed area is globally small, even if 2 PRNGs are embed-
ded and without inferring any blocks (DSPs and BRAM). Regarding statistical evaluation,
all the selected combinations succeeded the TestU01, contrary to all other chaotic PRNGs
based on Hénon [151], Lörenz & Chen [164], and Tent [165] maps.

CIPRNG-XOR: In this last version, 7 other combinations of CIPRNG-XOR generators
have been selected for their hardware performance, when compared with linear PRNGs.
The results of Table 5.2 illustrate a throughput to generate 32 bits 2.5 times larger for
CIPRNG-XOR than for almost all linear PRNGs that can pass TestU01. Furthermore,
if we consider the Thoughput/Latency ratio, CIPRNG is respectively 12 times, 30 times,
and finally 7 times faster than XOR64∗, PCG32, and combined PNRGs (MRG32 and
KISS124). Additionally, when DSPs blocks are disabled on use, CIPRNG-XOR is 25
times, 44 times, and finally 35 times faster than XOR64∗ (0.34Gbps), PCG32 (0.2Gbps),
and combined MRG32 (0.25Gbps). The same statement holds for area: CIPRNG-XOR
deploys 3 PRNGs, but it is 5 times more efficient than any other linear PRNGs. Compared
to all other aforementioned chaotic PRNGs, all configurations of CIPRNG-XOR are more
efficient in throughput, area, and ability to face statistical tests. Therefore, for FPGA
application, all combinations can contribute in hardware performance and statistical tests
compared to linear PRNGs. Finally, compared to CIPRNG-MC, the CIPRNG-XOR is less
compact in area resources, but largely more efficient in terms of throughput.

CIPRNG Multi-Cycle Multi-Dimension: As can be seen in Table 5.3, this new post-
processing provides the same hardware performance as the original TGFSR PRNGs
(see Table 3.2). Additionally, this new post-processing improves generators, in such a
way that they are able to pass the statistical TestU01 battery, while providing improved
performances with almost all chaotic PRNGs, as the ones of [151,164,165]. Due to such
qualities, these new types of CIPRNGs can thus contribute to parallel processing and
computation applications, like in Monte-Carlo simulation.

5.4/ ASIC IMPLEMENTATION

Table 5.4 and Table 5.5 summarizes the ASIC implementation, which uses two global
flows: the synthesis flow using Cadence RTL Compiler, and physical place and route
(P&R) flow in a second step, with Cadence Encounter Digital Implementation (see Sec-
tion 4.4 for further information).

5.4.1/ ASIC COMPARISON

We recall here from ASIC section 4.4 the area, the timing, and the power analysis. The
result analyzes of the various ASIC implementation of CIPRNG can be summarized as
follows.

Area Analysis: It is obvious that CIPRNG-XOR needs twice the area of CIPRNG-MC, due
to the use of three generators. For CIPRNG-MC, [1, 3], [2, 1], and [4, 1] have the lowest
area, which uses Taus88 (1) as a strategy. In the case of CIPRNG-XOR, [A, B, 2], [A, B, 3],

5.4. ASIC IMPLEMENTATION 83

Table 5.3: FPGA implementation of Multi-Cycle Multi-Dimension chaotic iteration post-
processing based for MT and TT800

Mersenne Twister TT800

Strategy Taus88 XOR128 Taus88 LFRS113

LUT 434 447 358 357

FF 676 672 830 853

DSP 3 3 6 6

RAM 2 2 2 2

Area (LUT+FF)*8 8880 8952 9504 9680

Design_Latency 3 3 3 3

Output_Latency 1 1 1 1

Throughput/Latency 4.8 4.8 5.2 5.3

Table 5.4: 65nm ASIC Implementation of CIPRNG-MC post-processing using different
linear prng as strategy

CIPRNG (32Bits) CIPRNG Multi Cycle [PRNG-32bits, Strategy-32Bits]

PRNG [1,2] [1,3] [2,1] [2,3] [3,1] [4,1] [1,1] [2,2] [3,3]

A
re

a

Standard Cells Area µm2 4718 4739 4791 5267 4437 3229 4372 5136 4831

Gate Elements (GE µm2) 3276 3291 3327 3658 3081 2242 3036 3567 3355

Transistor Area (TE µm2) 13104 13164 13308 14632 12324 8968 12144 14268 13420

S
pe

ed

Frequency (Mhz) 492 427 478 594 473 380 489 427 454

Output Latency 3→330 3→330 3→330 3→330 3→330 3→330 3→330 3→330 3→330

Throughput /Latency (Gbps) 5.2→0.03 4.6→0.04 5→0.05 6→0.6 5→0.05 4→0.04 5.2→0.05 4,5→0.04 4.8→0.04

Po
w

er

Internal Power (mW) 1.08 1.03 1.05 1.16 0.98 0.72 1 1.11 1.07

Switching Power (mW) 0.37 0.37 0.39 0.5 0.34 0.25 0.36 0.41 0.38

Total Power (mW) 1.46 1.4 1.45 1.66 1.32 0.97 1.36 1.52 1.45

a Values 1,2,3, and 4 correspond to Taus88, LFSR113, XOR128, and XOR32.

and [B, A, 2] are selected as best candidates for the lowest area consumption in chaotic
iterations based PRNGs.

Static Timing Analysis: Following Table 5.4 and Table 5.5, the CIPRNG-MC throughput is
twice better than CIPRNG-XOR, and similarly for the area. However, due to the latency
problem, this latter drops the throughput and balance CIPRNG-XOR up to 200 times
the ones of CIPRNG-MC and other linear PRNGs who pass TestU01. Finally, combina-
tions [A, B, 3], [B, A, 2], and [A, B, 2] are candidates of chaotic iterations PRNGs who pass
TestU01 and with good time performances.

Power Analysis: Various dynamic power analyzes illustrate in both tables low power con-
sumption of both CIPRNG-MC and CIPRNG-XOR. It is clear from Table 5.4 and Table 5.5
that, when we propagate the clock (switching), the switching power of the CIPRNGs is
lower than the internal power consumed by the internal cell of CIPRNGs. This is con-
firmed by the area of both CIPRNG family (GE, and especially FF). Despite such re-
sults, CIPRNG-XOR consumes twice the power of CIPRNG-MC, which is balanced by

84CHAPTER 5. UNARY CHAOTIC ITERATION PRNG: CIPRNG MULTI-CYCLE AND XOR

Table 5.5: 65nm ASIC Implementation of CIPRNG-XOR post-processing using different
linear prng as strategy

CIPRNG (32Bits) CIPRNG-XOR [PRNG-64bits, PRNG-64Bits, Strategy-32Bits]

PRNG [A,B,2] [A,B,3] [B,B,1] [B,C,2] [B,A,2] [B,B,3] [B,B,2]

A
re

a

Standard Cells Area µm2 9070 9165 11240 12579 9104 11867 11168

Gate Elements (GE µm2) 6299 6465 7806 8735 6322 8240 7756

Transistor Area (TE µm2) 25196 25860 31224 34940 25288 32960 31024

S
pe

ed

Frequency (Mhz) 276 340 273 275 281 248 270

Output Latency 1 1 1 1 1 1 1

Throughput /Latency (Gbps) 8.8 10.9 8.7 8.8 9 7.9 8.6

Po
w

er

Internal Power (mW) 1.72 1.9 2.023 2.45 1.74 2.27 1.83

Switching Power (mW) 0.83 0.94 0.98 1.2 0.86 1.15 0.93

Total Power (mW) 2.56 2.73 3.02 3.67 2.61 3.44 2.77

a “A" is for XOR64, 1. “B" means XOR128+, 2. “C" is LFSR258,
b Values 1,2, and 3 correspond to Taus88, LFSR113, XOR128.

frequency and throughput. We can finally select the combinations [B, A, 2], [A, B, 2], and
[B, B, 2] as candidates of chaotic iterations based PRNGs who can pass TestU01 and with
power performances.

5.5/ STATISTICAL TESTS RESULTS

The statistical batteries of tests considered in this thesis have been evoked in Section 1.6.

During experiments, the test batteries are run in Z-book Intel Core i7 −
4800MQCPU@2.70GHz × 8, working with Ubuntu 16.4 (64bits) and GCC 5.4.0. For NIST,
100 sequences of 106 bits are generated and tested. Tables 5.6 and 5.7 confirm that all
the chaotic iterations post-processings for linear PRNGs can pass the NIST, where the
minimum passing rate for each statistical test is approximately 96 for a sample size of 100
binary sequences. In the TestU01 case, all CIPRNG configurations for both proposals
(MC and XOR) can successfully pass this battery, which is failed when considering the
other chaotic PRNGs evoked in this thesis.

5.6/ CONCLUSION

This chapter has introduced the implementation on FPGA and ASIC of the first family of
post-processing for PRNGs based on chaotic iteration. The first conclusion that can be
outlined is that chaotic iterations post-processing provides an alternative implementation
of combined PRNGs without any supplemental cost, which is 2.5 times faster and 5 times
more efficient (with a low latency) than almost all the linear PRNGs that can pass TestU01.
However, it seems that CIPRNG-MC (multi-cycle) may become more efficient in term of
hardware level by reducing the number of cycles.

5.6. CONCLUSION 85

Table 5.6: Statistical test of NIST for different FPGA implementations of CIPRNG-XOR: a
100 sequences of 106 bits are generated and tested and p-value > 0.0001 being required
to pass a test [p-value + (minimum pass rate/100)]

Test [A,B,2] [A,B,3] [B,B,1] [B,B,2] [B,B,3] [B,C,2] [B,A,2]

Frequency (Monobit) 0.366 (0.99) 0.171 (0.99) 0.145 (1.0) 0.911 (1.0) 0.637 (0.96) 0.739 (0.99) 0.779 (0.99)

Frequency within a Block 0.554 (0.99) 0.181 (0.99) 0.987 (0.99) 0.759 (0.99) 0.181 (0.99) 0.719 (1.0) 0.236 (0.99)

Cumulative Sums (Cusum) * 0.381 (0.99) 0.607 (0.99) 0.376 (0.995) 0.312 (1.0) 0.444 (0.965) 0.512 (0.975) 0.626 (0.985)

Runs 0.554 (0.97) 0.637 (0.99) 0.213 (0.97) 0.637 (1.0) 0.262 (0.99) 0.275 (1.0) 0.574 (1.0)

Longest Run of Ones in a Block 0.971 (0.98) 0.249 (0.98) 0.191 (0.97) 0.474 (1.0) 0.637 (1.0) 0.834 (0.99) 0.437 (1.0)

Binary Matrix Rank 0.012 (0.97) 0.162 (1.0) 0.249 (0.98) 0.574 (0.99) 0.798 (0.99) 0.455 (0.98) 0.319 (0.99)

Discrete Fourier Transform (Spectral) 0.883 (1.0) 0.595 (1.0) 0.455 (0.98) 0.319 (0.99) 0.834 (0.97) 0.455 (0.98) 0.275 (1.0)

Non-overlapping Template Matching* 0.509 (0.990) 0.472 (0.989) 0.494 (0.990) 0.477 (0.990) 0.482 (0.99) 0.490 (0.990) 0.498 (0.989)

Overlapping Template Matching 0.401 (1.0) 0.983 (1.0) 0.911 (0.99) 0.275 (0.99) 0.946 (0.99) 0.657 (0.99) 0.816 (1.0)

Maurer’s "Universal Statistical" 0.474 (1.0) 0.055 (0.99) 0.983 (0.99) 0.637 (0.99) 0.075 (1.0) 0.494 (0.99) 0.678 (1.0)

Approximate Entropy (m=10) 0.616 (0.99) 0.066 (0.99) 0.834 (1.0) 0.249 (0.99) 0.554 (0.99) 0.494 (1.0) 0.437 (0.99)

Random Excursions * 0.514 (0.979) 0.439 (0.990) 0.522 (0.991) 0.559 (0.997) 0.490 (0.993) 0.436 (0.988) 0.562 (0.994)

Random Excursions Variant * 0.457 (0.967) 0.389 (0.980) 0.269 (0.996) 0.525 (0.988) 0.519 (0.997) 0.335 (0.989) 0.455 (0.985)

Serial* (m=10) 0.352 (1.0) 0.718 (0.99) 0.616 (0.99) 0.352 (0.985) 0.531 (0.995) 0.319 (1.0) 0.441 (0.98)

Linear Complexity 0.897 (0.99) 0.514 (1.0) 0.289 (0.99) 0.779 (0.98) 0.014 (0.99) 0.616 (1.0) 0.616 (1.0)

Total Tests 15/15 15/15 15/15 15/15 15/15 15/15 15/15

a The minimum pass rate for each statistical test is approximately = 96 for a sample size of 100 binary sequences.
b “A" is for XOR64, 1. “B" means XOR128+, 2. “C" is LFSR258, 3. Values 1,2,3, and 4 correspond to Taus88, LFSR113, XOR128, and XOR32.

Table 5.7: Statistical test of NIST for different FPGA implementation of CIPRNG-MC: a
100 sequences of 106 bits are generated and tested and p-value > 0.0001 being required
to pass a test [p-value + (minimum pass rate/100)]

Test [1-2] [1,3] [2,1] [2-3] [3-1] [4-1] [1,1] [2,2] [3,3]

Frequency (Monobit) 0.236 (0.99) 0.236 (0.99) 0.534 (0.99) 0.055 (1.0) 0.383 (1.0) 0.016 (0.99) 0.719 (0.99) 0.935 (0.98) 0.419 (0.97)

Frequency within a Block 0.129 (1.0) 0.129 (1.0) 0.319 (0.99) 0.834 (1.0) 0.595 (0.98) 0.383 (0.98) 0.851 (1.0) 0.883 (0.99) 0.935 (1.0)

Cumulative Sums (Cusum) * 0.696 (0.995) 0.696 (0.995) 0.326 (0.99) 0.687 (1.0) 0.785 (1.0) 0.438 (0.995) 0.345 (0.99) 0.478 (0.985) 0.895 (0.98)

Runs 0.514 (1.0) 0.514 (1.0) 0.739 (0.99) 0.494 (1.0) 0.946 (1.0) 0.964 (0.99) 0.137 (0.99) 0.699 (0.98) 0.275 (0.99)

Longest Run of Ones in a Block 0.162 (0.99) 0.162 (0.99) 0.213 (0.98) 0.955 (1.0) 0.366 (1.0) 0.719 (1.0) 0.494 (1.0) 0.366 (0.96) 0.798 (0.99)

Binary Matrix Rank 0.021 (0.98) 0.021 (0.98) 0.739 (0.99) 0.867 (0.98) 0.657 (0.99) 0.719 (0.99) 0.019 (1.0) 0.366 (1.0) 0.289 (0.98)

Discrete Fourier Transform (Spectral) 0.075 (0.98) 0.075 (0.98) 0.162 (1.0) 0.554 (1.0) 0.616 (0.98) 0.062 (0.98) 0.262 (1.0) 0.437 (0.96) 0.191 (0.98)

Non-overlapping Template Matching* 0.512 (0.990) 0.512 (0.990) 0.524 (0.990) 0.519 (0.991) 0.510 (0.991) 0.460 (0.992) 0.500 (0.990) 0.524 (0.989) 0.519 (0.991)

Overlapping Template Matching 0.213 (1.0) 0.213 (1.0) 0.834 (1.0) 0.978 (1.0) 0.019 (1.0) 0.883 (0.97) 0.066 (1.0) 0.455 (0.99) 0.494 (1.0)

Maurer’s "Universal Statistical" 0.474 (0.98) 0.474 (0.98) 0.657 (1.0) 0.595 (0.98) 0.304 (0.99) 0.437 (0.99) 0.350 (0.99) 0.834 (0.99) 0.616 (1.0)

Approximate Entropy (m=10) 0.289 (1.0) 0.289 (1.0) 0.657 (1.0) 0.946 (0.98) 0.401 (0.99) 0.798 (1.0) 0.534 (0.97) 0.494 (0.98) 0.455 (1.0)

Random Excursions * 0.296 (0.988) 0.296 (0.988) 0.385 (0.991) 0.289 (0.978) 0.562 (0.995) 0.471 (0.984) 0.351 (0.988) 0.395 (0.985) 0.310 (0.993)

Random Excursions Variant * 0.287 (0.993) 0.287 (0.993) 0.327 (0.996) 0.385 (0.983) 0.650 (0.991) 0.514 (0.986) 0.390 (0.980) 0.235 (0.993) 0.418 (0.996)

Serial* (m=10) 0.054 (0.995) 0.054 (0.995) 0.530 (0.995) 0.504 (1.0) 0.118 (0.99) 0.575 (0.985) 0.351 (0.99) 0.427 (0.985) 0.796 (0.965)

Linear Complexity 0.834 (0.99) 0.834 (0.99) 0.474 (1.0) 0.946 (0.99) 0.574 (1.0) 0.851 (1.0) 0.455 (0.98) 0.071 (0.97) 0.739 (1.0)

Total Tests 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15

a The minimum pass rate for each statistical test is approximately = 96 for a sample size of 100 binary sequences.
b Values 1,2,3, and 4 correspond to Taus88, LFSR113, XOR128, and XOR32.

V
GENERALIZED CHAOTIC ITERATION PRNG

6
GENERALIZED CHAOTIC ITERATION

This chapter investigates the hardware point of view of PRNG implementation. Contribu-
tions can be summarized as follows.

In order to reduce the number of embedded PRNGs used as strategies in chaotic iter-
ations proposal, a new pseudorandom number generator (GCIPRNG), specifically de-
signed for FPGA, is proposed. At each iteration, it receives a new input from another
given generator (P)RNG, which is called the strategy. However, this generator includes
the two modes of iterations unary and parallel (CIPRNG) already detailed in the previous
Chapter 5. Therefore, we say that PRNG based on generalized chaotic iterations, is a
generalization of the two iterations other modes. Thanks to an embedded Boolean func-
tion and a mixing function, our generator, which can be considered as a post-treatment
on the entrance one, has usually a better statistical profile than its input, while running at
a similar speed. Finally, we mathematically prove that the produced output has a chaotic
dependence to the input. The mid-term effects of a slight modification of the seed or of
the strategy cannot be predicted. The idea has been fully deployed on FPGA and it runs
completely in parallel while consuming as few resources as possible.

6.1/ GENERAL IDEA

Formally speaking, a Chaotic Iteration based PRNG (CIPRNG) is a random walk in the
graph of iterations of a specific binary function. The direction to take and the path length
are defined by the embedded generator(s) [163]. A first application of such an approach
was presented in the PRNG framework [12, 14]. Meanwhile, in [166], the authors have
proposed to remove an Hamilton Cycle, satisfying some balance properties, from the
Markov chain on the N-cube, while in [16], authors proposed new functions without an
Hamilton cycle, and studied the length of the walk in their cube, until having an associated
Markov graph close enough to the uniform distribution. In these first studies, the minimum
length of the chain between two uniform outputs is larger than 109 in [166] and is equal
to 9 in [16] for a Boolean function of 8 binary variables. These works end with the idea
that it is hard to have together the three properties of: chaos, hardware efficiency, and
statistically trustworthy.

Let us first discuss on how we tackle this problem. The first key idea is to have a short
internal state, possibly split into parallel blocs. This divide and conquer approach aims at
ensuring hardware efficiency but is in conflict with statistical quality. Chaotic iterations [10,
11] can be used to achieve chaos objectives. However, as noticed in [16] the general

90 CHAPTER 6. GENERALIZED CHAOTIC ITERATION

formulation of the chaotic iterations [156] should be preferred than the original one when
efficiency is needed. Finally, permutation techniques [167] have presented a convenient
way to ensure statistical faultless, in a fast manner. Our proposal is based on these three
main ideas and is summarized in Figure 6.1.

Figure 6.1: The proposal

At first, it can be seen that the seed x0, the internal state xt, and the output xt+1 are
all expressed with the same number N of bits. Without loss of generality, we consider
hereafter that N = 32. Let us show how to produce a new output xt+1 for a given input xt.
This one is first split into n blocs of equal length. We consider here that n = 4 and we thus
have xt = (xt

A, x
t
B, x

t
C , x

t
D) where xt

l is of size 8 for l ∈ {A, B,C,D}. The next step consists in
obtaining a N bits number st from the embedded generator, which is called the strategy.
Similarly to xt, the vector st is split into n blocs. Here we thus obtain st = (st

A, s
t
B, s

t
C , s

t
D).

Each sl, l ∈ {A, B,C,D}, can be interpreted as a set of elements in {1, 2, . . . , 8}. Each
block xt

l is modified separately as the result of the general formulation of the Chaotic
Iterations [156] applied on xt

l, st
l and a specific GCI function f : B8 → B8, as described

hereafter. The i-th component of xt+1
l is the i-th one of f (xt

l) if i is within the set st
l, else

this component is the i-th one of xt
l (i.e., only the components indicated by the set st

l are
updated). This results xt+1

l . All the xt+1
l are concatenated hereafter, producing the new

internal state xt+1. Finally, a permutation over the N bits is applied on xt+1 to produce the
new output.

The choice of the function f executed inside the GCI iteration, of the embedded PRNG,
and of the chosen final permutation function has a great influence on the quality of the
generator. It is discussed in the next sections.

6.2. MIXING FUNCTION 91

6.1.1/ ITERATED FUNCTION

Let s ∈ (B8)N be a sequence of subests of { 1, . . . 8}, x0 be a vector in B8, and f be
a function from B8 to B8. The sequence (xt)t∈N of vectors in B8 defined according the
general formulation of the Chaotic Iterations [156] is

xt+1 = (xt+1
1 , . . . , xt+1

N) where xt+1
i =

{
fi(xt) if i ∈ st,
xt

i otherwise.

Five functions from B8 to B8 are mainly studied in this article. The former is the negation
function, further denoted as NG. In this one, each fi is defined with fi(x) = xi. For
instance, the image of 5 = 00000101 is 250 = 11111010. We denoted as F1, F2, F3,
and F4, which are the GCI functions whose graph of generalized iterations is strongly
connected and which has been obtained by removing a balanced Hamiltonian cycle in
a N-cube following the method suggested in [16]. The choice of these five functions is
motivated by the objective to obtain a chaotic behavior.

Table 6.1: Boolean functions
Function f (x) f or x ∈ [0, 1, 2, 3, 4, 5 . . . , 2n − 1]
NEG [255, 254, 253, 252, 251, 250 . . . , 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

F1

[223, 190, 249, 236, 243, 234, 241, 252, 183, 244, 229, 245, 179, 178, 225, 248, 237, 254, 173, 232, 171, 202, 201, 200,
247, 198, 228, 230, 195, 242, 233, 160, 215, 220, 205, 216, 218, 154, 221, 208, 213, 210, 212, 148, 147, 211, 217, 209,
239, 238, 141, 140, 235, 203, 193, 204, 135, 134, 199, 197, 131, 226, 129, 224, 63, 174, 253, 184, 251, 250, 189, 176,
191, 246, 180, 182, 51, 50, 185, 240, 47, 46, 175, 188, 139, 42, 161, 172, 231, 164, 181, 165, 227, 130, 33, 32, 31, 222, 153,
158, 219, 26, 25, 156, 159, 214, 151, 149, 146, 18, 144, 152, 207, 206, 157, 136, 138, 170, 169, 8, 133, 6, 5, 196, 3, 194,
137, 192, 255, 110, 109, 120, 107, 126, 125, 112, 103, 114, 116, 118, 123, 98, 121, 96, 79, 78, 111, 124, 75, 122, 97,
108, 71, 100, 117, 101, 115, 66, 113, 64, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 74,
106, 105, 104, 69, 102, 68, 70, 99, 67, 73, 65, 55, 58, 57, 44, 187, 186, 49, 60, 119, 52, 37, 53, 35, 54, 177, 56, 45, 62, 61,
40, 59, 10, 9, 168, 167, 166, 36, 38, 163, 162, 41, 48, 23, 28, 13, 24, 155, 30, 29, 16, 21, 150, 20, 22, 27, 19, 145,
17, 143, 142, 15, 14, 43, 11, 1, 12, 39, 4, 7, 132, 2, 34, 0, 128]

F2

[223, 190, 249, 254, 243, 186, 233, 252, 183, 182, 247, 228, 242, 226, 240, 224, 237, 206, 173, 232, 203, 250, 169, 248,
167, 246, 245, 164, 235, 227, 241, 192, 215, 158, 157, 216, 218, 222, 221, 152, 213, 210, 149, 214, 219, 211, 217, 209,
239, 202, 207, 236, 139, 138, 193, 136, 231, 230, 199, 197, 194, 130, 225, 200, 63, 188, 253, 184, 251, 58, 189, 56, 191,
54, 165, 244, 51, 179, 161, 177, 47, 238, 175, 140, 163, 234, 41, 172, 39, 134, 229, 36, 162, 178, 129, 176, 31, 154, 29, 220,
147, 26, 145, 24, 159, 148, 151, 212, 146, 150, 144, 208, 141, 14, 205, 204, 171, 142, 201, 128, 133, 198, 132, 196, 195, 2,
137, 0, 255, 124, 109, 120, 122, 106, 125, 104, 117, 102, 101, 118, 123, 115, 97, 113, 79, 126, 111, 76, 99, 74, 121, 108, 71,
70, 103, 116, 98, 114, 65, 112, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 110, 93, 72, 107, 78, 105,
64, 69, 66, 68, 100, 75, 67, 73, 96, 55, 46, 57, 62, 187, 59, 185, 60, 119, 52, 181, 180, 50, 34, 48, 32, 45, 174, 61, 40, 11,
170, 9, 168, 37, 166, 53, 4, 43, 35, 49, 160, 23, 28, 13, 156, 155, 30, 153, 16, 21, 18, 20, 22, 27, 19, 25, 17, 143, 10, 15,
44, 3, 42, 1, 12, 135, 38, 7, 5, 131, 6, 33, 8]

F3

[223, 238, 189, 254, 243, 251, 233, 184, 183, 230, 229, 245, 242, 246, 177, 224, 237, 174, 253, 204, 203, 170, 201, 248, 247,
226, 197, 164, 235, 227, 241, 192, 215, 158, 205, 216, 155, 222, 221, 208, 151, 210, 212, 214, 219, 211, 145, 209, 143, 202,
207, 206, 139, 234, 193, 232, 135, 134, 199, 228, 194, 198, 129, 200, 63, 188, 61, 252, 186, 250, 249, 168, 191, 178, 180,
244, 187, 179, 49, 240, 239, 46, 175, 236, 163, 138, 185, 136, 231, 38, 181, 36, 162, 166, 225, 176, 31, 30, 153, 220, 147,
218, 217, 24, 159, 148, 213, 149, 19, 150, 144, 152, 141, 140, 13, 12, 171, 142, 9, 8, 133, 130, 5, 196, 195, 2, 137, 160,
255, 124, 109, 120, 122, 106, 125, 104, 103, 114, 116, 100, 123, 115, 97, 113, 79, 126, 111, 110, 99, 74, 121, 72, 71, 118,
117, 68, 98, 102, 65, 112, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 108, 107, 78, 105,
64, 69, 66, 101, 70, 75, 67, 73, 96, 55, 190, 57, 62, 51, 59, 41, 60, 119, 182, 37, 53, 50, 54, 48, 32, 45, 44, 173, 172,
11, 58, 169, 56, 167, 34, 165, 52, 43, 35, 161, 0, 23, 28, 157, 156, 26, 154, 29, 16, 21, 18, 20, 22, 27, 146, 25, 17, 47,
10, 15, 14, 3, 42, 1, 40, 39, 4, 7, 132, 131, 6, 33, 128]

F4

[223, 250, 249, 254, 243, 234, 185, 232, 183, 244, 229, 180, 242, 178, 240, 248, 237, 206, 253, 252, 171, 170, 201, 224, 247,
246, 165, 230, 195, 227, 161, 192, 215, 220, 205, 216, 218, 222, 153, 208, 151, 150, 212, 214, 219, 211, 217, 209, 239, 202,
207, 236, 235, 138, 137, 204, 135, 196, 199, 228, 194, 130, 225, 128, 63, 188, 61, 172, 251, 190, 189, 176, 191, 166, 245,
182, 187, 50, 241, 177, 143, 238, 175, 140, 43, 42, 233, 184, 231, 164, 37, 132, 35, 226, 33, 168, 31, 154, 221, 158, 27,
155, 145, 156, 159, 22, 213, 149, 146, 210, 144, 152, 141, 14, 157, 136, 203, 142, 9, 200, 7, 198, 197, 4, 163, 131, 193, 0,
255, 124, 109, 108, 107, 126, 125, 112, 103, 102, 116, 118, 123, 115, 97, 113, 79, 106, 111, 76, 75, 122, 121, 120, 71, 100,
117, 68, 98, 114, 65, 104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 110, 93, 72, 74, 78, 105, 64,
69, 66, 101, 70, 99, 67, 73, 96, 55, 58, 57, 62, 51, 186, 41, 40, 119, 52, 181, 53, 179, 34, 48, 56, 45, 174, 173, 60, 59, 46,
169, 32, 167, 54, 5, 38, 3, 162, 49, 160, 23, 28, 13, 24, 26, 30, 29, 16, 21, 18, 20, 148, 147, 19, 25, 17, 47, 10, 15, 44,
139, 11, 1, 12, 39, 134, 133, 36, 2, 6, 129, 8]

6.2/ MIXING FUNCTION

First of all, our proposal is a parallel execution of 4 blocks, each one producing 8 bits.
The internal state x is next produced as the concatenation of the results of the 4 blocks.
This design is guided by the goal of reducing the required resources. However, such an
approach suffers from decreasing the statistical complexity of the PRNG: without any post

92 CHAPTER 6. GENERALIZED CHAOTIC ITERATION

treatment it would be dramatic, because it has to deal with 8 bits only. A final step which
scrambles the internal state is thus necessary to tackle this problem.

This can be practically implemented with a mixing function (which allows to obtain a uni-
form output) provided it does not break the chaos property (as proven in the next sec-
tion). Among the large choice of mixing functions (such as rotation, dropping, xoring...),
we inspire from a detailed work in [167]. This work indeed proposes a bench of mixing
functions allowing to succeed statistical tests.

This mixing function is implemented as in Algorithms 3. It is not hard to see that it is mainly
a composition of three subfunctions. Let In32 be the internal state. The first function
scrambles between 17 and 28 rightmost bits (i.e. middle bits) with a xor function. The
number of selected elements depends on the value of In32. Then, the second function
applies a modular multiplication in the cyclic group of elements in {1, . . . , 231 − 2}. The
chosen multiplier b is a primitive root of the modulus 231 − 1. However, in [167] they need
more than 36 bits of internal state to pass TestU01, which is equivalent to a modulus of
237 −25. Therefore, b is set to “277803737”, but any primitive root of 237 −25 is convenient
for their work in [167]. The mixing function is a simple right xorshift on the lowest bits to
scramble them.

Finally, the same concept can be applied for any data width of CIPRNG based generalized
scheme associated to mixing function. Where, in 64 bits version of the generator, we
deploy a 64 bits strategy divided with the internal space xt into 8 blocs as for 32bits
case, then each of these blocs will pass through 8 CGI functions (same or combination).
Algorithms 4 illustrates the 64 bits mixing function used for the 64 bits CIPRNG based
generalized scheme.

Algorithm 3 A 32 bits Random Xorshift mixing Function
Input: the internal state In32 word (32 bits)
Output: a state Out32 of 32 bits

1: word1← (In32 � ((In32 � 28u) + 4u)) ⊗ In32
2: word2← word1 ∗ b
3: word3← (word2 � 22u) ⊗ word2
4: return Out32← word3

Algorithm 4 A 64 bits Random Xorshift Permutation Function
Input: the internal state In64 word (64 bits)
Output: a state Out32 of 64 bits

1: word1← (In64 � ((In64 � 59u) + 5u)) ⊗ In64
2: word2← word1 ∗ b
3: word3← (word2 � 43u) ⊗ word2
4: return Out64← word3

The next section shows that such a proposal provides a chaotic PRNG.

6.3/ CHAOTIC BEHAVIOR OF OUR GENERATOR

Let us recall or specify first some notations and definitions in use in this section. In what
follows, B is the Boolean set, while N is the usual sets of integer numbers. For a, b ∈ N,

6.4. FPGA IMPLEMENTATION 93

Ja, bK is the set of integers: {a, a + 1, . . . , b}, XN is the set of sequences belonging in X
and sk is the k-th term of a sequence s =

(
sk

)
k∈N

, which may be a vector (thus explaining
the use of an exponent). Finally, f n means the n-th composition of the function f (i.e.,
f n = f ◦ f ◦ . . . ◦ f).

In the proposal, the internal function h f is iterated on the current internal state, and with
a new generated sequence taken from the outer strategy. Then, the output is a permu-
tation p of the internal state, which is not internally modified. The topological framework
proposed in [12] for the CIPRNG-XOR and in [16] can be applied, mutatis mutandis,
to this generator. It is then possible to state that iterations of the internal function are
chaotic on its iteration space, denoted as X32 = B32 × J0, 31KN. And, using a topological
semi-conjugacy, that the permutation does not alter such an unpredictable behavior. Af-
ter having established that the 8-bits ICG function, denoted as g f , is strongly transitive on
its iteration space X8, we can first deduce that the discrete dynamical system x0 ∈ X8,
xn+1 = g f (xn) is chaotic, and then that h f is chaotic according to Devaney.

The proof of the whole generator G f is chaotic can be found in Annex A.2.

Finally, the whole generator with the permutation p must be integrated inside the itera-
tions, to see if the output has a chaotic behavior when modifying the input (internal state
or strategy). To write the generator as a discrete dynamical system, we need to introduce
the reverse permutation p−1. To do so, let us define

p : X32 −→ X32
(e, s) 7−→ (p(e), s),

its inverse being
p−1 : X32 −→ X32

(e, s) 7−→ (p−1(e), s).

We can now introduce the following diagram:

X32
h f

−−−−−→ X32xp−1 p
y

X32
G f
−−−−−→ X32

p−1 and p are obviously continuous on (X32, d32), which can be directly deduced by the
sequential characterization of the continuity. So the commutative diagram depicted above
is a topological conjugacy, and the generator

G f = p ◦ h f ◦ p−1

thus inherits the chaotic behavior of h f on (X32, d32).

6.4/ FPGA IMPLEMENTATION

Table 6.2 and Table 6.3 present the results of two different implementations of our pro-
posal on FPGA with their TestU01 statistical test evaluations. During these implemen-
tations, we considered five distinct Boolean functions, namely the negation and GCI F1,
F2 as mentioned in Section 6.2 (F3 and F4 have the same behaviors than F1 and F2).

94 CHAPTER 6. GENERALIZED CHAOTIC ITERATION

To pass TestU01, the multiplication constant “b” of the permutation function (see Algo-
rithm (3)) must be great or equal to 811 for all strategies based 32 bits generators and 995
for 64 bits (we note here that there are other small constants that allow to pass TestU01
but with not all strategies). Therefore, in term of FPGA, these small constants represent
a compact implementation resource compared to the original constant initially proposed
(i.e., 277803737 for PCG32). Linear PRNGs are used as strategies (inputted generators),
which are LFSR113, Taus88, xorshift128, and LFSR258. All the design is synchronized
with a main clock of 125Mhz and reset. Obtained results are described hereafter.

Negation Function. Three implementations have been realized and evaluated for each
GCIPRNG width (32/64 bits). Notice that, in these 3 evaluations, the value of the minimum
modular multiplication operand b used in the mixing function (see Section 6.2) is the
same. We have obtained that the negation has similar performances compared to other
GCI functions in terms of throughput and area.

For 32 bits generators, it is obviously more efficient than its best competitors (linear or
chaotic PRNGs), as its throughput is between 1 and 6 times larger than the other chaotic
PRNGs (that cannot pass TestU01). However, the exception comes from [92] using the
logistic map and Berouili [165]: it is true that the latter has a throughput of 7.5 and 8.5 Gbps
for 32 bits (we discarded [92], as this latter is fully dependent on Matlab Simulink macros,
which is not relevant for ASIC implementation). Similarly, our three implementations using
the negation function exhibit lower results compared to XOR-CIPRNG [12] for throughput
compared to the area.

Finally, compared to the 32 bits PRNGs that can also pass TestU01, our 64 bits gen-
erators with the negation function use less area and are faster. To conclude this part,
and when considering the negation, our proposal using LFSR113 as strategy is our best
candidate for 32 bits generating 6.96 Gbps, which is increased to 11.5 Gbps for 64 bits
generators.

GCI functions. We performed similar experiments than for the negation function. We
obtained a lower performance in terms of throughout when compared with the nega-
tion function, which is due to the function implementation, and because in the negation
we iterate a very simple logical operation (see Algorithm 3 to compare). However, de-
spite its use of a bigger constant, which leads to a longer data path, the proposal with
GCI functions does not consume any DSP block of FPGA: logic operators are sufficient.
Additionally, results show that the three implementations with GCI functions perform bet-
ter than all the other chaotic PRNGs that can pass the TestU01, if we except both our
proposal with the negation and the XOR-CIPRNG [12]. Their performances are close
to what has been obtained with the negation function, or to [12] with Taus88 as strat-
egy, while GCIPRNG makes harder to reverse the process without knowing the internal
transition function. However, XOR-CIPRNG [12] is limited to 32 bits (8.5Gbps) and uses
three different strategies (two 64 bits and one 32 bits), when GCIPRNG is up to 64 bits
(≈ 12Gbps) while less strategies are used (for 64-bit GCIPRNG version, it uses a 64-bits
strategy based on two 32 bits generators or a linear PRNG of 64 bits). Indeed, GCIPRNG
is more efficient in term of area, throughput, and integrity for embedded cryptographical
applications and system with a flexibility of integration in SoC for different sizes.

6.5. CONCLUSION 95

Table 6.2: FPGA Implementation of 32-bits GCI PRNG using different linear PRNG as
strategy

PRNG Negation F1 F2 F3 F4

Strategy Taus88 LFSR113 xorshift128 Taus88 LFSR113 xorshift128 Taus88 LFSR113 xorshift128 Taus88 LFSR113 xorshift128 Taus88 LFSR113 xorshift128

A
R

E
A

LUT 263 273 252 421 433 395 421 415 399 403 394 411 421 418 401

FF 305 344 344 412 518 444 412 444 444 412 444 444 412 462 444

RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total Area (LUT+FF)*8 4544 4936 4936 6664 7608 6712 6664 6872 6744 6520 6704 6840 6664 7040 6760

S
P

E
E

D

Frequency (ns) 2.983 3.398 3.191 3.017 2.932 2.815 2.87 3.14 2.85 3.188 3.22 2.969 2.967 2.72 2.864

Frequency (Mhz) 199.3 217.3 209.94 200.68 197.32 192.86 194.93 205.76 194.17 207.81 209.2 198.77 198.69 198.39 194.7

Design Latency 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Output Latency 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Throughput/Latency (Gbps) 6.38 6.95 6.65 6.42 6.31 6.17 6.24 6.58 6.21 6.65 6.69 6.36 6.35 6.06 6.23

TE
S

T NIST PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

TestU01 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

Table 6.3: FPGA Implementation of 64-bits GCI PRNG using different linear PRNG as
strategy

PRNG Negation F1 F2 F3 F4

Strategy
Taus88

LFSR113
LFSR258

xorshift128

taus88

Taus88

LFSR113
LFSR258

xorshift128

taus88

Taus88

LFSR113
LFSR258

xorshift128

taus88

Taus88

LFSR113
LFSR258

xorshift128

taus88

Taus88

LFSR113
LFSR258

xorshift128

taus88

A
R

E
A

LUT 625 614 665 869 856 906 877 864 914 873 857 906 878 864 914

FF 812 812 804 779 812 850 812 812 850 812 812 850 812 812 850

RAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total Area (LUT+FF)*8 11496 11408 11752 13184 13344 14048 13512 13408 14112 13480 13352 14048 13520 13408 14112

S
P

E
E

D

Frequency (ns) 2.426 2.479 2.386 2.434 2.597 2.557 2.687 2.613 2.413 2.621 2.47 2.228 2.627 2.354 2.541

Frequency (Mhz) 179.40 181,12 178,12 179.66 185,08 183,72 188.22 185,63 178,98 185.9 180,83 173,25 186.12 177,11 183,18

Design Latency 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3

Output Latency 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Throughput/Latency (Gbps) 11.48 11,59 11.4 11.49 11,84 11,76 12.04 11,88 11,45 11.9 11,57 11,08 11.91 11,33 11,72

TE
S

T NIST PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

TestU01 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

6.4.1/ STATSISTICAL TESTS RESULTS

To conclude this experiment section, we have verified that all what we proposed can
pass all statistical tests of TestU01, from SmallCruh to BigCrush. Let us recall that the
permutation function [167] does not pass Crush and BigCrush when the space is lower
than 36 bits, while in our case it does with only 32 bits and a lower modular multiplicative
constant. Note that these results are naturally improved when we consider 64 outputted
bits, leading to a better throughput.

6.5/ CONCLUSION

In this chapter, we have introduced a new chaotic PRNG implemented in FPGA, which
is based on the combination of parallel executions of generalized chaotic iterations and
on an efficient mixing scheme. Five Boolean functions have been iterated: the vecto-
rial negation and GCI functions issued from removing a Hamilton cycle in the N-cube.
Three interesting strategy builders have been evaluated with each GCI functions. These
functions variations lead to a hardware generator with one of the best throughput of the
literature, and that can pass the most stringent statistical batteries of tests. If we consider
the two conditions of throughput and statistics, we have thus obtained one of the best ex-
isting hardware generator. Last, but not least, we have also rigorously proven the chaotic

96 CHAPTER 6. GENERALIZED CHAOTIC ITERATION

behaviors of the whole proposal for the Boolean functions.

VI
GENERAL CONCLUSION

7
GENERAL CONCLUSION

Random Number Generators, whether they are software or hardware, are of paramount
importance in terms of computer security (generation of encryption keys, masks in sym-
metric ciphers), simulations in various branches of science, as well as software and hard-
ware tests. First of all, these generators must be as basic as possible. And, secondly, it
must be impossible to distinguish in practice, through statistical tests, between the series
of numbers produced by these algorithms of and those of real random sequences. Other
properties are expected, depending on the scope of application, the most frequent one
being to be cryptographically secure, and/or to be chaotic.

A recent software approach developed within the DISC/AND department of the FEMTO-
ST Institute, is based on chaotic iterations (CI). This new approach allows a post-
processing on a pre-existing random flow, in order to improve their statistical properties,
and to add chaos property, while preserving the speed and the cryptographic character
of the provided flow. This thesis is in line with the work of FEMTO-ST Institute through
chaotic iterations. However, it opens many new perspectives thanks to the hardware
implementations of these PRNGs.

In this context, this conclusion chapter firstly presents a synthesis of the key elements
proposed in this field (Section 7.1) and further outlines some perspectives (Section 7.2).

7.1/ CONTRIBUTION SYNTHESIS

Chapter 1 has presented a deep analysis of FPGA implementations of well known PRNGs
or TRNGs. This survey helped us to define the prerequisites for our new generators. To
the best of our knowledge, up to now, no research work has really deeply investigated
hardware implementations of random number generators. From a statistical point of view,
we pointed out in this survey that only the first version of chaotic iterations based PRNGs
(namely, the XOR-CIPRNG) is able to pass the TestU01 battery. Furthermore, this XOR-
CIPRNG was the lowest one in terms of FPGA resources.

Chapter 2 recalled various elements related to chaotic iterations. In these discrete dy-
namical systems, only a subset of components is updated at each iteration. In addition,
it is also reminded that the iterations of such PRNGs are chaotic if and only if the graph
of the iteration function is strongly connected. Therefore, we a priori have an infinite
collection of chaotic functions.

The second part of this manuscript focuses on quantifying hardware performance of lin-

100 CHAPTER 7. GENERAL CONCLUSION

ear PRNGs on FPGA and ASIC platforms. Chapter 3 selects a set of linear PRNGs to be
investigated as possible strategies or for future comparisons with CI. These linear PRNGs
are indeed analyzed regarding their main performances in: (1) space, time, and compu-
tational complexity, (2) statistical tests, (3) seed and period, (4) arithmetic operators and
dynamic range, and (5) throughput vs. latency. In this analysis, the chaotic PRNGs are
used for throughput comparison, while linear PRNGs are considered for statistical tests
analysis.

During this thesis, a FPGA platform and an ASIC one have been realized to accelerate
the implementations of RNGs and their statistical evaluation, and to allow the analysis of
hardware resources used by these generators. The first platform uses either a Zynq ARM
CPU based on AXI BUS communication integrated inside the FPGA or is compatible with
AXI Bus and is reconfigurable. The ASIC one deploys an advanced process node as UMC
65 − nm and a complete digital synthesis with physical flow of cadence. This has allowed
us to have a complete RNG production line: from specification to mathematical level, then
to software and RTL implementations with SoC applications, until a final physical circuit.

The third part of this manuscript presented the application of this theory at the hardware
level. Chapter 5 shown the implementation on FPGA/ASIC of chaotic iterations CIPRNG
based on unary and parallel schemes. Therefore, three different CIPRNGs have been
proposed: CIPRNG-XOR, CIPRNG-MC (Multi-Cycle), and CIPRNG-MCMD (Multi-Cycle
Multi-Dimension). We have illustrated that all of these configurations pass TestU01 and
NIST statistical tests using different strategies. In FPGA platform, it was observed that
CIPRNG-XOR performs better in terms of area, throughput over latency, and statistical
tests than linear PRNGs that pass TestU01, and than other chaotic PRNGs. As far as
we know, only a few articles in the literature have provided both FPGA and ASIC imple-
mentation results, in the case of chaotic PRNGs. Therefore, such new results presented
in this thesis can be considered as an additional contribution to chaotic PRNGs research
domain.

Finally, Chapter 6 proposes a new chaotic iterations PRNG based on a generalized
scheme (GCIRNG) for FPGA support. Five Boolean functions have been investigated:
the vectorial negation and 4 other functions produced by removing a Hamilton cycle in
the N-cube. With such functions, a family of 32 bits and 64 bits GCIPRNGs based on the
generalized scheme is proposed. The underlying theory has been regarded, since our
proposal has been completely studied in the rigorous framework of chaos theory. We ver-
ified that only one iteration (or equivalently one jump) in the N-cube and one mixing func-
tion are enough to pass the whole TestU01. If we consider the two criteria of throughput
and statistics, we have thus obtained one of the best existing hardware chaotic generator
on FPGA. We can consider these versions as complements of the oldest one (that is, the
CIPRNG-XOR), but that have a larger throughput over latency ratio.

7.2/ PERSPECTIVES

The experiences, results and knowledge acquired during this work lead to new perspec-
tives for pseudorandom number generators based on generalized chaotic iteration. They
are presented below.

• We plan to test and implement other GCI functions obtained by removing a Hamil-

7.2. PERSPECTIVES 101

ton cycle in the N-cube. This will aim at finding the relationship between strategies,
seed, and other mixing functions, in order to find combinations with maximal periods
that lead to a large number of successes in statistical tests. Additionally, more pro-
cess node and analysis for ASIC (TSMC-180nm and ST-130nm) can be deployed,
which leads to a full optimization and comparison at transistor level, if we compare
it with the algorithm (logic) level.

• Another perspective deals with proving the cryptographic security of all generators
based on generalized scheme with a mixing function. This study should help us
to enforce our statements about the superiority of our generators for hardware and
software applications.

• Another important work is to propose a TRNG version of our approach. This TRNG
is planned to use our GCIPRNG as post processing either with an existing TRNG
as strategy, or by creating a new one on both FPGA and ASIC. Two approaches
are possible. On the one hand, we can generate randomness by doing a transistor
stressing, and the Random Telegraph Noise (RTN) signal of a MOSFET transistor
can be used for that. This signal is used during the trapping and detrapping charge
carriers. It is very interesting to increase the RTN signal of a transistor by an electri-
cal stress to increase the density of the trap. Finally, each electrical stress resumes
the strategy call function of our post processing (these experiments can be done in
sub-micrometer transistor MOS already Tapout with TSMC-180nm and character-
ized in the CDTA/DMN team). On the other hand, the second perspective deploys a
laser equipment in relaxing mode, which can produces oscillation as impulsion of a
period of femtosecondes, and induces true random number in high speed (Gbps).
These experiments can be done either in the Femto-ST Institute, optic department,
or in the physical department of our CDTA.

• Applications using PRNGs will also to be investigated (cryptography, watermarking,
simulation, etc.) We plan to use the AXI platform (Chapter 4) as a support to fa-
cilitate the hardware implementation of these applications in a first stage, and then
to integrate them into a system on chip (SoC) with Zynq FPGA as a second stage.
Indeed, there is already an ongoing work on chaotic bloc cipher cryptography using
different mode of operations as CBC, for which a SoC platform will be welcome.

VII
ANNEXES

A
MATHEMATICAL PROOFS

A.1/ FURTHER INVESTIGATIONS OF THE CHAOTIC BEHAVIOR OF

“CHAOTIC ITERATIONS”

In Section 2.2 of the Chapter 2, we have recalled already obtained results regarding the
Devaney’s chaos of general chaotic iterations. Although well-recognized, this definition
is not the sole possible approach to formalize unpredictability and disorder aspects of
an iterated system. Indeed, since four decades, mathematicians have proposed various
other formulations of a chaotic dynamic, and these formulations are complementary but
not equivalent: each definition provides a specific description of the complex behavior
of such particular “chaotic” discrete dynamical systems. Let us now investigate other
qualitative descriptions of the complex behavior of these chaotic iterations. We first begin
with the following result:

Proposition A.1.1. Let us consider f such that the graph Γ f is strongly connected. Then,
for all open ball B of X, we can find an iteration n ∈ N such that Gn

f (B) = X.

Proof. Given x ∈ X and r > 0, let us recall that the open ball B(x, r) is the set {y ∈ X |
d(x, y) < r}. For these x and r, we intend to show that ∃N0 ∈ N such that GN0

f (B(x, r)) = X.
Without limitation, we can assume that r < 1, because if r′ < min(1, r) satisfies ∃N0 ∈ N s.t.
GN0

f (B(x, r′)) = X, then as B(x, r′) ⊂ B(x, r), we can a fortiori deduce that GN0
f (B(x, r)) = X.

Consider the point y(0) = (({1}, {1}, {1}, . . .), (0, . . . , 0)) of X. As the iteration graph is strongly
connected, then G f is strongly transitive. So there is a point x(0) in the neighborhood
B(x, r) of x and an integer n(0) such that Gn(0)

f (x(0)) = y(0). This point x(0) is necessarily of
the following form:

• Being inside B(x, r), with r < 1 its second coordinate (the Boolean vector) must be
the same than x, due to the Hamming distance in d. In other words, x(0)

2 = x2.

• Let n0 = −blog10(r)c. Having regard to the definition of d and as x(0) ∈ B(x, r), we
necessarily have an equality between the n0 first terms of the sequence x1 and the
n0 first terms of the sequence x(0)

1 .

• As Gn(0)

f

(
x(0)

)
= y(0), it is a necessity that after n(0) shifts of the sequence of x(0), we

obtain the sequence ({1}, {1}, {1}, . . .) of y(0).

106 APPENDIX A. MATHEMATICAL PROOFS

• Finally, terms of the sequence of x(0) between positions n0 + 1 and n(0) are the ones
required for f to transform the Boolean vector of x(0) to the one of y(0) (this is the
path to follow in Γ f to reach y(0)

2 , starting from x(0)
2).

Let us now consider a point Y (0) of the form:

• its Boolean vector Y (0)
2 is equal to y(0)

2 ;

• its sequence Y (0)
1 is of any kind.

Then the point X(0) defined by:

1. X(0)
2 = x(0)

2 : same Boolean vector than x(0);

2. ∀k ∈ J0, n0K, X
(0)
1,k = x(0)

1,k: the n0 + 1 first terms of subset sequences of X(0) and x(0) are
equal;

3. ∀k ∈ Jn0 + 1, n(0)K, X(0)
1,k = x(0)

1,k: idem for the n(0) − n0 following ones;

4. ∀k > n(0), X(0)
1,k = Y (0)

1,k−n(0) : the last terms in sequence of X(0) are the whole terms of
sequence of Y (0);

is such that:

• X(0) ∈ B(x, r), due to the two first items above;

• the Boolean vector of Gn(0)

f

(
X(0)

)
is the one of Y (0), due to the third item;

• the sequence of Gn(0)

f

(
X(0)

)
, which is the one of X(0) after n(0) shifts, is too the se-

quence of Y (0), due to the forth item.

In other words, for each Y (0) in X that has (0, 0, . . . , 0) as Boolean vector, we have found a
point X(0) in B(x, r) and n(0) ∈ N such that Gn(0)

f

(
X(0)

)
= Y (0).

We now proceed similarly for points having (0, . . . , 0, 1) as Boolean vector. Consider now
the point y(1) = (({1}, {1}, {1}, . . .), (0, . . . , 0, 1)) ∈ X. For the same reasons than previously,
there exists a point x(1) of B(x, r) and an integer n(1) such that Gn(1)

f (x(1)) = y(1). Let us now
consider a point Y (1) of the form:

• its Boolean vector Y (1)
2 is equal to y(1)

2 ;

• its sequence Y (1)
1 is of any kind.

Then the point X(1) defined by:

1. X(1)
2 = x(1)

2 ;

2. ∀k ∈ J0, n1K, X
(1)
1,k = x(1)

1,k;

3. ∀k ∈ Jn1 + 1, n(1)K, X(1)
1,k = x(1)

1,k;

A.1. FURTHER INVESTIGATIONS OF THE CHAOTIC BEHAVIOR OF “CHAOTIC ITERATIONS”107

4. ∀k > n(1), X(1)
1,k = Y (1)

1,k−n(1) ;

is such that X(1) ∈ B(x, r) and Gn(1)

f

(
X(1)

)
= Y (1): any point of X having (0, . . . , 0, 1) as

Boolean vector can be reached from B(x, r) with n(1) iterations of G f .

This process can be extended accordingly until the point y(2N−1) =

(({1}, {1}, {1}, . . .), (1, . . . , 1, 1)), which leads to the definition of n(2N−1), of x(2N−1), of
Y (2N−1), and finally of X(2N−1).

At this stage, we can claim that, for all y of X, it is possible to find x′ ∈ B(x, r) and a
certain integer N ∈ {n(0), . . . , n(2N−1)} such that GN

f (x′) = y. The last issue to solve is that
the iteration number N depends on the Boolean vector y2, which should not be the case.

Let us consider N0 = max({n(k), k = 0..2N − 1}). In each sequence of subsets X(k)
1 , k ∈

J0, 2N − 1K, it is possible to incorporate N0 − k times the empty set ∅ between terms X(k)
1,n(k)

and X(k)
1,N0

, in such a way that:

Y (k) = Gn(k)

f

(
X(k)

)
= Gn(k)+1

f

(
X(k)

)
= . . . = GN0

f

(
X(k)

)
,

which is equivalent to be on a treadmill once reaching the target Y (k) and until having
iterated N0 times. Thanks to that, for all y ∈ X, it is possible to find x′ ∈ B(x, r) such that
GN0

f (x′) = y, which is the expected result. �

Therefore, however small the starting open ball, we finish to reach the whole X space by
iterating G f . Using this result, we can deduce the following proposition related to chaos.

Proposition A.1.2. General chaotic iterations G f are topologically mixing: for all couple of
nonempty open sets U and V, there is n0 ∈ N such that ∀n > n0, Gn

f (U) ∩ V , ∅.

Proof. Let us consider U and V, two disjoint nonempty open sets of X. U being a
nonempty open set, we can find x ∈ X and r > 0 such that B(x, r) ⊂ U. Due to Propo-
sition A.1.1, ∃n0 s.t. Gn0

f (B(x, r)) = X. As B(x, r) ⊂ U, we have too Gn0
f (U) = X, and so

Gn0
f (U) ∩ V , ∅. Let us consider Y ∈ Gn0

f (U) ∩ V. It exists X(0) ∈ U such that Gn0
f (X(0)) = Y.

The point X(1) defined by:

• X(1)
2 = X(0)

2 ;

• ∀k 6 n0, X
(1)
1,k = X(0)

1,k: the two sequences start by the same terms;

• X(1)
1,n0+1 = ∅: we insert an empty set at position n0 + 1 in sequence X(1)

1 ;

• ∀k > (n0 + 1), X(1)
1,k = X(0)

1,k−1;

is such that Gn0+1
f (X(1)) = Y, and so Gn0+1

f (U) ∩ V , ∅. Similarly, by incorporating l empty
sets between positions n0 +1 and n0 + l inside the sequence of X(0), we are able to define a
point X(l) which is such thatGn0+l

f (X(l)) = Y, proving so that Gn0+l
f (U)∩V , ∅. This inequality

being valid for all l > 0, we can deduce the topological mixing of G f . �

Proposition A.1.3. When considering the vectorial negation for f , the general chaotic
iterations satisfy the Knudsen’s definition of chaos [157]: they are sensible to the initial
condition and they have a dense orbit.

108 APPENDIX A. MATHEMATICAL PROOFS

Proof. The sensibility to the initial condition of G f has already been stated in [156]. We
are then left to construct a point x ∈ X such that the set {Gn

f (x) | n ∈ N} is dense in X:
iterations of Gn

f (x) must be as close as possible to any point y ∈ X.

Let us denote by s0, s1, . . . , s2N−1 the list of each subset of J1,NK: s0 = ∅, s1 = {N}, s2 =

{N−1}, s3 = {N−1,N}, ..., s2N−1 = {1, 2, ...,N}. Let us now consider a point y ∈ X. Its Boolean
vector y2 can be associated to a given sk, namely the subset of J1,NK that contains the
coordinates of 1’s in y2. The first term y1,0 of sequence y1, for its part, is a given sk′ , while
the second term y1,1 is too a given sk′′ , with k, k′, k′′ ∈ J0, 2N − 1K.

Let us now remark that, when iterating G f on the point ((sk, sk′ , sk′ , sk, ...), (0, 0, . . . , 0)), with
f the vectorial negation:

• We start on the Boolean vector (0, 0, . . . , 0);

• As sk indicates the 1’s in vector y and we use the vectorial negation, we thus have,
after one iteration of G f :

– the Boolean vector (0, 0, . . . , 0) is changed in y2;

– the sequence is shifted of one position, so it now starts by (sk′ , sk′ , sk, ...).

Having the same Boolean vector and the same first term in the sequence, we are
thus at a distance lower than 10−1 to y after one iterate.

• Iterating G f another time switches the binary digits in positions sk′ in the Boolean
vector, while shifting the sequence so that it becomes (sk′ , sk′ , sk, ...).

• Iterating twice G f will operate a second time the negation on Boolean digits at posi-
tion sk′ and sk,

and so the new Boolean state is (0, 0, . . . , 0) again after these 4 iterations. To sum up, it-
erating four times starting from ((sk, sk′ , sk′ , sk, ...), (0, 0, . . . , 0)) will first leave the (0, 0, . . . , 0)
vector to be at a distance 10−1 to y, and then come back to (0, 0, . . . , 0) after shifting 4
times the sequence.

Let us consider now the point:

((s0, s0, s0, s0,

s0, s1, s1, s0,

...,

s0, s2N−1 , s2N−1 , s0,

s1, s0, s0, s1,

s1, s1, s1, s1,

...,

s1, s2N−1 , s2N−1 , s1,

s2N−1 , s2N−1 , s2N−1 , s2N−1 , ...), (0, 0, . . . , 0))

By iterating G f on it, we will be at one time at 10−1 of any point of X, while recovering the
null Boolean vector at each 4 iterates.

Let us now remark that if, instead of considering ((sk, sk′ , sk′ , sk, ...), (0, 0, . . . , 0)) in our first
explanations, we have regarded ((sk, sk′ , sk′′ , sk′′ , sk′ , sk, ...), (0, 0, . . . , 0)), then after one iter-
ate the dynamical system is at a distance lower than 10−2 to y, as we have applied the

A.2. MATHEMATICAL CHAOS OF THE PROPOSED DESIGN OF GCIPRNG 109

negation on bits at positions sk, and because the sequence starts by (sk′ , sk′′ , sk′′ , sk′ , sk, ...)
after one shift. So, if we concatenate all the possible (s, s′, s′′, s′′, s′, s), s, s′, s′′ ⊂ J1,N,
in the point defined above, we will then be at a distance lower than 10−2 of any point of
X during iterations of G f . Continuing the process with patterns of length 8, 10, etc., will
define a unique point x whose iterates are as close as possible to any point of X, leading
to a dense orbit. �

Let us consider the point x constructed in the previous proof, which has a dense orbit in
X. It is easy to see that the points G f (x), G2

f (x), G3
f (x)... have too a dense orbit. And

so, points having a dense orbit are dense in X, leading to another aspect of chaos, as
targetted by Knudsen.

A.2/ MATHEMATICAL CHAOS OF THE PROPOSED DESIGN OF

GCIPRNG

A.2.1/ FIRST CONSIDERATIONS

We want now to characterize how much chaotic is our proposal for PRNG based on
generalized chaotic iterations as described in Chapter 6. By chaos, we mean that the
effects, on the output sequence, of any slight alteration of either the seed or the embed-
ded PRNG cannot be predicted in the short or medium term. Note that both inputs and
outputs are constituted in binary (sequences of) vectors: each element is constituted by
a finite number of bounded integers, but the set of all possible inputs/outputs is infinite
(countable). Additionally, with two different strategies or seeds, we can reach twice the
same xt, but with two different xt+1: this finite state machine does not necessarily enter
into a loop, as at each iteration we take a new value from the “outside world”, that is, from
the strategy (this machine does not iterate in a vacuum). Furthermore, this strategy can
be non-periodic, if we consider a TRNG like a physical white noise or any physical source
of entropy of that kind.

To sum up, by designing a finite state machine that only manipulate integers (no floating
point issue), but which takes a new input from the outside world at each iteration, we thus
obtain an iterative process working on an infinite space, and which does not enter nec-
essarily within a loop. As the whole algorithm may be described as an iteration function,
we can thus quantify how much dependent is the output to a slight alteration of the input,
using the well reputed and rigorous mathematical theory of chaos. We are then left to
evaluate the chaotic behavior of the proposal depicted in Figure 6.1.

A.2.2/ PROOF OF CHAOS: THE INTERNAL PROCESS

Let us recall or specify first some notations and definitions in use in this section. In what
follows, B is the Boolean set, while N and R are the usual sets of real and integer numbers,
with the notations of N∗ and R+ for their positive (or equal to zero) subsets. For a, b ∈ N,
Ja, bK is the set of integers: {a, a + 1, . . . , b}. XN is the set of sequences belonging in X
and st is the t-th term of a sequence s =

(
st)

t∈N, which may be a vector (thus explaining
the use of an exponent). Finally, f n means the n-th composition of the function f (i.e.,
f n = f ◦ f ◦ . . . ◦ f), while vi is the i-th component of a vector v. In case where this i-th

110 APPENDIX A. MATHEMATICAL PROOFS

component vi of vector v is itself a vector, the notation vi, j stands for the j-th coordinate of
the latter. Similarly, if s is a sequence of sequences, the j-th term of sequence si will be
denoted by si, j.

We first focus on the proposal without the mixing, which is referred as the internal process.

For N ∈ N∗, let us define the set

XN = BN ×
(
BN

)N
,

and the following functions:

iN :
(
BN

)N
−→ BN

(st)t∈N 7−→ s0,

and
σN :

(
BN

)N
−→

(
BN

)N
(st)t∈N 7−→ (st+1)t∈N.

They respectively extracts the first term of an entrance sequence (iN), and shifts it to the
left by removing the first term (σN).

We now define the distances:

dN,E : BN × BN −→ R+

(e, e′) 7−→
∑N

k=1 |ei − e′i |,

which is the Hamming distance on BN, and

dN,S :
(
BN

)N
×

(
BN

)N
−→ R+

(s, s′) 7−→
9
N

∑∞
t=0

dN,E(st, s′t)
10t+1 .

It has been already proven in [156] (by identifying, mutatis mutandis, the set of subsets
of J1,NK with BN) that, with the distance dN = dN,E + dN,S , XN becomes a metric space. We
define

FN, f : BN × BN −→ BN

(b, e) 7−→ FN, f (b, e),

where ∀i ∈ J1,NK,

FN, f (b, e)i =

{
ei if bi = 0,
f (e)i else,

and
g f : X8 −→ X8

(e, s) 7−→
(
F8, f (i8(s), e);σ8(s)

)
.

It has already been established, in [156], that such general iterations are continuous on
the metric space (X8, d8), and that the discrete dynamical space x0 ∈ X8, xt+1 = g f

(
xt) is

chaotic, according to Devaney, on (X8, d8). It is shown also that this dynamical system is
strongly transitive [156].

Given n,N ∈ N,N > n, we define:

ψn,N : J1,N − n + 1K × BN −→ Bn

(t, e) 7−→ (et, . . . , et+n−1) ,

A.2. MATHEMATICAL CHAOS OF THE PROPOSED DESIGN OF GCIPRNG 111

and, similarly, Ψn,N , as follows:

J1,N − n + 1K ×
(
BN

)N
−→ (Bn)N

(t, (si)i∈N) 7−→
(
Ψn,N(S i)

)
i∈N ,

and, finally,

h : X32 −→ X32

(e, s) 7−→
((

g f
(
ψ8,32(1, e),Ψ8,32(1, s)

)
1,1 ,

...

g f
(
ψ8,32(1, e),Ψ8,32(1, s)

)
1,8 ,

g f
(
ψ8,32(9, e),Ψ8,32(9, s)

)
1,1 ,

...

g f
(
ψ8,32(9, e),Ψ8,32(9, s)

)
1,8 ,

g f
(
ψ8,32(17, e),Ψ8,32(17, s)

)
1,1 ,

...

g f
(
ψ8,32(17, e),Ψ8,32(17, s)

)
1,8 ,

g f
(
ψ8,32(25, e),Ψ8,32(25, s)

)
1,1 ,

...

g f
(
ψ8,32(25, e),Ψ8,32(25, s)

)
1,8),

σ32(s)) .

We can remark that the h function is what is iterated inside our proposal, if we except the
mixing. Indeed, the four blocks (binary digits ranging from 1 to 8, and then from 9 to 16,
from 17 to 24, and finally from 25 to 32) appear well in the first component of the output
of h.

We will show that iterations of h are chaotic on X32 and, using a topological semi-
conjugacy, that the mixing does not alter such an unpredictable behavior. In order to
do so, we must first check that,

Proposition A.2.1. h is a continuous map on the metric space (X32, d32).

. Let us consider a sequence xn = (en, sn)n∈N ∈ X
N
32, which is convergent to an element

x = (e, s) ∈ XN
32. As

d32(xn, x) −→ 0
= d32,E(en, e) + d32,S (sn, s),

and due to the fact that d32,E produces only integers, we have ∃n1 ∈ N, n > n1 ⇒ en = e.

Similarly, d32,S (sn, s) −→ 0, so ∃n2 ∈ N such that n > n2 ⇒ d32,S (sn, s) <
1

1032 . Due to the

way we defined dN,S , we can conclude that ∀n > n2, the sequence sn has the same 32
first terms than the sequence s. And we can conclude from these two facts that

∀n > max{n1, n2}, h(en, sn)1 = h(e, s)1.

112 APPENDIX A. MATHEMATICAL PROOFS

Finally, for n > n2, we have ∀i < 32, sn,i = si. So, ∀n > n2,

d32,S (sn, s) =
9
N

∑∞
t=0

dN,E(sn,t, st)
10t+1

=
9
N

∑∞
t=0

dN,E(σ(sn)t, σ(s)t)
10t+1

=
d32,S (σ32(sn), σ32(s))

10
.

As d32,S (sn, s) −→ 0, we can deduce that d32,S (σ32(sn), σ32(s)) −→ 0, and so:

h(en, sn)2 −→ h(e, s)2.

As a conclusion, for all sequence xn = (en, sn)n∈N of XN
32, if xn −→ x = (e, s) ∈ X32, then

h(xn) −→ h(x). This is the sequential characterization of the continuity, and so h is contin-
uous on (X32, d32). �

Let us now show that:

Proposition A.2.2. If g f is strongly transitive on X8, then h f is chaotic according to De-
vaney on (X32, d32).

Proof. Let us first prove that,

Lemma A.2.3. If g f is strongly transitive on X8, then h f is strongly transitive on (X32, d32).

Proof. Let x = (e, s) and x̌ = (ě, š) two points of X32, and ε > 0. We must find x′ = (e′, s′)
inside the open ball B(x, ε) = {u ∈ X32, d32(u, x) < ε} such that:

hn
f (x′) = x̌.

Let us consider:
p1 = (ψ8,32(1, e); (Ψ8,32(1, s),Ψ8,32(32 + 1, s),

Ψ8,32(2 × 32 + 1, s), . . . ,
Ψ8,32(k × 32 + 1, s), . . .)),

q1 = (ψ8,32(1, ě); (Ψ8,32(1, š),Ψ8,32(32 + 1, š),
Ψ8,32(2 × 32 + 1, š), . . . ,
Ψ8,32(k × 32 + 1, š), . . .)),

in which the second components are infinite sequences of B8. p1 and q1 belong to X8 and
g f is strongly transitive, so there exist p̃1 = ((ẽ1, . . . ẽ8), (s̃1, s̃2, . . .)) in B(p1, ε) and n1 ∈ N
such that:

gn1
f (p̃1) = q1.

We can apply the same process on points:

p2 = (ψ8,32(9, e); (Ψ8,32(9, s),Ψ8,32(32 + 9, s),
Ψ8,32(2 × 32 + 9, s), . . . ,
Ψ8,32(k × 32 + 9, s), . . .)),

q2 = (ψ8,32(9, ě); (Ψ8,32(9, š),Ψ8,32(32 + 9, š),
Ψ8,32(2 × 32 + 9, š), . . . ,
Ψ8,32(k × 32 + 9, š), . . .)),

A.2. MATHEMATICAL CHAOS OF THE PROPOSED DESIGN OF GCIPRNG 113

leading to the existence of p̃2 ∈ X8 and n2 ∈ N such that gn2
f (p̃2) = q2. The process if finally

applied on the last two “quarters” of X32 = B32 ×
(
B32

)N
, dividing the first (resp. second)

set of the Cartesian product in 4 vectors of 8 bits (resp. in sequences belonging in B8)
thanks to φ8,32 (resp. Φ8,32). This leads to the points of X8 defined below:

p3 = (ψ8,32(17, e); (Ψ8,32(17, s),Ψ8,32(32 + 17, s),
Ψ8,32(2 × 32 + 17, s), . . .)),

q3 = (ψ8,32(17, ě); (Ψ8,32(17, š),Ψ8,32(32 + 17, š),
Ψ8,32(2 × 32 + 17, š), . . .)),

p4 = (ψ8,32(25, e); (Ψ8,32(25, s),Ψ8,32(32 + 25, s),
Ψ8,32(2 × 32 + 25, s), . . .)),

q4 = (ψ8,32(25, ě); (Ψ8,32(25, š),Ψ8,32(32 + 25, š),
Ψ8,32(2 × 32 + 25, š), . . .)).

As previously, due to the strong transitivity of g f , we have the existence of p̃3, p̃4 ∈ X8 and
of n3, n4 ∈ N such that gn3

f (p̃3) = q3 and gn4
f (p̃4) = q4.

Let us introduce the following notation: p̃i = (ẽi, S̃ 1) for i = 1, . . . , 4, and n0 = max4
i=1{ni}.

We define:

s̃i
t =


S t

i if t 6 ni,

0 if t ∈ Jni + 1, n0K,
S t−n0+ni

i else.

Indeed, for each quarter of X32 we have four different ni, i = 1..4, number of iterations
to reach a given point of X8 by starting to a neighborhood of another given point of this
quarter. By adding 0’s in the iteration sequence, we thus allow to iterate in a vacuum the
required number of times in each quartet, so that after n0 iterations each 4 parts of the
targeted point x′ are reached. Let us do it with details.

Let us consider the point p′ = (e′, s′) ∈ X32 defined by:

• e′ =
(̃
e1,1, . . . , ẽ1,8, ẽ2,1, . . . , ẽ2,8, ẽ3,1, . . . , ẽ3,8, ẽ4,1, . . . , ẽ4,8

)
∈ B32,

• s′ =
((

s̃1,8k+1, . . . , s̃1,8k+8, s̃2,8k+1, . . . , s̃2,8k+8, s̃3,8k+1, . . . , s̃3,8k+8, s̃4,8k+1, . . . , s̃4,8k+8
))

k∈N,

which is a sequence of
(
B32

)N
.

By construction, this point of X32 is such that hn0
f (x′) = x̌ and x′ ∈ B(x, ε). �

Let us now finalize the proof of Prop. A.2.2. h f being strongly transitive on (X32, d32), it is
thus transitive. We are then left to establish the regularity of h f .

Let us consider x = (e, s) ∈ X32, and ε > 0. We need to find a periodic point x′ =

(e′, s′) inside B(x, ε). As ε may be lower than 1, and due to the definition of d32, we
must choose e′ = e. Let k0 = −blog10(ε)c + 1 the integer such that any point of the form
(e, (s0, s1, . . . , sk0 , a, b, c, . . .)) is inside B(x, ε).

Let us denote by x̌ = (ě, š) the point hk0
f (x). Due to the strong transitivity of h f

(Lemma A.2.3), there is a point x̃ = (̃e, s̃) in B(x̌, 0.1) and k1 ∈ N such that hk1
f (x̃) = x.

Finally, the point x′ = (e, (s0, s1, . . . , sk0 , s̃0, . . . , s̃k1 , s0, s1, . . . , sk0 , s̃0, . . . , s̃k1 , . . .) is k0 + k1 pe-
riodic and inside the neighborhood B(x, ε) of x, which proves the regularity, and then the
chaotic behavior of h f . �

B
PRNG IMPLENTED ON FPGA

B.1/ LINEAR PRNG ON FPGA

Listing B.1: LFSR113
1 ‘timescale 1ns / 1ps
2 module lfsr113(/*AUTOARG*/
3 // Outputs
4 lfsr113_prng ,
5 // Inputs
6 CLK, reset,enable_p
7) ;
8
9

10 input CLK;
11 input reset,enable_p;
12 output reg [31:0] lfsr113_prng;
13
14 reg [31:0] z1, z2, z3,z4;
15
16 //== State variables
17 reg state;
18 reg next;
19 // End of automatics
20
21 parameter [0:0]
22 CI_S0 = 1’b0,
23 CI_IDLE = 1’b1;
24
25 reg [78:0] state_ascii_r; // Decode of current
26 always @(state) begin
27 case ({state})
28 CI_S0: state_ascii_r = "CI_S0 ";
29 CI_IDLE: state_ascii_r = "CI_IDLE ";
30 default: state_ascii_r = "CI_IDLE ";
31 endcase
32 end
33
34 //== assign prng1 and prng2 register
35 //== Initialisation FSM one-hot encoding
36 always @(posedge CLK) begin
37 if (!reset) begin
38 state = CI_IDLE;
39 end else begin
40 state=next;
41 end
42 end
43
44 //== Initialisation FSM one-hot encoding
45 always @(*) begin
46 next = CI_IDLE;
47 case (state)
48
49 CI_IDLE: begin
50 if (enable_p==1’b0) begin
51 next=CI_IDLE;
52 end else begin
53 next=CI_S0;
54 end
55 end
56 CI_S0: begin
57 next=CI_S0;
58 end
59 default: next=CI_IDLE;
60 endcase
61 end
62
63 //always @(state or enable or enable_tmp or mci or countci or j or reset) begin

116 APPENDIX B. PRNG IMPLENTED ON FPGA

64 always @(posedge CLK) begin
65 if (!reset) begin
66 z1= 32’d987654321;
67 z2= 32’d987654321;
68 z3= 32’d987654321;
69 z4= 32’d987654321;
70 end else begin
71 case (state)
72 CI_IDLE : begin
73 //xorshift64_prng = xorshift64_prng;
74 z1= z1; z2= z2;z3= z3;z4= z4;
75 end
76 CI_S0 : begin
77 z1 = (((z1 & 32’d4294967294) << 18) ^ (((z1 << 6) ^ z1) >> 13));
78 z2 = (((z2 & 32’d4294967288) << 2) ^ (((z2 << 2) ^ z2) >> 27));
79 z3 = (((z3 & 32’d4294967280) << 7) ^ (((z3 << 13) ^ z3) >> 21));
80 z4 = (((z4 & 32’d4294967168) << 13) ^ (((z4 << 3) ^ z4) >> 12));
81 end
82 endcase
83 end
84 end
85
86 //assign lfsr113_prng = (state == CI_S0)? z1 ^ z2 ^ z3 ^ z4: 32’b0;
87 always @(posedge CLK) begin
88 if (!reset) begin
89 lfsr113_prng <= 32’b0;
90 end else if (state==CI_S0) begin
91 lfsr113_prng <= z1 ^ z2 ^ z3 ^ z4;
92 end else begin
93 lfsr113_prng <= lfsr113_prng;
94 end
95 end
96
97 endmodule

Listing B.2: Taus88
1 module taus88(
2 // Outputs
3 taus88_prng ,
4 // Inputs
5 CLK, reset, enable_p
6) ;
7
8 input CLK;
9 input reset, enable_p;

10 output reg [31:0] taus88_prng;
11
12
13
14 reg [31:0] s1, s2, s3;
15
16
17 //== State variables
18 reg state;
19 reg next;
20 // End of automatics
21
22 parameter [0:0]
23 CI_S0 = 1’b0,
24 CI_IDLE = 1’b1;
25
26 reg [78:0] state_ascii_r; // Decode of current
27 always @(state) begin
28 case ({state})
29 CI_S0: state_ascii_r = "CI_S0 ";
30 CI_IDLE: state_ascii_r = "CI_IDLE ";
31 default: state_ascii_r = "CI_IDLE ";
32 endcase
33 end
34
35 //== assign prng1 and prng2 register
36 //== Initialisation FSM one-hot encoding
37 always @(posedge CLK) begin
38 if (!reset) begin
39 state = CI_IDLE;
40 end else begin
41 state=next;
42 end
43 end
44
45 //== Initialisation FSM one-hot encoding
46 always @(*) begin
47 next = CI_IDLE;
48 case (state)
49
50 CI_IDLE: begin
51 if (enable_p==1’b0) begin
52 next=CI_IDLE;
53 end else begin
54 next=CI_S0;
55 end
56 end

B.2. SOFTWARE PART OF SOC BASED ZYNQ 117

57 CI_S0: begin
58 next=CI_S0;
59 end
60 default: next=CI_IDLE;
61 endcase
62 end
63
64 //always @(state or enable or enable_tmp or mci or countci or j or reset) begin
65 always @(posedge CLK) begin
66 if (!reset) begin
67 s1 <= 32’d12345;
68 s2 <= 32’d12345;
69 s3 <= 32’d12345;
70 end else begin
71 case (state)
72 CI_IDLE : begin
73 //xorshift64_prng = xorshift64_prng;
74 s1<= s1; s2<= s2; s3<= s3;
75 end
76 CI_S0 : begin
77 s1 <= (((s1 & 32’d4294967294) << 12) ^ (((s1 << 13) ^ s1) >> 19));
78 s2 <= (((s2 & 32’d4294967288) << 4) ^ (((s2 << 2) ^ s2) >> 25));
79 s3 <= (((s3 & 32’d4294967280) << 17) ^ (((s3 << 3) ^ s3) >> 11));
80 end
81 endcase
82 end
83 end
84
85 always @(posedge CLK) begin
86 if (!reset) begin
87 taus88_prng <= 32’b0;
88 end else if (state==CI_S0) begin
89 taus88_prng <= s1 ^ s2 ^ s3;
90 end else begin
91 taus88_prng <= taus88_prng;
92 end
93 end
94
95 endmodule

B.2/ SOFTWARE PART OF SOC BASED ZYNQ

Listing B.3: SDK Main function for PRNG based Zynq
1 #define PACKET_SIZE 256
2 int main(){
3 // Initialize the zynq platform (PS)
4 init_platform();
5
6 // enable the PL.
7 ps7_post_config ();
8
9 // Initialize AXI DMA

10 xil_printf ("initializing axi dma ...\n\r");
11 InitializeAXIDma ();
12
13 // Enable PRNG or CIPRNG Controller
14 // End of frame will come after 128 bytes (32 words) are transferred.
15 xil_printf ("setting up SampleGenerator unit...\n\r");
16 EnableSampleGenerator (PACKET_SIZE / 4);
17
18 // set the interrupt system and interrupt handling
19 // clear interrupt. just perform a write to bit no. 12 of S2MM_DMASR
20 xil_printf ("enabling the interrupt handling system...\n\r");
21 InitializeInterruptSystem (XPAR_PS7_SCUGIC_0_DEVICE_ID);
22
23 // Start DMA Transfer
24 // write destination address to S2MM_DA register.
25 // write length to S2MM_LENGTH register.
26 StartDMATransfer (0xa000000, PACKET_SIZE);
27
28 // Data is in the DRAM ! do your processing here !
29 u32 tt,i;
30 for(i=0; i<(PACKET_SIZE/4); i++) {
31 tt=Xil_In32(0xa000000 + 0x04*i);
32 xil_printf("these is the first outputs i:%10lu DDR:%10lu = %10lu\n\r", i, (0x04*i), tt);
33 }
34 return 0;
35 }

118 APPENDIX B. PRNG IMPLENTED ON FPGA

B.3/ SOFTWARE PART OF AXI-PLATFORM

To give an illustration, Listing B.4 resumes the main function of the new firmware. The
write operation consist of configuration the platform register to select which RTL IP to be
configure first, reset, and define latency for PRNG or the final outputs. While the read
operation is used to capture response from the platform to confirm any read and write
operation is completed by receiving their addresses from FPGA.

Listing B.4: New Firmware Main function for PRNG and CPRNG (AXI platform)
1 // Opens the USB serial port and continuously attempts to read from the port.
2 // On receiving data, looks for a defined command.
3 static const char *PORT_NAME = "/dev/ttyUSB1";
4 int main(){
5
6 // Opens a USB virtual serial port at ttyUSB0
7 serial_port_open();
8
9 // Reset, Read ID, define latency, select a strategy

10 serial_configure_core_write();
11
12 // Enable CPRNG to generate random
13 serial_port_write();
14
15 // Capture response from the platform
16 serial_port_read();
17
18 // Resets the terminal and closes the serial port
19 serial_port_close();
20
21 return 0;
22 }

Listing B.5: Configure the internal register of FPGA
1 void serial_configure_core_write(){
2
3 // Reset
4
5
6 // Read CORE ID
7
8
9 // Cycle configuration with [’\x00’, ’\x00’, ’\x00’, ’\x01’]

10 unsigned char write_buffer_2[9] = { 0x55, 0x11, 0x10, 0x41, 0x00, 0x00, 0x00, 0x01, 0xaa};
11 write_buffer_0[sizeof(write_buffer_0)] = 0;
12 write(serial_port , write_buffer_2 , sizeof(write_buffer_2));
13 usleep((sizeof(write_buffer_2) + 25) * 1000);
14 usleep(500*1000);
15 serial_port_read();
16 }

Listing B.6: Write operation to FPGA: Exemple
1 void serial_port_write(){
2
3
4 char write_buffer[5] = {0x55,0x10,0x10,0x20,0xaa};
5 len = sizeof(write_buffer);
6
7 bytes_written = write(serial_port , write_buffer , sizeof(write_buffer));
8
9 }

Listing B.7: Read DATA and R&W address confirmation
1 void serial_port_read(){
2
3 memset(&read_buffer[0], 0, MAX_COMMAND_LENGTH);
4 int chars_read = read(serial_port , &read_buffer[0], MAX_COMMAND_LENGTH);
5 usleep(500*1000);
6
7
8 if (read_buffer[1] == 0x7f) {
9 // Capture the address read send it from FPGA to confirm read operation from PRNG

10 sprintf(readBuff , "0x%X%X", read_buffer[2], read_buffer[3]);
11 read_addr = strtol(readBuff, NULL, 0);
12 // Capture the DATA of PRNG send it from FPGA
13 sprintf(dataBuff , "0x%X%X%X%X", read_buffer[4], read_buffer[5], read_buffer[6], read_buffer[7]);
14 read_data = strtol(dataBuff, NULL, 0);
15 // Confirm read operation
16 printf ("READ_Complete. address 0x%02x =0x%04x.\n", read_addr , read_data); Confirm read operation

B.3. SOFTWARE PART OF AXI-PLATFORM 119

17 }
18 else if (read_buffer[1] == 0x7e) {
19 // Capture the write address send it from FPGA to confirm write operation to FPGA register
20 sprintf(readBuff , "0x%X%X", read_buffer[2], read_buffer[3]);
21 read_addr = strtol(readBuff, NULL, 0);
22 // Confirm Write operation
23 printf ("WRITE_Complete. address 0x%02x.\n", read_addr);
24 }
25
26 }

BIBLIOGRAPHY

[1] Apostol Vassilev and Timothy A. Hall. The importance of entropy to information
security. Computer, 47(2):78–81, February 2014.

[2] S. Callegari, R. Rovatti, and G. Setti. Embeddable adc-based true random number
generator for cryptographic applications exploiting nonlinear signal processing and
chaos. IEEE Transactions on Signal Processing, 53(2):793–805, Feb 2005.

[3] X. Fang, B. Wetzel, J. M. Merolla, J. M. Dudley, L. Larger, C. Guyeux, and J. M.
Bahi. Noise and chaos contributions in fast random bit sequence generated from
broadband optoelectronic entropy sources. IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, 61(3):888–901, March 2014.

[4] Robert L. Devaney. An Introduction to Chaotic Dynamical Systems, 2nd Edition.
Westview Pr., March 2003.

[5] T. Stojanovski and L. Kocarev. Chaos-based random number generators-part i:
analysis [cryptography]. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 48(3):281–288, Mar 2001.

[6] T. Addabbo, A. Fort, L. Kocarev, S. Rocchi, and V. Vignoli. Pseudo-chaotic lossy
compressors for true random number generation. IEEE Transactions on Circuits
and Systems I: Regular Papers, 58(8):1897–1909, 2011.

[7] Y. Liu, R. C. C. Cheung, and H. Wong. A bias-bounded digital true random num-
ber generator architecture. IEEE Transactions on Circuits and Systems I: Regular
Papers, 64(1):133–144, Jan 2017.

[8] Vidya Rajagopalan, V Boppana, S Dutta, B Taylor, and R Wittig. Xilinx zynq-7000
epp–an extensible processing platform family. In 23rd Hot Chips Symposium, pages
1352–1357, 2011.

[9] Stephen Wiggins. Introduction to applied nonlinear dynamical systems and chaos,
volume 2. Springer Science & Business Media, 2003.

[10] Xiaole Fang, Qianxue Wang, Christophe Guyeux, and Jacques M Bahi. Fpga accel-
eration of a pseudorandom number generator based on chaotic iterations. Journal
of Information Security and Applications, 19(1):78–87, 2014.

[11] Jacques M Bahi, Xiaole Fang, Christophe Guyeux, and Laurent Larger. Fpga de-
sign for pseudorandom number generator based on chaotic iteration used in infor-
mation hiding application. Appl. Math, 7(6):2175–2188, 2013.

[12] Bakiri Mohammed, Jean-Francois Couchot, and Christophe Guyeux. Fpga imple-
mentation of f2-linear pseudorandom number generators based on zynq mpsoc:

122 BIBLIOGRAPHY

A chaotic iterations post processing case study. In Proceedings of the 13th In-
ternational Joint Conference on e-Business and Telecommunications - Volume 4:
SECRYPT,, pages 302–309, 2016.

[13] Mohammed Bakiri, Jean-François Couchot, and Christophe Guyeux. One ran-
dom jump and one permutation: Sufficient conditions to chaotic, statistically fault-
less, and large throughput prng for fpga. In Proceedings of the 14th International
Joint Conference on e-Business and Telecommunications - Volume 6: SECRYPT,
(ICETE 2017), pages 295–302. INSTICC, SciTePress, 2017.

[14] M. Bakiri, J. F. Couchot, and C. Guyeux. Ciprng: A vlsi family of chaotic iterations
post-processings for f-2 linear pseudorandom number generation based on zynq
mpsoc. IEEE Transactions on Circuits and Systems I: Regular Papers, PP(99):1–
14, 2017.

[15] Jacques Bahi, Christophe Guyeux, and Qianxue Wang. A novel pseudo-random
generator based on discrete chaotic iterations. In INTERNET’09, 1-st Int. Conf. on
Evolving Internet, pages 71–76, Cannes, France, August 2009.

[16] Sylvain Contassot-Vivier, Jean-François Couchot, Christophe Guyeux, and Pierre-
Cyrille Heam. Random walk in a n-cube without hamiltonian cycle to chaotic pseu-
dorandom number generation: Theoretical and practical considerations. Interna-
tional Journal of Bifurcation and Chaos, 27(01):1750014, 2017.

[17] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[18] James E Gentle. Random number generation and Monte Carlo methods. Springer
Science & Business Media, 2003.

[19] Carl-Erik Froberg and Carl Erik Frhoberg. Introduction to numerical analysis.
Addison-Wesley Reading, Massachusetts, 1969.

[20] Michael George Luby. Pseudorandomness and cryptographic applications. Prince-
ton University Press, 1996.

[21] Shimon Even and Yishay Mansour. A construction of a cipher from a single pseu-
dorandom permutation. Journal of Cryptology, 10(3):151–161, 1997.

[22] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In Advances in Cryptology, pages 10–18. Springer, 1985.

[23] Michael Henson and Stephen Taylor. Memory encryption: a survey of existing
techniques. ACM Computing Surveys (CSUR), 46(4):53, 2014.

[24] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
report, Technical Report CSL-98, SRI International Palo Alto, 1979.

[25] C.E. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, The, 28(4):656–715, Oct 1949.

[26] L.H.C. Tippett. Random Sampling Numbers. Arranged by L.H.C. Tippett, Etc.
[Tracts for Computers. no. 15.]. 1927.

BIBLIOGRAPHY 123

[27] Martin Campbell-Kelly, Mary Croarken, Raymond Flood, and Eleanor Robson. The
history of mathematical tables. AMC, 10:12, 2005.

[28] Maurice G Kendall and B Babington Smith. Randomness and random sampling
numbers. Journal of the royal Statistical Society, pages 147–166, 1938.

[29] Simon Hugh Lavington. A history of Manchester computers. NCC Publications,
1975.

[30] George W Brown. History of rand’s random digits, summary. Technical report, DTIC
Document, 1949.

[31] WE Thomson. Ernie–a mathematical and statistical analysis. Journal of the Royal
Statistical Society. Series A (General), pages 301–333, 1959.

[32] Nicholas Metropolis. The beginning of the monte carlo method. Los Alamos Sci-
ence, 15(584):125–130, 1987.

[33] Harald Niederreiter and NSF-CBMS Regional Conference on Random Num-
ber Generation. Random number generation and quasi-Monte Carlo methods, vol-
ume 63. SIAM, 1992.

[34] Pierre L’Ecuyer. Uniform random number generation. Annals of Operations Re-
search, 53(1):77–120, 1994.

[35] Curtis D Motchenbacher and Joseph Alvin Connelly. Low-noise electronic system
design. Wiley New York, 1993.

[36] Lindsay Kleeman and Antonio Cantoni. Metastable behavior in digital systems.
Design & Test of Computers, IEEE, 4(6):4–19, 1987.

[37] Guan-Chyun Hsieh and James C Hung. Phase-locked loop techniques. a survey.
Industrial Electronics, IEEE Transactions on, 43(6):609–615, 1996.

[38] A. Liacha, A. K. Oudjida, F. Ferguene, M. Bakiri, and M. L. Berrandjia. Design of
high-speed, low-power, and area-efficient fir filters. IET Circuits, Devices Systems,
12(1):1–11, 2018.

[39] A. K. Oudjida, D. Benamrouche, and M. Liem. Front-end ip development: Basic
know-how. In 2007 International Conference on Design Technology of Integrated
Systems in Nanoscale Era, pages 60–63, Sept 2007.

[40] Ross H Freeman and Hung-Cheng Hsieh. Distributed memory architecture for a
configurable logic array and method for using distributed memory, August 30 1994.
US Patent 5,343,406.

[41] Philip M Freidin. Logic block with look-up table for configuration and memory, May 9
1995. US Patent 5,414,377.

[42] E. Barker and A. Roginsky. Draft NIST special publication 800-131 recommendation
for the transitioning of cryptographic algorithms and key sizes, 2010.

[43] G Marsaglia. The diehard test suite, 1995. URL http://stat. fsu. edu/˜ geo/diehard.
html, 1995.

124 BIBLIOGRAPHY

[44] Pierre L’Ecuyer and Richard Simard. Testu01: Ac library for empirical testing of
random number generators. ACM Transactions on Mathematical Software (TOMS),
33(4):22, 2007.

[45] P. L’Ecuyer and F. Panneton. Fast random number generators based on linear
recurrences modulo 2: overview and comparison. In Proceedings of the Winter
Simulation Conference, 2005., pages 10 pp.–, Dec 2005.

[46] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.

[47] Robert C Tausworthe. Random numbers generated by linear recurrence modulo
two. Mathematics of Computation, 19(90):201–209, 1965.

[48] Donald E Knuth. Deciphering a linear congruential encryption. IEEE Transactions
on Information Theory, 31(1):49–52, 1985.

[49] Theodore G Lewis and William H Payne. Generalized feedback shift register pseu-
dorandom number algorithm. Journal of the ACM (JACM), 20(3):456–468, 1973.

[50] Makoto Matsumoto and Yoshiharu Kurita. Twisted gfsr generators. ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), 2(3):179–194, 1992.

[51] George S Fishman and Louis R Moore, III. An exhaustive analysis of multiplicative
congruential random number generators with modulus 2ˆ31-1. SIAM Journal on
Scientific and Statistical Computing, 7(1):24–45, 1986.

[52] Simon Banks, Philip Beadling, and Andras Ferencz. Fpga implementation of
pseudo random number generators for monte carlo methods in quantitative finance.
In Reconfigurable Computing and FPGAs, 2008. ReConFig’08. International Con-
ference on, pages 271–276. IEEE, 2008.

[53] William H Press. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

[54] George Marsaglia et al. Xorshift rngs. Journal of Statistical Software, 8(14):1–6,
2003.

[55] George Marsaglia and Arif Zaman. A new class of random number generators. The
Annals of Applied Probability, pages 462–480, 1991.

[56] A.K. Oudjida and N. Chaillet. Radix-2r arithmetic for multiplication by a constant.
Circuits and Systems II: Express Briefs, IEEE Transactions on, 61(5):349–353, May
2014.

[57] A. K. Oudjida, A. Liacha, M. Bakiri, and N. Chaillet. Multiple constant multiplication
algorithm for high-speed and low-power design. IEEE Transactions on Circuits and
Systems II: Express Briefs, 63(2):176–180, Feb 2016.

[58] A.K. Oudjida, N. Chaillet, and M.L. Berrandjia. Radix-2r arithmetic for multiplication
by a constant: Further results and improvements. Circuits and Systems II: Express
Briefs, IEEE Transactions on, 62(4):372–376, April 2015.

BIBLIOGRAPHY 125

[59] Raj S Katti and Sudarshan K Srinivasan. Efficient hardware implementation of a
new pseudo-random bit sequence generator. In Circuits and Systems, 2009. ISCAS
2009. IEEE International Symposium on, pages 1393–1396. IEEE, 2009.

[60] E. Erkek and T. Tuncer. The implementation of asg and sg random number genera-
tors. In System Science and Engineering (ICSSE), 2013 International Conference
on, pages 363–367, July 2013.

[61] Victor R Gonzalez-Diaz, Fabio Pareschi, Gianluca Setti, and Franco Maloberti. A
pseudorandom number generator based on time-variant recursion of accumula-
tors. Circuits and Systems II: Express Briefs, IEEE Transactions on, 58(9):580–584,
2011.

[62] Vladimir Friedman. The structure of the limit cycles in sigma delta modulation.
Communications, IEEE Transactions on, 36(8):972–979, 1988.

[63] Franco Maloberti, Edoardo Bonizzoni, and Antonio Surano. Time variant digital
sigma-delta modulator for fractional-n frequency synthesizers. In Radio-Frequency
Integration Technology, 2009. RFIT 2009. IEEE International Symposium on, pages
111–114. IEEE, 2009.

[64] David Barrie Thomas and Wayne Luk. Fpga-optimised high-quality uniform random
number generators. In Proceedings of the 16th international ACM/SIGDA sympo-
sium on Field programmable gate arrays, pages 235–244. ACM, 2008.

[65] David B Thomas and Wayne Luk. Fpga-optimised uniform random number gener-
ators using luts and shift registers. In Field Programmable Logic and Applications
(FPL), 2010 International Conference on, pages 77–82. IEEE, 2010.

[66] David B Thomas and Wayne Luk. The lut-sr family of uniform random number
generators for fpga architectures. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 21(4):761–770, 2013.

[67] Shrutisagar Chandrasekaran and Abbes Amira. High performance fpga implemen-
tation of the mersenne twister. In Electronic Design, Test and Applications, 2008.
DELTA 2008. 4th IEEE International Symposium on, pages 482–485. IEEE, 2008.

[68] Xiang Tian and Khaled Benkrid. Mersenne twister random number generation
on fpga, cpu and gpu. In Adaptive Hardware and Systems, 2009. AHS 2009.
NASA/ESA Conference on, pages 460–464. IEEE, 2009.

[69] Ishaan L Dalal, Jared Harwayne-Gidansky, and Deian Stefan. On the fast gener-
ation of long-period pseudorandom number sequences. In Systems, Applications
and Technology Conference, 2008 IEEE Long Island, pages 1–9. IEEE, 2008.

[70] Mutsuo Saito and Makoto Matsumoto. Simd-oriented fast mersenne twister: a 128-
bit pseudorandom number generator. In Monte Carlo and Quasi-Monte Carlo Meth-
ods 2006, pages 607–622. Springer, 2008.

[71] Yuan Li, Jiang Jiang, Hanqiang Cheng, Minxuan Zhang, and Shaojun Wei. An
efficient hardware random number generator based on the mt method. In Computer
and Information Technology (CIT), 2012 IEEE 12th International Conference on,
pages 1011–1015. IEEE, 2012.

126 BIBLIOGRAPHY

[72] Shengfei Wu, Jiang Jiang, and Yuzhuo Fu. Hardware architecture for the parallel
generation of long-period random numbers using mt method. In Computer Engi-
neering and Technology, pages 8–15. Springer, 2013.

[73] Pedro Echeverría and Marisa López-Vallejo. High performance fpga-oriented
mersenne twister uniform random number generator. Journal of Signal Process-
ing Systems, 71(2):105–109, 2013.

[74] John Von Neumann, Arthur W Burks, et al. Theory of self-reproducing automata.
IEEE Transactions on Neural Networks, 5(1):3–14, 1966.

[75] James Gleick. Chaos: Making a new science. Random House, 1997.

[76] Petre Anghelescu, Emil Sofron, and Silviu Ionita. Vlsi implementation of high-speed
cellular automata encryption algorithm. In Semiconductor Conference, 2007. CAS
2007. International, volume 2, pages 509–512. IEEE, 2007.

[77] Ioana Dogaru and Radu Dogaru. Algebraic normal form for rapid prototyping of ele-
mentary hybrid cellular automata in fpga. In Electrical and Electronics Engineering
(ISEEE), 2010 3rd International Symposium on, pages 277–280. IEEE, 2010.

[78] Dogaru Ioana and Dogaru Radu. Fpga implementation and evaluation of two cryp-
tographically secure hybrid cellular automata. In Communications (COMM), 2014
10th International Conference on, pages 1–4. IEEE, 2014.

[79] Thomas E Tkacik. A hardware random number generator. In Cryptographic Hard-
ware and Embedded Systems-CHES 2002, pages 450–453. Springer, 2003.

[80] Juan C Cerda, Chris D Martinez, Jonathan M Comer, and David HK Hoe. An effi-
cient fpga random number generator using lfsrs and cellular automata. In Circuits
and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on,
pages 912–915. IEEE, 2012.

[81] Sheng-Uei Guan and Syn Kiat Tan. Pseudorandom number generator–the self
programmable cellular automata. In Knowledge-Based Intelligent Information and
Engineering Systems, pages 1230–1235. Springer, 2003.

[82] Jonathan M Comer, Juan C Cerda, Chris D Martinez, and David HK Hoe. Random
number generators using cellular automata implemented on fpgas. In System The-
ory (SSST), 2012 44th Southeastern Symposium on, pages 67–72. IEEE, 2012.

[83] Lakshman Raut and David HK Hoe. Stream cipher design using cellular automata
implemented on fpgas. In System Theory (SSST), 2013 45th Southeastern Sym-
posium on, pages 146–149. IEEE, 2013.

[84] Mathieu David, Damith C Ranasinghe, and Torben Larsen. A2u2: a stream cipher
for printed electronics rfid tags. In RFID (RFID), 2011 IEEE International Confer-
ence on, pages 176–183. IEEE, 2011.

[85] Leonidas Kotoulas, Demetrios Tsarouchis, Georgios Ch Sirakoulis, and Ioannis
Andreadis. 1-d cellular automaton for pseudorandom number generation and its
reconfigurable hardware implementation. In Circuits and Systems, 2006. ISCAS
2006. Proceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE,
2006.

BIBLIOGRAPHY 127

[86] Louis M Pecora and Thomas L Carroll. Synchronization in chaotic systems. Physi-
cal review letters, 64(8):821, 1990.

[87] Robert M May et al. Simple mathematical models with very complicated dynamics.
Nature, 261(5560):459–467, 1976.

[88] Michel Hénon. A two-dimensional mapping with a strange attractor. Communica-
tions in Mathematical Physics, 50(1):69–77, 1976.

[89] Pawel Dabal and Ryszard Pelka. A chaos-based pseudo-random bit generator
implemented in fpga device. In Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2011 IEEE 14th International Symposium on, pages 151–154.
IEEE, 2011.

[90] W.T. Padgett and D.V. Anderson. Fixed-Point Signal Processing. Synthesis lectures
on signal processing. Morgan & Claypool, 2009.

[91] Pawel Dabal and Ryszard Pelka. Fpga implementation of chaotic pseudo-random
bit generators. In Mixed Design of Integrated Circuits and Systems (MIXDES), 2012
Proceedings of the 19th International Conference, pages 260–264. IEEE, 2012.

[92] P. Dabal and R. Pelka. A study on fast pipelined pseudo-random number generator
based on chaotic logistic map. In 17th International Symposium on Design and
Diagnostics of Electronic Circuits Systems, pages 195–200, April 2014.

[93] Amit Pande and Joseph Zambreno. Design and hardware implementation of a
chaotic encryption scheme for real-time embedded systems. In Signal Process-
ing and Communications (SPCOM), 2010 International Conference on, pages 1–5.
IEEE, 2010.

[94] Shubo Liu, Jing Sun, Zhengquan Xu, and Zhaohui Cai. An improved chaos-based
stream cipher algorithm and its vlsi implementation. In Networked Computing and
Advanced Information Management, 2008. NCM’08. Fourth International Confer-
ence on, volume 2, pages 191–197. IEEE, 2008.

[95] Lahcene Merah, Adda ALI-PACHA, and Naima HADJ SAID. Coupling two chaotic
systems in order to increasing the security of a communication system-study and
real time fpga implementation.

[96] Pascal Giard, Georges Kaddoum, François Gagnon, and Claude Thibeault. Fpga
implementation and evaluation of discrete-time chaotic generators circuits. In
IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society,
pages 3221–3224. IEEE, 2012.

[97] T Geisel and V Fairen. Statistical properties of chaos in chebyshev maps. Physics
Letters A, 105(6):263–266, 1984.

[98] Yaobin Mao, Liu Cao, and Wenbo Liu. Design and fpga implementation of a pseudo-
random bit sequence generator using spatiotemporal chaos. In Communications,
Circuits and Systems Proceedings, 2006 International Conference on, volume 3,
pages 2114–2118. IEEE, 2006.

[99] J Černák. Digital generators of chaos. Physics letters A, 214(3):151–160, 1996.

128 BIBLIOGRAPHY

[100] Chung-Yi Li, Jiung-Sheng Chen, and Tsin-Yuan Chang. A chaos-based pseudo
random number generator using timing-based reseeding method. In Circuits and
Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium
on, pages 4–pp. IEEE, 2006.

[101] R.G. B. Simultaneous carry adder, December 27 1960. US Patent 2,966,305.

[102] Chung-Yi Li, Yuan-Ho Chen, Tsin-Yuan Chang, Lih-Yuan Deng, and Kiwing To.
Period extension and randomness enhancement using high-throughput reseeding-
mixing prng. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
20(2):385–389, 2012.

[103] Lih-Yuan Deng. Efficient and portable multiple recursive generators of large order.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 15(1):1–13,
2005.

[104] Takeshi Oshiba. Closure property of family of context-free languages under cyclic
shift operation. ELECTRONICS & COMMUNICATIONS IN JAPAN, 55(4):119–122,
1972.

[105] John J Shedletsky. Comment on the sequential and indeterminate behavior of an
end-around-carry adder. IEEE Transactions on Computers, 26(3):271–272, 1977.

[106] NagaDeepa Hariprasad et al. Fpga implementation of a cryptography technology
using pseudo random number generator. In International Journal of Engineering
Research and Technology, volume 2. ESRSA Publications, November 2013.

[107] O.E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397 –
398, 1976.

[108] René Thomas, Vasileios Basios, Markus Eiswirth, Thomas Kruel, and Otto E
Rössler. Hyperchaos of arbitrary order generated by a single feedback circuit, and
the emergence of chaotic walks. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 14(3):669–674, 2004.

[109] Hu Guo-Si. A hyperchaotic attractor with multiple positive lyapunov exponents.
Chinese Physics Letters, 26(12):120501, 2009.

[110] Ahmed S Elwakil and Michael Peter Kennedy. Construction of classes of circuit-
independent chaotic oscillators using passive-only nonlinear devices. Circuits
and Systems I: Fundamental Theory and Applications, IEEE Transactions on,
48(3):289–307, 2001.

[111] AS Elwakil and MP Kennedy. Chaotic oscillator configuration using a frequency
dependent negative resistor. International journal of circuit theory and applications,
28(1):69–76, 2000.

[112] M Affan Zidan, Ahmed Gomaa Radwan, and Khaled Nabil Salama. The effect of
numerical techniques on differential equation based chaotic generators. In Micro-
electronics (ICM), 2011 International Conference on, pages 1–4. IEEE, 2011.

[113] G Chen and J Lü. Dynamics of the lorenz system family: analysis, control and
synchronization. SciencePress, Beijing, 2003.

BIBLIOGRAPHY 129

[114] PY Tsai, CL Merkle, and TT Huang. Euler equation analysis of the propeller-wake
interaction. In Symposium on Naval Hydrodynamics, 17th, 1900.

[115] Preston C Hammer. The midpoint method of numerical integration. Mathematics
Magazine, 31(4):193–195, 1958.

[116] John C Butcher. Numerical methods for ordinary differential equations in the 20th
century. Journal of Computational and Applied Mathematics, 125(1):1–29, 2000.

[117] M Affan Zidan, Ahmed Gomaa Radwan, and Khaled Nabil Salama. Random num-
ber generation based on digital differential chaos. In Circuits and Systems (MWS-
CAS), 2011 IEEE 54th International Midwest Symposium on, pages 1–4. IEEE,
2011.

[118] E.J. G. Latched carry save adder circuit for multipliers, September 5 1967. US
Patent 3,340,388.

[119] C. S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on Electronic
Computers, EC-13(1):14–17, Feb 1964.

[120] Abhinav S Mansingka, Mohamed L Barakat, M Affan Zidan, Ahmed G Radwan, and
Khaled N Salama. Fibonacci-based hardware post-processing for non-autonomous
signum hyperchaotic system. In IT Convergence and Security (ICITCS), 2013 In-
ternational Conference on, pages 1–4. IEEE, 2013.

[121] Basab Bijoy Purkayastha and Kandarpa Kumar Sarma. Digital phase-locked loop.
In A Digital Phase Locked Loop based Signal and Symbol Recovery System for
Wireless Channel, pages 103–126. Springer, 2015.

[122] Viktor Fischer and Miloš Drutarovskỳ. True random number generator embedded
in reconfigurable hardware. In Cryptographic Hardware and Embedded Systems-
CHES 2002, pages 415–430. Springer, 2003.

[123] Martin Šimka, Miloš Drutarovskỳ, and Viktor Fischer. Embedded true random num-
ber generator in actel fpgas. In Workshop on Cryptographic Advances in Secure
Hardware–CRASH, pages 6–7, 2005.

[124] Martin Simka, Milos Drutarovskỳ, Viktor Fischer, et al. Testing of pll-based true
random number generator in changingworking conditions. RADIOENGINEERING,,
20:94–101, 2011.

[125] Michal Varchola, Milos Drutarovsky, Robert Fouquet, and Viktor Fischer. Hard-
ware platform for testing performance of trngs embedded in actel fusion fpga. In
Radioelektronika, 2008 18th International Conference, pages 1–4. IEEE, 2008.

[126] Paul Kohlbrenner and Kris Gaj. An embedded true random number generator for
fpgas. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on
Field programmable gate arrays, pages 71–78. ACM, 2004.

[127] Cristian Klein, Octavian Cret, and Alin Suciu. Design and implementation of a high
quality and high throughput trng in fpga. arXiv preprint arXiv:0906.4762, 2009.

[128] Markus Dichtl and Jovan Dj Golić. High-speed true random number generation with
logic gates only. Springer, 2007.

130 BIBLIOGRAPHY

[129] Abdelkarim Cherkaoui, Viktor Fischer, Alain Aubert, and Laurent Fesquet. A self-
timed ring based true random number generator. In Asynchronous Circuits and
Systems (ASYNC), 2013 IEEE 19th International Symposium on, pages 99–106.
IEEE, 2013.

[130] Abdelkarim Cherkaoui, Viktor Fischer, Alain Aubert, and Laurent Fesquet. Compar-
ison of self-timed ring and inverter ring oscillators as entropy sources in fpgas. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012, pages
1325–1330. IEEE, 2012.

[131] Abdelkarim Cherkaoui, Viktor Fischer, Laurent Fesquet, and Alain Aubert. A very
high speed true random number generator with entropy assessment. In Crypto-
graphic Hardware and Embedded Systems-CHES 2013, pages 179–196. Springer,
2013.

[132] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
1989.

[133] Ihor Vasyltsov, Eduard Hambardzumyan, Young-Sik Kim, and Bohdan Karpinskyy.
Fast digital trng based on metastable ring oscillator. In Cryptographic Hardware
and Embedded Systems–CHES 2008, pages 164–180. Springer, 2008.

[134] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. Fpga-based true
random number generation using circuit metastability with adaptive feedback con-
trol. In Cryptographic Hardware and Embedded Systems–CHES 2011, pages 17–
32. Springer, 2011.

[135] Emre Salman, Ali Dasdan, Feroze Taraporevala, Kayhan Kucukcakar, and Eby G
Friedman. Exploiting setup–hold-time interdependence in static timing analysis.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
26(6):1114–1125, 2007.

[136] Donggeon Lee, Hwajeong Seo, and Howon Kim. Metastability-based feedback
method for enhancing fpga-based trng. International Journal of Multimedia & Ubiq-
uitous Engineering, 9(3), 2014.

[137] NIST. National institute of standards and technology (nist): Fips140 − 1: Security
requirements for cryptographic modules @ONLINE, January 1994.

[138] NIST. National institute of standards and technology (nist): A statistical test suite
for random and pseudorandom number generators for cryptographic applications
@ONLINE, 2010.

[139] Wolfgang Killmann and Werner Schindler. A proposal for: Functionality classes and
evaluation methodology for true (physical) random number generators. T-Systems
debis Systemhaus Information Security Services and Bundesamt für Sicherheit in
der Informationstechnik (BSI), Tech. Rep, 2001.

[140] NIST. National institute of standards and technology (nist): Fips140 − 2: Security
requirements for cryptographic modules @ONLINE, May 2001.

[141] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

BIBLIOGRAPHY 131

[142] Anne Canteaut. Berlekamp–massey algorithm. In Encyclopedia of Cryptography
and Security, pages 80–80. Springer, 2011.

[143] I Zarei Moghadam, Ali Shokouhi Rostami, and Mohammad Rasoul Tanhatalab. De-
signing a random number generator with novel parallel lfsr substructure for key
stream ciphers. In Computer Design and Applications (ICCDA), 2010 International
Conference on, volume 5, pages V5–598. IEEE, 2010.

[144] D. B. Thomas and W. Luk. Fpga-optimised uniform random number generators us-
ing luts and shift registers. In 2010 International Conference on Field Programmable
Logic and Applications, pages 77–82, Aug 2010.

[145] Kuen Hung Tsoi, KH Leung, and Philip Heng Wai Leong. Compact fpga-based true
and pseudo random number generators. In Field-Programmable Custom Comput-
ing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on, pages 51–61.
IEEE, 2003.

[146] Chung-Yi Li, Jiung-Sheng Chen, and Tsin-Yuan Chang. A chaos-based pseudo
random number generator using timing-based reseeding method. In 2006 IEEE
International Symposium on Circuits and Systems, pages 4 pp.–3280, May 2006.

[147] C. Y. Li, Y. H. Chen, T. Y. Chang, L. Y. Deng, and K. To. Period extension and ran-
domness enhancement using high-throughput reseeding-mixing prng. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 20(2):385–389, Feb 2012.

[148] Ziqi Zhu and Hanping Hu. A dynamic nonlinear transform arithmetic for improving
the properties chaos-based prng. In Intelligent Control and Automation (WCICA),
2010 8th World Congress on, pages 7055–7060, July 2010.

[149] D. B. Thomas and W. Luk. The lut-sr family of uniform random number generators
for fpga architectures. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 21(4):761–770, April 2013.

[150] Vanderlei Bonato, Bruno F Mazzotti, Marcio Merino Fernandes, and Eduardo Mar-
ques. A mersenne twister hardware implementation for the monte carlo localization
algorithm. Journal of Signal Processing Systems, 70(1):75–85, 2013.

[151] P. Dabal and R. Pelka. Fpga implementation of chaotic pseudo-random bit gener-
ators. In Proceedings of the 19th International Conference Mixed Design of Inte-
grated Circuits and Systems - MIXDES 2012, pages 260–264, May 2012.

[152] Jean-François Couchot. Modèles discrets pour la sécurité informatique: des méth-
odes itératives à l’analyse vectorielle. Hdr, Université de Bourgogne Franche-
Comté, january 2017.

[153] Christophe Guyeux. Le désordre des itérations chaotiques et leur utilité en sécurité
informatique. Theses, Université de Franche-Comté, December 2010.

[154] T. Y. Li and J. A. Yorke. Period three implies chaos. Amer. Math. Monthly,
82(10):985–992, 1975.

[155] Sylvain Contassot-Vivier, Jean-Francois Couchot, Christophe Guyeux, and Pierre-
Cyrille Heam. Random walk in a n-cube without hamiltonian cycle to chaotic pseu-
dorandom number generation: Theoretical and practical considerations. Interna-
tional Journal of Bifurcation and Chaos, *:*, 2016.

132 BIBLIOGRAPHY

[156] Jacques Bahi, Raphaël Couturier, Christophe Guyeux, and Pierre-Cyrille Héam. Ef-
ficient and cryptographically secure generation of chaotic pseudorandom numbers
on gpu. The journal of Supercomputing, 71(10):3877–3903, oct 2015.

[157] Knudsen. Chaos without nonperiodicity. Amer. Math. Monthly, 101, 1994.

[158] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. High-level synthesis for fpgas: From prototyping to deployment.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
30(4):473–491, 2011.

[159] Rainer A Rueppel. Linear complexity and random sequences. In Advances in
Cryptology—EUROCRYPT’85, pages 167–188. Springer, 1985.

[160] Uwe Meyer-Baese and U Meyer-Baese. Digital signal processing with field pro-
grammable gate arrays, volume 65. Springer, 2007.

[161] M Anwar Hasan and Christophe Negre. Sequential multiplier with sub-linear gate
complexity. Journal of Cryptographic Engineering, 2(2):91–97, 2012.

[162] Jacques M Bahi, Jean-François Couchot, Christophe Guyeux, and Qianxue
Wang. Class of trustworthy pseudo-random number generators. arXiv preprint
arXiv:1112.0950, 2011.

[163] Christophe Guyeux and Jacques Bahi. An improved watermarking algorithm for
internet applications. In INTERNET’2010. The 2nd Int. Conf. on Evolving Internet,
pages 119 – 124, Valencia, Spain, sep 2010.

[164] M. A. Zidan, A. G. Radwan, and K. N. Salama. The effect of numerical techniques
on differential equation based chaotic generators. In ICM 2011 Proceeding, pages
1–4, Dec 2011.

[165] P. Giard, G. Kaddoum, F. Gagnon, and C. Thibeault. Fpga implementation and
evaluation of discrete-time chaotic generators circuits. In IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, pages 3221–3224, Oct 2012.

[166] J-F Couchot, P-C Heam, Christophe Guyeux, Qianxue Wang, and Jacques M Bahi.
Pseudorandom number generators with balanced gray codes. In Security and Cryp-
tography (SECRYPT), 2014 11th International Conference on, pages 1–7. IEEE,
2014.

[167] MELISSA E O’Neill. PCG: A family of simple fast space-efficient statistically good
algorithms for random number generation. ACM Trans. Math. Softw.(submitted),
pages 1–46, 1988.

LIST OF FIGURES

1.1 General random number generator architecture 20

1.2 General structure of a FPGA by Xilinx . 22

1.3 A 4-bits linear feedback shift register generator with a feedback polynomial
a0 ∗ X4 + a1 ∗ X3 + a2 ∗ X2 + a3 ∗ X + a4 (a0 = a4 = 1). 25

1.4 Block-level model of a w-bit digital accumulator PRNG comprising n stages 26

1.5 LUT based shift-register and FIFO FPGA optimized PRNG: (a) maps each
row of the recurrence matrix as a XOR gate using LUT-FF, (b) uses RAM
block memory as k× k FIFO to store the recursive sequences, (c) loads the
state in FIFO based shift-register SR instead of BRAM, (d) cascading of
any number of Xilinx SRL32 to create a k-bit SR 27

1.6 Twisted Generalized Feedback Shift Register architecture: at each recur-
rence operation t, it computes xt+N thanks to the three words xt, xt+1, and
xt+m and generates the output with tempering function 28

1.7 Mersenne Twister MT19937 architecture using 3R/1W BRAM: at each cycle,
R/W address is even address for BRAM0 and odd for BRAM1 30

1.8 Different deployments of the linear recurrence (L.R) for Mersenne Twister
PRNG: (a) using BRAM configured as 3R/1W, (b) using Circular Buffer of
registers (L.R is linear recurrence of transferring function of MT) 31

1.9 Self-Programmable cellular automata generator: uses a super-rule 90/156
to dynamically determines when the rules have to change in each CA cell . 32

1.10 Chaotic based Timing Reseeding PRNG: masking the current state xt+1 at
a specific time (fixed point between the two register states is reached) . . . 35

1.11 Phase-Locked Loop TRNG: detecting the jitter by sampling the reference
clock signal TCLK using a correlated signal TCLJ synthesized in the PLL . . 37

1.12 Inverters based ring oscillator . 39

1.13 Self-Timed ring architecture: at each ring stage L (Muller gate and an in-
verter), the jitter is propagated forward if yt = yt+1 or conversely backward,
when the output is the XOR of each extracted jitter by a Flip-Flop 39

1.14 (a) TRNG based on the metastability of multistage architecture inverter ring
oscillator, (b) The timing switching connectivity between the IRO stages
following the metastability mode “MS” and the generation mode. 40

1.15 (a) The setup (ST) and hold (HT) scenarios operations in Flip-Flop, (b) the
output probability depending the delay difference (∆) of the input signal . . 41

1.16 Linear PRNGs FPGA hardware analysis. 44

134 LIST OF FIGURES

1.17 Non-lineair PRNGs FPGA hardware analysis. 45

1.18 TRNGs FPGA implementation analysis: Throughput (Mbps). 46

2.1 Graphs of iterations function f : B3 → B3 such that (x1, x2, x3) 7→ ((x1 +

x2).x3, x1.x3, x1+x2+x3). We notice the cycle ((101, 111), (111, 011), (011, 101))
in FIGURE (2.1(a)). 51

3.1 Linear Complexity profiles Lk(xi) using Berlekamp-Massey algorithm 60

3.2 Jump Computation for 32 bits of random: number of jumps < 2 lead to a
perfect b(k + 1)/2c) for k-sequences . 61

3.3 Jump computation before TestU01 of 200 linear complexity Level: a) Per-
fect Jump = [0 < L(k)−L(k−1) ≤ 2], b) other Jump =[L(k)−L(k−1) > 2], c) Un-
stable Jump= [L(k)−L(k−1) , L(k)], d) stable jump= [L(k)−L(k−1) = L(k−1)],
e) Useful bits=[L(k) − L(k − 1) = 1], f) Total Jump 62

3.4 Latency vs. throughput in two MT implementations: read three words Xi,
Xi+1, and XM (middle) from two BRAM memories M0 and M1 and write the
output. 65

4.1 Xilinx Zynq-7000 EPP Block Diagram . 68

4.2 PRNG platform based on Zynq FPGA . 69

4.3 Detailed Zynq based SoC implementation for PRNG 70

4.4 CIPRNG platform based on AXI BUS FPGA 71

4.5 ASIC implementation goal . 73

4.6 General ASIC Flow based on Cadence Tools 73

6.1 The proposal . 90

LIST OF TABLES

1.1 Statistical Tests Analysis: Diehard, FIPS, and NIST 48

1.2 Statistical Tests Analysis: TestU01 Crush and BigCrush, AIS 48

2.1 Map of (x1, x2, x3) 7→ ((x1 + x2).x3, x1.x3, x1 + x2 + x3) 50

3.1 Multiplication Complexity using FPGA . 63

3.2 FPGA implementation of linear PRNG in term of: Area, Speed, and Statis-
tical tests . 66

5.1 FPGA Implementation of CIPRNG-MC iteration post-processing using dif-
ferent linear PRNG as strategy . 81

5.2 FPGA Implementation of CIPRNG-XOR post-processing using different lin-
ear prng as strategy . 81

5.3 FPGA implementation of Multi-Cycle Multi-Dimension chaotic iteration
post-processing based for MT and TT800 83

5.4 65nm ASIC Implementation of CIPRNG-MC post-processing using differ-
ent linear prng as strategy . 83

5.5 65nm ASIC Implementation of CIPRNG-XOR post-processing using differ-
ent linear prng as strategy . 84

5.6 Statistical test of NIST for different FPGA implementations of CIPRNG-
XOR: a 100 sequences of 106 bits are generated and tested and p-value
> 0.0001 being required to pass a test [p-value + (minimum pass rate/100)] 85

5.7 Statistical test of NIST for different FPGA implementation of CIPRNG-MC:
a 100 sequences of 106 bits are generated and tested and p-value > 0.0001
being required to pass a test [p-value + (minimum pass rate/100)] 85

6.1 Boolean functions . 91

6.2 FPGA Implementation of 32-bits GCI PRNG using different linear PRNG
as strategy . 95

6.3 FPGA Implementation of 64-bits GCI PRNG using different linear PRNG
as strategy . 95

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Ecole Doctoral SPIM, Université Bourgougne Franch-Comté

32, Avenue de l'observatoire, 25000, Besançon Cedex

ed-spim@univ-fcomte.fr, www.ed-spim.univ-fcomte.fr, secretariat@ubfc.fr

Abstract:

In this thesis, we designed pseudo-random number generators (PRNGs) based on chaotic iterations
to be deployed on hardware support such as FPGA or ASIC. These generators can be seen as post-
processing of existing generators and thus transform a sequence of numbers, the input, into another,
the output. The dependency between these two sequences has been proven chaotic according to
Devaney: the effects of one bit change in the input cannot be predicted in the long term on output.
Through the hardware implementations, we have been able to provide compact, very high speed,
secure and reconfigurable PRNGs.
A state of the art of the hardware implementations of PRNG’s was first carried out. All of them have
been compared, after being fully implemented in FPGA, in a complete platform that we created. This
last one allowed to compare the different hardware PRNGs, and in particular to carry out statistical
tests on the outputs. New generators based on chaotic iterations (CI) were then designed and
integrated into this platform. The embedded iterated function is built by removing an Hamiltonian
cycle from an N-cube, the whole being followed by a permutation. Resulting generators generally
have a better statistical profile than embedded ones, while running at a similar speed. Among the
PRNGs able to pass the most difficult battery of statistical tests (TESTU01), those ones are the
fastest in the world and the only ones to be chaotic. We have finally implemented them on numerous
hardware supports: 65-nm ASIC circuit and FPGA Zynq.

Keywords: Random number generators, Chaotic circuits, Discrete dynamical systems, Statistical tests,
Cryptography hardware and implementation, Applied cryptography, FPGA, ASIC

Résumé :

Dans cette thèse, nous avons conçu des générateurs de nombres pseudo-aléatoires (PRNGs) basés
sur des itérations chaotiques devant être déployés sur des supports matériels comme FPGA ou
ASIC. Ces générateurs peuvent être vus comme des post-traitements de générateurs existants et
transforment donc une suite de nombres, l’entrée, en une autre, la sortie. La dépendance entre
ces deux suites a été prouvée chaotique selon Devaney : les effets d’un moindre changement sur
l’entrée ne peuvent être prédits à long terme sur la sortie. Au travers des implantations matérielles,
nous avons pu fournir des PRNGs compacts, à très haut débit, sécurisés et reconfigurables.
Un état de l’art des implantations matérielles des PRNGs a été tout d’abord effectué. Celles-ci
ont toutes été comparées, après avoir été intégralement programmées en FPGA, dans une plate-
forme complète que nous avons créée. Cette dernière a permis de comparer les différents PRNGs
matériels, et notamment d’effectuer des tests statistiques sur les sorties. De nouveaux générateurs
à base d’itérations chaotiques (IC) ont ensuite été conçus et intégrés à la plate-forme matérielle. La
fonction itérée est construite en supprimant un cycle hamiltonien d’un N-cube, l’ensemble subissant
ensuite une permutation. Les générateurs obtenus ont généralement un meilleur profil statistique que
ceux embarqués, tout en s’exécutant à une vitesse similaire. Parmi les PRNGs capables de passer
la batterie de tests statistiques la plus difficile (TESTU01), ceux proposés sont les plus rapides au
monde et les seuls à être chaotiques. Nous les avons finalement implantés sur de nombreux supports
matériels: 65-nm circuit ASIC et FPGA Zynq.

Mots-clés : Générateur des nombre aléatoire, Circuit Chaotique, Systèmes dynamiques discrets, Test
Statistiques, Cryptographie matérielle et implantation, Cryptographie appliquée, FPGA, ASIC

	List of Abbreviations
	I General Introduction
	II Scientific Background
	1 Random Number Generators on FPGA
	1.1 General presentation
	1.2 Linear Pseudorandom Number Generators
	1.2.1 Linear Congruential Generators
	1.2.2 Linear Feedback Shift Register generators
	1.2.3 Look-up Table Optimized Generators
	1.2.4 Twisted Generalized Feedback Shift Register PRNG
	1.2.5 Cellular Automata based PRNGs

	1.3 Non-Linear Pseudorandom Number Generators
	1.4 True Random Number Generators
	1.4.1 Phase-Locked Loop TRNGs
	1.4.2 Ring Oscillator TRNGs
	1.4.3 Self-Timed Ring TRNG
	1.4.4 Metastability TRNG

	1.5 Experimental Results and Hardware Analysis
	1.5.1 Methodology
	1.5.2 Hardware Comparison

	1.6 Statistical Test Analysis
	1.6.1 Statistical results of FPGA based RNG

	1.7 Conclusion

	2 Chaotic Iteration based PRNG
	2.1 Preliminaries
	2.1.1 Boolean domain
	2.1.2 Iteration Graphs

	2.2 Unary and Parallel chaotic scheme
	2.3 Generalized scheme
	2.4 Conclusion

	III Quantifying Hardware Performance of PRNGs on FPGA Platform
	3 Quantifying Hardware Performance of Linear PRNGs
	3.1 Methodology
	3.2 Linear Complexity
	3.3 Jump Complexity
	3.4 Arithmetic Operators and Dynamic Range
	3.5 Throughput and Latency
	3.6 Experimental Results
	3.7 Conclusion

	4 Hardware Test Platform and Comparison
	4.1 FPGA Platform based on Zynq-EPP for PRNG
	4.1.1 General Presentation
	4.1.2 Hardware Platform
	4.1.3 SDK Firmware

	4.2 New Reconfigurable FPGA Platform for CIPRNG
	4.2.1 General Presentation
	4.2.2 Hardware Platform
	4.2.3 Firmware

	4.3 FPGA Global Comparison
	4.4 ASIC Platform for PRNG
	4.4.1 General Presentation
	4.4.2 ASIC Analysis

	4.5 Conclusion

	IV From Unary to Parallel Chaotic Iteration PRNG
	5 Unary Chaotic Iteration PRNG: CIPRNG Multi-Cycle and XOR
	5.1 CIPRNG Multi-Cycle
	5.2 CIPRNG-XOR
	5.3 FPGA Implementation
	5.3.1 Global Comparison
	5.3.2 Comparison

	5.4 ASIC Implementation
	5.4.1 ASIC Comparison

	5.5 Statistical tests results
	5.6 Conclusion

	V Generalized Chaotic Iteration PRNG
	6 Generalized Chaotic Iteration
	6.1 General idea
	6.1.1 Iterated Function

	6.2 Mixing Function
	6.3 Chaotic behavior of our generator
	6.4 FPGA Implementation
	6.4.1 Statsistical tests results

	6.5 Conclusion

	VI General Conclusion
	7 General Conclusion
	7.1 Contribution Synthesis
	7.2 Perspectives

	VII Annexes
	A Mathematical Proofs
	A.1 Further investigations of the chaotic behavior of ``chaotic iterations''
	A.2 Mathematical chaos of the proposed design of GCIPRNG
	A.2.1 First considerations
	A.2.2 Proof of chaos: the internal process

	B PRNG implented on FPGA
	B.1 Linear PRNG on FPGA
	B.2 Software part of SoC based Zynq
	B.3 Software part of AXI-Platform

	Bibliography
	List of Figures
	List of Tables

