A. Thabiany and A. , « Household survey of container?breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera : Culicidae) in Makkah City, Saudi Arabia ». Asian Pacific journal of tropical biomedicine 2, pp.849-857, 2012.

J. Aldstadt, « Ecological modeling of Aedes aegypti (L.) pupal production in rural Kamphaeng Phet, Thailand ». PLoS Neglected Tropical Diseases 5.1. Sous la dir, p.29, 2011.

S. J. Almeida, « Multi-agent modeling and simulation of an Aedes aegypti mosquito population ». Environmental Modelling & Software 25, pp.1490-1507, 0201.

R. N. Anyadike, « The Linacre evaporation formula tested and compared to others in various climates over West Africa ». Agricultural and forest meteorology 39.2-3, pp.111-119, 1987.

R. V. Araujo, S??o Paulo urban heat islands have a higher incidence of dengue than other urban areas, The Brazilian Journal of Infectious Diseases, vol.19, issue.2, pp.146-155, 2015.
DOI : 10.1016/j.bjid.2014.10.004

S. Arboleda, Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburr?? Valley, Colombia, International Journal of Environmental Research and Public Health, vol.78, issue.12, pp.3040-3055, 2009.
DOI : 10.1603/0022-2585(2008)45[181:SMOHRO]2.0.CO;2

S. Arifin, « Integrating an agent-based model of malaria mosquitoes with a geographic information system, p.91, 2013.

N. Arunachalam, « Eco-bio-social determinants of dengue vector breeding : a multicountry study in urban and periurban Asia ». Bulletin of the World Health Organization 88, pp.173-184, 2010.

C. Åström, « Potential distribution of dengue fever under scenarios of climate change and economic development ». Ecohealth 9, pp.448-454, 2012.

W. G. Bailey, « Surface climates of Canada ». McGill-Queen's Press, pp.369-268, 1997.

S. Banerjee, Household disposables as breeding habitats of dengue vectors: Linking wastes and public health, Waste Management, vol.33, issue.1, pp.233-239, 2013.
DOI : 10.1016/j.wasman.2012.09.013

R. Barrera, « Ecological factors influencing A. aegypti (Diptera : Culicidae) productivity in artificial containers in Salinas, Journal of Medical Entomology, vol.433, pp.484-492, 2006.

R. Barrera, « Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior, 2011.

L. R. Beck, Remote Sensing as a Landscape Epidemiologic Tool to Identify Villages at High Risk for Malaria Transmission, The American Journal of Tropical Medicine and Hygiene, vol.51, issue.3, pp.271-280, 1994.
DOI : 10.4269/ajtmh.1994.51.271

A. Benali, « Estimating air surface temperature in Portugal using MODIS LST data ». Remote Sensing of the Environment 124, pp.108-121, 2012.

A. Berque, « Espace, milieu, paysage, environnement ». Encyclopédie de géographie, pp.1132-62, 1992.

L. Bertalanffy and . Von, « General system theory », pp.40-44, 1968.

S. Bhatt, « The global distribution and burden of dengue ». Nature 496, pp.504-507, 2013.

S. S. Bhatti, N. K. Et, and . Tripathi, « Built-up area extraction using Landsat 8 OLI imagery ». GIScience & Remote Sensing 51, pp.445-467, 2014.
DOI : 10.1080/15481603.2014.939539

L. Bian, « The representation of the environment in the context of individual-based modeling ». Ecological Modelling 159, pp.279-296, 2003.

V. M. Bindhu, Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration, Remote Sensing of Environment, vol.135, pp.118-129, 2013.
DOI : 10.1016/j.rse.2013.03.023

D. Biswas, « Observations on the breeding habitats of Aedes aegypti in Calcutta following an episode of dengue haemorrhagic fever, 1993.

D. Biswas, A Note on Distribution of Breeding Sources of Aedes aegypti (Linnaeus) in the City of Kolkata, India, Following an Outbreak of Dengue during 2012, Current Urban Studies, vol.02, issue.01, pp.57-61, 2014.
DOI : 10.4236/cus.2014.21006

J. D. Bohbot, R. J. Et, and . Pitts, The narrowing olfactory landscape of insect odorant receptors, Frontiers in Ecology and Evolution, vol.8, issue.29, pp.39-77, 2015.
DOI : 10.1371/journal.pgen.1002930

J. D. Bohbot, The maxillary palp of Aedes aegypti, a model of multisensory integration, Insect Biochemistry and Molecular Biology, vol.48, pp.29-39, 2014.
DOI : 10.1016/j.ibmb.2014.02.007

A. Bohra and H. Andrianasolo, « Application of GIS in modelling of dengue risk based on socio-cultural data : case of Jalor, pp.6-24, 2001.

A. Bomblies, Hydrology of malaria: Model development and application to a Sahelian village, Water Resources Research, vol.68, issue.6, p.91, 2008.
DOI : 10.1016/0035-9203(74)90035-2

F. Borges, An Agent-Based Model for assessment of Aedes Aegypti pupal productivity, 2015 Winter Simulation Conference (WSC), pp.91-93, 2015.
DOI : 10.1109/WSC.2015.7408161

S. C. Boubidi, « Efficacy of ULV and thermal aerosols of deltamethrin for control of Aedes albopictus in Nice, France ». Parasites & Vectors 9, pp.597-292, 2016.

O. J. Brady, Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus, PLoS Neglected Tropical Diseases, vol.6, issue.8, p.1760, 2012.
DOI : 10.1371/journal.pntd.0001760.s009

O. J. Brady, « Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings ». Parasites & vectors 6, pp.1-18, 2013.

O. J. Brady, « Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission ». Parasites & vectors 7, pp.1-15, 2014.

C. Braga, Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil, Acta Tropica, vol.113, issue.3, pp.234-240, 2010.
DOI : 10.1016/j.actatropica.2009.10.021

M. A. Braks, Convergent Habitat Segregation of <I>Aedes aegypti</I> and <I>Aedes albopictus</I> (Diptera: Culicidae) in Southeastern Brazil and Florida, Journal of Medical Entomology, vol.40, issue.6, pp.785-794, 2003.
DOI : 10.1590/S0037-86821999000400007

J. E. Brown, « Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito ». Evolution 68, pp.514-525, 2014.

A. L. Buczak, A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data, BMC Medical Informatics and Decision Making, vol.11, issue.3, pp.124-170, 2012.
DOI : 10.1016/S0019-9958(65)90241-X

M. K. Butterworth, « Visualizations of mosquito risk : A political ecology approach to understanding the territorialization of hazard control, Landscape and Urban Planning, vol.142, pp.159-169, 2015.

D. Campbell-lendrum, Climate change and vector-borne diseases: what are the implications for public health research and policy?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.11, issue.7076, pp.20130552-53, 1665.
DOI : 10.3390/ijerph110504555

L. P. Campbell, Climate change influences on global distributions of dengue and chikungunya virus vectors, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.99, issue.9, pp.20140135-53, 2015.
DOI : 10.1016/j.trstmh.2005.02.004

G. Canguilhem, La connaissance de la vie, p.113, 1992.

C. Capinha, Macroclimate Determines the Global Range Limit of Aedes aegypti, EcoHealth, vol.4, issue.55???56, pp.420-428, 2014.
DOI : 10.1371/journal.pntd.0000922

A. Cébeillac, « Discontinuités spatiales, santé et mobilités, Analyse des POI Google et de Tweets pour caractériser les structures spatiales et les dynamiques d'attractivités de Bangkok (Thaïlande) ». SAGéo, p.202, 2017.

A. Cébeillac, « Where ? When ? and how often ? What can we learn about daily urban mobilities from twitter data and google map in Bangkok (Thailand), and what are the perspectives for dengue studies ? » Netcom, pp.214-310, 2017.

D. D. Chadee, R. Et, and . Martinez, Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?, Acta Tropica, vol.156, pp.137-143, 2016.
DOI : 10.1016/j.actatropica.2015.12.022

A. Y. Chang, Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries, International Journal of Health Geographics, vol.8, issue.1, pp.49-58, 2009.
DOI : 10.1186/1476-072X-8-49

F. Chen, A statistical method based on remote sensing for the estimation of air temperature in China, International Journal of Climatology, vol.32, issue.8, pp.2131-2143, 2015.
DOI : 10.1080/01431161.2011.560622

P. Chinnakali, High level of awareness but poor practices regarding dengue fever control: A cross-sectional study from North India, North American Journal of Medical Sciences, vol.4, issue.6, 2012.
DOI : 10.4103/1947-2714.97210

E. Choisnel, « Les échelles d'espace et de temps en climatologie ». Rubrique : Climatologie (cf, p.266, 1996.
DOI : 10.4267/2042/51172

S. R. Christophers, « Aedes aegypti (L.) the yellow fever mosquito : its life history, bionomics and structure », pp.18-47, 1960.

A. Cissé, « Un modèle à base d'agents sur la transmission et la diffusion de la fièvre de la vallée du Rift à Barkédji (Ferlo, Sénégal). » Stud, Inform. Univ, vol.101, pp.77-97, 2012.

J. Clavel, « Worldwide decline of specialist species : toward a global functional homogenization ? » Frontiers in Ecology and the Environment 9, pp.222-228, 2011.

B. L. Cline, NEW EYES FOR EPIDEMIOLOGISTS: AERIAL PHOTOGRAPHY AND OTHER REMOTE SENSING TECHNIQUES, American Journal of Epidemiology, vol.92, issue.2, pp.85-89, 1970.
DOI : 10.1093/oxfordjournals.aje.a121188

J. Cohen, « A coefficient of agreement for nominal scales ». Educational and psychological measurement 20, pp.37-46, 1960.

M. Colombert, « Contribution à l'analyse de la prise en compte du climat urbain dans les différents moyens d'intervention sur la ville, Thèse de doct, p.269, 2008.

R. Cordeiro, Spatial distribution of the risk of dengue fever in southeast Brazil, 2006-2007, BMC Public Health, vol.239, issue.4839, pp.355-384, 2006.
DOI : 10.1126/science.3277268

A. Costero, « Survival of starved Aedes aegypti (Diptera : Culicidae ) in Puerto Rico and Thailand », Journal of medical entomology, vol.363, pp.272-276, 1999.

H. Couclelis, « People manipulate objects (but cultivate fields) : beyond the raster-vector debate in GIS ». Theories and methods of spatio-temporal reasoning in geographic space, pp.65-77, 1992.

E. A. Cromwell, The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection, PLOS Neglected Tropical Diseases, vol.22, issue.3, pp.5429-5437, 2017.
DOI : 10.1371/journal.pntd.0005429.s013

B. Cummins, A Spatial Model of Mosquito Host-Seeking Behavior, PLoS Computational Biology, vol.61, issue.5, pp.1002500-75, 2012.
DOI : 10.1371/journal.pcbi.1002500.t003

E. Dardel, L'homme et la terre, p.68, 1952.

É. Daudé, « Modélisation de la diffusion d'innovations par la simulation multi-agents. L'exemple d'une innovation en milieu rural, Thèse de doct, 2002.

É. Daudé, A. Et, and . Vaguet, « Surveillance, contrôle et épidémies de dengue en Inde : Qui a échoué ? » L'Espace Politique. Revue en ligne de géographie politique et de géopolitique 26 (cf, pp.191-326, 2015.

É. Daudé, « La dengue, maladie complexe ». Natures Sciences Sociétés 23, pp.331-342, 2015.

É. Daudé, Widespread fear of dengue transmission but poor practices of dengue prevention: A study in the slums of Delhi, India, PloS one 12, pp.171543-171565, 2017.
DOI : 10.1371/journal.pone.0171543.s003

D. Garin and A. , « Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability, International Journal of Biometeorology, vol.443, pp.148-156, 2000.

C. Deng, « Agent-based modeling to simulate the dengue spread ». Sous la dir, pp.81-93, 0197.

R. L. Dennis, « Towards a functional resource-based concept for habitat : a butterfly biology viewpoint, pp.417-426, 2003.

P. Dhar-chowdhury, Socioeconomic and Ecological Factors Influencing Aedes aegypti Prevalence, Abundance, and Distribution in Dhaka, Bangladesh, The American Journal of Tropical Medicine and Hygiene, vol.94, issue.6, pp.1223-1233, 2016.
DOI : 10.4269/ajtmh.15-0639

D. Gregorio and A. , Land cover classification system : classification concepts and user manual. 8. Food & Agriculture Org, p.31, 2005.

L. Doulos, « Passive cooling of outdoor urban spaces. The role of materials ». Solar energy 77, pp.231-249, 2004.

B. Dousset, Avhrr-derived Cloudiness And Surface Temperature Patterns Over The Los Angeles Area And Their Relationships To Land Use, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,, p.150, 1989.
DOI : 10.1109/IGARSS.1989.577798

C. Dufourd, Y. Et, and . Dumont, Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, Computers & Mathematics with Applications, vol.66, issue.9, pp.1695-1715, 2013.
DOI : 10.1016/j.camwa.2013.03.024

J. Duncombe, « Spatiotemporal patterns of Aedes aegypti populations in Cairns, Australia : assessing drivers of dengue transmission, 2013.

D. Durand, La systémique. Paris : Presses universitaires de France (cf, pp.63-65, 1979.

A. E. Eiras, « Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera : Culicidae ) ». Journal of medical entomology 51, pp.200-209, 2014.

J. N. Eisenberg, Environmental Determinants of Infectious Disease: A Framework for Tracking Causal Links and Guiding Public Health Research, Environmental Health Perspectives, vol.115, issue.8, pp.1216-1223, 2007.
DOI : 10.1289/ehp.9806

S. Emamifar, « Daily mean air temperature estimation from MO- DIS land surface temperature products based on M5 model tree, International Journal of Climatology, vol.3315, pp.3174-3181, 2013.

R. A. Erickson, A dengue model with a dynamic Aedes albopictus vector population, Ecological Modelling, vol.221, issue.24, pp.2899-2908, 2010.
DOI : 10.1016/j.ecolmodel.2010.08.036

M. O. Espinosa, Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme, Geospatial Health, vol.11, issue.3, pp.32-34, 2016.
DOI : 10.4081/gh.2016.471

E. L. Estallo, Models for Predicting Aedes aegypti Larval Indices Based on Satellite Images and Climatic Variables, Journal of the American Mosquito Control Association, vol.24, issue.3, pp.368-376, 2008.
DOI : 10.2987/5705.1

E. L. Estallo, Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina, PLOS ONE, vol.15, issue.11, pp.127820-127866, 2015.
DOI : 10.1371/journal.pone.0127820.t002

E. L. Estallo, Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina, PloS one 8.1. Sous la dir. d'A. M. Noor, pp.54167-54199, 2013.
DOI : 10.1371/journal.pone.0054167.t002

T. R. Etherington, « NLMpy : a python software package for the creation of neutral landscape models within a general numerical framework, Methods in Ecology and Evolution 6.2. Sous la dir. de T. Poisot, pp.164-168, 2015.

T. P. Evans, S. R. Et, and . Bishop, A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti, Mathematical Biosciences, vol.254, pp.6-27, 2014.
DOI : 10.1016/j.mbs.2014.06.001

H. Fagherazzi-pagel, Maladies émergentes et réémergentes chez l'hommedossier de synthèse (cf, 2012.

A. S. Fauci, D. M. Et, and . Morens, Zika Virus in the Americas ??? Yet Another Arbovirus Threat, New England Journal of Medicine, vol.374, issue.7, pp.601-604, 2016.
DOI : 10.1056/NEJMp1600297

J. Ferber, Les systèmes multi-agent : vers une intelligence collective. Inter- Editions (cf, p.85, 1995.

C. P. Ferreira, « Controlling dispersal dynamics of Aedes aegypti ». Mathematical Population Studies 13, pp.215-236, 2006.

X. Foissard, « Analyse et spatialisation de l'ilot de chaleur urbain dans l'agglomération rennaise, Actes du 26e colloque de l'AIC, pp.242-247, 2013.

D. Fontenille, « La lutte antivectorielle en France ». IRD Orstom . Chap. De l'évaluation des risques vectoriels à l'évaluation du risque épidémique, pp.163-180, 2013.

A. Frémont, La région, espace vécu. Paris : Presses universitaires de France (cf, pp.68-72, 1976.

T. Fréour, « Sexual transmission of Zika virus in an entirely asymptomatic couple returning from a Zika epidemic area, France, p.15, 2016.

D. O. Fuller, ) larval habitats in an urban environment of Costa Rica analysed with ASTER and QuickBird imagery, International Journal of Remote Sensing, vol.69, issue.1, pp.3-11, 2010.
DOI : 10.1016/j.actatropica.2005.03.010

R. A. Fuller, K. J. Et, and . Gaston, The scaling of green space coverage in European cities, Biology Letters, vol.81, issue.2, pp.352-355, 2009.
DOI : 10.1016/j.tree.2005.05.013

G. Gandolfo, « Le concept de milieu dans les sciences du vivant », Noesis, vol.14, pp.237-247, 2008.

J. E. García-rejón, Productive Container Types for Aedes aegypti Immatures in M??rida, M??xico, Journal of Medical Entomology, vol.8, issue.3, pp.644-650, 2011.
DOI : 10.2987/10-6014.1

F. Gargiulo, « An iterative approach for generating statistically realistic populations of households ». PloS one 5, pp.8828-240, 2010.

T. Garske, « Yellow fever burden estimation : Summary ». Manuscript in preparation, summary of methods/findings (cf, 2013.

D. Gatherer, A. Et, and . Kohl, Zika virus: a previously slow pandemic spreads rapidly through the Americas, Journal of General Virology, vol.97, issue.2, pp.269-273, 2016.
DOI : 10.1099/jgv.0.000381

A. C. Gatrell, Complexity theory and geographies of health: a critical assessment, Social Science & Medicine, vol.60, issue.12, pp.2661-2671, 2005.
DOI : 10.1016/j.socscimed.2004.11.002

P. Gautret, F. Et, and . Simon, « Dengue, chikungunya and Zika and mass gatherings : What happened in Brazil Travel medicine and infectious disease 14, pp.7-8, 2014.

S. Gill, Adapting Cities for Climate Change: The Role of the Green Infrastructure, Built Environment, vol.33, issue.1, pp.115-133, 2007.
DOI : 10.2148/benv.33.1.115

G. Gimonneau, Larval competition between An. coluzzii and An. gambiae in insectary and semi-field conditions in Burkina Faso, Acta Tropica, vol.130, pp.155-161, 2014.
DOI : 10.1016/j.actatropica.2013.11.007

B. Goetz, « L'araignée, le lézard et la tique : Deleuze et Heidegger lecteurs de Uexküll ». Le Portique, pp.69-72, 2007.

M. F. Goodchild, S. Et, and . Gopal, The accuracy of spatial databases, p.99, 1989.

G. Jr and M. M. , « Time-spatial model on the dynamics of the proliferation of Aedes aegypti », Communications in Nonlinear Science and Numerical Simulation, vol.44, pp.130-143, 2017.

M. Grunnill, M. Et, and . Boots, « How important is vertical transmission of dengue viruses by mosquitoes (Diptera : Culicidae) ? » Journal of medical entomology 53, pp.1-19, 2016.

W. Gu, R. J. Et, and . Novak, Agent-based modelling of mosquito foraging behaviour for malaria control, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.86, issue.11, pp.1105-1112, 2009.
DOI : 10.1016/S0001-706X(03)00020-2

D. J. Gubler, « Dengue and dengue hemorrhagic fever », Clinical Microbiology Reviews, vol.113, issue.2, pp.480-496, 1998.

D. J. Gubler, G. G. Et, and . Clark, Dengue/Dengue Hemorrhagic Fever: The Emergence of a Global Health Problem, Emerging Infectious Diseases, vol.1, issue.2, pp.55-58, 1995.
DOI : 10.3201/eid0102.952004

C. Gunaratne, « Evaluation of Zika vector control strategies using agent-based modeling ». arXiv preprint, pp.91-95, 0197.

M. Hagenlocher, « Implications of spatial scales and reporting units for the spatial modelling of vulnerabilty to vector-borne diseases, 2014.

P. Handschumacher, « De l'écologie des maladies à la mise en évidence d'indicateurs de risque sanitaire. Pour une géographie appliquée à la santé publique en Afrique subsaharienne ». Historiens et Géographes 379, pp.297-304, 2002.

H. C. Hapuarachchi, Epidemic resurgence of dengue fever in Singapore in 2013-2014: A virological and entomological perspective, BMC Infectious Diseases, vol.30, issue.5, pp.300-307, 2016.
DOI : 10.1093/molbev/mst197

N. Hartemink, Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks, Biological Reviews, vol.101, issue.4, pp.113-295, 2014.
DOI : 10.1016/j.prevetmed.2010.07.003

M. H. Hayden, « Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, 2010.

R. R. Hemme, Environmental conditions in water storage drums and influences on Aedes aegypti in Trinidad, West Indies, Acta Tropica, vol.112, issue.1, pp.59-66, 0198.
DOI : 10.1016/j.actatropica.2009.06.008

A. J. Heppenstall, Agent-based models of geographical systems, p.80, 2012.
DOI : 10.1007/978-90-481-8927-4

H. C. Ho, « Mapping maximum urban air temperature on hot summer days ». Remote Sensing of the Environment 154, pp.38-45, 2014.

N. A. Honório, Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil, Memórias do Instituto Oswaldo Cruz 98, pp.191-198, 2003.
DOI : 10.1093/jmedent/32.1.27

N. A. Honório, « Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps », Journal of Medical Entomology, vol.465, issue.51, pp.1001-1014, 2009.

P. E. Hosen, « A cellular automata modeling for visualizing and predicting spreading patterns of dengue fever ». Telecommunication Computing Electronics and Control 14, pp.228-81, 2016.

J. Hubbart, « Evaluation of a low-cost temperature measurement system for environmental applications ». Hydrological Processes 19, pp.1517-1523, 2005.

G. Hutchinson, Concluding remarks ? Cold spring harbor symposia on quantitative biology (cf, p.67, 1957.

A. M. Ibarra, « Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador : Implications for targeted control, pp.19-26, 2013.

C. Isidoro, Agent-Based Model of Aedes aegypti Population Dynamics, Portuguese Conference on Artificial Intelligence, pp.53-64, 2009.
DOI : 10.1142/S0218339008002691

L. F. Jacintho, An agent-based model for the spread of the Dengue fever, Proceedings of the 2010 Spring Simulation Multiconference on, SpringSim '10, pp.91-93, 2010.
DOI : 10.1145/1878537.1878540

C. C. Jansen, N. W. Et, and . Beebe, « The dengue vector Aedes aegypti : what comes next ? » Microbes and Infection 12, pp.272-279, 2010.

T. K. Joy, The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti, Experimental Gerontology, vol.45, issue.9, pp.685-690, 2010.
DOI : 10.1016/j.exger.2010.04.009

E. Kalnay, M. Et, and . Cai, « Impact of urbanization and land-use change on climate ». Nature 423, pp.528-531, 2003.

S. Karl, A spatial simulation model for dengue virus infection in urban areas, BMC Infectious Diseases, vol.476, issue.7361, pp.447-93, 0197.
DOI : 10.1038/nature10356

M. Kearney, in Australia, Functional Ecology, vol.45, issue.3, pp.528-538, 2009.
DOI : 10.1086/physzool.62.2.30156172

C. Khatchikian, « Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction ». Medical and veterinary entomology 25, pp.268-275, 2011.

H. M. Khormi, L. Et, and . Kumar, Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study, Science of The Total Environment, vol.409, issue.22, pp.4713-4719, 2011.
DOI : 10.1016/j.scitotenv.2011.08.028

C. Kirkeby, Quantifying Dispersal of European Culicoides (Diptera: Ceratopogonidae) Vectors between Farms Using a Novel Mark-Release-Recapture Technique, PLoS ONE, vol.67, issue.4, pp.61269-272, 2013.
DOI : 10.1371/journal.pone.0061269.t001

I. Kloog, « Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the Northeastern USA ». Remote Sensing of the Environment 150, pp.132-139, 2014.

C. J. Koenraadt, « Dengue knowledge and practices and their impact on Aedes aegypti populations in Kamphaeng Phet, Thailand ». The American journal of tropical medicine and hygiene 74, pp.692-700, 2006.

C. J. Koenraadt, « Spatial and temporal patterns in pupal and adult production of the dengue vector Aedes aegypti in Kamphaeng Phet, Thailand ». The American journal of tropical medicine and hygiene 79, pp.230-238, 2008.

M. U. Kraemer, Author response, eLife, vol.281, pp.8347-8349, 2015.
DOI : 10.7554/eLife.08347.014

L. Kwee-wee, « Relationship between rainfall and Aedes larval population at two insular sites in, Pulau Ketam ». Southeast Asian Journal of Tropical Medicine and Public Health, vol.442, pp.157-166, 2013.

L. Blache and P. V. De, Principes de géographie humaine : Publiés d'après les manuscrits de l'auteur par Emmanuel de Martonne, p.64, 1922.

S. L. Ladeau, The ecological foundations of transmission potential and vector-borne disease in urban landscapes, Functional Ecology, vol.281, issue.7, pp.889-901, 2015.
DOI : 10.1098/rspb.2014.1078

A. Lacoste and R. Salanon, Eléments de biogéographie et d'écologie. Nathan. Paris (cf, p.15, 1999.

E. F. Lambin, Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts, International Journal of Health Geographics, vol.9, issue.1, pp.54-59, 2010.
DOI : 10.1186/1476-072X-9-54

URL : https://ij-healthgeographics.biomedcentral.com/track/pdf/10.1186/1476-072X-9-54?site=ij-healthgeographics.biomedcentral.com

L. Lambrechts, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proceedings of the National Academy of Sciences, vol.273, issue.1593, pp.7460-7465, 2011.
DOI : 10.1098/rspb.2006.3483

URL : https://hal.archives-ouvertes.fr/pasteur-00587940

K. I. Landau, W. J. Et, and . Van-leeuwen, Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona, Journal of Vector Ecology, vol.77, issue.2, pp.407-418, 2012.
DOI : 10.1016/j.actatropica.2005.03.010

V. Laperrière, « Modélisation dynamique de la peste à Madagascar, entre théorie et observations ». L'Espace géographique 39, pp.345-359, 2010.

P. T. Leisnham, « Spatial and temporal habitat segregation of mosquitoes in urban Florida ». PloS one 9, pp.91655-91687, 2014.

J. Lévy and M. Lussault, Dictionnaire de la géographie, p.62, 2003.

G. Li, Q. Et, and . Weng, « Using Landsat ETM+ imagery to measure population density in Indianapolis Photogrammetric Engineering & Remote Sensing 71, pp.947-958, 2005.

S. Li, Abiotic Determinants to the Spatial Dynamics of Dengue Fever in Guangzhou, Asia Pacific Journal of Public Health, vol.57, issue.3, pp.239-247, 2013.
DOI : 10.1088/1748-9326/4/1/014011

T. F. Lima and . De, « DengueME : A tool for the modeling and simulation of dengue spatiotemporal dynamics », International Journal of Environmental Research and Public Health, vol.139, pp.920-936, 2016.

E. Linacre, A simple formula for estimating evaporation rates in various climates, using temperature data alone, Agricultural Meteorology, vol.18, issue.6, pp.409-424, 1977.
DOI : 10.1016/0002-1571(77)90007-3

C. Linard, A multi-agent simulation to assess the risk of malaria re-emergence in southern France, Ecological Modelling, vol.220, issue.2, pp.160-174, 2009.
DOI : 10.1016/j.ecolmodel.2008.09.001

E. Little, « Characterizing the urban environment of dengue mosquitoes in Patillas, Puerto Rico ». Tropical Resources, vol.30, issue.38, pp.36-42, 2011.

J. Liu-helmersson, Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential, PLoS ONE, vol.93, issue.3, pp.89783-89830, 2014.
DOI : 10.1371/journal.pone.0089783.s002

A. M. Lutambi, Mathematical modelling of mosquito dispersal in a heterogeneous environment, Mathematical Biosciences, vol.241, issue.2, p.198, 2013.
DOI : 10.1016/j.mbs.2012.11.013

E. A. Machado-machado, Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling, Applied Geography, vol.33, pp.82-93, 2012.
DOI : 10.1016/j.apgeog.2011.06.011

V. Machault, Risk Mapping of Anopheles gambiae s.l. Densities Using Remotely-Sensed Environmental and Meteorological Data in an Urban Area: Dakar, Senegal, PLoS ONE, vol.73, issue.11, pp.50674-123, 2012.
DOI : 10.1371/journal.pone.0050674.s004

URL : https://hal.archives-ouvertes.fr/pasteur-00836095

V. Machault, Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data, ISPRS International Journal of Geo-Information, vol.53, issue.4, pp.1352-1371, 2014.
DOI : 10.1016/j.mcna.2008.07.008

R. Maciel-de-freitas, Variation in Aedes aegypti(Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons, Memórias do Instituto Oswaldo Cruz 102, pp.489-496, 2007.
DOI : 10.1590/S0037-86822005000300006

K. Magori, « Gene-drive models of mosquitoes?A users' manual » (cf, p.316, 2007.

K. Magori, Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies, PLoS Neglected Tropical Diseases, vol.101, issue.9, 2009.
DOI : 10.1371/journal.pntd.0000508.s011

D. J. Maguire, GIS, spatial analysis, and modeling, p.79, 2005.

P. V. Mahadev, « A preliminary study of multilevel geographic distribution & prevalence of Aedes aegypti (Diptera : Culicidae) in the state of Goa, Indian Journal of Medical Research, pp.173-182, 2004.

S. Maneerat, « Modélisation à base d'agents des risques vectoriels en milieux urbains : exemple d'Aedes aegypti, vecteur de la dengue, à Delhi (Inde), Thèse de doct, pp.98-314, 2016.

S. Maneerat, É. Et, and . Daudé, A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas, Ecological Modelling, vol.333, issue.201, pp.66-78, 2016.
DOI : 10.1016/j.ecolmodel.2016.04.012

URL : https://hal.archives-ouvertes.fr/halshs-01319784

J. A. Martinez-ibarra, Influence of Plant Abundance on Nectar Feeding by Aedes aegypti (Diptera: Culicidae) in Southern Mexico, Journal of Medical Entomology, vol.34, issue.6, pp.589-593, 1997.
DOI : 10.1093/jmedent/34.6.589

P. Mathieu, « Les environnements : en avoir ou pas ? » Actes des 22e Journées Francophones sur les Systèmes Multi-Agents. Cépaduès, pp.215-86, 2014.

J. M. May, « Medical Geography : Its Methods and Objectives », Geographical Review, vol.401, issue.325, p.64, 1950.
DOI : 10.2307/210990

C. A. Mazine, Disposable containers as larval habitats for Aedes aegypti in a city with regular refuse collection: a study in Mar??lia, Sa??o Paulo State, Brazil, Acta Tropica, vol.62, issue.1, pp.1-13, 1996.
DOI : 10.1016/S0001-706X(96)00013-7

B. Mckinney and M. L. , Urbanization as a major cause of biotic homogenization, Biological Conservation, vol.127, issue.3, pp.247-260, 2006.
DOI : 10.1016/j.biocon.2005.09.005

A. J. Mclane, The role of agent-based models in wildlife ecology and management, Ecological Modelling, vol.222, issue.8, pp.1544-1556, 2011.
DOI : 10.1016/j.ecolmodel.2011.01.020

J. P. Messina, The many projected futures of dengue, Nature Reviews Microbiology, vol.360, issue.4, pp.230-54, 2015.
DOI : 10.1016/S0140-6736(02)09964-6

R. Misslin, É. Et, and . Daudé, « Génération d'environnements artificiels pour la simulation spatiale d'arboviroses ». Actes de la conférence SAGEO'2016. Nice (cf, p.197, 2016.

R. Misslin, Urban climate versus global climate change-what makes the difference for dengue?, Annals of the New York Academy of Sciences, vol.171, issue.507, pp.56-72, 1382.
DOI : 10.1007/s00024-013-0685-7

URL : https://hal.archives-ouvertes.fr/pasteur-01656598

R. Moeckel, « Creating a synthetic population, Proceedings of the 8 th International Conference on Computers in Urban Planning and Urban Management (CUPUM), pp.1-18, 2003.

J. M. Moloney, « Domestic Aedes aegypti breeding site surveillance : limitations of remote sensing as a predictive surveillance tool ». The American journal of tropical medicine and hygiene 59, pp.261-264, 1998.

A. J. Monaghan, « The potential impacts of 21 st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti », Climatic Change, pp.1-14, 2015.

A. Mondini and F. Chiaravalloti-neto, Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city, Science of The Total Environment, vol.393, issue.2-3, pp.241-248, 2008.
DOI : 10.1016/j.scitotenv.2008.01.010

E. Morin, Le paradigme perdu : la nature humaine, 1973.

C. L. Muller, Sensors and the city: a review of urban meteorological networks, International Journal of Climatology, vol.32, issue.2, pp.1585-1600, 2013.
DOI : 10.1002/joc.2261

D. Musso, « Zika virus transmission from French Polynesia to Brazil, Emerging Infectious Diseases, vol.2110, issue.6, p.1887, 2015.

T. Nagel, « What is it like to be a bat ? » The Philosophical Review 83, pp.435-68, 1974.

S. Naish, « Climate change and dengue : a critical and systematic review of quantitative modelling approaches ». BMC infectious diseases 14, pp.167-53, 2014.

K. Nakhapakorn, N. K. Et, and . Tripathi, « An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence », International Journal of Health Geographics, vol.41, issue.38, pp.13-32, 2005.

M. Neteler, Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy, International Journal of Health Geographics, vol.10, issue.1, pp.1-123, 2011.
DOI : 10.2987/08-5813.1

H. Nieto, Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula, Remote Sensing of Environment, vol.115, issue.1, 2011.
DOI : 10.1016/j.rse.2010.08.010

J. J. Odell, « Modeling agents and their environment ». Agentoriented software engineering III, pp.16-31, 2003.
DOI : 10.1007/3-540-36540-0_2

URL : http://jamesodell.com/Agents_and_environment.pdf

T. Oke, Boundary layer climates. T. 5, p.124, 1987.

T. R. Oke, The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, vol.13, issue.455, pp.1-24, 1982.
DOI : 10.1002/j.1477-8696.1980.tb03484.x

J. D. Olden, « Ecological and evolutionary consequences of biotic homogenization ». Trends in ecology & evolution 19, pp.18-24, 2004.

E. Ooi, Dengue Prevention and 35 Years of Vector Control in Singapore, Emerging Infectious Diseases, vol.12, issue.6, pp.887-893, 2006.
DOI : 10.3201/eid1206.051210

W. H. Organization, « Global strategy for dengue prevention and control 2012, p.5, 2012.

M. Otero, A Stochastic Spatial Dynamical Model for Aedes Aegypti, Bulletin of Mathematical Biology, vol.2, issue.1, pp.1297-1325, 2008.
DOI : 10.1590/S0074-02762004000400002

J. W. Oyler, Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature, International Journal of Climatology, vol.32, issue.(2), pp.2258-2279, 2015.
DOI : 10.1002/joc.2419

M. Palaniyandi, « The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission : a systematic review » (cf, p.58, 2012.

M. C. Peel, « Updated world map of the Köppen-Geiger climate classification ». Hydrology and Earth System Sciences 11, pp.1633-1644, 2007.

H. L. Penman, Natural Evaporation from Open Water, Bare Soil and Grass, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences. T. 193. 1032, pp.120-145, 1948.
DOI : 10.1098/rspa.1948.0037

A. T. Peterson, Mapping disease transmission risk : enriching models using biogeography and ecology, p.311, 2014.

A. T. Peterson, Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.17, issue.9, pp.647-655, 2005.
DOI : 10.1016/S1471-4922(01)02077-3

H. Picheral, « Complexes et systèmes pathogènes : approche géographique ». De l'épidémiologie à la géographie humaine. T. 48. Collection Travaux et documents de géographie tropicale, Bordeaux : CEGET (CNRS) -ACCT, pp.6-22, 1982.

F. Pizzitutti, A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment, Malaria Journal, vol.12, issue.1, p.91, 2015.
DOI : 10.1186/1475-2875-12-213

L. Ponnusamy, Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti, Proceedings of the National Academy of Sciences 105, pp.9262-9267, 2008.
DOI : 10.1006/jmbi.1990.9999

J. R. Powell, W. J. Et, and . Tabachnick, History of domestication and spread of Aedes aegypti - A Review, Mem??rias do Instituto Oswaldo Cruz, vol.41, issue.suppl 1, pp.11-17, 2013.
DOI : 10.1017/S0016672300021315

W. A. Qualls, « Movement of Aedes aegypti following a sugar meal and its implication in the development of control strategies in Durán, Ecuador », Journal of Vector Ecology, vol.412, issue.201, pp.224-231, 2016.

H. Quénol, « Observation et modélisation spatiale du climat aux échelles fines dans un contexte de changement climatique, Thèse de doct, p.267, 2011.

J. Quintero, An ecosystemic approach to evaluating ecological, socioeconomic and group dynamics affecting the prevalence of Aedes aegypti in two Colombian towns, Cadernos de Sa??de P??blica, vol.23, issue.suppl 1, pp.93-103, 2009.
DOI : 10.2307/2508015

J. Quintero, Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study, BMC Infectious Diseases, vol.8, issue.5, pp.38-62, 2014.
DOI : 10.1111/j.1461-0248.2005.00755.x

M. Raffy, A. Et, and . Tran, On the dynamics of flying insects populations controlled by large scale information, Theoretical Population Biology, vol.68, issue.2, pp.91-104, 2005.
DOI : 10.1016/j.tpb.2005.03.005

D. Raoult, Dépasser Darwin. Plon (cf, 2010.

W. K. Reisen, « Landscape epidemiology of vector-borne diseases ». Annual review of entomology 55, pp.461-483, 2010.

M. H. Reiskind, L. P. Et, and . Lounibos, « Spatial and temporal patterns of abundance of Aedes aegypti L. ( Stegomyia aegypti ) and Aedes albopictus (Skuse) [ Stegomyia albopictus (Skuse)] in southern Florida ». Medical and Veterinary Entomology 27, pp.421-429, 2013.

P. Reiter, Control of Urban Zika Vectors: Should We Return to the Successful PAHO/WHO Strategy?, PLOS Neglected Tropical Diseases, vol.33, issue.6, pp.4769-4776, 2016.
DOI : 10.1371/journal.pntd.0004769.g001

P. Reiter, « Short report : dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs ». The American Journal of Tropical Medicine and Hygiene 52, pp.177-179, 1995.

S. Rey-coyrehourcq, « Une plateforme intégrée pour la construction et l'évaluation de simulation en géographie, Thèse de doct, p.328, 2015.

J. R. Rey, Habitat Segregation of Mosquito Arbovirus Vectors in South Florida, Journal of Medical Entomology, vol.43, issue.6, pp.1134-1141, 2006.
DOI : 10.1603/0022-2585(2005)042[0057:AUOTPO]2.0.CO;2

C. M. Ríos-velásquez, « Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil ». Memórias do Instituto Oswaldo Cruz 102, pp.617-623, 2007.

S. A. Ritchie, « Field validation of the Gravid Aedes Trap (GAT) for collection of Aedes aegypti (Diptera : Culicidae) », Journal of Medical Entomology, vol.511, issue.274, pp.210-219, 2014.

D. J. Rogers, Dengue: recent past and future threats, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.62, issue.17, 2015.
DOI : 10.1016/S0065-308X(05)62010-6

URL : http://rstb.royalsocietypublishing.org/content/royptb/370/1665/20130562.full.pdf

A. Rubio, Imperviousness as a predictor for infestation levels of container-breeding mosquitoes in a focus of dengue and Saint Louis encephalitis in Argentina, Acta Tropica, vol.128, issue.3, pp.680-685, 2013.
DOI : 10.1016/j.actatropica.2013.09.015

P. K. Russell, The Zika Pandemic - A Perfect Storm?, PLOS Neglected Tropical Diseases, vol.80, issue.no23, p.4589, 2016.
DOI : 10.1128/JVI.01257-06

A. Sanguin, La g??ographie humaniste ou l'approche ph??nom??nologique des lieux, des paysages et des espaces, Annales de G??ographie, vol.90, issue.501, pp.560-587, 1981.
DOI : 10.3406/geo.1981.20040

L. B. Santos, Periodic forcing in a three-level cellular automata model for a vector-transmitted disease, Physical Review E, vol.34, issue.1, p.85, 2009.
DOI : 10.1111/j.0269-283X.2004.00517.x

J. L. Savard, « Biodiversity concepts and urban ecosystems ». Landscape and urban planning 48, pp.131-142, 2000.
DOI : 10.1016/s0169-2046(00)00037-2

A. Shafie, « Evaluation of the spatial risk factors for high incidence of dengue fever and dengue hemorrhagic fever using GIS application ». Sains Malaysiana 40, pp.937-943, 2011.

D. B. Shah, « Estimation of minimum and maximum air temperature using MODIS data over Gujarat, J. Agrometeorol, vol.142, issue.151, pp.111-118, 2012.

I. G. Shaw, The mosquito???s umwelt, or one monster???s standpoint ontology, Geoforum, vol.48, issue.73, pp.260-267, 2013.
DOI : 10.1016/j.geoforum.2012.11.028

P. Sheppard, « The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok ». The journal of animal ecology, pp.661-702, 1969.

P. Sloterdijk, Tu dois changer ta vie ! Maren Sell (cf, p.63, 2011.

D. L. Smith, Recasting the theory of mosquito-borne pathogen transmission dynamics and control, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.338, issue.6104, pp.185-197, 2014.
DOI : 10.1126/science.1223467

W. C. Snyder, Classification-based emissivity for land surface temperature measurement from space, International Journal of Remote Sensing, vol.19, issue.14, pp.2753-2774, 1998.
DOI : 10.1080/014311698214497

J. Sobrino, Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard, ISPRS Journal of Photogrammetry and Remote Sensing, vol.44, issue.6, pp.343-354, 1990.
DOI : 10.1016/0924-2716(90)90077-O

J. A. Sobrino, Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.2, pp.316-327, 2008.
DOI : 10.1109/TGRS.2007.904834

J. Sommerfeld, A. Et, and . Kroeger, Innovative community-based vector control interventions for improved dengue and Chagas disease prevention in Latin America: introduction to the special issue, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.109, issue.2, pp.85-110, 2015.
DOI : 10.1093/trstmh/tru200

M. Sorre, « Complexes pathogènes et géographie médicale ». Annales de Géographie 42, pp.1-18, 1933.

D. R. Souza and . De, Stochastic dynamics of dengue epidemics, Physical Review E, vol.47, issue.1, p.81, 2013.
DOI : 10.1088/1751-8113/40/43/005

J. M. Spiegel, Social and environmental determinants of Aedes aegypti infestation in Central Havana: results of a case-control study nested in an integrated dengue surveillance programme in Cuba, Tropical Medicine & International Health, vol.80, issue.4, pp.503-510, 2007.
DOI : 10.1179/oeh.2003.9.2.118

K. Stanilov, « Space in agent-based models ». Agent-based models of geographical systems, pp.253-269, 2012.

I. D. Stewart, T. R. Et, and . Oke, Local Climate Zones for Urban Temperature Studies, Bulletin of the American Meteorological Society, vol.93, issue.12, pp.1879-1900, 2012.
DOI : 10.1175/BAMS-D-11-00019.1

S. Stisen, « Estimation of diurnal air temperature using MSG SE- VIRI data in West Africa ». Remote Sensing of the Environment 110, pp.262-274, 2007.

S. T. Stoddard, House-to-house human movement drives dengue virus transmission, Proceedings of the National Academy of Sciences 110.3, pp.994-999, 2013.
DOI : 10.1371/journal.pntd.0000787

D. Strickman, P. Et, and . Kittayapong, « Dengue and its vectors in Thailand : introduction to the study and seasonal distribution of Aedes larvae ». The American journal of tropical medicine and hygiene 67, pp.247-259, 2002.

M. J. Strien and . Van, An improved neutral landscape model for recreating real landscapes and generating landscape series for spatial ecological simulations, Ecology and Evolution, vol.34, issue.11, pp.3808-3821, 2016.
DOI : 10.1139/x03-230

Y. Sun, « Air temperature retrieval from remote sensing data based on thermodynamics ». Theoretical and Applied Climatology 80, pp.37-48, 2005.

P. Taillandier, « Simulating urban growth with raster and vector models : A case study for the city of Can Tho, Vietnam, International Conference on Autonomous Agents and Multiagent Systems, pp.154-171, 2016.

O. Telle, « Le système indien de surveillance des maladies infectieuses face au risque denguien. Croyances et actions de luttes sur les espaces endémiques ». Espace populations sociétés. Space populations societies, pp.47-62, 2011.
DOI : 10.4000/eps.4335

URL : https://doi.org/10.4000/eps.4335

S. Thammapalo, Environmental factors and incidence of dengue fever and dengue haemorrhagic fever in an urban area, Southern Thailand, Epidemiology and Infection, vol.11, issue.01, pp.20-35, 2008.
DOI : 10.1093/jmedent/14.1.113

J. Thouez, Santé, maladies et environnement, Economica, issue.1, 2005.

H. Tian, Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China, Environmental Research, vol.150, pp.299-305, 2016.
DOI : 10.1016/j.envres.2016.05.039

M. Tipayamongkholgul, S. Et, and . Lisakulruk, « Socio-geographical factors in vulnerability to dengue in Thai villages : a spatial regression analysis ». Geospatial health 5, pp.191-198, 2011.

A. Tran, « Télédétection et épidémiologie : modélisation de la dynamique de populations d'insectes et application au contrôle de maladies à transmission vectorielle, Thèse de doct, 2004.

A. Tran and M. Raffy, On the dynamics of dengue epidemics from large-scale information, Theoretical Population Biology, vol.69, issue.1, pp.3-12, 2006.
DOI : 10.1016/j.tpb.2005.06.008

A. Tran, « Dengue spatial and temporal patterns, French Guiana, Emerging Infectious Diseases, vol.104, pp.615-621, 2001.
DOI : 10.3201/eid1004.030186

URL : https://wwwnc.cdc.gov/eid/article/10/4/pdfs/03-0186.pdf

A. Tran, « Modélisation des maladies vectorielles ». Epidémiol et santé anim 47, pp.35-51, 2005.

H. Tran, Assessment with satellite data of the urban heat island effects in Asian mega cities, International Journal of Applied Earth Observation and Geoinformation, vol.8, issue.1, pp.34-48, 2006.
DOI : 10.1016/j.jag.2005.05.003

J. Treuil, Modélisation et simulation à base d'agents. Dunod. Sicences sup (cf, pp.80-89, 2008.

A. Troyo, A geographical sampling method for surveys of mosquito larvae in an urban area using high-resolution satellite imagery, Journal of Vector Ecology, vol.95, issue.1, 2008.
DOI : 0001-706X(2005)095[0123:DAOMSF]2.0.CO;2

A. Troyo, Urban structure and dengue incidence in Puntarenas, Costa Rica, Singapore Journal of Tropical Geography, vol.69, issue.2, pp.265-282, 2009.
DOI : 10.1590/S1020-49892006001000012

Y. Tsuda, DIFFERENT SPATIAL DISTRIBUTION OF AEDES AEGYPTI AND AEDES ALBOPICTUS ALONG AN URBAN???RURAL GRADIENT AND THE RELATING ENVIRONMENTAL FACTORS EXAMINED IN THREE VILLAGES IN NORTHERN THAILAND, Journal of the American Mosquito Control Association, vol.22, issue.2, pp.222-228, 2006.
DOI : 10.2987/8756-971X(2006)22[222:DSDOAA]2.0.CO;2

T. Tsunoda, Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter, PloS one 9.4. Sous la dir. de K. Y. Zhu, pp.95606-95655, 2014.
DOI : 10.1371/journal.pone.0095606.t003

C. Tucker, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, vol.8, issue.2, pp.127-150, 1979.
DOI : 10.1016/0034-4257(79)90013-0

J. Uexküll and . Von, Milieu animal et milieu humain, Éditions Payot et Rivages, vol.74, issue.119, pp.68-70, 1934.

S. Umor, « Generating a dengue risk map (DRM) based on environmental factors using remote sensing and GIS technologies, Proceedings of the Asian association on remote sensing (cf, pp.42-59, 2007.

J. Urry, « The complexity turn ». Theory, Culture & Society 22, pp.1-14, 2005.

C. Vadivalagan, Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India, Parasitology Research, vol.26, issue.4, pp.1149-1160, 2016.
DOI : 10.1016/S1055-7903(02)00326-3

J. D. Valiantzas, Simplified versions for the Penman evaporation equation using routine weather data, Journal of Hydrology, vol.331, issue.3-4, pp.690-702, 0191.
DOI : 10.1016/j.jhydrol.2006.06.012

B. H. Van-benthem, « Spatial patterns of and risk factors for seropositivity for dengue infection ». The American journal of tropical medicine and hygiene 72, pp.201-208, 2005.

C. Vancutsem, « Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa ». Remote Sensing of the Environment 114, pp.449-465, 2010.

S. O. Vanwambeke, « Multi-level analyses of spatial and temporal determinants for dengue infection ». International journal of health geographics 5, pp.5-35, 2006.

S. O. Vanwambeke, Impact of Land-use Change on Dengue and Malaria in Northern Thailand, EcoHealth, vol.2, issue.Suppl 1, pp.37-51, 0194.
DOI : 10.1029/153GM13

S. O. Vanwambeke, « Spatially disaggregated disease transmission risk : land cover, land use and risk of dengue transmission on the island of Oahu ». Tropical Medicine & International Health 16, pp.174-185, 2011.

D. Vezzani, A. P. Et, and . Albicocco, « The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers ». Medical and Veterinary Entomology 23, pp.78-84, 2009.

D. Vezzani, Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina, Acta Tropica, vol.95, issue.2, pp.123-131, 2005.
DOI : 10.1016/j.actatropica.2005.03.010

D. Vezzani, Environmental characteristics of the cemeteries of Buenos Aires City (Argentina) and infestation levels of Aedes aegypti (Diptera: Culicidae), Mem??rias do Instituto Oswaldo Cruz, vol.53, issue.4, pp.467-471, 2001.
DOI : 10.4269/ajtmh.1995.53.591

D. Vezzani, « Seasonal pattern of abundance of Aedes aegypti (Diptera : Culicidae) in Buenos Aires city, Argentina ». Memórias do Instituto Oswaldo Cruz 99, pp.351-356, 2004.

E. Viennet, Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses, Parasites & Vectors, vol.4, issue.1, pp.119-272, 2011.
DOI : 10.1111/j.2042-3306.1988.tb01566.x

K. Vikram, « Comparison of Ae. aegypti breeding in localities of different socio-economic groups of Delhi, India ». studies 18, pp.20-22, 2015.

J. Voogt, T. Et, and . Oke, « Thermal remote sensing of urban climates ». Remote Sensing of the Environment 86, pp.370-384, 2003.

J. J. Waggoner, B. A. Et, and . Pinsky, Zika Virus: Diagnostics for an Emerging Pandemic Threat, Journal of Clinical Microbiology, vol.54, issue.4, pp.860-867, 2016.
DOI : 10.1128/JCM.00279-16

J. P. Walawender, « Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat 7/ETM+ data ». Pure and Applied Geophysics 171, pp.913-940, 2014.

K. R. Walker, Human and Environmental Factors Affecting Aedes aegypti Distribution in an Arid Urban Environment, Journal of the American Mosquito Control Association, vol.27, issue.2, pp.135-141, 2011.
DOI : 10.2987/10-6078.1

L. K. Wee, « Relationship between rainfall and Aedes larval population at two insular sites in Pulau Ketam, Southeast Asian Journal of Tropical Medicine and Public Health, vol.442, issue.52, pp.157-50, 2013.

Q. Weng, Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends, ISPRS Journal of Photogrammetry and Remote Sensing, vol.64, issue.4, pp.335-344, 2009.
DOI : 10.1016/j.isprsjprs.2009.03.007

Q. Weng, « Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies ». Remote Sensing of the Environment 89, pp.467-483, 2004.

F. Were, « The dengue situation in Africa ». Paediatrics and international child health 32.sup1, p, pp.18-21, 2012.

C. R. Williams, « Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation », Journal of Medical Entomology, vol.456, issue.77, pp.1173-1179, 2008.

P. J. Winch, « Community-based dengue prevention programs in Puerto Rico : impact on knowledge, behavior, and residential mosquito infestation . » The American journal of tropical medicine and hygiene 67, pp.363-370, 2002.

J. Wongbutdee, W. Et, and . Saengnill, « Aedes aegypti Larval Habitats and Dengue Vector Indices in a Village of Ubonratchathani Province in the North-East of Thailand, Asia-Pacific Journal of Science and Technology, vol.202, issue.50, pp.254-265, 2015.

B. Wood, Distinguishing high and low anopheline-producing rice fields using remote sensing and GIS technologies, Preventive Veterinary Medicine, vol.11, issue.3-4, pp.277-288, 1991.
DOI : 10.1016/S0167-5877(05)80014-5

H. Wu, Z. Et, and . Li, Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling, Sensors, vol.85, issue.99, pp.1768-1793, 2009.
DOI : 10.1016/S0034-4257(03)00036-1

P. Wu, Weather as an effective predictor for occurrence of dengue fever in Taiwan, Acta Tropica, vol.103, issue.1, pp.50-57, 2007.
DOI : 10.1016/j.actatropica.2007.05.014

P. Wu, Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan, Science of The Total Environment, vol.407, issue.7, pp.2224-2233, 2009.
DOI : 10.1016/j.scitotenv.2008.11.034

H. M. Yang, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and Infection, vol.27, issue.08, pp.1188-1235, 2009.
DOI : 10.1093/jmedent/27.5.892

. Yuan, « Remodeling census population with spatial information from Landsat TM Imagery » (cf, pp.132-135, 1997.
DOI : 10.1016/s0198-9715(97)01003-x