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Abstract

Recently, many real-world applications where di erent entities interact in a dyna-
mic environment, consider the use of agents in their architectures due principally
to their autonomy, reactivity and decision-making abilities. Though these systems
can be made intelligent, using Arti cial Intelligence (Al) techniques, agents still
lack of social abilities and have limited knowledge of their environment and in par-
ticular when it comes to a dynamic environment. In fact, when operating in the
real world, agents need to deal with unexpected events considering both changes
in time and space. Moreover, agents must face the uncertainty which pervades
real-world scenarios in order to provide an accurate representation of the world.

In this thesis, we introduce and evaluate a formal framework for recommending
plans to agents in the decision making process, when they deal with uncertain
spatio-temporal information. The agent-based architecture we propose to address
this issue, called CARS (Cognitive Agent-based Recommender System), has been
designed by extending the well known Belief-Desire-Intention (BDI) architecture
to incorporate further capabilities to support reasoning with di erent types of
contextual information, including the social context. Uncertainty on the agent's
beliefs, desires and intentions is modeled using possibility theory. To meet the
requirements of real-world applications, e.g., tra ¢ and navigation recommenda-
tion systems, we de ne a spatio-temporal representation of the agents' beliefs and
intentions. Using such a formal framework, anticipatory reasoning about inten-
tional dynamics can be performed with the aim to recommend an optimal plan
to a certain user. Since spatio-temporal data is often considered as incomplete
and/or vague, we extended the formal framework with a fuzzy representation of
spatio-temporal beliefs and intentions. The framework is evaluated through an
Agent Based Simulation (ABS) in a real-world tra ¢ scenario. This ABS allowed

us to create a virtual environment to test the impact of the di erent features of
our framework as well as to evaluating the main strengths and weaknesses of the
proposed agent architecture.



Resune

Recemment, plusieurs applications, dans lesquelles dierentes enties interagissent
dans un environnement dynamique, soulignent l'inerét de I'utilisation des archi-
tectures multi-agents. Ces architectures o rent, dans ce cadre, un certain nombre
d'avantages, tels que l'autonomie, la eactivie et la capacie de prise de cecision.
Elles manquent cependant de capacite sociale et de connaissances sur son en-
vironnement, notamment lorsqu'il s'agit d'un environnement dynamique. En ef-
fet, quand un agent interagit avec le monde eel, il doit prendre en compte les
evenements qui peuvent survenir tout en consicerant centaines contraintes telles
gue le temps et I'espace. En outre, les agents doivent faire facea l'incertitude lee
aux applications eelles a n de fournir une repesentation cele du monde eel.

Dans le cadre de cette these, nous proposons un mockele formel de recommanda-
tion des plans qui aneliore le processus de prise de cecision des agents dans un
environnement spatio-temporel et incertain. Pour formaliser le comportement cog-
nitifs des agents dans notre syseme nomne CARS, en anglais \Cognitive Agent-
based Recommender System ", nous avonsetendu l'architecture BDI qui se base
sur le mocele \ Croyance-Desir-Intention” pour prendre en compte les dierents
contextes lesa des applications eelles en particulier le contexte social. Par ailleurs,
nous avonsegalement utilie la theorie possibiliste a n de consicerer l'incertitude
dans letat motivationnel d'un agent (c'esta dire ses croyances, cesirs, objectifs
ou intentions). Pour epondre aux besoins des applications eelles, tels que les
sysemes de recommandation relatives au tra c et navigation, nous proposons
une repesentation spatiotemporelle des croyances et des intentions d'un agent.
Cette repesentation permettra I'anticipation de certaines intentions, de manere

a recommander un plan qui sera optimal pour un utilisateur. Compte tenu l'in-
compektude/l'impecision lee aux donrees spatiotemporelles, nous avons etendu
le mockle propos pour raisonner avec des croyances et intentions oues. Une
evaluation du mockle propos aet meree en utilisant une simulation multi-agent,
dans un scenario eel de circulation routere. Cette simulation a o ert un environ-
nement virtuel qui a mis en lumere, apes avoir tese les dierentes fonctionnalies

du moctle, les principaux points forts ainsi que les lacunes les a l'architecture
multi-agents propose.
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Chapter 1
Introduction

Nowadays, recommender systems must cope with the increasing demand of com-
plexity real-world scenarios ask for, e.g., a recommendation application for rec-
ommending routes in a tra ¢ scenario should deal with di erent contextual infor-
mation like information about the user location and other non-logical components
of human behavior like desires, beliefs or emotions. Although traditional recom-
mendation techniques (i.e., content-based [4], collaborative Itering [5] or hybrid
ones [6]) have been enhanced to meet users' requirements by including, for in-
stance, Semantic Web techniques or context-aware information, they fail to give
personalized recommendation when the targets are not simple e-commerce items
but instead further complex plans.

For this reason, agents and Multi-Agent systems are considered as suitable alterna-
tives for modeling and simulating this kind of real-world scenarios, where di erent
entities interact in a dynamic and uncertain environment. In particular, one of
the most popular agent architectures, the Belief-Desire-Intention (BDI) model [7],
seems to be particularly suitable to the task. Under this model, the mental state
of the agent is composed by sets dkliefs desiresand intentions that consist of
informational, motivational, and deliberative states, respectively.

Recently, the Arti cial Intelligence (Al) community is putting much e ort on the
investigation and evaluation of recommender systems based on intelligent agents.
Such a kind of systems has been applied so far in di erent elds such as health-
care [8], tourism [1], nancial applications [9], and tra ¢ and transportation [10].

A complete taxonomy of recommender agents can be found in [11].
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The advantage of such a kind of recommender systems is that of encoding users'
beliefs and goals in the system to return a recommendation as close as possible
to the users' needs, with the possibility to include additional information like the
con dence in the source. Nevertheless many research challenges remain open in
this area.

First, several of the above application scenarios require to formalize the knowledge
about the time and the location in which the action is taking place. These pieces
of information often need to be considered together, as in the case of the trac
scenario where a tra ¢ jam is identi ed by its location and the time it is occurring
during the day, and require to encode a certain degree of vagueness as well.

Second, agents have to represent user's beliefs, desires or intentions in such a way
to encode their imprecision or vagueness, as it holds for human-based reasoning.
For instance, a user may provide to the recommender system a vague goal such as
\I want to be at home around 9 am".

1.1 Motivations

A few illustrative examples are presented here to demonstrate the need of Multi-
Agent systems in engineering applications, and to motivate the problems consid-
ered in this thesis. The rst one is in the health-care domain, and the second one
is in the tra ¢ domain.

Bob, a 40 year-old adult, wants to get back to a regular physical activityal.
Bob believes that a regular physical activity reduces the risk of developing a non-
insulin dependant diabetes mellitusrd). Mechanisms that are responsible for
this are weight reduction {vr), increased insulin sensitivity, and improved glucose
metabolism. Due to his busy schedulbg], Bob is available only on weekenday).
Hence, he would be happy if he could do his exercises only on weekemdsBob
prefers also not to change his eating habitgelf). Besides all the aforementioned
preferences, Bob should take into account his medical concerigs &énd certainly
refers to a health-care provider for monitoring.

This scenario exposes the following problenitow can we help Bob to select the best
plan to achieve his goal based on his current preferences and restriction$Ris
problem raises di erent challenges. First, the proposed solution should take into
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account Bob's preferences and restrictions (e.g., medical and physical concerns)
in the recommendation process. Second, information about the environment in
which Bob acts, and people that might be in relationship with him, may have
impact in his decision-making process. Third, the system should be able to keep
a trace of Bob's activities in order to adapt the recommendation according to his
progress. Finally, the information or data about Bob's activities is distributed
geographically and temporally.

The same problems are raised in the tra c scenario with some particularities
related to the trac eld. Suppose that Bob uses an electric car, and needs to reach
a public electric charging point. Like any road user, Bob relies on a navigation
system to determine the nearby charging points before his journey. Knowing the
time needed to get to the charging point and the battery life, Bob can decide where
and when to leave.

This scenario exposes some further problems related to classical navigation rec-
ommender systems, that can handle simple scenarios where the user only needs to
reach a destination. Nevertheless, in cases when some events need to be handled
(i.e., battery life, accidents, ...) or when users have more sophisticated require-
ments (e.g., choosing a route with a nice landscape), these systems lack from the
expertise and autonomy points of view. Besides, in such scenario, it is interest-
ing to exploit the community network (electric cars users network or route users
network) in order to anticipate some events and hence enhance the quality of the
recommendation to get the optimal route.

1.2 Research questions

In this thesis, we answer the research questions raised earlier on in this Section,
and motivated by the two scenarios described in Section 1.1:
| how to de ne a recommender system able to deal with the exibility, com-
plexity and dynamics required for real-world applications?
| how to represent and reason about fuzzy spatial-temporal knowledge to
provide useful recommendations?
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1.3 Main Contributions

To address these research questions, in this thesis we propose:

(i) A multi-context recommender system based on the BDI architecture, called
CARS (Cognitive A gent-basedRr ecommendeSystem). The proposed frame-
work aims at recommending a plan for a user taking into account di erent
contexts. For this purpose, we combined two di erent approaches to de ne
the di erent components of our framework (1) an implementation of a full-
edged possibilistic BDI model of agency which integrates goal generation,
inspired from da Costa Pereira and Tettamanzi [12, 13], an@) multi-context
systems applied to the BDI architecture, inspired from Parsonst al. [14],
to de ne the di erent theories and contexts that are put together to de ne
the whole framework. We also extend the BDI model with extra contexts to
enrich agents with social and functional capabilities.

(i) An agent-based simulation study to evaluate CARS in the Netlogo Plat-
form.! To evaluate the performance of the system, we use two dierent
strategies, namely thesolitary agent strategy, where agents operate individ-
ually without communicating with the other agents in the Multi-Agent Sys-
tem (MAS), and the social agentstrategy, where agents consider information
coming from the other agents in the MAS. We consider in this simulation
agents with random distribution (random beliefs and desires, and random
positions in the environment).

(i) An extension of CARS with fuzzy spatio-temporal information. Based on
the extension principle of fuzzy set theory [15], we de ne fuzzy Allen's in-
tervals [16] to model temporal knowledge, while fuzzy topological relations
are de ned in terms of Region Connection Calculus (RCC) [17] where re-
gions are represented as fuzzy sets. These two components, namely spatial
and temporal information, are combined together based on the assumption
that the degree to which a spatio-temporal belief is true is theninimum
between the con dence degrees of the spatial belief and the temporal one,
respectively. Spatio-temporal knowledge is thus exploited by agents to up-
date their beliefs following the other agents' recommendations, with the aim
to reach their goals.

1. https://ccl.northwestern.edu/netlogo/
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(iv) An empirical evaluation of the extended version of CARS in a simulated
environment using the NetLogo Platform enhanced with the GIS extension
to show the advantages of the proposed agent-based recommender system.
We consider a tra c scenario where the goal of the agents is to reach a
certain Point Of Interest (POI) as fast as possible. Agents communicate
about possible accidents and tra c jams taking place around a certain time
and in a certain geographical zone, and suggest alternative routes to help
the other agents to reach their destinations. We consider the same agent
strategies used to evaluate the rst version of the CARS system.

1.4 Outline of the thesis

The remainder of this thesis is structured as follows:

| Chapter 2 outlines some basics indispensable to understand the system de-
sign and experiments presented in the thesis. It comprises background ma-
terial and establishes the mathematical notation that will be used through-
out the thesis. Background is presented in four main areas: Agents and
Multi-Agents Systems, Uncertainty Reasoning, Spatial Reasoning and Tem-
poral reasoning.

| Chapter 3 presents a literature survey on agent-based recommender sys-
tems in two di erent areas: the tra ¢ and tourism domains. It also gives
an overview of a speci c type of agent-based recommender systems, namely,
BDI-based recommender systems. We also reviewed approaches about tem-
poral and spatial reasoning applied to recommender systems. This chapter
provides us with a state-of-the-art description of agent-based recommender
systems.

| Chapter 4 provides the contribution of the thesis. The rst part introduces
CARS , the multi-context BDI recommender framework, highlighting the
main features of the system and its behavior. The behavior is described
through the speci cation of the di erent contexts and the di erent rules
used to rely together all those contexts. An empirical evaluation of the
proposed framework using Multi-Agent simulation is also presented and
results are discussed. In the second part of this chapter, we introduce
the spatio-temporal version ofCARS, an extension of the multi-context
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BDI recommender framework presented in the rst part, with fuzzy spatio-
temporal reasoning. In this section, we formally de ne the spatio-temporal
fuzzy representation of the agents' beliefs as well as their update mecha-
nism. An evaluation of this extension in the tra ¢ domain using Netlogo
with a GIS is discussed, to show the usefulness of the proposed agent-based
recommender system.

| Chapter 5 concludes the thesis summarizing its main contributions, and
listing some open issues left as future work. A list of the publications
related with the thesis is included.



Chapter 2
Background

In this Chapter, we provide some prerequisites relevant to the design and devel-
opment of our agent-based formal framework by surveying the most important
methods and formalisms we rely upon.

An important prerequisite to build a Multi-Agent system is the ability to identify
the appropriate software/hardware structure. For this reason, we brie y report
about the di erent agent architectures in the literature, and then we concentrate
on a particular architecture: the Belief-Desire-Intention model. We are interested
in a speci ¢ method for de ning architectures for logic-based agents, i.e., the use of
multi-context systems which allows distinct theoretical components to be de ned
and interrelated. We provide some examples of BDI agent speci cations using
multi-context systems.

Since uncertainty is unavoidable in everyday reasoning, we present di erent ways
to handle it in real-world applications with a particular focus on requirements for
reasoning under uncertainty with spatial and temporal features.

2.1 Agents and Multi-Agent systems

There is no universally accepted de nition of the term of \agent". However, even

if researchers were not able to agree on a universal consensus, there are many
accepted de nitions within the Arti cial Intelligence community. One of the most
well-known de nitions of the concept of agent was introduced by Jacques Ferber
[18]. According to this de nition, an agent is a physical entity:

7
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| which is able to act in an environment;

| which can communicate directly with other agents;

| which is driven by a set of tendencies (in the form of individuals objectives)

| which possesses its own resources;

| which is capable of perceiving its environment (in a limited manner)

| which has skills and o ers services

| whose behavior tends to satisfy objectives, while taking the resources and
skills into account, and as a function of its perception, representations, and
the communications it receives.

Wooldridge and Jennings' de nition distinguishes between and agent and an intel-
ligent agent, which is further required to be autonomous, reactive, proactive and
social [19]:

| autonomy. agents are independent and make their own decisions without
direct intervention of other agents or humans and agents have control over
their actions and their internal state.

| reactivity: agents need to be reactive, responding in a timely manner to
changes in their environment.

| pro-activity: an agent pursues goals over time and takes the initiative when
it considers it appropriate.

| sociability: agents very often need to interact with other agents to complete
their tasks and help others to achieve their goals.

The Wooldridge and Jennings de nition, in addition to spelling out autonomy,

sensing and acting, allows for a broad, but nite, range of environments. They
further add a communications requirement. That's why in this thesis we will
consider the latter.

2.1.1 Agents architectures and theories

As de ned by Maes in [20], an agent architecture is a particular methodology

for building [agents]. It species how ... the agent can be decomposed into the
construction of a set of component modules and how these modules should be made
to interact. The total set of modules and their interactions has to provide an
answer to the question of how the sensor data and the current internal state of
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the agent determine the actions ... and future internal state of the agent. An
architecture encompasses techniques and algorithms that support this methoddlogy

Di erent architectures encapsulate di erent approaches to a rational decision mak-
ing and we are going to overview in the next sub-sections some of the well-
known agents' architectures based on the classi cation of Wooldridge and Jen-
ning's in [19].

2.1.1.1 Deliberative agents

A deliberative or a logic-based agent architecture is one of the earliest agent ar-
chitectures that rest on the physical-symbol systems hypothesis [21]. An agent in
such architecture contains an explicitly represented, symbolic model of the world,
in which decisions (for example about what actions to perform) are made via logi-
cal (or at least pseudo-logical) reasoning, based on pattern matching and symbolic
manipulation.The syntactical manipulation of the symbolic representation is the
process of logical deduction or theorem proving.

Earlier attempts to use deliberative reasoning led to STRIPS (Stanford Research
Institute Problem Solver) [22]. However, it soon became obvious that STRIPS con-
cept needed further improvement. In fact, it was unable to e ectively solve prob-
lems of even moderate complexity. More successful attempts using this architec-
ture include the Belief-Desire-Intention (BDI) [7] architecture which is considered
as a logic-based architecture. However, due to its popularity and wide adoption,
the discussion on this particular architecture is detailed in Section 2.1.1.4.

Two core issues within logic-based agents were recognized which resulted in de-
veloping a reactive architecture:

| The transduction problem: it is di cult and time consuming to translate
all of the needed information into the symbolic representation, especially if
the environment is changing rapidly.

| A representation/reasoning problem: It is very di cult or sometimes im-
possible to put down all the rules for the situation that will be encountered
by the agent in a complex environment since the deduction process is based
on set of inference rules.
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2.1.1.2 Reactive agents

Unlike a deliberative agent, which possesses an internal image of the external
environment thanks to the symbolic representation it maintains to reach its goal,
a reactive agent is able to reach its goal only by reacting re exively on external
stimuli.

Woodridge and Jennings [23] de ne the reactive architecture to be the opposite of
the deliberative by de ning it to be \one that does not include any kind of central
symbolic world model, and does not use complex symbolic reasoning”. Brook's
subsumption architecture [24] is one of the most known purely reactive architec-
tures. Instead of modelling aspects of human intelligence via symbol manipulation,
this approach is aimed at real-time interaction.

2.1.1.3 Hybrid agents

Many researchers have suggested that neither a completely deliberative nor com-
pletely reactive approach is suitable for building agents. An obvious approach is
to build an agent out of two (or more) subsystems composed of a deliberative
one that develops plans and makes decisions using a symbolic reasoning and a
reactive one capable of reacting to events without complex reasoning. Subsystems
are decomposed into a hierarchy of interacting layers to deal with reactive and
pro-active behaviours respectively.

Layering is a powerful means for structuring functionalities and control, and thus
is a valuable tool for system design supporting several desired properties such
as reactivity, deliberation, cooperation and adaptability. The main idea is to
structure the functionalities of an agent into two or more hierarchically organized
layers that interact with each other to achieve coherent behaviour of the agent as
a whole. TheTouring Machine [25] introduced by Ferguson is an example of a
layered control architecture for autonomous, mobile agents performing constrained
navigation tasks in a dynamic environment.

2.1.1.4 The Belief-Desire-Intention Architecture

The origin of this architecture lies in the theory of human practical reasoning
introduced by the philosopher Michael Bratman [26]. Bratman de ned practical
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reasoning as a matter of weighing con icting considerations for and against com-
peting options where the relevant considerations are provided by what the agent
desires and what the agent believesPractical reasoning is composed of two im-
portant processes: deciding what state of a airs we want to achieve known as
deliberation and how we are going to achieve these goals callegans-ends rea-
soning In the BDI architecture, an agent consists of three logic components
referred as mental states namely beliefs, desires and intentions. Beliefs encode the
agent's understanding of the environment, desires are those states of a airs that
an agent would like to accomplish while intention is more concerned with agent's
committing to obtain this state of a airs otherwise called goal. To gain an under-
standing of the BDI model, it is worth considering a simple example of practical
reasoning. For example, if welesireto be an academic, then you would expect us
to apply for various PhD programs in order to achieve this goal. Of course if our
application is accepted then we should commit to this objective and devote time
and e ort to achieve it. By this, we mean that we would carry out some course of
action that we believedwould best satisfy our objective. So these actions would be
our intentions and we will commit to act upon until they are achieved or dropped
because we believe they will never be achieved.

Many approaches tried to formalize such mental attitudes (e.qg., [27], [7], [28] and
[29]). Rao and George [7] formalized the BDI model, including the de nition
of the underlying logic, the description of belief, desire and intentions as modal
operators, the de nition of a possible worlds semantics for these operators, and an
axiomatisation de ning the interrelationship and properties of the BDI-operators.

The BDI model is attractive for several reasons. First, it is intuitive | we all
recognize the processes of deciding what to do and then how to do it, and we
all have an informal understanding of the notions of belief, desire, and intention.
Second, it gives us a clear functional decomposition, which indicates what sorts
of subsystems might be required to build an agent. However, the main di culty

is how to achieve a good balance between proactive (goal-directed) and reactive
(event driven) behaviors.

There are a number of implementations of BDI agents. The most popular ones
are Rao and George BDI Logics, the Procedural Reasoning System (PRS) and its
more recent incarnation, the Distributed Multi-Agent Reasoning System (dMARS).
Another implementation inspired from the previous ones is AgentSpeak(L).
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2.2 Multi-context Systems

Multi-Context Systems (MCSs) were introduced in [30] to address the need for

a general framework that integrates knowledge bases expressed in heterogeneous
formalisms. Intuitively, instead of designing a unifying language to which other
languages could be translated, in an MCS the di erent formalisms and knowl-
edge bases are considered as modules, and means are provided to model the ow
of information between them. More speci cally, MCSs are a formalization of si-
multaneous reasoning in multiple contexts. Di erent contexts are inter-linked by
bridge rules which allow for a partial mapping between formulae/concepts/infor-
mation in di erent contexts.

Following the formalization proposed in [31], a multi-context system (MCS) (or
a Multi-language System consists of a collection of contexts (or units), each of
which contains knowledge represented in some logic, and a set of bridge rules. In
addition to the logic in each context, bridge rules are used to interconnect the
contexts. Let| be the set of context names, a MCS is formalized &€igi2; or;
where:
| Foreach i21,C;=h;A;; jiisanaxiomatic formal system wheré;; A;
and ; are the language, axioms, and inference rules respectively. They
de ne the logic for context C; whose basic behavior is constrained by the
axioms.
| br IS @ set of bridge rules.
Bridge rules can be seen as rules of inference which relate formulae in di erent
contexts. A bridge rule is typically written as follows:

Ci: 1;unCht o

and can be read as follows: if formulaey;:::; , hold in their respective contexts
Cq; i Cy, then the formula  is true in the context C,.

Using multi-context systems for specifying and modelling agent architectures turns
out to be suitable for multiple reasons: (i) from a software engineering perspective
they support modular decomposition and encapsulation; and (ii) from a logical
modelling perspective they provide an e cient means of specifying and executing
complex logics. This considerably increases the representation power of logical
agents, and at the same time, simpli es their conceptualization. Several works
have appeared where MCS are used to specify agents.



Background 13

2.2.1 Multi-context Agents

An agent can be viewed as a multi-context system in which each of the architec-
ture's blocks is represented as a separate unit, an encapsulated set of axioms and
an associated deductive mechanism, whose interrelationships are precisely de ned
via bridge rules, inference rules connecting units. Using a multi-context approach,
a multi-context agent architecture consists of four basic types of component as
de ned by Parsons in [14]:

| Units: Structural entities representing the main components of the archi-
tecture.

| Logic: Declarative languages, each with a set of axioms and a number of
rules of inference. Each unit has a single logic associated with it.

| Theories: set of formulae written in the logic associated with a unit.

| Bridge rules: Rules of inference which relate formulae in di erent units

Units represent the various components of the architecture. They contain the
mass of an agent's problem solving knowledge, and this knowledge is encoded in
the speci c theory that the unit encapsulates. For example, a BDI agent may have
units which represent theories of beliefs, desires and intentions.

2.3 Reasoning under uncertainty

2.3.1 Fuzzy Sets

Fuzzy set theory was introduced by Zadeh in the 1960s (see [32] for more details)

and deals with sets or categories whose boundaries are “fuzzy'. In other words, a

fuzzy set is a set of objects whose membership to the set takes a value between

zero and one. Each fuzzy object can have partial or multiple memberships. Lét

be a classical set of objects, called thbe universe whose elements are denoted

X. A fuzzy setA in X is mathematically characterized by a membership function
A(X) which associates with eaclx in X a real number in the interval [Q 1], with

the membership value at x representing the \degree of membership"” »finA.

Membership in a classical subset & of X is de ned by the characteristic function
A from A to f0; 1g such that:
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(
1i x2A

0Oi x2zZA

a(x) =

Clearly, A is a subset ofX that has no sharp boundary and is characterized by a
set of pairsA = f(X; a(x));x 2 Xg. When X is a nite set fxy;:::;X,g, a fuzzy
set is expressed as:

When x is not nite, we write:

2.3.1.1 The extension principle

The extension principle, introduced by Zadeh [15], provides a way to extend non-
fuzzy mathematical concepts in order to deal with fuzzy quantities. In general the
extension principal is de ned by the following equation:

 8(2) = sup minf A(x); s(Y)9 (2.1)

z=x y
where 8x;y 2 X, a(xX) 2 [0;1] and g(y) 2 [0;1] are membership functions
de ning the degree of belonging of the elements &f to the fuzzy subsets A and

B, respectively. The symbol denotes any crisp operator. Then a few consequences
of applying fuzzy function to some logical operator are the following :

xry =min( x; v)
x vy =max( x; v)

x =1 X

The union [ and intersection\ of ordinary subsets ofX can be extended by the
following formula proposed by Zadeh:

8x2X; arg =max( a(x); s(Xx)) (2.2)

8X2X; as=min( a(x); (X)) (2.3)



Background 15

where 5 g and a\g are respectively the membership functions oA [ B and
A\ B.

2.3.1.2 T-norms and T-conorms

T-norms and T-conorms [33, 34] are used to calculate the membership values of
intersection and union of fuzzy sets, respectively. A T-norm is a binary operation
T :[0;1F ! [0;1] satisfying the following axioms for allx;y;z 2 [0; 1]:

() T(y) = T(y;Xx) (commutativity),

(i) T(x;y) T(x;z);ify  z (monotonicity),
(i) T(x;T(y;2) = T(T(x;y);z) (associativity),
(iv) T(x;1)=x

Some common T-norms (and respectively their corresponding T-conorms) are the
minimum Ty (Sy ), the product Tp (Sp) and the LukasiewiczTy (Sw) de ned as:

Tw (X y) = min( x;y), Sw (X;y) = max(x;y)
Te(X;y) = Xy, Su(Xy) = x+y+Xxy
Tw(Xy) =max(0;x+y 1), Sw(x;y) =min(l;x +y)

Implicators generalize the logical implication to the unit interval and are de ned
by Is(x;y) = S(1 x;y) for x and y in [0, 1]. For example the implicator corre-
sponding toSy is de ned by s, (X;y) = max(1 x;y).

2.3.2 Possibility Theory

Possibility theory is an uncertainty theory dedicated to handle incomplete infor-
mation. It was introduced by [35] as an extension to fuzzy sets. Possibility theory
di ers from probability theory by the use of dual set functions (possibility and
necessity measures) instead of only one. A possibility distribution assigns to each
element! in aset of interpretations a degree of possibility (!) 2 [0; 1] of being
the right description of a state of a airs. It represents a exible restriction on
what is the actual state with the following conventions:

| (! ) = 0 means that state! is rejected as impossible;

| (') =1 means that state! is totally possible (plausible).
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2.4 Agent-based Modelling and Simulation

2.4.1 Agent-based simulation

Agent-Based Simulation (ABS) is a computational technique for modelling com-
plex systems composed of interacting autonomous individuals (i.e., agents) in a
network.

The advantage of simulation compared to other research methods is primarily
the fact that the designer is in control of any parameter to adapt to a specic
problem. This allows for both, normative and descriptive studies. A well-designed
simulation system can help to understand and explain real world systems, and to
describe certain observed phenomena by comparing di erent simulation settings.
Agent-Based Simulation provides some additional advantages. According to [36],
ABS allows for modeling complex behavior of an agent without restrictions on the
complexity of its reasoning, on the sophistication of its internal structure, or on
its interaction abilities. Bonabeau [37] summarizes the bene ts of ABS over other
modeling techniques as follows:

| ABS captures emergent phenomena,

| ABS provides a natural description of a system,

| ABS is exible.
ABS is particularly suitable in the social context where a large number of human
agents interact and co-operate for common goals. Therefore, we next focus on
a particular agent architecture which is the BDI architecture.There are several
simulation frameworks supporting the creation of agents de ned using these three
components, and a huge number of systems extending them to provide additional
human reasoning capabilities. In [38] for example, the authors propose a simulation
of military commanders in land operation scenarios using the Jack framework.
Cecconi and Parisi [39] propose the use of simulation to evaluate various survival
strategies of individuals in a social group. In this simulation, agents adopts two
strategies: the individual survival strategy and the social survival strategy. In [40],
the authors present a crowd simulation for emergency response where agents are
implemented with an extended BDI architecture, which includes an emotional
component and a real-time planner. One can nd further examples in [41] and [42]
which give an overview on ABS applications including those using BDI agents.
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However, to the best of our knowledge, there is no application of ABS in recom-
mender systems combined with the BDI architecture. Later in this paper, we will
evaluate di erent strategies of a BDI recommender system using ABS.

2.4.2 Platforms for agent-based simulation

There are several tools that are designed for ABS, as shown in Table 2.1. The focus
here will be on general purpose and freely available ones. A more extensive study
can be found in [43, 44]. Swarm [45] was the rst ABS software development
environment launched in 1994 at the Santa Fe Institute. It was designed as a
general language and toolbox for agent-based modeling and simulation, intended
to have a widespread use across scienti c domains. It was written originally in
Objective C which make it in practice not easy to use. In fact, it is necessary to
have experience in Objective C to be familiar with Swarm platform. The Repast
(REcursive Porous Agent Simulation Toolkit) toolkit [46] had the initial objective

to implement Swarm in Java. However, it signi cantly diverged from Swarm. It
focuses on social behavior, in the social science domain, and o ers support tools
for social networks. There are three implementations of Repast: Repast for Java
(Repast J), Repast for the Microsoft.Net framework (Repast.Net), and Repast for
Python Scripting (Repast Py). Mason [47] was designed as a faster alternative to
Repast. Its main objective, compared to Repast, is clearly to maximize execution
speed with a focus on computationally demanding models. However, it is not an
easy to learn toolkit, as it requires signi cant Java Knowledge.

Table 2.1: A comparison of agent-based simulation platforms

Criteria/Platform Mason !  Repast? NetLogo® Swarm*
Language Java Java, C++ Logo Objective C
Python Java
Execution Speed Moderate Fast Moderate Slow
Documentation Good Poor Large Good
Learning facilities Moderate Moderate  Moderate Moderate
Primary domain  Social Social General General
sciences  sciences purpose purpose

1 http://cs.gmu.edu/ eclab/projects/mason/re
2 http://repast.sourceforge.net/

3 https://ccl.northwestern.edu/netlogo/

4 http://www.swarm.org/
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NetLogo [48] is a free and open source agent-based simulation environment that
uses a modied version of the Logo programming language, built-in graphical
interfaces, and comprehensive documentation. NetLogo provides a graphical envi-
ronment to create programs that control graphic turtles that reside in a world of
patches, which are monitored by an observer. Links are also available to connect
turtles to form networks. NetLogo is highly recommended [44], even for prototyp-
ing complex models. Each agent in Netlogo:

| perceives its environment and acts upon it,

| carries its own thread of control, and

| is autonomous.

2.5 Allen's Intervals Algebra

Allen's Interval approach [16] is an algebra of binary relations on intervals for rep-
resenting qualitative temporal information and addresses the problem of reasoning
about such information. Allen's approach is based on the notion of time intervals
and binary relations on them. A time interval X is an ordered pairhX ;X *i such
that X <X *,whereX andX™ are interpreted respectively as the starting and
ending points of the interval. Allen's introduces thirteen basic interval relations
illustrated in Table 2.2:  (before), m (meets), o (overlaps), d (during), s (starts),

f (nishes), their converse relations (, m;, o, d;, s, f;), and = (equal), where
each basic relation can be de ned in terms of its endpoint relations. For example,
the interval relationship X dY (interval X during the interval Y) can be expressed
as X >Y )N (X* <YT*). We refer the interested reader to [16] for a more
detailed discussion about Allen's intervals.

Table 2.2: Allen's thirteen time relations.

Relation Converse Pictorial Example Endpoint Relations

X Y X Y X* <Y

XmyY Xm;Y v X* =Y

XoY XoY - X <Y ,X*>Y ,X*<Y*
Xdy Xd;Y —— X >Y ,X*<Y*

XsY XsiY —=v X =Y  X*<Y*

XfY Xf Y v = X <Y ,X*=Y"*

X=Y X=Y Y X X =Y , Xt =Y"
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2.6 Region Connection Calculus

XDCY XECY XTPPY XTPPi Y
XPOY XEQY XNTPP Y X NTPPi Y

Figure 2.1: The main RCC-8 relations.

One of the most important formalisms for topological relationships is the Region
Connection Calculus (RCC) [17]. The RCC is an axiomatization of certain spatial
concepts and relations in rst order logic. The basic theory assumes just one
primitive dyadic relation: C(x;y) read as  connects withy". RCC has eight
basic relations (illustrated in Figure 2.1): DC (DisConnected), EC (Externally
Connected), PO (Partial Overlap), EQ (EQual), TPP (Tangential Proper Part),
NTPP (Non Tangential Proper Part) and their converse relations TPPi (TPP
inverse) and NTPPi (NTPP inverse).

For further details about RCC, we refer the reader to [17].
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Chapter 3

A Cognitive Agent-based
Recommender System (CARS)

In this Chapter, the CARS framework is introduced. The design of such system
is motivated by two main goals:
1. to enhance recommender systems with reasoning and autonomous decision-
making abilities in order to deal with the complexity, exibility and dynamics
required in real-world applications.

2. to provide personalized and useful recommendation to users by handling un-
certain spatio-temporal reasoning, necessary in such real world applications.

The main aim of the proposed framework (as illustrated in Figure 3.1 inspired
from the scenario introduced in Chapter 1 (Section 1.1) is to recommend to users
a list of activities based on their preferences/restrictions, and their own beliefs.

Recommendation .
Request Y o,

g /

Recommendation oL
1

Mﬁ
Boh - - Bob's
. o ‘ Recommender

Agent

Figure 3.1: A use case of CARS Framework
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3.1 A Multi-context BDI recommender Frame-

work

The BDI agent architecture we are proposing in this thesis extends Rao and
George 's well-known BDI architecture [7]. We de ne a BDI agent as a multi-
context system being inspired by the work of [14]. Following this approach, our
BDI agent model, visualized in Figure 3.2, is de ned as follows:

Ag = (fBC;DC;GC;SC;PC;IC;CCg; 1)

whereBC, DC, GC represent respectively the Belief Context, the Desire Context
and the Goal Context which model an agent mental attitudeP C, IC and CC are
functional contexts that represent respectively the Planning Context, the Intention
Context, and the Communication Context. SC is for the Social Context, and it
models social in uence between agents.

BC DC
l \”\(6) @ |
cle ~\' v

@[ sc :j: '

@ Lpeh(sc )@
Ic

(3)<‘
CcC

Figure 3.2: The extended Multi-context BDI agent model.

In order to reason about beliefs, desires, goals and social contexts we follow the
approach developed by da Costa Pereira and Tettamanzi [12, 13], where they
adopt a classical propositional language for the representation of beliefs, desires,
and intentions, and possibility theory to deal with uncertainty.

Let A be a nite set of atomic propositions, andL be the propositional language
such that A[f> ;7?9 L and8; 2L;: 2L; _ 2L; ~ 2L. These
propositions can contain temporal elements, but dealing with these elements is left
as future work. As in [12],L is extended, and we will denote with = f0;1g*
the set of all interpretations onA. An interpretation ! 2 is a function !
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A ! f 0;1g assigning a truth valuep' to every atomic propositionp 2 A and,
by extension, a truth value ° to all formulae 2 L. [ ] denotes the set of all
interpretations satisfying ,ie.,[]=fl 2 : ! g.

!

In the Planning and Intentions contexts, we propose an ontological representation
for plans and intentions to provide the agents with a computer-interpretable de-

scription of the services they o er, and the information they have access to. In
the following subsections, we will outline the di erent theories de ned for each

context of our multi-context agent model.

3.1.1 Belief Context

An agent's belief represents the information about the world as well as information
coming from other agents. An agent may update its beliefs by observing the world
and by receiving messages from other agents.

3.1.1.1 The BC language and semantics

In order to represent beliefs, we use the classical propositional language with ad-
ditional connectives, following [12]. We introduce also a fuzzy operat@ over
this logic to represent agent's beliefs. The belief of an agent is then represented as
a possibility distribution . A possibility distribution  can represent a complete
preorder on the set of possible interpretations 2 . This is the reason why, in-
tuitively, at a semantic level, a possibility distribution can represent the available
knowledge (or beliefs) of an agent. When representing knowledg€! ) acts as a
restriction on possible interpretations and represents the degree of compatibility of
the interpretation ! with the available knowledge about the real world. (! ) =1
means that is totally possible forl to be the real world. As in [12], a graded belief
is regarded as a necessity degree induced by a normalized possibility distribution
on the possible worldd . The degree to which an agent believes that a formula
IS true is given by:

B()=NI D=1 mad ()g CED

An agent's belief can change over time because new information arrives from the
environment or from other agents. A belief change operator is proposed in [12],
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which allows to update the possibility distribution according to new trusted
information. This possibility distribution ° which induces the new belief seB°
after receiving information , is computed from the possibility distribution  with

respect to the previous belief seB (B°= B —; °= —) as follows: for all
interpretations ! ,
8
3 5 if 1 and B( )< 1
W)= 5 1 if 1 andB( )=1; (3.2)

minf (!);(1 )g if ! 2 :

where is the trust degree towards a source about an incoming information

3.1.1.2 BC Axioms and Rules

Belief context axioms include all axioms from classical propositional logic with
weight 1 as in [49]. Since a belief is de ned as a necessity measure, all the properties
of necessity measures are applicable in this context. Hence, the belief modality in
our approach is taken to satisfy these properties that can be regarded as axioms.
The following axiom is then added to the belief unit:

BC:B()>0! B(: )=0

It is a straightforward consequence of the properties of possibility and necessity
measures, meaning that if an agent believesto a certain degree then it cannot
believe: at all. Other consequences are:

B( ~ ) minfB( );B( )g
B( _ ) maxB( );B()g
The inference rules are:

| BGp_q9 ;B (p " B(g min(; ) (modus ponens)
| , B(p) " B(p) (weight weakening)

where™ denotes the syntactic inference of possibilistic logic.
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Let us consider an agent; that represents Bob. Bob believes that his road to
work is congested and that there exist other alternative routes that he probably
did not know and that are not congested. Using the representation of beliefs that
we are proposing, Bob's beliefs can be written as follows:

| B(Road to work congested =1, meaning that Bob's beliefs that the

road to work is congested to a degree equals to 1.
| B(Exist alternative route) =0:9,
| B(No traffic in alternative route) =0:7.

3.1.2 Desire Context

Desires represent a BDI agent's motivational state regardless its perception of the
environment. Desires may not always be consistent. For example, an agent may
desire to be healthy, but also to smoke; the two desires may lead to a contradiction.
Furthermore, an agent may have unrealizable desires; that is, desires that con ict

with what it believes possible.

3.1.2.1 The DC Language and Semantics

In this context, we make a di erence between desires and goals. Desires are used
to generate a list of coherent goals regardless to the agent's perception of the en-
vironment and its beliefs. Inspired from da Costa Pereira and Tettamanzi [13],
the language ofDC (Lpc) is de ned as an extension of a classical propositional
language. We de ne a fuzzy operatobD*, which is associated with a satisfaction
degree D" ( ) means that the agent positively desires) in contrast with a nega-

tive desire, which re ects what is rejected as unsatisfactory. For sake of simplicity,
we will only consider the positive side of desires in this work, and the introduction
of negative desires is left as future work.

In this theory, da Costa Pereira and Tettamanzi [12] use possibility measures to
express the degree of positive desires. L&l ) be a possibility distribution called
also qualitative utility (e.g., u(' ) = 1 means that! is fully satisfactory). Given

a qualitative utility assignment u (formally, a possibility distribution), the degree
to which the agent desires 2 Lpc is given by:
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D)= (@ D=minfu(t)g (3.3)

where is a guaranteed possibility measure that, given a possibility distribution
, iIs de ned as follows:

()=min_f () g (3.4)

3.1.2.2 DC Axioms and Rules

The axioms consist of all properties of possibility measures such as
D( _ ) minfD( );D( )g. The basic inference rules, in the propositional case,
associated with are:

|[ DCp~rq  I[D@(m~Ar) ] [D(@”r) min(; )] (resolution rule)
| if p entails q classically, D(p) ] [D(9) ] (formula weakening)
| for , [D(p) ] [D(p) ] (weight weakening)

| [ D LM 1 [D(E max(; )] (weight fusion).

Let us consider again our agerd; representing Bob. Now suppose that Bob desires
to go to work. He would like to take an alternative route without tra c. Besides
Bob prefers a route without stops. Such desires can be expressed as follows:

| DT (Take alternative route)=0:8, meaning that Bob desires positively

to take an alternative road to a degree equal to0:8,

| D*(No traffic in alternative route) =0:8,

| D*(No stops in alternative route) =0:75.
Some of Bob's desires are not consistent with its beliefs which motivates the Goal
context detailed in the next Section.

3.1.3 Goal Context

Goals are sets of desires that, besides being logically \consistent”, are also maxi-
mally desirable, i.e., maximally justi ed. Even though an agent may choose some
of its goals among its desires, nonetheless there may be desires that are not neces-
sarily goals. The desires that are also goals represent those states of the world that
the agent might be expected to bring about precisely because they re ect what
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the agent wishes to achieve. In this case, the agent's selection of goals among
its desires is constrained by three conditions. First, since goals must be consis-
tent and desires may be inconsistent, only the subsets of consistent desires can be
the potential candidates for being promoted to goal-status, and also the selected
subsets of consistent desires must be consistent with each other. Second, since
desires may be impossible to realize whereas goals must be consistent with beliefs
(justi ed desires), only a set of feasible (and consistent) desires can be potentially
transformed into goals. Third, desires that might be potential candidates to be
goals should be desired at least to a degree Then, only the most desirable,
consistent, and possible desires can be elected as goals.

3.1.3.1 The GC Language and Semantics

The languagel ¢ to represent the Goal Context is de ned over the propositional
languagel extended by a fuzzy operatoG having the same syntactic restrictions
asD*. G( ) means that the agent has goal . As explained above, goals are a
subset of consistent and possible desires. Desires are adopted as goals because
they are justi ed and achievable. A desire is justi ed because the world is in a
particular state that warrants its adoption. For example, one might desire to go

for a walk because he believes it is a sunny day and may drop that desire if it starts
raining. A desire is achievable if the agent has a plan that allows it to achieve that
desire.

3.1.3.2 GC Axioms and Rules

Unlike desires, goals should be consistent, meaning that they can be expressed by
the Dg axiom (D from the KD45 axioms [7]) as follows:

Ds GC:G()>0! G(: )=0

Furthermore, since goals are a set of desires, we use the same axioms and deduction
rules as inDC. Goals-beliefs and goals-desires consistency are expressed through
bridge rules as we will discuss later on in the thesis.

Considering agent Bob's beliefs and desires, some of its desires cannot become
goals. For example, desiring a route without stops cannot be a goal because Bob
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believes that such a route is not possible. In this scenario, Bob most preferred and
possible desire is to take an alternative route without tra ¢ jam.

3.1.4 Social Context

One of the bene ts of the BDI model is to consider the mental attitude of the agent
in the decision-making process, which makes it more realistic than a purely logical
model. However, this architecture overlooks an important factor that in uences
this attitude, namely the society in which an agent lives and acts. There are
di erent ways in which agents can in uence each other mental states, e.g., by
authority when an agent is in uenced by another to adopt a mental attitude
whenever the latter has the power to guide the behavior of the former, by trust
when an agent is in uenced by another to adopt a mental attitude merely on
the strength of its con dence in the latter, or by persuasion when an agent is
in uenced to adopt another agent mental state via a process of argumentation or
negotiation. In this work, we will only consider trust as a way by which agents
can in uence each other.

3.1.4.1 The SC Language and Semantics

In our model, we consider a Multi-Agent system MAS consisting of a set of
agentsMAS = fay;:;;a;::avg. The idea is that these agents are connected in
a social network such as agents with the same goal. Each agent has links to a
number of other agents (neighbors) that change over time. Between neighbors, we
assume a trust relationship holds. The trustworthiness of an ageat towards an
agenta about an information is interpreted as a necessity measure?2 [0; 1],

as in Paglieriet al. [50], and it is expressed by the following equation:

ta ;a,-( ) = (3.5)

wherea;;a 2 MAS. Trust is transitive in our model, which means that, it does
not hold only between agents having a direct link to each other, but indirect
links are also considered. Namely, if agemt trusts agent a, to a degree ;, and
ag trusts agent a to a degree ,, then & can infer its trust for agent g, and
taa ()= minf 4 >0
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In large agent networks, agents are often faced to inconsistency and ignorance
problems. That is why, it is important to consider trust when designing a MAS

in order to control interactions among agents and protecgood agents from ma-
licious entities. However, apart from trust, in a large group of users, each one
equipped with its own intentions, tastes, and opinions, it is natural that also dis-
trust emerges. For this reason, we integrate a distrust value to our model based
on Victor et al. [51]. A trust network is then de ned as a pair @A; R) in which

A is the set of users (agents), an® is trust relation such that A A ! [0;1F
associating to each couplex(y) of users inA a trust scoreR(x;y) = (t;d) 2 [0; 1]

in which t is called the trust degree andl the distrust degree.

3.1.4.2 The SC Axioms and Rules

As the social attitude of the agents is expressed as a trust measure, which is
interpreted as a necessity measureéSC axioms include properties of necessity
measures as iBC (e.g.,N( ~ ) minfN( );N( )g). Concerning distrust, we
consider that if an agent is distrusted to a certain degree by another agent towards
an information then it cannot be trusted at all and viceversa. For this reason, we
add the following axioms:

| taa()>0! dyia()=0,

| dai;aj( )> 0! tai;aj( )=0,
When an agent is socially in uenced to change its mental attitude, by adopting
a set of beliefs and/or desires, the latter should maintain a degree of consistency.
Those rules are expressed with bridge rules that link the Social context to the
Belief and the Desire contexts.

Let us consider again our agent Bob. Bob is not isolated and may interact with
people in its environment, and these agents may in uence it (e.g., people using
the same road). We introduce, hence, other agenés, a, and as that represent
respectively Alice, Oscar and Mallory. They can (intentionally or not) in uence
Bob's decision making process, especially when they are considered as trustworthy
by Bob. Mallory, for example, may try to maliciously in uence the system towards

a solution that is not the best for Bob, or it may try to provide information that is

not updated in order to have less tra c in its route, e.g.,B(Not No traffic

in alternative route) = 1. If Bob accepts this belief, it leads to a change
on its goals and hence its plan. In this case, it is interesting to see if the agent
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network as a whole, using the trust model we are proposing, can avoid this kind of
situation, i.e., avoiding the interaction with Mallory and consider it as unreliable.

It is also interesting to see if the agent network's welfare increases with the social
interaction. All these issues will be the subject of our empirical evaluation.

3.1.5 The communication Context

The communication context is the agent mean to communicate with the external
world and other agents. It communicate also information from other contexts, e.g,
from the intention context to the the belief one through Bridge rulesBridge rule
(8) in Section 3.1.7). Similar to the belief context, the CC uses propositional lan-
guage with additional connectives. Information added to this context is considered
as beliefs.

3.1.6 Planning and Intentions Contexts

The aim of these functional contexts is to extend the BDI architecture to represent
plans available to agents and provide a way to reason over them. In this context,
we are inspired by Batet and colleagues [1] to represent and reason about plans
and intentions. Plans are described using ontologies. Gruber [52] de nes an ontol-
ogy as the speci cation of conceptualizations used to help programs and humans
to share knowledge'. According to the World Wide Web Consortiurh (W3C),
ontologies de ne the concepts and relationships used to describe and represent an
area of concern. We use the 5\W(Who, What, Where, When, Why) vocabulary
which is relevant for describing di erent concepts and constraints in our scenario.
The main concepts and relationships of this ontology are illustrated in Figure 3.3.
Using the 5W ontology an intention such as \ Running 20 min every 2 days, during

3 months " can be presented as follows:

1. http://lwww.w3.org/standards/semanticweb/ontology
2. http://ns.inria.fr/lhuto/5w/
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5w : Process 5w : hasActivity 5w : Running
5w : Running 5w : hasDate[a huto : TemporalExp;
huto : hasBegin[a huto : T odayj;
huto : hasDuration [a huto : Duration ;
huto : hasMonth[a huto : Month;

huto : number3]];
huto : exp[a huto : Cycle;

huto : every[a huto : Day;
huto : sample 2]
huto : Duration ;
huto : hasHour[a huto : Hour;
huto : number2]]]

This ontological representation allows besides representing temporal relations (e.g. du-
ration, cycle or repetition) to share and reuse information. Complex requests with
temporal and spatial details can be then performed.

geo : Place

huto :date

Figure 3.3: The main concepts and relationships of the 5W ontology.

The main task of these contexts is to select plans that maximally satisfy the agent's
goals. To go from the abstract notions of desire and belief to the more concrete concepts
of goal and plan, as illustrated in Figure 3.4, the following steps are consideredil) new
information arrives and updates beliefs or/and desires which trigger goals update(2)
these goal changes invoke the Planning Context, whose selection process is expressed
by Algorithm 1 (roughly, it looks in the Planning Context for all plans that maximally
satisfy these goals)? CB and/or CF techniques can be used in the selection process but

3. Itis worth noticing that the algorithm complexity is signi cantly reduced since we discard
from the beginning goals without plans.
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Figure 3.4. Planning and Intention Contexts

we leave this issue for further work;(3) one or more of these plans is then chosen and
moved to the intention structure; and (4), a task (intention) is selected for execution
and once executed (successfully or not) this leads to the update of the agent's beliefs

5).

3.1.7 Bridge Rules

There are a number of relationships between contexts that are captured by so-called
bridge rules. A bridge rule is of the form:

ul: ;u2: ! u3:

and it can be read as: if the formula can be deduced in contextul, and in u2,

then the formula has to be added to the theory of contextu3. A bridge rule allows

to relate formula in one context to those in another one.In this section, we present the
most relevant rules, illustrated by numbers in Figure 3.2. For all the agents in the MAS,

the rst rule relating goals to beliefs can be expressed as follows:

(1) GC:G(a; )>0! BC:B(a;: )=0

which means that if agenta; adopts a goal with a satisfaction degree equal to  then
is believed possible to a degree by a;. Concerning rule (2) relating the goal context
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Data: G*/ G =1 4; ,;:; nQ, a list of elected goals
Result: S //S is a list of plans
m 0;8°; ;G°; ;
for each ;in G do
/I Search in the PC for a plan satisfying ;
S, SearchinPC( );
if S, 6 ; then
/I Discard goals without plans
Append G’ S ));

end
end
for iin 1:Lenght(GY do
/I Combination ofi elements in G’
S%  Combination(G%i);
for j in 1:Length(S9 do
if S9j]16 ; then
/I Compute the satisfaction degree o8° using the Goal logic operator

= G(ST )
/I Select the maximum ;
if ;>m then
m i
Initialize(S);
Append(S, SY);
else
if ;= mthen

| Append(S,S’);
end
end
end
end
end
Return S;

Algorithm 1: RequestForPlanFunction

to the desire context, if is adopted as goal then it is positively desired with the same
satisfaction degree.

(2) GC:G(a; )= ! DC:D"(a; )=

An agent may be in uenced to adopt new beliefs or desires. Beliefs coming from other
agents are not necessarily consistent with the agent's individual beliefs. This can be
expressed by the following rule:

(3) BC:B(a; )= ;SC:Taa()=t! BC:B(a; )= °
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where 9 is calculated using Equation 3.2 with = minf ;tgto compute the possibility
distribution, and Equation 3.1 to deduce the Belief degree.

Data: B,D

Result: G,
0;

repeat
Compute G by Algorithm 3;
if G =; then

/I Move to the next more believed value in B
minf 2 1Img(B)j] > g

1 if @ >

end
untii < landG =;;

=1 ;G =G;

Algorithm 2: The goal election function.
Data: B, D,
Result: G
I Img (D) is the level set oD, i.e., the set of membership degrees bBf
maxImg(D);

/I Find the most desired -cut D of D which is believed possible
while min ,p B(: ) and > 0do

/I while not found, move to the next lower level of desire
maxt 2Img(D)] < g

0 if @<
end
if > O0then G =D ;
elseG = ;;

Algorithm 3: Computation of G .

Similarly to beliefs, desires coming from other agents need not to be consistent with the
agent's individual desires. For example, an agent may be in uenced by another agent
to adopt the desire to smoke, and at the same time having the desire to be healthy, as
shown by the following rule:

(4) DC:D*(a; )= ;SC:Tau( )= ! DC:D*(a; )= ©

where ° = minf ; g.

Desire-generation rules can be expressed by the following rule:

(5) BC :minfB( 1)” " B( n)g= ;DC :minfD*( )" ::~"D*( n)g= !
DC :D*() minf ; g
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Namely, if an agent has the beliefB( 1)~ :::» B( ) with a degree , and it positively
desiresD*( 1)~ ::~ D*( ) to a degree , then it positively desires to a degree
greater or equal tominf ; g. According to [13], goals are a set of desires that, besides
being logically “consistent”, are also maximally desirable, i.e., maximally justi ed and
possible. This is expressed by the following bridge rule:

(6) BC:B(a; )= ;DC:D*(a; )= ! GC:G( (; )=

where (; )= ElectGoal(; ), as specied in Algorithm 2, is a function that allows
to elect the most desirable and possible desires as goals. HectGoal returns ;, then
G(;) =0, i.e., no goal is elected.

As expressed by the bridge rule above, once goals are generated, our agent will look for
plans satisfying goal by applying the RequestForPlan function, and do the rst action
of the recommended plan.

(7) GC :G(a; )= ;PC :RequestForPlan( )! IC :I(actj; P ostConditon(act;))

where RequestForPlan is a function that looks for plans satisfying goal in the plan
library, as specied in Algorithm 1. Rule (8) means that if an agent has the intention
of doing an action act; with P ostCondition (act;) then it passes this information to the
communication unit and via it to other agents and to the user.

(8) IC :I(actj;PostConditon(actj)) ! CC : C(doeqact;; P ostConditon(act;)))
If the communication unit obtains the information that some action has been completed

then the agent adds it to its beliefs set using rule (3) with B (P ostConditon(act;)) = 1.

To show the applicability of our Multi-Agent BDI framework, an experimental evaluation
is proposed using the NetLogo Platform, as detailed in the next Section.

3.1.8 Experiment

In agent-based systems with spatial reasoning and social behavior, a visual output is
needed to display the agents' interactions in two or three dimensional spaces. The
Netlogo graphical user interface o ers the possibility to design agents with di erent
shapes and positions. Each agent in the simulation environment is a multi-context BDI
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Figure 3.5: The user interface of our Multi-Agent simulation environment

in Netlogo. The person icon represents an agent in the MAS. Flags represent
destinations in which agents can go. Labels represent agent intentions which
consist of two elements: the name, mapped to a NetLogo command, and a done-
condition, mapped to a NetLogo reporter. Intentions are stored in a stack,
and are popped out when to be executed. If the done-condition is satis ed,
the intention is removed and the next intention is popped out consecutively.
The Figure shows also, on the right-hand side, how the graphs are updated

dynamically as the program runs.

agent implementing the behavior formally detailed in the previous Sections. An agent
represents a user with di erent desires and beliefs that are randomly initialized. The
aim of the simulation is to compute a recommendation based on a user initial set of
beliefs and desires, and to see how our agent will adapt the recommendation, with a
particular interest in the following two cases:
| the agent is part of a social network ( social ageny, i.e., it has relationships with
other agents similar to i,
| the agent is considered as a solitary agent, i.e., it has no interaction with the
other agents.
Plans consists of a list of activities representing the fact of moving from one destination to
another. Each destination contains some rewards that the agent obtains if it reaches that
destination. The amount of rewards for each agent is random. Once rewards are gained,
an agent will broadcast information about the number of remaining rewards in the
correspondent destination to similar agents. These agents will decide to accept or not this
recommendation according to the trust degree in the sender, and whether there is any
information in their knowledge base (desire or belief base) that contradicts this one. If an
agent decides to accept the recommendation, then it adds this information to its desire
base, and then it triggers the recalculation of its intentions according to the updated
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desire base. The degree to which the agent believes or desires this recommendation is
updated according to the degree of trust towards the sender of the proposal and to the
its degree of belief or desire.

3.1.9 Experimental Setup

Table 3.1 summarizes the parameters that can be varied for di erent use cases. As
shown in Figure 3.5, agents are initially randomly distributed in the space (patches in
NetLogo). They also have di erent pro les (desires, trust degrees, positions, ...). Links
are also created randomly between agents according to an initial link number set at the
beginning of the simulation through the user interface (visualized on the left-hand side
of Figure 3.5).

We used Netlogo v. 5.3.1 to implement our simulation. For the BDI behavior and the
communication context, we used two available NetLogo libraries [53], one for BDI-like
agents and the other for ACL-like communication, allowing the development of goal-
oriented agents, communicating with FIPA-ACL messages. We implemented the rest of
the behavior of the agents using the NetLogo language with some extensions.

Table 3.1: The scale and distribution of parameters in the simulation.

Parameters Scale Distribution
Number-of-agents 0-100 Random
Desires 0-50 Random
Beliefs 0-100 Random
Intentions 0-10 Random
Links 0-100 Random
Gain 0-50 Random

The objective here is to assess the e ects of these agents on the system as a whole (and
not only to assess the e ect of individual agents on the system).

3.1.10 Results and discussion

The model and experimental data were analyzed using the RNetLogo extension [54].

Once the experiment is set up, each agent has a list of random desires, whilst beliefs are
empty at the beginning. According to these desires and the aforementioned behavior, an

agent calculates the recommendation which has a plan as output. This plan becomes the
agent's intention, and the agent will execute it. In the case of a solitary agent, it executes
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its plan without any change. Only a new belief from an external source that does not
contradict the agent initial belief can make it change its intention. In the other case, i.e.,

a social agent, similar agents will communicate a set of proposed recommendations with
the aim to in uence the others to change their beliefs or desires. If the recommendation
is accepted, the agent recalculates its intentions based on the received recommendation
then following a new plan. Metrics such as utility or satisfaction are calculated using
the following equations:

P .
utility( p) = p—2es 90 _

120 g 90)
where Gg is a set of goals satis ed by a planp, and Djniia is @ set of initial desires of
an agent.

satisfaction-degreep) = maxf G( ;);i 2 [0;n]g

wheren is the number of goals satis ed by a planp. The utility measure estimates how
much the user needs (desires) to match the recommendation (plan). The satisfaction
degree, as its name suggests, computes the user satisfaction about a recommendation
based on its initial degrees of desires.

The mean gain of the agents is also reported, and results are showed in Figure 3.7.
We can see that agents within a social context, i.e., agents that communicate in order
to in uence each other, accrue more gain most of the time in comparison with those
without a social context. These results demonstrate that a social population could have
a greater social welfare than a non-social one, when agents have similar interests.

Concerning social agents, as time passes, a humber of links among agents are created
based on similarities between them. Geo-localization is implemented in our experimental
setting in a similar way. That is, if two agents are in the same location at a speci ¢ time
instant, a link is created between them. An agent can then exchange with its neighbors
its desires or beliefs. The resulting network is captured in Figure 3.6 showing the agent
network evolution over time. We can see that links increase over time, and we reach
a fully connected network at time 100. This means that all agents in the network can
exchange their desires and beliefs with each other. The acceptance of such a proposal
depends on the agent knowledge base (i.e., its desires and beliefs) and the trust degree
of the sender agent. Now that we have such networks, it is interesting to verify whether
agents in \communities" are more likely to have better performance than the others.

For comparison, we calculate the average satisfaction degree and utility over time for
50 agents in the case of solitary and social agents. One may expect that the probabil-
ity of gaining utility will decrease with exchanging messages. Figure 3.8 con rms this
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Figure 3.6: The Multi-Agent network at di erent time-points (start with 100

agents and 22 edges). Time here is equivalent to NetLogo ticks. Nodes represent

agents and edges represent similarity between them. Graphs are generated using
igraph for R (http://igraph.org/r/).

expectation. It shows that utility augments considerably within social agents compared
to the utility within solitary ones. We notice that the average utility is the same over
time for solitary agents. We can deduce that exchanging beliefs and desires increases,
on average, the agents' utility.

In Figure 3.9, we can see the average satisfaction of agents about recommendations
(plans). This average is higher within social agents than within individual ones. We can
conclude that agents get more satisfaction collectively from exchanging information.

These results provide for agents further motivation to engage in communications with
similar trustworthy agents and support our modeling choices. It is also interesting to
note how communities of agents (e.g., agents with similar interests) likely to be in uenced
are more e cient collectively than solitary agents.
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Figure 3.8: Mean utility of agents with and without social context.

In addition, we are also interested in studying how the system behaves in case agents
communicate incorrect information, i.e., how fast and how far will these messages propa-
gate? Can the authenticity of the message be detected with this agent's behavior and, if
it is the case, how is the trust distribution a ected? In order to experimentally evaluate
whether incorporating the trust/distrust model can indeed enhance the performance of
the model, we run the simulation scenario with two di erent settings:

1. agents communicate with each other without considering trust knowledge about
other agents.

2. similar agents initially trust each other to a certain random value. Consequently,
none of the agents distrust other agents at the beginning of the simulation. The
value of trust and distrust can change over time. The trust value increases with an
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Figure 3.9:

Mean satisfaction degree of agents with and without social context.

coe cient if the agent provides some reliable information. In contrast, distrust

is set to 1 if the agent provides erroneous information.

We also studied the propagation of the error in the agents system in these two cases. In
both cases, we use the same parameters speci ed in Table 3.1. At= 50 ticks, we ask
an agent (choosed randomly) to send a false information to all its connected agents, i.e.,
similar agents. This information is sent over time from di erent random agents.

mean gain

Figure 3.10:
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In order to capture the impact of the use of the trust/distrust information in the MAS,

we report the average gain of the whole system in both cases. Results are showed
in Figure 3.10. We notice that this average remains almost the same before sending
the erroneous information. Once we start propagating the error, this average arises
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Figure 3.11:  Error propagation in the agent network with and without
trust/distrust couple

when using the trust/distrust information. Integrating trust/distrust to the agent model
enhances then the agents gain.

To demonstrate that the use of trust/distrust limits the propagation of error in the MAS,

we also performed a second set of experiments, following a similar procedure as for the
rst experimetal setting. Figure 3.11 reports about the percentage of agents that received
the false information, added it to their desire base and probably to their intentions, which
are calledinfected agents Once we start propagating the error, the impact in the agent
network is immediate in both cases: the number of infected agents increases but in a
di erent way. In fact, the error propagates faster in the model without trust/distrust,
and all agents in the network nish by receiving the false information and adding it to
their desire base. In the other case, this number remains acceptable compared to the
trust-less counterpart, and nishes by being normalized to 35% att = 100. This tells us
that the use of the trust/distrust model limits the error propagation and consequently
allows agents to achieve their goals in less time with more gain.

These results con rms our starting hypothesis that involving trust/distrust in the rec-
ommendation process enhances the social welfare of the MAS and the quality of the
recommendation.

3.1.11 The Trac Scenario

We implemented Bob's real world example detailed throughout Section 3.1 in the Netlogo
environment. The agents in the MAS aim at reaching a work destination using the less
congested route. In order to see the impact of Mallory as a malicious and sel sh agent
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trying to alleviate the tra c in its route by sending an erroneous information, we create

a cycle consisting of a home-work and work-home routes. First, as showed in Figure 3.12,
Bob and the other agents take the information sent by Mallory into consideration and
change their route. Unfortunately, they were all misled by Mallory who succeeded to
alleviate the tra c in its route. With the trust/distrust model, agents discover that
Mallory is not reliable and then consider it as distrusted.*

Figure 3.12: The tra c scenario simulation in the Netlogo environment at

di erent time points: at the beginning of the simulation (top left), Bob takes

an alternative route proposed by the system. After receiving Mallory's messages

(in the middle), Bob decides to change its route and takes another longer route.

After a while Bob gures out that it was not the best choice and consider
Mallory's agent as unreliable (top right).

For simplicity reasons, we argue for an update of intentions once the agent has an empty
intentions stack. In the other case, i.e., updating intentions at random time in a random
place, the Dijkstra algorithm can be considered to compute the optimal route to work
based onhttp://modelingcommons.org/browse/one_model/4485

Many real-world scenarios such as the tra c scenario presented above require addi-
tional features for representing and reasoning about spatial and temporal knowledge
considering also their vague connotation. To enable our agent model to represent and
reason about these features we propose in the next section an extention GARS agent
framework with fuzzy spatio-temporal representation.

4. The demonstration is available online in this link: http://modelingcommons.org/
browse/one_model/4752.
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3.2 Anuncertain Spatio-temporal Cognitive Agent-
based Recommender Framework

3.2.1 Fuzzy sets for representing imprecise spatio-temporal
beliefs and desires

Spatio-temporal data are often a ected by imprecision and uncertainty [55] due to several
reasons. Spatial uncertainty refers to positional accuracy (e.qg., location of an individual
or a car). Temporal uncertainty states whether temporal information describes well a
spatial phenomena. A fuzzy set, because of its ability to represent degrees of member-
ship, is more suitable for modeling geographical entities. In a GIS database, real world
objects can be represented by the degrees of membership to multiple classes or objects.

Representing only spatial or temporal dimension is not su cient to model and analyse
such phenomena. Modeling change involves incorporating both dimensions simulta-
neously. In this work, we adopt a dual representation of dynamic spatial information
proposed by Bordognaet al. [56]. In this approach, they introduced two representations:

| the rst one in which we have a precise spatial reference and indeterminate or
vague time reference, e.g. if i leave home now, i should be at work around 8 pm,

| and the second one de ned with a precise time reference and a fuzzy spatial one,
e.g. An accident has just occurred in between Route A and Route B.

According to [56], a spatial dynamic object can be represented in the rst case as a set
of pairs ( i;0):

og = f( 1;00);:5(i50):25( ni0n)Y

where ; is the time fuzzy validity range associated with the spatial object o;. The
semantics of ; is de ned by a triangular membership function centred in t; (see Fig-
ure 3.13). In the same way, a spatial object with precise time reference is de ned by a
set of pairs {i; i), where ; stands for the spatial validity of the observed phenomenon
at time instant t; represented as a triangular membership function.

In order to reason about such information, we need a mechanism to represent also
qualitative relationships between spatio-temporal entities. For this reason, we propose
a fuzzy RCC-8 and an extension to Allen's intervals to support fuzziness.
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Figure 3.13: Fuzzy time membership function.

3.2.1.1 Fuzzy Allen's Intervals

The twelve relations de ned by Allen for simple time intervals presented in Section 2.5
are generalized for modeling fuzzy time relations. Each basic relation can be de ned in
terms of endpoint relations de ned in Table 2.2. Using the extension principle, a fuzzy
temporal relation is de ned. For example, the fuzzy relation d; is introduced for the
simple temporal relation d (during), as follows:

XdeY, (X > Y )N (XT<¢YT)

and the corresponding degree of con dence, using the extension principle, can be ex-
pressed as:

xdey =MiNC x5y 5 x+< v+)

All the values X and Y can be generalized to fuzzy values and represented by fuzzy
triangular numbers. Based on the extension principle, we de ne rst the con dence
degrees of the fuzzy relations ¢ and ¢, in order to deduce respectively the one o ¢,
<t and =;. Suppose we have two fuzzy intervalA and B de ned by triangular fuzzy
functions as follows: A = (az;ap;az) and B = (by;bp; b3). By applying the extension
principle, we can deduce the following fuzzy relations:

8
E 0 if a1>b3
A BT B2 if a byby<a (3.6)
' 1 if a (o)
8
3 0 if bhh>as
A (B~ 3 % if b azgbp>a (3.7)

1 if b a
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From Equations 3.6 and 3.7 we can deduce the con dence degree of relations , <

and =; as follows:

A<iB=A fBA:(A:f B)
A>: B=A fBAZ(A:f B)
(A:f B)ZA fBAA fB

Example 3.1. Let us considerA =(8;9;10) and B = (8:5;9:5;10:5) representing two
fuzzy time-points. We can compute the degree of con dence of this fuzzy temporal relation
\ A occurs at approximately the same time a88" using Equation 3.6 and Equation 3.7

as follows : A=, = A (B*"A ;B =MiN( A ;B; A ;B)=mMin(1;0:75)=0:75

3.2.1.2 Fuzzy Topological Relations

The eight binary topological predicates for simple regions (Section 2.6) are generalized
for modeling fuzzy topological relations. Based on the approach proposed by Schockaert
et al. [3] and the de nition of the RCC relations in Table 2.2, we present here an approach

for modelling imprecise spatial information when regions are represented as fuzzy sets.

Let U be a nonempty set (representing regions), andC a re exive and symmetric bi-
nary fuzzy relation on it modeling connection. Several other topological relations can
be de ned based on this relation. These include the RCC8 basic relations DC, EC,
PO, EQ, TPP, NTPP, and the converses of TPP and NTPP (see Table 3.2 for their
de nitions). Note that we adopt, following [57], the Lukasiewicz-norm T,, and its corre-
sponding implicator |1, to generalize the standard logical conjunction and implication.
In addition, we chose this logic for its convenience, especially regarding the implica-
tion function. The implicator corresponding to the Lukasiewicz t-norm is de ned by:
T, =min(1;1 x+y). Infact, the minimum operator does not eliminate values arbi-
trary, leaving thus more uncertainty. For simplicity, we write | instead of I, in the
remainder of the Section.

Using this formalism, we can for example calculate a fuzzy spatial relation p is precisely
located far from g". Knowing the location of p and g, we can calculate their fuzzy position
using Equation 3.8. We can then calculate the degree to which those two locations are
connected, and consequently, their degree of disconnectio@C (p;g =1 C(p;Q.
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3.2.2 Fuzzy spatio-temporal belief representation and rea-
soning

In order to represent an imprecise spatio-temporal belief or desire such as \An accident
occurred around 8 PM between road A and road B" or \I want to be at work before

9 AM", we combine the RCC spatial relations with Allen's temporal relations. The
degree to which this belief is true is computed using the minimum between the degrees
of con dence of the spatial belief and the temporal one, respectively. For representing a
spatio-temporal belief, we annotate spatial formula with temporal information, meaning
that a spatial formula is true during a time interval or at a speci c time point. In other
words, it can be written as follows:

XDC,Y,Y PO Z

where X and Y represent two di erent regions or moving objects, andl and J are time
intervals. This formula means that X is disconnected fromY during time interval 1, and
Y is part of Z during time interval J. The following example shows a concrete example
of our combined fuzzy spatio-temporal belief representation in the tra ¢ scenario.

Example 3.2. Let us consider again the belief \An accident (A) occurred around 8
PM(t1) between road ARa) and road B(Rg)". It can be formalized as follows:
(APOt,RA)" (APO;,Rp) and its degree of belief is:

B((APOyRa)" (APOyRg))
=minfB(APORA);B(APORg)g

Later, one can reason about temporal intervals or time-points to infer relevant informa-
tion such as being at the same time nearby the accident place. This spatio-temporal
belief is essential for an agent to decide or not to reconsider its intention in case the
degree of con dence of this belief is high. However, this belief is no longer useful after a
certain time period, or if the accident is not placed on the agent's route (i.e., intentions).

3.2.3 Experiment

In this section, we present the evaluation of the CARS recommendation system equipped
with the fuzzy spatio-temporal belief representation. The purpose of the evaluation is to
guantify the gain of agents, in terms of execution and limited waiting time, to reach their
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Figure 3.14: The user interface of the agent-based simulation in NetLogo.
The central part shows the agent's environment constituted of roads. Blue
points represent Electric Vehicle charging stations. An agent is represented by
a car. Red squares represent accidents. Labels represent an agent intention,
which consists of two elements: the name, mapped to a NetLogo command,
and a done-condition, mapped to a NetLogo reporter. Intentions are stored
in a stack, and are popped out when they are to be executed. If the done-
condition is satis ed, the intention is removed and the next intention is popped
out consecutively. The gure shows also, on the right-hand side, how the graphs
are updated dynamically as the program runs. The left-hand pane shows some
setup parameters.

goals, by exchanging spatio-temporal beliefs and desires. To this aim, we propose to test
the proposed model in a real-world scenario where spatio-temporal knowledge represents
a crucial factor in the user decision making process. In this evaluation, di erent agent's
strategies are considered, following the ideas we proposed in [58]:
| individual agent strategy. agents behave individually without taking into account
any information coming from other agents. Only information from external re-
sources are considered in this case, e.g., data from the Tra c Message Channel
(TMC).
| social agent strategy agents are part of a social network and communicate with
the other agents in the network by exchanging their own beliefs and desires.
Agents fully trust all other agents in the network.
| social distrustful agent strategy agents are part of a social network, but they
consider also the trustworthiness degree of the other agents, when they exchange
messages. Agents accept information only from trustworthy agents. An agent is
considered as deceitful if the information it provides is repeatedly proven to be
false.
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3.2.3.1 Scenario

In order to evaluate the applicability of the proposed model in a real-world application,
we propose the following scenario. Agent; uses an electric car, and needs to reach an
electric public charging point. Like most road users,a; usually consults web-based or
mobile mapping services before the trip to determine the nearest charging station and
to avoid possible tra ¢ jams. Knowing where to get to and estimating the time needed
for the journey, a; can plan its trip. Thus, it selects a course of actions that will result
in reaching its destination before the battery of its car goes out of charge. It chooses a
route to follow and a time to leave so that it can arrive by a desired arrival time. Once
the trip is planned, it can be executed. As long asa; has not found any obstacle within
the journey, it can keep executing its original plan. However, it just found that a certain
road on its route is closed due to an accident (other city events such as soccer games
or music concerts can be considered as well). As; is not able to drive through that
road anymore, it has to reconsider its options and nd an alternative route to reach its
destination while taking into account its battery life (hence its arrival time).

3.2.3.2 Implementation

In agent-based systems with spatial reasoning and social behavior, a visual output is
needed to display the agents' movements and interaction in two- or three-dimensional
spaces. To implement our scenario, we decided to use NetLogo, as it also provides
support for the BDI architecture and the FIPA Agent Communication Language. The
spatial module is implemented using the Geographic Information Systems (GIS) exten-
sion for Netlogo.® We used data about the road network and Electric Vehicle (EV)
charging points from the Nice city open geographical databas® in shape le format (i.e.,
the format supported by the GIS Netlogo extension). The resulting environment of
agents is shown in Figure 3.14.

In order to adapt a fuzzy topological relation to a GIS vector data model, we assume
that crisp regions are a set of trapezoidal shapes containing a nite sequence of line
segments. To simplify the representation, we use a Gaussian function distribution as an
approximation of the trapezoidal distribution. Then, the membership function (x;y)
of a spatial object with coordinates (x;y) is de ned by the following equation:

xy = @ Kallx xr)H(y YRi%. (3.8)

5. https://ccl.northwestern.edu/netlogo/docs/gis.html
6. http://opendata.nicecotedazur.org/data/
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where xg and yr are the coordinates of a landmark point, andky corresponds to a
attening coe cient de ned according to the user description ( d) of a belief. We de ne
then di erent coe cients for Kprecisely, Kapproximately » Knear: Karound- An example of this
distribution run is visualized in Figure 3.15.

Figure 3.15. Example of the Gaussian distribution

Agents in this simulation are spatial entities (moving cars) in an environment (the road
network of the Nice city) which may change their location and attributes as time goes by.
At the beginning of the simulation, each agent has a desire. As de ned in our scenario,
the desire of an agent is to go to the nearest EV recharge point. A recommended plan is
proposed to the agent following the multi-context approach to the deliberation of agent
behavior proposed by Othmaneet al. [58, 59]. Once the agent starts executing this plan,
we trigger at di erent random times in di erent random places spatio-temporal events,
i.e. accidents. If the agent receives information, it adds it to its beliefs and, if the accident
is on its route, it updates its intentions if possible. Agents with individual strategy have
no knowledge from other agents; thus they update their route if possible once they
encounter a closed route in their plan. The simulation code is available at this link:
http://modelingcommons.org/browse/one_model/4832#model_tabs browse_info

3.2.4 Results and Discussion

The experiments were conducted as a version of the scenario proposed in Section 3.2.3.1,
with the adoption of the three di erent strategies described in Section 3.2.3. The scenario

is executed with 10, 50, 100, and 150 agents as part of the environment in three di erent
experiments. We measured the time it took an agent to reach its destination. Results of
the average time for agents to reach their destination for the di erent cases are reported

in Figure 3.16. The average time for all agents to reach their destination increases as
the number of agents increases. This can be explained by the tra ¢ overload, which



CARS 52

cannot be avoided due the number of cars on the road network. However, it is worth
noticing that the time decreases when the two social agent strategies are exploited, in
contrast to the individual agent strategy. Notice also that social agents using trust-
based information to judge the reliability of the recommendations they receive have
better performance than purely social ones. As a conclusion, the results show that
exchanging spatio-temporal beliefs among agents enhances the overall performance of
the agent network.

Figure 3.16: Average time required by the agents to reach a destination.

Figure 3.17: Average waiting time for the agents.

It is worth observing that some agents adopting the individual strategy do not even
reach their destination (i.e., they cannot satisfy their goals). Therefore, the average
time reported in the diagrams keeps rising inde nitely. In contrast, social agents always
achieve their goals and reach their destination, with an even more limited time interval
observed for those agents exploiting trust-based information. These results show that
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exchanging fuzzy spatio-temporal beliefs helps agents to achieve their goals by antici-
pating the consequences of their intentions. In other words, agents can anticipate and
change their intentions to avoid huge waiting time. Taking into account spatio-temporal

beliefs coming only from trustworthy agents avoids agents to be mislead and hence to

waste time.

Figure 3.17 reports the average waiting time of agents. From the results it is evident
that exchanging spatio-temporal beliefs among agents leads to lower waiting time for
agents. Within social agents, results are slightly better for those exploiting trust-based
information, except when the number of agents is 150. This is due to the time required
to process such information for the whole agent network, as more processing time is
needed to verify agents' reliability.

These results support the choice for agents to exchange spatio-temporal beliefs with
trustworthy agents in order to achieve their spatio-temporal goals.



Chapter 4

State of the Art

Recommender systems have been proven to be valuable tools for users to cope with
information overload. Originally, they were widely used on e-commerce websites [60{
62] in order to guide consumers through the often-overwhelming task of identifying
products they will likely to be of their interest. Lately, they have been increasingly used

in the e-tourism eld [63{66] providing services like recommending tourist packages
from air plane tickets to activities and a lists of Points Of Interest based on users'
preferences. Recently, the Arti cial Intelligence community is putting much e ort on

the investigation and evaluation of recommender systems based on intelligent agents.
Such a kind of systems has been applied so far in dierent elds, e.g., health-care,
tourism, nancial applications, or tra ¢ and transportation (see [1, 8{10, 58, 67, 68]).

In this Chapter, we carry out a literature review on recommender systems using agent
and Multi-Agent systems in di erent domains of application. The survey discusses
relevant research trends on agent-based recommender systems that have been explored
so far, in particular those based on the BDI model. The advantage of such a kind of
recommender systems is that the encoding of users' beliefs and goals in the system is
more likely to return a recommendation as close as possible to their needs, with the
possibility to include additional information like the con dence in the source. Several

of the above application scenarios require to formalize the knowledge about the time
and the location in which the action is taking place. This information often needs to be
considered together, as in the case of the tra c scenario where a tra ¢ jam is identi ed

by its location and the time it is occurring during the day, and requires to encode a
certain degree of vagueness as well.

54
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4.1 Agent-based recommender systems

Combining recommender systems with agent technologies has several advantages on
both sides. For agent technologies, recommender systems o er a practical and impor-
tant application domain with useful concepts. For recommender systems, agent research
0 ers ways to manage autonomy, pro-activity, distribution, reputation and trust. We are
interested particularly in the use of the cognitive agent architecture as recommender sys-
tem. A comparison of some proposed approaches is summarized in Table 4.1 according
to di erent criteria.

4.1.1 Agent-based recommender systems in the tourism
domain

Conventional recommendation techniques, content-based Itering [69] and collaborative
Itering [70], for instance, are particularly well suited for the recommendation of prod-
ucts such as books, movies, or music titles. However, for products from other categories
such as nancial services, tness plans or tourist packages these conventional approaches
are not e cient. The reasons are manly, for example, that to recommend a tourist pack-
age, further reasoning on planning abilities is required. Furthermore, customers who
use recommendation applications would not be satis ed with recommendations based
on user ratings only. An alternative solution to this problem is the use of Al techniques,
and particularly, agents and Multi-Agents systems.

Lately, several recommender systems in the tourism domain were proposed. Borras
al. [66] present in their survey of recent recommender systems in e-tourism a classi cation
that includes agent-based recommender systems [71{75].

PersonalTour [74], a Multi-Agent recommender system, tries to reproduce a real travel
agent behavior in order help customers nding the best travel packages (including ights,
hotels and attractions) according to their preferences. Agents exploit knowledge about
previous recommendations to determine solutions that match the customer's wishes and
needs. Another interesting feature of this system is that users can give feedback about
the recommended packages so that the degree of con dence on each travel agent can be
updated accordingly. Although the PersonalTour agent gave good results compared to
human travel agent, some problems related to classical recommendation are still to be
faced. This problem is related to recommendations for novel users. In case of new users,
the system does not have information about previous recommendations. It is not clear
also how authors face problems such as novelty and serendipity within PersonalTour.
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Another system focused on providing personalized services to users based on their pref-
erences in e-tourism is presented in [72]. The Patac platform proposed in this work o ers
several services:
| Personalized recommendation : the system can provide di erent options for
restaurants, monuments, bars, places of interest and public transport, according
to the pro le of the user (or the group of users) identi ed, her location, and the
current time and weather.
| Route planning : it can plan an itinerary across the city (walking, by bike, by
public transport or by car).
| Social feedback : the PaTac platform allows people to use tags, send images,
add comments about places, events and services, and share all this information
with other people.
Recommendations are provided by a recommender agent which makes personalized rec-
ommendations and calculates the best suggestions taking into account the user pro le
by means of a content-based ltering method. The originality of this work is the use
of a software agent combined with Semantic Web technologies, in particular ontologies
to represent users' pro les and their preferences. The system, however, does not fo-
cus on real-time or on-route update of the recommendation driven by users' change of
preferences, location or some events (e.g., it starts raining).

In [76], the authors proposed SHOMAS, a Multi-Agent system that provides leisure
plans for users in shopping malls. The system o ers dynamic re-planning in execution
time and learning from past experience thanks to the Case-Based Planning (CBP) [77]
systems and Case-Based Reasoning (CBR) [78]. The CBP-CBR agent is a deliberative
agent that relies on the BDI agent architecture. Although the good results, it does
not solve some problems related to classical recommender systems, i.e., the cold start
problem. The system needs to obtains more information about user pro les, products
and habits in order to provide more optimal plans. Moreover, in this approach, there

is no interaction between SHOMAS and the users, extension which may be of a high
utility in this application case.

Casaliet al. [79] presented a Travel Assistant agent that helps a tourist to choose holiday
packages. They used a graded BDI agent model based on multi-context systems to deal
with information uncertainty and graded notions of beliefs, desires and intentions, and
a modal many-valued logic approach form modeling agents. An implementation of the
proposed model is later presented in [67] and [68]. Results concluded that BDI agents
are useful to build recommender systems. Nevertheless, as pointed in [80], this approach
needs further research to adapt the agent behavior in a dynamic environment.
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Unlike Casali et al. [67] where the system helps users to have appropriate leisure plans
for certain destinations, Turist@ described in [1] proposes leisure activities once the
user arrived at a destination according to its preferences or based on trips of similar
tourists. Di erently from [76], this approach combines content-based and collaborative
strategies to overcome the cold start problem encountered in traditional recommender
systems. The architecture of the system is shown in Figure 4.1. The core of Turist@ is
the Recommender Agent, which maintains a user pro le for each tourist. This pro le is
initialized with some basic information on high-level cultural interests provided by the
user when she uses the system for the rst time. The Recommender Agent dynamically
and automatically re nes this initial knowledge about the user preferences by analyzing
the user's queries and evaluations. The Agent can also provide proactive recommen-
dations, because it knows the position of the user in the city and can suggest cultural
activities that t the user's preferences and are located in the vicinity.

Figure 4.1. Architecture of Turist@ recommender system (from [1])

Real world applications, especially location-aware ones, are characterized by a lot of
imprecision because of errors on localization or a lack of information. However, in
this approach, there is no consideration of uncertainty when proposing personalized
recommendation to users.

4.1.2 Agent-based recommender systems in the tra c eld

The increasing of urban tra ¢ jams has motivated researchers to study innovative strate-
gies to e ectively manage this problem and propose new services that t users' require-
ments. Agent-based approaches have been widely investigated in tra c related prob-
lems [81] for multiple reasons. Agents provide a suitable way to model and simulate
tra c systems since they o er an intuitive way to describe every autonomous entity
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on the individual level. Agents are reactive, they perceive their environment and re-
spond to environmental changes. Besides, agents are collaborative, they interact and
communicate with each other in order to achieve a desired goal.

Chenet al. [10] undertook a literature survey on agent-based approaches and their appli-
cations in the tra ¢ and transportation domain. In their review, authors classi ed agent
applications on tra ¢ and transportation into ve categories: 1) agent-based tra c con-
trol and management systems;2) agent-based systems for roadway transportation;3)
agent-based systems for air trac; 4) agent-based systems for railway transportation;
and 5) Multi-Agent tra ¢ modelling and simulation. In this thesis, we only report about
approaches related to the fth category which is more relevant for the case study we are
interested in.

Approaches regarding modeling and simulation aim principally at realistically reproduc-
ing intelligent human behaviour and decision making in scenarios that may consider
high-level tasks (e.g., route choice and navigation), as well as low level ones, as for in-
stance, driving. A number of approaches have been reported to model and implement
such behavior. Bazzanet al. [82] propose to model the strategical level (as for instance
the behaviour of drivers) in a more realistic way, at a level closer to the deliberative and
social one by using mental states like beliefs, desires and intentions. This approach is
detailed in the next Section. In [83], authors propose an extension to an existing micro-
scopic simulation model called Dynamic Route Assignment Combining User Learning
and microsimulAtion (DRACULA) to aid drivers' decision making. Drivers in this model

are considered as cognitive entities and their behavior is handled through the use of a
BDI approach, where the internal model of each agent is essentially represented by sets
of beliefs, goals, and intentions.

Recent developments in agent-based modelling for tra ¢ and transportation such as [84]
combined agent-based modelling to describe the behavior of a population of cognitive
agents with a macroscopic-level tra ¢ dynamics models to constraint the movement of
agents in the road network. This approach is developed to mainly face the familiar chal-
lenge of dividing computational resources between simulation volume and behavioral
complexity. The hybridization of these approaches within an agent-based modelling
framework yields to a representation of urban trac ow that is driven by individ-

ual behaviour, yet, in reducing the computational intensity of the simulated physical
interaction, enabling the scalable expansion to large numbers of agents.

From the literature review [10, 85], and despite the proliferation of agent-based modelling
within the transportation domain, we can draw the conclusion that most of approaches
fall short in adequately describing driver behaviors in a very dynamic environment which
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involves many individuals across a wide spatial areas that keeps changing over time.
Furthermore, dealing with real-world applications rises new challenges. Problems such
as imprecision and vagueness related to information coming from di erent resources
need to be handled. More important when dealing with human behavior, uncertainty in
mental attitude needs to be dealt with.

4.2 Agent-based BDI recommender systems: time

and location

4.2.1 Temporal reasoning in BDI agents

Cohen and Levesque [27], and Rao and George [7] were the rstto incorporate temporal
components into the BDI model. The basic building block of Cohen and Levesque's BDI
logic is a linear version of propositional dynamic logic (PDL). Intentions are de ned

in terms of temporal sequences of an agent's beliefs and goals. Each possible world
extendable from a current state at a particular time point is a time line representing

a sequence of events. Rao & George 's approach is based on branching-time temporal
logic framework to give a formal-logical de nition of BDI theory. Unlike [27], instead of

a time line, they choose to model the world using a temporal structure with a branching
time future and a single past, called a time tree, where a particular time point in a
particular world is called a situation.

Snchez-Mare et al. [86] discuss the di erent approaches to temporal reasoning. They
classi ed those approaches into two main categories:
| Practical-oriented models, which are more inspired by methods such as time
series models [87] and case-based reasoning [78].
| Theoretical-oriented models, which are basically inspired by logic or relation
algebras. Examples include Allen's Temporal Intervals Algebra [16] and cyclic
intervals by Balbiani and Osmani [88].
In [89], authors introduce a logical negotiation protocol that incorporates a real-time BDI
model used to manage resource allocation problems. To incorporate real-time concerns
into their logical negotiation protocol, they used several interval relationships de ned
by Allen [16]. To manage the negotiation between two agents, they de ned several
axioms that are real-time constrained thanks to functional predicates. The proposed
model was applied to the distributed sensor network domain which is highly concerned
by imprecision related to sensors measures. Nonetheless this constraint was not handled
in the proposed solution.
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So far, to the best of our knowledge, many approaches to reason about time in the BDI
agent model are proposed in the literature (among them, see [90{92]) but none of them
deals with time information imprecision.

4.2.2 Spatial reasoning in BDI agents

Schueleet al. [93] propose a spatial model to enable BDI agents to move autonomously
and collision-free in a spatial environment. Spatial reasoning is handled in this ap-
proach through the RCC-8 qualitative relations in a GISAgent component. The GIS
agent consists of a BDIAgent with its SpatialRepresentation and SpatialReasoner (that
implements the RCC-8 spatial relations) and a GlISLibrary containing spatial data com-
pliant with the OpenGIS standard. Authors assume that in a spatial context, the agents'
knowledge about their environment is uncertain. However, this problem is not handled
through a qualitative approach for spatial reasoning. Time reasoning is not handled
neither.

SISMORA introduced in [2] proposes an architecture that combines Multi-Agent sys-
tems with GIS in which multiple moving agents collaborate in a geo-spatial environment
in order to achieve a goal. Qualitative and declarative relationships in terms of dis-
tance, direction, topology and motion are included in this architecture as an axiomatic
rst-order-logic system. Agent decision making is based on a GIS-based Belief-Desire-
Intention model visualized in Figure 4.2. The di erence with a traditional BDI model is
the fact that a belief can be a spatial and motion fact retrieved from GIS geo-databases,
desires contain a plan of actions based on an agent's goal in a geo-spatial space.

Issues such as information consistency, i.e., introducing new beliefs or desires that do
not contradict existing ones, and temporal reasoning in order to simulate real situations
are still open issues in this approach.

Other relevant approaches for spatial reasoning within Multi-Agents systems are dis-
cussed in [86]. Authors pointed out in their analysis that simultaneous reasoning in
space and time is di cult to handle and requires a lot of computing resources, and the
fact of using autonomous agents limits this overcome. Another open issue pointed in
their review is the need to handle uncertainty because, according to the authors,as soon
as a real-life system is studied and analyzed, uncertainty is indeed inherently present
However, they do not consider in their analysis the imprecision and vagueness coupled
to spatial knowledge.
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Figure 4.2: The SISMORA's GIS-based BDI Model (from [2])
4.2.3 Spatio-temporal BDI systems dynamics

Few approaches exist to represent and reason about spatio-temporal beliefs, desires and
intentions' dynamics. Jonker et al. [94] propose a formal spatio-temporal state language
with the aim to de ne the spatio-temporal behavior of an agent in a dynamic environ-
ment. Although their approach provides an interesting formalism for predicting agent
spatial behavior, many questions concerning beliefs, desires and intentions dynamics are
left open. For example, no mechanism for updating beliefs, desires and intentions in this
formalism is presented.

Males and colleagues [95] use modal logic to de ne an agent capable of updating its
mental attitude according to spatio-temporal relations considered as events. They de-
ne a language for events in which spatio-temporal knowledge is de ned under the
form of predicates. An example of a pedestrian in a tra ¢ scenario was presented and
implemented in NetLogo. Results show the usefulness of this model in a simple real-
world scenario. Nevertheless, the proposed framework still is in a preliminary stage and
presents some drawbacks, e.g., a mechanism to update such spatio-temporal beliefs and
desires is missing.

Unlike the aforementioned approaches, our approach besides combining spatial and tem-
poral reasoning within the BDI model, it addresses the open challenge of spatio-temporal
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information vagueness and fuzziness that strongly characterizes such a kind of knowl-
edge.

4.3 Uncertainty Management in MAS

The use of MAS provides a clear added value in autonomy compared to conventional
systems. However, MAS have a limited ability to deal with uncertainty in a dynamic
environments. Uncertainty can arise from many factors, such as complexity, randomness,
ignorance, or imprecision.

Zadeh [32] states that \complexity and precision are incompatible properties”, arguing
that the conventional approaches are inadequate to model human-like complex pro-
cesses. Therefore, \the closer one looks at a real-world problem, the fuzzier becomes
its solution”. Fuzzy set theory (introduced in Chapter 2 Section 2.3.1) is widely used

in the Arti cial Intelligence eld to deal with uncertain problem domain. Agents, that
implement uncertain problems by means of fuzzy logic, are called fuzzy agents. Fuzzy
agents are used in fuzzy reasoning situations, where agents interpret a situation, solve
a problem or decide with respect to the available fuzzy knowledge [96{98].

In the BDI architecture, few approaches handle this issue. Among them, the approach
proposed in [99]. It presents a BDI agent model with fuzzy perception used as personal
assistants for giving personalized recommendations to individual on-line users in a used
car electronic market over the Internet. Fuzzy agents are de ned via extended fuzzy
cognitive maps. Long and Esterline [100] introduce a BDI agent, which uses fuzzy infer-
ence engines, fuzzy controllers and classi ers, for the modeling of co-operative societies
of arti cial agents. Shen et al. [101] have explored a hybrid BDI model based on delib-
erative and fuzzy reasoning, and they improved the model in [102] within the context of
wireless sensor networks.

Casali et al.[79, 80, 103] proposed to handle uncertainty through possibility theory by
de ning graded mental attitude, i.e., the degree to which an agent believes that a formula
is true. However this is di erent from handling information imprecision related to real-
world constraints, e.g., errors in sensor measures.
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Chapter 5

Conclusion

This chapter summarizes the main contributions of this thesis, draws some conclusions,
reviews some of the research issues that remain to be addressed by pointing out some
promising directions for future work.

5.1 Contributions

This thesis investigated agent-based recommender systems as an e cient way for decision-
making motivated by the open challenges in terms of customization, re-activity and au-
tonomy raised by real-world applications. Our research was motivated by the following
research questions:

RQ1: how to de ne a recommender system able to deal with the exibility, complexity,
uncertainty and dynamics required for real world applications?

To answer this question, we proposed to use Multi-Agents systems as a recommender
system to customize recommendations. The resulting framework, calle€ARS (Cog-
nitive Agent-based Recommender System), is based on the agent technology to enhance
the recommender system with the cognition, social ability and the autonomy required
in a dynamic environment. MAS are characterized by a high degree of uncertainty since
they are composed by heterogeneous agents acting in a dynamic environment. For this
reason, a solution to handle the degree of belief in an information is to use possibility
theory. In simulated scenarios, experiments show that agents achieve a better perfor-
mance collectively when they are part of \communities", i.e., agents exchange messages

64
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with the other agents with shared interests. In addition, we also studied the impact
of trust on the received recommendations. Results show that exchanging beliefs and
desires with trustworthy agents can ameliorate the whole performance of the agents.

RQ2: how to represent and reason about fuzzy spatial-temporal knowledge to provide
useful recommendations?

This research question has been addressed through the de nition of an extension of
CARS , enhanced with fuzzy spatio-temporal reasoning. In order to represent fuzzy
spatio-temporal information to provide recommendations, we de ned spatio-temporal
knowledge annotating spatial formulae (formalized through fuzzy RCC) with temporal
information (formalized through fuzzy Allen's time intervals). The goodness of the
proposed formal framework is validated through an empirical evaluation simulating the
agents' behaviour in the tra c scenario. Results show that the time required by the
agents to reach a certain point of interest sensibly decreases when the CARS model is
applied.

We believe that agents are a good alternative to traditional recommendation techniques
in designing real-world applications thanks to their social dimension, cognitive abilities,
autonomy and reactivity. BDI agents, in particular, are well suited in applications that
involve humans when the decision-making process is driven not only by rational thinking
but by some emotional components such as beliefs and desires as well. BDI agents with
fuzzy perception seem to be a good model to be used in agent-based simulations in
environments with imperfect information.

5.2 Perspectives

We list here some directions that are considered to extend the research presented in this
thesis. First of all, further qualitative relations about directions should be introduced
concerning spatial reasoning to allow the representation of a model closer to reality.
Second, on the simulation side, extending the evaluation introducing new metrics to
further reduce the processing time and compare the performance of the system with
di erent strategies is to be considered. Third, an empirical evaluation of the planning
module in particular is ongoing with the aim to study the advantages of using the
proposed ontology compared to traditional planning methods.

Lastly, we discuss some directions for future work in the context of MAS, and more
precisely, of BDI agent systems:
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| According to Berners-Lee et al. [106], the actual in uence of semantic technology
will be uncovered when people are able to develop intelligent agents capable of
acquiring knowledge from di erent sources, manipulating them and sharing the
results amongst them. Ultilizing the power underpinning semantic technology,
agents are able to perform the entire aforementioned activities automatically.
In order to meet this vision, two key technologies are identied : agents for
representing real-world entities and automated task resolution, and ontologies for
semantically enhanced information exchange and processing over the Web. These
two technologies need to be integrated in a coherent framework especially for the
domains where relevant information is widely distributed. In fact, Semantic Web
technologies have proved to be very useful in solving the heterogeneity problem.
They o er a common framework that enables for data integration, sharing and
reuse from multiple sources.

| Emotions including moods, feelings, and personality have a strong e ect on peo-
ples' physical states, motivations, beliefs, and desires. However, they are often
not taken into account in designing and implementing BDI models. Integrating
emotions such as fear, self-con dence or happiness in the reasoning and decision
making process of BDI agents can be more representative of human behavior,
allowing for the combination of practical rational elements with more \human-
based" features in agent reasoning. Approaches such as those proposed by Pereira
et al. [107] and Jianget al. [108] for emotional BDI frameworks can be explored.
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5.3 Publications

Published papers

| Amel Ben Othmane, Andrea Tettamanzi, Serena Villata, Nhan Le Thanh, and
Michel Bu a. A multi-context framework for modeling an agent-based recom-
mender system. In H. Jaap van den Herik and Joaquim Filipe, editorsProceed-
ings of the 8th International Conference on Agents and Arti cial Intelligence
(ICAART 2016), Volume 2, Rome, ltaly, February 24-26, 2016., pages 31{41.
SciTePress, 2016. doi: 10.5220/0005686500310041. URLttp://dx.doi.org/
10.5220/0005686500310041

| Amel Ben Othmane, Andrea Tettamanzi, Serena Villata, Nhan Le Thanh, and
Michel Bua. An agent-based architecture for personalized recommendations.
In H. Jaap van den Herik and Joaquim Filipe, editors, Agents and Atrti cial In-
telligence - 8th International Conference, ICAART 2016, Rome, ltaly, Febru-
ary 24-26, 2016, Revised Selected Papersolume 10162 oflLecture Notes in
Computer Science pages 96{113, 2016. ISBN 978-3-319-53353-7. doi: 10.1007/
978-3-319-53354-4. URL http://dx.doi.org/10.1007/978-3-319-53354-4
6

| Amel Ben Othmane, Andrea Tettamanzi, Serena Villata, and Nhan Le Thanh.
A multi-context BDI recommender system: From theory to simulation. In 2016
IEEE/WIC/ACM International Conference on Web Intelligence, WI 2016, Om-
aha, NE, USA, October 13-16, 2016pages 602{605, 2016. doi: 10.1109/WI.2016.
0104. URL http://dx.doi.org/10.1109/W1.2016.0104

| Amel Ben Othmane, Andrea G. B. Tettamanzi, Serena Villata, and Nhan Le Thanh.
Towards a spatio-temporal agent-based recommender system. [46th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2017), Das, Durfee, Larson, Winiko (eds.), May 8-12, Sao Paulo, Brazil., 2017

Papers under review

| Amel Ben Othmane, Andrea G. B. Tettamanzi, Serena Villata, and Nhan Le Thanh.
CARS { a spatio-temporal BDI recommender system: Time, space and uncer-
tainty. In 11th International Conference on Scalable Uncertainty Management -
Granada, Spain, October 4-6 2017

| Amel Ben Othmane, Andrea G. B. Tettamanzi, Serena Villata, and Nhan Le Thanh.
Cars { an agent-based recommender system: Formal framework and empirical
evaluation. In International Journal on Arti cial Intelligence Tools. World Sci-
enti c. Under review, 2017
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