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Abstract

The latest generation of aerial- and satellite-based imaging sensors acquires huge volumes
of Earth’s images with high spatial, spectral and temporal resolution, which open the door
to a large range of important applications, such as the monitoring of natural disasters, the
planning of urban environments and precision agriculture. In order to fully exploit the
potential offered by these sensors, there is a need to develop accurate and time-efficient
mathematical models and algorithms for spectral-spatial analysis of the recorded high-
resolution data.

The main goal of my research is to develop learning approaches, which would help
to automatically interpret, or classify, remote sensing images. This manuscript presents
several strategies I have explored for this purpose, varying from the use of strong shape
priors to detect objects, regularization of classification probabilities on the image graphs,
and up to the use of convolutional neural network models capable to learn deep hierar-
chical contextual features.

The experimental results on diverse benchmarks of images and image time series show
the competitiveness of the developed methods when compared to the state-of-the-art ap-
proaches. In particular, we have recently created large-scale classification benchmark
of aerial images and have demonstrated that the modern deep learning-based methods
succeed in generalizing to the dissimilar urban settlements around the Earth. This opens
new exciting perspectives towards designing systems which would be able to automati-
cally update world-scale maps from remote sensing data.
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Chapter 1

Introduction

1.1 Motivations and challenges

The continuous proliferation and improvement of remote (satellite and aerial) data sen-
sors yields a huge volume of Earth’s images with high spatial and temporal resolution, as
well as with rich spectral information. For instance, the constellation of Pléiades satellites
revisits the entire Earth every day, acquiring optical data with a spatial resolution of less
than a meter. These data contain a valuable source of information, which opens the door
to a large range of important applications, such as the monitoring of natural disasters,
the planning of urban environments and precision agriculture. However, petabytes of
these massive images are stored into binary files as unstructured raw data. As a result,
a large part of them is never used. Thus, it has become crucial to develop methods to
automatically analyze these data.

One of the most important problems for the automatic interpretation of remote sens-

Input

⇒

Output

◻ Impervious surf.
∎ Building
∎ Low veget.
∎ Tree
∎ Car
∎ Clutter

Figure 1.1: Example of pixelwise classification of an aerial image.
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ing data is image classification, which consists in the assignment of a class, or thematic
label (for example, building, tree, car, etc.), to each pixel in the image. Fig. 1.1 shows
an example of such pixelwise classification of an aerial image into six classes of interest.
In this work, I focus on supervised classification, in which the learning approaches are
used to train the classifier from labeled reference data. In the manuscript, the terms
labeling and classification are used interchangeably. I also refer to dense classification or
semantic classification to denote the labeling of individual pixels in the image. The term
semantic is typically used to emphasize that the classes of interest represent object types
(e.g., car, building [198]) rather than low-level physical materials (e.g., metal sheets [13]).

While the first classification approaches have been designed more than forty years
ago with the appearance of the first satellites [96], recent technological developments
raise new challenges. The first challenge consists in adapting classification methods
to the characteristics of new sensors, since the state-of-the-art methods may be not
directly applicable or may not give satisfactory performances. For instance, first satellite
sensors captured data of a low spatial resolution, and significant research was focused
on discovering the proportions (or abundances) of physical materials within each single
pixel [95]. The recently developed sensors acquire images with a high spatial resolution,
where pixels become small when compared to the objects. This implies the need of
object-based analysis, i.e., the development of the algorithms which learn to analyze the
consistency and relationship between groups of pixels in the image, aiming at identifying
the whole objects.

The second challenge is the scalability of the systems. With the increasing amount
and openness of the data covering a large geographic extent, there is a growing interest
in developing scalable methods able to produce classification maps of large areas, in the
scale of cities, countries, continents and up to the entire Earth [135]. While there is an
urgent need to design computationally efficient algorithms to process large-scale data, it
is also a challenge to design methods that would produce accurate maps for dissimilar
areas of the Earth, given the large variability of the appearance of landscapes across
the planet, i.e. large intra-class variability (see Fig. 1.2). While the first classification
methods in remote sensing tried to distinguish different classes of low-level materials and
substances (e.g., water, soil, gravel), current research studies are in a big part focused on
semantic segmentation, where high-level contextual reasoning (e.g., shape and context
analysis) must be performed to discriminate more abstract semantic classes.

In this manuscript, I present my research studies on the development of learning
methods for remote sensing image classification. In the following, I first summarize the
state-of-the-art approaches, and then detail my recent contributions.
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Figure 1.2: Examples of aerial images around the Earth, where large intra-class variability
can be appreciated for ‘building’ class.

1.2 Approaches, trends and contributions

The pioneering classification approaches for remote sensing imagery consider each pixel
as a pattern and all the data collected by sensors for this pixel are considered as the initial
set of features (for instance, spectrum values in the case of optical imagery). Then, the
standard pattern recognition scheme [45] is applied to classify each pixel:

1. The classification model and its specifications are selected (e.g., neural network,
support vector machines (SVM), etc.).

2. Since the initial set of features may be redundant, feature extraction/selection is
often performed, aiming at obtaining the features which discriminate at best classes
of interest.

3. The next step, called “training of the classifier,” consists in partitioning the entire
feature space into K exhaustive, non-overlapping regions, so that every point in
the feature space is uniquely associated with one of the K classes. This is done by
feeding into the classification model examples of samples for each of the classes (so
called training samples).

Once the training step is accomplished, every new pixel can be classified according
to its feature set. Such classification approach is often referred to as pixelwise, where
the term pixelwise has the different meaning than in the previous section: here, by
pixelwise we mean that to classify any pixel, no information from its neighborhood is
taken into account. Different models have been applied for pixelwise classification in the
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remote sensing community; among them, probably the most widely used ones are neural
networks [7, 8, 137], SVM [193, 21] and random forests [76, 77].

In a real image, neighboring pixels are related or correlated, both because imaging
sensors acquire significant amount of energy from adjacent pixels [208] and because ob-
jects occurred in the image scene are in most cases large when compared to the size of
a pixel. For instance, if a given pixel in the agricultural image scene represents a corn,
its adjacent pixels belong with the high probability to the corn field. This spatial con-
textual information significantly helps to interpret image scene. Therefore, most recent
classification approaches are spectral-spatial, i.e. they classify each image pixel based on:
1) its own spectral values (the spectral information) and 2) information extracted from
its neighborhood (the spatial information). The use of spectral-spatial classifiers is espe-
cially rewarding when processing images with high spatial resolution; that is why these
techniques are especially relevant to analyze data captured by modern and near-future
sensors.

I refer the reader to my PhD thesis [178] for a detailed overview of pixelwise and
spectral-spatial classification approaches. There are different ways to group these tech-
niques in the state-of-the-art. In the following, I will present three important fami-
lies/strategies of spectral-spatial classification, which are successfully used until nowadays
and can also be used in combination with each other, and will position my contributions
with respect to these strategies:

1. Graph-based methods. In these approaches, an image is represented as a graph,
where the nodes typically represent image pixels or regions, while edges either con-
nect adjacent regions [180, 10], or keep track of an hierarchy in a multi-scale image
representation [191, 127]. By applying different graph construction and pruning
strategies, these techniques typically output a disconnected graph, where each con-
nected subgraph corresponds to the classified object in the resulting classification
map. A popular graph-cut technique applies a min-cut algorithm on the image
graph to regularize outputs of the pixelwise classifier, by minimizing the Markov
Random Field-based energy function associated with the image and the initial
classification result [181]. Another approach consists in building first a hierar-
chy of image regions at different levels of details, based on standard homogene-
ity/dissimilarity criteria, and then selecting from this hierarchy the regions at dif-
ferent scales that correspond to the objects in the final classification map [191, 129].
Such hierarchical data structure can be very flexible, for instance, it can be easily
augmented to include textural or shape information for more accurate image anal-
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ysis. I will present our graph-based methods in Chapters 3 and 4. Chapter 3 will
detail a method for shape-aware multi-object multi-class classification, based on a
hierarchical data structure known as binary partition trees. Chapter 4 will describe
how a graph-cut-based method can be segmentation for the analysis of image time
series.

2. Feature engineering. The spatial information can be included into a classifier by
analyzing the similarity/correlations between the data in the neighborhood of an
image pixel. The initial approaches would typically use a well-defined algorithm,
which can be often described by a (set of) pre-defined convolutional mask(s), for
this purpose. For instance, Tsai et al. [187] and Huang and Zhang [82] have in-
vestigated the use of texture measures derived from the gray level co-occurrence
matrix, such as angular second moment, entropy and homogeneity, for spectral-
spatial classification. A popular approach in remote sensing explores the principles
of mathematical morphology, which by definition aims at analyzing spatial rela-
tions between sets of pixels, i.e., extracting information about the size, shape and
orientation of structures. For this purpose, morphological profiles [9], extended
morphological profiles [48], attribute profiles [142] and extinction profiles [61] have
been successfully applied. In all cases, the core idea is to progressively simplify
image based on a pre-defined rule/attribute, which allows to analyze a particular
characteristic (for instant, area or standard deviation of regions) within this im-
age. The extracted morphological features typically lay in a very-high-dimensional
space, and additional feature extraction must be applied to reduce the dimension-
ality of the feature space. Another group of techniques introduces a strong shape
priors into classification: for example, in remote sensing images buildings can be
modelled as rectangles [145, 199] and roads can be modelled by line segments [106].
Chapter 2 will describe our studies using such approach, where we model curvilinear
structures by a set of line segments with variable length and orientations.

3. Deep learned features. Even though feature engineering gives satisfactory re-
sults for many applications, when the complexity of the data and the number
of classes increases, it is not straightforward to design hand-crafted features that
would exhibit high discriminative power for all classes. The recent trend in the
state-of-the-art consists in designing classification systems that would be able to
automatically learn hundreds of expressive high-level contextual features. In this
context, the use of deep learning, in particular convolutional neural networks, is
intensively investigated by both image analysis and remote sensing communities.
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While some works use deep learning-based features as the input to a conventional
classifier, such as SVM or logistic regression classifier [213], most recent studies
design an end-to-end system which jointly learns to extract relevant contextual
features and conduct the classification [140, 131, 132]. I will detail our recent con-
tributions on the development of deep learning architectures for remote sensing
image classification in Chapter 5. In particular, I will present how we face the
challenge to obtain fine-grained high-resolution classification maps by designing
appropriate deep learning architectures.

Even though the main focus of my research is remote sensing data classification, I
will also show experimental results on other datasets, such as medical or computer vision
benchmarks, to illustrate the genericity of the proposed methods.

1.3 Selected publications

This section lists my publications after the PhD thesis defense, i.e. after 2010.

Peer-reviewed international journals

1. E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “High-resolution aerial image
labeling with convolutional neural networks,” IEEE Trans. Geosc. Remote Sens.,
2017.

2. E. Maggiori, G. Charpiat, Y. Tarabalka, and P. Alliez, “Recurrent neural networks
to correct satellite image classification maps,” IEEE Trans. Geosc. Remote Sens.,
2017.

3. E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural net-
works for large-scale remote sensing image classification,” IEEE Trans. Geosc.
Remote Sens., Volume 55(2), pages 645–657, February 2017.

4. H. Aghighi, J. Trinder, S. Lim and Y. Tarabalka, “Fully spatially adaptive smooth-
ing parameter estimation for Markov random field super-resolution mapping of
remotely sensed images,” International Journal of Remote Sensing, vol. 36, no. 11,
pp. 2851-2879, 2015.

5. B. B. Damodaran, R. R. Nidamanuri and Y. Tarabalka, “Dynamic ensemble selec-
tion approach for hyperspectral image classification with joint spectral and spatial
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information,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 8, no. 6, pp. 2405-2417, 2015.

6. Y. Tarabalka, G. Charpiat, L. Brucker and B. H. Menze, “Spatio-temporal video
segmentation with shape growth or shrinkage constraint,” IEEE Transactions on
Image Processing, vol. 23, no. 9, pp. 3829-3840, 2014.

7. H. Aghighi, J. Trinder, Y. Tarabalka, and S. Lim, “Dynamic block-based parameter
estimation for MRF classification of high-resolution images,” IEEE GRSL, vol. 11,
no. 10, pp. 1687-1691, 2014.

8. M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Ad-
vances in spectral-spatial classification of hyperspectral images,” Proceedings of the
IEEE, vol. 101, no. 3, pp. 652-675, March 2013.

9. J. C. Tilton, Y. Tarabalka, P. M. Montesano, and E. Gofman, “Best merge region
growing with integrated region object classification," IEEE Trans. Geosc. Remote
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Book chapters
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Sensing Image Processing (edit. by G. Moser and J. Zerubia), Springer, 2017.
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Chapter 2

Reconstruction of Curvilinear
Structures

One of the pioneering methods aiming at incorporating information from the spatial
neighbourhood to properly classify images used a template-based concept. This implies
introducing a strong shape prior into classification. For instance, in moderate-spatial-
resolution aerial images roads can be modelled by line segments [106], and buildings can
be seen as rectangles [145].

This chapter covers my research on reconstruction of curvilinear structures based
on stochastic modeling and ranking learning system. We assumed that the entire line
network can be decomposed into a set of line segments with variable lengths and orienta-
tions. This assumption enables us to reconstruct arbitrary shapes of curvilinear structure
for different types of datasets.

In the following, I describe two models we have developed. The first model works in
an unsupervised way, and is based on Marked point process (MPP) and Monte Carlo sam-
pling. We reconstruct the latent curvilinear structure by sampling disjoint line segments
which are associated with with the given image data. Therefore, we aim to maximize a
posterior probability density with respect to a set of line segments for given image data.
We constrain local interaction of the line segments to obtain smoothly connected line con-
figuration. The optimization technique consists of two steps to reduce the significance of
the parameter selection in our stochastic model. We simulate several Markov chains with
different parameter settings to collect line hypotheses on the same configuration space.
Then, we maximize the consensus among line hypotheses to reduce the sampling space
and to improve the reliability of the curvilinear structure reconstruction.

The second model is based on supervised learning and graph theory. To extract local

15
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curvilinear features, we compute oriented gradient information using steerable filters. We
then employ structured support vector machine (SVM) for ordinal regression of the input
image patches, where the ordering is determined by shape similarity to latent curvilinear
structure. Finally, we progressively reconstruct the curvilinear structure by looking for
geodesic paths connecting remote vertices in the graph built on the structured output
rankings.

2.1 Related work

Curvilinear structure extraction

In early vision, researchers design convolution filters to separate curvilinear structure
from the background texture ([54, 150, 86]). The main idea behind such filter design is
to create simple line shape templates in order to extract features showing high gradient
magnitudes with a locally consistent orientation. However, these image filtering responses
are unable to discern linear structures from undesirable high-frequency components, e.g.,
noise and edges. Enhancement filtering (EF) algorithm proposed by [52] analyzes the
eigenvalues of the Hessian matrix of the image to evaluate local tubularity score. Opti-
mally Oriented Flux (OOF) measures the amount of gradient flow at the boundaries to
find the continuous linear structure ([110]). Morphological operator also highlights the
curvilinear structure by collecting pixels according to the recursive structural similarity
([176]).

On the other hand, the graphical models exploited image-based evidence with ge-
ometric shape constraints to improve the detection performances. For instance, tree
structure can be used to reinterpret complex line networks. The authors of [66] looked
for a path between singular points corresponding to intersections of the latent curvilin-
ear structure. Türetken et al. [189] formulated a large linear programming problem to
constrain the diverse cases of the local interaction on the line networks.

Furthermore, curves can be approximated by multiple straight line segments. Stochas-
tic models specify the distribution of line objects with pairwise interaction terms ([107]).
Reversible Jump Markov chain Monte Carlo sampler proposed by [70] has been involved
to optimize the probability density. However, due to the sensitivity of the parameter
setup, the stochastic models are less practical for a large amount of varied datasets.

In recent years, machine learning algorithms have been favoured for designing optimal
filter banks to extract curvilinear features ([152, 5]). While a threshold value should be
set to reconstruct the centerline of the curvilinear structure from the filtering scores, it
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is difficult to find the value which would be suitable for different types of applications.
To address this issue, [169] proposed a regression model of distance transform to predict
the scale of the curvilinear structure and localize centerlines.

Learning structured information

We want to extract the structured information of the line networks that appear within
homogeneous background textures. Since the information embedded in a single pixel is
limited to infer the latent structure, Markov Random Fields ([59, 12]) or Conditional
Random Fields (CRF, [108, 103]) based models have been developed to enforce the label
consistency on the pre-organized output space. e.g., neighborhood pixels are assumed to
have the same label with the probability when minimizing the cost function. However,
the topology of the curvilinear structure composed of line objects is too intricate to be
applicable with such design approaches. It is also impossible to specify the topology of
the complex line networks with a few parameters.

Recently, machine learning algorithms have been involved to detect curvilinear struc-
tures latent in various types of images. Becker et al. [5] applied a boosting algorithm
to obtain an optimal set of convolution filter banks. Sironi et al. proposed a regression
model to detect centerlines by learning the scale (width) of the tubular structures with
the non-maximum suppression technique [169].

Structured learning systems have been employed in image segmentation models based
on random fields [11, 126, 97]. More specifically, Structured Support Vector Machine
(SSVM) [188] has been used to predict model parameters for inference of the structured
information between input image space and output label space. Exploring all possible
combinations of the labels in the output space is computationally intractable. Thus, the
random field models define the pairwise relationship in a neighborhood system to enforce
the labeling consistency. While such prior models based on random fields are successful
to describe convex shaped objects, they should be adapted to detect thin and elongated
shaped curvilinear objects.

2.2 Stochastic modeling of curvilinear structure reconstruc-
tion

In the following, I describe the proposed stochastic model based on MPP framework for
curvilinear feature extraction in a fully automatic way, where the performance is not
biased by the hyperparameter selection.
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2.2.1 Marked point process modeling

We briefly review the definition of MPP [121, 175] to provide a mathematical description
of the proposed model.

Definition 1 (Spatial point process). A realization of point process consists of an
unordered set of points in a compact set F ⊂ Rd. A point process on F maps from a
measurable probability space (F ,B, µ) onto the configuration space Ω = ∪∞n=0 Ωn, where B
denotes σ-algebra of subset of F , and µ is the Lebesgue measure. In other words, for all
bounded Borel sets B ⊆ B, the number of points falling in B is a finite random variable.

Definition 2 (Marked point process). In the MPP framework, each point is asso-
ciated with additional information which describe a shape of the object. Specifically, we
reconstruct curvilinear structures as smoothly connected line segments. Let si = (xi,mi)

be a line segment specifying its center point xi = (xi, yi) in the image sites F with a label
of the length and the orientation mi = (`i, θi), where the label is sampled from the mark
space M with a probability measure µM . We now define a marked point process on F ×M
as a finite random configuration s = {s1, . . . , sn} ∈ Ψ.

The probability distribution of the MPP is defined based on an image I and spatial
interactions between line segments. Given an image, we look for an optimal configuration
ŝ which maximizes the unnormalized probability density f(s) as follows:

ŝ = argmax
s∈Ψ

f(s) = argmin
s∈Ψ

#(s)
∑
i=1

Ud(si) +∑
i∼j
Up(si, sj), (2.1)

where #(s) is the cardinality of the configuration, and i ∼ j represents the symmetry re-
lationship between interacting line segments si and sj . Ud and Up denote the data energy
(which we also call data likelihood) and the prior energy, respectively. In general, Monte
Carlo samplers [57, 71, 72, 195] are employed in MPP models to maximize the proposed
density function f(s). Each state of a discrete Markov chain (Xt)t∈N corresponds to a
random configuration on the Ψ. The chain is locally perturbed by transition kernels, and
is evolved to converge to the stationary distribution which is identical to the proposed
probability density.
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2.2.1.1 Data energy

We define the data energy of the line segment si as a weighted sum of the rotated gradient
magnitudes Umd and the intensity variance Uvd along the line:

Ud(si) = ω
m
d U

m
d (si) + ω

v
dU

v
d (si), (2.2)

where ωmd and ωvd are weighting coefficients corresponding to Umd and Uvd , respectively.
We obtain the rotated gradient information by convolving the input image with steer-

able filters [55, 87]. Steerable filters are generated from a linear combination of basis
filters. In this work, we use second-order derivatives of an isotropic Gaussian function as
the basis filters. Let gθi(x;σ2) be a steerable filter associated with an orientation θi and
∇Iθi = gθi ∗ I be its filtering response, which adaptively accentuates gradient magnitudes
corresponding to the angle θi. Then, the gradient magnitude energy Umd is defined as

Umd (si) = ∫
1

0
∣∇Iθi (pi(t))∣dt, (2.3)

where pi(t) represents points on the line segment si. Note that pi(t) = (1 − t)ui + tvi is
a function of the endpoints ui and vi with parameter t ∈ [0,1[.

When the input image is heavily corrupted by noise or composed of uneven tex-
tures, observing gradient distribution often fails to detect linear structures. To ease this
problem, we also measure the intensity variance along the line segment. This is because
intensities are likely to be homogeneous, if pixels are laid on the same line. We can write:

Uvd (si) =
1

`i
∫

1

0
(I (pi(t)) −E[I(si)])

2
dt, (2.4)

where E[I(si)] denotes the intensity mean of the line segment si, and `i is the line length.

2.2.1.2 Prior energy

In this section, we propose the prior energy to define spatial interactions on a local
configuration. We want to obtain smoothly connected lines with a small curvature as a
final solution. We compute the overlapping area Υ(si, sj) to reject congestion of lines and
the coupling energy states cij to evaluate attraction between line segments (see Fig. 2.1).
The prior energy Up(si, sj) is defined as

Up(si, sj) = Υ(si, sj) +w⊺
pcij , ∀ i ∼ j, (2.5)
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.1: Examples of the line configurations with different prior energies: (a)–(c) show
preferable line configurations composed of aligned lines (a), almost perpendicular lines
(b), and adjacent lines (c). (d)–(g) depict unfavourable line configurations which are
penalized because of a singular segment (d), acute corner (e), overlap (f), and parallel
(g), respectively.

where wp denotes a vector of weighting factors which control relative importance of each
element in cij . We assume that a line segment only correlates with the other ones within
a certain distance. Thus, a neighborhood system consists of pairs of line segments, such
that their center distance is smaller than half the sum of their lengths. In other words,

i ∼ j = {(si, sj) ∈ Ψ2
∶ 0 < ∥xi − xj∥2 ≤

`i + `j

2
+ ε} , (2.6)

where ε denotes the marginal distance to be connected with each other.
In order to evaluate an overlapping area between line segments, we dilate the line

segments with a three pixel-radius disk, and then count up the number of pixels falling
in the same image site. Suppose that we have a set of points A(si) which is a dilated
version of the line segment si, and n(A(si)) denotes the number of pixels in A(si).
As shown in Fig. 2.1 (e)–(g), we penalize a configuration {si, sj}, when a portion of
the overlapping area is greater than 10% of min{n(A(si)), n(A(sj))}. However, almost
perpendicular line segments are excluded from this penalty. The criteria for rejection are
then given as

Υ(si, sj) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if θ⊥ij < τ ,
0 if n(A(si)∩A(sj))

min{n(A(si)),n(A(sj))} < 0.1,

∞ otherwise,

(2.7)

where θ⊥ij =
π
2 −θij represents an angle difference between si and the perpendicular line of

sj , τ is the maximum angle difference for segments to be aligned.
The coupling energy states cij of the lines are composed of the singularity, connec-
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tivity, curvature, and perpendicularity:

cij = [1, ϕ(dij , ε), ϕ(θij , τ), ϕ(θ
⊥
ij , τ)]

⊺, ϕ(u, v) = min{0, (u/v)2
− 1}, (2.8)

where dij denotes the minimum distance from endpoints of si to a point on the line
sj , and θij is the angle difference between line segments. The function ϕ(u, v) tests a
firmness of the coupling state u by comparing with the given tolerance value v.

The weighting factors wp = [ωsp, ω
c
p, ω

a
p , ω

r
p]
⊺ can be derived from their role in the prior

energy. Specifically, ωsp penalizes birth of a single line segment in the final configuration;
hence its value is affected by the average gradient magnitude and the noise level of the
input. ωcp encourages adjacent segments within ε to become connected. ωap promotes
segments being aligned with a small curvature in the final configuration. ωrp supports
perpendicularly approaching line segments. Although the selection of wp values is critical
for the performances of the MPP model, it is hard to estimate the coefficients because
of hidden dependencies among them.

2.2.1.3 Monte Carlo sampler with delayed rejection

We employ the Reversible jump Markov chain Monte Carlo (RJMCMC) sampler [71] to
obtain an optimal line configuration which maximizes the probability density function.
The RJMCMC sampler is an iterative method that locally perturbs a current configura-
tion s with a transition kernel. The transition kernel consists of multiple sub-transition
kernels, namely, birth-and-death (BD) and linear transform (LT). A new configuration
s′ is proposed according to the transition kernel, given by

ξ (s, s′) =∑
m

pmξm (s, s′) , (2.9)

where pm denotes a probability to choose m-th type of sub-transition kernel ξm (s, s′). For
each sub-transition kernel, the detailed balance condition [71] is required to ensure the
reversibility of the Markov chain. Acceptance ratio αm(s, s′) is compared with a stochas-
tic value rand[0,1] to take a new configuration into account. The RJMCMC sampler is
coupled with the simulated annealing (SA) algorithm [98] to secure the convergence of
the Markov chain via relaxation parameter T (temperature); the temperature gradually
decreases as the iteration goes on. To compute an acceptance ratio of the transition
kernel, we use a density f(s)1/T instead of f(s). The acceptance ratio is

αm(s, s′) = min(1,
ξm (s′, s)
ξm (s, s′)

f(s′)1/T

f(s)1/T
) . (2.10)
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(a) s = {s1, s2, s3} (b) s/{s2} ∪ {s′}

(c) Searching (d) s/{s2} ∪ {s̃}

Figure 2.2: Given configuration (a), if a line segment s′ proposed by LT kernel is rejected
(b), the delayed rejection kernel searches for the nearest extremes in the rest of line
segments (c). An alternative line segment s̃, which enforces connectivity, will be proposed
by interpolation of the retrieved points (d).

The BD kernel changes the dimensionality of the current configuration s by adding a
new line segment or removing an existing line segment. When the birth kernel proposes a
new configuration s′ = s∪{s}, the length and the orientation of the new line segment are
uniformly sampled from the mark space M = [`min, `max] × [θmin, θmax], where `min and
`max are the minimum and maximum length of the line segment, respectively. θmin and
θmax denote the minimum and maximum orientation of the line segment, respectively.
Note that we refuse a birth of the line lying on singular points, which have zero gradient
magnitudes. On the other hand, the death kernel removes a line segment which is
randomly picked from the current configuration. Thus, a new configuration s′ = s/{s} is
proposed by the death kernel. We compute the acceptance ratio of the birth kernel αB

and the death kernel αD in the same way as proposed in [106], given by

αB(s, s′) = min
⎛

⎝
1,
pD

pB

µ(F)

#(s) + 1

f (s′)
1/T

f(s)1/T
⎞

⎠
, (2.11)

αD(s, s′) = min
⎛

⎝
1,
pB

pD

#(s)
µ(F)

f(s′)1/T

f (s)1/T
⎞

⎠
. (2.12)

The LT kernel chooses a line segment s randomly, and then modifies its model pa-
rameters: s = (x, (`, θ)) → s′ = (x ± dx, (` ± d`, θ ± dθ)), where dx, d`, and dθ denote
changes of center position, length, and orientation, respectively. The LT kernel draws a
new configuration s′ = s/{s} ∪ {s′}. The acceptance ratio of the LT kernel is defined by

αLT(s, s′) = min(1,
f(s′)1/T

f(s)1/T
) . (2.13)
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Algorithm 1 RJMCMC sampler with delayed rejection
1: Initialize: X0 ← s0 (or X0 ← ∅), t← 0, T ← T0

2: while T > Tmin do
3: s←Xt

4: Choose a transition kernel ξm according to probability pm
5: Propose a new configuration s′ with ξm (s, s′)
6: if αm(s, s′) > rand[0,1] then
7: Xt+1 ← s′

8: else
9: Propose an alternative segment s̃ based on ξ2LT (s, s′, s̃)

10: if α2
LT(s, s′, s̃) > rand[0,1] then

11: Xt+1 ← s̃
12: else
13: Xt+1 ← s
14: end if
15: end if
16: t← t + 1
17: Decrease the temperature: T ← Tt

18: end while

The LT kernel can be extended by the delayed rejection scheme [72]. The main idea
of the delayed rejection scheme is to give a second chance to a rejected sample point.
The acceptance ratio of delayed rejection is defined by

α2
LT(s, s′, s̃) = min(1,

ξLT (s̃, s′)
ξLT (s, s′)

ξ2
LT (s′, s̃, s)
ξ2

LT (s, s′, s̃)
[1 − αLT(s̃, s′)]
[1 − αLT(s, s′)]

f(s̃)1/T

f(s)1/T
) ,

≃ min(1,
f(s̃)1/T − f(s′)1/T

f(s)1/T − f(s′)1/T
) . (2.14)

where s′ = s /{s} ∪ {s′}, s̃ = s/{s} ∪ {s̃}, and ξ2
LT (s, s′, s̃) is the transition kernel for the

delayed rejection. In order to reduce the burn-in time, we add heuristics to design the
delayed rejection kernel. When we propose an alternative line segment s̃, we look for the
closest endpoints from both ends of s′, which is rejected from the first trial. The line
segment s̃ is generated by interpolation of the retrieved points; we force the connectivity
of the neighboring segments, so that a probability of being accepted increases in terms
of prior energy. Fig. 2.2 summarizes the process of the delayed rejection kernel, and
Algorithm 1 provides the pseudo-code of the RJMCMC sampler with delayed rejection.

2.2.2 Curvilinear structure extraction via integration of line hypothe-
ses

While the MPP allows to design complex prior knowledge of the object distribution,
its performance is very sensitive to the selection of modeling parameters and hyperpa-
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rameters. For clarity, we note that the modeling parameters are related to the physical
characteristics of the line segments (e.g., range of length and orientation). The hyper-
parameters denote the weighting coefficients of energy terms (i.e., wmd , wvd, and wp).
The modeling parameters can be chosen empirically since the values are related to the
image resolution (see Sec. 2.2.4); however, it is hard to estimate the hyperparameters
via trial-and-error for different types of dataset. Our goal is to maximize the probability
density without estimating hyperparameters.

2.2.2.1 Generation of K line hypotheses

Letw = [ωmd , ω
v
d , ω

s
p, ω

c
p, ω

a
p , ω

r
p]
⊺ be a hyperparameter vector which consists of the weight-

ing coefficients of the proposed probability density. Suppose that we have K different
hyperparameter vectors, w1, . . . ,wK . For each hyperparameter vector, we substitute k-
th hyperparameter vector wk into the proposed probability density f(s;wk). Then, we
look for its optimal configuration ŝk via Monte Carlo sampler proposed in Sec. 2.2.1.3.

For a practical reason related to the implementation, we bound the values of w.
Specifically, we sweep the weighting coefficients of the prior energy wp according to the
gradient magnitude and noise level of the input image. Let χ = −`min×E[∇I]+Var[Iσ2] be
a baseline to accept a new line segment into the current configuration without considering
spatial interaction, where Iσ2 denotes a smoothed image using a Gaussian kernel with
σ2 = {1.5,2.25,3.5}. To reduce computation overhead, we fix the weighting factors of data
likelihood energy as ωmd = −1 and ωvd = 1. We set w1 = [−1,1, χ,0.1χ,0.01χ,0.01χ]⊺, and
gradually change χ by 10% of increments, i.e., w2 = [−1,1, χ2,0.1χ2,0.01χ2,0.01χ2]

⊺,
where χ2 = 1.1χ. In our experiments, we set K = 15 to create line hypotheses.

2.2.2.2 Combination of line hypotheses into a probability map

We now have a family of line hypotheses Ŝ = {ŝ1, . . . , ŝK} obtained from K different
hyperparameter vectors. We jointly use the image data and the line hypotheses. More
specifically, the final solution s∗ maximizes not only the probability density but also
the consensus among line hypotheses. For each optimal configuration ŝk, we compute a
probability map Pk of being a line in the image site. Then, we integrate K probability
maps into a mixture density PŜ :

Pk(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if ∃ski ∈ ŝ
k,x ∈ ski ,

1
2 if ∃ski ∈ ŝ

k,x ∈ A(ski ),

0 otherwise,
PŜ(x) =

1

K

K

∑
k=1

Pk(x). (2.15)
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(a) Input (b) ∣∇I ∣ (c) [177] (d) [6]

(e) ŝ1 (f) ŝ2 (g) ŝ3 (h) P
Ŝ

Figure 2.3: Given the input image (a), we compute the gradient magnitude (b). Math-
ematical morphology operator, path opening [177], is applied on such gradient magni-
tude image (c). Linearity score of each pixel is drawn by the supervised feature learning
algorithm [6] (d). We provide line hypotheses (e)–(g) associated with different hyperpa-
rameter vectors. Composition result (h) is equivalent to mixture probability density, and
it highlights pixels corresponding to linear structures.

Fig. 2.3 compares image gradient magnitude, morphological filtering [177], supervised
feature learning [6], line hypotheses, and the mixture density. Since the input image con-
tains many high frequency components, its gradient also highlights non-linear structures
in the background. While the morphological filter accentuates linear structures, its per-
formance depends on the setting of path length. Supervised learning method requires
high quality of a training dataset and corresponding ground truth images. Depending
on the setting of hyperparameter vectors, the MPP model leads incomplete detection
results as shown in Fig. 2.3. (e)–(g). We integrate line hypotheses of the proposed MPP
model into a mixture density PŜ . The mixture density shows the consensus between
line hypotheses in the sense that the pixels corresponding to line structures are more
highlighted when compared to [6, 177].

We assume that the most promising hyperparameter vector draws a configuration
which is more akin to the mixture density. We compute the correlation-coefficient (CC)
between PŜ and Pk’s to analyze coherence of line detection results. That is

k∗ = argmax
k={1,...,K}

CC(PŜ ,Pk), (2.16)

CC(PŜ ,Pk) =
∑x (PŜ(x) −E[PŜ]) (Pk(x) −E[Pk])

√

∑x (PŜ(x) −E[PŜ])
2
∑x (Pk(x) −E[Pk])

2
, (2.17)
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(a) T0 = 100 (b) T102 = 21.67 (c) T103 = 14.47 (d) T104 = 10.86

Figure 2.4: We provide intermediate sampling processes when the temperature parame-
ter Tt is decreasing. The results shown in first row are obtained without specifying seed
segment. For the second row, we randomly set 20 seed segments and run the algorithm.
For the third row, we initialize 20 line segments which are highly corresponding to under-
lying curvilinear structures. The algorithm converges toward almost the same solution
regardless of the initial state.

where k∗ represents the index of the most reliable hyperparameter vector.

2.2.3 Curvilinear structure extraction from reduced sampling space

The line hypotheses span a configuration space S ⊂ Ψ which will be considered as a new
sample space. Since the size of S is significantly reduced compared to the original sample
space Ψ, the optimization process becomes more tractable in terms of convergence time
and detection accuracy.

We redefine the data energy by adding a new energy term as follows:

U ′
d(si) = Ud(si) +U

h
d (si), Uhd (si) = ∫

1

0
− logPŜ(si(t))dt, (2.18)

where Uhd (si) quantifies the consensus among line hypotheses with respect to the line
segment si. We stimulate the modified probability density over the reduced sample
space S with the most promising hyperparameter vector wk∗ :

s∗ = argmin
s∈S

#(s)
∑
i=1

U ′
d(si) +∑

i∼j
Up(si, sj ;wk∗

). (2.19)
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2.2.4 Experiments

We test the proposed method on a wide range of datasets: road cracks, facial wrinkles,
DNA filaments1, and retinas. Test images of the defects on the road pavements and
ground-truth are courtesy of Chambon et al. [23]. The facial wrinkle images are collected
on the Internet, and forehead areas are manually selected for the experiments. We use
the DRIVE dataset [173] to test the proposed algorithm on retina images.

For all test sequences, we fix the modeling parameters as follows: `min is set to
5 pixels and `max = 20 pixels. The orientation θ is varying from −90○ to 90○ with
increments of 2○. The marginal distance of connected segments ε is fixed to 2 pixels, and
the maximum angular difference of aligned segments τ is 30○. For the SA, the initial
temperature T0 is set to 100, and it follows the logarithm cooling schedule Tt = T0/log(1+t),
where t denotes the number of the current iteration. We start the sampling process
with the empty configuration. However, careful choice of initial segments can speed up
the convergence of the algorithm (see Fig. 2.4). The computational time depends on
the image resolutions; it takes less than a minute for the experimental images having
300 × 400 pixels, approximately. We use a PC with a 2.9 GHz CPU (4 cores) and 8 GB
RAM.

To compare the performances of the proposed method with the state-of-the-art tech-
niques, we apply the path opening operator [177] on the gradient magnitude images by
controlling the length parameters. For the supervised feature learning algorithm [6], we
train 15 images for each dataset. In our experiments, we use the original implementations
of path opening operator2 and supervised feature learning algorithm3.

Fig. 2.5 shows the precision-and-recall curves for four test images. To obtain the
curve of the comparison methods [6, 177], we tune thresholds on line detection results.
The baseline MPP is selected from the line hypotheses among which it shows the best
performance. The performances of the supervised learning algorithm are controlled by
the quality of the training set; hence, it shows low performances on wrinkle and dna

datasets, which are composed of noisy images with various sizes. In particular, the
ground truth set of the wrinkle dataset is based on subjective perception. While
the morphology operator enhances linear structures on gradient magnitude images, it is
required to specify the length of the linear structures according to the target applications.
Since the pixelwise comparison fails to incorporate the geometry similarity with the
ground-truth, the proposed algorithm shows lower scores on the crack and retina

1https://www.biochem.wisc.edu/faculty/inman/empics/dna-prot.htm
2http://hugues.zahlt.info/91.html
3http://cvlab.epfl.ch/page-108936-en.html
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Figure 2.5: Precision-and-recall curves for pixelwise segmentation of curvilinear struc-
tures using path opening operator [177] with different setups of length, supervised feature
learning [6], baseline MPP, and the proposed method.

datasets. More specifically, the proposed algorithm detects slightly shifted lines for the
crack image.

Fig. 2.12 compares the detection results of the proposed MPP model with the man-
ually labeled image by human expert, morphology operator [177], supervised feature
learning algorithm [6], and baseline MPP. For a fair comparison, we set the threshold
values of the competing algorithms [6, 177] to obtain the closest recall scores to the
proposed algorithm. Blue pixels denote perfectly matching regions as compared with
the ground-truth. Green and red pixels show over-detected and under-detected results,
respectively. The main strength of the proposed algorithm is that it ensures stable per-
formances for all datasets without any parameter estimation procedure. The proposed
algorithm extracts the most salient line structures in the input image. On the other
hand, the proposed algorithm suffers from under-detection when the width of the line
structure is varying, for example, see the result for the retina. Such drawback can be
overcome if we introduce an additional parameter for width of the line segment in our
MPP model.

2.2.5 Concluding remarks

I have presented an MPP-based model to reconstruct curvilinear structures via vectorized
line segments. For the data likelihood, the density function computes rotated gradient
magnitude and intensity variance. Prior energies of the proposed MPP model define
interactions of the local configuration in terms of coupling energy states and overlapping
areas. We have proposed a new optimization scheme which is not biased by the parameter
selection in the MPP model. We used an advanced RJMCMC sampler with different
hyperparameter vectors to obtain line hypotheses. The line hypotheses span a feasible
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Figure 2.6: We visualize the localization of the curvilinear structures on input images
(a). We compare with the results of a manually labeled image by a human expert (b),
morphological filtering [177] (c), supervised feature learning [6] (d), baseline MPP (e),
and the proposed algorithm (f). Threshold values of (c) and (d) are chosen to achieve
the closest recall scores to the proposed method. We use blue pixels to indicate areas
which are completely corresponding to (b). Green and red pixels denote over-detected
and under-detected areas, respectively, as compared with ground-truth. The name of the
test images is from top to bottom: crack, wrinkle, dna, and retina.
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sample space, so that the final solution interprets underlying curvilinear structures more
faithfully. We have shown line detection results on a wide rage of datasets, and compared
the performances of the proposed method with morphological filtering [177], supervised
learning [6], and baseline MPP method. The whole optimization process is friendly
designed to the parallel implementation; thus, the computational time can be further
reduced by applying the parallel Monte Carlo sampler [195].

The main limitation of the method concerns its accuracy and suitability for real-life
applications. Even though we showed that the proposed unsupervised approach performs
fairly well for different kinds of images, the obtained accuracy may be not sufficient to
be applied in a real-world scenario. Therefore, the current trend consists in applying
supervised learning for applications dealing with curvilinear structure extraction.

2.3 Inference of curvilinear structure

In the following, I present our model based on supervised learning. More specifically, we
employ structured SVM to learn the ranking function that predicts the correspondence
between the given line segments and the latent curvilinear structures. To reconstruct the
curvilinear structure, we build a graph using the output rankings of the line segments,
and then look for the longest geodesic paths within this graph.

2.3.1 Overview of the proposed method

We first define notations and provide an overview of the proposed method (see Figure 2.7).
Assume that an image I contains a curvilinear structure. We denote the latent curvilinear
structure Ω ∶ I ↦ {0,1} for any pixel x of the image I:

Ω(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x is on the curvilinear structure,
0 otherwise.

(2.20)

This function is also related to a ground truth map, which is manually labeled, for
the machine learning framework and for the performance evaluation. We compute a
curvilinear feature map φ ∶ I ↦ R that represents oriented gradient information (see
Section 2.3.2.1). Since information embedded in a single pixel is limited to infer the latent
spatial patterns, we exploit image patches to compute input feature vectors. Let Px be
a patch of the feature map values within

√
M ×

√
M size of square window centered at

x, i.e., Px = {φ(x′) ∣ ∥x − x′∥∞ ≤
√
M
2 }. Using a rotation matrix Rθ defined on Euclidean

image space, we can rotate a patch with respect to the given orientation θ such as
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Figure 2.7: Overview of the proposed inference method.

Px,θ = {φ(x′) ∣ ∥R⊺
θ(x − x′)∥∞ ≤

√
M
2 }.

We use graph theory for shape simplification of the complex curvilinear structure.
For the pixels showing higher rankings, we build an undirected and weighted graph
G = (V,E). Then, we look for the longest geodesic path which corresponds to the coarset
curvilinear structure in the image. We iteratively reconstruct the curvilinear structure
by collecting paths that connect the remotest vertices in the graph. Consequently, the
proposed algorithm can represent the different levels of detail in the latent curvilinear
structure using the minimum number of pixels.

2.3.2 Curvilinear Feature

This section is devoted to compute the curvilinear feature descriptor that is used for
the inputs of the learning system. We perceive the latent curvilinear structure based on
inconsistency of background textures and its geometric characteristics. In other words, a
sequence of pixels corresponding to the curvilinear structure has different intensity values
compared to its surroundings, and shows thin and elongated shape. Thus, we compute
multi-direction and multi-scale image gradients to detect locally oriented image features.

2.3.2.1 Curvilinear feature extraction

We obtain oriented gradient maps using a set of steerable filters [54, 86, 150]. Before
applying the convolution operations, we normalize the training and test images to remove
the effects of various illumination factors:

Ĩ =
1

1 + e
−

I−E[I]
max(I)−min(I)

, (2.21)

where E[I] is the sample mean of the image.
The steerable filters are created by the second order derivative of isotropic 2D Gaus-

sian kernels. Let fθ,σ be a steerable filter that accentuates image gradient magnitude
for direction θ at scale σ. To take into account varying orientations and widths of the
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curvilinear structure, a feature map φ is combined by multiple filtering responses:

φ =
1

∣Θ∣
∑
θ

max
σ

{fθ,σ ∗ Ĩ}, (2.22)

where ∣Θ∣ denote the total number of orientations. We first find the maximum filtering
responses of the scale spaces, and then average for all directional responses. In this work
we consider 8 orientations and 3 scales.

2.3.2.2 Local orientation estimation

In the previous subsection, we evaluate the presence of curvilinear structure from the
amount of gradient magnitudes in image patches. Complex shaped curvilinear structure
also consists of various local orientations.

Assume that B ∈ {0,1}M be a basis spatial pattern of the curvilinear structure for the
baseline orientation (θ̄ = 0○). We manually designB as a simple line shape template which
highlights the middle of image patch (see Figure 2.8). If an image patch Px contains a part
of curvilinear structure, pixels on the curvilinear structure are sequentially accentuated
towards a particular direction θ. Recall that the geometric properties of the curvilinear
structure, it is rotatable and symmetric. We can rotate image patch to be aligned with
the basis spatial pattern.
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Figure 2.8: In this figure, we compare the statistics of pixel values in the rotated image
patches with respect to the given binary mask B ∈ {0,1}M . Assume that B encodes a
basis spatial pattern of the curvilinear structure toward the baseline orientation (θ̄ = 0○),
where darker gray color refers to 1. To estimate local orientation of the input image
patch, we rotate it and find the orientation which maximizes the statistical difference of
pair distributions. If the input image patch does not contain curvilinear structure (upper
row), there is no meaningful statistical difference for any orientation.

More specfically, we estimate the local orientation shown in image patches using
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statistical difference of the areas determined by B. For a rotated image patch Px,θ, we
compute normalized histograms of the pixels which are labeled as curvilinear structure
px,θ = hist (Px,θ ∣ B) and its counterpart qx,θ = hist (Px,θ ∣ ¬B), where hist (⋅) denotes
histgram of the given distribution with 32 bins. Similar to [2], we employ χ2 test to
compute statistical difference of two distributions:

θ̂ = argmax
θ

χ2 (px,θ, qx,θ) , (2.23)

χ2
(p, q) =

1

2
∑
i

(p(i) − g(i))2

p(i) + g(i)
. (2.24)

Figure 2.8 compares statistics of the image patches with respect to different orienta-
tions. If an image patch contains curvilinear structure, χ2 test score shows uni-modal
distribution which shows a peak at the dominant orientation.

2.3.3 Learning

We regulate the orientation and the shape of the input patches with respect to the basis
spatial pattern B. In this section, we aim to learn a function that predicts structured
output rankings of the input image patches. Thus, the output rankings indirectly infer
the spatial patterns of the curvilinear structure for image patch.

Let vec (⋅) be an operator to convert an image patch into a column vector. For a pixel
xi, the input feature vector is defined as zi = vec (Pxi,θi ∣ B) ∈ RN and yi ∈ R+ denote
the corresponding rank value. For a feature vector, we exploit subsampled pixels on the
linear template to avoid data imbalance. Thus, the dimension of feature vector N is
small when compared to the total number of pixels within the patch, i.e., N ≤M .

For the setup of machine learning, a training dataset D = {(zi, yi)}Ki=1 consists of the
K input-and-output pairs. Let {z1, . . . ,zK} ∈ Z be an unordered list of the input feature
vectors and {y1, . . . , yK} ∈ Y be the corresponding classes. The input feature vector z is
built from the curvilinear feature map φ. Our goal is to learn a ranking function h(z)
which assigns a global ordering (ranking) of feature vectors: h(zi) > h(zj) ⇔ yi > yj .
The inner product of the model parameter and a feature vector w⊺z is used to predict
ranking score of the given image patch.

In our work Structured SVM framework [90, 139] is employed to exploit the struc-
ture and dependencies within the output space Y. To encode the structure of the output
space, a loss value ∆ of each input feature vector is defined: h(zi) > h(zj)⇔ ∆i < ∆j .
The loss value evaluates the quality of the learning system. Intuitively, the input im-
age patches containing curvilinear structure are comparable to the basis spatial pattern.
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Hence, as an image patch is similar to the basis spatial pattern, we should put it on a
higher ranking. Specifically, we compute the loss value as the overlapping ratio between
image patch from the groundtruth map Ω and the basis B:

∆i = 1 −
∣Ωxi,θi ∩B∣

∣Ωxi,θi ∪B∣
, (2.25)

where Ωxi,θi denotes a rotated image patch referring to groundtruth map Ω. The objec-
tive function of Structured SVM with a single slack variable ξ is given by:

min
w,ξ≥0

1
2w⊺w +Cξ

s.t. 1
∣N ∣ ∑

(i,j)∈N
cijw

⊺(zi − zj) ≥ 1
∣N ∣ ∑

(i,j)∈N
cij −

ξ
∆j−∆i

,

∀(i, j) ∈ N , ∀cij ∈ {0,1}

(2.26)

where cij is the indicator variable to reduce the number constraint in linear complexity
O(K):

cij =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∆i < ∆j and w⊺zi −w⊺zj < 1,

0 otherwise.
(2.27)

Cutting plain algorithm [188] is employed to solve (2.26). For the details about the
Structured SVM optimization, we refer the reader to [90, 139, 188]. In the following
section, we plot the initial segmentation map from the structured rankings scores. We
also exploit these ranking scores for the shape simplification based on graph traversal
algorithm.

2.3.4 Curvilinear Structure Reconstruction

To detect and represent the latent curvilinear structure, various local measures have been
proposed. The score of the local measure is regarded as a likelihood probability whether
a pixel is on the latent curvilinear structure. Most of the previous works represent the
curvilinear structure as a binary map based on the linearity scores of the pixels. This
approach easily misinterprets the topological features. In this section, we propose a novel
structured score map based on the output ranking scores and the basis spatial pattern.
We also develop a graph-based model which is able to organize the topological features of
the structure in different levels of detail. Figure 2.9 shows step-by-step processing results
to reconstruct the latent curvilinear structure. In other words, we have the information
how each pixel is relatively important to represent the underlying curvilinear structure.
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(a) (b) (c) (d) (e) (f)

Figure 2.9: For the given image (a), we compute (b) the structured output ranking
with Structured SVM. We retain binary map (c) from the highest to ρ∣I ∣-th rankings.
However, it could be broken. We exploit the basis spatial pattern B to reconstruct (d)
the structured score map. Graph-based representation provides a tool to analyze the
topological features of the curvilinear structures. (e) The coarsest curvilinear structure
evolves to define (f) branches.

2.3.4.1 Structured score map

We have obtained a score function h(z;w) that evaluates the compatibility between the
input features and the underlying curvilinear structure based on the structured output
rankings. From the training dataset, we pre-compute the proportion ρ of pixels being
part of the curvilinear structure. Note that the value ρ maximizes F1 test scores for the
groundtruth maps in the training dataset. During the test phase, we retain the output
ranking according to the output ranking scores from the highest to the ρ∣I ∣-th rank. As
shown in Figure 2.9 (c), a binary map can be disconnected.

To avoid unwilling breakpoints, we composite the structured score map Π ∶ I ↦ R
using the binary map, induced by ranking scores w⊺z, and the basis spatial pattern B.
Recall that we initially estimate the ranking score using the shape similarity between
oriented image patch of ground truth and the basis spatial pattern in (2.25). Thus, it
can be seen as the inverse mapping from output ranking score to the latent curvilinear
structure. Let b = vec (B) be the column vector version of the binary mask B and Qxi,θi

be the patch of structured score map Π centered at xi with θi. We minimize the following
cost function with respect to πi = vec (Qxi,θi):

J = min ∑
xi∈I′

∥b − (w⊺zi)πi∥2
2. (2.28)

This is a least square problem, so that the solution is found at points which satisfy
∂J
∂π = 0. To reconstruct the structured segmentation map, we synthesize obtained patches
Qxi,θi = vec−1 (π̂i) at the subsampled grid points on image xi ∈ I ′, where π̂i = (w⊺zi)−1b.
We refer the readers to [105] for the implementation details of the related texture synthesis
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Algorithm 2 Progressive curvilinear path reconstruction
1: Inputs:
2: G′ = (V ′,E′) ∼ a subgraph of G; and
3: ˆ̀∼ a minimum length of the curvilinear structure
4: Output:
5: P ∼ a set of vertices corresponding to the simplified curvilinear structure
6: P ← ∅

7: longest_path_length ← ∣V ′∣
8: while do
9: Compute the longest geodesic path T in G′ using [30]

10: longest_path_length ← ∣T ∣

11: if longest_path_length< ˆ̀ then
12: break
13: end if
14: P ← P ∪ T
15: w(u,v) ← 0, ∀{u,v} ∈ T , Update all edge weights on the path T as 0 for the given

subgraph G′

16: end while

technique.

2.3.4.2 Progressive curvilinear path reconstruction

We consider the graph G = (V,E) where V is the set of pixels. Two pixels u and v are
connected by the edge if and only if ∥u− v∥ ≤

√
2. Moreover, we assign a weight for each

edge {u,v} ∈ E as w(u,v) = ∥u − v∥Π(u)+Π(v)
2 . A path P in the graph G is a sequence of

distinct vertices such that consecutive vertices are adjacent. The length of P is the sum
of the weights of its edges, and the distance dist (u,v) between two vertices u and v is the
minimum length of a path from u to v. The eccentricity ecc (v) denotes the maximum
distance from the vertex v to a vertex u ∈ V , i.e., ecc (v) = maxu∈V dist (u,v). The
diameter diam (G) of G equals maxv∈V ecc (v), i.e., it is the maximum distance between
two vertices in G.

To simplify the latent curvilinear structure, we look for long geodesic paths in the
subgraph G′ of G induced by the pixels with structured score map Π. More precisely, our
algorithm computes a diameter of G′, i.e., a shortest path T with length diam (G′). This
path T is added in the simplified curvilinear structure, then the path T is contracted into
a single (virtual) vertex. For the implementation, the weight of all edges of T become 0.
We repeat this process till the diameter of the subgraph is larger than pre-defined path
length ˆ̀. The entire procedure is summarized in Algorithm 2.

The time-consuming part of the proposed algorithm is the computation of a diameter
of G′. Rather than computing all pair distances (which requires a linear number of
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(a) (b) (c) (d) (e) (f)

Figure 2.10: Toy example of the proposed curvilinear structure inference algorithm: (a)
input image contains a curvilinear structure which is denoted by gray color; (b) subgraph
G′ is induced from the structured segmentation map; (c) and (d) show the intermediate
processes of the 2-sweep algorithm starting from vertex t to find a diameter of the
subgraph; (e) we assign 0 weight for all edges on the path; and (f) we repeat the process
and add branches if the path length is larger than pre-defined length ˆ̀.

applications of Dijkstra’s algorithm), we use an efficient heuristic algorithm called 2-
sweep algorithm [30]. The 2-sweep algorithm randomly picks a vertex t in G′, then
performs Dijkstra’s algorithm from t to find a vertex u at the maximum distance from
t, i.e., dist (u, t) = ecc (t). Then, it computes (using Dijkstra’s algorithm) a path from u

to a vertex v at the maximum distance from u. The length of the second path (from u

to v) is a good estimation of diam (G′). Note that this algorithm is able to compute the
exact diameter if the considered graph has a tree structure [16]. Topologically speaking,
most of latent curvilinear structures are very close to trees [66, 190]. Therefore, the
2-sweep algorithm is well adapted to reconstruct the tree-like curvilinear structures. For
a better understanding, we schematically explain the intermediate steps of the proposed
curvilinear structure simplification algorithm in Figure 2.10.

2.3.5 Experimental results

In this section, we first discuss the parameters of the proposed algorithm and datasets.
We then compare the quantitative and qualitative results of the proposed algorithm and
those of competing models proposed by [52], [110], [5], and [169].

2.3.5.1 Parameters and Datasets

The proposed algorithm requires few parameters to compute the curvilinear feature de-
scriptor φ. We use 8-different orientations in this work: Θ = {0○,22.5○,45○,57.5○,90○,112.5○,

135○,157.5○}. The size of steerable filters is fixed to 21 × 21 pixels. The scale factors σ2
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and the minimum path length ˆ̀ are adaptively selected for each dataset to obtain the
best performances. The binary spatial pattern B is based on the physical attribute of
the dataset in that thickness τ of curvilinear structure shows various depending on the
dataset. For Structured SVM training, we sample 2000 image patches on each dataset.
All patch sizes are fixed to M = 332. C which controls the relative importance of slack
variables is set to 0.1 for all datasets. We choose the set of parameters for the SSVM
training via 3-fold cross validation [99] which maximizes the average F1 score [134] of the
training set.

We test our curvilinear structure model on the following public datasets:

● Aerial [169]: The dataset contains 14 remote sensing images of road networks. We
select 7 images for the training and 7 images for the test, respectively. We use
ˆ̀= 80, σ2 = {4,8,12}, and τ = 9.

● Cracks [24]: Images of the dataset correspond to road cracks on the asphalt sur-
faces. We use 6 images to train and test the algorithms on different 6 images. For
this dataset, we set to ˆ̀= 30, σ2 = {2,4,8}, and τ = 3, respectively.

● DRIVE [174]: The dataset consists of 40 retina scan images with manual segmen-
tation by ophthalmologists to evaluate the blood vessel segmentation algorithms.
We use 20 images for the training and 20 images for the test, respectively. The
path length ˆ̀ is set to 40. The scale factors and thickness are set to σ2 = {2,4,8}

and τ = 5, respectively.

● RecA [88]: We collect electron microscopic images of RecA proteins on DNA which
contain filament structure. We use 4 training images and 4 test images. We use
ˆ̀= 30, σ2 = {4,8,12}, and τ = 5.

2.3.5.2 Evaluations

The proposed algorithm progressively reconstructs the curvilinear structure by adding a
long path on the subgraph. Figure 2.11 shows the intermediate steps of the proposed
curvilinear structure simplification algorithm for DRIVE dataset. Unlike the previous
models, the proposed algorithm is able to show different levels of detail for the latent
curvilinear structure. Such information to visualize shape complexity of the curvilinear
structure cannot be retrieved by setting a threshold. In practice, a few number of itera-
tions is required to converge the algorithm and each step to find a long path takes less
than milliseconds for the computation. For the experiments, we used a PC with a 2.9
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(a) GT (b) # 1 (c) # 2 (d) # 3 (e) # 4 (f) # 5 (g) # 9

(h) GT (i) # 1 (j) # 3 (k) # 5 (l) # 7 (m) # 12 (n) # 20

Figure 2.11: Intermediate steps of the curvilinear structure reconstruction for a retina
image. We iteratively reconstruct the curvilinear structure according to topological im-
portance orders. As the iteration goes on, detail structures (layer) appear.

GHz CPU (4 cores) and 8 GB RAM. Moreover, we visually compare the performance of
the proposed algorithm with the competing algorithms. Figure 2.12 shows the results for
Aerial, Cracks, DRIVE, and RecA datasets, respectively. The proposed algorithm is the
most suitable to show the topological information of the latent curvilinear structures.

For the quantitative evaluation, we provide F1 scores of the proposed algorithm and
the state-of-the-art models in Table. 2.1. The measure of true positive is sensitive for
the misalignment; therefore, we consider surrounding pixels of the detection results as
the true positive if a predicted point is falling into the ground truth with a small radius
(equivalent to its thickness parameter τ) similarly to [169]. We also provide the average
proportion of pixels to represent the curvilinear structures. It shows that the proposed
algorithm efficiently draws the curvilinear structures using smaller number of pixels than
the other algorithms.

The proposed algorithm achieved the best F1 scores for all except the DRIVE dataset.
It is because the proposed algorithm use the fixed thickness τ to describe linear structure
in the binary mask B; however, the images consisting of DRIVE dataset exhibit varied
thicknesses of blood vessels and many junction points. In other words, we obtain a
model parameter regarding to the manually designed binary pattern B. To overcome this
drawback, we plan to exploit generative binary patterns based on the training images in
the future, which is possible in our framework.

It is worth mentioning the risk of over-fitting in curvilinear segmentation task based
on machine learning. Manual segmentation (ground truth) contains many errors around
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(a) Input (b) GT (c) [52] (d) [110] (e) [5] (f) [169] (g) Ours

Figure 2.12: Illustration of the curvilinear structure reconstruction results on Road,
Crack, DRIVE, and RecA datasets (top to bottom). We compare the results of Frangi et
al.’s [52], Law & Chung’s [110], Becker et al.’s [5], Sironi et al.’s [169], and the proposed
algorithm (left to right).

boundaries and minutiae components. Also, the number of training data employed in
this work is relatively small due to the difficulties of making the accurate annotations.
Specifically, since RecA dataset has only four training images, there is a high risk of
over-fitting to the training set. It is remarkable that the proposed algorithm shows
good performance for all datasets without over-fitting problem when compared to other
learning based algorithms [5, 169].

2.4 Concluding remarks

I have described two classification approaches which are based on a template concept and
aim to reconstruct curvilinear structures from image data. The structures are modeled
as a set of line segments with different orientations. The first approach is unsupervised
and based on Marked point process and Monte Carlo sampling. One of key innovations
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DRIVE RecA Aerial Cracks
Frangi et al. [52] 0.33 0.33 0.32 0.056
Law & Chung [110] 0.43 0.21 0.25 0.085

(a) F1 Becker et al. [5] 0.50 0.45 0.53 0.23
Sironi et al. [169] 0.55 0.50 0.55 0.27
Proposed (Graph) 0.36 0.59 0.59 0.38
Frangi et al. [52] 37.09 16.14 22.19 28.64
Law & Chung [110] 19.60 29.82 29.51 33.00

(b) ρ(%) Becker et al. [5] 12.67 9.39 9.76 32.13
Sironi et al. [169] 5.41 5.47 0.83 17.12
Proposed (Graph) 0.17 0.57 0.35 1.07

Table 2.1: Comparison of the quantitative performances over the datasets. We provide
results with various performance measures: (a) F1 scores, and (b) average proportion ρ
of the pixels being a part of curvilinear structure. Boldfaced numbers are used to show
the best score in each test.

of the proposed method is that instead of manually fixing hyperparameters, we proposed
a new optimisation algorithm which seeks to maximize the consensus between various
line hypotheses, obtained by simulating several Markov chains with different parameter
settings.

The second approach is based on the ranking learning system and graph theory. We
learned a SSVM-based ranking function corresponding to the plausibility of the latent
curvilinear structure. Furthermore, we proposed a novel graphical model that infers the
curvilinear structure according to the topological importance. Across the various types
of datasets, our model showed good performances to reconstruct the latent curvilinear
structure with a smaller number of pixels when compared to the state-of-the-art algo-
rithms.

The main limitation of the proposed methods lies in the lack of genericity, which is a
well-known limitation of the template-based approaches. The approaches in this chapter
have been tuned for applications dealing with curvilinear structures. In the next chapter,
I will present a graph-based model which allows to introduce different soft shape priors
into a classification process.



Chapter 3

Hierarchical Model for Image
Classification

In this chapter, I present our study on the use of soft shape priors to improve the quality
of classification. While classification is usually formulated as the minimization of an
objective function, or energy, it is difficult to optimize such an energy if it involves shape
priors because of their non-local nature [113]. The state-of-the art methods require either
the design of an optimizer specific to the particular shape prior [69, 168], or a complex way
of incorporating it, when possible, into energies minimizable by standard techniques [37,
194]. Moreover, in the context of remote sensing we require to treat classification as a
multi-object multi-class problem, since we typically find multiple instances of the different
classes in a single image.

We have proposed a method for shape-aware classification, which takes into account
the typical shape of object classes in terms of shape descriptors, such as rectangularity,
compactness and solidity. For this, we use a hierarchical data structure, the binary
partition tree (BPT) [158], which can be easily augmented to include shape information.
However, their traditional greedy construction approach does not yield a good utilization
of the shape constraints. We thus proposed a method to iteratively optimize the structure
of BPTs to produce better partitions with shape constraints. This enables us to perform
multi-object multi-class classification with shape prior, and to enhance BPTs so that
they better represent the underlying scenes.

42



CHAPTER 3. HIERARCHICAL MODEL FOR IMAGE CLASSIFICATION 43

3.1 Related work

Shape and optimization

In the literature regarding shape features for segmentation, we can distinguish contri-
butions that focus on explicit shape models in a template matching manner and others
geared at incorporating discriminative features, or soft shape priors (e.g., convexity, com-
pactness).

In the context of template matching, a number of approaches have proposed to use
the active contours framework [31, 114]. The evolution of the curves is usually slow and
prone to get trapped in poor local minima. A second family of approaches finds global
optimal solutions, but on high-dimensional specially constructed graphs. For example,
Schoenemann and Cremers [162] proposed to look for minimal ratio cycles in the product
graph of the input image and the shape template. These methods find a globally optimal
segmentation in polynomial time on the high-dimensional graph. However, besides their
complexity, these contributions are in general not suitable for fitting multiple templates
in the same image [94]. Regarding graph-based optimization, a template fitting method
to fit was proposed by Fredman and Zhang [53], which must be run repeatedly to account
for non-rigid deformations. Other iterative models have been also proposed by coupling
graphical models with shape cues [81, 102]. These approaches are computationally in-
tensive, since every loop contains expensive operations.

To include discriminative features (e.g., compactness, ellipticity), Slaubaugh and
Unal [170] proposed to repeatedly fit ellipses on minimal cuts for an elliptical prior. More
recent contributions have managed to express certain shape priors (star-shape [194], com-
pactness [37, 56]) in energies minimizable by traditional s-t cuts. These approaches rely
on the ability to express the shape prior in the pairwise interaction term of a Markov
random field which might be, when feasible, algorithmically complex (e.g., analyzing in-
tersections with a rotating discrete line around a used-defined point [194]). The trust
regions framework [68] can minimize high-order functionals, and has been adapted for
certain shape priors (volume, shape moments [68]). It requires to provide a linear ap-
proximation of the energy around the current solution. Gorelick et al. [69] expressed the
convexity prior as the count of ‘1-0-1’ configurations along a discrete set of lines. They
proposed a linear approximation and a dynamic programming algorithm for its efficient
computation. It is not clear however how to directly adapt the framework to further
priors (e.g., rectangularity index) or to combine different priors under the same scheme.
Moreover, most of these techniques do not contemplate the occurrence of multiple ob-
ject instances. For example, multiple convex segments are indeed penalized in [69] when
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counting the ‘1-0-1’ sequences in the scene.

Multi-object segmentation

To cope with the simultaneous detection of multiple objects, the marked point process
(MPP) framework has been used to fit an unknown number of parametric shape models.
Rectangles [145] and ellipses [41] are some of the geometric elements that have been
considered, and I have described our MPP model for line elements in the previous chapter.
The optimal solution is sought by stochastic optimization. Karantzalos and Paragios [94]
have extended the active contours framework to fit multiple templates in a single image.

To our best knowledge, most recent contributions cited above (e.g., [53, 69, 194])
require to isolate every object (with prior knowledge on their location) and segment it
individually.

Hierarchical trees

The notion of hierarchy has been particularly exploited in several image analysis appli-
cations, such as the detection of objects by its parts [51] and depth ordering [147].

A number of data structures have been designed to represent images as a hierarchy of
regions, such as min/max-trees [159], α-trees [112] and binary partition trees [158]. In our
work, we have focused on binary partition trees (BPTs), which have been particularly
useful in various domains including remote sensing. Multi-label classifications can be
extracted efficiently from a BPT by performing a cut on the tree that covers all pixels
at arbitrary scales. Recent works have explored the use of shape descriptors during the
cuts [192, 196].

BPTs are constructed by successively merging regions with similar colors. Even
though BPTs can constitute a good hierarchical approximation to the underlying struc-
ture of an image, the bottom-up approach propagates and amplifies the errors produced
at the lower scales. As a result, it is very likely that nodes in the BPT will not represent
complete significant objects [125, 196]. Previous works mitigated this problem by adding
penalties, such as the growth of perimeters [196], the elongation of the regions [104]
or edge information [184]. The authors of [196] fitted templates on partially detected
objects. These approaches can only alleviate the effect.

As another consequence of the bottom-up approach, shape information cannot be used
during construction: the ultimate shape of an object in a branch cannot be predicted by
a portion of it. As a result, the criteria used at construction and processing of the trees
are different (as in [192, 196]), which limits the feasibility of the tool as it is to perform
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Figure 3.1: A binary partition tree (BPT) is a hierarchical subdivision of an image. An
exhaustive partitioning can be extracted by “cutting” branches at different scales.

segmentation with shape priors.

Optimization of hierarchical trees

Optimization of hierarchical trees has been carried out in the area of computational
phylogenetics, on the construction of phylogenetic trees. These trees represent the evo-
lutionary relationships among species [117]. Several common optimization algorithms
(hill climbing, simulated annealing, genetic algorithms) have been applied on the tree
structures [63]. The standard moves (known as branch-swapping or swappers) are near-
est neighbor interchange, subtree pruning and regrafting (SPR) and tree bisection and
reconnection (TBR). SPR is the pruning/paste of a subtree into another location, while
TBR rearranges the subtree before pasting. The most common objective is to maximize
the parsimony of the tree, i.e., to explain the observed data with the least evolutionary
change. We have incorporated the idea of regrafting tree branches. Our optimization
objective is however different, and our context requires to define moves that preserve the
parent, child and spatial adjacency relations of BPTs.

3.2 Background on binary partition trees

Binary partition trees (BPTs) were pioneered by Salembier and Garrido [158] as a means
to represent a set of meaningful image regions in a compact and structured manner. The
root node corresponds to the entire image, the following level represents the subdivision
of the entire image into two disjoint regions, and so on. It represents then a hierarchical
abstraction of an image, which can be navigated to extract meaningful regions at different
scales. The typical workflow involves an initial tree construction stage, followed by
a second stage of information extraction from the tree. For example, once a tree is
constructed, an exhaustive segmentation of the image can be obtained by performing a
horizontal “cut” on the structure (see Figure 3.1). In this procedure, commonly referred
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Figure 3.2: A BPT is constructed by iteratively removing edges in a region adjacency
graph (RAG). The resulting BPT encodes the history of the merges.

to as pruning, branches can be selected at different scales, an inherent advantage of such
hierarchical structure. Visual browsing [158], object localization [196] and depth ordering
[147] are some of the application domains where BPTs have been used, beyond remote
sensing.

The construction of a BPT is performed in a bottom-up fashion, by iteratively clus-
tering pairs of similar regions. The starting point is an initial subdivision of the image
represented by a region adjacency graph (RAG), where every node conveys a region and
the edges link spatial neighbors (i.e., candidates for merging). The typical initial RAG is
the pixel grid, though nothing prevents the approach from being used with other inputs
too (e.g., a RAG of small regions containing similar pixels, known as superpixel segmen-
tation). Every edge in the RAG is labeled with a dissimilarity value that compares the
two associated regions.

BPTs are constructed by following a global mutual best fitting region merging ap-
proach [109]: at each iteration, the two most similar regions in the current subdivision
are merged together (i.e., the least weighted edge out of all edges in the RAG). When
a merge occurs, a new region is added to the BPT, connected to its two corresponding
children, as illustrated in Figure 3.2. The process finishes when there are no more edges
left in the RAG. A BPT thus records the history of merges that occurred during the
execution of a region merging algorithm.

The overall process can be implemented efficiently by using an updatable priority
queue structure on top of the RAG edges to keep track of the highest priority element.
Such a structure is first constructed in linear time and every subsequent update incurs in
a logarithmic time cost. When two regions R1 and R2 are merged into a new region R12,
one must update the RAG (and the associated priority queue). The edge connecting R1

and R2 must be removed, but let us also remark that all the edges adjacent to R1 and
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R2 must also be eliminated from the RAG, since none of both regions exists anymore.
We must then add the adjacency relations of the new region R12. The computation is
straightforward: the neighbors of the new region R12 are nothing but the union of the
neighbors of the old R1 and R2 (with special care to remove any duplicates that may
arise). The dissimilarity value associated to each of these edges must be computed and
pushed to the priority queue. The complexity of the overall BPT construction process
is O(n log(n)M), n being the initial number of nodes and M the maximum number of
neighbors of a merged region during the construction. Given that typically M ≪ n,
the algorithm is quasilinear in practice. Recent advances have further accelerated the
algorithm [1]. Among other improvements, the priority queue only stores the edge with
the lowest dissimilarity value for each node. The other edges are brought back into
consideration if the surrounding nodes are affected by a merge.

The final tree contains exactly 2n − 1 nodes, which is a very space-efficient represen-
tation. Let us remark though that only a subset of all possible planar subdivisions is
represented by the tree, which highlights the importance of research efforts to construct
a good initial tree that conveys meaningful objects of the underlying image.

The key elements to define the behavior of a BPT are the region model, i.e. how
regions are represented, and the dissimilarity function, i.e. the function to compare the
region models, used to define the priority of the merges during tree construction. We
review next the contributions related to these two elements.

Region model

The object-based nature of BPTs yields rich representations of the region that go beyond
pixel spectra. Every BPT node can convey regional information, describing the region
as a whole and not as a set of individual pixels. Examples of the regional data that can
be associated to every node are the standard variation of the spectral signatures in the
region, or shape features such as compactness.

To represent the spectrum of a region (and then compare it to the spectra of other
regions) there are essentially two alternatives: parametric and non-parametric models.
A parametric model makes assumptions about the homogeneity or Gaussian distribution
inside the regions. A typical parametric model is to represent the spectrum of a region as
the mean spectrum of its pixels. Non-parametric models, on the contrary, consist of per-
band histograms of the pixel values, hence they represent the real observed distributions.
In hyperspectral imagery, non-parametric models have a better performance since they
can describe the internal variability of a region [191]. For example, a texture might
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correspond to several peaks in the histogram. When averaging spectra in regions with
high variability, one might end up representing the region with a “false” spectrum that is
not present in any of the individual pixels. In addition to spectral data, the model usually
stores the area of the region, since it is commonly used in the dissimilarity function.

Dissimilarity function

To establish a priority for merging during BPT construction, it is required to provide a
means to compare models of two regions. A dissimilarity function O(R1,R2) typically
used for this purpose comprises two factors as follows:

O(R1,R2) = min(∣R1∣, ∣R2∣)
βD(R1,R2), (3.1)

where ∣Ri∣ denotes the area of region Ri. The first part of (3.1), min(∣R1∣, ∣R2∣)
β , is

the so-called area-weighting factor. This is an agglomerative force intended to cluster
regions that are very small compared to the rest of the elements in the RAG. When no
area-weighting is used (i.e., β = 0), the resulting BPT might isolate small noisy areas
and connect them to the rest only near the root of the tree. With moderate values
of β, small regions are merged at some point, forcing the tree to better look like a
hierarchical subdivision. When β is too large, the trees may become too biased toward
being balanced, hampering their representation capabilities. Even though this parameter
is barely discussed in the literature, being mostly set to β = 0.5 or β = 1, we must point
out that it is an arbitrary parameter that has to be selected. In our experience, no
area-weighting leads to poor representations (e.g., the root containing two children: one
noisy pixel and all the rest of the image), while low values of β solve this issue without
biasing the trees too much. Alternatively, Calderero and Marques [20] proposed to keep
track of the out-of-scale regions and force their merging at some point, while Valero et
al. [191] used a weighted sum of pixel values in a window to initialize the histograms, as
a way of smoothing out outliers.

The second factor,D(R1,R2), compares both regions based on their spectra. Kullback-
Leiber divergence and Bhattacharyya distance are popular choices both in hyperspectral
imagery and other types of images [20, 191]. Spectra are seen as probability distributions
and compared using standard information theory concepts. Every bin of one histogram
is compared against the corresponding bin of the other histogram. However, using cross-
bin measures, which go beyond individual bins, has proven to be more robust [191]. The
average of Earth Mover’s Distances [156] among histograms of all bands has also been
used as a robust and efficient cross-bin dissimilarity function [147]. Every distribution is
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seen as a pile of dirt, and the difference between two distributions is seen as the amount
of work required to turn one pile into the other one.

3.3 Proposed method

In the following, we first pose our problem as the minimization of an energy, based on
probability distributions of spectrum and shape features. We then describe how we build
an initial BPT and process it to find the best partition represented by this tree. Finally,
we describe an optimization algorithm to modify the initial BPT, in order to extract a
classification that minimizes our energy.

3.3.1 Energy formulation

Let I = (Ij)1⩽j⩽n be an input image containing n pixels. We assume we are given a
set of possible object classes, as well as priors for each class. Multi-label segmentation
consists in an exhaustive partitioning of the pixels into a non-overlapping set of regions
R = (Ri), together with associated class labels L = (Li), where labels Li belong to a set
Ω of available labels. It can be stated as an optimization problem: minimize

E(R,L) = EC(I,R,L) + ∑
Ri∈R

ES(Ri, Li), (3.2)

where EC expresses the color prior (quantifying how the segmentation fits the image
spectrum), and ES , the shape prior.

3.3.1.1 Color prior

For each object class, we suppose we are given training examples, from which the color
distribution can be estimated and used as a prior. Given a candidate segmentation
(R,L), the color prior is defined as follows:

EC(I,R,L) = ∑
Ri∈R

∑
Ij∈Ri

− logP (Li∣Ij). (3.3)

One way of obtaining the posterior P (Li∣Ij) is to train classifiers based on the samples’
colors, using support vector machines (SVM), and to extend them to output probability
estimates as usual in classification problems [206].
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3.3.1.2 Low-complexity shape features in BPTs

Similarly, the shape prior term is defined as follows:

ES(Ri, Li) = −∣Ri∣ logP (Li∣Si), (3.4)

∣Ri∣ being the area of region Ri, and P (Li∣Si) being the probability of assigning the
label Li to the region Ri, given a vector Si of shape features of that region. Common
regularization (such as boundary length [143]) can be incorporated as part of this term.
The weight on the area makes the per-pixel contribution of the color prior and the per-
region contribution of the shape prior equally important.

We wish to enrich the nodes of BPTs by including shape information of the corre-
sponding regions. Given that the optimization of the trees involves recomputing region
descriptors, we must design a pool of features that can be computed efficiently from
children nodes. In addition, the errors in estimating the shape descriptors in the finer
levels should not be amplified in the upper ones.

Area can be efficiently computed by adding the areas of the children. Rectangular-
ity and elongatedness shape descriptors have been used in the context of hierarchical
methods [104, 183, 192], though no details on how to efficiently implement these features
are provided. An oriented rectangle B of height h and width w is said to be the mini-
mum area enclosing rectangle (MAR) of a region R if it is the rectangle of minimal area
that entirely contains R. Rectangularity measures the resemblance to a rectangle, and
is computed as ∣R∣/(h ⋅ w). Elongatedness measures the resemblance to a line, and is
defined as w/h.

We propose to store the convex hull of the region at every node. When two regions
are merged, the convex hull of the new region can be computed by merging the convex
hulls of its children. This can be done in linear time in the size of the input polygons
by using rotating calipers [185]. The MAR can be efficiently computed after it [185].
Rectangularity, elongatedness and other descriptors like solidity [210] (filled fraction
of the convex hull) are then directly derived. In a balanced tree, which is enforced by
our construction function, convex hulls incur in an O(n log(n)) increase of the storage
required. Their computation does not increase the complexity of tree construction (proofs
in Appendix A.2).

In a discrete environment, the errors of computing the region areas converge as the
areas grow, so do the convex hulls. As a consequence, the aforementioned features tend
to be more precise in the upper levels of the trees.

Another useful shape descriptor is compactness [141], related to the resemblance to
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a circle. It is typically defined as δR2/(4π∣R∣), where δR is the perimeter of R. However,
this formulation imposes difficulties in a discrete environment [141] due to the fact that
the error in the estimation of δR does not converge. Li et al. [119] proved the robustness
of computing compactness as ∣R∣2/(2πIg), Ig being the moment of inertia of the shape
with respect to its centroid. Given that the centroid and moment of inertia of a region
can be computed in constant time from the children, we propose this method to measure
compactness in BPTs.

Let us assume that a probability density function p(s∣L) is available for every fea-
ture and class. These densities can be obtained by smoothing histograms of training
samples [165]. Let us call S = s1, ..., sm a vector of shape features. Assuming features’
conditional independence, we have:

P (L∣S)∝
m

∏
k=1

P (L∣sk) =
m

∏
k=1

p(sk∣L)

∑
Lj∈L

p(sk∣Lj)
. (3.5)

3.3.1.3 Total energy

Combining Eq. (3.2), (3.3) and (3.4), the energy criterion to minimize is formulated as:

E(R,L) = −
∣R∣
∑
Ri∈R

( ∑
j∈Ri

logP (Li∣Ij) + ∣Ri∣ logP (Li∣Si) ) (3.6)

3.3.2 Tree construction and processing

In this section we describe our proposed BPT construction approach, as well as the
algorithm to extract the optimal classification from a BPT.

3.3.2.1 Supervised BPT construction

In Section 3.2, it was mentioned the region merging algorithm used to construct BPTs
requires to define amodel to represent the regions and a dissimilarity function to compare
the regions. We choose a non-parametric model (i.e., spectral histograms) to represent
the region, due to their well-known advantages (see Section 3.2). We have proposed,
however, a modified dissimilarity function to construct the BPT [127].

In BPT-based classification methods (e.g., [191]), the dissimilarity measure used to
construct the trees is purely based on the comparison of spectral histograms. In fact,
commonly used dissimilarity functions (Eq. 3.1) always penalize the merging of dissim-
ilar regions. Let us recall that non-parametric models were introduced to represent and
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compare inhomogeneous regions, useful for textures and light gradients. However, inter-
nal class variability (e.g., an object composed by areas of different spectra) is not at all
considered. In an unsupervised context, where there is no notion of object class, there is
little hope to deal with this, since there is no reason to cluster dissimilar regions. How-
ever, when class probabilities are available we propose to include an additional force that
clusters regions belonging to the same class, despite being spectrally dissimilar. The new
function is as follows:

O(R1,R2) = min(∣R1∣, ∣R2∣)
β
[(1 − α)D(R1,R2) − α logP (LR1=LR2)]. (3.7)

As in the original dissimilarity function (3.1), there is an area-weighting factor and an
unsupervised term D(R1,R2), which is computed by comparing spectral histograms of
regions without any preliminary training. We here use the Earth’s Mover Distance,
due to its robustness to changes in illumination and its efficient computation [156, 147].
Equation 3.7 adds a supervised term P (LR1=LR2 ∣R1,R2), the probability of assigning
the same label to both regions. This way, while the unsupervised term penalizes spectral
dissimilarity, the supervised term will encourage merging regions that are likely to belong
to the same class. The trade-off between both terms is controlled by parameter α.

The term P (LR1=LR2 ∣R1,R2) is computed by marginalizing over the classes as fol-
lows:

P (LR1 = LR2 ∣R1,R2) =
K

∑
j=1

P (Lj ∣R1)P (Lj ∣R2), (3.8)

where K denotes the number of classes and P (Lj ∣Rk), with k ∈ {1,2}, represents the
probability of assigning a certain label Lj to segment Rk. We must now define a way
to compute P (Lj ∣Rk) based on the posteriors of the individual pixels contained in the
region. One way to do this is to compute the probability of assigning the label to all
pixels, conditioned by the fact that all labels are known to be equal inside the region:

P (Lj ∣Rk) = ∏
xi∈Rk

P (Lj ∣xi)/

⎡
⎢
⎢
⎢
⎢
⎣

∑
ωm∈Ω

∏
xi∈Rk

P (ωm∣xi)

⎤
⎥
⎥
⎥
⎥
⎦

. (3.9)

Alternatively, one can estimate P (Lj ∣Rk) by averaging the individual pixel probabilities:

P (Lj ∣Rk) =
1

∣Rk∣
∑

xi∈Rk

P (Lj ∣xi). (3.10)

While the first expression is closer to a strict Bayesian interpretation, we found the second
one to be a simple yet useful approximation.
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By introducing (3.7) we expect to better cluster semantically significant objects,
according to the classifier’s output.

3.3.2.2 Best segmentation represented by a given tree

The common processing on BPTs consists in selecting the highest or lowest branches
satisfying a given condition [125, 191]. However, some contributions have formulated the
problem in terms of energy minimization [157, 158]. In particular, Salembier et al. [157]
have interpreted segmentation as a horizontal s-t cut on the tree (see Fig. 3.1), i.e., with
a source at every leaf and a sink at the root. Let us denote τ a tree and C(τ) the energy
of the cut on τ with minimal (3.6) among all possible cuts. Our task is to find such a
minimal cut.

Considering that the branches in the tree are independent, the globally optimal cut
can be found by a dynamic programming algorithm. Let us denote by

E(R) = min
L∈Ω

E({R},{L})

the lowest possible energy of a region R (by assigning the label that incurs the lowest
cost). The tree is traversed in a bottom-up manner. Whenever a region R is visited, the
following property is evaluated:

E(R) ⩽ C(Rleft) +C(Rright), (3.11)

where Rleft and Rright are the children of R. If the property does not stand, we set
C(R) = C(Rleft) +C(Rright) and keep the best cuts of both children. Otherwise, we set
C(R) = E(R) and replace the cuts by R with label L. This process is executed recursively
until reaching the root of the tree. The overall algorithm is linear in the image size, since
only one BPT traversal is required, and it guarantees the optimal cut in the space of
solutions represented by the BPT.

3.3.3 Optimizing the trees

Even though the globally optimal cut on a BPT can be found efficiently, the organization
of the nodes in the tree structure restricts the possible cuts that can be done on them.
In Fig. 3.3 a toy example illustrates this issue. Let us suppose that an aerial shot of a
city captures a house with a non-uniform roof. During the construction of the tree, a
and b are merged together because they feature the lower dissimilarity among every pair
of regions. Even by using our improved construction function (3.7), we cannot expect
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Figure 3.3: Faulty BPT: the object (bcde) is not represented in a single node, since a
part of it (b) merged first to something else.

much better results, unless the classifier properly labels all regions. If we wish to include
shape priors to enhance the results, let us point out that at the moment a and b were
merged, it was impossible to know that b would eventually form a more significant object
under a different sequence of merges, with the typical shape of a building. In other
words, following this greedy construction approach we cannot predict the final shape
of the objects in the output classification map. The resulting tree does not allow to
perform any cut that would include the whole building into the same object, not even
using strong shape priors, given that it is split through different branches. This is why
we now propose to optimize the tree itself.

Our method consists in constructing an initial BPT with the usual region merging
greedy algorithm, and then optimize it to extract a classification map that minimizes
Eq. 3.6, thus incorporating the shape prior. To optimize BPTs we follow a local search
approach, in which a solution is iteratively modified by performing local transformations
on the trees, named moves.

3.3.3.1 Moves and associated updates

We propose a prune-and-paste move that prunes a branch of the tree and inserts it into
another part of the tree. The pruned node must be pasted in a spatially adjacent location.
Fig. 3.4(a) illustrates such a move: α is the paste place and β is the pruning place. We
denote by LCA(α,β) their lowest common ancestor in the tree. The move creates a new
node αβ in the paste side that comprises α and β. In the pruned side, the tree is collapsed
after β is removed. In a balanced tree, which is encouraged by setting α > 0 in (3.7), the
number of possible moves is bounded by O(n log(n)) (see proof in Appendix A). The
neighborhood system is much richer than, for instance, Markov random fields (MRFs) on
the pixel grid, considering that it comprises pairs of adjacent regions at several scales.

We store at each node R the branch cost C(R) of the best possible cut within its
branch. When applying a move as depicted in Fig. 3.4(a), it is necessary to recompute the
branch cost C till the ancestry of α and β only. The rest of the branches are unaffected,
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(a) Prune-and-paste move. (b) Alternative paste places.

Figure 3.4: Family of moves to optimize BPTs.

as observed in (3.11). Among the ancestry, only the nodes below LCA(α,β) require
to recompute their models (shape and color features), given that further up the regions
represented by the nodes do not change. Thus we recompute the features (and thus E(R)

and C(R)) only in that part of the tree, and for the nodes in the tree above LCA(α,β) we
recompute only their branch cost C(R), which simply involves reassessing (3.11) without
reevaluating E(R) nor their features.

In a balanced tree there are at most O(log(n)) ancestors of α and β, and, as stated
before, for some of these ancestors the model of the regions must be updated. If we denote
by K the complexity of updating a model (i.e., merging two children), the computation
of the new costs C is O(K log(n)). Usually K ≪ log(n), therefore the time is O(log(n))

in practice.
The adjacency relations in a BPT can be derived from the children by observing that

the ancestors of two adjacent nodes are also adjacent, until the LCA. At the finest level
the adjacency is known (e.g., a 4-connected grid).

3.3.3.2 Properties of the moves

We now explore some properties of the prune-and-paste move. In particular, we will
show that finding all possible energy decreasing moves does not require to exhaustively
evaluate the energy gain of every possible move. Proofs are available in Appendix A.

Let us consider the situation of Fig. 3.4(b). In the second tree, a node was pasted at
the position τi. We wish to compare the effect of pasting higher instead (as in the third
tree). Let us denote by τi < τj the is-a-descendant-of relation.

Proposition 1. Given a tree τ , suppose a node Rm is pasted at τi < τ1 leading to a
new tree ϕ. Let us consider an alternative move that pastes Rm at τj, with τi < τj < τ1,
producing a tree ψ. In the cases where either C(ϕ1) − C(τ1) ⩽ 0 or C(Rm) ⩾ C(ϕ1) −

C(τ1), then C(ψ1) ⩾ C(ϕ1).
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The proposition states that, if a move reduces the energy in the branch, a higher
paste place will not do better. Under certain assumptions, if the move increases the
energy, pasting higher will also increase it. Intuitively, pasting lower is more general.

Proposition 2. Let us consider a case where Prop. 1 hypotheses do not apply. There
might then exist a higher paste place τα so that C(ψ1) < C(ϕ1). Let us suppose that
instead of pasting at τα we paste at τβ, with τα < τβ < τ1, leading to a tree ρ. Then C(ρ1)

would monotonously decrease as the paste place τβ is located higher.

When the hypotheses of Prop. 1 do not apply, there might exist a favorable paste
place higher in the branch. However, we know that the higher it is, the most beneficial
it can be. As a result, we can just consider the highest possible paste place (right below
the LCA). However, any paste place between the location of the original cut and the
LCA would lead to the same energy. These cases happen when it is preferable to cut the
pruned node apart. The higher we paste Rm, the less we condition the way the rest of
the tree must be cut.

Following these properties, an exhaustive search of energy decreasing moves can be
achieved as follows: for every possible pruning place we check the energy gain of the
moves for only the lowest paste places. If the move is beneficial, we keep that move as a
candidate. If the move is not beneficial we can discard it as well as all the paste places
in the branch (but we do this only after performing one additional check with the paste
place at some point between the cut and the LCA).

3.3.3.3 Optimization algorithm

We propose the following optimization scheme, which must be iterated:

1. Construct a heap of all moves according to the branch cost variation ∆C.

2. (a) Either apply the best move, or

(b) apply the best k moves (when still appropriate).

The first step involves exploring the whole search space, featuring an O(n log2(n))

complexity. Moves are simulated to measure the energy gain but are not applied. Propo-
sitions (1-2) can be used to reduce the execution time of this step, and the energy gain
can be evaluated in parallel.

In the second step, energy decreasing moves are applied. As soon as a move is applied,
the tree is restructured and the effect of some other moves may be affected. New energy
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decreasing moves may also arise. 2a) just applies the best move and reiterates. As a
shortcut, we can just update the entries in the heap of the moves that may have been
affected. This option is still costly because ∆C must be recomputed for any move that
could have been possibly affected, even though in practice this might be the case for just
a few of them. This approach guarantees to apply the best move each time. Considering
the fact that there might be many unrelated energy decreasing moves in the tree, 2b)
proposes to apply a number k of best moves, but verifying for each move that ∆C did
not increase as a result of the previous transformations done on the tree. This second
approach will apply a number of independent moves first, ignoring the fact that some
new energy decreasing moves might arise, which will be dealt with in the next iteration.
The loop stops when there are no more moves whose ∆C is negative.

The lowest scale both on the pruning and paste side can be set to the pixel level. A
coarser scale on the pruning side can be used to adjust the precision of the moves. If a
coarser scale is set on the paste side, we limit the minimum object size of the partitions,
since we ignore moves that lower the cut below a certain level. This can be adjusted by
observing the density functions of the area feature.

3.4 Experiments

We first validate our supervised BPT construction approach. We do this on hyperspec-
tral images, since they contain a rich and discriminant spectrum, and evaluate whether
our function (3.7) indeed clusters regions together based on the classifier’s probabilities.
However, such classification power based solely on pixel’s values is notoriously degraded
in other types of images. We therefore introduce shape features in order to enhance
classification on different types of inputs, including urban aerial remote sensing images.

3.4.1 Supervised BPT construction

We perform experiments on the Pavia Center hyperspectral dataset, acquired with the
Reflective Optics System Imaging Spectrometer (ROSIS-03). The image has spatial
dimensions 400×300 and contains 102 bands, covering a range from 0.43 to 0.86 µm and
1.3 m spatial resolution. A color composition of the image is shown in Figure 3.5(a).

A reference image that labels entire objects was built, including four classes (see
Figure 3.5-b). This reference was constructed by combining the labeling of isolated
pixels provided with the original image, visual inspection and publicly available official
Italian records of building boundaries. Since the boundaries of buildings are well defined,
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(a) Color composition (b) Reference data: tiles, bitu-
men, roads , vegetation

(c) SVM classification

(d) BPT classification (α = 0.5) (e) Tile building detection
(BPT with α = 0)

(f) Tile building detection
(BPT with α = 0.5)

Figure 3.5: Experiments on Pavia Center hyperspectral image.

there is a particular interest in analyzing the performance of BPTs to extract buildings.
An SVM with a Gaussian radial basis function kernel is first trained on 100 randomly

selected samples of each class. The SVM parameters are set by 5-fold cross validation
(C = 128, γ = 2−5). The SVM classification is shown in Figure 3.5(c). A BPT is then
constructed on top of the SVM probabilities. We use a non-parametric model with 30
histogram bins per band and mild area-weighting (β = 0.1). Two variants were tested: a)
totally unsupervised construction, i.e., setting α = 0 in (3.7), which is equivalent to the
previous function (3.1); b) supervised construction with equal contribution from both
terms in (3.7), i.e., α = 0.5. Instead of using complex shape features, now we simply
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(a) Color composition (b) BPT with α = 0 (c) BPT with α = 0.5

Figure 3.6: Unsupervised (b) versus supervised (c) BPT construction. In the supervised
case, regions are better clustered together to represent significant objects.

Table 3.1: Numerical evaluation on the Pavia Center dataset.

SVM Graph cut BPTα=0 BPTα=0.5

Building overlap 0.51 0.51 0.54 0.56
Overall accuracy 0.88 0.94 0.91 0.94

regularize the cut by the total number of regions:

E(R,L) = λ∣∣R∣∣ − ∑
Ri∈R

∑
Ij∈Ri

logP (Li∣Ij), (3.12)

where λ controls the coarseness of the output. We experimentally set λ = 40 to optimize
the accuracy. The resulting classification map with supervised tree construction (α = 0.5)
is shown in Figure 3.5(d). We also executed a graph cut with α-expansion [19] on
the probabilities derived from the SVM, which proved to be effective in the past for
hyperspectral image classification [182]. Its regularity parameter was also set empirically
to optimize the accuracy.

Figures 3.5(e-f) and the close-ups of Figure 3.6 compare the results obtained by ap-
plying the unsupervised and supervised approaches for BPT construction. These figures
isolate the tile objects from the rest and assign a random color to every individual object.
From these illustrations we can clearly appreciate that including class probabilities dur-
ing BPT construction yields an improved tree that better clusters the objects together.
To validate this numerically we compute the overlap between every building (belonging
either to tiles or bitumen classes) in the reference data and the most overlapping building
region in the BPT output. The overlap is measured with Dice’s coefficient [42] defined
as: 2∣R1 ∩R2∣/(∣R1∣ + ∣R2∣). The resulting overlap coefficients are averaged over all ref-
erence buildings to estimate how the BPT output matches the reference data from an



CHAPTER 3. HIERARCHICAL MODEL FOR IMAGE CLASSIFICATION 60

(a) Input (400 × 267) (b) Gorelick et al. (c) BPT Opt

Figure 3.7: Convex object. Method [69] and optimized BPTs.

object-based perspective. The numerical results, together with the overall accuracy, are
summarized in Table 3.1, which also includes the values for SVM and graph cut. A first
observation we can make is that BPTα=0.5 performs better than BPTα=0, corroborating
the visual result from Figs. 3.5(e-f). Secondly, while graph cut is known to improve the
SVM classification, we can verify that while this is true from a pixelwise perspective (in
terms of overall accuracy), it is not from an object-based perspective (in terms of building
overlap). Finally, the use of BPTα=0.5 outperforms the other methods in terms of object
overlap. This validates the idea of including class probabilities during tree construction.

3.4.2 Classification with shape priors

In a first series of experiments we constrain our method to binary segmentation with
convexity shape prior, in order to compare it with a recent state-of-the-art technique
designed for this purpose. In a second series of experiments we move to multi-object
multi-class segmentation in remote sensing imagery and compare the behavior of our
algorithm against the common approaches in the field.

An algorithm for a soft convexity shape prior in image segmentation was introduced
by Gorelick et al. [69]. We will first show that we can perform similarly in a single
convex object, while our technique is not specifically designed for this prior. A natural
image extracted from [69] and the markers used are shown in Fig. 3.7(a). We set ω =

1, a contrast sensitive Potts model (weight 10−4) and an 8 × 8 orientation stencil, the
parameters required by [69]. We found this parameter setting to yield the most visually
pleasant result. We ran our BPT optimization approach with a data term learned from
markers’ histograms and with density functions favoring solidity and compactness for
the foreground class, which convey the notion of convexity. For BPT construction we
set α = 0.5 throughout all the experiments, to make the terms in (3.7) equally relevant.
We sample moves that involve regions of at least ten pixels. In this case we apply all
good moves in the queue at every iteration, which are in practice less than 10. We did
not impose hard constraints on the marker locations. The resulting segmentations are
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(a) Input (457 × 454) (b) Gorelick et al. [69] (c) Gorelick et al. [69], on user-
supplied windows

(d) BPT (e) Optimized BPT

Input Gorelick et al.
(ω = 0.01)

Gorelick et al.
(ω = 0.001)

BPT opt.

(f) Amplified fragment

Figure 3.8: Multiple convex objects (cell nuclei). Gorelick et al. [69] and BPT optimiza-
tion.

depicted in Figs. 3.7(b-c). Our BPT optimization approach achieves similar segmentation
performance.

Fig. 3.8(a) shows a slice of a laser scanning microscopy image of brain tissue, where we
wish to identify cell nuclei (green markers). If we apply the method by Gorelick et al. [69]
to the whole image with all the markers, the result is inaccurate because the technique
is not designed to segment more than one object at once (Fig. 3.8-b). In Fig. 3.8(c) we
overlap the result of applying [69] to different fragments of the image that include each
individual object (parameter ω in [69] is set to 0.01). The technique individually outlines
each of the nuclei in the absence of the rest, but prior knowledge about their location is
required.

We constructed a BPT on this image (α in Eq. 3.7 is set to 0.5 in all the experiments).
As expected, the best-cut segmentation without optimizing the tree (Fig. 3.8-d) is not
competitive, because many tree nodes do not satisfactorily represent objects. We ran
our BPT optimization approach with a data term learned from markers’ histograms and
with density functions favoring solidity and compactness for the foreground class, which
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convey the notion of convexity. We sample moves that involve regions of at least ten
pixels. In this case we apply all energy decreasing moves in the queue at every iteration,
which are in practice less than 10. We did not impose hard constraints on the marker
locations. After optimizing the BPT with the method proposed in Sec. 3.3.3, each object
is segmented individually and adjacent objects are delineated separately (Fig. 3.8-e).
Our approach also produces accurate boundaries despite the low foreground/background
contrast. The method by Gorelick et al. tends to either oversmooth the boundary to
enforce convexity, or produce a very non-convex object, depending on the parameter ω
(see the amplified nucleus in Fig. 3.8-f).

In the context of multi-object multi-class segmentation, we tested our method on
images of urban scenes extracted from Google Maps screenshots. Figs. 3.9(a) and 3.10(a)
show two color images acquired over New York City and the area of Brest, respectively.
For both images, the manual segmentation was based on visual inspection combined with
cadastral records available online. The list of the considered object classes is given in
Fig. 3.9(b) (no instance of the internal road class is present in the Brest image). In
the particular case of buildings, cadastral information was used to delineate every object
independently even when they are spatially adjacent.

To evaluate the performance of the proposed method, we use two criteria:
1) Overall accuracy A, defined as the proportion of correctly classified pixels.
2) Building’s overlap D. For every building in the manually segmented image, we

search for the most overlapping building region in the segmentation map in terms of
Dice’s coefficient [42]. Criterion D is estimated by averaging the computed coefficients.

As in Section 3.4.1, an SVM with a Gaussian radial basis function kernel was used
for the data term, tuned by tenfold cross-validation. The criterion (3.4) involved area,
rectangularity and elongatedness shape descriptors. The distributions were trained by
kernel density estimation on a set of sample objects from an adjacent image. In the area
covered by these objects, 100 random pixels per class were selected to train the SVM.

We compared the performance of the proposed approach with the following methods:
1) SVM; 2) graph cut with α-expansion [19] (GC); 3) cut on the BPT, regularized by the
number of regions without using shape priors (TC) [157]; 4) cut on the same BPT with
our shape formulation (3.6), but without tree optimization (TSC). Figs. 3.9(c–f) illustrate
the output of these techniques for the image of New York. Figs. 3.9(g–h) depict the results
obtained by applying our optimization method with different values of k (see Sec. 3.3.3.3).
The SVM classification exhibits many issues, notably the assignment of some roof parts
to the wrong class. GC and TC smooth the results though do not correct the main
mistakes in the classification. In the initial cut with shape priors on the unoptimized
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(a) Input (225×180) (b) Reference: tiles, roads,
internal roads , veget., shadow

(c) SVM
(A = 0.64, D = 0.8)

(d) GC
(A = 0.68, D = 0.81)

(e) TC
(A = 0.71, D = 0.71)

(f) TSC
(A = 0.65, D = 0.50)

(g) BPT opt., k = 1
(A = 0.79, D = 0.89)

(h) BPT opt., k = 30
(A = 0.79, D = 0.90)
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Figure 3.9: Experimental results for the image over New York City.
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tree (TSC), some regions are enhanced but some others are significantly deteriorated with
respect to the previous methods. This is due to the faulty tree construction that does not
represent the entire objects in unique nodes. Figs. 3.9(g–h) show that the optimization
of the tree copes with these issues, not only enhancing the initial cut on the tree but also
outperforming the other techniques.

The evolution of the energy (3.6), the accuracy A and the building’s overlap D with
respect to the number of iterations are depicted in Figs. 3.9(i–k). As expected, the
energy curve becomes less smooth as k increases. For small enough values of k, the
segmentation maps are almost identical. This validates the fact that many branch moves
are independent and can be applied prior to reconstructing the heap.

The BPT for this image is constructed in 1.25 seconds on an 8-CPU 2.7 GHz processor.
The optimization time, summarized in Fig. 3.9(l), is considerably faster when Propos. 1-2
are used.

Fig. 3.10 illustrates experimental results for the image of Brest. Our method was
executed with k = 600. Fig. 3.10(c) shows the obtained segmentation map. Two fragments
of the map (boxed in Fig. 3.10(b)) are amplified for comparison in Fig. 3.10(d). These
results validate the previous observations. The BPT is built in 13 seconds and the
optimization takes 84 seconds using Propositions. 1-2 (see Section 3.3.3.2), against 214 s.

We highlight in another portion of image over Brest (Fig. 3.11) that our method is
able to separate an entire building blob into rectangles. In addition, the use of shape
features permits to “switch” a small building to the correct class, even though its color
was assigned to road by the classifier.

3.5 Concluding remarks

I have presented a hierarchical model for the multi-class multi-object classification of
images with shape priors. The problem is formulated as an energy minimization task,
using the learned probability distributions of spectrum and shape features. We construct
a BPT of the image and search for the horizontal cut on the tree which minimizes
the proposed energy function. One of the key innovations of the proposed method is
that instead of using the standard BPTs, we optimize them by pruning and regrafting
their branches at different scales in order to minimize the best classification that can be
extracted from the tree. BPTs are a good departure point for optimization, since they
allow to perform moves of variable region sizes. Conversely, in an MRF approach defined
on the pixel grid, each time we perform a move we would have to search for a relevant
region to perform a label switch (e.g., by using minimum spanning forests). A BPT
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(a) Color image (b) Manual classification (c) BPT optimization

Manual SVM GC BPT opt.

(d) Comparison on close-ups of the image

A D
SVM 0.764 0.50
GC 0.799 0.49
TC 0.804 0.47

BPT opt. 0.813 0.69

(e) Performance

Figure 3.10: Experimental results for the image over Brest.

(a) Color image. (b) SVM (c) Graph cut (d) BPT opt.

Figure 3.11: BPT optimization detects individual buildings.
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can in fact be seen as a way of dynamically storing a set of candidate adjacent regions
at different scales. Our theoretical study permits to reduce the space of branch moves.
We also proposed an improved BPT construction function that adds a force to cluster
together regions that are similar in terms of the classifier’s output.

The experiments show that the method effectively incorporates shape information
into classification, even when multiple classes and objects are present in the image, thus
gaining a competitive edge with respect to recent literature in the field. The main limi-
tation of the method concerns its scalability, both in terms of potential for parallelisation
and of the choice of features. We will address how to handle these limitations later in
this manuscript.

In the next chapter, I will present another graph-based model, which aims at incor-
porating a shape prior for segmentation of time series of noisy images. This time, we
focus on segmenting shapes which only grow or shrink in time, and our model is designed
to suit this growth or shrinkage constraint, respectively.



Chapter 4

Video Segmentation with Shape
Growth or Shrinkage Constraint

Automatic segmentation of objects in videos is a difficult endeavor in computer vi-
sion [116]. This task becomes even more challenging for image sequences with low
signal-to-noise ratio or low contrast between intensities of spatially adjacent objects in
the image scene. Such challenging data are recorded frequently, for instance, in satellite
remote sensing or medical imaging.

In this chapter, we aim at segmenting objects with shapes which can only grow or
shrink in time, from sequences of extremely noisy images. Examples of growing shapes
are forest fires or expanding cities in satellite images and organ development in medical
imaging. In the image sequences we consider, both foreground and background inten-
sity distributions can vary significantly over time: foreground can be heavily occluded or
undistinguishable from a part of the background, and data for some pixels can be missing
(see Fig. 4.2 and 4.7 for examples of such sequences). Most of previously-proposed spatio-
temporal methods rely on coherence of foreground/background intensity distributions in
successive image frames, and are therefore not suited for segmenting such noisy data
sets. Few approaches have been specifically designed for spatio-temporal segmentation
of magnetic resonance image (MRI) sequences with low signal-to-noise ratio [153, 205].
Applied to multi-temporal time series that show a monotonously growing or shrinking
structure, however, these smoothing methods bias results towards the mean shape ob-
tained from averaging consecutive segmentations and, hence, underestimate rapid growth
or shrinkage events.

To address this issue, we have proposed a new omniscient segmentation framework
based on graph cuts for the joint segmentation of a multi-temporal image sequence. It

67
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introduces growth or shrinkage constraint in graph cuts by using directed infinite links,
which connect pixels at the same spatial locations in successive image frames. By min-
imizing a submodular energy computed on the resulting spatio-temporal graph of the
image sequence, the proposed method yields a globally optimal solution. Differently from
the state-of-the-art omniscient techniques, it does not rely on the coherence of the inten-
sity in time, but only on the coherence of the shape.

We have validated the performance of the proposed framework on three applications
with very noisy image sequences. The first one deals with the segmentation of multiyear
sea ice floes in a set of satellite images acquired through different satellite sensors. The
new method returns accurate melting profiles of sea ice, which is important for building
climate models. The second application segments growing burned areas from time series
of optical satellite images with missing data. The third application addresses the seg-
mentation of brain tumors from longitudinal sets of multimodal MRI volumes, where we
impose additional inter-modal inclusion constraints for the joint segmentation of different
image structures (brain tissues).

4.1 Related work

Segmentation of time series

Image segmentation methods applied independently to each frame [204, 25] produce un-
stable results, while temporal coherence in video sequences yields a lot of information not
available for a single image. There are two main categories of approaches for the spatio-
temporal segmentation of image sequences. Causal, or feedforward, techniques consider
only past data for segmenting each next frame [148, 179]. Omniscient approaches take
advantage of both past and future data by analyzing the video as a 2D+T = 3D spatio-
temporal pixel volume [164, 40, 73]. In this case, the segmentation of the entire image
set supports each of the individual segmentations.

Graph-based methods gained popularity among omniscient approaches, in particular
those using hierarchical model [73], normalized cuts [164] or graph cuts [205]. These
techniques do not impose any shape prior knowledge. It was proven that introducing
shape priors into image segmentation, i.e. favoring segmentations similar in some sense
to a given shape, allows to drastically improve segmentation of objects in the presence
of strong noise and occlusions [32, 154]. However, imposing shape priors increases signif-
icantly both algorithmic and computational complexity of segmentation algorithms [50].
Schoenemann and Cremers proposed to compute minimal ratio cycles in a large product
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graph spanned by the image and the shape template for finding globally optimal segmen-
tations, which are consistent both with edge information and with a shape prior [160, 161].
In order to speed up the algorithm, they implemented it in parallel on graphics hardware.
This algorithm can be applied for segmenting shapes in time series in a causal way, so
that the template determined for the last frame is matched to the next. However, it does
not guarantee globally optimal solution over the whole temporal sequence.

Globally optimal segmentation

Extensions of graph cuts to multi-class segmentation have been proposed but generally
do no guarantee optimal solutions, except e.g. in the case of Ishikawa’s construction [84],
which requires labels to be ordered and the interaction term to be a convex function of
their differences. This graph construction makes intensive use of infinite links to constrain
the min-cut solutions to satisfy desired properties required to interpret them as image
segmentation solutions. This was the source of inspiration for our work.

A study related to shape constraints can be found in [39], where one image has to be
segmented in several possibly-overlapping objects. Infinite links are used for imposing
common boundaries, inclusion or exclusion conditions between objects in a same single
image. A similar approach [118] segments jointly two surfaces in a same volumic image,
under the constraint that they should be separated by a given minimal margin. There is
however no work related to shape growth or shrinkage in time series.

Wolz et al. [205] applied graph cuts for simultaneous segmentation of serially acquired
MRI volumes. They defined temporal edge weights as the intensity differences of voxels
at the same spatial locations. The same smoothness constraint was applied both in space
and time, and the segmentations at different timepoints were forced to be consistent in
areas where a small intensity difference between the images exist. This type of temporal
constraint is suboptimal in image series where intensity distributions of foreground and
background vary significantly over time. To the best of our knowledge, our work is the
first to use infinite links to enforce a temporal growth constraint, and we illustrate in
Sec. 4.3 the advantage of the new method over previous approaches such as [205].

4.2 Proposed method

In the following, I first recall a formulation of the graph cut, and then present the
proposed method. Graph cut is an optimization tool coming from graph theory, based
on the rewriting of image segmentation problems as (s,t)-min-cuts in graphs, on the
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Figure 4.1: (a) Enforcing shape growth in an image sequence. (b) Segmenting jointly
two sequences S1 and S2, by enforcing the foreground of S1 to contain the foreground
of S2, with directed infinite links from S1 towards S2, between all pixels of coordinates
(x, y, t, s1) and (x, y, t, s2).

equivalence of (s,t)-min-cut and max-flow problems, and on the existence of efficient
algorithms to solve the latter ones [18, 35, 65]. In practice in computer vision, it can be
used to find the globally optimal binary segmentation of images where the segmentation
criterion is related to a Markov Random Field with submodular interaction terms, i.e. a
criterion E of the form:

E(L) = ∑
pixels i

Vi(Li) + ∑
i∼j
Wi,j(Li, Lj), (4.1)

where L is the binary labelling function to be found (Li is the label of pixel i), individual
potentials Vi are any binary real-valued functions measuring the disagreement between
a prior probabilistic model and the observed data, i ∼ j denotes a pair of neighboring
pixels (any neighborhood system can be used), and Wi,j are any real-valued interaction
terms between neighboring pixels expressing spatial coherency of labels, satisfying

Wi,j(0,0) +Wi,j(1,1) ⩽Wi,j(0,1) +Wi,j(1,0). (4.2)

A directed infinite link between two pixels expresses precisely the constraint that this
pair of pixels cannot have the pair of labels (0,1), by assigning an infinite cost to such an
interaction. The remaining possible pairs of labels are thus (0,0), (1,1) and (1,0), which
means that either both pixels have the same label, or the order of labels is predefined
(1 for first pixel and 0 for the second one). In the case of image binary segmentation, if
0 stands for the background and 1 for the foreground object, then this means that the
second pixel may belong to the foreground only if the first one already does.
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4.2.1 Growth/shrinkage constraint

Given a sequence of images I(t) preliminarily aligned, shape growth can be easily ex-
pressed as the property that the foreground object cannot lose any pixel when time
advances. Otherwise said, if a pixel belongs to the foreground object at time t1, then
it belongs also to the foreground object for all times t2 > t1. Equivalently, and simpler:
a pair of pixels ((x, y, t), (x, y, t + 1)), sharing the same location and immediately suc-
cessive in time, cannot have the pair of labels (1,0), with the same binary segmentation
notations as above. This can be enforced by setting monodirectional infinite links from
all pixels to their immediate predecessor in time.

Given T images I(t), with t ∈ [1, T ], and as many associated submodular segmen-
tation criteria Et, we transform the problem of segmenting independently each image
I(t) according to its criterion Et, into a joint segmentation of all images together, by
enforcing the shape growth constraint with directed infinite links (see Fig. 4.1(a)). Thus,
instead of applying graph cut T times independently to planar grids of the size of the
images W ×H, we apply graph cut once to a 3D grid W ×H × T , consisting of the same
nodes and edges, but with additional monodirectional infinite links in time. The criterion
to be minimized is then E = ∑tE

t under the constraint of shape growth:

E(L) = ∑
pixels i

Vi(Li) + ∑
i∼j
Wi,j(Li, Lj) + ∞∑

t

δLt
i>L

t+1
i
. (4.3)

Since the problem is binary and submodular, the solution found by graph cut is globally
optimal.

Manifestly, one can enforce shape shrinkage instead of shape growth, by reversing the
direction of the infinite links. Another straightforward extension, needed in Sec. 4.3.3,
consists in applying this approach to the case of sequences of 3D images. The directed
infinite links are then set for all pairs of voxels of the form ((x, y, z, t), (x, y, z, t − 1)) to
enforce 3D shape growth.

In some applications, it may happen that growth (or shrinkage) is only very probable,
but not with probability 1, i.e. growth should be considered as a probable hint but should
not be enforced strictly at all locations at all times. In that case, one may replace directed
infinite links by directed finite links: the weights of these links will encourage growth
(more or less strongly depending on the weight), but sufficiently disagreeing potentials
Vi may make the shape locally shrink instead. Thus, shrinkage would be discouraged but
not forbidden.
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4.2.2 Inter-sequences inclusion constraint

It is also possible to segment jointly several image sequences I(s)(t) with the constraint
that the foreground object in some sequences should be included in the foreground object
of some other sequences. This can be done similarly by considering together the graphs
associated to all sequences, and, for each inclusion constraint, by adding directed infinite
links between pixels of the desired sequences s1 and s2, sharing same location and time:
such links from (s1, x, y, t) to (s2, x, y, t) for all x, y, t will force the foreground object
in sequence s1 to contain the one of sequence s2 (see Fig. 4.1(b)). An example of such
application is given in Sec. 4.3.3, where image sequences correspond to four different
MRI modalities, aligned both in space and time.

Naturally, instead of imposing an inclusion constraint over the whole time span and
the whole image space, it is possible to specify spatio-temporal domains of constraints, for
instance to express that the inclusion property between two sequences has to be satisfied
inside a pre-defined region and/or during a pre-defined time span [t1, t2] only, by adding
directed infinite links in these sets only.

4.2.3 Weighting frames by reliability

As presented earlier, enforcing shape growth explicitly is particularly important when
facing noisy sequences of images, as a joint segmentation incorporates information from
different frames. With our approach, a fully noisy frame in the middle of several good-
quality frames will be automatically ignored in practice, because statistically the (bad)
potentials Vi at any pixel i in that frame will be neglectable with respect to all other
(correct) potentials at the same pixel in other frames. Hence, the solution we bring will
be strongly robust to any kind of noise, provided that the noise is not coherent in time
during long time spans.

The quantity of noise that the method can handle depends on the number of neigh-
boring frames with good-quality information at the same spatial location. One way to
increase even more the trade-off between admissible level of noise and quantity of good
information consists in estimating the reliability of the information given, in each image
or even at each pixel, and in weighting accordingly the associated energies : E = ∑twtE

t.
For instance, if a strong level of noise is detected globally in one image I(t), one may
multiply the corresponding energy Et by a small reliability factor wt < 1, in order to
make it less influential than other frames. Such a reliability factor could be computed
for instance from preliminary image processing steps (for example, correlation between
an image I(t) and its neighboring ones {I(t′) ; 0 < ∣t − t′∣ ⩽ δt} ).
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4.2.4 Complexity

The precise theoretical worst case complexity depends on the graph cut algorithm used,
and is the same as for usual single-image graph cuts, but with T times more nodes
and edges. Denoting by N the number of nodes and M the number of edges, this
worst case complexity is O(NM2) for the Edmonds-Karp algorithm, O(N2M) for the
Dinitz blocking flow algorithm, which goes down to O(NM log(N)) using dynamic trees.
However, the computational time observed in practice is known to be much faster on
typical image segmentation problems. We applied the binary graph-cut algorithm of
Boykov and Kolmogorov [18], and we report a linear observed complexity with the total
number of pixels T ×W ×H (see for instance Fig. 4.5 for experiments of section 4.3.1). As
a consequence, enforcing shape growth on a long sequence, or on complementary shorter
bits of the same sequence, will take approximately the same time.

In the case of long sequences of big images, the memory space required may exceed
the capacities of a computer. This is however not an issue, as there exist graph cut
implementations for massive grids [38] meant for such cases, where all information is not
stored in the memory at all times. This was not required for the experiments presented
in this paper though.

4.2.5 Rewriting as a multi-label problem

We show now another point of view on sequence segmentation with growth constraint.
The successive labels Li(t) of a given pixel i over time might change only once, and only
from 0 (background) to 1 (foreground object). Hence, this vector of labels Li(t) is of the
form (0,0, . . . ,0,1, . . . ,1,1) and can be represented by just the time index τi of the first
1, i.e. the earliest time at which the pixel starts belonging to the object. This time τi is
in [1, T +1], with T +1 meaning “never”. We have thus transformed a binary optimization
problem on a sequence of images with shape growth constraint into a multi-label problem
defined on one single image, without any constraint. This new problem can be expressed
in the Markov Random Field form (4.1) with Vi(τi) ∶= ∑

t<τi
V t
i (0) + ∑

t⩾τi
V t
i (1) and

Wi,j(τi, τj) ∶= ∑
t<min(τi,τj)

W t
i,j(0,0) + ∑

τi⩽t<τj
W t
i,j(1,0)

+ ∑
τj⩽t<τi

W t
i,j(0,1) + ∑

t⩾max(τi,τj)
W t
i,j(1,1)
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where (V t
i ) and (W t

i,j) define the energy Et at time t, and where sets of summation may
be empty (note that any time t appears in exactly one summation set only). The sub-
modularity of the binary interaction terms W t in each frame implies the submodularity
of the multilabel interaction term W , i.e.

Wi,j(τ1, τ2) +Wi,j(τ
′
1, τ

′
2) ⩽Wi,j(τ1, τ

′
2) +Wi,j(τ

′
1, τ2)

for all labels satisfying τ1 ⩽ τ ′1 and τ2 ⩽ τ ′2 (proof in Appendix). Thus, this energy can
be minimized globally efficiently with now standard techniques (e.g. [36]). Note that in
the particular case where interaction terms W t do not depend on t, the interaction term
W of this multi-label energy above can be rewritten as a convex function g of (τi − τj),
and then Ishikawa’s construction [84] can be applied. It turns out that the graph built
this way is precisely the graph that we built in our initial binary multi-frame problem.
Our initial formulation is however more flexible, in that interaction terms can depend
on t, and more natural, in that inclusion constraints can easily be enforced in spatial
or/and time subregions only, while this would not be expressible with the multi-label
formulation.

4.3 Experimental results

We applied the proposed method to three different applications, in order to validate its
use to enforce shape shrinkage or growth, for 2D or 3D image sequences:

(Application 1) We impose shrinkage constraint for a 2D sequence, to segment a
melting multiyear ice from a time series of satellite measurements.

(Application 2) We enforce shape growth for a 2D sequence, to segment burned areas
from optical satellite images.

(Application 3) We use growth constraint for 3D image sequences, to segment growing
brain tumors from multimodal MRI volumes.

The performance of our framework with monodirectional links, [Mono=const], is com-
pared with other graph-cut-based methods:

● [w/o] : Graph cut with no temporal links, i.e. independent segmentation of each
frame.

● [Feedforward] : After segmenting the first frame with graph cut approach, fore-
ground/background pixels are marked as seeds with infinite unary costs in the next
frame for enforcing shape growth/shrinkage.

● [Bi=const] : Smoothing by introducing bidirectional temporal links, i.e. links in
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(a) (b)

(c) (d)

Figure 4.2: (a, b) Reprojected MODIS images captured on the 244th and 252th days,
respectively. (c, d) Corresponding AMSR-E images.

both directions (from t to t + 1 and from t + 1 to t), with a constant weight (finite or
infinite).

● [Bi=variable] : As proposed in [205], bidirectional temporal links are computed
based on intensity differences between pixels in successive image frames, i.e. in the same
way as spatial links.

For comparison between the methods we used the Dice score [42], D = (2∣M̂ ∩

M ∣)/(∣M̂ ∣+ ∣M ∣), where M̂ andM are manually and automatically segmented foreground
regions, respectively.

4.3.1 Application 1: melting sea ice in satellite images

The melting of sea ice is correlated to the increases in sea surface temperature and
to associated climatic changes. Thus it is very important to monitor sea ice evolution
and to develop methods for automated analysis of satellite measurements. Previous
works on ice floe segmentation attempted to extract temporal information by using ice
percentages, area and shape parameters of the ice floes at the previous time moments
as prior information to segment the floe at the next time moment [179, 79]. These feed-
forward approaches were unable to accurately estimate melting ice profiles because of
the low signal-to-noise ratio and of the lack of contrast in satellite data, producing area
estimations that are noisy in time, while a multiyear ice floe can actually only melt in
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Table 4.1: Results for Application 1. Mean and standard deviations of the Dice scores for
the proposed method [Mono = ∞] and graph-cut-based approaches used for comparison.

Method Feedforward w/o Bi = variable Bi = 16 Mono = ∞

Dice score .554 ± .128 .933 ± .099 .958 ± .048 .978 ± .007 .980 ± .007

the summer period.
We aimed at segmenting a multiyear ice floe from a 45-day sequence (summer period

from the 227th to 271th day of 2008) of measurements over the polar regions by two
Aqua satellite sensors: Advanced Microwave Scanning Radiometer - Earth Observing
System (AMSR-E, 89 GHz, 6.25 km spatial resolution) and Moderate-Resolution Imaging
Spectroradiometer (MODIS, band 1, 0.620-0.670 µm, 250 m spatial resolution). Fig. 4.2
shows MODIS and AMSR-E images at two time moments from the considered data set.
The floe was tracked from the AMSR-E data, where multiyear ice has a low microwave
emissivity (dark area in Fig. 4.2), and is in this way distinguishable from clouds and
younger ice which has a higher emissivity (white area in Fig. 4.2). However, the low
spatial resolution of these data does not allow to quantify the ice floes areas accurately. In
accordance with the tracking measurements, a time series of T = 75 MODIS and upscaled
AMSR-E images with the ice floe was built, with spatial dimensions of 800 × 800 pixels.
We denote each MODIS image by It, and each upscaled AMSR-E image smoothed by
Gaussian filter by At, t = 1, ..., T .

The objective is to compute T segmentation maps Lt, where each pixel (x, y) has
label Lt(x,y) = 1 if it belongs to the floe at time t, and 0 otherwise. In order to apply
the proposed method with a shrinkage constraint to the selected time series, the images
must be aligned, so that the property that the floe in the image It+1 is included in the
floe of the image at the previous time moment It can be expressed directly in terms of
pixel locations.

∀t, x, y, Lt+1
(x,y) = 1 Ô⇒ Lt(x,y) = 1.

For this purpose, we estimated a reliable region of the foreground (i.e., a region which
can be considered with high probability as a part of the floe), RF , and a reliable region of
the background, RB, from the AMSR-E images, where a multiyear ice floe is darker than
water, young ice and clouds. From the AMSR-E tracking measurements, we derived a
foreground seed point and an approximate area of the floe for each time moment t. We
then grew a reliable region of the floe RF in each At from the foreground seed point, until
it reached approximately half of the size of the floe. Another region, RB, was grown in At

from the same foreground seed point, but until an area half larger than the approximate
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Day Image Feedforward w/o Bi = variable Bi = 4 Bi = 16 Mono = ∞

230

233

235

267

Figure 4.3: (From top to bottom) Aligned images and segmentation contours (red) for
four time moments (days 230, 233, 235 and 267, respectively) computed by the graph-cut
methods: (From left to right) Aligned image, [Feedforward], [w/o], [Bi=variable], [Bi=4],
[Bi=16], proposed method with monodirectional infinite links. Manual segmentation is
shown in green. The rightmost part of the white area in the third row is not part of the
object, but another ice floe who temporarily collided.

floe size. The complementary region RB, of pixels not in RB, was considered with high
probability as part of the background.

We then computed the histograms of the intensities It of the floe, pt(I ∣F ), and of the
background, pt(I ∣B), respectively, and a map of floe probabilities as

pt(F ∣I) =
pt(I ∣F )P t(F )

pt(I ∣F )P t(F ) + pt(I ∣B)P t(B)
, (4.4)

P t(B) =

At −min
x,y

At(x,y)

max
x,y

At(x,y) −min
x,y

At(x,y)
, P t(F ) = 1 − P t(B).

The quantities above depend on the pixel location. The images It were aligned by ex-
haustive searching over rigid motions (rotations and translations) to maximize the cor-
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relation between maps of foreground probabilities at the current and previous moments.
This search is largely affordable given the low frame rate. We computed potentials and
interaction terms between neighboring pixels as:

V t
i (1) = −ln[p

t
(F ∣I)], V t

i (0) = −ln[p
t
(B∣I)], (4.5)

W t
i,j = δLi≠Lj β exp

⎡
⎢
⎢
⎢
⎣
−
(Iti − I

t
j)

2

2σ2

⎤
⎥
⎥
⎥
⎦
, (4.6)

where σ is a standard deviation of It, β is a parameter that controls the importance
of the spatial interaction energy term. We found experimentally that setting β = 2

yields robust results. The proposed method was applied with monodirectional temporal
links to enforce floe shrinkage, as described in Sec. 4.2.1. We performed several exper-
iments, with different values of the constant w standing for the temporal link weight,
from 0.25 to ∞. The results [Mono=0.25...∞] are compared with those obtained with
other graph-cut-based approaches (listed in the beginning of Sec. 4.3) in Table 4.1 and
in Fig. 4.3-4.4. Both graph-cut with no temporal links and feedforward approaches show
the worst performances, and prove to be not well suited for segmenting such noisy data
sets. When a feedforward method encounters a frame with the part of the floe obscured
by clouds and thus undistinguishable from the background, it segments only the visible
part of the foreground, and then is trapped in a non-sense segmentation for the rest of
future times. The method using gradient-based temporal links [Bi=variable] [205] also
yields poor segmentation accuracies, because it is sensitive to both noise and variation
of foreground/background intensities in consecutive frames.

We explain in Fig. 4.3-4.4 the advantage of using monodirectional infinite links versus
bidirectional links in the temporal dimension. Bidirectional edges with low values of w
enforce only smoothness of variation of the contour in time, and yield segmentation
errors in the case of low foreground/background contrast. For example, in the third
image of Fig. 4.3 (day 235), the floe of interest collided temporarily with another ice floe.
When using a weak smoothness constraint (see segmentation contour [Bi=4]), the small
encountered floe collided with the floe of interest during a certain number of consecutive
frames would be considered as a part of the foreground. Enforcing more smoothness in
space-time to avoid this has the undesirable effect of smoothing the foreground shape,
so that the segmented foreground area is lower (underestimated) than the ground-truth
for the first frames, and higher (overestimated) for the last frames (see results [Bi=16]
in Fig. 4.3 and-4.4(b)). With the increase of w, the estimated foreground tends to the
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Figure 4.4: Results for Application 1. (a) Mean and standard deviation for the dice score
as a function of the temporal link’s weight, when using mono- (green) and bidirectional
(red) temporal links. (b) Area of a multiyear ice floe as a function of time, computed by
using mono- and bidirectional links with different weights.

constant shape for all time moments, and the Dice score decreases.
When the proposed shrinkage constraint is used instead, the segmentation accuracy

increases with w, and w =∞ yields results with monotonous shrinkage of the shape area
(see Fig. 4.4(a)). Moreover, the proposed method copes well with rapid shrinkage events,
without underestimating preceding images, or overestimating the event itself at onset.
Another advantage of using monodirectional infinite links is that there are no additional
parameters to quantify temporal coherency.

Fig. 4.5 depicts the computational time for the proposed graph-cut-based optimiza-
tion as a function of the number of frames. The total computational time grows linearly
with the number of frames, and is approximately twice the time that would be taken by
the independent segmentation of each frame.
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Figure 4.5: Computational time for the proposed segmentation of the ice floe set as a
function of the number of frames.

4.3.2 Application 2: growing burned areas in satellite observations

Biomass burning has a significant impact on the Earth’s climate system. Satellite remote
sensors acquire data for the continuous monitoring of burned areas at both regional and
global scales. Thus, there is a need to develop methods for automated fire mapping.
While most of the existing techniques for mapping burned areas analyze temporal evo-
lution of each pixel in an image scene [155], recent studies have proved the advantage
of considering spatial contextual classification for accurate fire classification [115, 62].
Both works [115, 62] map fires from MODIS data by detecting and classifying persis-
tent changes in a daily vegetation-index time series. Giglio et al. [62] exploit the closest
fixed pixel’s neighborhood to refine fire classification. Lewis [115] segments and analyzes
change detection maps between two consecutive time moments. Manual post-processing
is needed to correct classification errors, which are a consequence of either a cloud cover,
or low contrast between burned and unburned areas.

In our study we analyzed two time series of Terra MODIS atmospherically-corrected
Level 2G daily surface reflectance measurements over the tropical savannas in the North-
ern Australia (“MOD09GA” product, tile h31v10), each of the data sets being acquired
during forty days of the dry season in September-October (days 244-283) of 2011 and
2013, respectively. Wildfires in this region of Australia are frequent and extensive. We
used MODIS band 5 (1.240 µm) 500-m land surface reflectance data as they provide the
highest burned-unburned separability and are largely insensitive to smoke aerosols [155].
Each time series comprised a set of T = 40 images with spatial dimensions W × H =

400 × 400 pixels. Fig. 4.7(a) shows three images from each of the considered sets, where
black pixels denote missing data (MODIS does not provide 100% daytime coverage of
the terrestrial surface every day).

We used MODIS Collection 5.1 Direct Broadcast Monthly Burned Area Product
(MCD64A1, see Fig. 4.7(b)) [62] for learning and testing the proposed method, i.e. for
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Figure 4.6: Flowchart of the segmentation algorithm applied for Application 2.

computing an initial histogram of burned areas and comparing fire maps, respectively.
The MCD64A1 product contains fire classification maps, where each pixel is associated
with either an estimated day of burn, or an unburned flag, or an unmapped flag due to
insufficient data. These maps are computed by applying the approach from [62] on two
500-m MODIS channels coupled with 1-km MODIS active fire observations.

We segmented each of the considered image time series [t1, ..., tT ] by applying the
following iterative procedure (the flowchart is shown in Fig. 4.6):

Initialization: k ∶= 0. The initial training mask of burned areas RBk is built using
MCD64A1 product, by selecting the pixels burned during the days [t1 −D, t1 − 1]. This
mask can also be created based on ground observations of the considered area on the day
(t1 − 1).

1. The training mask of unburned areas RUk is constructed by dilating RBk with a
disk of radius r [171] and selecting the complementary of the resulting image.

2. For a subset of T ′ images t = [t1 + kT
′, t1 + (k + 1)T ′ − 1], intensity histograms of
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Figure 4.7: Two time series of MODIS images acquired in 2011 and 2013 (left and right,
respectively). (a) MODIS band 5 images for three time moments: days 251, 265 and
279. Black pixels denote missing data. (b) Maps from the MCD64A1 product of areas
burned during the days 213-251, 213-265 and 213-279, respectively (white pixels = burned
areas). (c-d) Segmentation maps for images (a) computed by: (c) the proposed method
with growth constraint; (d) [w/o] method with no temporal constraints.

the MODIS band 5 for burned pt(I ∣B) and unburned pt(I ∣U) areas are computed, using
the masks RBk and RUk , respectively. If the data for some pixels is missing, these pixels
are not considered when computing histograms.

3. For the images [t1 + kT
′, t1 + (k + 1)T ′ − 1], potentials are computed, assuming

equal priors pt(B) = pt(U) = 1/2:

V t
i (1) = −ln[p

t
(B∣Iti )] = −ln [

pt(Iti ∣B)

pt(Iti ∣B) + pt(Iti ∣U)
] , (4.7)

V t
i (0) = −ln[p

t
(U ∣Iti )] = −ln [

pt(Iti ∣U)

pt(Iti ∣B) + pt(Iti ∣U)
] . (4.8)

If data Iti is missing for pixel i at time t, we set V t
i (1) = V t

i (0) = 0 (no prior).
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Figure 4.8: Results for Application 2, for two MODIS time series acquired in 2011 (a-b)
and 2013 (c-d), respectively. (a, c) Mean and standard deviation for the dice score as a
function of the temporal link’s weight, when using mono- (green) and bidirectional (red)
temporal links. (b, d) Burned area as a function of time, when using no temporal links
(blue), monodirectional infinite links (green) and MCD64A1 product (red).

Interaction terms are computed using Eq. 4.6.
4. The graph-cut optimization is applied on a joint graph of the images [t1, t1 + (k +

1)T ′ − 1], yielding (k + 1)T ′ segmentation maps.
5. If the whole set of T images is segmented, exit the algorithm. Otherwise: k ∶= k+1.

The segmentation map Lt1+kT
′−3 is used as the new training mask of burned areas RBk .

We do not use the segmentation result of the last frame (t1 + kT
′), because extreme

frames benefit from less information from neighboring frames, and are therefore more
subject to segmentation errors. Go to step 1.

We applied the described algorithm with the parameters empirically set as D = 31,
r = 20, β = 2 and T ′ = 20, and with different temporal regularizations, i.e., [w/o],
[Mono=0.25...∞] and [Bi=0.25...∞]. Neither [Feedforward] nor [Bi=variable] methods
are suited for segmenting image sequences with missing data. Fig. 4.8(a, c) gives the re-
sulting dice scores for both data sets. We have found that a weak temporal regularization
(both bi-/monodirectional) outperforms a segmentation without temporal constraint. In-
creasing the bidirectional temporal regularization towards high values, however, decreases
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the performance. On the opposite, introducing monodirectional infinite links to impose
shape growth yields the most accurate results. As can be seen from Fig. 4.7 and 4.8(b, d),
the proposed approach achieves comparable results with the method [62] by using only
one MODIS channel and no post-processing, while [62] used two MODIS bands coupled
with 1-km MODIS active fire observations and post-processing. Furthermore, the new
method copes better with the missing or noisy data thanks to the introduced spatio-
temporal graph.

4.3.3 Application 3: growing tumor in 3D medical scans

Glioma is the most frequent primary tumor of the brain. The tumor is known to grow
steadily, and lesions are evaluated with respect to volume change in different magnetic
resonance image (MRI) modalities. In our experiment we evaluated a set of 760 mul-
timodal image volumes – each comprising T1 MRI, contrast-enhanced T1 MRI (T1c),
T2 MRI, and T2 FLAIR MRI – acquired from ten patients initially diagnosed with low
grade glioma. The time series have 3-14 time points, with 3-6 months in between any two
acquisitions. All image volumes were rigidly registered and three 2D slices intersecting
with the tumor center were manually annotated through an expert in every volume, rep-
resenting an approximate truth. Full 3D segmentations for images of each individual time
point were obtained using a generative model for multimodal brain tumor segmentation
[136]. This algorithm models the lesion with a latent atlas class [153] amending the tissue
atlas of the standard EM segmenter [202, 93]. We applied it to each multimodal data set
of each time point in an independent fashion. The segmentation model delineates the
lesion individually in each modality. It assumes that changes of the core (visible in T1c)
will occur within the larger edema regions (visible in T2 or FLAIR) and, hence, to only
have class transitions from healthy to edema and from edema to core. As the tumor grows
steadily, we can assume that negative volume changes stem from imaging artifacts, such
as local intensity changes, a common problem in MRI. To this end we model the tumor
to be either stable, in this case regularizing the segmentation along time and suppressing
noise, or to expand in volume between any two time points.

We identified the foreground label F with tumor (edema and core) and background
B with healthy tissue. Then the potential V s,t

i (Ls,ti ) of label Ls,ti at voxel i, time point
t, and imaging sequence s is equal to V s,t

i (0) = ps,t(F ∣Is,t) and V s,t
i (1) = ps,t(B∣Is,t) =

1− ps,t(F ∣Is,t). The tumor probabilities were calculated from image volumes I using the
generative model [136], and we identified tumor subclasses with p(F ∣Is=T1,t) for core, and
p(F ∣Is=T2,t) with edema. We modeled the 3D spatial constraints through a 26 neighbor-
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Figure 4.9: Two time series of T2 and FLAIR MR image volumes, each of which acquired
about 3-6 months apart. The left case is rapidly growing between the second and fourth
scene, the right case displays intensity modifications in the last scene, leading to a subop-
timal performance of the initial multimodal segmentation (yellow) [136]. The proposed
multi-temporal segmentation with growth constraints (green) delineates areas similar to
the manual evaluation (magenta), being more robust against intensity variations of the
MR images. It does not smooth out outlines of rapidly growing tumors as conventional
bi-directional temporal constraints would do.

hood (N ) linking the central voxel with all its immediate neighbors. Interaction terms
W s,t
i,j (L

s,t
i , L

s,t
j ) between neighboring voxels in each sequence s ∈ [T1, T2] are computed

from the channel-specific intensity differences as

δLi≠Lj β
α(i, j)

αtot
exp

⎛

⎝
−(

Is,t(i) − Is,t(j)

A
)

2
⎞

⎠

with β = 0.5, α(p, q) = 1
distance(p,q) , αtot = ∑q∈N (pixel p) α(p, q) andA = 1

3
(max Is,t −min Is,t).

We impose growth constraint in 3D+t as explained in Sec. 4.2.1, and inclusion constraints
as in Sec. 4.2.2 : the foregrounds in T1 and T1c modalities are required to be included
in the one of T2, which is included in the one of FLAIR.

In our test we first segmented the images from each time point independently, and
calculated Dice scores averaged over all images of a time series as an estimate of the base-
line performance. Then we tested different regularizations in time, i.e., [w/o], [Mono]
and [Bi], calculate Dice scores, and compared them against the baseline results from
the unregularized segmentations. Fig. 4.9 shows results for two exemplary time series,
and Fig. 4.10(a) reports differences between Dice scores of regularized segmentations and
baseline segmentations. In this experiment “weak” regularizations refer to small regular-
ization parameters (w ≪ 1), while “strong” regularizations refer to w ≫ 1, representing the
infinite mono- and bi-directional links. Fig. 4.10(a) shows results for all ten time series.
As for the previous two applications, both bi-/monodirectional temporal regularization
with low values of w yields better accuracies when compared to the results without tem-
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Figure 4.10: Results for Application 3. (a) Boxplots report changes in the average seg-
mentation performance of the ten image sequences when testing different regularization
approaches. (The box indicated quartiles, the whiskers outliers.). Using a strong monodi-
rectional regularization acting as a growth prior yields the best results. (b) Volume-time
plot for a patient with 14 observations (cmp. video in supplement). Solid lines indicate
edema, dashed indicate tumor core that starts growing with constant rate at around day
500. The segmentation with growth constraint (red) returns results similar to the manual
segmentation (green). Segmentations obtained by evaluating image volumes of each time
point individually (blue) show significant variation, even obscuring the overall trend.

poral links. Enforcing more smoothness with bidirectional links decreases segmentation
accuracies, while introducing monodirectional “growth” regularization through infinite
links improves performance (Fig. 4.10(a)). The volume-time graphs (Fig. 4.10(b)) of the
segmented tumor structures show as very regular pattern (red), even being smoother than
the manual segmentation (green). Moreover, the log(volume)-time graph (Fig. 4.10(b),
right) shows the exponential growth of the tumor core (dotted lines) that is associated
with this disease [15], for this patient indicating a rapid tumor progression starting at
about day 500. Longitudinal image segmentation, as obtained for the ten time series in
our test, can be further analyzed, for diagnosis and treatment monitoring, e.g., through
algorithms estimating the speed of the tumor outlines under anatomical constraints [100].



CHAPTER 4. SEGMENTATION WITH SHAPE GROWTH/SHRINKAGE CONSTRAINT 87

Extension of the current 5D segmentation could integrate this speed estimation, or extend
the multimodal tumor segmentation [136] for longitudinal data sets.

4.4 Conclusion and discussion

In this chapter, we addressed the problem of shape segmentation in 2D and 3D sequences
of very noisy/low-contrast images, where shapes monotonously grow or shrink in time. In
order to enforce shape growth or shrinkage, we proposed a new graph-cut-based method
for computing the globally-optimal spatio-temporal segmentation satisfying that con-
straint. The main idea was to introduce monodirectional infinite links between pixels at
the same spatial locations in successive image frames, which prohibit a shape to shrink or
grow over time, and then to perform a graph cut optimization on the constructed graph.
The limitation of the proposed method is that it can be applied only to a time series of
images on the same scale and perfectly aligned with respect to the foreground object, so
that in the case of shape growth the foreground at the moment (t + 1) contains all the
foreground pixels at the previous moment t, sharing the same spatial locations. Thus,
if the foreground object moves over time, images must be aligned before applying the
new graph-cut-based technique. We also demonstrated the possibility to impose inter-
sequences object inclusion constraints by adding directed infinite links to the joint graph
associated to all sequences.

We validated the performance of the proposed approach for the segmentation of
growing (burned areas) and shrinking (ice floe) shapes from 2D time series of satellite
images, and for the segmentation of growing 3D tumor volumes from MR sequences. The
method proved to be robust to important noise and low contrast, and to cope well with
missing data. Moreover, it showed linear complexity in practice, so that globally optimal
shape-consistent segmentations of image time series are obtained in a matter of seconds.

Another limitation of the presented method is that it is designed and tuned for the
specific shape prior, and is thus not generic. Furthermore, even though the complexity
of the method is linear, it is not easy to parallelise it, therefore its scalability is limited.
During the last decade, the use of deep convolutional neural networks (CNNs) for machine
learning tasks has been growing in the vision community. CNNs are able to automatically
learn hundreds of task-specific features, which may allow us to easily scale the pool of
contextual features considered. Moreover, they are able to incorporate high-level features
in terms of simple operations that are highly parallelized in GPUs. With the growing
availability of high volumes of satellite images, it is clear that highly parallel approaches
will gain attention in the near future. In the next chapters I will describe our research
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outcomes on the use of the deep neural network-based methods for remote sensing image
classification.



Chapter 5

Deep Learning for Large-Scale Image
Classification

There is a growing interest in analyzing remote sensing data at a large scale, i.e. from
the scale of cities to the world-scale [109, 135, 138]. This implies several challenges,
such as the computational complexity of the methods and intra-class variability. Due
to the large spatial extent of the large-scale datasets, the objects belonging to the same
semantic class may have considerably different appearance. To address this challenge and
conduct an accurate classification, the high-level contextual information must be taken
into consideration, such as the shape of objects and their location with respect to other
objects.

There is an incipient trend both in the vision and remote sensing literature to de-
sign classifiers that automatically learn expressive high-level contextual features. In this
context, deep learning and, in particular, convolutional neural networks (CNNs), have
gained significant attention in the image analysis community over the last years. These
have been originally devised for the image categorization problem, i.e., the assignment of
one label to an entire image. For example, they have been used to categorize objects in
natural scenes (e.g., airplane, bird, person) or land use in the case of aerial images (e.g.,
forest, beach, tennis court). CNNs jointly learn to extract relevant contextual features
and conduct the categorization. In addition to the suppression of the feature design
process, which is an interesting advantage itself, this technique has consistently beaten
alternative methods in a wide range of problems [212]. Nowadays, one can reasonably
expect to find CNN-based techniques scoring the best positions in the leaderboards of
online image-related contests.

One of the challenges to apply CNN-based methods for remote sensing image classi-
fication consists in obtaining fine-grained high-resolution classification maps. This is due

89
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to two main reasons:
a) There is a structural limitation of CNNs to carry out fine-grained classification.

If we wish to keep a low number of learnable parameters, the ability to learn long-range
contextual features comes at the cost of losing spatial accuracy, i.e., a trade-off between
detection and localization. This is a well-known issue and still a scientific challenge
[27, 124].

b) In the specific context of remote sensing imagery, there is a significant lack of
spatially accurate reference data for training. For example, the OpenStreetMap collabo-
rative database provides large amounts of free-access maps over the Earth, but irregular
misregistrations and omissions are frequent all over the dataset. In such circumstances,
CNNs cannot do better than learning rough estimates of the objects’ locations, given
that the boundaries are hardly located on real edges in the training set.

In this chapter, I present two approaches to address this challenge. One approach
consists in designing new architectures specifically intended to provide high-resolution
outputs. We conduct an in-depth analysis of the recent dense semantic labelling CNNs
to establish the desired properties of an ideal semantic labeling CNN, and assess how the
existing methods stand with regards to these properties. Out of these observations, we
then derive a CNN framework specifically adapted to the high-resolution dense classifi-
cation problem. In addition to learning features at different resolutions, it learns how to
combine these features. By integrating local and global information in an efficient and
flexible manner, it outperforms previous techniques when evaluated on public bench-
marks of high-resolution aerial image labeling. I also present an aerial image labeling
dataset we have developed to assess the capability of CNNs to generalize to different
geographic regions.

Another approach is to use first the base CNN as a rough classifier of the objects’
locations, and then process this classification using the original image as guidance, so
that the output objects better align to real image edges. Different iterative enhancement
algorithms have been presented in the literature to progressively improve the coarse
CNN outputs, seeking to sharpen object boundaries around real image edges. However,
one must carefully design, choose and tune such algorithms. Instead, we have proposed
to directly learn the iterative process itself. For this, we formulate a generic iterative
enhancement process inspired from partial differential equations, and observe that it can
be expressed as a recurrent neural network (RNN). Consequently, we train such a network
from manually labeled data with the purpose to correct image classification maps. The
designed RNN automatically discovers relevant data-dependent features to enhance the
classification and the specifics of an iterative process to do so.
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5.1 High-resolution semantic labeling with convolutional neu-
ral networks

5.1.1 Background on convolutional neural networks

An artificial neural network is a system of interconnected neurons that pass messages to
each other. When the messages are passed from one neuron to the next one without ever
going back (i.e., the graph of message passing is acyclic), the network is referred to as
feed-forward [14], which is the most common type of network in image categorization. An
individual neuron takes a vector of inputs x = x1 . . . xn and performs a simple operation
to produce an output a. The most common neuron is defined as follows:

a = σ(wx + b), (5.1)

where w denotes a weight vector, b a scalar known as bias and σ an activation function.
The weights w and biases b are the parameters of the neurons that define the function.
The goal of training is to find the optimal values for these parameters, so that the function
computed by the neural network performs the best on the task assigned.

The most common activation functions σ are sigmoids, hyperbolic tangents and rec-
tified linear units (ReLU). For image analysis, ReLUs have become the most popular
choice due to some practical advantages at training time, but novel activation functions
have been recently proposed as well [29].

Instead of directly connecting a huge set of neurons to the input, it is common to
organize them in groups of stacked layers that transform the outputs of the previous layer
and feed it to the next layer. This enforces the networks to learn hierarchical features,
performing low-level reasoning in the first layers (such as edge detection) and higher-level
tasks in the last layers (e.g. [51], assembling object parts). For this reason, the first and
last layers are often referred to as lower and upper layers, respectively.

In an image categorization problem, the input of the network is an image (or a set
of features derived from an image), and the goal is to predict the correct category of the
entire image. We can view the pixelwise semantic labeling problem as taking an image
patch and categorizing its central pixel. Finding the optimal neural network classifier
reduces to finding the weights and biases that minimize a loss L between the predicted
labels and the target labels in a training set. Let Ω be the set of possible semantic classes.
Labels are typically encoded as a vector of length ∣Ω∣ with values ‘1’ at the position of
the correct label and ‘0’ elsewhere. The network contains thus as many output neurons
as possible labels. A softmax normalization is performed on top of the last layer to
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guarantee that the output is a probability distribution, i.e. the label values are between
zero and one and sum to one. The multi-label problem is then seen as a regression on
the desired output label vectors.

The loss function L quantifies the misclassification by comparing the target label
vectors y(i) and the predicted label vectors ŷ(i), for p training samples i = 1 . . . p. In this
work we use the common cross-entropy loss, defined as:

L = −
1

p

p

∑
i=1

∣Ω∣
∑
k=1

y
(i)
k log ŷ

(i)
k . (5.2)

Training neural networks by optimizing this criterion converges faster, compared with,
for instance, the Euclidean distance between y and ŷ. In addition, it is numerically
stable when coupled with softmax normalization [14].

Note that in the special case of binary labeling we can produce only one output (with
targets ‘1’ for positive and ‘0’ for negative). In this case a sigmoid normalization and
cross-entropy loss are analogously used, although a multi-class framework can also be
used for two classes.

Once the loss function is defined, the parameters (weights and biases) that minimize
the loss are found via gradient descent, by computing the derivative ∂L

∂wi
of the loss

function with respect to every parameter wi, and updating the parameters with a learning
rate λ as follows:

wi ← wi − λ
∂L

∂wi
. (5.3)

The derivatives ∂L
∂wi

are obtained by backpropagation, which consists in explicitly com-
puting the derivatives of the loss with respect to the last layer’s parameters and using
the chain rule to recursively compute the derivatives of each layer’s outputs with respect
to its weights and inputs (the inputs being the previous layer’s outputs). In practice,
instead of averaging over the full dataset, the loss (5.2) is estimated from a random small
subset of the training set, referred to as mini-batch. This learning technique is known as
stochastic gradient descent.

Convolutional neural networks (CNNs) are a particular type of neural network. The
overall success of CNNs lies mostly in the fact the the networks are forced by construction
to learn hierarchical contextual translation-invariant features, which is particularly useful
in the context of image analysis.

CNNs contain so-called convolutional layers, a specific type of layer that imposes a
number of restrictions compared to a more general fully connected layer, where every
neuron is connected to all outputs of the previous layer [111]. Every neuron is associated
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Figure 5.1: Convolutional layer. Connections are limited to a local spatial neighborhood
and the weights are shared across the different neurons.

to a spatial location (i, j) in the input image (see Fig. 5.1). The output aij associated
with location (i, j) in a convolutional layer is computed as:

aij = σ((W ∗X)ij + b), (5.4)

where W denotes a kernel with learned weights, X the input to the layer and ‘∗’ the
convolution operation. Notice that this is a special case of the neuron in Eq. 5.1 with
the following constraints:

● The connections only extend to a limited spatial neighborhood determined by the
kernel size;

● The same filter is applied to each location, guaranteeing translation invariance.

Multiple convolution kernels are usually learned in every layer, interpreted as a set of
spatial feature detectors. The responses to every learned filter are thus referred to as fea-
ture maps. Note that the convolution kernels are actually three-dimensional: in addition
to their spatial extent (2D), they span along all the feature maps in the previous layer
(or eventually through all the bands in the input image). As this third dimension can be
inferred from the previous layer it is rarely mentioned in the architecture descriptions.

Compared to the fully connected layer, a convolutional layer highly reduces the num-
ber of parameters by enforcing the aforementioned constraints. This results in an easier
optimization problem, without losing much generality. This opened the door to using
the image itself as an input without any feature design and selection process, as CNNs
discover the relevant spatial features to conduct classification.



CHAPTER 5. DEEP LEARNING FOR LARGE-SCALE CLASSIFICATION 94

3x3 conv. 2x2 pooling 3x3 conv. 2x deconv.

Figure 5.2: Lateral view of a fully convolutional network (dashed lines indicate inputs
that have been padded in convolutional layers and cropped in the deconvolutional layer
to preserve spatial dimensions).

Increasing the receptive field

In addition to convolutional layers, state-of-the-art networks such as Imagenet [101] in-
volve some degree of downsampling, i.e., a reduction in the resolution of the feature maps
with the purpose to increase the so-called receptive field of the neurons. The receptive
field denotes the spatial extent of the input image connected to a certain neuron, possi-
bly indirectly through other neurons in previous layers: it is the set of pixels on which a
neuron depends. In other words, it quantifies how far a neuron can “see” in the image. In
most applications, a large amount of spatial context must be taken into account in order
to successfully label the images. For example, to deduce that a certain pixel belongs to a
rooftop, it might not be enough to just consider its individual spectrum: we might need
to observe a large patch around this pixel, taking into account geometry and structure
of the objects, to infer its correct class.

Neural networks for image analysis should thus be designed to accumulate, through
their layers, a large enough receptive field. While a straightforward way to do it is to use
large convolution kernels, this is not a common practice mostly due to its computational
complexity. Besides, this would aim at learning large filters all at once, with millions
of parameters. It is preferable to learn a hierarchy of small filters instead, reducing the
number of parameters while remaining expressive, and thus making the optimization
problem easier.

The most common approach to reduce the number of parameters for a given receptive
field size is to downsample the feature maps throughout the network. This is commonly
achieved by interleaving downsampling layers with convolutional layers. This way, the
resolution of the feature maps gets lower and lower as we traverse the layers from input
to output.
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To downsample the feature maps, the most popular approach is to use the so-called
max pooling layer [17]. A max pooling layer takes a group of neighbors in the feature
map and condenses them into a single output by computing the maximum of all incoming
activations in the window. The pooling windows in general do not overlap, hence the
output map is downsampled (see Fig. 5.2). For instance, if pooling is performed in a 2×2

window, the feature map is reduced to half of its resolution.
Computing the maximum value is inspired by the idea of detecting objects from

their parts. For example, in a face detector it is important to identify the constituents
of a face, such as hair or nose, while the exact locations of these components should
not be such a determinant factor. The max pooling layer conveys then to which extent
there is evidence of the existence of a feature in a vicinity. Other less popular forms
of downsampling include average pooling and applying convolutions with a stride, i.e.,
“skipping” some of them (e.g., applying every other convolution).

Pooling operations (and downsampling in general) hard-code robustness to spatial
deformations, a virtue that boosted the success of CNNs for image categorization. How-
ever, spatial precision is lost when downsampling. The increased receptive field (and
thus recognition capability) comes at the price of losing localization capability. This
well-reported trade-off [124, 27] is a major concern for dense labeling.

We could still imagine a downsampling network that preserves localization: it would
learn features of the type “a corner at the center of the receptive field”, “a corner one
pixel left of the center of the receptive field”, “a corner two pixels left of the center of
the receptive field”, and so on, multiplying the number of features to be learned. This
would however discredit the use of downsampling to gain robustness to spatial variation
in the first place. The recognition/localization trade-off must thus be properly addressed
to design a high-resolution semantic labeling network.

5.1.2 Overview of high-resolution labeling CNNs

Fully convolutional networks (FCNs) [124] have become the standard in semantic label-
ing, including in remote sensing image analysis [198, 91]. They contain only convolutional
layers, i.e., no fully connected layers. Therefore, they can be applied to images with vari-
ous sizes: inputting a larger image patch produces a larger output, the convolutions being
performed on more locations. When an FCN has downsampling layers, the output con-
tains fewer elements than the input, since the resolution has been decreased. This gave
birth to the so-called deconvolutional (or upconvolutional) layer, which upsamples a fea-
ture map by interpolating neighboring elements (as the last layer in Fig. 5.2). However,
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(a) (b)

Figure 5.3: To classify the central gray pixel of this patch (and not to confuse it, e.g.,
with an asphalt road), we need to take into account a spatial context (a). However, we
do not need a high resolution everywhere in the patch. It can be lower as we go away
from the central pixel and still identify the class (b).

simply adding a deconvolutional layer to upsample the output on top of a network pro-
vides dense outputs but imprecise labeling results, because the upsampling is performed
in a naive way from the coarse classification. This is dissatisfying in many applications,
such as high-resolution aerial image classification, where the goal is to precisely identify
and outline tiny objects such as cars. The open question is then which type of FCN would
be able to conduct fine predictions that provide detailed high-resolution outputs, while
still taking large amounts of context into account and without exploding the number of
trainable parameters.

We now describe what we consider to be the elementary principle from which to
derive efficient dense classification architectures. Let us then first observe that while our
goal is to take large amounts of context into account, we do not need this context at the
same spatial resolution everywhere. Suppose we want to classify the central pixel of the
patch in Fig. 5.3(a). Such a gray pixel, taken out of context, could be easily confused
with an asphalt road. Considering the whole patch at once helps to infer that the pixel
belongs indeed to a gray rooftop. However, two significant issues arise if we take a full-
resolution large patch for context: a) it requires many computational resources that are
actually not needed for an effective labeling, and b) it does not provide robustness to
spatial variation (we might actually not care about the exact location of certain features
to determine the class). Conducting predictions from low-resolution patches instead is
not a solution as it produces inaccurate coarse classification maps. Nevertheless, it is
actually not necessary to observe all surrounding pixels at full resolution: the farther
we go from the pixel we want to label, the lower the requirement to know the exact
location of the objects. For example, in the patch of Fig. 5.3(b) it is still possible to
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Figure 5.4: A dilated convolution (i.e., on non-adjacent inputs) with a dilation factor
S = 4.

classify the central pixel, despite the outer pixels being blurry. Therefore, we argue that
a combination of reasoning at different resolutions is necessary to conduct fine labeling,
if we wish to take a large context into account in an efficient manner.

In the following, we analyze the main families of high-resolution classification net-
works that have been proposed in the past two years. For each of them we discuss the
following aspects:

● How a solution to the fine-grained labeling problem is provided;

● Where this solution stands with respect to the principle of Fig. 5.3;

● General advantages and disadvantages, and computational efficiency.

Dilation Networks

Dilation networks are based on the shift-and-stitch approach or à trous algorithm [124].
This consists in conducting a prediction at different offsets to produce multiple low-
resolution outputs, which are then interleaved to compose the final high-resolution result.
For example, if the downsampling factor of a network is S, one should produce S2

classification maps by shifting the input horizontally and vertically. Such an interleaving
can also be implemented directly in the architecture, by using “dilated” operations [211],
i.e., performing them on non-contiguous elements of the previous feature maps. This
principle is illustrated in Fig. 5.4.

Dilations have been used with two purposes:

1. As an alternative to upsampling for generating full-resolution outputs [43, 124].

2. As a means to increase the receptive field [27, 211], by enlarging the area covered
by a convolution kernel, without increasing the number of trainable parameters.

Regarding the first point, we must mention that there is no theoretical improvement
compared to an FCN with naive upsampling, because the presence of pooling layers still
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reduces spatial precision. Executing the prediction multiple times at small offsets still
keeps predictions spatially imprecise.

Regarding the second point, we must remark that while dilated convolutions increase
the receptive field, this does not introduce robustness to spatial variation per se. For
example, a network with only dilated convolution layers would have a large receptive field
but would only be able to learn filters of the type “a building in the center, with a car
exactly five pixels to the left”. This robustness would have to be thus learned, hopefully,
by using a larger number of filters.

The use of an interleaved architecture at training time, implemented with dilations,
has been however reported to be beneficial. In the context of aerial image labeling,
Sherrah [163] recently showed that it outperforms its FCN/upsampling counterpart1.
The major improvement compared to the FCN/upsampling network was measured in
the labeling capabilities of the car class, which is a minority class with tiny objects,
difficult to recognize [198]. While the dilation strategy is not substantially different from
an architectural point of view compared to naive upsampling, some advantages in training
might explain the better results: In the upsampling case the network is encouraged to
provide a coarse classification that, once upsampled, is close to the ground truth. In
the dilation network, on the contrary, the interleaved outputs are directly compared to
individual pixels in the ground truth, one by one. The latter seems to better avoid
suboptimal solutions that absorb minority classes or tiny objects.

The computational time and memory required by dilation networks are significant,
to the point that using GPUs might become impractical even with moderately large
architectures. This is because the whole network rationale is applied to many contiguous
locations.

Overall, while dilation networks have been reported to exhibit certain advantages,
they are computationally demanding and do not particularly address the principle of
Fig. 5.3.

Deconvolution Networks (unpooling)

Instead of naively upsampling the classification score maps with one deconvolutional
layer, a more advanced approach is to attach a multi-layer network to learn a com-
plex upsampling function. This idea was simultaneously presented by different research
groups [3, 144] and later extended to different problems (e.g., [209]). A simple way to
implement this idea is to “reflect” an existent FCN, with the same number of layers and

1While such architecture is named a “no-downsampling” network in [163], a more appropriate name
would probably be “no-upsampling”, because there is indeed downsampling due to the max pooling layers.
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Figure 5.5: Deconvolution network. The CNN is “mirrored” to learn the deconvolution.
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Figure 5.6: Max (left) and average (right) unpooling.

kernel sizes, to perform the upsampling. The convolutional layers are reflected as decon-
volutional layers, and the pooling layers as unpooling layers (see Fig. 5.5). While pooling
condenses several activations into one representative value (typically, the maximum acti-
vation), unpooling layers must reconstruct the original size of activations. In the case of
max unpooling, the location of the maximal activation is recalled from the corresponding
pooling layer, and is used to place the activation back into its original pooled location.
The other elements in the unpooling window are set to zero, leading to sparse feature
maps, as illustrated in Fig. 5.6. Unpooling was first introduced as part of a framework to
analyze and visualize CNN features [212]. The arrows in Fig. 5.5 represent the commu-
nication of the pooling indices from the pooling layer to the unpooling layer. In the case
of average pooling, the corresponding unpooling layer simply outputs at every location
the input activation value divided by the number of elements in the target unpooling
window(see Fig. 5.6). In this case, there is no need to transmit a location from pooling
to unpooling.

This concept can be thought of as an “encoder–decoder”, where the middle layer is
seen as a common representation to images and classification maps, while the “encoder”
and “decoder” ensure the translation between this representation and the two modalities.
When converting an FCN to a deconvolution network, the final classification layer of
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the FCN is usually dropped before reflecting the architecture. This way the interface
between the encoder and the decoder is a rich representation with multiple features. The
first layer of the encoder takes as input as many channels as the ones in the input image,
and the last layer of the decoder produces as many feature maps as the number of classes
required. In [3, 4], alternatively, the network outputs a larger set of features that are
then classified with additional layers.

While pooling is used to add robustness to spatial deformation, the fact of “remem-
bering” the location of the max activation helps to precisely locate objects in the de-
convolution steps. For example, the exact location of a road might be irrelevant to do
any higher-level reasoning later on, but once the network decides to label the road as a
semantic object we need to recover the location information to outline it with high pre-
cision. This illustrates how deconvolution networks balance the localization/recognition
trade-off.

Note however that if one happens not to choose max pooling for downsampling, then
the unpooling scheme is not able to recover per se the lost spatial resolution. There is no
memory about the location of the higher-resolution feature. Even though max pooling
is very common, it has been shown that average or other types of pooling might be more
effective in certain applications [17]. In fact, recent results [172] suggested that max
pooling can be emulated with a strided convolution and achieve similar performance.
The deconvolution network idea is however leveraged when max pooling is chosen for
downsampling.

This certainly does not mean that a deconvolutional network is incapable of learning
without max pooling layers. Convolution/deconvolution architectures without max pool-
ing have been successfully used in different domains [198, 166]. For example, a recent
submission to the ISPRS Semantic Labeling Challenge [198] is such type of network. The
recognition/localization trade-off is not really alleviated in this case: the encoder should
encode features of the type “an object boundary 5 (or 7, 10...) pixels away to the left”, so
that the decoder can really leverage this information and reconstruct a high-resolution
classification map.

The depth of deconvolution networks is significantly larger, roughly twice the one of
the associated FCN. This often implies a slower and more difficult optimization, due to
the increase in the number of trainable parameters introduced by deconvolutional layers.
While the decoding part of the network can be simplified [149], this adds arbitrariness to
the design, since instead of just reflecting the encoder we must also design the decoder.

To conclude, the deconvolution scheme does address the recognition/localization
trade-off, but only in the case where max pooling is used for downsampling. The in-
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creased network depth can be a concern for an effective training.

Skip Networks

In the original paper about fully convolutional networks, Long et al. [124] proposed the
so-called “skip” architecture to generate high-resolution classification outputs. The idea
is to build the final classification map by combining multiple classification maps, obtained
from intermediate features of the network at different resolutions (and not just the last
one).

The last layer of an FCN outputs as many feature maps as classes, which are in-
terpreted as score or “heat” maps for every class. Intermediate layers, however, tend to
have many more features than the number of classes. Therefore, skip networks add extra
layers that convert the arbitrarily large number of features of intermediate layers into the
desired number of heat maps. This approach allows us to extract multiple score maps
for each class from a single network, at different resolutions. The lower-level score maps
are fine but have a small receptive field, while the higher-level ones can see farther but
with less detail.

Score

Upsample

Upsample

Upsample

Add

Add

Add

Score Score

Score

Figure 5.7: Skip network: multiple classification scores are obtained from intermediate
CNN features at different resolutions, and are combined by element-wise adding and
upsampling.

The score maps are then combined pairwise, from the lower scales to the higher
scales. At every step, the lower-resolution score maps are upsampled to match the
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higher-resolution ones. They are then added elementwise. This is repeated until all
intermediate maps are processed. A skip network is illustrated in Fig. 5.7.

Skip networks address the trade-off between localization and precision quite explicitly:
the information at different resolutions is extracted and combined. The original paper
introduces this methodology as “combining what and where”. This approach is closer to
the principle described in Fig. 5.3 than the previous approaches reviewed above. The skip
network mixes observations at different resolutions, without unnecessarily increasing the
depth or width of the architecture (as in deconvolution and dilation networks respectively)
and it does not impose a particular type of downsampling (as in deconvolution networks).

While the idea of extracting different resolutions is certainly very relevant, the skip
model seems to be inflexible and arbitrary in how to combine them. First of all, it
combines classification verdicts, instead of a rich set of features, coming from each of the
resolutions. For example, it combines how a layer evaluates that an object is a building
by using low-level information, with how another layer evaluates whether the same object
is a building by using higher-level information. Let us recall that we use deep multi-layer
schemes with downsampling because we actually consider that certain objects can only
be detected at the upper layers of the network, when a large amount of context has been
taken into account and at a high level of abstraction. It seems thus contradictory to try
to refine the boundaries of an object detected at a high level, by using a classification
conducted at a lower level, where the object might not be detected at all. Moreover,
the element-wise addition restricts the combination of resolutions to be simply a linear
combination. The skip links to combine resolutions are in fact parameterless (besides
the addition of the scoring layers). We could certainly imagine classes that require a
more complex nonlinear combination of high- and low-level information to be effectively
classified.

It is worth noting that the creation of the intermediate score maps has also been
referred to as a dimensionality reduction step [4]. It is however not by chance that the
amount of reduced features coincides with the amount of classes: even though it is tech-
nically a dimensionality reduction, its spirit is to create a partial classification, not just to
reduce the number of features. This is confirmed by the name of these layers in the pub-
lic implementation by Long et al. [124]: “score” layers. Moreover, if this operation were
indeed intended to be just a reduction of dimensionality, we could imagine outputting
different amounts of feature maps from different resolutions. However, in that case there
would be no way of adding them element by element as suggested. Hariharan et al. [78]
also extract intermediate features (“skip” links) from a CNN. Additional convolutional
layers are used to derive a fixed number of features from each of these intermediate layers,
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and then added to give the final output.
To conclude, the skip network architecture provides an efficient solution to address

the localization/recognition trade-off, yet this could be done in a more flexible way that
enables a more complex combination of the features.

5.1.3 Learning to combine resolutions

In this section I describe our proposed alternative scheme for high-resolution labeling,
derived as a natural consequence of the observations described hereabove. In particular,
this architecture leverages the benefits of the skip network while addressing its potential
limitations.

Taking multiple intermediate features at different resolutions and combining them
seems to be a sensible approach to specifically address the localization/recognition trade-
off, as done with skip networks. In such a scheme, the high-resolution features have a
small receptive field, while the low-resolution ones have a wider receptive field. Combin-
ing them constitutes indeed an efficient use of resources, since we do not actually need
the high-resolution filters to have a wide receptive field, following the principle of Fig. 5.3.

Concatenate

Learn to combine features

Upsample features

Figure 5.8: MLP network: intermediate CNN features are concatenated, to create a
pool of features. Another network learns how to combine them to produce the final
classification.
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The skip network combines predictions derived from the different resolutions, i.e.,
score maps for each of the classes. For example, we try to refine the “blobby” building
outputted by the coarse classifier, via a higher-resolution classification. However, it is
unclear how effectively the higher-resolution classifier detects such building, considering
its reduced receptive field and shallow reasoning.

We thus argue that a more relevant way of performing fine semantic labeling is to
combine features, not classification maps. For example, to refine the boundaries of a
coarse building, we would use high-resolution edge detectors and not high-resolution
building detectors.

In our proposed scheme, intermediate features are extracted from the network and
treated equally, creating a pool of features that emanate from different resolutions. A
neural network then learns how to combine these features to give the final classifica-
tion verdict. This adds flexibility to learn more complex relations between the different
resolutions and generalizes the element-wise addition of the skip architecture.

The overall process is depicted in Fig. 5.8. First, a subset of intermediate features are
extracted from the network. These are naively upsampled to match the resolution of the
highest-resolution features. They are then concatenated to create the pool of features.
Notice that while the spatial dimensions of the feature maps are all the same, they
originally come from different resolutions. This way, the variation of the feature responses
across space will be smoother in certain maps and sharper in others. Note that while it is
practical to store in memory the upsampled responses, this is not intrinsically necessary.
For example, we could imagine a system that answers to a high-resolution query by
outputting the nearest neighbor in the coarser map or by interpolating neighboring values
on the fly.

From the pool of features, a neural network predicts the final classification map (we
could certainly use other classifiers, but this lets us train the system end to end). We
assume that all the spatial reasoning has been conveyed in the features computed by the
initial CNN. This is why we operate on a pixel-by-pixel basis to combine the features.
Any need to look at neighbors should be expressed in the spatial filters of the CNN. This
way we conceptually and architecturally separate the extraction of spatial features from
their combination.

We can think of the multi-layer perceptron (MLP) with one hidden layer and a
non-linear activation function as a minimal system to learn how to combine the pool of
features. Such MLPs can learn to approximate any function and, since we do not have any
particular constraints, it seems an appropriate choice. In practice, this is implemented as
a succession of convolutional layers with 1×1 kernels, since we want the same MLP to be
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applied at every location. By introducing the MLP and executing it at a fine resolution,
we must expect an overhead in processing time compared to the skip network.

The proposed technique is intended to learn how to combine information at different
resolutions, not how to upsample a low-resolution classification. An example of the type
of relation conveyed by this scheme is as follows: “label a pixel as building if it is red
and belongs to a larger red rectangular structure, which is surrounded by areas of green
vegetation and near a road”.

Finally, let us discuss the CNN from which features are extracted (the topmost part of
Fig. 5.8). The different features are extracted from intermediate layers of a single CNN.
This assumes that the higher-level features can be derived from the lower-level ones. It
is basically a part-based model [51], where we consider that an object can be detected by
its parts, and we are using those same parts as the higher-resolution features inputted
to the MLP. This seems to be a sensible assumption, yet we must mention that we could
eventually think of separate networks to detect features at different resolutions instead
of extracting intermediate representations of a single network (as, e.g., in [47]). While
we adopt the model of Fig. 5.8 in this work, the alternative could be also considered.
It would be certainly interesting to study to which extent it is redundant to learn the
features in separate networks and, conversely, how results could be eventually improved
by doing it.

5.1.4 Experiments on Potsdam and Vaihingen datasets

We evaluate the aforementioned architectures on two benchmarks of aerial image labeling:
Vaihingen and Potsdam, provided by Commission III of the ISPRS [85]. The Vaihingen
dataset is composed of 33 image tiles (of average size 2494 × 2064), out of which 16 are
fully annotated with class labels. The spatial resolution is 9 cm. Near infrared (NIR),
red (R) and green (G) bands are provided, as well as a digital surface model (DSM),
normalized and distributed by [60]. We select 5 images for validation (IDs: 11, 15, 28,
30, 34) and the remaining 11 images for training, following [163, 198, 146].

Potsdam dataset consists of 38 tiles of size 6000×6000 at a spatial resolution of 5 cm,
out of which 24 are annotated. It provides an additional blue channel (which we here
exclude for simplicity) and the normalized DSM. We select the same 7 validation tiles
as in [163] (IDs: 2_11, 2_12, 4_10, 5_11, 6_7, 7_8 7_10) and the remaining 17 tiles
for training. Both datasets are labeled into the following six classes: impervious surface,
building, low vegetation, tree, car and clutter/background.

In order to account for labeling mistakes, another version of the ground truth with
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Table 5.1: Architecture of our base FCN.

Layer Filter size Number of filters Stride Padding
Conv-1_1 5 32 2 2
Conv-1_2 3 32 1 1
Pool-1 2 2

Conv-2_1 3 64 1 1
Conv-2_2 3 64 1 1
Pool-2 2 2

Conv-3_1 3 96 1 1
Conv-3_2 3 96 1 1
Pool-3 2 2

Conv-4_1 3 128 1 1
Conv-4_2 3 128 1 1
Pool_4 2 2

Conv-Score 1 5 1

eroded boundaries is provided, on which accuracy is measured. To evaluate the overall
performance, overall accuracy is used, i.e., the percentage of correctly classified pixels.
To evaluate class-specific performance, the F1-score is used, computed as the harmonic
mean between precision and recall [33]. We also include the mean F1 measure among
classes, since overall accuracy tends to be too insensitive to minority classes in imbalanced
datasets.

Network architectures

To conduct our experiments we depart from a base fully convolutional network (FCN)
and derive other architectures from it. Table 5.1 summarizes our base FCN for the
Vaihingen dataset. The architecture is borrowed from [91], except for the fact that we
increased the size of the filters from 3 to 5 in the first layer, since it is a common practice
to use larger filters if there is a stride. Every convolutional layer (except the last one) is
followed by a batch normalization layer [83] and a ReLU activation. We did not optimize
the architecture of the base FCN. Padding refers to the amount of zero-valued pixels
added around the input to a convolutional layer, so as to preserve the dimension of the
feature maps (otherwise the convolution is not applied near the border and the maps
become slightly smaller).

The total downsampling factor is 16, out of which 8 is the result of the max pooling
layers and 2 of the stride in the first layer. The conversion of the last set of features to
classification maps (the “score” layer) is performed by a 1 × 1 convolution. To produce a
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dense pixel labeling we must add a deconvolutional layer to upsample the predictions by
a factor of 16, thus bringing them back to the original resolution.

To implement a skip network, we extract the features of layers Conv-*_2, i.e., pro-
duced by the last convolution in each resolution and before max pooling. Additional
scoring layers are added to produce classification maps from the intermediate features.
The resulting score maps are then combined as explained in Section 5.1.2. Our MLP
network was implemented by extracting the same set of features. As no intermediate
scores are needed, we remove layer ‘Conv-Score’ from the base FCN. The features are
combined as explained in Section 5.1.3. The added multi-layer perceptron contains one
hidden layer with 256 neurons.

We also created a deconvolution network that exactly reflects the base FCN (as in
[144]). This is straightforward, with deconvolutional and unpooling layers associated to
every convolutional and pooling layer. The only particularity is that the last layer outputs
as many maps as required classes and not as input channels. We here call it unpooling
network, to differentiate it in the experiments from another method that uses a stack of
deconvolutions but without unpooling [198], which we simply refer to as deconvolution
network. To cover the last family of architectures of Sec. 5.1.2, the dilation network, we
incorporate the results recently presented by Sherrah [163].

In both datasets we use the same four input channels: DSM, NIR, R and G. Notice
that we simply add the DSM as an extra band. In the case of Vaihingen we predict five
classes, ignoring the clutter class, due to the lack of training data for that class. In the
case of Potsdam we predict all six classes.

Considering the difference in resolution in both datasets, in the case of Potsdam we
downsample the input and linearly upsample the output by a factor of 2 (following [163]).
We use the same architecture as for Vaihingen (besides the different number of output
classes) between the downsampling and upsampling layers. This is to cover a roughly
similar receptive field in terms of meters (and not pixels) for both datasets.

Training

The networks are trained by stochastic gradient descent [14]. In every iteration a group
of patches is fed to the network for backpropagation. We sample random patches from
the images, performing random flips (vertically, horizontally or both) and transpositions,
augmenting the data 8 times. At every iteration we group five patches in the mini-batch,
of size 256 × 256 for Vaihingen dataset and 512 × 512 for Potsdam (to roughly cover the
same geographical area, considering the difference in resolution). In all cases, gradient
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Table 5.2: Numerical evaluation of architectures derived from our base FCN on the
Vaihingen validation set.

Imp. surf. Building Low veg. Tree Car Mean F1 Overall acc.
Base FCN 91.46 94.88 79.19 87.89 72.25 85.14 88.61
Unpooling 91.17 95.16 79.06 87.78 69.49 84.54 88.55

Skip 91.66 95.02 79.13 88.11 77.96 86.38 88.80
MLP 91.69 95.24 79.44 88.12 78.42 86.58 88.92

Table 5.3: Numerical evaluation of architectures derived from our base FCN on the
Potsdam validation set.

Imp. surf. Building Low veg. Tree Car Clutter Mean F1 Acc.
Base FCN 88.33 93.97 84.11 80.30 86.13 75.35 84.70 86.20
Unpooling 87.00 92.86 82.93 78.04 84.85 72.47 83.03 84.67

Skip 89.27 94.21 84.73 81.23 93.47 75.18 86.35 86.89
MLP 89.31 94.37 84.83 81.10 93.56 76.54 86.62 87.02

descent is run with a momentum of 0.9, and an L2 penalty on the network’s parameters
of 0.0005. Weights are initialized following [80] and, since we use batch normalization
layers before ReLUs, there is no need to normalize the input channels.

We start from a base learning rate of 0.1 and anneal it with an exponential decay.
The decay rate is set so that the learning rate is divided by ten every 10,000 iterations in
the case of Vaihingen and every 20,000 iterations in Potsdam. We decrease the learning
rate more slowly in the case of Potsdam because the total surface covered by the dataset
is larger, thus we assume it must take longer to explore. Training is stopped after 45,000
iterations in the first dataset and 90,000 in the second one, when the error stagnates on
the validation set.

To train the unpooling, skip and MLP networks we initialize the weights with the
pretrained base FCN, and jointly retrain the entire architecture. We start this second
training phase with a learning rate of 0.01, and stop after 30,000 and 65,000 iterations
for Vaihingen and Potsdam datasets respectively. We verified that the initialization with
the pretrained weights is indeed beneficial compared to training from scratch.

Numerical results

In this section I first present how the base FCN network compares to its derived archi-
tectures: unpooling, skip and MLP. I then position MLP with respect to other results
reported in the literature, including a dilation network, thus completing the evaluation
over all four families of techniques. I finally discuss our submission to the ISPRS contest.
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Comparison of a base FCN to its derived unpooling, skip and MLP networks
The classification performances on the validation sets are included in Tables 5.2 and 5.3,
for Vaihingen and Potsdam datasets, respectively. The MLP network exhibits the best
performance in almost every case. The skip network effectively enhances the results
compared with the base network, yet it does not outperform MLP. Let us remark that
the unpooling strategy does not necessarily improve the base FCN. This might be a result
of the increased training difficulty due to the depth of the network and the sparsity of
the unpooled maps. Our attempts to modify the training scheme did not conduce to
improving its performance.

Overall, the numerical results show that the incorporation of lower-resolution features
significantly improves the classification accuracy. MLP is the most competitive method,
boosting the performance by learning how to combine these features.

Comparison with other methods Tables 5.4 and 5.5 (for Vaihingen and Potsdam
datasets respectively) incorporate the numerical results reported by other authors using
the same training and validation sets. Since not every method was applied to both
datasets, the tables do not display exactly the same techniques. The MLP approach
also outperforms the dilation strategy, in both datasets, thus positioning it as the most
competitive category among those presented in Sections 5.1.2, 5.1.3 (dilation, unpooling,
skip, MLP).

In the case of Vaihingen dataset, we also report the results of the deconvolution net-
work [198], commented in Sec. 5.1.2, which performs upsampling by using a series of
deconvolutional layers. Contrary to the unpooling network, the decoder does not ex-
actly reflect the encoder and no unpooling operations are used. Additionally, we include
the performance of other methods recently presented in the literature: the CNN+RF ap-
proach [146], which combines a CNN with a random forest classifier; the CNN+RF+CRF
approch, which adds CRF post-processing to CNN+RF; and Dilation+CRF [163], which
adds CRF post-processing to the dilation network. As depicted in the table, the MLP
approach outperforms these other methods too.

For Potsdam dataset, Table 5.5 reports the performance of two other methods, pre-
sented in [163]. In both cases, a pretrained network based on VGG [167] is applied to
the IR-R-G channels of the image, and another FCN is applied to the DSM, resulting
in a huge hybrid architecture. An ordinary version (with upsampling at the end) and a
dilation version are considered (‘VGG pretr.’ and ‘VGG+Dilation’ in Table 5.5, respec-
tively). In the latter version, the dilation strategy could only be applied partially as it
is too memory intensive. While MLP outperforms the non-pretrained simpler dilation
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Table 5.4: Comparison of MLP with other methods on the Vaihingen validation set.

Imp. surf. Build. Low veg. Tree Car F1 Acc.
CNN+RF [146] 88.58 94.23 76.58 86.29 67.58 82.65 86.52

CNN+RF+CRF [146] 89.10 94.30 77.36 86.25 71.91 83.78 86.89
Deconvolution [198] 83.58 87.83

Dilation [163] 90.19 94.49 77.69 87.24 76.77 85.28 87.70
Dilation + CRF [163] 90.41 94.73 78.25 87.25 75.57 85.24 87.90

MLP 91.69 95.24 79.44 88.12 78.42 86.58 88.92

Table 5.5: Comparison of MLP with other methods on the Potsdam validation set.

Imp. surf. Build. Low veg. Tree Car Clutter F1 Acc.
Dilation [163] 86.52 90.78 83.01 78.41 90.42 68.67 82.94 84.14

VGG pretr. [163] 89.84 93.80 85.43 83.61 88.00 74.48 85.86 87.42
VGG+Dilation [163] 89.95 93.73 85.91 83.86 94.31 74.62 87.06 87.69

MLP 89.31 94.37 84.83 81.10 93.56 76.54 86.62 87.02

network, the VGG+Dilation variants exhibits the best overall performance (though not
on all of the individual classes). This suggests that the VGG component might be adding
a competitive edge, though the authors stated that this is not the case on the Vaihingen
dataset.

Overall, MLP provides better accuracies than most techniques presented in the liter-
ature, including dilation networks, ensemble approaches and CRF post-processing.

Submission to the ISPRS challenge We submitted the result of executing MLP on
the Vaihingen test set to the ISPRS server (ID: ‘INR’), which can be accessed online [85].
Our method scored second out of 29 methods, with an overall accuracy of 89.5%. Note
that our MLP technique is very simple compared to other methods in the leaderboard, yet
it scored better than them. For example, an ensemble of two skip CNNs was pretrained
on large natural image databases [133], with over 20 convolutional layers and separate
paths for the image and the DSM. Despite being simpler, our MLP network outperforms
it in the benchmark.

Visual results

Fig. 5.9 shows visual comparisons on closeups of classified images of both datasets. As
expected, the base FCN tends to output “blobby” objects, while the other methods
provide sharper results. This is particularly noticeable for the cars of Rows 2, 5 and
6, and for the thin road at the lower left corner of Row 4. We also observe that the
incorporation of reasoning at lower resolutions allows the derived networks to discover
small objects that are otherwise lost. This is particularly noticeable in the 4th row, where
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Figure 5.9: Classification of closeups of Vahingen (1–3) and Potsdam (4–6) validation
sets. Classes: Impervious surface (white), Building (blue), Low veget. (cyan), Tree
(green), Car (yellow), Clutter (red).
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Image Deconvolution [198] Dilation [163] MLP

Figure 5.10: Classification of entire tiles of the Vaihingen test set.

there is a set of small round/cross-shaped objects of the clutter class (in red) that are
omitted or grouped together by the base FCN.

The unpooling technique seems to be prone to outputting artifacts. These are often
very small in size, even isolated pixels. This is well observed for example for the car of
Row 3. This effect could be a natural consequence of the max unpooling mechanism,
as depicted in Fig. 5.6, which upsamples into sparse matrices and delegates the task of
reconstructing a smoother output to the deconvolutional layers.

At first sight it is more challenging to visually assess why MLP outperforms the skip
network in almost every case in the numerical evaluation. Taking a closer look we can
however observe that boundaries tend to be more accurate at a fine level in the case of
MLP. For example, the “staircase” shape of one of the buildings in Row 1 is noticeably
better outlined by the MLP network.

We can also observe that the ground truth itself is often not very precise. For example,
the car in Row 3 does not seem to be labeled accurately, hence it is difficult to imagine
that a network would learn to finely label that class. In Row 5, an entire lightwell
between buildings has apparently been omitted in the ground truth (labeled as part of
the building), yet recognized as an impervious surface by the CNNs.
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Table 5.6: Execution times.

Train [s] Test [s/ha]
Vaih. Pots. Vaih. Pots.

Base FCN 3.9 9.8 0.81 1.44
Unpooling 8.4 21.0 1.38 1.84

Skip 6.6 16.9 0.81 1.48
MLP 10.0 24.5 1.70 2.0

Dilation* 62 400 4.81 17.2

*As reported in [163] (see details in Sec. 5.1.4.)

The general recognition capabilities of CNNs can also be well appreciated in these
fragments. For example, in Row 4, while there are tiny round objects both on the roof
of the building and outside the building, CNNs correctly label as building the ones on
the roof and as clutter the other ones.

In Fig. 5.10 the classification of entire tiles of the Vaihingen set are shown, obtained
from the test set submissions. We include the deconvolution [198] and dilation [163]
network results, together with our MLP. We can see, for instance, that a large white
building in the first image is recognized by MLP but misclassified or only partially re-
covered by the other methods. In the second tile, the Dilation method outputs some
holes in the buildings which are not present in the MLP results. A better combination of
the information coming from different resolutions might explain why MLP successfully
recognizes that these entire surfaces do belong to the same object.

Running times

Table 5.6 reports the running times for training and testing on both datasets. The
training time of the architectures derived from the base FCN comprises the time to
pretrain the base FCN first and the time to then train the whole system altogether (see
details in Sec. 5.1.4). The architectures were implemented using Caffe [89] and run on
an Intel I7 CPU @ 2.7Ghz with a Quadro K3100M GPU (4 GB RAM). We also add for
comparison the results reported by the author of the Dilation network [163], run on a
larger 12 GB RAM GPU. To classify large images we crop them into tiles with as much
overlap as the amount of padding in the network, to avoid tile border effects.

As reported in the table, the unpooling, skip and MLP networks introduce an over-
head to the base FCN. MLP is the slowest of the derived networks, followed by the
unpooling and skip networks. MLP, which provides the highest accuracy, classifies the
entire Vaihingen validation set in about 30 seconds and the Postdam validation set in 2
minutes. This is substantially faster than the dilation network. Incorporating the prin-
ciple of Fig. 5.3 allows us to better allocate computational resources, not spending too
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much time and space in conducting a high-resolution analysis where it is not needed,
boosting accuracy and performance.

5.1.5 Can classification methods generalize to any city?

Over the last few years, there has been a growing interest in processing remote sensing
imagery at a global scale, often the entire Earth at once [135]. New perspectives in remote
sensing have particularly highlighted this interest, such as the use of aerial imagery
for autonomous driving [135]. The improvements in the algorithms, and the use of
clusters and GPUs have made the processing time less of a constraint. One of the current
challenges is to design methods that generalize to different areas of the earth, considering
the important intra-class variability encountered over large geographic extents.

The standard way of evaluating and comparing classification methods is to split the
labeled data into two sets: one used for training and the other one for testing. For
example, in the hyperspectral literature it is particularly common to randomly extract
certain pixels from the labeled data and use them for training (ranging from as little as
50 pixels [49] to as much as 20% of all the labeled data [191]), while the rest is used for
testing. The Pavia and Indian pines datasets [49] have become the standard benchmarks
in the hyperspectral literature. They are mostly geared at distinguishing materials (e.g.,
bitumen building and bricks), thus leveraging the properties of hyperspectral imagery.
However, those images cover limited geographic areas and the evaluation procedure does
not assess how the methods generalize to different contexts or more abstract semantic
classes.

With the goal of comparing classification methods over large areas, Mnih [140] created
building and road classification datasets over Massachusetts, covering 340 km2 and 2600
km2 respectively. For testing, several randomly selected tiles were removed from the
reference data. The training set thus covers a geographic surface with “holes”, which are
used for testing. This situation is analogous to the procedure used for the aforementioned
hyperspectral datasets, though taken to a larger scale. While the Massachusetts datasets
indeed cover a large surface with significant intra-class variability, the image tiles tend to
be self-similar and with uniform color histograms. As shown in [140], a CNN trained on
the Massachusetts dataset generalizes poorly to images over Buffalo, and a fine-tuning
of the CNN to the new dataset is required.

In the context of high-resolution image classification, the Vaihingen and Potsdam
datasets [198] have gained increasing attention over the last year, as discussed previously
in this chapter. While they provide exhaustive reference data with multiple object classes,
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Figure 5.11: A CNN trained on a different dataset misclassifies most of Lake Zurich as a
building.

the area covered is limited (roughly 1.5 km2 and 3.5 km2 respectively). The Bavaria and
Aerial KITTI datasets [135], used for road labeling, also cover small surfaces (5 km2 and
6 km2, respectively).

In our experience, and in accordance to [140], training a classifier with images over a
particular region and illumination conditions tends to generalize poorly to other images.
For example, Fig. 5.11 depicts a classification map over Zurich into the building/not
building classes, created by using the FCN trained over Forez, France. We can observe
Lake Zurich being mostly classified as building. Even though there were buildings and
body waters in the French imagery, the CNN seems to have learned what a building looks
like in that particular images and not simply what a building looks like.

Our goal is to provide a common framework to evaluate classification techniques and,
in particular, their generalization capabilities. We created a benchmark database of la-
beled imagery that covers varied urban landscapes, ranging from highly dense metropoli-
tan financial districts to alpine resorts. The data, referred to as the Inria Aerial Image
Labeling Dataset2, includes urban settlements over the United States and Austria, and
is labeled into building and not building classes. Contrary to all previous datasets, the
training and test sets are split by city instead of excluding random pixels or tiles. This
way, a system trained, for example, on Chicago, is expected to classify imagery over San
Francisco (with a significantly different appearance). The test set reference data is not
publicly released, and a contest has been launched for researchers to submit their results.
In the following, we describe the dataset and then assess the performance of the networks
presented previously in this chapter.

2project.inria.fr/aerialimagelabeling
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The dataset

One of the first key points to decide when creating the dataset was which geographic
areas to include and which semantic classes to consider. The criteria were as follows:

● Recent orthorectified imagery available;

● Recent official cadastral records available;

● Precise registration between the cadastral records and the orthorectified imagery;

● Open-access data, both for the images and the cadaster (free to access and dis-
tribute);

● Cover varied urban landscapes and illumination.

Let us first highlight the fact that we can only focus on regions where both the images
and the reference data are available. In addition, we require the data to be open access in
order to freely share our derived dataset with the community. After extensive research,
we found that certain US and Austrian areas satisfy those requirements. In the case of
the US, public domain orthoimages have been released by USGS through the National
Map service (nationalmap.gov) in most urban areas of the country. Vectorial cadastral
records have been released through certain local or statewide geographic information
system (GIS) websites. We must focus on the zones where such reference data are
available in addition to the images.

In the case of Austria, the different provinces have shared images through their re-
spective GIS agencies. We focus, in particular, on Tyrol and Vienna provinces, since open
vectorial cadastral data are also on hand. We obtained the images through the WMS
services provided by the GIS departments3 as well as the associated reference shapefiles.

The original US imagery is provided at either 15 or 30 cm resolution with three or
four spectral bands (RGB/RGB-Infrared), depending on the area, and Vienna imagery
contains three bands (RGB) at a resolution of 10 or 20 cm. We took out the common
factor and built our dataset with 30 cm images (average resampling if needed) and using
the three color bands.

We consider two semantic classes: building and not building. For this we must extract
the so-called building footprints from the cadaster. While there are other classes present
in some areas (e.g., trees and roads), the building class is the only one that is consistent
across different areas. Roads, for example, are often represented with a line, but it is
very often not located at the center of the road and its width is usually not specified.

3https://gis.tirol.gv.at/arcgis/services/Service_Public/orthofoto/MapServer/WMSServer;
http://maps.wien.gv.at/wmts/1.0.0/WMTSCapabilities.xml
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Train Tiles* Total area
Austin, TX 36 81 km2

Chicago, IL 36 81 km2

Kitsap County, WA 36 81 km2

Vienna, Austria 36 81 km2

West Tyrol, Austria 36 81 km2

Total 180 405 km2

Test Tiles* Total area
Bellingham, WA 36 81 km2

San Francisco, CA 36 81 km2

Bloomington, IN 36 81 km2

Innsbruck, Austria 36 81 km2

East Tyrol, Austria 36 81 km2

Total 180 405 km2

Table 5.7: Dataset statistics. *Tile size: 15002 px. (0.3 m resolution).

This makes it difficult to derive a pixelwise semantic labeling for roads, and is an active
research problem itself [135].

Once we selected a number of candidate areas for the dataset, we visually inspected
them to assess whether the cadaster is properly aligned with the images. In some regions,
there are irregular shifts that led us to exclude them (e.g., Seattle and Spokane cities).
This may be the result of errors or imprecision in the terrain model used to orthorectify
the images, or in the digitization of the cadaster. Note that we have only considered
official image and cadaster data sources, ignoring, e.g., OpenStreetMap (OSM) data.
Curiously enough, while we find the official San Francisco building footprints to be per-
fectly aligned with the USGS imagery, a team of OSM collaborators manually modified
150,000 buildings from these footprints prior to their inclusion in OSM4, arguing that
they were inaccurate. We now observe them to be misaligned with the imagery. A possi-
ble explanation for this is that, at the time of the edit, the Bing images used as the base
layer of the OSM editor may have not been geographically precise.

The regions included in the dataset and their distribution into training and test
subsets are depicted in Table 5.7. Note first that the amount of data in each of the
subsets is the same. This stresses our goal of properly assessing classification methods
that generalize to different areas and images. The regions were split in such a way
that each of the subsets contains both European and American landscapes, as well as
high-density (e.g., Chicago/San Francisco and Vienna/Innsbruck) and low-density (e.g.,
Kistap/Bloomington, West/East Tyrol) urban settlements. While aerial images over
Tyrol are present in both subsets, they have been obtained at different flights over the
country, thus exhibiting different illumination characteristics. We have also selected
dissimilar images inside some of the groups (e.g., Kitsap County contains tiles from two
different flights with very dissimilar characteristics). The reference data was created
by rasterizing the shapefiles with GDAL. Fig. 5.12 shows closeups of the images in the
dataset.

4https://www.mapbox.com/blog/status-san-francisco-complete/
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Bellingham Innsburck San Francisco

Tyrol Chicago

Figure 5.12: Close-ups of the dataset images and their corresponding reference data.

We consider two evaluation measures to assess the performance of different methods
on the dataset: the accuracy and the intersection over union (IoU) of the positive (build-
ing) class. We compute accuracy and IoU on the overall dataset and for every region
independently (e.g., San Francisco).

Experiments

We experimented with convolutional neural networks on the dataset. We created a
validation set by excluding the first five tiles of each area from the training set (e.g.,
Austin{1-5}). We first trained the base fully convolutional network (FCN) proposed from
Potsdam dataset in Section 5.1.4, for 120,000 iterations on randomly sampled patches of
our dataset (momentum is set to 0.9, the L2 penalty to 0.0005 and the learning rate to
0.001). To provide a finer classification, we derived an MLP network on top of the base
FCN, as explained in Section 5.1.3 and illustrated in Fig. 5.8. The pretrained FCN was
used to initialize the corresponding parameters in the MLP network, and then the overall
system was trained for an extra 250,000 iterations, which took 50 hours on a single GPU.
We started with a learning rate of 0.0001, multiplying it by 0.1 every 50k iterations.

The numerical results are summarized in Tables 5.8 and 5.9, for the validation and test
sets, respectively. We also include the performance of a skip network as an alternative way
of combining features to refine the predictions of the coarse base FCN (see Section 5.1.2).
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Table 5.8: Numerical evaluation on small validation set.

Austin Chicago Kitsap Co. West Tyrol Vienna Overall
FCN IoU 47.66 53.62 33.70 46.86 60.60 53.82

Acc. 92.22 88.59 98.58 95.83 88.72 92.79
Skip IoU 57.87 61.13 46.43 54.91 70.51 62.97

Acc. 93.85 90.54 98.84 96.47 91.48 94.24
MLP IoU 61.20 61.30 51.50 57.95 72.13 64.67

Acc. 94.20 90.43 98.92 96.66 91.87 94.42

Table 5.9: Numerical evaluation on test set.

Bellingham Bloomington Innsbruck S. Francisco East Tyrol Overall
FCN IoU 44.83 35.38 36.50 44.92 43.69 42.19

Acc. 94.48 94.07 92.97 82.60 95.14 91.85
Skip IoU 52.91 46.08 58.12 57.84 59.03 55.82

Acc. 95.14 94.95 95.16 86.05 96.40 93.54
MLP IoU 56.11 50.40 61.03 61.38 62.51 59.31

Acc. 95.37 95.27 95.37 87.00 96.61 93.93

Fig. 5.13 depicts close-ups of the classification on the test set, i.e., on regions never
“seen” by the neural network at training time. While the FCN produces fuzzy results,
it successfully identifies buildings in varied images. The MLP network provides finer
outputs, as confirmed both numerically and visually.

The MLP network reaches about 60% IoU on the entire test set. This means that
the output objects overlap the real ones by 60%, as assessed over a significant amount of
test data. While there is certainly room for improvement, these values suggest that the
current network does generalize well to different cities.

5.1.6 Concluding remarks

In this section, I have presented an overview of different families of dense classification
convolutional neural network (CNN) prototypes. We have studied which relevant con-
straints can be imposed in the architecture by construction, reducing the number of
parameters and improving the optimization. We observed that existing networks often
spend efforts in learning invariances that could be otherwise guaranteed, and reason
at a high resolution even when it is not needed. While previous methods are already
competitive, we can devise more optimal approaches.

We derived a model in which spatial features are learned at multiple resolutions
(and thus different levels of detail) and a specific CNN module learns how to combine
them. In our experiments on aerial imagery, such a model proved to be more effective
than the other approaches to conduct high-resolution labeling. It provides a better
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d)

Figure 5.13: Visual close-ups on test set. (a) Color input. (b) Reference data. (c) FCN
results. (d) MLP results.
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accuracy with low computational requirements, leading to a win-win situation. Some
of the outperformed methods are in fact significantly more complex than our approach,
proving once again that striving for simplicity is often the way to go when using CNN
architectures.

We also created a dataset for the classification of aerial images. This dataset high-
lights the need for methods that generalize to the dissimilar appearance of urban settle-
ments around the Earth. Contrary to previous work, the testing is not performed over
excluded areas of the training surface, but over entirely different cities instead. We cover
a wide range of urban densities, on both European and American cities.

Our experiments with deep neural networks show their satisfactory generalization
capability. However, there is still a large room for improvement, as observed in the
numerical results. In the following, I present a method, designed with the goal to improve
classification results, when there is a significant lack of spatially accurate reference data
to train the classification system.

5.2 Recurrent neural networks to correct classification maps

In this section, we explore incorporating image information a posteriori in an enhance-
ment module that sharpens the coarse classification maps around objects. The pioneering
approach in this direction, called Deeplab [27], uses a fully connected conditional random
field (CRF) to perform the enhancement. Zheng et al. [214] recently reformulated the
fully connected CRF of Deeplab as an RNN, and Chen et al. [26] designed an RNN that
emulates the domain transform filter [58]. Such a filter is used to sharpen the classifi-
cation maps around image edges, which are themselves detected with a CNN. In these
methods the refinement algorithm is designed beforehand and only few parameters that
rule the algorithm are learned as part of the network’s parameters. The innovating as-
pect of these approaches is that both steps (coarse classification and enhancement) can
be seen as a single end-to-end network and optimized simultaneously.

Instead of predefining the algorithmic details as in previous works, we formulate a
general iterative refinement algorithm through an RNN and let the network learn the
specific algorithm. To our knowledge, little work has explored the idea of learning an
iterative algorithm. In the context of image restoration, the preliminary work by Liu et
al. [122, 123] proposed to optimize the coefficients of a linear combination of predefined
terms. Chen et al. [28] later modeled this problem as a diffusion process and used an
RNN to learn the linear filters involved as well as the coefficients of a parametrized non-
linear function. Our problem is however different, in that we use the image as guidance
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(a) Color image (b) CNN heat map (c) Ground truth

Figure 5.14: Sample classification of buildings with a CNN.

to update a classification map, and not to restore the image itself. Besides, while we
drew inspiration on diffusion processes, we are also interested in imitating other itera-
tive processes like active contours, thus we do not restrict our system to diffusions but
consider all PDEs.

5.2.1 Learning iterative processes to enhance classification

Let us assume we are given a set of score (or “heat”) maps uk, one for each possible class
k ∈ Ω, in a pixelwise labeling problem. The score of a pixel reflects the likelihood of
belonging to a class, according to the classifier’s predictions. The final class assigned to
every pixel is the one with maximal value uk. Alternatively, a softmax function can be
used to interpret the results as probability scores: P (k) = euk/∑j∈Ω e

uj , as usually done
in CNN literature. Fig. 5.14 shows a sample of the type of fuzzy heat map outputted by
a CNN for the class ‘building’.

Our goal is to combine the score maps uk with information derived from the input
image (e.g., edge features) to sharpen the scores near the real objects in order to enhance
the classification. One way to perform such a task is to progressively enhance the score
maps by using partial differential equations (PDEs). We first describe different types
of PDEs we could certainly imagine to design in order to solve our problem. Instead of
discussing which one is the best, we later propose a generic iterative process to enhance
the classification maps without specific constraints on the algorithm rationale. Finally,
we show how this equation can be expressed and trained as a recurrent neural network
(RNN).

Partial differential equations (PDEs)

We can formulate a variety of diffusion processes applied to the maps uk as partial
differential equations. For example, the heat flow is described as:
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∂uk(x)

∂t
= div(∇uk(x)), (5.5)

where div(⋅) denotes the divergence operator in the spatial domain of x. Applying such
a diffusion process in our context would smooth out the heat maps. Instead, our goal is
to design an image-dependent smoothing process that aligns the heat maps to the image
features. A natural way of achieving this is to modulate the gradient in Eq. 5.5 by a
scalar function g(x, I) that depends on the input image I:

∂uk(x)

∂t
= div(g(I, x)∇uk(x)). (5.6)

Eq. 5.6 is similar to the Perona-Malik diffusion [151] with the exception that Perona-Malik
uses the smoothed function itself to guide the diffusion. g(I, x) denotes an edge-stopping
function that takes low values near borders of I(x) in order to slow down the smoothing
process there.

Another possibility would be to consider a more general variant in which g(I, x) is
replaced by a matrix D(I, x), acting as a diffusion tensor that redirects the flow based
on image properties instead of just slowing it down near edges:

∂uk(x)

∂t
= div(D(I, x)∇uk(x)). (5.7)

This formulation is related to the so-called anisotropic diffusion process [201].
Alternatively, one can draw inspiration from the level set framework. For example,

the geodesic active contours technique formulated as level sets translates into:

∂uk(x)

∂t
= ∣∇uk(x)∣div(g(I, x)

∇uk(x)

∣∇uk(x)∣
) . (5.8)

Such a formulation favors the zero level set to align with minima of g(I, x) [22]. Schemes
based on Eq. 5.8 could then be used to improve heat maps uk, provided they are scaled
so that segmentation boundaries match zero levels.

As shown above, many different PDE approaches can be devised to enhance classifi-
cation maps. However, several choices must be made to select the appropriate PDE and
tailor it to our problem. For example, one must choose the edge-stopping function g(I, x)
in Eqs. 5.6, 5.8. Common choices are exponential or rational functions on the image gra-
dient [151], which in turn requires to set an edge-sensitivity parameter. Extensions to the
original Perona-Malik approach could also be considered, such as a popular regularized
variant that computes the gradient on a Gaussian-smoothed version of the input image
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[201]. In the case of opting for anisotropic diffusion, one must design D(I, x).
Instead of using trial and error to perform such design, our goal is to let a machine

learning system discover by itself a useful iterative process for our task.

Generic classification enhancement

PDEs are usually discretized in space by using finite differences, which represent deriva-
tives as discrete convolution filters. We build upon this scheme to write a generic discrete
formulation of an iterative enhancement process.

Let us consider that we take as input a score map uk (for class k) and, in the most
general case, an arbitrary number of feature maps {g1, ..., gp} derived from image I. In
order to perform differential operations, of the type { ∂

∂x ,
∂
∂y ,

∂2

∂x∂y ,
∂2

∂x2
, ...}, we consider

convolution kernels {M1,M2, ...} and {N j
1 ,N

j
2 , ...} to be applied to the heat map uk and

to the features gj derived from image I, respectively. While we could certainly directly
provide a bank of filters Mi and N

j
i in the form of Sobel operators, Laplacian operators,

etc., we may simply let the system learn the required filters. We group all the feature
maps that result from applying these convolutions, in a single set:

Φ(uk, I) = {Mi ∗ uk, N
j
l ∗ gj(I) ; ∀i, j, l} . (5.9)

Let us now define a generic discretized scheme as:

∂uk(x)

∂t
= fk( Φ(uk, I)(x) ), (5.10)

where fk is a function that takes as input the values of all the features in Φ(uk, I) at an
image point x, and combines them. While convolutions Mi and N

j
i convey the “spatial”

reasoning, e.g., gradients, fk captures the combination of these elements, such as the
products in Eqs. 5.6 and 5.8.

Instead of deriving an arbitrary number of possibly complex features N j
i ∗gj(I) from

image I, we can think of a simplified scheme in which we directly operate on I, by
considering only convolutions: Ni ∗ I. The list of functionals considered in Eq. 5.10 is
then

Φ(uk, I) = {Mi ∗ uk, Nj ∗ I ; ∀i, j} (5.11)

and consists only of convolutional kernels directly applied to the heat maps uk and to
the image I. From now on, we here stick to this simpler formulation, yet we acknowledge
that it may be eventually useful to work on a higher-level representation rather than on
the input image itself. Note that if one restricts functions fk in Eq. 5.10 to be linear,
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(a) OpenStreetMap (b) Manual labeling

Figure 5.15: Samples of reference data for the building class. Imprecise OpenStreetMap
data vs manually labeled data.

we still obtain the set of all linear PDEs. We consider any function fk, thus introducing
non-linearities.

PDEs are usually discretized in time, taking the form:

uk,t+1(x) = uk,t(x) + δuk,t(x), (5.12)

where δuk,t denotes the overall update of uk,t at time t.
Note that the convolution filters in Eqs. 5.9 and 5.11 are class-agnostic: Mi, Nj and

N j
l do not depend on k, while fk may be a different function for each class k. Function

fk thus determines the contribution of each feature to the equation, contemplating the
case in which a different evolution might be optimal for each of the classes, even if just
in terms of a time-step factor. In the following, we detail a way to learn the update
functions δuk,t from training data.

Iterative processes as RNNs

We now show that the generic iterative process can be implemented as an RNN, and
thus trained from labeled data. This stage requires to provide the system with a piece
of accurately labeled ground truth (see e.g., Fig. 5.15).

Let us first show that one iteration, as defined in Eqs. 5.10-5.12, can be expressed in
terms of common neural network layers. Let us focus on a single pixel for a specific class,
simplifying the notation from uk,t(x) to ut. Fig. 5.16 illustrates the proposed network
architecture. Each iteration takes as input the image I and a given heat map ut to
enhance at time t. In the first iteration, ut is the initial coarse heat map to be improved,
outputted by another pre-trained neural network in our case. From the heat map ut

we derive a series of filter responses, which correspond to Mi ∗ ut in Eq. 5.11. These
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Figure 5.16: One enhancement iteration represented as common neural network layers.

responses are found by computing the dot product between a set of filters Mi and the
values of uk,t(⋅) in a spatial neighborhood of a given point. Analogously, a set of filter
responses are computed at the same spatial location on the input image, corresponding
to the different Nj ∗ I of Eq. 5.11. These operations are convolutions when performed
densely in space, Nj ∗ I and Mi ∗ ut being feature maps of the filter responses.

These filters are then “concatenated”, forming the pool of features Φ coming from
both the input image and the heat map, as in Eq. 5.11, and inputted to fk in Eq. 5.10.
We must now learn the function δut that describes how the heat map ut is updated at
iteration t (see Eq. 5.12), based on these features.

Eq. 5.10 does not introduce specifics about function fk. In (5.5)-(5.8), for exam-
ple, it includes products between different terms, but we could certainly imagine other
functions. We therefore model δut through a multilayer perceptron (MLP), because it
can approximate any function within a bounded error [14]. We include one hidden layer
with nonlinear activation functions followed by an output neuron with a linear activa-
tion (a typical configuration for regression problems), although other MLP architectures
could be used. Applying this MLP densely is equivalent to performing convolutions with
1 × 1 kernels at every layer. The implementation to densely label entire images is then
straightforward.

The value of δut is then added to ut in order to generate the updated map ut+1 (see
Fig. 5.16). This addition is performed pixel by pixel in the case of a dense input. Note
that although we could have removed this addition and let the MLP directly output
the updated map ut+1, we opted for this architecture since it is more closely related
to the equations and better conveys the intention of a progressive refinement of the
classification map. Moreover, learning δut instead of ut+1 has a significant advantage at



CHAPTER 5. DEEP LEARNING FOR LARGE-SCALE CLASSIFICATION 127

...

+

Image

...+ ... ...

 

N j∗I

ut=0
ut=1 ut=2 ut=3

Figure 5.17: Modules of Fig. 5.16 are stacked (while sharing parameters) to implement
an RNN.

training time: a random initialization of the networks’ parameters centered around zero
means that the initial RNN represents an iterative process close to the identity (with
some noise). Training uses the asymmetry induced by this noise to progressively move
from the identity to a more useful iterative process.

The overall iterative process is implemented by unrolling a finite number of iterations,
as illustrated in Fig. 5.17, under the constraint that the parameters are shared among
all iterations. Such a sharing is enforced at training time by a simple modification to the
back-propagation training algorithm where the derivatives of every instance of a weight
at different iterations are averaged [203]. Note that the spatial features are shared across
the classes, while a different MLP is learned for each of them, following Eq. 5.10. As
depicted by Fig. 5.17 and conveyed in the equations, the features extracted from the
input image are independent of the iteration.

The RNN of Fig. 5.17 represents a dynamical system that iteratively improves the
class heat maps. Training such an RNN amounts to finding the optimal dynamical system
for our enhancement task.

5.2.2 Experimental results

Implementation details

We first describe the CNN used to produce the coarse predictions, then detail the pro-
posed RNN. The employed CNN is based on a previous remote sensing network presented
by Mnih [140]. We have designed a fully convolutional [124] version of Mnih’s network,
since recent remote sensing work has shown the theoretical and practical advantages of
this type of architecture [92, 130]. The CNN takes 3-band color image patches at 1m2

resolution and produces as many heat maps as classes considered. The resulting four-
layer architecture is as follows: 64 conv. filters (12 × 12, stride 4) → 128 conv. filters
(3 × 3) → 128 conv. filters (3 × 3) → 3 conv. filters (9 × 9). Since the first convolution
is performed with a stride of 4, the resulting feature maps have a quarter of the input
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resolution. Therefore, a deconvolutional layer [124] is added on top to upsample the clas-
sification maps to the original resolution. The activation functions used in the hidden
layers are rectified linear units. This network is trained on patches randomly selected
from the training dataset. We group 64 patches with classification maps of size 64 × 64

into mini-batches (following [140]) to estimate the gradient of the network’s parameters
and back-propagate them. Our loss function is the cross-entropy between the target and
predicted class probabilities. Stochastic gradient descent is used for optimization, with
learning rate 0.01, momentum 0.9 and an L2 weight regularization of 0.0002. We did not
however optimized these parameters nor the networks’ architectures.

We now detail the implementation of the RNN described in Sec. 5.2.1. Let us remark
that at this stage we fix the weights of the initial coarse CNN and the manually labeled
tile is used to train the RNN only. Our RNN learns 32Mi and 32Nj filters, both of spatial
dimensions 5×5. An independent MLP is learned for every class, using 32 hidden neurons
each and with rectified linear activations, while Mi and Nj filters are shared across the
different classes (in accordance to Equations 5.10 and 5.11). This highlights the fact that
Mi and Nj capture low-level features while the MLPs convey class-specific behavior. We
unroll five RNN iterations, which enables us to significantly improve the classification
maps without exhausting our GPU’s memory. Training is performed on random patches
and with the cross-entropy loss function, as done with the coarse CNN. The employed
gradient descent algorithm is AdaGrad [44], which exhibits a faster convergence in our
case, using a base learning rate of 0.01 (higher values make the loss diverge). All weights
are initialized randomly by sampling from a distribution that depends on the number of
neuron inputs [64]. We trained the RNN for 50,000 iterations, until observing convergence
of the training loss, which took around four hours on a single GPU.

Dataset and results

We perform our experiments on images acquired by a Pléiades satellite over the area
of Forez, France. An RGB color image is used, obtained by pansharpening [200] the
satellite data, which provides a spatial resolution of 0.5 m2. Since the networks described
hereabove are designed for 1 m2 resolution images, we downsample the Pléiades images
before feeding them to our networks and bilinearly upsample the outputs.

From this image we selected an area with OpenStreetMap (OSM) [75] coverage to
create a 22.5 km2 training dataset for the classes building, road and background. The
reference data was obtained by rasterizing the raw OSM maps. Misregistrations and
omissions are present all over the dataset (see, e.g., Fig. 5.15(a)). Buildings tend to be
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Figure 5.18: Manually labeled tile used to train the RNN for the classification enhance-
ment task.

Color CNN map
(RNN input)

— Intermediate RNN iterations — RNN
output

Ground
truth

Figure 5.19: Evolution of fragments of classification maps (top rows) and single-class
fuzzy scores (bottom rows) through RNN iterations. The classification maps are pro-
gressively sharpened around object’s edges.
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misaligned or omitted, while many roads in the ground truth are not visible in the image
(or the other way around). Moreover, since OSM’s roads are represented by polylines,
we set a fixed road width of 7 m to rasterize this class (following [140]), which makes
their classification particularly challenging. This dataset is used to train the initial coarse
CNNs.

We manually labeled two 2.25 km2 tiles to train and test the RNN at enhancing
the predictions of the coarse network. We denote them by enhancement and test sets,
respectively. Note that our RNN system must discover an algorithm to refine an existing
classification map, and not to conduct the classification itself, hence a smaller training
set should be sufficient for this stage. The enhancement set is depicted in Fig. 5.18 while
the test set is shown in Figs. 5.22(a)/(f).

In the following, we report the results obtained by using the proposed method on
the Pléiades dataset. Fig. 5.19 provides closeups of results on different fragments of
the test dataset. The initial and final maps (before and after the RNN enhancement)
are depicted, as well as the intermediate results through the RNN iterations. We show
both a set of final classification maps and some single-class fuzzy probability maps. We
can observe that as the RNN iterations go by, the classification maps are refined and
the objects better align to image edges. The fuzzy probabilities become more confident,
sharpening object boundaries. To quantitatively assess this improvement we compute
two measures on the test set: the overall accuracy (proportion of correctly classified
pixels) and the intersection over union (IoU) [124]. Mean IoU has become the standard
in semantic segmentation since it is more reliable in the presence of imbalanced classes
(such as background class, which is included to compute the mean) [34]. As summarized in
the table of Fig. 5.20(a), the performance of the original coarse CNN (denoted by cnn)
is significantly improved by attaching our RNN (cnn+rnn). Both measures increase
monotonously along the intermediate RNN iterations, as depicted in Fig. 5.20(b).

The initial classification of roads has an overlap of less than 10% with the roads in
the ground truth, as shown by its individual IoU. The RNN makes them emerge from
the background class, now overlapping the ground truth roads by over 50%. Buildings
also become better aligned to the real boundaries, going from less than 40% to over 70%
overlap with the ground truth buildings. This constitutes a multiplication of the IoU by
a factor of 5 for roads and 2 for buildings, which indicates a significant improvement at
outlining and not just detecting objects.

Additional visual fragments before and after the RNN refinement are shown in Fig. 5.21.
We can observe in the last row how the iterative process learned by the RNN both thick-
ens and narrows the roads depending on the location.
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Overall Mean Class-specific IoU
Method accuracy IoU Build. Road Backg.
CNN 96.72 48.32 38.92 9.34 96.69

CNN+CRF 96.96 44.15 29.05 6.62 96.78
CNN+RNN= 97.78 65.30 59.12 39.03 97.74
CNN+RNN 98.24 72.90 69.16 51.32 98.20

(a) Numerical comparison (in %)
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(b) Evolution through RNN iterations

Figure 5.20: Quantitative evaluation on Pléaiades images test set over Forez, France.

Color image Coarse CNN RNN output Ground truth

Figure 5.21: Initial coarse classifications and the enhanced maps by using RNNs.
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Color image Coarse CNN

CNN+CRF CNN+RNN=

CNN+RNN Ground truth

Figure 5.22: Visual comparison on a Pléiades satellite image tile of size 3000×3000 cov-
ering 2.25 km2.
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Color image Coarse CNN CNN+CRF CNN+RNN= CNN+RNN Ground truth

Figure 5.23: Visual comparison on closeups of the Pléiades dataset.

We also compare our RNN to the approach in [27] (here denoted by cnn+crf),
where a fully-connected CRF is coupled both to the input image and the coarse CNN
output, in order to refine the predictions. This is the idea behind the so-called Deeplab
network, which constitutes one of the most important current baselines in the seman-
tic segmentation community. While the CRF itself could also be implemented as an
RNN [214], we here stick to the original formulation because the CRF as RNN idea is
only interesting if we want to train the system end to end (i.e., together with the coarse
prediction network). In our case we wish to leave the coarse network as is, otherwise we
risk overfitting it to this much smaller set. We thus simply use the CRF as in [27] and
tune the energy parameters by performing a grid search using the enhancement set as
a reference. Five iterations of inference on the fully-connected CRF were preformed in
every case.

To further analyze our method, we also consider an alternative enhancement RNN in
which the weights of the MLP are shared across the different classes (which we denote by
“class-agnostic cnn+rnn”). This forces the system to learn the same function to update
all the classes, instead of a class-specific function.

Numerical results are included in the table of Fig. 5.20(a) and the classification maps
are shown in in Fig. 5.22. Close-ups of these maps are included in Fig. 5.23 to facilitate
comparison. The CNN+CRF approach does sharpen the maps but this often occurs
around the wrong edges. It also makes small objects disappear in favor of larger ob-
jects (usually the background class) when edges are not well marked, which explains the
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mild increase in overall accuracy but the decrease in mean IoU. While the class-agnostic
CNN+RNN outperforms the CRF, both quantitative and visual results are beaten by the
CNN+RNN, supporting the importance of learning a class-specific enhancement func-
tion.

To validate the importance of using a recurrent architecture, and following Zheng et
al. [214], we retrained our system considering every iteration of the RNN as an indepen-
dent step with its own parameters. After training for the same number of iterations,
it yields a lower performance on the test set compared to the RNN and a higher per-
formance on the training set. If we keep on training, the non-recurrent network still
enhances its training accuracy while performing poorly on the test set, implying a signif-
icant degree of overfitting with this variant of the architecture. This provides evidence
that constraining our network to learn an iterative enhancement process is crucial for its
success.

Feature visualization

Though it is difficult to interpret the overall function learned by the RNN, especially
the part of the multi-layer perceptron, there are some things we expect to find if we
analyze the spatial filters Mi and Nj learned by the RNN (see Eq. 5.11). Carrying out
this analysis is a way of validating the behavior of the network.

The iterative process learned by the RNN should combine information from both the
heat maps and the image at every iteration (since the heat maps constitute the prior
on where the objects are located, and the image guides the enhancement of these heat
maps). A logical way of enhancing the classification is to align the high-gradient areas of
the heat maps with the object boundaries. We expect then to find derivative operators
among the filters Nj applied to the heat maps. Concerning the image filters Nj , we
expect to find data-dependent filters (e.g., image edge detectors) that help identify the
location of object boundaries.

To interpret the meaning of the filters learned by the RNN we plot the map of
responses of a sample input to the different filters. Fig. 5.24(a) illustrates fragments of
heat maps of the building and road classes, and the responses to two of the filters Mi

learned by the RNN. When analyzing these responses we can observe that they act as
gradients in different directions, confirming the expected behavior. Fig. 5.24(b) illustrates
a fragment of the color image and its response to two filters Nj . One of them acts as
a gradient operator an the other one highlights green vegetation, suggesting that this
information is used to enhance the classification maps.
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Heat maps Feature responses

M1 M2

(a) Filter M1 acts like a gradient operator in the South-East direction and
M2 in the North direction (top: building, bottom: road).

Color image Feature responses

N1 N2

(b) N1 acts like a gradient operator in the North direction and N2 highlights
green vegetation.

Figure 5.24: Feature responses (red: high, blue: low) to selected Mi and Nj filters,
applied to the heat maps and input image respectively (see Eq. 5.11).
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5.2.3 Concluding remarks

I have described a recurrent neural network (RNN) that learns how to refine the coarse
output of another neural network, in the context of pixelwise image labeling. The inputs
are both the coarse classification maps to be corrected and the original color image. The
output at every RNN iteration is an update to the classification map of the previous
iteration, using the color image for guidance.

Little human intervention is required, since the specifics of the refinement algorithm
are not provided by the user but learned by the network itself. For this, we analyzed
different iterative alternatives and devised a general formulation that can be interpreted
as a stack of common neuron layers. At training time, the RNN discovers the relevant
features to be taken both from the classification map and from the input image, as well
as the function that combines them.

The experiments on satellite imagery show that the classification maps are improved
significantly, increasing the overlap of the foreground classes with the ground truth.
To conclude, we demonstrated that RNNs succeed in learning iterative processes for
classification enhancement tasks.



Chapter 6

Conclusion and Future Work

I have presented my research on spectral-spatial image classification, mainly applied for
automatic interpretation of remote sensing data. I have explored different strategies
for this purpose, varying from the use of strong shape priors for object discrimination,
regularization of classification probabilities on the image graphs, and up to the use of
deep learning approaches which are capable of learning complex shape features from
training data.

I can conclude that for specific applications, it is often advantageous to incorporate
and enforce the known shape priors (e.g., as we have seen in Chapter 4, if we know
that a shape of the object will only grow in time series, enforcing this shape constraint
within the classification system naturally boosts its performance). However, if we aim at
designing methods to automatically classify remote sensing images on a world-scale, the
developed learning approaches must be generic and highly scalable. Within this context,
deep learning techniques, in particular convolutional neural networks have gained signifi-
cant attention, since they have demonstrated their ability to learn expressive multi-scale
contextual features and have shown a remarkable computational performance. We have
shown in Chapter 5 that the modern learning methods succeed in classifying new areas
on the Earth belonging to the cities the classifier has never seen before. However, there
is still significant work to do for designing systems which would be able to automati-
cally create and update maps (e.g., geographic information system (GIS) maps) on a
world-scale, using remote sensing images.

137
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Future Work

To explore these ideas further, I have proposed the project EPITOME (Efficient reP-
resentatIon TO structure large-scale satellite iMagEs), which was funded for
the period of 2017-2021 by the French National Research Agency ANR. The goal of
the EPITOME project is to devise novel effective representations for large-scale satel-
lite images, which would represent and structure the essential content (which we call
epitome) of input images, thus enabling novel possibilities for the exploitation of remote
sensing datasets, including novel efficient navigation modes through space, scale, and
perhaps time, or more powerful indexation mechanisms. Such representations must be
highly generic and suited to massive image data, to be applicable for images from all
over the world and for a wide range of applications. At the same time, they should be
structure-preserving, i.e. best represent the meaningful objects in the image scenes, with
the possibility to be enriched by semantic or other kinds of information.

The vector-based representation is well-known to provide several important advan-
tages over raster images, the three most salient ones being compactness, scalability and
easiness of updating [120]. These are the main reasons the GIS maps are stored as
the database of vector primitives. Thus, I opt to devise a multi-resolution vector-based
representation, together with the methods for its efficient generation, manipulation and
continuous navigation between scales. Each level (scale) of this representation would
convey different level of details from the image. Here I describe a non-exhaustive list of
milestones I have identified to address the presented goal:

1. I plan to investigate the use of a large source of free-access online map data, such
as OpenStreetMap [74], to automatically derive weakly labeled training data for
learning about both geometric and semantic structures, their relations in the image
scene and their accurate scale alignment. In particular, my current work deals with
the development of a data alignment framework, by exploring CNN architectures
to learn how to align maps with satellite images.

2. I envision to study how to adapt and extend the state-of-the-art image vectorization
methods, for instance the algorithm based on iterative simplification of triangular
mesh [207], to my task of representing satellite data. This implies enforcing the
preservation of geometric structures and semantic labels discovered by applying a
machine learning algorithm. In our initial work, we have proposed a novel polygo-
nization algorithm, which vectorizes the input classification maps and is based on
the approximation of a triangular mesh to the considered map [128].



CHAPTER 6. CONCLUSION AND FUTURE WORK 139

3. It would certainly be interesting to design neural networks that output directly
geometric primitives instead of raster classification maps. This objective is inspired
by a few recent works on using neural networks to output geometric objects. For
example, a recurrent neural network has been used to generate the convex hull of a
point cloud [197] and in [46] the coordinates of object bounding boxes are regressed
by a CNN. I envision to further bridge the gap between deep machine learning and
geometric modeling tools, by devising novel methods which allow learning directly
in a space of vector primitives. A possible approach consists in defining a discrete
finite set of vector primitives within admitted discretization error bounds, and
then designing an appropriate neural network architecture capable to learn how to
output the desired representations in this space of primitives.



Appendix A

Proofs related to BPT optimization

I first elaborate the proofs that supplement the paragraphs that describe the space of
moves in the optimization approach. I then add the proofs of the space and computational
complexities of including convex hulls in Binary Partition Trees (BPTs).

A.1 Properties of prune-and-paste moves

Proposition 1. Given a tree τ , suppose a node Rm is pasted at τi < τ1 leading to a
new tree ϕ. Let us consider an alternative move that pastes Rm at τj, with τi < τj < τ1,
producing a tree ψ. In the cases where either C(ϕ1) − C(τ1) ⩽ 0 or C(Rm) ⩾ C(ϕ1) −

C(τ1), then C(ψ1) ⩾ C(ϕ1).

Proof. Let us abbreviate E(τi) as eτi and C(τi) as cτi . Following (3.11) in Chapter 3,
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where cτi denotes the sibling of cτi (see Fig. 3.4-b). This implies:
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which implies:
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Let us now paste Rm one position upper than before. We wish to check if it is possible
that this move will be better that the previous one (cψ1 < cϕ1 ):

cψ1 =min(eϕ1 , c
τ
2 +min(e

ϕ
2 , c

τ
3 +min(...min(e

ϕ
i−2, c

τ
i−1 +min(e

ψ
y ,

cRm +min(eτi−1, c
τ
i + c

τ
i )))...)) < c

ϕ
1 .

(A.5)

This can be true if and only if:
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In this expression, I contradicts β. Considering that eψy = eϕi−1 (see Fig. 3.4-b), the term
II also contradicts β. The term IV contradicts γ. We must now analyze III. By
combining III and α:
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If cϕ1 − c
τ
1 ⩽ 0, then cRm must be non-positive, which contradicts our hypothesis. If

cϕ1 − c
τ
1 > 0: then it must be cRm < cϕ1 − c

τ
1 . As a conclusion, if the first move decreases C,

III is contradicted, hence it must be cψ1 ⩾ cϕ1 . For a positive gain, III is contradicted
unless cRm < cϕ1 − c

τ
1 .

Proposition 2. Let us consider a case where Prop. 1 hypotheses do not apply. There
might then exist a higher paste place τα so that C(ψ1) < C(ϕ1). Let us suppose that
instead of pasting at τα we paste at τβ, with τα < τβ < τ1, leading to a tree ρ. Then C(ρ1)

would monotonously decrease as the paste place τβ is located higher.

Proof. If Prop. 1 hypotheses do not apply, then the term III in its proof must be true.
This term implies that when pasting at τj , the cut on the tree will be located at or below
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Rm. The cost cψ1 associated with this move will then be
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considering the location of the new cut. Analogously, the cost when pasting Rm k units
up of i is:
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Notice in the previous expression that we consider that the cut is still as low as Rm. The
cut could not be higher, because if it were the case, then it would have already been cut
there before.

Let us now see if the cost cρ1 could increase as k advances:
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contradicting the algorithm to compute the cuts, hence the cost at R1 must monotonously
decrease.

Proposition 3. Let us suppose we paste Rm at or over the initial cut of tree τ , leading
to tree ϕ. Let us consider we paste higher instead, producing tree ψ. It must then be
cψ1 ⩾ cϕ1 .

Proof. Let us resume the proof of Proposition 2. It was shown that cψ1 < cϕ1 if and only
if III was false. At that point we could not contradict III but show that under certain
conditions it would be contradicted. Now we will show that the fact that we know the
first cut was at or below τi will contradict III.

After III and γ we have:
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If we now add the knowledge about the cut being below τi−1, it must be eτi−1 > c
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Therefore, III cannot be true, which proves the proposition.
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Corollary: Combining Proposition 2, where C monotonously decreases (⩽) as the
paste location gets higher, and Proposition 3, where C cannot decrease (⩾), it becomes
evident that pasting a node anywhere between the initial cut and the lowest common
ancestor produces the same effect on the energy.

Proposition 4. The amount of spatially adjacent regions in a balanced BPT is bounded
by O(n log(n)).

Proof. Let us call NR the number of neighbors of the region R. At the lowest scale and
in a discrete environment we can suppose that the number of neighbors is equal to its
boundary length (δR). We are interested in knowing the number of neighbors at all
scales. In a balanced tree it can be assumed that the number of neighbors at every scale
is half the number at the following one. As a result:

NR = δR +
1

2
δR +

1

22
δR +

1

23
δR + ... < 2δR. (A.13)

In a discrete implementation (assuming 4-connectivity):

NR < 2δR ⩽ 2 ⋅ 4∣R∣ = 8∣R∣. (A.14)

The summation of the neighbors of all regions in a tree T is then

∑
Ri∈T
NRi < 8 ∑

Ri∈T
∣Ri∣. (A.15)

Following (A.18), the total number of neighbors (the possible cut/paste moves) is a factor
of n log(n).

A.2 Complexity of incorporating convex hulls

Proposition 5. The storage space required to add the convex hull to every node of a
balanced BPT in a discrete environment is bounded by O(n log(n)).

Proof. Let us call CH(R) the convex hull of a region R. In the extreme case (the most
compact region), CH(R) can be as large as the perimeter δR of R which, in a discrete
implementation (assuming 4-connectivity) does not contain more points than four times
the area of the region:

CH(R) ⩽ δR ⩽ 4∣R∣. (A.16)
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As a consequence, the points of the convex hull of all regions in a tree T must be

∑
Ri∈T

∣CH(Ri)∣ ⩽ 4 ∑
Ri∈T

∣Ri∣. (A.17)

If we observe that in a balanced tree

∑
Ri∈T

∣Ri∣ =
#levels

∑
l=1

∑
Rj∈l∈T

∣Rj ∣ =
#levels

∑
l=1

n = n
#levels

∑
l=1

1 = n ⋅#levels = n log(n), (A.18)

then (A.17) is bounded by a factor of n log(n).

Proposition 6. The complexity of computing the convex hull of every region represented
in a balanced BPT in a discrete environment, is bounded by O(n log(n)).

Proof. Let us call CH(R) the convex hull of a region R. In the extreme case (the most
compact region), CH(R) can be as large as the perimeter δR of R which, in a discrete
implementation (assuming 4-connectivity) does not contain more points than four times
the area of the region:

CH(R) ⩽ δR ⩽ 4∣R∣. (A.19)

The time to compute CH(Ri) is linear on the number of points in the polygons of the
children:

O(∣δLeftChild(Ri)∣ + ∣δRightChild(Ri)∣). (A.20)

The time to compute the convex hull of every node in the tree is then bounded by a
factor of:

∑
Ri∈T

(∣δLeftChild(Ri)∣ + ∣δRightChild(Ri)∣)

⩽ 4 ∑
Ri∈T

(∣LeftChild(Ri)∣ + ∣RightChild(Ri)∣) = 4 ∑
Ri∈T

∣Ri∣. (A.21)

Following (A.18), the execution time is then a factor of n log(n).
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Submodularity proof

Wi,j can be written as a sum of terms over time t, which is, if τi ⩽ τj :

Wi,j(τi, τj) = ∑
t

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

W t
i,j(0,0) if t < min(τi, τj) (A)

W t
i,j(1,0) if τi ⩽ t < τj (B)

W t
i,j(1,1) if t ⩾ max(τi, τj) (D)

and

Wi,j(τi, τj) = ∑
t

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

W t
i,j(0,0) if t < min(τi, τj) (A)

W t
i,j(0,1) if τj ⩽ t < τi (C)

W t
i,j(1,1) if t ⩾ max(τi, τj) (D)

otherwise.

We can thus representWi,j(τi, τj) by the sequence of cases A, B, C or D chosen for each t:

- t

τi τj

Wi,j(τi, τj) =∑
t

AAAAA BBBBBBB DDDDDD

when τi ⩽ τj , and otherwise :
- t

τj τi

Wi,j(τi, τj) =∑
t

AAAAA CCCCCCC DDDDDD

Now, to represent the submodularity condition, let τi, τj , τ ′i , τ
′
j be any times, satisfying

τi ⩽ τ
′
i and τj ⩽ τ

′
j . We will suppose moreover that τi ⩽ τj : otherwise consider Wj,i(τj , τi)
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instead and reverse names i and j. Three cases are possible:

1. τi ⩽ τ
′
i ⩽ τj ⩽ τ

′
j

2. τi ⩽ τj ⩽ τ
′
i ⩽ τ

′
j

3. τi ⩽ τj ⩽ τ
′
j ⩽ τ

′
i

In case (1), the terms of the submodularity condition write:

- t

τi τ ′i τj τ ′j

Wi,j(τi, τj) ∶ AAABBBBBBBBDDDDDDD
Wi,j(τ

′
i , τ

′
j) ∶ AAAAAAABBBBBBBDDDD

Wi,j(τ
′
i , τj) ∶ AAAAAAABBBBDDDDDDD

Wi,j(τi, τ
′
j) ∶ AAABBBBBBBBBBBDDDD

and the submodularity condition is satisfied if the sum of the two first rows is less than
or equal to the sum of the two last rows. It turns out that in the particular case above,
the sums are equal for each instant t, and consequently the submodularity condition is
satisfied as being an equality.

In case (2), the terms of the submodularity condition write:
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- t

τi τj τ ′i τ ′j

Wi,j(τi, τj) ∶ AAABBBBDDDDDDDDDDD
Wi,j(τ

′
i , τ

′
j) ∶ AAAAAAAAAAABBBDDDD

Wi,j(τ
′
i , τj) ∶ AAAAAAACCCCDDDDDDD

Wi,j(τi, τ
′
j) ∶ AAABBBBBBBBBBBDDDD

This time, the two sums, at any instant t, are equal if t < τj or t ⩾ τ ′i . For other
values of t, that is to say when τj ⩽ t < τ ′i , the sum A + D is to be compared with
B +C, i.e. the question is to compare W t

i,j(0,0) +W
t
i,j(1,1) with W t

i,j(0,1) +W
t
i,j(1,0).

As Et is binary submodular by hypothesis, and by definition of binary submodular-
ity in equation (4.2), we have A + D ⩽ B + C, and thus the sum of the two first
rows is less than or equal to the sum of the two last ones, which means precisely
Wi,j(τi, τj) +Wi,j(τ

′
i , τ

′
j) ⩽ Wi,j(τi, τ

′
j) +Wi,j(τ

′
i , τj), and thus the submodularity condi-

tion for E is checked.

Finally, in case (3), the terms of the submodularity condition write:

- t

τi τj τ ′j τ ′i

Wi,j(τi, τj) ∶ AAABBBBDDDDDDDDDDD
Wi,j(τ

′
i , τ

′
j) ∶ AAAAAAAAAAACCCDDDD

Wi,j(τ
′
i , τj) ∶ AAAAAAACCCCCCCDDDD

Wi,j(τi, τ
′
j) ∶ AAABBBBBBBBDDDDDDD

The two sums are equal for all instants t < τj or t ⩾ τ ′j . When τj ⩽ t < τ ′j , the sum A+D is
to be compared with B+C, as previously, and consequently the submodularity condition
for E is checked again.

In all cases (1), (2) and (3), E is proven to be submodular, and this concludes the
proof.
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