P. Tabeling, Introduction à la microfluidique, Belin, 2015.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, p.368, 2006.
DOI : 10.1126/science.1109173

G. M. Whitesides, Cool, or simple and cheap? Why not both?, Lab Chip, vol.13, issue.1, pp.11-13, 2013.
DOI : 10.1039/C2LC90109A

E. De-la and D. , Technologies clés 2020, tech. rep, 2017.

F. A. Perdigones, A. Luque, and J. M. Quero, Correspondence Between Electronics and Fluids in MEMS: Designing Microfluidic Systems Using Electronics, IEEE Industrial Electronics Magazine, vol.8, issue.4, pp.6-17, 2014.
DOI : 10.1109/MIE.2014.2318062

F. Brurgoyne, Adding colour to PMDS chips for enhanced contrast, 2011.

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.580-584, 2002.
DOI : 10.1126/science.1076996

S. Sharma, J. Zapatero-rodríguez, P. Estrela, and R. O. Kennedy, Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics, Biosensors, vol.31, issue.4, pp.577-601, 2015.
DOI : 10.1097/00007611-200295060-00011

J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-murphy et al., Advances in paper-based point-of-care diagnostics, Biosensors and Bioelectronics, vol.54, pp.585-597, 2014.
DOI : 10.1016/j.bios.2013.10.075

A. K. Yetisen, M. S. Akram, and C. R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab on a Chip, vol.12, issue.5, pp.2210-2251, 2013.
DOI : 10.1039/c2lc21204h

J. Yan, Microfluidic Sensors and Circuits for Internet of Things Applications, Advances in Microfluidics-New Applications in Biology, Energy, and Materials Sciences, 2016.
DOI : 10.5772/64346

D. Erickson, D. O-'dell, L. Jiang, V. Oncescu, A. Gumus et al., Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics, Lab Chip, vol.494, issue.158, pp.3159-3164, 2014.
DOI : 10.1038/494155a

S. Das and V. C. Srivastava, Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters, Photochemical & Photobiological Sciences, vol.12, issue.247, pp.714-730, 2016.
DOI : 10.1021/la960228t

X. Yao, Y. Zhang, L. Du, J. Liu, and J. Yao, Review of the applications of microreactors, Renewable and Sustainable Energy Reviews, vol.47, pp.519-539, 2015.
DOI : 10.1016/j.rser.2015.03.078

H. Shi, Y. Xiao, S. Ferguson, X. Huang, N. Wang et al., Progress of crystallization in microfluidic devices Method of crystallization in aqueous plugs flowing in immiscible carrier-fluid in microfluidic system, p.506

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.9, issue.7491, p.181, 2014.
DOI : 10.1021/ac301512f

C. W. Shields, I. , C. D. Reyes, and G. P. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation, Lab on a Chip, vol.507, issue.22, pp.1230-1249, 2015.
DOI : 10.1038/nature13118

P. S. Dittrich and A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature Reviews Drug Discovery, vol.20, issue.3, p.210, 2006.
DOI : 10.1021/bp034077d

D. J. Harrison, P. Glavina, and A. Manz, Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors, Sensors and Actuators B: Chemical, vol.10, issue.2, pp.107-116, 1993.
DOI : 10.1016/0925-4005(93)80033-8

J. V. Pagaduan, V. Sahore, and A. T. Woolley, Applications of microfluidics and microchip electrophoresis for potential clinical biomarker analysis, Analytical and Bioanalytical Chemistry, vol.56, issue.23, pp.6911-6922, 2015.
DOI : 10.1016/j.ymeth.2011.12.003

K. Schroën, O. Bliznyuk, K. Muijlwijk, S. Sahin, and C. C. Berton-carabin, Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production, Current Opinion in Food Science, vol.3, pp.33-40, 2015.
DOI : 10.1016/j.cofs.2014.11.009

T. Femmer, A. Jans, R. Eswein, N. Anwar, M. Moeller et al., High-Throughput Generation of Emulsions and Microgels in Parallelized Microfluidic Drop-Makers Prepared by Rapid Prototyping, ACS Applied Materials & Interfaces, vol.7, issue.23, pp.12635-12638, 2015.
DOI : 10.1021/acsami.5b03969

G. H. Sanders and A. Manz, Chip-based microsystems for genomic and proteomic analysis, TrAC Trends in Analytical Chemistry, vol.19, issue.6, pp.364-378, 2000.
DOI : 10.1016/S0165-9936(00)00011-X

D. Huh, G. A. Hamilton, and D. E. Ingber, From 3D cell culture to organs-on-chips, Trends in Cell Biology, vol.21, issue.12, pp.745-754, 2011.
DOI : 10.1016/j.tcb.2011.09.005

C. Zhao, Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery Advanced drug delivery reviews, pp.1420-1446, 2013.

S. C. Terry, J. H. Jerman, and J. B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer, IEEE Transactions on Electron Devices, vol.26, issue.12, pp.1880-1886, 1979.
DOI : 10.1109/T-ED.1979.19791

D. B. Tuckerman and R. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Letters, vol.2, issue.5, pp.126-129, 1981.
DOI : 10.1109/EDL.1981.25367

E. Bassous, H. Taub, and L. Kuhn, Ink jet printing nozzle arrays etched in silicon, Applied Physics Letters, vol.31, issue.2, pp.135-137, 1977.
DOI : 10.1016/0300-9467(74)80021-3

K. E. Petersen-]-p, J. Gravesen, O. S. Branebjerg, and . Jensen, Fabrication of an integrated, planar silicon ink-jet structure Microfluidics-a review, IEEE Transactions on electron devices Journal of Micromechanics and Microengineering, vol.26, issue.3 4, p.168, 1918.

F. Van-de-pol and J. Branebjerg, Micro Liquid-Handling Devices - A Review, Micro System Technologies 90, pp.799-805, 1990.
DOI : 10.1007/978-3-642-45678-7_115

M. Elwenspoek, T. S. Lammerink, R. Miyake, and J. Fluitman, Towards integrated microliquid handling systems, Journal of Micromechanics and Microengineering, vol.4, issue.4, p.227, 1994.
DOI : 10.1088/0960-1317/4/4/008

A. Manz, N. Graber, and H. Á. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, vol.1, issue.1-6, pp.1-6, 1990.
DOI : 10.1016/0925-4005(90)80209-I

Y. Xia and G. M. Whitesides, Soft Lithography, Angewandte Chemie International Edition, vol.37, issue.5, pp.550-575, 1998.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction???scaling and mechanism of break-up, Lab on a Chip, vol.12, issue.3, pp.437-446, 2006.
DOI : 10.1039/b510841a

E. De-la and D. , Technologies clés 2015, tech. rep, 2012.

N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, The upcoming 3D-printing revolution in microfluidics, Lab on a Chip, vol.7, issue.3, pp.1720-1742, 2016.
DOI : 10.1038/nature05058

P. Abgrall and A. Gue, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem???a review, Journal of Micromechanics and Microengineering, vol.17, issue.5, p.15, 2007.
DOI : 10.1088/0960-1317/17/5/R01

P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, Cyclic olefin polymers: emerging materials for lab-on-a-chip applications, Microfluidics and Nanofluidics, vol.5, issue.3, pp.145-161, 2010.
DOI : 10.1016/j.ijms.2006.08.017

R. Barrett, M. Faucon, J. Lopez, G. Cristobal, F. Destremaut et al., X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements, Lab on a Chip, vol.90, issue.4, pp.494-499, 2006.
DOI : 10.1103/PhysRevE.56.1869

K. Ren, W. Dai, J. Zhou, J. Su, and H. Wu, Whole-Teflon microfluidic chips, Proceedings of the National Academy of Sciences, vol.4, issue.11, pp.8162-8166, 2011.
DOI : 10.1063/1.3398319

C. F. Carlborg, T. Haraldsson, K. Öberg, M. Malkoch, and W. Van-der-wijngaart, Beyond PDMS: off-stoichiometry thiol???ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices, Lab on a Chip, vol.288, issue.18, pp.3136-3147, 2011.
DOI : 10.1126/science.288.5463.113

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin et al., A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films, Journal of Micromechanics and Microengineering, vol.16, issue.1, p.113, 2005.
DOI : 10.1088/0960-1317/16/1/016

T. E. Mcknight, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, Electroosmotically Induced Hydraulic Pumping with Integrated Electrodes on Microfluidic Devices, Analytical Chemistry, vol.73, issue.16, pp.4045-4049, 2001.
DOI : 10.1021/ac010048a

J. Z. Chen, A. A. Darhuber, S. M. Troian, and S. Wagner, Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation, Lab on a Chip, vol.4, issue.5, pp.473-480, 2004.
DOI : 10.1039/b315815b

D. P. Holmes and A. J. Crosby, Snapping Surfaces, Advanced Materials, vol.460, issue.21, pp.3589-3593, 2007.
DOI : 10.1557/S0883769400035090

T. F. Bates, L. B. Sand, and J. F. Mink, Tubular Crystals of Chrysotile Asbestos, Science, vol.111, issue.2889, pp.512-513, 1950.
DOI : 10.1126/science.111.2889.512

A. E. Shyer, T. Tallinen, N. L. Nerurkar, Z. Wei, E. S. Gil et al., Villification: How the Gut Gets Its Villi, Science, vol.476, issue.7358, pp.212-218, 2013.
DOI : 10.1038/nature10277

J. Genzer and J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization, Soft Matter, vol.92, issue.185, pp.310-323, 2006.
DOI : 10.1091/mbc.10.11.3745

S. Cai, D. Chen, Z. Suo, and R. C. Hayward, Creasing instability of elastomer films, Soft Matter, vol.39, issue.5, pp.1301-1304, 2012.
DOI : 10.1021/ma060266b

F. Weiss, S. Cai, Y. Hu, M. K. Kang, R. Huang et al., Creases and wrinkles on the surface of a swollen gel, Journal of Applied Physics, vol.12, issue.7, p.73507, 2013.
DOI : 10.1063/1.322665

D. Sobel, Longitude (london: Fourth estate), 1995.

L. Ionov, Soft microorigami: self-folding polymer films, Soft Matter, vol.130, issue.15, pp.6786-6791, 2011.
DOI : 10.1021/ja806961p

G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Containing Papers of a Mathematical and Physical Character, pp.172-175, 1909.
DOI : 10.1098/rspa.1909.0021

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman et al., Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet, Physical Review Letters, vol.75, issue.15, p.156103, 2007.
DOI : 10.1098/rspa.1997.0041

URL : https://hal.archives-ouvertes.fr/hal-00143160

A. Thill, P. Picot, L. Belloni-prinz, V. Seleznev, A. Gutakovsky et al., A mechanism for the sphere/tube shape transition of nanoparticles with an imogolite local structure (imogolite and allophane), Physica E: Low-dimensional Systems and Nanostructures, pp.308-315, 2000.
DOI : 10.1016/j.clay.2017.03.011

URL : https://hal.archives-ouvertes.fr/cea-01487701

D. Gennes, C. Taupin, and R. Lipowsky, Microemulsions and the flexibility of oil/water interfaces, The Journal of Physical Chemistry, vol.86, issue.13, pp.2294-2304, 1982.
DOI : 10.1021/j100210a011

T. G. Leong, B. R. Benson, E. K. Call, and D. H. Gracias, Thin Film Stress Driven Self-Folding of Microstructured Containers, Small, vol.128, issue.10, pp.1605-1609, 2008.
DOI : 10.1002/smll.200800280

Y. Liu, J. Genzer, and M. D. Dickey, ??? 2D or not 2D???: Shape-programming polymer sheets, Progress in Polymer Science, vol.52, pp.79-106, 2016.
DOI : 10.1016/j.progpolymsci.2015.09.001

V. Luchnikov, O. Sydorenko, and M. Stamm, Self-Rolled Polymer and Composite Polymer/Metal Micro- and Nanotubes with Patterned Inner Walls, Advanced Materials, vol.14, issue.68, pp.1177-1182, 2005.
DOI : 10.1103/PhysRevB.67.155311

K. Kumar, V. Luchnikov, B. Nandan, V. Senkovskyy, and M. Stamm, Formation of self-rolled polymer microtubes studied by combinatorial approach, European Polymer Journal, vol.44, issue.12, pp.4115-4121, 2008.
DOI : 10.1016/j.eurpolymj.2008.09.009

A. Egunov, J. Korvink, and V. Luchnikov, Polydimethylsiloxane bilayer films with an embedded spontaneous curvature, Soft Matter, vol.12, issue.6, pp.45-52, 2016.
DOI : 10.1007/s10404-011-0887-1

V. Luchnikov and M. Stamm, Self-Rolled Polymer Tubes: Novel Tools for Microfluidics, Microbiology, and Drug-Delivery Systems, Macromolecular Rapid Communications, vol.12, issue.68, pp.1943-1952, 2011.
DOI : 10.1021/bm2002945

J. Zang and F. Liu, Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors, Nanotechnology, vol.18, issue.40, p.405501, 2007.
DOI : 10.1088/0957-4484/18/40/405501

J. Fritz, Cantilever biosensors, The Analyst, vol.18, issue.7, pp.855-863, 2008.
DOI : 10.1557/mrs2002.15

R. Raiteri, M. Grattarola, H. Butt, and P. Skládal, Micromechanical cantilever-based biosensors, Sensors and Actuators B: Chemical, vol.79, issue.2-3, pp.115-126, 2001.
DOI : 10.1016/S0925-4005(01)00856-5

M. Yue, J. C. Stachowiak, H. Lin, R. Datar, R. Cote et al., Label-Free Protein Recognition Two-Dimensional Array Using Nanomechanical Sensors, Nano Letters, vol.8, issue.2, pp.520-524, 2008.
DOI : 10.1021/nl072740c

W. Huang, X. Yu, P. Froeter, R. Xu, P. Ferreira et al., Nanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization, Nano Letters, vol.12, issue.12, pp.6283-6288, 2012.
DOI : 10.1021/nl303395d

C. C. Bof-bufon, J. D. Gonza?lez, D. J. Thurmer, D. Grimm, M. Bauer et al., Self-Assembled Ultra-Compact Energy Storage Elements Based on Hybrid Nanomembranes, Nano Letters, vol.10, issue.7, pp.2506-2510, 2010.
DOI : 10.1021/nl1010367

J. Deng, X. Lu, L. Liu, L. Zhang, and O. G. Schmidt, Introducing Rolled-Up Nanotechnology for Advanced Energy Storage Devices, Advanced Energy Materials, vol.15, issue.23, 2016.
DOI : 10.1021/acs.nanolett.5b02099

J. Deng, H. Ji, C. Yan, J. Zhang, W. Si et al., Naturally Rolled-Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithium-Ion Batteries with Remarkable Cycling Performance, Angewandte Chemie, vol.22, issue.8, pp.2382-2386, 2013.
DOI : 10.1002/adma.201001422

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Optical Modes in Semiconductor Microtube Ring Resonators, Physical Review Letters, vol.14, issue.7, p.77403, 2006.
DOI : 10.1063/1.124894

G. Huang and Y. Mei, Electromagnetic wave propagation in a rolled-up tubular microcavity, Journal of Materials Chemistry C, vol.4, issue.11, pp.2758-2770, 2017.
DOI : 10.1002/adom.201500776

S. Schwaiger, A. Rottler, and S. Mendach, Rolled-Up Metamaterials, Advances in OptoElectronics, vol.410, issue.168, 2012.
DOI : 10.1038/ncomms1877

URL : https://doi.org/10.1155/2012/782864

I. Semchenko, S. Khakhomov, E. Naumova, V. Y. Prinz, S. Golod et al., Study of the properties of artificial anisotropic structures with high chirality, Crystallography Reports, vol.26, issue.3???4, pp.366-373, 2011.
DOI : 10.1080/02726340600570302

F. Li and Z. Mi, Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers, Optics Express, vol.17, issue.22, 2009.
DOI : 10.1364/OE.17.019933

S. Vicknesh, F. Li, and Z. Mi, Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes, Applied Physics Letters, vol.94, issue.8, p.81101, 2009.
DOI : 10.1063/1.2734878

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef et al., Light emission and wave guiding of quantum dots in a tube, Applied Physics Letters, vol.69, issue.11, p.111120, 2006.
DOI : 10.1088/0957-4484/14/6/301

K. H. Choi, J. E. Park, and D. H. Suh, Highly thermal-stable paramagnetism by rolling up mos 2 nanosheets, Nanoscale, vol.9, issue.2, pp.503-508, 2017.

P. Froeter, Y. Huang, O. V. Cangellaris, W. Huang, E. W. Dent et al., Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array, ACS Nano, vol.8, issue.11, pp.11108-11117, 2014.
DOI : 10.1021/nn504876y

A. Prinz, V. Y. Prinz, and V. Seleznev, Semiconductor micro- and nanoneedles for microinjections and ink-jet printing, Microelectronic engineering, pp.782-788, 2003.
DOI : 10.1016/S0167-9317(03)00139-4

A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke et al., Self-Propelled Nanotools, ACS Nano, vol.6, issue.2, 2012.
DOI : 10.1021/nn204762w

M. Yu, Y. Huang, J. Ballweg, H. Shin, M. Huang et al., Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth, ACS Nano, vol.5, issue.4, pp.2447-2457, 2011.
DOI : 10.1021/nn103618d

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, Process integration of microtubes for fluidic applications, Applied Physics Letters, vol.89, issue.22, p.223507, 2006.
DOI : 10.1088/0960-1317/13/2/314

E. J. Smith, D. Xi, I. Makarov, S. Mönch, V. A. Harazim et al., Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms, Lab on a Chip, vol.107, issue.291, pp.1917-1931, 2012.
DOI : 10.1103/PhysRevLett.107.097204

Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines, Chemical Society Reviews, vol.8, issue.5, pp.2109-2119, 2011.
DOI : 10.1109/JSTQE.2002.804235

M. Takahashi, C. Figus, L. Malfatti, Y. Tokuda, K. Yamamoto et al., Strain-driven self-rolling of hybrid organic???inorganic microrolls: interfaces with self-assembled particles, NPG Asia Materials, vol.119, issue.6, p.22, 2012.
DOI : 10.2109/jcersj2.119.387

Y. Zhang and L. Ionov, Actuating Porous Polyimide Films, ACS Applied Materials & Interfaces, vol.6, issue.13, pp.10072-10077, 2014.
DOI : 10.1021/am502492u

S. Zakharchenko, E. Sperling, and L. Ionov, Fully Biodegradable Self-Rolled Polymer Tubes: A Candidate for Tissue Engineering Scaffolds, Biomacromolecules, vol.12, issue.6, pp.2211-2215, 2011.
DOI : 10.1021/bm2002945

R. Fernandes and D. H. Gracias, Self-folding polymeric containers for encapsulation and delivery of drugs Advanced drug delivery reviews, pp.1579-1589, 2012.

G. Stoychev, S. Turcaud, J. W. Dunlop, and L. Ionov, Hierarchical Multi-Step Folding of Polymer Bilayers, Advanced Functional Materials, vol.330, issue.18, pp.2295-2300, 2013.
DOI : 10.1209/epl/i2003-00334-5

Y. Liu, J. K. Boyles, J. Genzer, and M. D. Dickey, Self-folding of polymer sheets using local light absorption, Soft Matter, vol.11, issue.2, pp.1764-1769, 2012.
DOI : 10.1007/978-0-387-69002-5

J. Na, A. A. Evans, J. Bae, M. C. Chiappelli, C. D. Santangelo et al., Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers, Advanced Materials, vol.5, issue.1, pp.79-85, 2015.
DOI : 10.1021/nl304715p

S. Maeda, Y. Hara, T. Sakai, R. Yoshida, and S. Hashimoto, Self-Walking Gel, Advanced Materials, vol.109, issue.21, pp.3480-3484, 2007.
DOI : 10.1002/adma.200700625

S. Kusuda, S. Sawano, and S. Konishi, Fluid-resistive bending sensor having perfect compatibility with flexible pneumatic balloon actuator, Micro Electro Mechanical Systems MEMS. IEEE 20th International Conference on, pp.615-618, 2007.

R. V. Martinez, C. R. Fish, X. Chen, and G. M. Whitesides, Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators, Advanced Functional Materials, vol.11, issue.7, pp.1376-1384, 2012.
DOI : 10.1039/c1lc20161a

URL : https://dash.harvard.edu/bitstream/handle/1/11931822/30503109.pdf?sequence=1

V. Luchnikov and M. Stamm, Self-rolled polymer microtubes with engineered hidden walls, Physica E: Low-dimensional Systems and Nanostructures, pp.236-240, 2007.
DOI : 10.1016/j.physe.2006.10.021

K. Kumar, B. Nandan, V. Luchnikov, E. B. Gowd, and M. Stamm, Fabrication of Metallic Microtubes Using Self-Rolled Polymer Tubes as Templates, Langmuir, vol.25, issue.13, pp.7667-7674, 2009.
DOI : 10.1021/la900327v

L. P. Chia-gómez, P. Bollgruen, A. I. Egunov, D. Mager, F. Malloggi et al., Vapour processed self-rolled poly(dimethylsiloxane) microcapillaries form microfluidic devices with engineered inner surface, Lab on a Chip, vol.6, issue.535, p.3827, 2013.
DOI : 10.1039/B513005K

S. Timoshenko, Analysis of Bi-Metal Thermostats, Journal of the Optical Society of America, vol.11, issue.3, pp.233-255, 1925.
DOI : 10.1364/JOSA.11.000233

M. Lewicka, L. Mahadevan, and M. R. Pakzad, Models for elastic shells with incompatible strains, Proc. R. Soc. A, p.20130604, 2014.
DOI : 10.1093/jxb/erg213

M. Lewicka, L. Mahadevan, and M. R. Pakzad, The Foppl-von Karman equations for plates with incompatible strains, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.75, issue.4, pp.402-426, 2011.
DOI : 10.1103/PhysRevE.75.046211

G. W. Jones and L. Mahadevan, Optimal control of plates using incompatible strains, Nonlinearity, vol.28, issue.9, p.3153, 2015.
DOI : 10.1088/0951-7715/28/9/3153

E. Efrati, E. Sharon, and R. Kupferman, Elastic theory of unconstrained non-Euclidean plates, Journal of the Mechanics and Physics of Solids, vol.57, issue.4, pp.762-775, 2009.
DOI : 10.1016/j.jmps.2008.12.004

Z. L. Wu, M. Moshe, J. Greener, H. Therien-aubin, Z. Nie et al., Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses, Nature Communications, vol.7, p.1586, 2013.
DOI : 10.1038/nmat2109

M. A. Aegerter and M. Mennig, Sol-gel technologies for glass producers and users, 2013.
DOI : 10.1007/978-0-387-88953-5

P. Cendula, Theoretical studies of rolled-up and wrinkled nanomembranes, 2011.

E. H. Mansfield, Bending, Buckling and Curling of a Heated Elliptical Plate, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.288, issue.1414, pp.396-417, 1965.
DOI : 10.1098/rspa.1965.0231

E. Mansfield, Bending, Buckling and Curling of a Heated Thin Plate, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.268, issue.1334, pp.316-327, 1962.
DOI : 10.1098/rspa.1962.0143

L. Freund, Substrate curvature due to thin film mismatch strain in the nonlinear deformation range, Journal of the Mechanics and Physics of Solids, vol.48, issue.6-7, pp.1159-1174, 2000.
DOI : 10.1016/S0022-5096(99)00070-8

S. Alben, B. Balakrisnan, and E. Smela, Edge Effects Determine the Direction of Bilayer Bending, Nano Letters, vol.11, issue.6, pp.2280-2285
DOI : 10.1021/nl200473p

M. Pezzulla, G. P. Smith, D. P. Nardinocchi, and . Holmes, Geometry and mechanics of thin growing bilayers, Soft Matter, vol.119, issue.19, pp.4435-4442, 2016.
DOI : 10.1007/s10659-014-9487-0

J. N. Reddy, Theory and analysis of elastic plates and shells, 2006.

B. Audoly and Y. Pomeau, ELASTICITY AND GEOMETRY, 2010.
DOI : 10.1142/9789812792778_0001

G. Stoychev, S. Zakharchenko, S. Turcaud, J. W. Dunlop, and L. Ionov, Shape-Programmed Folding of Stimuli-Responsive Polymer Bilayers, ACS Nano, vol.6, issue.5, pp.3925-3934, 2012.
DOI : 10.1021/nn300079f

B. Schnyder, T. Lippert, R. Kötz, A. Wokaun, V. Graubner et al., UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry, Surface Science, vol.532, issue.535, pp.532-535, 2003.
DOI : 10.1016/S0039-6028(03)00148-1

H. Hillborg, J. Ankner, U. Gedde, G. Smith, K. Yasuda et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer, vol.41, issue.18, pp.6851-6863, 2000.
DOI : 10.1016/S0032-3861(00)00039-2

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey et al., On the aging of oxygen plasma-treated polydimethylsiloxane surfaces, Journal of Colloid and Interface Science, vol.137, issue.1, pp.11-24, 1990.
DOI : 10.1016/0021-9797(90)90038-P

S. Chen, L. Liu, and T. Wang, Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating???substrate combinations, Surface and Coatings Technology, vol.191, issue.1, pp.25-32, 2005.
DOI : 10.1016/j.surfcoat.2004.03.037

R. Saha and W. D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia, vol.50, issue.1, pp.23-38, 2002.
DOI : 10.1016/S1359-6454(01)00328-7

S. Béfahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris et al., Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer, Langmuir, vol.26, issue.5, pp.3372-3375, 2010.
DOI : 10.1021/la903154y

F. A. Bayley, J. L. Liao, P. N. Stavrinou, A. Chiche, and J. T. Cabral, Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-??m wrinkling, Soft Matter, vol.18, issue.8, p.1155, 2014.
DOI : 10.1021/la020169l

B. A. Glatz, M. Tebbe, B. Kaoui, R. Aichele, C. Kuttner et al., Hierarchical line-defect patterns in wrinkled surfaces, Soft Matter, vol.63, issue.17, pp.3332-3339, 2015.
DOI : 10.1007/BF01312586

H. Butt, B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports, vol.59, issue.1-6, pp.1-152, 2005.
DOI : 10.1016/j.surfrep.2005.08.003

J. Domke and M. Radmacher, Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope, Langmuir, vol.14, issue.12, pp.3320-3325, 1998.
DOI : 10.1021/la9713006

B. Du, O. K. Tsui, Q. Zhang, and T. He, Study of Elastic Modulus and Yield Strength of Polymer Thin Films Using Atomic Force Microscopy, Langmuir, vol.17, issue.11, pp.3286-3291, 2001.
DOI : 10.1021/la001434a

E. Buchner-santos, J. K. Morris, E. Glynos, V. Sboros, and V. Koutsos, Nanomechanical Properties of Phospholipid Microbubbles, Langmuir, vol.28, issue.13, pp.5753-5760, 2012.
DOI : 10.1021/la204801u

R. H. Abou-saleh, S. A. Peyman, K. Critchley, S. D. Evans, and N. H. Thomson, Nanomechanics of Lipid Encapsulated Microbubbles with Functional Coatings, Langmuir, vol.29, issue.12, pp.4096-4103, 2013.
DOI : 10.1021/la304093t

M. Poehlmann, D. Grishenkov, S. V. Kothapalli, J. Härmark, H. Hebert et al., On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles, Soft Matter, vol.16, issue.1, p.214, 2014.
DOI : 10.1097/01.rli.0000115926.96796.75

C. A. Grant, J. E. Mckendry, and S. D. Evans, Temperature dependent stiffness and visco-elastic behaviour of lipid coated microbubbles using atomic force microscopy, Soft Matter, vol.32, issue.4, p.1321, 2012.
DOI : 10.1016/j.ultrasmedbio.2005.12.016

M. G. Ahangari, A. Fereidoon, M. Jahanshahi, and N. Sharifi, Effect of nanoparticles on the micromechanical and surface properties of poly(urea???formaldehyde) composite microcapsules, Composites Part B: Engineering, vol.56, pp.450-455, 2014.
DOI : 10.1016/j.compositesb.2013.08.071

C. De-loubens, J. Deschamps, M. Georgelin, A. Charrier, F. Edwards-levy et al., Mechanical characterization of cross-linked serum albumin microcapsules, Soft Matter, vol.13, issue.25, p.4561, 2014.
DOI : 10.1007/s10404-012-0985-8

URL : https://hal.archives-ouvertes.fr/hal-01315772

C. Ye, I. Drachuk, R. Calabrese, H. Dai, D. L. Kaplan et al., Permeability and Micromechanical Properties of Silk Ionomer Microcapsules, Langmuir, vol.28, issue.33, pp.12235-12244, 2012.
DOI : 10.1021/la302455y

C. Zoldesi, I. Ivanovska, C. Quilliet, G. Wuite, A. Imhof et al., Elastic properties of hollow colloidal particles, Mechanics of Nanoindentation on a Monolayer of Colloidal Hollow Nanoparticles, pp.51401-10492, 2008.
DOI : 10.1021/la035517d

E. P. Tan and C. T. Lim, Nanoindentation study of nanofibers, Applied Physics Letters, vol.66, issue.12, p.123106, 2005.
DOI : 10.1023/A:1020200822435

M. Gibbons and W. Klug, Nonlinear finite-element analysis of nanoindentation of viral capsids, Physical Review E, vol.9, issue.3, p.31901, 2007.
DOI : 10.1073/pnas.0601881103

X. Sui, Q. Chen, M. A. Hempenius, and G. J. Vancso, Probing the Collapse Dynamics of Poly(N-isopropylacrylamide) Brushes by AFM: Effects of Co-nonsolvency and Grafting Densities, Small, vol.24, issue.10, pp.1440-1447, 2011.
DOI : 10.1021/la703051b

M. Horimizu, T. Kawase, T. Tanaka, K. Okuda, M. Nagata et al., Biomechanical evaluation by AFM of cultured human cell-multilayered periosteal sheets, Micron, vol.48, pp.1-10, 2013.
DOI : 10.1016/j.micron.2013.02.001

P. Carl and H. Schillers, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing, Pfl??gers Archiv - European Journal of Physiology, vol.2, issue.Suppl 1, pp.551-559, 2008.
DOI : 10.1590/S0001-37652007000100003

D. Vella, A. Ajdari, A. Vaziri, and A. Boudaoud, The indentation of pressurized elastic shells: from polymeric capsules to yeast cells, Journal of The Royal Society Interface, vol.34, issue.5838, pp.448-455, 2011.
DOI : 10.1140/epje/i2011-11013-0

F. Cavallo, D. S. Grierson, K. T. Turner, and M. G. Lagally, ???Soft Si???: Effective Stiffness of Supported Crystalline Nanomembranes, ACS Nano, vol.5, issue.7, pp.5400-5407, 2011.
DOI : 10.1021/nn200461g

M. R. Bonilla, J. R. Stokes, M. J. Gidley, and G. E. Yakubov, Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis, Soft Matter, vol.63, issue.7, pp.1281-1292, 2015.
DOI : 10.1093/jxb/err428

S. Liu, H. Huang, and Y. Gu, Deconvolution of mechanical properties of thin films from nanoindentation measurement via finite element optimization, Thin Solid Films, vol.526, pp.183-190, 2012.
DOI : 10.1016/j.tsf.2012.11.024

C. Zhang, M. Zhao, Y. Liu, and B. Wang, Extracting the elastic moduli of the constituent layers of a multilayered thin film from nanoindentation tests, Journal of Materials Research, vol.28, issue.18, pp.2570-2576, 2013.
DOI : 10.1557/JMR.1986.0601

J. Li and T. Chou, Elastic field of a thin-film/substrate system under an axisymmetric loading, International Journal of Solids and Structures, vol.34, issue.35-36, pp.4463-4478, 1997.
DOI : 10.1016/S0020-7683(97)00053-X

A. Perriot and E. Barthel, Elastic contact to a coated half-space: Effective elastic modulus and real penetration, Journal of Materials Research, vol.19, issue.02, pp.600-608, 2004.
DOI : 10.1515/crll.1882.92.156

URL : https://hal.archives-ouvertes.fr/hal-00001402

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.XI, issue.06, pp.1564-1583, 1992.
DOI : 10.1557/S0883769400054440

URL : https://hal.archives-ouvertes.fr/hal-01518596

H. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology, 1989.

S. Chizhik, Z. Huang, V. Gorbunov, N. Myshkin, and V. Tsukruk, Micromechanical Properties of Elastic Polymeric Materials As Probed by Scanning Force Microscopy, Langmuir, vol.14, issue.10, pp.2606-2609, 1998.
DOI : 10.1021/la980042p

D. Tabor, Surface forces and surface interactions, Journal of Colloid and Interface Science, vol.58, issue.1, pp.2-13, 1977.
DOI : 10.1016/0021-9797(77)90366-6

D. Maugis, Adhesion of spheres: The JKR-DMT transition using a dugdale model, Journal of Colloid and Interface Science, vol.150, issue.1, pp.243-269, 1992.
DOI : 10.1016/0021-9797(92)90285-T

K. Johnson and J. Greenwood, An Adhesion Map for the Contact of Elastic Spheres, Journal of Colloid and Interface Science, vol.192, issue.2, pp.326-333, 1997.
DOI : 10.1006/jcis.1997.4984

H. J. Butt and M. Jaschke, Calculation of thermal noise in atomic force microscopy, Nanotechnology, vol.6, issue.1, pp.1-7, 1995.
DOI : 10.1088/0957-4484/6/1/001

J. Villarrubia, Morphological estimation of tip geometry for scanned probe microscopy, Surface Science, vol.321, issue.3, pp.287-300, 1994.
DOI : 10.1016/0039-6028(94)90194-5

W. Kern, The Evolution of Silicon Wafer Cleaning Technology, Journal of The Electrochemical Society, vol.137, issue.6, pp.1887-1892, 1990.
DOI : 10.1149/1.2086825

I. Johnston, D. Mccluskey, C. Tan, and M. Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, Journal of Micromechanics and Microengineering, vol.24, issue.3, p.35017, 2014.
DOI : 10.1088/0960-1317/24/3/035017

Z. Wang, A. A. Volinsky, and N. D. Gallant, Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument, Journal of Applied Polymer Science, vol.20, issue.22, 2014.
DOI : 10.1557/JMR.2005.0354

F. Carrillo, S. Gupta, M. Balooch, S. J. Marshall, G. W. Marshall et al., Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus, Journal of Materials Research, vol.841, issue.10, pp.2820-2830, 2005.
DOI : 10.1177/00220345010800081701

R. H. Pritchard, P. Lava, D. Debruyne, and E. M. Terentjev, Precise determination of the Poisson ratio in soft materials with 2D digital image correlation, Soft Matter, vol.38, issue.26, p.6037, 2013.
DOI : 10.1021/ma0487655

T. Nishino, R. Matsui, and K. Nakamae, Elastic modulus of the crystalline regions of chitin and chitosan, Journal of Polymer Science Part B: Polymer Physics, vol.41, issue.11, pp.1191-1196, 1999.
DOI : 10.2115/fiber.41.9_T361

M. Alekseeva, E. Fedoseeva, V. Frolov, V. Nistratov, and L. Smirnova, The strength of chitosan films. the role of molecular weight, the degree of order, the nature of contre-ion, Prog on Chem and Appl of Chitin and its Derivatives XIV, p.163, 2009.

N. Hazwani, Effect of pressure on elastic properties of chitosan, 2011.

K. Mills, X. Zhu, S. Takayama, and M. Thouless, The mechanical properties of a surface-modified layer on polydimethylsiloxane, Journal of Materials Research, vol.23, issue.01, pp.37-48, 2008.
DOI : 10.1021/la0113567

G. Bar, L. Delineau, A. Häfele, and M. Whangbo, Investigation of the stiffness change in, the indentation force and the hydrophobic recovery of plasma-oxidized polydimethylsiloxane surfaces by tapping mode atomic force microscopy, Polymer, vol.42, issue.8, pp.3627-3632, 2001.
DOI : 10.1016/S0032-3861(00)00738-2

J. Song, D. Tranchida, and G. J. Vancso, Contact Mechanics of UV/Ozone-Treated PDMS by AFM and JKR Testing: Mechanical Performance from Nano- to Micrometer Length Scales, Macromolecules, vol.41, issue.18, pp.6757-6762, 2008.
DOI : 10.1021/ma800536y

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan et al., Nested self-similar wrinkling patterns in skins, Nature Materials, vol.13, issue.4, p.293, 2005.
DOI : 10.1021/la960874s

N. Bowden, W. T. Huck, K. E. Paul, and G. M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Applied Physics Letters, vol.75, issue.17, pp.2557-2559, 1999.
DOI : 10.1126/science.6987736

M. Nania, F. Foglia, O. K. Matar, and J. T. Cabral, Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation, Nanoscale, vol.12, issue.5, pp.2030-2037, 2017.
DOI : 10.1039/C6SM00526H

J. T. Cabral, S. D. Hudson, C. Harrison, and J. F. Douglas, Frontal Photopolymerization for Microfluidic Applications, Langmuir, vol.20, issue.23, pp.10020-10029, 2004.
DOI : 10.1021/la049501e

Y. Cao, D. Yang, and W. Soboyejoy, Nanoindentation Method for Determining the Initial Contact and Adhesion Characteristics of Soft Polydimethylsiloxane, Journal of Materials Research, vol.629, issue.08, pp.2004-2011, 2005.
DOI : 10.1006/jcis.1997.4984

G. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick et al., Vapor-Phase Self-Assembled Monolayer for Improved Mold Release in Nanoimprint Lithography, Langmuir, vol.21, issue.4, pp.1158-1161, 2005.
DOI : 10.1021/la0476938

J. N. Lee, C. Park, and G. M. Whitesides, Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices, Analytical Chemistry, vol.75, issue.23, pp.6544-6554, 2003.
DOI : 10.1021/ac0346712

C. Rumens, M. A. Ziai, K. Belsey, J. C. Batchelor, and S. J. Holder, Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors, Journal of Materials Chemistry C, vol.24, issue.39, pp.10091-10098, 2015.
DOI : 10.1016/S0079-6700(99)00016-7

K. Dusek, A. Choukourov, M. Duskova-smrckova, and H. Biederman, Constrained Swelling of Polymer Networks: Characterization of Vapor-Deposited Cross-Linked Polymer Thin Films, Macromolecules, vol.47, issue.13, pp.4417-4427, 2014.
DOI : 10.1021/ma5006217

R. Marie, J. P. Beech, J. Vörös, J. O. Tegenfeldt, and F. Höök, -PEG in Micro-Fluidic Devices for Localizing Selective and Specific Protein Binding, Langmuir, vol.22, issue.24, pp.10103-10108, 2006.
DOI : 10.1021/la060198m

S. A. Ruiz and C. S. Chen, Microcontact printing: A tool to pattern, Soft Matter, vol.126, issue.2, pp.168-177, 2007.
DOI : 10.1021/ja031657y

S. Lee and N. D. Spencer, -PEG) at a Hydrophobic Interface: Influence of Tribological Stress, pH, Salt Concentration, and Polymer Molecular Weight, Langmuir, vol.24, issue.17, pp.9479-9488, 2008.
DOI : 10.1021/la801200h

N. H. Abdullah, W. A. Bakar, R. Hussain, M. B. Bakar, M. Mohamed et al., Preparation and characterization of alkyl-thiols monolayer on glass substrates by microcontact printing, ARPN, vol.10, issue.20, pp.9538-9543, 2006.

A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and A. Ajdari, Patterning Flows Using Grooved Surfaces, Analytical Chemistry, vol.74, issue.20, pp.5306-5312, 2002.
DOI : 10.1021/ac0257389

R. M. Diebold and D. R. Clarke, Lithographic patterning on polydimethylsiloxane surfaces using polydimethylglutarimide, Lab on a Chip, vol.41, issue.9, pp.1694-1697, 2011.
DOI : 10.1147/rd.411.0081

Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. Lo, UV/ozone modification of poly(dimethylsiloxane) microfluidic channels, Sensors and Actuators B: Chemical, vol.97, issue.2-3, pp.402-408, 2004.
DOI : 10.1016/j.snb.2003.09.022

J. Garra, T. Long, J. Currie, T. Schneider, R. White et al., Dry etching of polydimethylsiloxane for microfluidic systems, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.20, issue.3, pp.975-982, 2002.
DOI : 10.1116/1.1460896

M. Kleiman, K. A. Ryu, and A. P. Esser-kahn, -butylammonium Fluoride, Macromolecular Chemistry and Physics, vol.12, issue.62, pp.284-291, 2016.
DOI : 10.1039/c2lc00033d

W. R. Childs and R. G. Nuzzo, Decal Transfer Microlithography:?? A New Soft-Lithographic Patterning Method, Journal of the American Chemical Society, vol.124, issue.45, pp.13583-13596, 2002.
DOI : 10.1021/ja020942z

C. Danielson, A. Mehrnezhad, A. Yekrangsafakar, and K. Park, Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage, Soft Matter, vol.47, issue.23, 2017.
DOI : 10.1016/j.ijsolstr.2010.01.015

T. Van-manen, S. Janbaz, and A. A. Zadpoor, Programming 2d/3d shapeshifting with hobbyist 3d printers, Materials Horizons, 2017.

S. M. Felton, M. T. Tolley, B. Shin, C. D. Onal, E. D. Demaine et al., Self-folding with shape memory composites, Soft Matter, vol.434, issue.32, pp.7688-7694, 2013.
DOI : 10.1038/nature03496

M. T. Tolley, S. M. Felton, S. Miyashita, D. Aukes, D. Rus et al., Self-folding origami: shape memory composites activated by uniform heating, Smart Materials and Structures, vol.23, issue.9, p.94006, 2014.
DOI : 10.1088/0964-1726/23/9/094006

R. Foerch, J. Izawa, and G. Spears, A comparative study of the effects of remote nitrogen plasma, remote oxygen plasma, and corona discharge treatments on the surface properties of polyethylene, Journal of Adhesion Science and Technology, vol.14, issue.7, pp.549-564, 1991.
DOI : 10.1002/sia.740141004

A. Mondal, D. Agrawal, and A. Upadhyaya, Microwave heating of pure copper powder with different particle size and porosity, Global Congress on Microwave Energy Application, pp.517-520, 2008.

J. H. Ng, M. P. Desmulliez, A. Mccarthy, H. Suyal, K. A. Prior et al., UV direct-writing of metals on polyimide, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp.360-363, 2008.
DOI : 10.1109/DTIP.2008.4753018

URL : https://hal.archives-ouvertes.fr/hal-00277741

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, 3D-Printed Microfluidics, Angewandte Chemie International Edition, vol.7, issue.454, pp.3862-3881, 2016.
DOI : 10.1016/S0924-4247(96)01229-0

P. Loskill, S. G. Marcus, A. Mathur, W. M. Reese, and K. E. Healy, µorgano: A lego R -like plug & play system for modular multi-organ-chips, PloS one, vol.10, issue.10, p.139587, 2015.

Y. Hsieh, A. Yang, J. Chen, S. Liao, T. Su et al., A Lego??-like swappable fluidic module for bio-chem applications, Sensors and Actuators B: Chemical, vol.204, pp.489-496, 2014.
DOI : 10.1016/j.snb.2014.07.122

K. Vittayarukskul and A. P. Lee, -like modular microfluidics platform, Journal of Micromechanics and Microengineering, vol.27, issue.3, p.35004, 2017.
DOI : 10.1088/1361-6439/aa53ed

A. K. Au, N. Bhattacharjee, L. F. Horowitz, T. C. Chang, and A. Folch, 3D-printed microfluidic automation, Lab on a Chip, vol.10, issue.8, pp.1934-1941, 2015.
DOI : 10.1039/b920585c

R. Sochol, E. Sweet, C. Glick, S. Venkatesh, A. Avetisyan et al., 3D printed microfluidic circuitry via multijet-based additive manufacturing, Lab on a Chip, vol.9, issue.4, pp.668-678, 2016.
DOI : 10.1063/1.4927379

P. K. Yuen, SmartBuild???A truly plug-n-play modular microfluidic system, Lab on a Chip, vol.11, issue.8, pp.1374-1378, 2008.
DOI : 10.1039/b805086d

K. C. Bhargava, B. Thompson, and N. Malmstadt, Discrete elements for 3D microfluidics, Proceedings of the National Academy of Sciences, pp.15013-15018, 2014.
DOI : 10.1039/c4lc00087k

L. Hunt, The long history of lost wax casting, Gold Bulletin, vol.12, issue.1, pp.63-79, 1980.
DOI : 10.1007/BF03215098

B. A. Peeni, M. L. Lee, A. R. Hawkins, and A. T. Woolley, Sacrificial layer microfluidic device fabrication methods, ELECTROPHORESIS, vol.5, issue.24, pp.4888-4895, 2006.
DOI : 10.1002/elps.200600399

S. Metz, S. Jiguet, A. Bertsch, and P. Renaud, Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique, Lab on a Chip, vol.4, issue.2, pp.114-120, 2004.
DOI : 10.1039/b310866j

J. S. Miller, K. R. Stevens, M. T. Yang, B. M. Baker, D. T. Nguyen et al., Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues, Nature Materials, vol.437, issue.9, p.768, 2012.
DOI : 10.1038/nmat3357

D. Therriault, S. R. White, and J. A. Lewis, Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly, Nature Materials, vol.292, issue.23, p.265, 2003.
DOI : 10.1126/science.1059479

M. K. Gelber and R. Bhargava, Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt, Lab on a Chip, vol.5, issue.7, pp.1736-1741, 2015.
DOI : 10.1007/BF02763592

W. Su, B. S. Cook, Y. Fang, and M. M. Tentzeris, Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications, Scientific reports, p.35111, 2016.
DOI : 10.1021/jp991046l

A. P. Esser-kahn, P. R. Thakre, H. Dong, J. F. Patrick, V. K. Vlasko-vlasov et al., Three-Dimensional Microvascular Fiber-Reinforced Composites, Advanced Materials, vol.77, issue.1, pp.3654-3658, 2011.
DOI : 10.1021/cen-v077n003.p065

G. Cummins and M. P. Desmulliez, Inkjet printing of conductive materials: a review, Circuit World, vol.38, issue.4, pp.193-213, 2012.
DOI : 10.1088/0957-4484/19/33/332001

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet Printing-Process and Its Applications, Advanced Materials, vol.17, issue.6, pp.673-685, 2010.
DOI : 10.1002/10.1039/B903531A

E. Tekin, P. J. Smith, and U. S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter, vol.2, issue.4, pp.703-713, 2008.
DOI : 10.1007/s00339-004-2731-x

T. Boland, T. Xu, B. Damon, and X. Cui, Application of inkjet printing to tissue engineering, Biotechnology Journal, vol.272, issue.9, pp.910-917, 2006.
DOI : 10.1002/biot.200600081

C. Wohlfarth, Viscosity of pure organic liquids and binary liquid mixtures, 2009.

G. H. Mckinley and M. Renardy, Wolfgang von Ohnesorge, Physics of Fluids, vol.23, issue.12, pp.127101-2011
DOI : 10.1002/aic.v48:9

A. U. Chen and O. A. Basaran, A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production, Physics of Fluids, vol.335, issue.1, pp.1-4, 2002.
DOI : 10.1103/PhysRevLett.85.5332

A. U. Chen and O. A. Basaran, Method and apparatus for producing drops using a drop-on-demand dispenser, tech. rep. Purdue Research Foundation, 2003.

J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. Mcdonald et al., Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping, Analytical Chemistry, vol.72, issue.14, pp.3158-3164, 2000.
DOI : 10.1021/ac9912294

M. Zhang, J. Wu, L. Wang, K. Xiao, and W. Wen, A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips, Lab on a Chip, vol.79, issue.9, pp.1199-1203, 2010.
DOI : 10.1557/PROC-795-U8.3

B. Jo, L. M. Van-lerberghe, K. M. Motsegood, and D. J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, Journal of Microelectromechanical Systems, vol.9, issue.1, pp.76-81, 2000.
DOI : 10.1109/84.825780

R. Courson, S. Cargou, V. Conédéra, M. Fouet, M. Blatche et al., Low-cost multilevel microchannel lab on chip: DF-1000 series dry film photoresist as a promising enabler, RSC Adv., vol.12, issue.97, pp.54847-54853, 2014.
DOI : 10.1039/c2lc21015k

URL : https://hal.archives-ouvertes.fr/hal-01082670

H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS, Journal of the American Chemical Society, vol.125, issue.2, pp.554-559, 2003.
DOI : 10.1021/ja021045y

H. N. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian et al., Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips, Microfluidics and Nanofluidics, vol.26, issue.51, pp.9-18, 2015.
DOI : 10.1002/adma.201305348

B. Sarrazin, R. Brossard, P. Guenoun, and F. Malloggi, Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young's modulus, Soft Matter, vol.324, issue.535, pp.2200-2207, 2016.
DOI : 10.1098/rspa.1971.0141

R. Brossard, V. Luchnikov, P. Guenoun, and F. Malloggi, Patterning of spontaneous rolling thin polymer films for versatile microcapillaries, Journal of Polymer Science Part B: Polymer Physics, vol.37, issue.9, pp.721-728, 2017.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

URL : https://hal.archives-ouvertes.fr/cea-01483491