.. Cyclo-static-dataflow-graph-behavior and C. , 52 3.2.1 The functionally equivalent SDFG of a CSDFG 52 3.2.2 Consistency and repetition vector 53 3.2.3 Useful tokens, p.56

C. Scheduling and T. , 59 3.3.2 Throughput and iteration period One-Periodic scheduling, p.62

.. Memory, 92 5.3.1 Boundedness: a property of the dataflow models 93 5.3.3 Height of an 94 5.3.4 Liveness guarantee for an inter-cluster buffer 95 5.3.5 Optimal transfer rate for live minimum memory footprint 96 5.3.6 Live minimum memory footprint computation, 93 5.3.2 Communication memory, p.100

.. Memory, 102 5.4.2 Liveness guarantee for an inter-cluster buffer 102 5.4.3 Optimal transfer rate for a live minimum memory footprint103 5.4.4 Minimum live memory footprint evaluation, Throughput guarantee for an inter-cluster buffer . . . . . 105 5.4.6 Minimum memory footprint computation under a throughput constraint . . . . . . . . . . . . . . . . . . . . . . . . . 107

A. Computation and G. , Task t 2 requires 6 data items in the First in First out (FIFO) queue to be executed and, when it is executed, it consumes only c a = 3 data items, p.31

A. Csdfg-with-initial-phases........., The graph consists in a single arc a = (t 1 , t 2 ) with, p.32

S. An and .. , By applying the useful tokens property, the initial marking of a can be reduced to ?M 0 (a)? 3 = 6 without effect on the precedence constraints, p.38

S. An and 1. , 44 2.19 (a) A live SDFG graph. (b) ASAP schedule of the SDFG graph. The transient phase of the ASAP schedule reduce to one execution of t 3 with start time st 3 , 1 = 0. The sequences repeated periodically are delimited by the red lines
URL : https://hal.archives-ouvertes.fr/inserm-00110160

A. Csdfg and 5. , C a (1, 1) = 1, C a (3, 2) = 6 and C ?1 a, ) = 8, P ?1 a, p.56

C. Live and R. , ) = 0.33. The transient phase of the schedule is composed of three executions of t 3 with start times st System iterations are delimited by the red lines; two periods are shown, p.61

A. Pcg and =. , The useful tokens property implies that M 0 (a) = 4 may be replaced by M 0 (a) ? = ?4? 3 = 3, with no effect on the precedence constraints, p.70

A. Ahn, 129 Bibliography Bibliography SoCDAL: System-on-chip design accelerator, ACM Transactions on Design Automation of Electronic Systems (TODAES), vol.13, issue.1, p.17, 2008.

. Baccelli, Synchronization and linearity: an algebra for discrete event systems, 1992.

. Bekooij, Efficient computation of buffer capacities for multi-rate real-time systems with back-pressure, Proceedings of the 4th International Conference on Hardware/Software Codesign and System Synthesis CODES+ ISSS'06, pp.10-15, 2006.

. Benabid-najjar, Periodic Schedules for Bounded Timed Weighted Event Graphs, IEEE Transactions on Automatic Control, vol.57, issue.5, pp.1222-1232, 2012.
DOI : 10.1109/TAC.2012.2191871

. Benazouz, A new method for minimizing buffer sizes for Cyclo-Static Dataflow graphs, 2010 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia, pp.11-20, 2010.
DOI : 10.1109/ESTMED.2010.5666980

URL : https://hal.archives-ouvertes.fr/hal-00461647

. Benazouz, Liveness evaluation of a cyclo-static DataFlow graph, Proceedings of the 50th Annual Design Automation Conference on, DAC '13, pp.3-7, 2013.
DOI : 10.1145/2463209.2488736

URL : https://hal.archives-ouvertes.fr/hal-00861992

. Berger, A semigreedy heuristic for the mapping of large task graphs, Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International Conference, pp.817-824, 2016.

. Bhattacharyya, Software synthesis and code generation for signal processing systems, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, issue.9, pp.47849-875, 2000.

. Bilsen, Cyclo-static data flow, 1995 International Conference on Acoustics, Speech, and Signal Processing, pp.95-3255, 1995.
DOI : 10.1109/ICASSP.1995.479579

. Bodin, Fast and efficient dataflow graph generation, Proceedings of the 17th International Workshop on Software and Compilers for Embedded Systems, SCOPES '14, pp.40-49, 2014.
DOI : 10.1145/2609248.2609258

URL : https://hal.archives-ouvertes.fr/hal-01084899

. Bodin, K-Periodic schedules for evaluating the maximum throughput of a Synchronous Dataflow graph, 2012 International Conference on Embedded Computer Systems (SAMOS), pp.152-159, 2012.
DOI : 10.1109/SAMOS.2012.6404169

URL : https://hal.archives-ouvertes.fr/hal-00880624

. Bodin, Optimal and fast throughput evaluation of CSDF, Proceedings of the 53rd Annual Design Automation Conference on, DAC '16, pp.1-160, 2016.
DOI : 10.1201/9781420072747-c6

URL : https://hal.archives-ouvertes.fr/hal-01358062

. Bodin, Periodic schedules for Cyclo-Static Dataflow, The 11th IEEE Symposium on Embedded Systems for Real-time Multimedia, pp.105-114, 2013.
DOI : 10.1109/ESTIMedia.2013.6704509

URL : https://hal.archives-ouvertes.fr/hal-00880646

. Bonfietti, An efficient and complete approach for throughput-maximal SDF allocation and scheduling on multi-core platforms, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), pp.897-902, 2010.
DOI : 10.1109/DATE.2010.5456924

. Bonfietti, Maximum-throughput mapping of SDFGs on multi-core SoC platforms, Journal of Parallel and Distributed Computing, vol.73, issue.10, pp.731337-1350, 2013.
DOI : 10.1016/j.jpdc.2013.05.004

. Buck, . Lee, J. T. Buck, and E. A. Lee, Scheduling dynamic dataflow graphs with bounded memory using the token flow model, IEEE International Conference on Acoustics Speech and Signal Processing, pp.93-429, 1993.
DOI : 10.1109/ICASSP.1993.319147

S. R. Chakilam, O. Neil, and T. W. , Static scheduling for cyclo-static data flow graphs, 2009.

P. Chrétienne, Transient and limiting behavior of timed event graphs, RAIRO Techniques et Sciences Informatiques, pp.127-192, 1985.

. Cohen, A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing, IEEE Transactions on Automatic Control, vol.30, issue.3, pp.210-220, 1985.
DOI : 10.1109/TAC.1985.1103925

. Commoner, Marked directed graphs, Journal of Computer and System Sciences, vol.5, issue.5, pp.511-523, 1971.
DOI : 10.1016/S0022-0000(71)80013-2

K. Davis, A. L. Davis, and R. M. Keller, Data Flow Program Graphs, Computer, vol.15, issue.2, pp.26-41, 1982.
DOI : 10.1109/MC.1982.1653939

. De-groote, Max-Plus Algebraic Throughput Analysis of Synchronous Dataflow Graphs, 2012 38th Euromicro Conference on Software Engineering and Advanced Applications, pp.29-38, 2012.
DOI : 10.1109/SEAA.2012.20

. Desnos, On Memory Reuse Between Inputs and Outputs of Dataflow Actors, ACM Transactions on Embedded Computing Systems, vol.15, issue.2, p.1530, 2016.
DOI : 10.1109/TEST.2002.1041777

URL : https://hal.archives-ouvertes.fr/hal-01284333

Z. Galil, Efficient algorithms for finding maximum matching in graphs, ACM Computing Surveys, vol.18, issue.1, pp.23-38, 1986.
DOI : 10.1145/6462.6502

S. Stuijk, Worst-case performance analysis of synchronous dataflow scenarios, Proceedings of the eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp.125-134, 2010.

. Ghamarian, Liveness and Boundedness of Synchronous Data Flow Graphs, 2006 Formal Methods in Computer Aided Design, pp.6-68, 2006.
DOI : 10.1109/FMCAD.2006.20

. Ghamarian, Throughput analysis of synchronous data flow graphs, Sixth International Conference on Application of Concurrency to System Design, pp.25-36, 2006.

P. Ito, K. Ito, and K. K. Parhi, Determining the iteration bounds of single-rate and multi-rate data-flow graphs, Proceedings of APCCAS'94, 1994 Asia Pacific Conference on Circuits and Systems, pp.163-168, 1994.
DOI : 10.1109/APCCAS.1994.514543

G. Kahn, The semantics of a simple language for parallel programming, Information Processing, vol.74, pp.471-475, 1974.

R. M. Karp, Reducibility among combinatorial problems, Complexity of computer computations, pp.85-103, 1972.

. Karp, . Miller, R. M. Karp, and R. E. Miller, Properties of a Model for Parallel Computations: Determinacy, Termination, Queueing, SIAM Journal on Applied Mathematics, vol.14, issue.6, pp.1390-1411, 1966.
DOI : 10.1137/0114108

S. F. Khasawneh, Static Scheduling for synchronous data flow graphs, 2007.

. Lee, . Messerschmitt, E. A. Lee, and D. G. Messerschmitt, Synchronous dataflow, Proceedings of the IEEE, pp.1235-1245, 1987.

. Bibliography and . Lin, Communicationaware heterogeneous multiprocessor mapping for real-time streaming systems, Journal of Signal Processing Systems, issue.3, pp.69279-291, 2012.

X. Liu, W. Liu, and C. Xiao, An Efficient Technique of Application Mapping and Scheduling on Real-Time Multiprocessor Systems for Throughput Optimization, ACM Transactions on Embedded Computing Systems, vol.15, issue.4, p.65, 2016.
DOI : 10.7873/DATE.2014.338

M. Marchetti, O. Marchetti, and A. Munier-kordon, A sufficient condition for the liveness of weighted event graphs, European Journal of Operational Research, vol.197, issue.2, pp.532-540, 2009.
DOI : 10.1016/j.ejor.2008.07.037

URL : https://hal.archives-ouvertes.fr/hal-01197183

M. Marchetti, O. Marchetti, and A. Munier-kordon, Cyclic Scheduling for the Synthesis of Embedded Systems, Introduction to scheduling, pp.135-164, 2009.
DOI : 10.1201/9781420072747-c6

URL : https://hal.archives-ouvertes.fr/hal-01297931

. Marwedel, Mapping of applications to MP- SoCs, Proceedings of the 7th International Conference on Hardware/Software Codesign and System Synthesis, pp.109-118, 2011.

. Mirza, Mapping and scheduling of dataflow graphs — A systematic map, 2014 48th Asilomar Conference on Signals, Systems and Computers, pp.1843-1847, 2014.
DOI : 10.1109/ACSSC.2014.7094787

. Moreira, Buffer Sizing for Rate-Optimal Single-Rate Data-Flow Scheduling Revisited, IEEE Transactions on Computers, vol.59, issue.2, pp.188-201, 2010.
DOI : 10.1109/TC.2009.155

N. Nikitin and J. Cortadella, A performance analytical model for Network-on-Chip with constant service time routers, Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD '09, pp.571-578, 2009.
DOI : 10.1145/1687399.1687506

H. Oh, H. Oh, and S. Ha, Fractional rate dataflow model and efficient code synthesis for multimedia applications, ACM SIGPLAN Notices, vol.37, issue.7, pp.12-17, 2002.
DOI : 10.1145/566225.513834

K. K. Parhi, High-level algorithm and architecture transformations for DSP synthesis, Journal of VLSI signal processing systems for signal, image and video technology, vol.20, issue.No. 7, pp.121-143, 1995.
DOI : 10.1109/MC.1987.1663621

. Pelcat, Preesm: A dataflow-based rapid prototyping framework for simplifying multicore DSP programming, 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp.36-40, 2014.
DOI : 10.1109/EDERC.2014.6924354

URL : https://hal.archives-ouvertes.fr/hal-01059313

. Saha, Dataflow Transformations in High-level DSP System Design, 2006 International Symposium on System-on-Chip, pp.1-6, 2006.
DOI : 10.1109/ISSOC.2006.321985

. Singh, Mapping on multi/many-core systems, Proceedings of the 50th Annual Design Automation Conference on, DAC '13, pp.1-110, 2013.
DOI : 10.1145/2463209.2488734

S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: Scheduling and synchronization, CRC, vol.3, 2009.
DOI : 10.1201/9781420048025

. Stuijk, Multiprocessor resource allocation for throughput-constrained synchronous dataflow graphs, Proceedings of the 44th annual Design Automation Conference, pp.777-782, 2007.

. Stuijk, SDF3: SDF For Free, Proceedings of the 6th International Conference on Application of Concurrency to System Design (ACSD'06), pp.276-278, 2006.

. Stuijk, Throughputbuffering trade-off exploration for cyclo-static and synchronous dataflow graphs, IEEE Transactions on Computers, issue.10, pp.571331-1345, 2008.

. Thies, Phased computation graphs in the polyhedral model, 2002.

. Zhou, Scheduling of parallelized synchronous dataflow actors, 2013 International Symposium on System on Chip (SoC), pp.1-10, 2013.
DOI : 10.1109/ISSoC.2013.6675271

URL : https://hal.archives-ouvertes.fr/hal-00909324

. Zhu, Constrained global scheduling of streaming applications on MPSoCs, 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), pp.223-228, 2010.
DOI : 10.1109/ASPDAC.2010.5419892