, ? ?)x) + ? ? ?u ? (y) ? (1 ? ?)u ? (x)

, ? ?(1 ? ?)C ? |x ? y| 2 + ?

, Since ? > 0 is arbitrary, we obtain the assertion

, More details of local semiconvexity of a given function are given in [CS04

. [. Bibliography, D. Agrachev, U. Barilari, and . Boscain, Introduction to Riemannian and sub-Riemannian geometry (from Hamiltonian viewpoint, Preprint SISSA 09, 2012.

A. Agrachev and P. Lee, Optimal transportation under nonholonomic constraints, Transactions of the American Mathematical Society, vol.361, issue.11, pp.6019-6047, 2009.
DOI : 10.1090/S0002-9947-09-04813-2

]. A. Alex39 and . Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Annals [Uchenye Zapiski] Math. See, vol.6, pp.3-36, 1939.

]. G. Almu01, S. Alberti, and . Müller, A new approach to variational problems with scales, Commun. Pure Appl.Math, vol.54, pp.761-825, 2001.

L. Ambrosio and V. Magnani, Weak differentiability of BV functions on stratified groups, Mathematische Zeitschrift, vol.245, issue.1, pp.123-153, 2003.
DOI : 10.1007/s00209-003-0530-2

]. L. Amb03 and . Ambrosio, Lecture notes on transport equation and Cauchy problem for BV vector fields and applications, 2003.

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Inventiones mathematicae, vol.22, issue.2, pp.227-260, 2004.
DOI : 10.1080/03605309708821265

]. P. App87 and . Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus, Mémoires présentés par divers Savants à l'Académie des Sciences de l, pp.1-208, 1887.

L. Ambrosio and D. Rigot, Optimal mass transportation in the Heisenberg group, Journal of Functional Analysis, vol.208, issue.2, pp.261-301, 2004.
DOI : 10.1016/S0022-1236(03)00019-3

, Mass transportation on sub-Riemannian structures of rank 2 in dimension 4, to appear in Annales de l'IHP(C) Nonlinear Analysis

P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, Journal of the European Mathematical Society, vol.9, pp.85-121, 2005.
DOI : 10.4171/JEMS/74

URL : https://hal.archives-ouvertes.fr/hal-00003587

H. Buesmann, W. Feller, and K. Konvexer-flchen, Kr??mmungseigenschaften Konvexer Fl??chen, Acta Mathematica, vol.66, issue.0, pp.1-47, 1936.
DOI : 10.1007/BF02546515

]. Y. Br91 and . Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm.Pure Appl. Math, vol.44, pp.375-417, 1991.

M. [. Balogh and . Rickly, Regularity of convex functions on Heisenberg groups, Ann.Scuola Norm. Sup. PisaCl. Sci., II, issue.5, pp.847-868, 2003.

. [. Belotto, L. Silva, and . Rifford, The sub-Riemannian Sard conjecture on Martinet surfaces, 2016.

M. [. Cavalletti and . Huesmann, Existence and uniqueness of optimal transport maps, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.32, issue.6, 1367.
DOI : 10.1016/j.anihpc.2014.09.006

, Über systeme von linearen partiellen Differentialgleichungen ester ordnung, Math. Ann, vol.117, pp.98-105, 1939.

A. Calogero and R. Pini, c horizontal convexity on Carnot groups, 2010.

C. [. Cannarsa and . Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 2004.

[. E. Cohn-vossen, Some questions of differential geometry in the large, 1959.

G. P. Dar85-]-darboux and . Bordin, C.R.Accad.Sci.Paris, vol.101, pp.1312-1316, 1885.

N. [. Danielli, D. M. Garofalo, and . Nhieu, Notions of Convexity in Carnot Groups, Communications in Analysis and Geometry, vol.11, issue.2, pp.263-341, 2003.
DOI : 10.4310/CAG.2003.v11.n2.a5

URL : http://cvgmt.sns.it/papers/dangarnhi03/cag.pdf

N. [. Danielli, D. M. Garofalo, F. Nhieu, and . Tournier, The Theorem of Busemann-Feller-Alexandrov in Carnot Groups, Communications in Analysis and Geometry, vol.12, issue.4, pp.853-886, 2004.
DOI : 10.4310/CAG.2004.v12.n4.a5

URL : http://www.intlpress.com/site/pub/files/_fulltext/journals/cag/2004/0012/0004/CAG-2004-0012-0004-a005.pdf

N. [. Danielli, S. Garofalo, and . Salsa, Variational inequalities with lack of ellipticity. Part I: Optimal interior regularity and non-degeneracy of the free boundary, Indiana University Mathematics Journal, vol.52, issue.2, p.361398, 2003.
DOI : 10.1512/iumj.2003.52.2088

URL : http://www.math.purdue.edu/~danielli/iumjobs.pdf

P. [. Diperna, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, pp.511-547, 1989.
DOI : 10.1007/BFb0061716

L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, 1992.

L. [. Figalli and . Rifford, Mass Transportation on Sub-Riemannian Manifolds, Geometric and Functional Analysis, vol.11, issue.2, pp.124-159, 2010.
DOI : 10.1007/s00039-010-0053-z

URL : https://hal.archives-ouvertes.fr/hal-00541484

A. [. Guitérrez and . Montanari, On the second derivatives of convex functions on the Heisenberg group, ANN.Scuola Norm. Sup. Pisa Cl. Sic, vol.III, issue.5, pp.349-366, 2004.

C. E. Gutiérrez and A. Montanari, Maximum and Comparison Principles for Convex Functions on the Heisenberg Group, Communications in Partial Differential Equations, vol.10, issue.1, pp.9-10, 2005.
DOI : 10.1007/s00526-003-0190-4

D. [. Garofalo and . Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carath??odory spaces, Journal d'Analyse Math??matique, vol.5, issue.36, pp.67-97, 1998.
DOI : 10.5565/PUBLMAT_40296_04

]. R. How98 and . Howard, Alexandrov's theorem on the second derivatives of convex functions via Rademacher's theorem on the first derivatives of Lipschitz Functions, Lectures given at the functional analysis seminar at the University of South Carolina, 1998.

H. Hopf and W. Rinow, Ueber den Begriff der vollst??ndigen differentialgeometrischen Fl??che, Commentarii Mathematici Helvetici, vol.3, issue.1, pp.209-225, 1931.
DOI : 10.1007/BF01601813

G. [. Juutinen, J. Lu, B. Manfredia, and . Stroffolini, Convex functions in Carnot groups, REV. MAT, IBEROAMERICANA, vol.23, issue.1, 2007.
DOI : 10.4171/rmi/490

URL : http://www.ems-ph.org/journals/show_pdf.php?issn=0213-2230&vol=23&iss=1&rank=7

]. N. Ju09 and . Juillet, Geometric inequalities and generalized Ricci bounds on the Heisenberg group, Int. Math. Res. Not. IMRN, issue.13, pp.2347-2373, 2009.

]. L. Ka42 and . Kantorovitch, On the translocation of masses, C.R. (Docklady) Acad. Sa. URSS, vol.37, pp.199-201, 1942.

]. E. Ledo17 and . Donne, Lecture notes on sub-Riemannian geometry, 2017.

J. [. Lu, B. Manfredi, and . Stroffollini, Convex functions on the Heisenberg group, Calc.Var. PDE, 2004.

W. Liu and H. J. Sussmann, Shortest paths for sub-Riemannian metrics on ranktwo distributions, Mem. Amer, BIBLIOGRAPHY [Mag05] V.Magnani, Lipschitz continuity, Alexandrov theorem and characterizations for H-convex functions, p.564, 1995.

]. R. Mc01 and . Mccann, Polar factorization of maps in Riemannian manifolds, Geom. Funct. Anal, vol.11, pp.589-608, 2001.

]. R. Mont02 and . Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol.91, 2002.

]. G. Mon81 and . Monge, Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris, pp.666-704, 1781.

R. Monti and F. S. Cassano, Surface measures in Carnot-Caratheodory spaces, Calc, Var. Partial Differential Equations, vol.133, pp.339-376, 2001.
DOI : 10.1007/s005260000076

]. Oh07 and . Ohta, On the measure contraction property of metric measure spaces, Comm. Math. Helv, vol.82, issue.4, pp.805-828, 2007.

]. P. Pan89 and . Pansu, Métriques de Carnot-Carathéodory et quasiiométriques des espaces symétriques de rang un, Annals of Mathematics, vol.129, issue.1, pp.1-60, 1989.

]. A. Pra07 and . Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation, Ann. Inst. H. Poincaré Probab. Statist, vol.43, issue.1, pp.1-13, 2007.

]. H. Rad20 and . Rademacher, Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln II, Math. Anna, vol.81, issue.1, pp.52-63, 1920.

]. P. Ras38 and . Rashevsky, About connecting two points of a completely nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. Libkenchta, vol.2, pp.83-94, 1938.

L. Rifford, Ricci curvatures in Carnot groups, Mathematical Control and Related Fields, vol.3, issue.4, pp.467-487, 2013.
DOI : 10.3934/mcrf.2013.3.467

URL : http://www.aimsciences.org/journals/doIpChk.jsp?paperID=8969&mode=full

]. L. Rif14 and . Rifford, Sub-Riemannian Geometry and optimal transport, 2014.

]. L. Riz16 and . Rizzi, Measure contraction property of Carnot groups, p.2016

]. Sr98 and . Srivastava, A course on Borel sets, 1998.

]. V. Sud79 and . Sudakov, Geometric problems in the theory of infinite dimensional distributions, Proceedings of Steklov Institute, pp.1-178, 1979.

]. H. Sus08 and . Sussmann, Smooth distributions are globally finitely spanned, In Analysis and design of nonlinear control systems, 2008.

H. J. Sussmann, A cornucopia of abnormal sub-Riemannian minimizers, pp.341-364, 1996.
DOI : 10.1007/978-3-0348-9210-0_4

URL : http://www.math.rutgers.edu/~sussmann/FTP_DIR/cornucopia.ps.gz

]. St06 and . Sturm, On the geometry of metric measures spaces II, Acta. Math, vol.196, issue.1, pp.133-177, 2006.

]. R. Stri86 and . Strichartz, Sub-Riemannian geometry, J. Differential Geom, vol.24, issue.2, pp.221-263, 1986.

]. V. Var74 and . Varadarajan, Lie groups, Lie Algebras, and Their Representations, 1974.

C. Villani, Topics in Mass Transportation, Graduate Studies in Mathematics Surveys, vol.58, 2003.

C. Villani, Optimal transport, Old and New, 2008.

C. Y. Wang, Viscosity convex functions on Carnot groups, Proceedings of the American Mathematical Society, vol.133, issue.04, pp.1247-1253, 2005.
DOI : 10.1090/S0002-9939-04-07836-0

L. C. Young, Lectures on the calculus of variations and optimal control theory, 1969.