M. Knoll, E. Ruska, and . Das-elektronenmikroskop, Das Elektronenmikroskop, Zeitschrift f???r Physik, vol.78, issue.5-6, pp.318-339, 1932.
DOI : 10.1007/BF01342199

E. Ruska, Beitrag zur ???bermikroskopischen Abbildung bei h???heren Drucken, Kolloid-Zeitschrift, vol.100, issue.2, pp.212-219
DOI : 10.1007/BF01519549

R. T. Baker and P. S. Harris, Controlled atmosphere electron microscopy, Journal of Physics E: Scientific Instruments, vol.5, issue.8, p.793, 1972.
DOI : 10.1088/0022-3735/5/8/024

E. D. Boyes and P. L. Gai, Environmental high resolution electron microscopy and applications to chemical science, Ultramicroscopy, vol.67, issue.1-4, pp.219-232, 1997.
DOI : 10.1016/S0304-3991(96)00099-X

URL : http://arxiv.org/pdf/1705.05751

T. Alan, Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure, Applied Physics Letters, vol.100, issue.8, p.81903, 2012.
DOI : 10.1063/1.3688490.1

URL : https://repository.tudelft.nl/islandora/object/uuid%3Aa63fabae-d5a2-4c2b-9a0b-3c03ee6342bb/datastream/OBJ/download

J. F. Creemer, Atomic-scale electron microscopy at ambient pressure, Ultramicroscopy, vol.108, issue.9, pp.993-998, 2008.
DOI : 10.1016/j.ultramic.2008.04.014

L. F. Allard, Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities for In Situ Reaction Studies, Microscopy and Microanalysis, vol.7, issue.04, pp.656-666, 2012.
DOI : 10.1093/jmicro/dfp016

A. N. Stranges, A History of the Fischer-Tropsch Synthesis in Germany 1926?45. in Studies in Surface Science and Catalysis, pp.1-27, 2007.

A. Y. Khodakov, W. Chu, and P. Fongarland, Advances in the Development of Novel Cobalt Fischer???Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chemical Reviews, vol.107, issue.5, pp.1692-1744, 2007.
DOI : 10.1021/cr050972v

A. P. Steynberg, Chapter 1 -Introduction to Fischer-Tropsch Technology. in Studies in Surface Science and Catalysis, pp.1-63, 2004.
DOI : 10.1016/s0167-2991(04)80458-0

M. E. Dry, The Fischer???Tropsch process: 1950???2000, Catalysis Today, vol.71, issue.3-4, pp.227-241, 2000.
DOI : 10.1016/S0920-5861(01)00453-9

M. E. Dry, High quality diesel via the Fischer-Tropsch process - a review, Journal of Chemical Technology & Biotechnology, vol.58, issue.1, pp.43-50, 2002.
DOI : 10.1016/S0920-5861(00)00265-0

A. M. Saib, Fundamental understanding of deactivation and regeneration of cobalt Fischer???Tropsch synthesis catalysts, Catalysis Today, vol.154, issue.3-4, pp.271-282, 2010.
DOI : 10.1016/j.cattod.2010.02.008

N. E. Tsakoumis, M. Rønning, Ø. Borg, E. Rytter, and A. Holmen, Deactivation of cobalt based Fischer???Tropsch catalysts: A review, Catalysis Today, vol.154, issue.3-4, pp.162-182, 2010.
DOI : 10.1016/j.cattod.2010.02.077

E. Rytter and A. Holmen, Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts???A Mini-Review, Catalysts, vol.217, issue.4, pp.478-499, 2015.
DOI : 10.1006/jcat.1993.1281

A. P. Steynberg, S. R. Deshmukh, and H. J. Robota, Fischer-Tropsch catalyst deactivation in commercial microchannel reactor operation, Catalysis Today, vol.299, 2017.
DOI : 10.1016/j.cattod.2017.05.064

J. Thomas and T. G. , Analytical Transmission Electron Microscopy, An Introduction for Operators, 2014.

L. W. Swanson and G. A. Schwind, Review of ZrO/W Schottky Cathode, Handb. Charg. Part. Opt, pp.1-28, 1997.
DOI : 10.1201/9781420045550.ch1

M. Varela, MATERIALS CHARACTERIZATION IN THE ABERRATION-CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPE, Annual Review of Materials Research, vol.35, issue.1, pp.539-569, 2005.
DOI : 10.1146/annurev.matsci.35.102103.090513

M. Haider, P. Hartel, H. Müller, S. Uhlemann, and J. Zach, Current and future aberration correctors for the improvement of resolution in electron microscopy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.98, issue.2
DOI : 10.1007/BF01349606

P. E. Batson, N. Dellby, and O. L. Krivanek, Sub-??ngstrom resolution using aberration corrected electron optics, Nature, vol.49, issue.6898, pp.617-620, 2002.
DOI : 10.1103/PhysRevLett.70.1822

P. A. Crozier and T. W. Hansen, In situ and operando transmission electron microscopy of catalytic materials, MRS Bulletin, vol.20, issue.01, pp.38-45, 2015.
DOI : 10.1002/anie.201102487

P. L. Gai and E. D. Boyes, Advances in atomic resolution in situ environmental transmission electron microscopy and 1?? aberration corrected in situ electron microscopy, Microscopy Research and Technique, vol.77, issue.2
DOI : 10.1007/978-94-009-1565-7

J. R. Jinschek, Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas???solid interactions, Chem. Commun., vol.19, issue.21, pp.2696-2706, 2014.
DOI : 10.1017/S1431927613004364

S. Giorgio, Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows, Ultramicroscopy, vol.106, issue.6, pp.503-507, 2006.
DOI : 10.1016/j.ultramic.2006.01.006

F. Wu and N. Yao, Advances in windowed gas cells for in-situ TEM studies, Nano Energy, vol.13, pp.735-756, 2015.
DOI : 10.1016/j.nanoen.2015.03.015

Y. Jiang, Recent advances in gas-involved in situ studies via transmission electron microscopy, Nano Research, vol.7, issue.98, pp.1-26, 2017.
DOI : 10.1038/ncomms13341

D. S. Su, B. Zhang, and R. Schlögl, Electron Microscopy of Solid Catalysts???Transforming from a Challenge to a Toolbox, Chemical Reviews, vol.115, issue.8, pp.2818-2882, 2015.
DOI : 10.1021/cr500084c

N. De-jonge, M. Pfaff, and D. B. Peckys, Chapter One -Practical Aspects of Transmission Electron Microscopy in Liquid, Advances in Imaging and Electron Physics, pp.1-37, 2014.

N. Jonge, . De, D. B. Peckys, G. J. Kremers, and D. W. Piston, Electron microscopy of whole cells in liquid with nanometer resolution, Proc. Natl. Acad. Sci, pp.2159-2164, 2009.
DOI : 10.1038/ncb1525

D. B. Peckys, V. Bandmann, and N. De-jonge, Chapter 14 -Correlative Fluorescence and Scanning Transmission Electron Microscopy of Quantum Dot-Labeled Proteins on Whole Cells in Liquid, Methods in Cell Biology, pp.305-322, 2014.

F. Wu and N. Yao, Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery, Nano Energy, vol.11, pp.196-210, 2015.
DOI : 10.1016/j.nanoen.2014.11.004

F. Wu and N. Yao, Situ Transmission Electron Microscopy Studies in Gas, Liquid Environment, pp.10-5772, 2016.

P. L. Gai and E. D. Boyes, environmental (scanning) transmission electron microscopy of catalysts at the atomic level, Journal of Physics: Conference Series, vol.522, p.12002, 2014.
DOI : 10.1088/1742-6596/522/1/012002

. Chenna and C. Santosh, Operando Transmission Electron Microscopy: A Technique for Detection of Catalysis Using Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope, ACS Catalysis, vol.2, issue.11, pp.2395-2402, 2012.
DOI : 10.1021/cs3004853

H. G. Heide, Elektronenmikroskopie von Objekten unter Atmosph???rendruck oder unter Drucken, welche ihre Austrocknung verhindern, Die Naturwissenschaften, vol.118, issue.14, pp.313-317, 1960.
DOI : 10.1007/BF00628703

J. F. Creemer, A MEMS Reactor for Atomic-Scale Microscopy of Nanomaterials Under Industrially Relevant Conditions, Journal of Microelectromechanical Systems, vol.19, issue.2, pp.254-264, 2010.
DOI : 10.1109/JMEMS.2010.2041190

T. Yokosawa, T. Alan, G. Pandraud, B. Dam, and H. Zandbergen, In-situ TEM on (de)hydrogenation of Pd at 0.5???4.5bar hydrogen pressure and 20???400??C, Ultramicroscopy, vol.112, issue.1, pp.47-52, 2012.
DOI : 10.1016/j.ultramic.2011.10.010

G. M. Parkinson, High resolution, in-situ controlled atmosphere transmission electron microscopy (CATEM) of heterogeneous catalysts, Catalysis Letters, vol.23, issue.5, pp.303-307, 1989.
DOI : 10.1007/BF00770228

B. K. Miller and P. A. Crozier, Analysis of Catalytic Gas Products Using Electron Energy-Loss Spectroscopy and Residual Gas Analysis for Operando Transmission Electron Microscopy, Microscopy and Microanalysis, vol.3, issue.03, pp.815-824, 2014.
DOI : 10.1016/j.micron.2012.01.006

P. A. Crozier and S. Chenna, In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy, Ultramicroscopy, vol.111, issue.3, pp.177-185, 2011.
DOI : 10.1016/j.ultramic.2010.11.005

K. Yamamoto, Y. Iriyama, and T. Hirayama, observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography, Microscopy, vol.66, pp.50-61, 2017.
DOI : 10.1093/jmicro/dfw106

G. M. Bremmer, In situ TEM observation of the Boudouard reaction: multi-layered graphene formation from CO on cobalt nanoparticles at atmospheric pressure, Faraday Discussions, vol.427, issue.6973, pp.337-351, 2017.
DOI : 10.1038/nature02278

O. 'hanlon and J. F. , A User's Guide to Vacuum Technology: O'Hanlon/Vacuum Technology 3e, pp.10-1002, 2003.

R. E. March and J. F. Todd, Quadrupole Ion Trap Mass Spectrometry, Quadrupole Ion Trap Mass Spectrometry, 2005.
DOI : 10.1002/0471717983

URL : http://doi.org/10.1002/0471717983

J. H. Batey, The physics and technology of quadrupole mass spectrometers, Vacuum, vol.101, pp.410-415, 2014.
DOI : 10.1016/j.vacuum.2013.05.005

H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, and S. Gu, A review of advanced catalyst development for Fischer???Tropsch synthesis of hydrocarbons from biomass derived syn-gas, Catal. Sci. Technol., vol.1, issue.8
DOI : 10.1016/j.jngse.2009.11.003

R. B. Anderson, H. Kölbel, and M. Rálek, The Fischer-Tropsch synthesis, 1984.

H. Schulz, Short history and present trends of Fischer???Tropsch synthesis, Applied Catalysis A: General, vol.186, issue.1-2
DOI : 10.1016/S0926-860X(99)00160-X

. Fischer-tropsch, . Synthesis, and C. Catalysts, Advances and Applications Available at: https://www.crcpress.com/Fischer-Tropsch-Synthesis-Catalysts- and-Catalysis-Advances-and-Applications, pp.9781466555297-15, 2016.

A. Y. Khodakov, Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance, Catalysis Today, vol.144, issue.3-4, pp.251-257, 2009.
DOI : 10.1016/j.cattod.2008.10.036

Y. Liu, O. Ersen, C. Meny, F. Luck, and C. Pham-huu, Fischer-Tropsch Reaction on a Thermally Conductive and Reusable Silicon Carbide Support, ChemSusChem, vol.52, issue.92, pp.1218-1239, 2014.
DOI : 10.1002/anie.201209799

Z. Liu, S. Shi, and Y. Li, Coal liquefaction technologies???Development in China and challenges in chemical reaction engineering, Chemical Engineering Science, vol.65, issue.1, pp.12-17, 2010.
DOI : 10.1016/j.ces.2009.05.014

F. Morales, B. M. Weckhuysen, and . |info, Promotion Effects in Co-Based Fischer???Tropsch Catalysis, ChemInform, vol.19, issue.2, 2006.
DOI : 10.1002/chin.200702219

L. Braconnier, Relations propriétés-structure de solides modèles à base de cobalt supporté : caractérisation operando de la phase active par couplage DRX-DRIFT et magnétisme, Thèse de Doctorat, 2009.

L. Guillou, Synthèse de Fischer-Tropsch en réacteurs structurés à catalyse supportée en paroi, 2005.

B. Davis, Fischer???Tropsch synthesis: current mechanism and futuristic needs, Fuel Processing Technology, vol.71, issue.1-3, pp.157-166, 2001.
DOI : 10.1016/S0378-3820(01)00144-8

M. Ojeda, CO activation pathways and the mechanism of Fischer???Tropsch synthesis, Journal of Catalysis, vol.272, issue.2
DOI : 10.1016/j.jcat.2010.04.012

M. Shao, Y. Li, J. Chen, and Y. Zhang, Chapter Six -Mesoscale Effects on Product Distribution of Fischer?Tropsch Synthesis, Advances in Chemical Engineering, pp.337-387, 2015.

W. Chen, Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts, Catalysis Today, 2017.
DOI : 10.1016/j.cattod.2017.09.019

Q. Zhang, W. Deng, and Y. Wang, Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis, Journal of Energy Chemistry, vol.22, issue.1, pp.27-38, 2013.
DOI : 10.1016/S2095-4956(13)60003-0

E. Rebmann, Mechanistic investigation on cobalt based Fischer-Tropsch catalysts, Thèse de Doctorat UCBL, pp.2012-2016

J. Yang, W. Ma, D. Chen, A. Holmen, and B. Davis, Fischer???Tropsch synthesis: A review of the effect of CO conversion on methane selectivity, Applied Catalysis A: General, vol.470, pp.250-260, 2014.
DOI : 10.1016/j.apcata.2013.10.061

M. Rønning, Combined XRD and XANES studies of a Re-promoted Co/??-Al2O3 catalyst at Fischer???Tropsch synthesis conditions, Catalysis Today, vol.155, issue.3-4, pp.289-295, 2010.
DOI : 10.1016/j.cattod.2009.10.010

M. E. Dry, Practical and theoretical aspects of the catalytic Fischer-Tropsch process, Applied Catalysis A: General, vol.138, issue.2, pp.319-344, 1996.
DOI : 10.1016/0926-860X(95)00306-1

A. Tavasoli, R. M. Abbaslou, M. Trepanier, and A. Dalai, Fischer???Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor, Applied Catalysis A: General, vol.345, issue.2, pp.134-142, 2008.
DOI : 10.1016/j.apcata.2008.04.030

. Bezemer, Cobalt Particle Size Effects in the Fischer???Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts, Journal of the American Chemical Society, vol.128, issue.12, pp.3956-3954, 2006.
DOI : 10.1021/ja058282w

S. Iqbal, Fischer Tropsch Synthesis using promoted cobalt-based catalysts, Catalysis Today, vol.272, pp.74-79, 2016.
DOI : 10.1016/j.cattod.2016.04.012

C. Kern, A. Jess, and A. Jung, Carbon Nanomaterials as Supports for Fischer-Tropsch Catalysts. in Advances in Fischer-Tropsch Synthesis, Catalysts, and Catalysis
DOI : 10.1201/9781420062571.ch2

&. Davis and B. , doi:10.1201/9781420062571.ch2 77. Dry, M. E. Fischer-Tropsch synthesis over iron catalysts, Catal. Lett, vol.7, pp.241-251, 1990.

E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Applied Catalysis A: General, vol.161, issue.1-2, pp.59-78, 1997.
DOI : 10.1016/S0926-860X(97)00186-5

B. Jager and R. Espinoza, Advances in low temperature Fischer-Tropsch synthesis, Catalysis Today, vol.23, issue.1, pp.17-28, 1995.
DOI : 10.1016/0920-5861(94)00136-P

E. De-smit and B. M. Weckhuysen, The renaissance of iron-based Fischer???Tropsch synthesis: on the multifaceted catalyst deactivation behaviour, Chemical Society Reviews, vol.51, issue.12, p.2758, 2008.
DOI : 10.1021/ba-1979-0178.ch008

F. H. Ribeiro, A. E. Wittenau, C. H. Bartholomew, and G. A. Somorjai, Reproducibility of Turnover Rates in Heterogeneous Metal Catalysis: Compilation of Data and Guidelines for Data Analysis, Catalysis Reviews, vol.25, issue.1-2, pp.49-76, 1997.
DOI : 10.1016/0039-6028(82)90114-5

J. P. Den-breejen, On the Origin of the Cobalt Particle Size Effects in Fischer???Tropsch Catalysis, Journal of the American Chemical Society, vol.131, issue.20, pp.7197-7203, 2009.
DOI : 10.1021/ja901006x

Ø. Borg, Fischer???Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution, Journal of Catalysis, vol.259, issue.2, pp.161-164, 2008.
DOI : 10.1016/j.jcat.2008.08.017

J. Park, Fischer???Tropsch catalysts deposited with size-controlled Co3O4 nanocrystals: Effect of Co particle size on catalytic activity and stability, Applied Catalysis A: General, vol.411, issue.412, pp.411-412, 2012.
DOI : 10.1016/j.apcata.2011.10.010

A. Barbier, A. Tuel, I. Arcon, A. Kodre, and G. A. Martin, Characterization and Catalytic Behavior of Co/SiO2 Catalysts: Influence of Dispersion in the Fischer???Tropsch Reaction, Journal of Catalysis, vol.200, issue.1, pp.106-116, 2001.
DOI : 10.1006/jcat.2001.3204

URL : https://hal.archives-ouvertes.fr/hal-00007040

P. Munnik, P. E. De-jongh, and K. P. De-jong, Control and Impact of the Nanoscale Distribution of Supported Cobalt Particles Used in Fischer???Tropsch Catalysis, Journal of the American Chemical Society, vol.136, issue.20
DOI : 10.1021/ja500436y

R. C. Reuel and C. H. Bartholomew, Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt, Journal of Catalysis, vol.85, issue.1, pp.78-88, 1984.
DOI : 10.1016/0021-9517(84)90111-8

V. Frøseth, Steady state isotopic transient kinetic analysis (SSITKA) of CO hydrogenation on different Co catalysts, Applied Catalysis A: General, vol.289, issue.1, pp.10-15, 2005.
DOI : 10.1016/j.apcata.2005.04.009

E. Iglesia, S. L. Soled, J. E. Baumgartner, and S. C. Reyes, Synthesis and Catalytic Properties of Eggshell Cobalt Catalysts for the Fischer-Tropsch Synthesis, Journal of Catalysis, vol.153, issue.1, pp.108-122, 1995.
DOI : 10.1006/jcat.1995.1113

Ø. Borg, Fischer???Tropsch synthesis over ??-alumina-supported cobalt catalysts: Effect of support variables, Journal of Catalysis, vol.248, issue.1, pp.89-100, 2007.
DOI : 10.1016/j.jcat.2007.03.008

W. Chu, Cobalt species in promoted cobalt alumina-supported Fischer???Tropsch catalysts, Journal of Catalysis, vol.252, issue.2, pp.215-230, 2007.
DOI : 10.1016/j.jcat.2007.09.018

A. M. Saib, M. Claeys, and E. Van-steen, Silica supported cobalt Fischer???Tropsch catalysts: effect of pore diameter of support, Catalysis Today, vol.71, issue.3-4, pp.395-402, 2002.
DOI : 10.1016/S0920-5861(01)00466-7

D. Song and J. Li, Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer???Tropsch catalysts, Journal of Molecular Catalysis A: Chemical, vol.247, issue.1-2, pp.206-212, 2006.
DOI : 10.1016/j.molcata.2005.11.021

H. Xiong, Y. Zhang, S. Wang, and J. Li, Fischer???Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst, Catalysis Communications, vol.6, issue.8, pp.512-516, 2005.
DOI : 10.1016/j.catcom.2005.04.018

F. Diehl and A. Khodakov, Promotion of Cobalt Fischer-Tropsch Catalysts with Noble Metals: a Review, Oil & Gas Science and Technology - Revue de l'IFP, vol.64, issue.1, pp.11-24, 2009.
DOI : 10.2516/ogst:2008040

G. Jacobs, Fischer???Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts, Applied Catalysis A: General, vol.233, issue.1-2, pp.263-281, 2002.
DOI : 10.1016/S0926-860X(02)00195-3

H. Karaca, Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer???Tropsch synthesis, Journal of Catalysis, vol.277, issue.1, pp.14-26, 2011.
DOI : 10.1016/j.jcat.2010.10.007

G. Jacobs, Fischer???Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts, Applied Catalysis A: General, vol.233, issue.1-2, pp.215-226, 2002.
DOI : 10.1016/S0926-860X(02)00147-3

J. A. Moulijn, A. E. Van-diepen, and F. Kapteijn, Catalyst deactivation: is it predictable?, Applied Catalysis A: General, vol.212, issue.1-2, pp.3-16, 2001.
DOI : 10.1016/S0926-860X(00)00842-5

C. H. Bartholomew, Mechanisms of catalyst deactivation, Applied Catalysis A: General, vol.212, issue.1-2, pp.17-60, 2001.
DOI : 10.1016/S0926-860X(00)00843-7

P. Senecal, Real-Time Scattering-Contrast Imaging of a Supported Cobalt-Based Catalyst Body during Activation and Fischer???Tropsch Synthesis Revealing Spatial Dependence of Particle Size and Phase on Catalytic Properties, ACS Catalysis, vol.7, issue.4, pp.2284-2293, 2017.
DOI : 10.1021/acscatal.6b03145

URL : https://hal.archives-ouvertes.fr/hal-01691820

A. T. Delariva, T. W. Hansen, S. R. Challa, and A. K. Datye, In situ Transmission Electron Microscopy of catalyst sintering, Journal of Catalysis, vol.308, pp.291-305, 2013.
DOI : 10.1016/j.jcat.2013.08.018

A. M. Saib, A. Borgna, J. Van-de-loosdrecht, P. J. Van-berge, and J. W. Niemantsverdriet, XANES study of the susceptibility of nano-sized cobalt crystallites to oxidation during realistic Fischer???Tropsch synthesis, Applied Catalysis A: General, vol.312, pp.12-19, 2006.
DOI : 10.1016/j.apcata.2006.06.009

A. Rochet, V. Moizan, F. Diehl, C. Pichon, and V. Briois, Quick-XAS and Raman operando characterisation of a cobalt alumina-supported catalyst under realistic Fischer???Tropsch reaction conditions, Catalysis Today, vol.205, pp.94-100, 2013.
DOI : 10.1016/j.cattod.2012.08.021

D. Schanke, Study of the deactivation mechanism of Al2O3-supported cobalt Fischer-Tropsch catalysts, Catalysis Letters, vol.73, issue.3-4, pp.269-284, 1995.
DOI : 10.1007/BF00806876

N. E. Tsakoumis, -Supported Cobalt Catalysts under Fischer???Tropsch Synthesis Conditions, Journal of the American Chemical Society, vol.139, issue.10, pp.3706-3715, 2017.
DOI : 10.1021/jacs.6b11872

J. Van-de-loosdrecht, Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation?, Catalysis Today, vol.123, issue.1-4, pp.293-302, 2007.
DOI : 10.1016/j.cattod.2007.02.032

URL : https://hal.archives-ouvertes.fr/hal-00180851

I. Florea, Y. Liu, O. Ersen, C. Meny, and C. Pham-huu, Microstructural Analysis and Energy-Filtered TEM Imaging to Investigate the Structure-Activity Relationship in Fischer-Tropsch Catalysts, ChemCatChem, vol.274, issue.9, pp.2610-2620, 2013.
DOI : 10.1016/j.jcat.2010.06.007

C. Lancelot, Direct Evidence of Surface Oxidation of Cobalt Nanoparticles in Alumina-Supported Catalysts for Fischer???Tropsch Synthesis, ACS Catalysis, vol.4, issue.12, pp.4510-451510, 2014.
DOI : 10.1021/cs500981p

P. L. Gai, Environmental high resolution electron microscopy of gas?catalyst reactions, Topics in Catalysis, vol.8, issue.1/2, pp.97-113, 1999.
DOI : 10.1023/A:1019192523483

P. L. Gai, Developments of electron microscopy methods in the study of catalysts, Current Opinion in Solid State and Materials Science, vol.5, issue.5
DOI : 10.1016/S1359-0286(01)00036-5

P. L. Gai, Developments Concerning in situ Environmental Cell High-Resolution Electron Microscopy and Applications to Catalysis, ChemInform, vol.21, issue.17, pp.161-173, 2002.
DOI : 10.1002/chin.200317279

R. Sharma, An Environmental Transmission Electron Microscope for in situ Synthesis and Characterization of Nanomaterials, Journal of Materials Research, vol.20, issue.07, pp.1695-1707, 2005.
DOI : 10.1557/JMR.2005.0241

T. W. Hansen and J. B. Wagner, Catalysts under Controlled Atmospheres in the Transmission Electron Microscope, ACS Catalysis, vol.4, issue.6, pp.1673-1685, 2014.
DOI : 10.1021/cs401148d

S. Takeda, Y. Kuwauchi, and H. Yoshida, Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector, Ultramicroscopy, vol.151
DOI : 10.1016/j.ultramic.2014.11.017

R. Banerjee and P. A. Crozier, In Situ Synthesis and Nanoscale Evolution of Model Supported Metal Catalysts: Ni on Silica, The Journal of Physical Chemistry C, vol.116, issue.21, pp.11486-11495, 2012.
DOI : 10.1021/jp2073446

P. Li, J. Liu, N. Nag, and P. A. Crozier, In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer???Tropsch catalysts, Applied Catalysis A: General, vol.307, issue.2, pp.212-221, 2006.
DOI : 10.1016/j.apcata.2006.03.051

R. Dehghan, In-Situ Reduction of Promoted Cobalt Oxide Supported on Alumina by Environmental Transmission Electron Microscopy, Catalysis Letters, vol.8, issue.5, pp.754-761, 2011.
DOI : 10.1017/S1431927602020135

H. L. Xin, Environmental TEM, ACS Nano, vol.6, issue.5, pp.4241-4247, 2012.
DOI : 10.1021/nn3007652

S. B. Vendelbo, Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation, Nature Materials, vol.337, issue.9, pp.884-890, 2014.
DOI : 10.1016/j.micron.2012.01.006

N. E. Tsakoumis, A combined in situ XAS-XRPD-Raman study of Fischer???Tropsch synthesis over a carbon supported Co catalyst, Catalysis Today, vol.205, pp.86-93, 2013.
DOI : 10.1016/j.cattod.2012.08.041

N. Fischer, B. Clapham, T. Feltes, E. Van-steen, and M. Claeys, Size-Dependent Phase Transformation of Catalytically Active Nanoparticles Captured In???Situ, Angewandte Chemie International Edition, vol.602, issue.5, pp.1342-1345, 2014.
DOI : 10.1016/j.susc.2007.09.060

A. I. Mcnab, A. J. Mccue, D. Dionisi, and J. A. Anderson, Combined quantitative FTIR and online GC study of Fischer-Tropsch catalysts, Journal of Catalysis, vol.353, pp.295-304, 2017.
DOI : 10.1016/j.jcat.2017.07.028

N. Fischer, M. Minnermann, M. Baeumer, E. Van-steen, and M. Claeys, Metal Support Interactions in Co3O4/Al2O3 Catalysts Prepared from w/o Microemulsions, Catalysis Letters, vol.102, issue.7, pp.830-837, 2012.
DOI : 10.1016/j.hydromet.2010.01.005

B. K. Sharma, Studies on cobalt-based Fischer???Tropsch catalyst and characterization using SEM and XPS techniques, Applied Catalysis A: General, vol.211, issue.2, pp.203-211, 2001.
DOI : 10.1016/S0926-860X(00)00860-7

D. S. Kalakkad, M. D. Shroff, S. Köhler, N. Jackson, and A. K. Datye, Attrition of precipitated iron Fischer-Tropsch catalysts, Applied Catalysis A: General, vol.133, issue.2, pp.335-350, 1995.
DOI : 10.1016/0926-860X(95)00200-6

K. M. Cook, H. D. Perez, and W. C. Hecker, Reducibility of alumina-supported cobalt Fischer???Tropsch catalysts: Effects of noble metal type, distribution, retention, chemical state, bonding, and influence on cobalt crystallite size, Applied Catalysis A: General, vol.449, issue.472, pp.69-80, 2012.
DOI : 10.1016/j.apcata.2012.09.032

S. L. Shannon and J. G. Goodwin-jr, Characterization of Catalytic Surfaces by Isotopic-Transient Kinetics during Steady-State Reaction, Chemical Reviews, vol.95, issue.3, pp.677-695, 1995.
DOI : 10.1021/cr00035a011

A. Carvalho, Elucidation of deactivation phenomena in cobalt catalyst for Fischer-Tropsch synthesis using SSITKA, Journal of Catalysis, vol.344, pp.669-679, 2016.
DOI : 10.1016/j.jcat.2016.11.001

Y. Qi, J. Yang, D. Chen, and A. Holmen, Recent Progresses in Understanding of Co-Based Fischer???Tropsch Catalysis by Means of Transient Kinetic Studies and Theoretical Analysis, Catalysis Letters, vol.109, issue.440, pp.145-161, 2015.
DOI : 10.1021/jp048834h

J. Harmel, Synthèse de nano-catalyseurs hybrides à base de cobalt pour la catalyse Fischer-Tropsch

D. Gaspar, Platinum Promotion of Cobalt Fischer-Tropsch Catalysts Effect on the morphology, structure and reducibility XRD Modeling of metallic cobalt stacking faults in model catalysts by WSIMVAX software, 2011.

A. Miquelot, Décoration au platine de catalyseurs à base de nanoparticules de cobalt sur support carboné pour la synthèse Fischer -Trospch, 2017.

N. Liakakos, The Big Impact of a Small Detail: Cobalt Nanocrystal Polymorphism as a Result of Precursor Addition Rate during Stock Solution Preparation, Journal of the American Chemical Society, vol.134, issue.43, pp.17922-17931, 2012.
DOI : 10.1021/ja304487b

T. Fu and Z. Li, Review of recent development in Co-based catalysts supported on carbon materials for Fischer???Tropsch synthesis, Chemical Engineering Science, vol.135, pp.3-20, 2015.
DOI : 10.1016/j.ces.2015.03.007

A. Tavasoli, M. Trépanier, A. K. Dalai, and N. Abatzoglou, Effects of Confinement in Carbon Nanotubes on the Activity, Selectivity, and Lifetime of Fischer???Tropsch Co/Carbon Nanotube Catalysts, Journal of Chemical & Engineering Data, vol.55, issue.8, pp.2757-2763, 2010.
DOI : 10.1021/je900984c

A. Rochet, V. Moizan, F. Diehl, C. Pichon, and V. Briois, Quick-XAS and Raman operando characterisation of a cobalt alumina-supported catalyst under realistic Fischer???Tropsch reaction conditions, Catalysis Today, vol.205, pp.94-100, 2013.
DOI : 10.1016/j.cattod.2012.08.021

I. Protochips, T. Situ, S. Holders, and . Stages, Available at: http://www.protochips.com/products, p.27, 2016.

. Pfeiffer-vacuum, Available at: https://www.pfeiffer-vacuum.com/en, 2016.

A. Gorbunov, O. Jost, W. Pompe, and A. Graff, Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes, Applied Surface Science, vol.197, issue.198, pp.197-198, 2002.
DOI : 10.1016/S0169-4332(02)00335-5

R. Sinclair, T. Itoh, and R. Chin, In Situ TEM Studies of Metal???Carbon Reactions, Microscopy and Microanalysis, vol.8, issue.4, pp.288-304, 2002.
DOI : 10.1017/S1431927602020226

S. Aikawa, T. Kizu, and E. Nishikawa, Catalytic graphitization of an amorphous carbon film under focused electron beam irradiation due to the presence of sputtered nickel metal particles, Carbon, vol.48, issue.10, pp.2997-2999, 2010.
DOI : 10.1016/j.carbon.2010.04.021

S. Campisi, C. E. Chan-thaw, D. Wang, A. Villa, and L. Prati, Metal nanoparticles on carbon based supports: The effect of the protective agent removal, Catalysis Today, vol.278, pp.91-96, 2016.
DOI : 10.1016/j.cattod.2016.04.026

J. A. Lopez-sanchez, Facile removal of stabilizer-ligands from supported gold nanoparticles, Nature Chemistry, vol.11, issue.7, pp.551-556, 2011.
DOI : 10.1039/b900151b

J. Shen, H. Ziaei-azad, and N. Semagina, Is it always necessary to remove a metal nanoparticle stabilizer before catalysis?, Journal of Molecular Catalysis A: Chemical, vol.391, pp.36-40, 2014.
DOI : 10.1016/j.molcata.2014.03.027

D. Li, Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance, ACS Catalysis, vol.2, issue.7, pp.1358-1362, 2012.
DOI : 10.1021/cs300219j

W. Huang, Q. Hua, and T. Cao, Influence and Removal of Capping Ligands on Catalytic Colloidal Nanoparticles, Catalysis Letters, vol.36, issue.8, pp.1355-1369, 2014.
DOI : 10.1002/anie.199704521

Z. Niu and Y. Li, Removal and Utilization of Capping Agents in Nanocatalysis, Chemistry of Materials, vol.26, issue.1
DOI : 10.1021/cm4022479

M. Claeys, Impact of Process Conditions on the Sintering Behavior of an Alumina-Supported Cobalt Fischer???Tropsch Catalyst Studied with an in Situ Magnetometer, ACS Catalysis, vol.5, issue.2, pp.841-852, 2015.
DOI : 10.1021/cs501810y

W. Wang, M. Dahl, and Y. Yin, Hollow Nanocrystals through the, Nanoscale Kirkendall Effect. Chem. Mater, vol.25, pp.1179-1189, 2013.
DOI : 10.1021/cm3030928

H. J. Fan, Monocrystalline spinel nanotube fabrication based on the Kirkendall effect, Nature Materials, vol.2, issue.8, pp.627-631, 2006.
DOI : 10.1038/nmat1673

C. J. Weststrate, Cobalt Fischer???Tropsch Catalyst Regeneration: The Crucial Role of the Kirkendall Effect for Cobalt Redispersion, Topics in Catalysis, vol.171, issue.13-15, pp.811-816, 2011.
DOI : 10.1002/smll.200700382

K. H. Cats and B. M. Weckhuysen, Fischer-Tropsch Synthesis Catalyst Showcase, ChemCatChem, vol.70, issue.8, pp.1531-1542, 2016.
DOI : 10.1107/S2052520614011238

M. Ibrahim, Carbon Coating, Carburization, and High-Temperature Stability Improvement of Cobalt Nanorods, The Journal of Physical Chemistry C, vol.117, issue.30, pp.15808-15816, 2013.
DOI : 10.1021/jp3125457

URL : https://hal.archives-ouvertes.fr/hal-00912966

S. Sadasivan, R. M. Bellabarba, and R. P. Tooze, Size dependent reduction???oxidation???reduction behaviour of cobalt oxide nanocrystals, Nanoscale, vol.64, issue.12, p.11139, 2013.
DOI : 10.2516/ogst:2008039

Q. Zhang, J. Kang, and Y. Wang, Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity, ChemCatChem, vol.55, issue.95, pp.1030-1058, 2010.
DOI : 10.1016/S0021-9517(02)93761-9

A. Griboval-constant, A. Khodakov, A. Y. Diehl, and F. , Cobalt supported on alumina and silica-doped alumina: Catalyst structure and catalytic performance in Fischer? Tropsch synthesis, Comptes Rendus Chim, vol.12, pp.660-667, 2009.

K. Sohlberg, T. J. Pennycook, W. Zhou, and S. J. Pennycook, Insights into the physical chemistry of materials from advances in HAADF-STEM, Physical Chemistry Chemical Physics, vol.17, issue.suppl S2, pp.3982-4006, 2015.
DOI : 10.1017/S1431927611009056

M. R. Ward, E. D. Boyes, and P. L. Gai, at the Atomic Level, Situ Aberration-Corrected Environmental TEM: Reduction of Model Co3O4 in H2 at the Atomic Level, pp.2655-2661, 2013.
DOI : 10.1039/c0cy00063a

S. Giorgio, M. Cabié, and C. Henry, Dynamic observations of Au catalysts by environmental electron microscopy, Gold Bulletin, vol.111, issue.2, pp.167-173, 2008.
DOI : 10.1021/jp067801u

URL : https://hal.archives-ouvertes.fr/hal-00303638

Y. Hideto, Temperature-Dependent Change in Shape of Platinum Nanoparticles Supported on CeO2 during Catalytic Reactions, Appl. Phys. Express, vol.4, p.65001, 2011.

T. Uchiyama, Systematic Morphology Changes of Gold Nanoparticles Supported on CeO2 during CO Oxidation, Angewandte Chemie International Edition, vol.29, issue.43, pp.10157-10160, 2011.
DOI : 10.1016/0304-3991(89)90249-0

B. Ernst, A. Bensaddik, L. Hilaire, P. Chaumette, and A. Kiennemann, Study on a cobalt silica catalyst during reduction and Fischer???Tropsch reaction: In situ EXAFS compared to XPS and XRD, Catalysis Today, vol.39, issue.4, pp.329-341, 1998.
DOI : 10.1016/S0920-5861(97)00124-7

A. Y. Khodakov, Reducibility of Cobalt Species in Silica-Supported Fischer???Tropsch Catalysts, Journal of Catalysis, vol.168, issue.1, pp.16-25, 1997.
DOI : 10.1006/jcat.1997.1573

D. S. Newsome, The Water-Gas Shift Reaction, Catalysis Reviews, vol.42, issue.2, pp.275-318, 1980.
DOI : 10.1021/ie50488a038

A. A. Khassin, T. M. Yurieva, V. I. Zaikovskii, and V. N. Parmon, Effect of metallic cobalt particles size on occurrence of CO disproportionation. Role of fluidized metallic cobalt-carbon solution in carbon nanotube formation, Reaction Kinetics and Catalysis Letters, vol.329, issue.1, pp.63-71, 1998.
DOI : 10.1007/BF02475371

A. Thaib, G. A. Martin, P. Pinheiro, M. C. Schouler, and P. Gadelle, Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al2O3 and Co/SiO2 catalysts, Catalysis Letters, vol.63, issue.3/4, pp.135-141, 1999.
DOI : 10.1023/A:1019041710296

J. P. Pinheiro, M. C. Schouler, and P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts, Carbon, vol.41, issue.15, pp.2949-2959, 2003.
DOI : 10.1016/S0008-6223(03)00410-X

L. Braconnier, How does activation affect the cobalt crystallographic structure? An in situ XRD and magnetic study, Catalysis Today, vol.215, pp.18-23, 2013.
DOI : 10.1016/j.cattod.2013.02.021

URL : https://hal.archives-ouvertes.fr/hal-00877325

C. H. Wu, B. Eren, H. Bluhm, and M. B. Salmeron, , and Their Mixtures, ACS Catalysis, vol.7, issue.2, pp.1150-1157, 2017.
DOI : 10.1021/acscatal.6b02835

S. Storsaeter, B. Tøtdal, J. C. Walmsley, B. S. Tanem, and A. Holmen, Characterization of alumina-, silica-, and titania-supported cobalt Fischer???Tropsch catalysts, Journal of Catalysis, vol.236, issue.1, pp.139-152, 2005.
DOI : 10.1016/j.jcat.2005.09.021

Y. Liu, T. Dintzer, O. Ersen, and C. Pham-huu, Carbon nanotubes decorated ??-Al2O3 containing cobalt nanoparticles for Fischer-Tropsch reaction, Journal of Energy Chemistry, vol.22, issue.2, pp.279-289, 2013.
DOI : 10.1016/S2095-4956(13)60034-0

H. Xiong, M. A. Motchelaho, M. Moyo, L. L. Jewell, and N. J. Coville, Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer???Tropsch synthesis, Journal of Catalysis, vol.278, issue.1, pp.26-40, 2011.
DOI : 10.1016/j.jcat.2010.11.010

S. Boncel, S. W. Pattinson, V. Geiser, M. S. Shaffer, and K. K. Koziol, En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays, Beilstein Journal of Nanotechnology, vol.5, pp.219-233, 2014.
DOI : 10.3762/bjnano.5.24

J. Amadou, N-doped carbon nanotubes for liquid-phase CC bond hydrogenation, Catalysis Today, vol.138, issue.1-2, pp.62-68, 2008.
DOI : 10.1016/j.cattod.2008.06.015

G. L. Bezemer, Cobalt Particle Size Effects in the Fischer???Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts, Journal of the American Chemical Society, vol.128, issue.12, pp.3956-3964, 2006.
DOI : 10.1021/ja058282w

D. Morris, C. H. Argyle, and . Bartholomew, Catalysts | Free Full-Text | Heterogeneous Catalyst Deactivation and Regeneration: A Review, Catalysts, pp.145-171, 2015.

T. E. Martin, P. L. Gai, and E. D. Boyes, Dynamic Imaging of Ostwald Ripening by Environmental Scanning Transmission Electron Microscopy, ChemCatChem, vol.592, issue.22, pp.3705-3711, 2015.
DOI : 10.1016/j.cplett.2013.12.038

K. Keyvanloo, Kinetics of deactivation by carbon of a cobalt Fischer???Tropsch catalyst: Effects of CO and H2 partial pressures, Journal of Catalysis, vol.327, pp.33-47, 2015.
DOI : 10.1016/j.jcat.2015.01.022

D. J. Moodley, Carbon deposition as a deactivation mechanism of cobalt-based Fischer???Tropsch synthesis catalysts under realistic conditions, Applied Catalysis A: General, vol.354, issue.1-2, pp.102-110, 2009.
DOI : 10.1016/j.apcata.2008.11.015

J. Wilson and C. De-groot, Atomic-Scale Restructuring in High-Pressure Catalysis, The Journal of Physical Chemistry, vol.99, issue.20
DOI : 10.1021/j100020a005

J. C. Mohandas, Fischer???Tropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide, ACS Catalysis, vol.1, issue.11, pp.1581-1588, 2011.
DOI : 10.1021/cs200236q

K. Bladh, L. K. Falk, and F. Rohmund, On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase, Applied Physics A: Materials Science & Processing, vol.70, issue.3, pp.317-322, 2000.
DOI : 10.1007/s003390050053

J. G. Mccarty and H. Wise, Hydrogenation of surface carbon on alumina-supported nickel, Journal of Catalysis, vol.57, issue.3
DOI : 10.1016/0021-9517(79)90007-1

D. Kistamurthy, A. M. Saib, D. J. Moodley, J. W. Niemantsverdriet, and C. J. Weststrate, Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer???Tropsch synthesis conditions, Journal of Catalysis, vol.328, pp.123-129, 2015.
DOI : 10.1016/j.jcat.2015.02.017

M. Sadeqzadeh, Mechanistic Modeling of Cobalt Based Catalyst Sintering in a Fixed Bed Reactor under Different Conditions of Fischer???Tropsch Synthesis, Industrial & Engineering Chemistry Research, vol.51, issue.37, pp.11955-11964, 2012.
DOI : 10.1021/ie3006929

URL : https://hal.archives-ouvertes.fr/hal-00741014

P. G. Menon, Coke on catalysts-harmful, harmless, invisible and beneficial types, Journal of Molecular Catalysis, vol.59, issue.2, pp.207-220, 1990.
DOI : 10.1016/0304-5102(90)85053-K

K. A. Shah and B. A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Materials Science in Semiconductor Processing, vol.41, pp.67-82, 2016.
DOI : 10.1016/j.mssp.2015.08.013

N. M. Rodriguez, A review of catalytically grown carbon nanofibers, Journal of Materials Research, vol.111, issue.12, pp.3233-3250, 1993.
DOI : 10.1007/978-3-642-83379-3

S. Hofmann, In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation, Nano Letters, vol.7, issue.3, pp.602-608, 2007.
DOI : 10.1021/nl0624824

S. Helveg, Atomic-scale imaging of carbon nanofibre growth, Nature, vol.6, issue.6973, pp.426-429, 2004.
DOI : 10.1016/0927-0256(96)00008-0

H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, and Y. Homma, Atomic-Scale In-situ Observation of Carbon Nanotube Growth from Solid State Iron Carbide Nanoparticles, Nano Letters, vol.8, issue.7, pp.2082-2086, 2008.
DOI : 10.1021/nl080452q

Y. Kohigashi, H. Yoshida, Y. Homma, and S. Takeda, Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth, Applied Physics Letters, vol.105, issue.7, p.73108, 2014.
DOI : 10.1016/j.micron.2012.04.008

R. Sharma and Z. Iqbal, observations of carbon nanotube formation using environmental transmission electron microscopy, Applied Physics Letters, vol.84, issue.6, pp.990-992, 2004.
DOI : 10.1103/PhysRevLett.68.2325

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, Journal of Nanoscience and Nanotechnology, vol.10, issue.6, pp.3739-3758, 2010.
DOI : 10.1166/jnn.2010.2939

C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters, vol.77, issue.17, pp.2767-2769, 2000.
DOI : 10.1063/1.1306658

A. Lo, S. Liu, and C. Kuo, Effect of Temperature Gradient Direction in the Catalyst Nanoparticle on CNTs Growth Mode, Nanoscale Research Letters, vol.26, issue.4, pp.1393-1402, 2010.
DOI : 10.1103/PhysRevB.60.11180

C. Li, Diameter dependent growth mode of carbon nanotubes on nanoporous SiO2 substrates, Materials Letters, vol.63, issue.15, pp.1366-1369, 2009.
DOI : 10.1016/j.matlet.2009.03.025

A. Gohier, C. P. Ewels, T. M. Minea, and M. A. Djouadi, Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size, Carbon, vol.46, issue.10, pp.1331-1338, 2008.
DOI : 10.1016/j.carbon.2008.05.016

URL : https://hal.archives-ouvertes.fr/hal-00396601

J. Dijon, How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition, Carbon, vol.48, issue.13, pp.3953-3963, 2010.
DOI : 10.1016/j.carbon.2010.06.064

URL : https://hal.archives-ouvertes.fr/hal-00998405

P. Chen, J. Chang, C. Kuo, and F. Pan, Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD, Diamond and Related Materials, vol.13, issue.11-12, pp.1949-1953, 2004.
DOI : 10.1016/j.diamond.2004.05.007

P. A. Lin, Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles, Journal of Catalysis, vol.349, pp.149-155, 2017.
DOI : 10.1016/j.jcat.2017.03.009

S. Hofmann, G. Csányi, A. C. Ferrari, M. C. Payne, and J. Robertson, Surface Diffusion: The Low Activation Energy Path for Nanotube Growth, Physical Review Letters, vol.234, issue.3, p.95, 2005.
DOI : 10.1038/nmat1220

P. Pinheiro, M. C. Schouler, P. Gadelle, M. Mermoux, and E. Dooryhée, Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts, Carbon, vol.38, issue.10, pp.1469-1479, 2000.
DOI : 10.1016/S0008-6223(00)00002-6

J. P. Pinheiro, M. C. Schouler, and E. Dooryhee, In situ X-ray diffraction study of carbon nanotubes and filaments during their formation over Co/Al2O3 catalysts, Solid State Communications, vol.123, issue.3-4, pp.161-166, 2002.
DOI : 10.1016/S0038-1098(02)00189-8

P. E. Nolan, M. J. Schabel, and D. C. Lynch, Hydrogen control of carbon deposit morphology, Carbon, vol.33, issue.1, pp.79-85, 1995.
DOI : 10.1016/0008-6223(94)00122-G

A. Moisala, A. G. Nasibulin, and E. I. Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes???a review, Journal of Physics: Condensed Matter, vol.15, issue.42, p.3011, 2003.
DOI : 10.1088/0953-8984/15/42/003

Z. Yu, D. Chen, B. Tøtdal, and A. Holmen, Effect of Support and Reactant on the Yield and Structure of Carbon Growth by Chemical Vapor Deposition, The Journal of Physical Chemistry B, vol.109, issue.13, pp.6096-6102, 2005.
DOI : 10.1021/jp0449760

L. Cava, A. I. Bernardo, C. A. Trimm, and D. L. , Studies of deactivation of metals by carbon deposition, Carbon, vol.20, issue.3, pp.219-223, 1982.
DOI : 10.1016/0008-6223(82)90024-0

S. T. Pennycook, -. Nellist, and P. , Scanning Transmission Electron Microscopy, 2011.
DOI : 10.1007/978-1-4419-7200-2

L. Eyring, P. R. Buseck, and J. M. Cowley, High-resolution transmission electron microscopy and associated techniques, 1992.

P. Champness, Electron Diffraction in the Transmission Electron Microscope, 2001.

R. Van-grieken and A. Markowicz, Handbook of X-Ray Spectrometry, 2001.

R. F. Egerton, Electron energy-loss spectroscopy in the TEM, Reports on Progress in Physics, vol.72, issue.1, p.16502, 2009.
DOI : 10.1088/0034-4885/72/1/016502

T. J. Woehl, J. E. Evans, I. Arslan, W. D. Ristenpart, and N. D. Browning, Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth, Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth, pp.8599-8610, 2012.
DOI : 10.1021/nn303371y

H. Liao, L. Cui, S. Whitelam, and H. Zheng, Real-Time Imaging of Pt3Fe Nanorod Growth in Solution, Science, vol.5, issue.2, pp.1011-1014, 2012.
DOI : 10.1021/nl048089k

M. Gu, Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes, Nano Letters, vol.13, issue.12, pp.6106-6112, 2013.
DOI : 10.1021/nl403402q

D. B. Peckys and N. De-jonge, Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy, Nano Letters, vol.11, issue.4, pp.1733-1738, 2011.
DOI : 10.1021/nl200285r

S. Chenna and P. A. Crozier, In situ environmental transmission electron microscopy to determine transformation pathways in supported Ni nanoparticles, Micron, vol.43, issue.11, pp.1188-1194, 2012.
DOI : 10.1016/j.micron.2012.04.007

L. P. Hansen, E. Johnson, M. Brorson, and S. Helveg, Nanocrystals, The Journal of Physical Chemistry C, vol.118, issue.39, pp.22768-22773, 2014.
DOI : 10.1021/jp5069279

URL : https://hal.archives-ouvertes.fr/hal-01633499

L. Zhang, B. K. Miller, and P. A. Crozier, Atomic Level In Situ Observation of Surface Amorphization in Anatase Nanocrystals During Light Irradiation in Water Vapor, Nano Letters, vol.13, issue.2, pp.679-684, 2013.
DOI : 10.1021/nl304333h