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Résumé en Francais

Contexte

Les techniques émergentes de l'ingénierie dirigée par les modeles et de la programma-
tion générative ont permis la création de plusieurs générateurs (générateurs de code et
compilateurs). Ceux-ci sont souvent utilisés afin de faciliter le développement logiciel et
automatiser le processus de génération de code a partir des spécifications abstraites. En
effet, les utilisateurs sont devenus capables de synthétiser rapidement des artefacts logiciels
pour une large gamme de plateformes logicielles et matérielles. En outre, les générateurs
modernes comme les compilateurs C, sont devenus hautement configurables, offrant de
nombreuses options de configuration a l'utilisateur de maniere a personnaliser facilement
le code généré pour la plateforme matérielle cible. Par conséquent, la qualité logicielle
est devenue fortement corrélée aux parametres de configuration ainsi qu’au générateur lui-
méme. Dans ce contexte, il est devenu indispensable de vérifier le bon comportement des
générateurs. D’une part, il est important de tester les programmes générés afin de détecter
des anomalies de générateurs et les corriger. D’autre part, il est crucial d’aider les util-
isateurs a bien paramétrer les générateurs afin de satisfaire les exigences des plateformes
logicielle et matérielle cibles.

Motivations

Aujourd’hui, les générateurs populaires tels que GCC, LLVM, etc., sont fréquemment
utilisés dans l'industrie afin de traduire le code source écrit en langage humain vers un
code machine de bas niveau (p. ex. binaires, exécutables). Ces générateurs, connus sous le
nom compilateurs, offrent une large gamme d’options de configuration aux utilisateurs pour
controler le comportement du générateur. Différentes catégories d’options peuvent étre ac-
tivées pour aider les développeurs a déboguer, optimiser I'application générée ou encore

Vil



viii Résumé en Francais

sélectionner ’architecture matérielle cible. Par exemple, GCC version 4.8.4 offre une large
sélection d’options en ligne de commande, y compris plus de 150 options d’optimisation.
Cela constitue un espace de configuration treés large avec 2!°° combinaisons d’optimisation
possibles pouvant étre appliquées par 1'utilisateur pour optimiser la qualité du code généré
(comme le temps d’exécution, la taille du binaire, le temps de compilations, etc.). En
outre, la construction d’une seule séquence d’optimisation pour tous les programmes en
entrée est impossible car les interactions entre les optimisations sont trop complexes et
difficiles a définir. De plus, 'impact des optimisations est fortement corrélé au matériel
cible et au code source d’entrée. Cet exemple montre combien il est difficile de paramétrer
les générateurs (tel que les compilateurs) dans le but de produire un code machine qui
satisfait différentes propriétés non-fonctionnelles.

Il est aussi essentiel de tester les générateurs afin d’assurer que la génération automa-
tique de code n’introduit aucune anomalie dans le produit final. Toute anomalie dans le
code généré entrainerait une perte de confiance de la part des utilisateurs qui n’utiliseront
plus ces générateurs lors du développement logiciel. En conséquence, les développeurs
de générateurs doivent bien vérifier et tester le bon comportement du code automatique-
ment généré. Contrairement aux compilateurs qui disposent de plusieurs solutions de
test [ , ], il en existe peu pour évaluer automatiquement les comportement
des générateurs de code, dont aucune ne se base sur le test des propriétés non-fonctionnelles.
En effet, les générateurs de code sont moins utilisés et expérimentés dans 'industrie par
rapport aux compilateurs. Ils sont également difficiles a tester puisqu’ils impliquent un en-
semble de technologies trés complexes et hétérogenes | , |. Le test des générateurs
de code implique principalement les créateurs/experts de l'outil. Néanmoins, les utilisa-
teurs sont également responsables de cette validation puisqu’ils reportent continuellement
les anomalies rencontrées lors de la génération de code. De nombreuses approches ont été
proposées | , | afin de tester le comportement fonctionnel du code généré.
Cependant, peu de solutions évaluent les propriétés non-fonctionnelles, a savoir les pro-
priétés liées a la performance et I'utilisation des ressources du code généré.

En résumé, les générateurs (compilateurs et générateurs de code) sont des composants
essentiel pour la production automatique du code. La qualité du logiciel généré est directe-
ment corrélée a la qualité du générateur lui-méme. Tant que la qualité des générateurs
est maintenue et améliorée, la qualité des artefacts logiciels générés s’améliore également
puisque toute anomalie avec ces générateurs affecte directement la qualité du produit logi-
ciel final. En particulier, lorsque la génération automatique de code est utilisée, nous
identifions deux problemes majeurs qui menacent la qualité du logiciel généré: D’une part,
I’'espace de configuration tres large pose un important défi aux utilisateurs qui doivent
sélectionner les meilleures options d’optimisation, répondant a certaines exigences non-
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fonctionnelles. D’autre part, la complexité des générateurs de code ainsi que le manque
de solutions pour évaluer les propriétés non-fonctionnelles du code généré représente un
obstacle pour les créateurs de générateurs qui veulent assurer la qualité du logiciel automa-
tiquement généré.

Problématiques

Nous avons identifié trois problématiques pour le test et la configuration automatique des
générateurs.

Le test des générateurs de code (le probléeme de ’oracle):

Le test des générateurs de code releve le probleme de 'oracle. Un oracle de test est le
mécanisme par lequel un testeur peut déterminer si un test passe ou pas. En ce qui concerne
les tests non-fonctionnels des générateurs de code, ce probleme devient tres récurrent parce
que il est assez difficile de déterminer le comportement non-fonctionnel attendu du code a
tester (p. ex. la consommation de mémoire). Déterminer si les mesures non-fonctionnelles
correspondent a une anomalie de générateur ou non, n’est pas aisé. Pour contourner ce
probleme, des techniques telles que les tests métamorphiques | | sont appliquées pour
tester des programmes sans définir explicitement un oracle. Cette technique emploie des
relations métamorphiques de haut-niveau pour vérifier automatiquement les résultats des
tests. Alors, quels types d’oracles pouvons-nous définir? Comment pouvons-nous détecter
automatiquement des anomalies de générateurs? Toutes ces questions soulevent des défis
importants dans le test des générateurs de code.

La configuration automatique des compilateurs (exploration de 1’espace de
recherche des optimisations):

La plupart des compilateurs fournissent un tres grand nombre d’optimisations qui
permettent d’améliorer la qualité du code généré. Cependant, pour explorer un tel es-
pace d’optimisation, les utilisateurs doivent évaluer leurs effets selon une propriété non-
fonctionnelle spécifique tel que le temps d’exécution, la taille du binaire, etc. Du fait de
la difficulté de la construction d’une séquence d’optimisation donnée, de la complexité
des interactions et de l'effet imprévisible des optimisations, les utilisateurs trouvent des
difficultés a choisir la meilleure configuration de compilateur qui satisfait une exigence
non-fonctionnelle spécifique.
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La surveillance de la consommation des ressources du code généré (gérer la
diversité des plateformes logicielles et matérielles):

Pour évaluer les propriétés liées a l'utilisation des ressources du code généré (par des
compilateurs ou des générateurs de code), les développeurs doivent compiler, déployer et
exécuter les artefacts logiciels générés sur différentes plateformes d’exécution. Ensuite,
ils utilisent souvent plusieurs profileurs, débogueurs et outils de surveillance spécifiques a
la plateformes | , ] afin de trouver des anomalies lors de I'exécution du code
généré. En raison de I’hétérogénéité des plateformes d’exécution logicielle et matérielle, la
collecte d’informations sur 1'utilisation des ressources du code généré devient une tache tres
couteuse, puisque les développeurs doivent analyser et vérifier le code généré pour chacune
des plateformes cibles a 1’aide d’outils spécifiques.

Les défis de cette recherche peuvent étre résumés dans les questions de recherche suiv-
antes:

RQ1. Comment pouvons-nous aider les développeurs a tester automatiquement le code
généré et détecter des anomalies non-fonctionnelles de générateurs de code 7

RQ@2. Comment pouvons-nous aider les utilisateurs des compilateurs a choisir au-
tomatiquement la configuration d’optimisation adéquate qui satisfait une exigence non-
fonctionnelle spécifique?

R@Q3. Comment pouvons-nous faciliter la mise en place d’outils de surveillance de la
consommation des ressources dans un environnement hétérogene?

Contributions

Cette these établit trois contributions principales. Elles sont brievement décrites dans le
reste de cette section.

Contribution I: détection automatique des inconsistances dans les familles
de générateurs de code.

Dans cette contribution, nous abordons le probleme de 'oracle dans le domaine du
test non-fonctionnel des générateurs de code. La disponibilité de multiples générateurs de
code avec des fonctionnalités comparables (c.-a-d. familles de générateurs de code) nous
permet d’appliquer I'idée du test métamorphique | ] en définissant des oracles de
test de haut-niveau (c.-a-d. relation métamorphique) pour détecter des inconsistances.
Nous définissons la relation métamorphique comme la comparaison entre les variations de
performance et de 'utilisation des ressources des différentes versions, générées a partir de
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la méme famille de générateurs de code. Une inconsistance est détectée lorsque le code
généré présente un comportement inattendu par rapport a toutes les implémentations
équivalentes de la méme famille. Nous évaluons notre approche en analysant la perfor-
mance de Haxe, un langage de programmation de haut niveau impliquant un ensemble de
générateurs de code multi-plateformes. Nous évaluons les propriétés liées a la performance
et a l'utilisation des ressources du code généré pour cing plateformes logicielles cibles. Les
résultats expérimentaux montrent que notre approche est capable de détecter plusieurs
inconsistances qui révelent des problemes réels dans cette famille de générateurs de code.

Contribution II: une approche pour ’auto-configuration des compilateurs.

Comme nous 'avons indiqué précédemment, le grand nombre d’options de compila-
tion nécessite une méthode efficace pour explorer I'espace d’optimisation. Ainsi, nous ap-
pliquons, dans cette contribution, une méta-heuristique appelée Novelty Search | | pour
I’exploration de cet espace de recherche. Cette approche aide les utilisateurs a paramétrer
automatiquement les compilateurs pour une architecture matérielle cible et pour une
métrique non-fonctionnelle spécifique tel que la performance et 1'utilisation des ressources.
Nous évaluons lefficacité de notre approche en vérifiant les optimisations fournies par
le compilateur GCC. Nos résultats expérimentaux montrent que notre approche permet
d’auto-configurer les compilateurs en fonction des besoins de 1'utilisateur et de construire
des optimisations qui surpassent les niveaux d’optimisation standard. Nous démontrons
également que notre approche peut étre utilisée pour construire automatiquement des
niveaux d’optimisation qui représentent des compromis optimaux entre plusieurs propriétés
non-fonctionnelles telles que le temps d’exécution et la consommation des ressources.

Contribution III: Un environnement d’exécution léger pour le test et la
surveillance de la consommation des ressources des logiciels.

Enfin, nous proposons une infrastructure basée sur les micro-services pour assurer le
déploiement et la surveillance de la consommation des ressources des différentes variantes
du code généré. Cette contribution traite le probleme de I'hétérogénéité des plateformes
logicielles et matérielles. Nous décrivons une approche qui automatise le processus de
génération, compilation, et exécution du code dans le but de faciliter le test et 1'auto-
configuration des générateurs. Cet environnement isolé repose sur des conteneurs systeme,
comme plateformes d’exécution, pour une surveillance et analyse fine des propriétés liées a
l'utilisation des ressources (CPU et mémoire). Cette infrastructure constitue un terrain de
jeu pour tester et régler les générateurs. Cette contribution répond principalement a RQ3,
mais celle-ci est particulierement utilisée pour valider les expériences portées dans RQ1 et
RQ2.






Chapter 1

Introduction

1.1 Context

Modern software systems rely nowadays on a highly heterogeneous and dynamic intercon-
nection of platforms and devices that provide a wide diversity of capabilities and services.
These heterogeneous services may run in different environments ranging from cloud servers
with virtually unlimited resources down to resource-constrained devices with only a few
KB of RAM. Effectively developing software artifacts for multiple target platforms and
hardware technologies is then becoming increasingly important. As a consequence, we ob-
serve in the last years [ |, that generative software development received more and
more attraction to tame with the runtime heterogeneity of platforms and technological
stacks that exist in several domains such as mobile or Internet of Things [ ].

Generative programming | | offers a software abstraction layer that software devel-
opers can use to specify the desired system behavior (e.g., using domain-specific languages
DSLs, models, etc.), and automatically generate software artifacts. As a consequence, the
new advances in hardware and platform specifications have paved the way for the creation
of multiple generators that serve as a basis for automatically generating code to a broad
range of software and hardware platforms.

Automatic code generation involves two kinds of generators: source code generators and
compilers. On the one hand, code generators are needed to transform the high-level system
specifications (e.g., textual or graphical modeling language) into conventional source code
programs (e.g., general-purpose languages GPLs such as Java, C++, etc). On the other
hand, compilers bridge the gap between the input programs (i.e., written using GPLs)
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and the target execution environment, producing low-level machine code (i.e., binaries,
executables) for a specific hardware architecture.

With full automatic code generation, it is now possible to develop the code easily and
rapidly, improving the quality and consistency of a program as well the productivity of
software development | ]. In addition, today’s modern generators (e.g., C compilers)
become highly configurable, offering (numerous) configuration options (e.g., optimization
passes) to users in order to tune the produced code with respect to the target software
and/or hardware platform.

In this context, it is crucial that the software being automatically generated undergoes
an appropriate testing technique to verify the correct behavior of generators. Hence, users
can trust the code generator and gain confidence in its correct operation. Verifying the
correctness of generated code can be either functional (e.g., verifying that the generated
code exhibits the same functional behavior as described in the input program), or non-
functional (e.g., verifying the quality of generated code).

1.2 Motivation

As we stated in the context of this thesis, today’s modern generators are highly con-
figurable, letting the user to easily customize the automatically generated code. In the
meantime, efficiently testing configurable generators poses important challenges since it is
too costly to manually or automatically execute and test all configurations. For instance,
popular generators such as GCC, LLVM, etc., are widely used in software development
and they offer a large selection of configuration options to control the generator behavior.
Different categories of options can be enabled (i.e., option flags) to help developers to:
debug, optimize, and tune application performance, select language levels and extensions
for compatibility, select the target hardware architecture, and perform many other com-
mon tasks that configure the way the code is generated. The huge number of generator
configurations, versions, optimizations, and debugging utilities make the task of choosing
the best configuration set very difficult and time-consuming. As an example, GCC version
4.8.4 provides a wide range of command-line options that can be enabled or disabled by
users, including more than 150 options for optimization. This results in a huge design
space with 2!°0 possible optimization combinations that can be enabled by the user. In
addition, constructing one single optimization sequence that improves the code quality for
all programs is impossible since the interactions between optimizations are too complex
and difficult to define. As well, the optimization’s impact is highly dependent on the hard-
ware and the input source code. This example shows how painful it is for the users to



tune generators such as compilers (through optimization flags) in order to satisfy different
non-functional properties such as execution time, compilation time, code size, etc.

Before tuning generators, it is crucial to test if the code generation works properly. If
so, users will trust the tool and will more likely to continue using it for production code
generation. Contrarily, any issue with the generated code leads to a loss of confidence
in generators and users will unlikely continue to use them during software development.
As a consequence, checking the correctness of generated code has to be done with almost
the same expensive effort as it is needed for manually written code. In this context,
compared to compiler testing | , ], code generators lack of testing solutions to
automatically evaluate their correct behavior, especially for the non-functional properties.
That is because code generators are less used and experienced in industry compared to
compilers. In addition, they are difficult to test since they involve a set of complex and
heterogeneous technologies that are internally managed in a very complex way | ,

|. Testing code generators is principally the tool experts responsibility. Nevertheless,
users (e.g., customers) are also responsible of this validation since they will continuously
report the faults encountered during code generation. Faulty code generators can generate
defective software artifacts which range from uncompilable or semantically dysfunctional
code that causes serious damage to the target platform; to non-functional bugs which lead
to poor-quality code that can affect system reliability and performance (e.g., high resource
usage, high execution time, etc.). Numerous approaches have been proposed | ,
| to verify the functional outcome of generated code. However, there is a lack
of solutions that pay attention to evaluate the properties related to the performance and
resource usage of automatically generated code.

In summary, from the user’s point of view, generators (compilers and code generators)
are black box components that can be used to facilitate the software production process.
The quality of the generated software is directly correlated to the quality of the generator
itself. As long as the quality of generators is maintained and improved, the quality of
generated software artifacts also improves. Any bug with these generators impacts on the
software quality delivered to the market and results in a loss of confidence on the end users.
In particular, when automatic code generation is used, we identify two major issues that
threaten the quality of generated software: on the one hand, highly configurable generators
control the quality of generated code through numerous optimization options than can be
enabled/disabled by users. This huge configuration space poses an important challenge for
users to select the best optimization options that meet some non-functional requirements.
On the other hand, the complexity of code generators as well as the lack of solutions for
evaluating the non-functional properties of generated code represent an obstacle for the
users who need more evidence to continue using them during software development.
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1.3 Scope of the thesis

In this thesis, we seek to evaluate the quality of the generated code in terms of perfor-
mance and resource usage. On the one hand, we provide facilities to the code generator
creators/maintainers to monitor the execution of generated code for different target soft-
ware platforms and have a deep understanding of its non-functional behavior in terms of
resource usage. Consequently, we automatically detect the non-functional issues caused
by some faulty code generators. On the other hand, we provide a mechanism that helps
users (i.e., software developers) to select the best optimization sets that satisfy specific
resource usage or performance requirements for a broad range of programs and hardware
architectures.

This thesis addresses three problems:

(1) The problem of non-functional testing of code generators: We benefit
from the existence of multiple code generators with comparable functionality (i.e., code
generator families) to automatically test the generated code. We leverage the metamorphic
testing | | to detect non-functional inconsistencies in code generator families. We
focus in this contribution on testing the performance and resource usage properties (e.g.,
intensive resource usage). An inconsistency is detected when the generated code exhibits an
unexpected behavior in terms of performance or resource usage compared to all equivalent
implementations in the same code generator family.

(2) The problem of generators auto-tuning: We exploit recent advances in search-
based software engineering in order to provide an effective approach to effectively tune
generators (e.g., GCC compilers) through optimizations. We also demonstrate that our
approach can be used to automatically construct optimization levels that represent optimal
trade-offs between multiple non-functional properties such as execution time and resource
usage requirements.

(3) The problem of software platforms diversity and hardware heterogeneity
in software testing: Running tests and evaluating the resource usage in heterogeneous
environments is tedious. To handle this problem, we benefit from the recent advances
in lightweight system virtualization, in particular container-based virtualization, in order
to offer effective support for automatically deploying, executing, and monitoring code in
heterogeneous environment, and collect non-functional metrics (e.g., memory and CPU
consumptions).



In the rest of the thesis, we use the term “compilers” to refer to the traditional com-
pilers that take as input a source code and translate it into machine code like GCC, LLVM,
etc. Similarly, “code generators” designate the software programs that transform an in-
put program into source code like Java, C++, etc. Finally, we use the term “generators”
to designate both, code generators and compilers.

1.4 Challenges

In existing solutions that aim to test and auto-tune generators, we find three important
challenges. Addressing these challenges, which are described below, is the objective of the
present work.

e Code generators testing: the oracle problem: One of the most common chal-
lenges in software testing is the oracle problem. A test oracle is the mechanism by
which a tester can determine whether a program has failed or not. When it comes to
the non-functional testing of code generators, this problem becomes very challenging
because it is quite hard to determine the expected output of automatically generated
code (e.g., memory consumption). Determining whether these non-functional out-
puts correspond to a generator anomaly or not is not obvious. That is why testing
the generated code becomes very complex when testers have no precise definition of
the oracle they would define. To alleviate the test oracle problem, techniques such
as metamorphic testing | | are widely used to test programs without defining
an explicit oracle. Instead, it employs high-level metamorphic relations to automat-
ically verify the outputs. So, which kind of test oracles can we define? How can we
automatically detect inconsistencies? All these questions pose important challenges
in testing code generators.

e Auto-tuning compilers: exploring the large optimizations search space:
The current innovations in science and industry demand ever-increasing computing
resources while placing strict requirements on many non-functional properties such as
system performance, power consumption, size, reliability, etc. In order to deliver sat-
isfactory levels of performance on different processor architectures, compiler creators
often provide a broad collection of optimizations that can be applied by compiler
users in order to improve the quality of generated code. However, to explore the
large optimization space, users have to evaluate the effect of optimizations according
to a specific performance objective/trade-off. Thus, constructing a good set of op-
timization levels for a specific system architecture/target application becomes very
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challenging. Moreover, due to the complex interactions and the unknown effect of
optimizations, users find difficulties to choose the adequate compiler configuration
that satisfies a specific non-functional requirement.

¢ Runtime monitoring of generated code: handling the diversity of software
and hardware platforms: To evaluate the properties related to the resource us-
age of generated code (by compilers or code generators), developers use generally to
compile, deploy and execute the generated software artifacts on different execution
platforms. Then, after gathering the non-functional metrics, they report issues re-
lated to the code generation process such as program crash, abnormal termination,
memory leaks, etc. In fact, developers often use several platform-specific profilers,
debuggers, and monitoring tools | , ] in order to find some inconsistencies
or bugs during code execution. Due to the heterogeneity of execution platforms and
hardware, collecting information about the resource usage of generated code becomes
very hard and time-consuming tasks since developers have to analyze and verify the
generated code for different target platforms using platform-specific tools.

The challenges this research tackle can be summarized in the following research questions.
These questions arise from the analysis of the challenges presented in the previous para-
graphs.

RQ1. How can we help code generator creators/maintainers to automatically detect
non-functional inconsistencies in code generators?

RQ2. How can we help compiler users to automatically choose the adequate compiler
configuration that satisfies a specific non-functional requirement?

R@)3. How can we provide efficient support for resource consumption monitoring in
heterogeneous environment?

1.5 Contributions

This thesis establishes three core contributions. They are briefly described in the rest of
this section.



Contribution I: Automatic detection of inconsistencies in code generator
families. In this contribution, we tackle the oracle problem in the domain of code gener-
ators testing. The availability of multiple generators with comparable functionality (i.e.,
code generator families) allows us to apply the idea of metamorphic testing | ] by
defining high-level test oracles (i.e., metamorphic relation) to detect issues. We define the
metamorphic relation as a comparison between the variations of performance and resource
usage of code, generated from the same code generator family. We evaluate our approach
by analyzing the performance of Haxe, a popular high-level programming language that
involves a set of cross-platform code generators. We evaluate the properties related to the
resource usage and performance for five target software platforms. Experimental results
show that our approach is able to detect several performance inconsistencies that reveal
real issues in this code generator family.

Contribution II: An approach for auto-tuning compilers. As we stated earlier,
the huge number of compiler options requires the application of a search method to explore
the large design space. Thus, we apply, in this contribution, a search-based meta-heuristic
called Novelty Search | | for compiler optimizations exploration. This approach helps
compiler users to efficiently explore the large optimization search space and auto-tune
compilers according to the performance and resource usage properties and that, for a spe-
cific hardware architecture. We evaluate the effectiveness of our approach by verifying the
optimizations performed by the GCC compiler. Our experimental results show that our
approach is able to auto-tune compilers according to the user requirements and construct
optimizations that yield to better performance results than standard optimization levels.
We also demonstrate that our approach can be used to automatically construct optimiza-
tion levels that represent optimal trade-offs between multiple non-functional properties
such as execution time and resource usage requirements.

Contribution III: A lightweight execution environment for software testing
and monitoring. Finally, we propose a micro-service infrastructure to ensure the de-
ployment and monitoring of the different variants of generated code. This contribution
addresses the problem of software and hardware heterogeneity. Thus, we describe an ap-
proach that automates the process of code generation and compilation, execution, and
monitoring in order to facilitate the testing and auto-tuning process. This isolated and
sand-boxing environment is based on system containers, as execution platforms, to provide
a fine-grained understanding and analysis of the properties related to the resource usage
(CPU and memory). This approach constitutes the playground for testing and tuning gen-
erators. This contribution answers mainly R()3 but the same infrastructure is particularly
used to validate the carried experiments in RQ)! and RQ2.
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1.6 Overview of this thesis

The remainder of this thesis is organized as follows:

Chapter 2 first contextualizes this research, situating it in the domain of generative
programming. We discuss several concepts and stakeholders involved in the field of gen-
erative programming as well as an overview of the different aspects of automatic code
generation. Finally, we discuss the different problems that make the task of generators
auto-tuning and testing very difficult.

Chapter 3 presents the state of the art of the thesis. This chapter provides a survey
of the most used techniques for tuning and testing generators. This chapter is divided into
three sections. First, we study the different techniques used to test the functional and non-
functional properties of code generators. Second, we study the previous approaches that
have been applied for auto-tuning compilers. Finally, we present several research efforts
that used the container-based architecture for software testing and monitoring. At the
end, we provide a summary of the state of the art and we discuss several open challenges.

Chapter 4 presents our approach for non-functional testing of code generator families.
It shows an adaptation of the idea of metamorphic testing to automatically detect code
generator issues. We conduct a statistical analysis and we report the experimental results
conducted using an example of code generator families. The inconsistencies we detect are
related to the performance and memory usage of generated code. We also propose solutions
to fix the detected issues.

Chapter 5 resumes our contribution for compiler auto-tuning. Thus, we present an
iterative process based on a search technique called Novelty Search for compiler optimiza-
tion exploration. We provide two adaptations of this algorithm: mono and multi-objective
optimization. We also show how this technique can easily help compiler users to efficiently
generate and evaluate compiler optimizations. The non-functional metrics we are evaluat-
ing are the performance, memory, and CPU usage. We evaluate this approach through an
empirical study and we discuss the results.

Chapter 6 shows the testing infrastructure used across all experiments. It shows the
usefulness of such architecture, based on system containers, to automatically execute and
monitor the automatically generated code.

Chapter 7 draws conclusions and identifies future directions for testing and auto-
tuning generators.
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Chapter 2

Background

In this chapter, the context of this thesis and the general problems it faces are introduced.
The objective of this chapter is to give a brief introduction to different domains and con-
cepts in which our work takes place and used throughout this document. This includes an
overview of the generative software development process as we see in the context of this
thesis, the main actors and their roles for tuning and testing configurable generators, and
the main challenges we are facing.

The chapter is structured as follows:

In Section 2.1, we present the problem of software diversity and hardware heterogeneity
caused by the continuous innovation in science and technology.

Section 2.2 aims at providing a better understanding of the generative programming
concept. We present the different steps of automatic code generation involved during
software development as well as the different stakeholders and their roles in testing and
tuning generators. We highlight then, the main activities that the software developer goes
through from the software design until the release of the final software product.

Section 2.3 gives an overview of the different types of code generators used in the
literature and we show the complexity of testing code generators.

Similarly, in Section 2.4, we describe some compiler optimizations and we illustrate the
compiler auto-tuning complexity by presenting the different challenges that this task is
posing.

Finally, in Section 2.5, we conclude by providing a summary of the relevant challenges
for testing and tuning configurable generators.

13
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2.1 Diversity in software engineering

The history of software development shows a continuous increase of complexity in several
aspects of the software development process. This complexity is highly correlated with the
actual technological advancement in the software industry as more and more heterogeneous
devices are introduced in the market | |.  Generally, heterogeneity may occur in
terms of different system complexities, diverse programming languages and platforms, types
of systems, development processes and distribution among development sites | ].
System heterogeneity is often led by software and hardware diversity. Diversity emerges as
a critical concern that spans all activities in software engineering, from design to operation
[ |. Tt appears in different areas such as mobile, web development [ |, security
[ |, ete.

However, software and hardware diversity leads to a greater risk for system failures due
to the continuous change in configurations and system specifications. As a matter of a fact,
effectively developing software artifacts for multiple target platforms and hardware tech-
nologies is then becoming increasingly important. Furthermore, the increasing relevance of
software and the higher demand in quality and performance contribute to the complexity
of software development.

In this background introduction, we discuss two different dimensions of diversity: (1)
hardware heterogeneity, and (2) software diversity.

2.1.1 Hardware heterogeneity

Modern software systems rely nowadays on a highly heterogeneous and dynamic intercon-
nection of devices that provide a wide diversity of capabilities and services to the end users.
These heterogeneous services run in different environments ranging from cloud servers to
resource-constrained devices. Hardware heterogeneity comes from the continuous inno-
vation of hardware technologies to support new system configurations and architectural
design (e.g., addition of new features, a change in the processor architecture, new hard-
ware is made available, etc). For example, until February 2016', the increase in capacity
of microprocessors has followed the famous Moore’s law? for Intel processors. Indeed, the
number of components (transistors) that can be fitted onto a chip doubles every two years,
increasing the performance and energy efficiency. For instance, Intel Core 2 Duo processor
was introduced in 2006 with 291 millions of transistors and 2.93 GHz clock speed. Two

https://arstechnica.com/information-technology/2016/02/moores-law-really-is-dead-this-time/
2https://en.wikipedia.org/wiki/Moore%27s_law
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years later, Intel has introduced the Core 2 Quad processors which came up with 2.66 GHz
clock speed and the double number of transistors introduced in 2006 with 582 millions of
transistors.

In the last years, modern processors becomes more and more heterogeneous, using
more than one kind of processor or cores, called “co-processors”. The CPU can even use
different instruction set architectures (ISA), where the main processor has one and the
rest has another, usually a very different architecture. Operations performed by the co-
processor may be floating point arithmetic, graphics, signal processing, string processing,
encryption or I/O Interfacing with peripheral devices. As an example, the ARM big.Little
processor architecture® released in 2011 (see Figure 2.1), is a power-optimization technology
where high-performance ARM CPU cores are combined with the most efficient ARM CPU
cores to deliver peak-performance capacity and increased parallel processing performance,
at significantly lower average power. It can save 75% of CPU energy and can increase
performance by 40% in highly threaded workloads. The intention of this architecture is to
create a multi-core processor that can adjust better to dynamic computing needs. Threads
with high priority or computational intensity can in this case be allocated to the “Big”
cores while threads with less priority or less computational intensity, such as background
tasks, can be performed by the “Little” cores. This model has been implemented in the
Samsung Exynos 5 Octa in 2013%.

Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex-
A15 A15 A15 A15 AT A7 AT AT

S S S S S S N

Linux Scheduler - 8 non-symmetric cores

Figure 2.1: ARM Big.Little heterogeneous multi-processing

Given the complexity of new emerging processor architectures (x86, x64, multi-core,
etc) and CPU manufacturers such as ARM, AMD, and Intel, some of the questions that
developers have to answer when facing hardware heterogeneity: Is it easy to deliver satis-
factory levels of performance on modern processors? How is it possible to produce machine
code that can exploit efficiently the continuous hardware changes?

3https://en.wikipedia.org/wiki/ARM_big.LITTLE
4http://www.embedded.com/electronics-news/4419448/Benchmarking- ARM-s-big-little-architecture


https://en.wikipedia.org/wiki/ARM_big.LITTLE
http://www.embedded.com/electronics-news/4419448/Benchmarking-ARM-s-big-little-architecture

16 CHAPTER 2. BACKGROUND

2.1.2 Software diversity

In todays software systems, different software variants are typically developed simultane-
ously to address a wide range of application contexts and customer requirements | ].
Therefore, software is built using different approaches and languages, depending on the ap-
plication domain.

In the literature, Baudry et al. | | and Schaefer et al. | | have presented
an exhaustive overview of the multiple facets of software diversity in software engineering.
According to their study, software diversity can emerge in different types and dimensions
such as diversity of operating systems, programming languages, data structures, compo-
nents, execution environments, etc. Like all modern software systems, software need to
be adapted to address changing requirements over time supporting system evolution, tech-
nology and market needs like considering new software platforms, new languages, new
customer choices, etc.

In order to understand the skills and capabilities required to develop software on top
of different classes of devices and application domains, we queried a popular open-source
repository GitHub to evaluate the diversity of existing programming languages. The fol-
lowing sets of keywords were used: 1) Cloud: server with virtually unlimited resources, 2)
Microcontroller: resource constrained node (few KB RAM, few MHz), 3) Mobile: an inter-
mediate node, typically a smartphone, 4) Internet of Things: Internet-enabled devices, 5)
Distributed systems, and 6) Embedded systems, as a large and important part of the service
implementations will run as close as possible to physical world, embedded into sensors,
devices and gateways.

Figure 2.2 presents the results of those queries. The queried keywords are presented
on the z-axis together with the number of matches for that keyword. For each keyword,
the y-azis represents the popularity (in per cent of the total number of matches) of each
of the 10 most popular programming languages that we encountered.

This simple study indicates that no programming language is popular across the differ-
ent areas. A general trend indicates that Java and JavaScript (and to some extent, Python
and Ruby) are popular in cloud and mobile, whereas C (and to some extent, C++) is a
clear choice for developers targeting embedded and microcontroller-based systems. Other
languages do not score more 10% for any of the keywords. For all keywords except Cloud,
the combined popularity of Java, JavaScript and C/C++ (i.e., the sum of the percentages)
is above 70%. For Cloud, we observe a large use of Python, Ruby also being very popular,
so the combined popularity of Java, JavaScript and C/C++ is only 50%. It is also worth
noticing that the most popular language for a given keyword scores very poorly (less than
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Figure 2.2: Popularity of 10 programming languages in different application domains

5%) for at least another keyword. While it might appear that a combination of C/C++,
JavaScript and Java should be able to cover all the areas, in practice it does not exclude the
need for other programming languages. For example, the Fibaro Home Center 2 (a gate-
way for home automation based on the Z-Wave protocol) uses Lua as scripting language
to define automation rules. Another example is the BlueGiga BlueTooth Smart Module,
which can be scripted using BGScript, a proprietary scripting language. This shows that
each part of an infrastructure might require the use of a niche language, middleware or
library to be exploited to its full potential.

In summary, the variation of programming languages for the different kinds of devices
and application domains induces a high software diversity. Accordingly, we propose the fol-
lowing definition of software diversity in the context of this thesis: Software diversity is the
generation or implementation of the same program specification in different ways/manners
i order to satisfy one or more diversity dimensions such as the diversity of programming
languages, execution environments, functionalities, etc.
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2.1.3 Matching software diversity to heterogeneous hardware:
the marriage

2.1.3.1 Challenges
The hardware and software communities are both facing significant changes and major

challenges. Figure 2.3 shows an overview of the challenges that both communities are
facing. In fact, hardware and software are pulling us in opposite directions.

4 B} B ( = N\
SOFTWARE HARDWARE
Software Innovation k Hardware Innovation )
) 7 205 7
Software Diversity Hardware Heterogeneity
New programming languages, execution New CPU arch, 2x faster, more RAM,
L environments, software platforms, etc. smaller, etc. )
\ Y \ S

Figure 2.3: Matching software to hardware

On the one hand, software is facing challenges of a similar magnitude, with major
changes in the way software is deployed, is sold, and interacts with hardware. Software
diversity, as discussed in Section 2.1.2, is driven by software innovation, driving the soft-
ware development toward highly configurable and complex systems. This complexity is
carried by the huge diversity of software technologies, customer configurations, execution
environments, programming languages, etc. This explosion of configurations that software
is facing makes the activity of testing and validation very difficult and time consuming. As
a consequence, software becomes higher and higher level, managing complexity and gluing
lot of pieces together to give programmers the right abstraction for how things really work
and how the data is really represented.

On the other hand, hardware is exposing us to more low-level details and heterogeneity
due to the continuous hardware innovation. Hardware innovation offers us energy efficiency,
performance improvement but exposes a lot of complexity for software engineers and de-
velopers. For example, in [Hel(], authors argue that system software is not ready for this
heterogeneity and cannot fully benefit from new hardware advances such as multi-core and
many-core processors. Although multi-core processors have been used in everyday life, we
still do not know how to best organize and use them. Meanwhile, hardware specialization
for every single application is not a sustainable way of building chips.
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2.1.3.2 Mapping software to hardware

Matching software to hardware is ensured by the efficient translation of the high-level
software programs into a machine code that better exploit the hardware changes (relation
1 in Figure 2.3). This is exactly what a compiler is intended to do.

Configuring existing compilers

Gone are the days where we used to write the assembly code by hand and from scratch.
Now, it is up to the compilers to handle this heterogeneity and to efficiently generate and
optimize the code for a particular microprocessor.

As shown in Figure 2.4, a compiler is typically divided into two parts, a front-end and a
back-end. The compiler front-end verifies the syntax and semantics and analyzes the source
code to build an internal representation of the program, called the intermediate represen-
tation or IR. For example, the GNU Compiler Collection (GCC) and LLVM support many
front-ends with programming languages such as C, C++, Objective-C, Objective-C++,
Fortran, Java, Ada, and Go, among others. The compiler back-end generates the target-
dependent assembly code and performs optimizations for the target hardware architecture.
Typically, the output of a back-end is a machine code specialized for a particular processor
and operating system (e.g., ARM, Sparc processors, etc). As a consequence, people who
are writing compilers have to continuously enhance the way these executables are produced
by releasing new compiler versions to support new hardware changes (i.e., introducing new
optimization flags, instruction sets, etc.).

\C —

ARM
T C++\ —
> Back-end Sparc
—_—
gdvz > x86-32
_—— PowerPC

Figure 2.4: Compiler architecture

Let’s take the GCC example. GCC is able to generate code automatically for approxi-
mately more than 40 different processor architectures. Hence, GCC becomes highly
configurable, allowing the compiler user to enable multiple flags to customize the gener-
ated code. For instance, one important compiler flag is -march. It tells the compiler what
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code it should produce for the system’s processor architecture. It tells GCC that it should
produce code for a certain kind of CPU. Using -march=native enables all the optimization
flags that are applicable for the native system’s CPU, with all its capabilities, features, in-
struction sets, and so on. There exits many other configuration options for the target CPU
like —with-arch=17, —~with-cpu=corei7, etc. Generally, each time a new family of processors
is released, compiler developers release a new compiler version with more sophisticated
configuration options for the target platform. For example, old compilers produce only
32-bit programs. These programs still run on new 64-bit computers, but they may not ex-
ploit all processor capabilities (e.g., they will not use the new instructions that are offered
by x64 CPU architecture). For instance, the current x86-64 assembly language can still
perform arithmetic operations on 32-bit registers using instructions like addl, subl, andl,
orl, etc, with the 1 standing for “long”, which is 4 bytes/32 bits. 64-bit arithmetic is done
with addq, subq, andq, orq, etc, with q standing for “quadword”, which is 8 bytes/64 bits.

Another example is that compilers need to support parallelism. In fact, we can see
that modern computers today can do many things at once and modern CPUs become
highly parallel processors with different levels of parallelism (e.g., the ARM Big.Little in
Figure 2.1). We find parallelism everywhere from the parallel execution units in a CPU
core, up to the SIMD (Single Instruction, Multiple Data) instruction set and the parallel
execution of multiple threads. One of the commonly applied optimizations by modern
compilers in parallel computing is vectorization. It constitutes the process of converting
an algorithm from a scalar implementation, which processes a single pair of operands
at a time, to a vector implementation, which processes one operation on multiple pairs
of operands at once. Programmers can exploit vectorization using compilers to speedup
certain parts of their code. One hot research topic in computer science is the search for
methods of automatic vectorization | |: seeking methods that would allow a compiler
to convert scalar algorithms into vectorized algorithms without human intervention.

In short, to cope with heterogeneous hardware platforms, software developers use these
highly configurable compilers (for compiled languages such as C or C++) in order to
efficiently compile their high-level source code programs and execute them on top of a
board range of platforms and processors.

Masking hardware heterogeneity

Sometimes, software developers try to avoid the hardware heterogeneity. Thus, they use
for example managed languages such as Java, Scala, C#, etc to favor software portability.
Instead of compiling to native machine instruction set, these languages are compiled into
an intermediate language or IL, which is similar to a binary assembly language. These
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instructions are executed by a JVM, or by .NET’s CLR virtual machine, which effectively
translates them to native binary instructions specific to the CPU architecture and/or
OS of the machine. By using managed code, memory management such as type safety
checking and destruction of unneeded objects (i.e., garbage collector) are handled internally
within this sandbox runtime environment. Thus, developers focus on the business logic
of applications to provide more secure and stable software without taking too much care
of the hardware heterogeneity. However, using managed languages has drawbacks. It
includes slower startup speed (the managed code must be JIT compiled by the VM).
It can also be slower than native code and generally more greedy in terms of system
resources. For example, we can see in Figure 2.2, that the C language is the most widely
used programming language in the context of embedded systems® where the system is
really resource-constrained. Contrarily to managed languages, C utilizes the hardware to
its maximum by multi-processing and multi-threading APIs provided by POSIX. It also
controls the memory management and uses less memory (which allows more freedom on
memory management compared to the use of garbage collector).

Building new DSLs and compilers

An alternative approach for matching software to hardware is to build new languages
and compilers for a specific domain from scratch. For example, Hou et al. | | have
presented a container-based programming language for heterogeneous many-core systems.
This DSL allows programmers to write unified programs that are able to run efficiently on
heterogeneous processors. To map this DSL to such hardware processors, they provide a
set of compilers and runtime environments for the x86 CPUs and CUDA GPUs. Similarly,
Chafi et al. | , | proposed leveraging DSLs to map high-level application
code to heterogeneous devices. Results show that the presented DSL can achieve high per-
formance on heterogeneous parallel hardware with no modification required to the source
code. They compared this language performance to MATLAB code and they showed that
it outperformed it in nearly all cases.

In short, hardware heterogeneity raises many challenges for the software community
that need to create or deal with highly configurable generators (i.e. Compilers) to truly
take advantage of the new chip with more advanced optimizations for the new hardware
settings.

Shttp://www.eetimes.com/author.asp?doc_id=1323907
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2.2 From classical software development to generative
programming

In comparison to the classical approach where software development was carried out manu-
ally, todays modern software development requires more automatic and flexible approaches
to face the continuous innovation in industry production, as described in the previous sec-
tions. Hence, more generic tools, methods and techniques are applied in order to keep the
software development process as easy as possible for testing and maintenance and to handle
the different requirements in a satisfyingly and efficient manner. As a consequence, gen-
erative programming (GP) techniques are increasingly applied to automatically generate
and reuse software artifacts.

Definition (Generative programming). Generative programming is a software engi-
neering paradigm based on modeling software families such that, given a particular re-
quirements specification, a highly customized and optimized intermediate or end-product
can be automatically manufactured on demand from elementary, reusable implementation
components by means of configuration knowledge [ /.

Generative software development consists in using higher-level programming techniques
such as meta-programming, modeling, DSL, etc. in order to provide a new integrated
software engineering solution that enables the exploitation of the different dimensions of
software diversity (e.g., through automatic code generation).

In principle, the generative programming concept can be seen as a mapping between a
problem space and a solution space | ] (see Figure 2.5).

The problem space is a set of domain-specific abstractions that can be used by
application engineers to express their needs and specify the desired system behavior. This
space is generally defined as DSLs or high-level models.

The solution space consists of a set of implementation components, which can be
composed to create system implementations (e.g., the generation of platform-specific soft-
ware components written using GPLs such as Java, C++, etc.).

The configuration knowledge constitutes the mapping between both spaces. It
takes a specification as input and returns the corresponding implementation as output. It
defines the construction rules (i.e., the translation rules to apply in order to translate the
input model /program into specific implementation components) and optimizations (i.e.,
optimization can be applied during code generation to enhance some of the non-functional
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Figure 2.5: Generative programming concept

properties such as execution speed). It defines also the dependencies and settings among
the domain specific concepts and features.

This schema integrates several powerful concepts from model driven engineering, such
as domain-specific languages, feature modeling, and code generators.

Some commonly benefits of such software engineering process are:

e It reduces the amount of re-engineering/maintenance caused by specification require-
ments.

e [t facilitates the reuse of components/parts of the system.
e [t increases the decomposition and modularization of the system.

e [t handles the heterogeneity of target software platforms by automatically generating
code.

An example of generative programming application is the use of Software Product Lines
(SPL) | ]. SPL-based software diversity is often coupled to generative programming
techniques | ] that enable the automatic production of source code from variability
models. This technique implies the use of automatic code generators to produce code that
satisfies user requirements (SPL models). This technique enables one to manage a set of
related features in order to build diverse products in a specific domain. Thus, this solution
is able to control software diversity by handling the diversity of requirements such as user
requirements or environmental constraints or changes.

2.2.1 Overview of the generative software development process

The generative software development process involves many different technologies. In this
section, we describe in more details the different activities and stakeholders involved to
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automatically transform the high-level system specifications into executable programs and
that from design time to runtime.

Figure 2.6 gives an overview of this process, as we see in the context of this thesis. We
distinguish four main tasks necessary for ensuring the automatic code generation:
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Figure 2.6: Overview of the generative software development process

1. Software design: As part of the generative programming process, the first step
consists on representing the system behavior. On the input side, we can either
use code as the input or an abstract form that represents the design. It depends
on the type of the code generator and on the input source program it requires.
These programs can range from a formal specification of the system behavior to
abstract models that represent the business logic. For example, designers can define,
at design time, the software behavior using for example Domain-Specific Models
(DSMs). A DSM is a system of abstractions that describes selected aspects of a
sphere of knowledge and real-world concepts pertinent to the domain that needs to
be designed. These models are specified using high-level abstract languages (i.e.,
DSLs).
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2. Code generation: Code generation is the technique of building code using pro-
grams. The common feature of the generator is to produce code that the software
developer would otherwise write by hand. Code generators are generally seen as a
black box which requires as input a program and generate as output a source code
for a specific target software platform/language. Code generation can build code for
one or more target language, once or multiple times. There are different varieties
of code generation aspects and it highly depends on the input category as described
in the previous step. For example, code generator developers use model-driven en-
gineering techniques in order to automatically generate code. Instead of focusing
their efforts on constructing code, they build models and, in particular, create model
transformations that transform these models into new models or code. Thus, the
code generation process starts by taking the previously defined specification in or-
der to translate a model to an implementation in a target language. We will see in
Section 2.3.2 the different types of code generators.

3. Software development: Software development may be divided into two main
parts. On the one hand, software developers may follow the two previous steps in
order to automatically generate code for a specific target software platform. In this
case, they might edit the system specification described in the first step (at a high
level) and re-generate code each time needed by calling a specific generator. In some
cases, generated code can even be edited by the end software developers. This task
depends on the complexity of the generated code. Sometimes, it requires the help
of domain experts who have enough expertise and knowledge to easily update and
maintain the automatically generated code. On the other hand, they may manually
implement the source code from scratch without going through any abstractions or
code generation aspects. In this case, they may integrate the manually-written code
with the automatically generated in order to deliver the final software product.

4. Compilation: Once code is generated or implemented, a classical compiler is used
(if needed) to translate the generated code into an executable one. This translation
depends on the target hardware platforms and it is up to the software developer
to select the adequate compiler to use. Compilers are needed to target heteroge-
neous and diverse kinds of hardware architectures and devices. As an example, cross
compilers may be used to create executable code for a platform other than the one
on which the compiler is running. In case the generated code needs to run on dif-
ferent machines/devices, the software developer needs to use different compilers for
each target software platform and deploy the generated executables within different
machines which is a tedious and time-consuming task.
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2.2.2 Automatic code generation in GP: a highly configurable
process

Among the main advantages that GP offers, is the automatic code generation, highlighted
with red box in Figure 2.6. Automatic code generation emerges in two principal aspects:

1. The use of code generators to cope with software diversity and automatically generate
code to a broad range of software platforms, as we discussed in Section 2.1.2.

2. The use of compilers to cope with hardware heterogeneity and automatically generate
code to a broad range of hardware platforms, as we discussed in Section 2.1.1.

Both, compilers and code generators, are responsible for the automatic code generation
in GP. To satisfy the different software and hardware requirements, modern generators
provide many configuration options to easily tune the generated code:

Compilers, on the one hand, become highly configurable and very user-friendly, letting
the user to easily introduce optimizations and customize the machine code to fit with target
hardware settings. As an example, Table 2.1 depicts the number of optimizations available
in three popular compilers. The user can configure the compiler by selecting one of the 27
possible optimization sequences, where n is the number of optimizations available in the
compiler. We can see that the configuration space is very large.

Table 2.1: Number of optimizations in LLVM, GCC, and ICC

Compiler | #0ptimizations | #Combinations
LLVM 100 2100
GCC 250 2250
ICC 75 27

On the other hand, code generators offer the possibility to customize the generated code
for the target software platform. Code generators provide general configuration options
necessary for building software artifacts (e.g., select the target programming language,
dependencies, platform settings, libraries, etc.). As an example, JHipster® is a concrete
example of generative programming application in industry. JHipster is an application
generator based on YO generator which provides tools to generate quickly modern web
applications using Java stack on the server side (using Spring Boot) and a responsive

Shttps://jhipster.github.io/
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Web front-end on the client side (with AngularJS and Bootstrap). The generated web
application can be quite different from one user to another. It really depends on the op-
tions/choices selected by the user to build a configured application. The selected parameter
values will configure the way the JHipster code generators will produce code. For example,
Figure 2.7 shows a feature model of some configuration examples that the user can select.
When building applications, the user may select the database type he would generate, the
Java version, the network protocol, etc. Using this feature model, more than 10k diverse
architecture types of project can be selected which means that 10k program variants
may be generated depending on the different criteria. Whatever configuration selected by
the user, the application behavior will not change and the generated application will share
a similar architecture and fundamental code-base.

jhipster
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Figure 2.7: Example of JHipster feature model

Well, we can see that both generators are highly configurable. However, in practice,
code generators are less used in industry compared to compilers. First, because compil-
ers are required for machine code production and optimization. Then, users of popular
compilers such as GCC or LLVM have enough experience and confidence on the correct
translation of the code. Code generators on the other side are less used because users
do not have enough experience with them and need to gain confidence on their correct
operation by rigorously testing them.

In summary, automatic code generation in GP faces two major challenges. On the one
hand, configurable generators need to be efficiently tuned in order to produce high-quality
software products. On the other hand, they have to be rigorously tested in order to provide
evidence to the users of the efficiency of generated code.

We describe in the next section the main stakeholders involved in the automatic code
generation in GP and their roles for validating this process.



28

CHAPTER 2. BACKGROUND

2.2.3 Stakeholders and their roles for testing and tuning gener-
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Figure 2.8: Use case diagram of the different actors/roles involved in testing and tuning

generators

Software development involves several stakeholders that play different roles for validat-

ing and testing the software development chain

described previously. Figure 2.8 depicts a

use case diagram that describes these different concerns, actors, and roles for testing and

tuning generators.

Basically, we distinguish two stakeholders: generator users and creators/maintainers.
As shown in the bottom of Figure 2.8, creators/maintainers are responsible of the correct
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functioning of generators. They use their expertise and knowledge associated to the soft-
ware and hardware technologies, resulting in efficient code generation. They contribute
to the software development community by creating and providing new generator updates
(e.g., introduce new optimizations, build new platform-specific generators or enhance ex-
isting ones).

On the other side, generator users represent the group of software developers that have
no knowledge/expertise about the way code is generated. Thus, they are unable to edit or
maintain the internal behavior of generators (e.g., the case of commercial and off-the-shell
generators). In this case, generators are used as black box components by engineers during
software development to ease code production. Developers may configure generators in
order to efficiently produce code for the target hardware platform (e.g., by providing a set
of optimization options) or maintain/edit the generated code in case of automatic source
code generation.

The use cases highlighted in red in Figure 2.8 constitute the main tasks that we are
addressing in this thesis. Our main concern is to evaluate the non-functional properties of
automatically generated code. We involve two generator stakeholders, creators/maintain-
ers and users (highlighted with red stereotypes). On the one hand, we would help code
generator creator/maintainers to test the generated code and detect code generator issues
by evaluating the resource usage and performance properties. This task may also involve
code generator users but it is mainly the task of generator experts. On the other hand, we
would help compiler users to auto-tune compilers through the use of optimizations provided
by compiler experts. It consists in evaluating the impact of these configurations on the
performance and resource usage properties in order to find the best set of optimizations
for a specific program and target hardware architecture.

2.3 Testing code generators

In this thesis, we focus on testing the automatic code generation process (highlighted in
red in the left side of Figure 2.8). To do so, we introduce in this section some basis about
code generators. We give an overview of the different types of code generators and we
discuss their complexity which constitutes a major obstacle for testing.
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2.3.1 Testing workflow

The main goal of generators is to produce software systems from higher-level specifications.
As stated before, the code generation workflow is divided into two levels. It starts by trans-

/
Edit transformation
rules, templates, etc

r v

A

Test

Figure 2.9: Code generation workflow

forming the system design into source code through the use of code generators. Afterwards,
source code is transformed into executables using compilers. Thus, software developers use
to generate code, edit it (if needed), compile it and then test it. If changes are applied to
compilers or generators, the cycle is repeated. Figure 2.9 presents an overview of this test-
ing cycle. The right-hand side of the figure shows the classic workflow for developing and
debugging code which is edit, compile, and test. The user writes or edits an existing code,
compiles it using specific compilers, and tests it. Code generation adds a few new workflow
elements in the left-hand side of the figure where generator creators edit the templates and
transformation rules (or the generator itself) and then run the code generator to create
new output files. The output files are then compiled and the application is tested.

2.3.2 Types of code generators

There are many ways to categorize generators. We can differentiate them by their com-
plexity, by usage, or by their input/output. According to | |, there are two main
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categories of automatic code generation: passive or active. Passive code generators build
the code only once, then it is up to the user to update and maintain the code. The most
common use of passive code generators are wizards.

Active code generators, run on code multiple times during the lifecycle. With active
code generators, there is code that can be edited by the users, and code that should only
be modified by the code generator. Active code generators are widely referenced in the
literature | , |. We focus in this thesis, on testing this class of code generators.
In the literature | , , , ], researchers define six categories of active
code generators:

e Code munger: A code munger reads code as input and then builds new code as
output. This new code can either be partial or complete depending on the design of
the generator. A code munger is the most common form of code generators and are
used widely. This kind of generators are often used for automatically generating doc-
umentations. A source-to-source compiler, transcompiler or transpiler’ can also be
defined as code mungers. A transcompiler takes a code written in some programming
language and translates it to a code written in some other language. Our contribu-
tion related to code generators testing will focus on this kind of generators
to validate our approach for automatically detecting inconsistencies.

Examples: C2J, JavaDoc, Jazillian, Closure Compiler, Coccinelle, CoffeeScript, Dart,
Haxe, TypeScript, and Emscripten

e Inline code expander: This model reads code as input and builds new file that
uses the input code as a base but with sections of the code expanded, based on the
design of the original one. It starts with designing a new language. Usually this
new language is an existing language with some syntax extensions. The inline code
expander is then used to turn this language into production code in a high-level
language.

Examples: Embedded SQL languages such as SQLJ (for Java) and Pro*C (for C).
The SQL can be embedded in the C or Java code. The generator builds production
C code by expanding the SQL into C code which implements the queries for example.

e Mixed code generator: This model has the same processing flow as the inline
code expander, except that the input file is a real source file that can be compiled
and ran. The generated output file keeps the original markup that will denote where
the generated code is placed. It enables code generation for multiple small code

"https://en.wikipedia.org/wiki/Source-to-source_compiler
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fragments within a single file or distributed throughout multiple files. Generally,
transformation rules are defined using regular expressions.

Examples: Codify is a commercial mixed-code generator which can generate multiple
code fragments in a single file from special commands. Another example is the
replacement of comments in the input file by the corresponding code.

Partial class generator: A partial class generator takes an abstract definition as
input instead of code (e.g., UML class diagram) and then builds the output code.
User then can extend it by creating derived classes and adding methods to complete
the design. Turning models into code is done through a sequence of transformations.
For example, platform-independent model (PIM) is transformed into a platform spe-
cific model (PSM). Then code generation is performed from PSM by using some sort
of template-based code transformations.

Examples: ArgoUML and Codegen translate UML class diagrams to general-purpose
languages such as C#, Java and C++. They do not generate complete implementa-
tions, but they try to convert the input UML class diagrams into skeleton code that
the user can easily edit it. EMF GenCode is also a partial generator.

Tier generator: In this model the generator builds a complete set of output code
from an abstract definition. It has the same concept as partial class generator. The
big difference between tier and partial class generation is that in the tier model the
generator builds all the code for a tier. This code is meant to be used without
extension. The partial class generator model however lets the engineer create the
rest of the derived classes that will complete the functionality for the tier.

Examples: Database access layer, web client layer, data export, import, or conversion
layers.

Full-domain language: Domain languages are basically new languages that have
types, syntax and operations and they are used for a specific type of problem. Domain
languages are the extreme end of automatic code generation because developers have
to write a compiler for each problem domain and language.

Examples: Matlab is a domain-specific math language used to represent mathemat-
ical operations, DSLs such as ThingML?® and its code generators.

8http://thingml.org/
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2.3.3 Why testing code generators is complex?

Testing code generators raise different challenges. In the following, we discuss some of
them:

— The oracle problem:

To automate the testing process, test oracles are required to assess whether a test
has passed or not. A test oracle checks whether the result of executing a test is
as expected. In case of functional testing of code generators, the test oracle can
be easily defined. For example, it can be defined as the comparison result between
the simulated or executed model and its corresponding implementation. However,
in case of non-functional testing of code generators, the test oracle is complex to
define. In fact, the generated code has to meet certain performance requirements
(e.g., execution speed, utilization of resources, etc.). Proving that the generated
code respects one of these non-functional requirements is not obvious.

— Infeasibility of unit testing:

It is infeasible to test a whole code generator exhaustively with traditional software
test approaches due to the complexity of the tool. When it comes to the unit testing
of code generators, each translation function would have to be detached from the
software system and surrounded by a test harness. This means decoupling each
translation rule and testing it separately. This is, however, infeasible because it is
difficult to address this specific functionality separately when testing a system as
a whole. Consider, for example, functional testing of the translation function for
the sum operator (4). According to | ], there are more than 2000 ways of
implementing the function a = b + ¢ since the operation depends on data types and
whether data limiting is enabled or not.

— Complexity of code generators:

Code generators can be difficult to understand since they are typically composed
of numerous elements, whose complex interdependencies pose important challenges
for developers performing design, implementation, and maintenance tasks. Given
the complexity and heterogeneity of the technologies involved in a code generator,
developers who are trying to inspect and understand the code generation process
have to deal with numerous different artifacts. As an example, in a code generator
maintenance scenario, a developer might need to find all chained model-to-model
and model-to-text transformation bindings, that originate a buggy line of code to
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Table 2.2: Metrics of the TargetLink code generator

Metrics TargetLink 2.0
No. of classes 3000

No. of files 6000

No. of functions 51000

Lines (total) 1800000

Lines of code 990 000

Lines of comments | 560 000

fix it. This task is error prone when done manually | |. Table 2.2 shows, as an
example, some metrics of the TargetLink code generator version 2.0. TargetLink® is
a code generator that generates production code (C code) straight from the MAT-
LAB/Simulink/Stateflow graphical models. This table shows how huge is the code
generator base code. With more than 1800000 lines of code, it is very hard to test
the whole system.

Non-executable source model:

Code generators do not always support executable source models. Sometimes, code
generators such as partial class generator, generate only structural code through a
series of transformations from a non-executable model (e.g., UML diagrams). It is up
to the users next, to extend the generated code by implementing the derived classes.
In case of non-executable models, it becomes challenging to automatically verify the
correct behavior of produced code as it is described in the model specification because
we can not compare its execution to a simulated model for example.

2.4 Compilers auto-tuning

Compilers have a major role in automatically producing fast and efficient target machine
code. This is not a trivial task because potentially many variants of the machine code exist
for the same program. Hence, the task of the compiler is to find and produce the best
version of the machine code for any given program. For this reason, compilers generally
attempt to automatically optimize the code to improve its performance. This process is
called code optimization.

9https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm


https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

35

2.4.1 Code optimization

Code optimization within a compiler is the process of transforming a source code program
into another functionally equivalent code for the purpose of improving one or more of its
non-functional properties. The most common outcome of optimizations is the performance
improvement. Other less common non-functional properties are code size, memory usage
and power consumption. There exist many types of optimizations such as loop unrolling,
automatic parallelization, code-block reordering, and functions inlining, among others.
The hardware characteristics that influence on the optimization impact may include: the
number of CPU registers (the more registers, the easier it is to optimize for performance),
cache size, CPU architecture, etc.

Optimization can be categorized broadly into two types: machine independent and
machine dependent:

e Machine-independent optimization:

Intermediate code generation inside compilers may introduce many inefficiencies such
as extra copies of variables and using variables instead of constants. This kind of
optimization removes such inefficiencies and improves code. Thus, the compiler takes
in the intermediate code and transforms a part of the code regardless of any CPU
registers or memory locations. These optimizations generally change the structure
of programs. Optimizations that are applied on abstract programming concepts
(structures, loops, objects, functions) are independent of the machine targeted by
the compiler.

Examples: Eliminate redundancy, loop unrolling, eliminate useless and unreachable
code, function inlining, dead-code elimination, etc.

e Machine-dependent optimization:

Machine-dependent optimizations are applied after generating the target code and
when the code is transformed according to the target machine architecture. They
take advantage of special hardware features to produce code which is shorter or which
executes more quickly on the machine such as instruction selection, register alloca-
tion, instruction scheduling, parallelism, etc. They mostly involve CPU registers and
memory references. Machine-dependent optimizers put efforts to take maximum ad-
vantage of the memory hierarchy. They are more effective and have better impact
on performance than independent optimizations because they best exploit special
features of the target hardware.
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Examples: Register allocation optimizations for efficient utilization of registers,
branch prediction, loop optimization, etc.

2.4.2 Why compilers auto-tuning is complex?

Today, modern compilers implement a broad number of optimizations. Each optimization
tries to improve the performance of the input application.

On the one hand, optimizing compilers becomes quite sophisticated nowadays. Creat-
ing compiler optimizations for a new microprocessor is a hard and time-consuming work
because it requires a comprehensive understanding of the underlying hardware architec-
ture as well as an efficient way to evaluate the optimization impact on the non-functional
properties.

On the other hand and from the compiler user perspective, applying and evaluating
optimizations is challenging because the determination of the optimal optimization set has
been identified as a major research problem in the literature | ]

We resume, in the following, several issues that make the activity of compiler auto-
tuning very complex:

— Conflicting objectives: Compilers optimizations have to support a variety of con-
flicting objectives, such as execution time/compilation speed, execution time/re-
source usage, etc. It is difficult to define a set of optimizations that satisfies all
properties.

— Optimization interactions: The interaction between optimization phases as well
their application order make it difficult to find an optimal sequence.

— Huge number of optimizations: The huge number of optimizations is also an
issue for the compiler user to choose the best optimization sequence since an ex-
haustive search is impossible (we count 2nwmber of optimizations 1,qeqible combination to
evaluate).

— Non universal optimizations: There is no universal optimization sequence that
will enhance the performance of all programs. Optimization impact depends on the
hardware and on the input program. Thus, constructing an optimization sequence
for different programs and hardware architectures becomes very hard.
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— Compiler bugs: Applying optimizations may introduce errors in the compiled code
and results in compiler bugs | , ]. Therefore, tuning compiler must not
cause any change in the program behavior.

— Optimization impact: Optimized code should be fast and efficient. Optimiza-
tions have to improve some non-functional properties, not to induce performance
regressions/overhead.

— Tuning compilers need expertise: In case the compiler user has no knowledge
and expertise about the compiler technology and its optimizations, it will be quite
hard to select the set of optimization sequences to apply.

2.5 Summary: challenges for testing and tuning con-
figurable generators

We resume in this section the main testing and tuning challenges we have identified
throughout this chapter:

e Heterogeneous execution environments: The diversity of existing software en-
vironments and platforms as well as the hardware heterogeneity make the testing
activity of generators very difficult. Deploying and executing the automatically gen-
erated software artifacts on top of a bench of platforms is time consuming. Thus, an
effective mean is needed to facilitate generators testing and tuning. How can we
leverage the new advances in software engineering technologies to face the
continuous hardware and software innovation when testing/tuning gener-
ators?

e The oracle problem when testing code generators: Automatic code genera-
tion offers many gains over traditional software development methods (e.g., speed
of development, productivity, etc.). However, code generators are complex pieces of
software that may themselves contain bugs. Thus, they need to be rigorously tested.
The test oracle problem as discussed in Section 2.3.3 is one of the main challenges
related to the automatic non-functional testing of code generators. This problem oc-
curs also in automatic functional testing, when dealing with non-executable models.
Proving that the generated code is functionally correct is not enough to
claim the effectiveness of the code generator under test. How about the
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non-functional requirements such as resource consumption? How can we
efficiently detect the non-functional issues?

Large optimization search space when auto-tuning compilers: Compilers
may have a huge number of potential optimization combinations, making it hard
and time-consuming for software developers to find/construct the sequence of op-
timizations that satisfies user specific key objectives and criteria. It also requires
a comprehensive understanding of the available optimizations of the compiler and
their interactions. Moreover, it is difficult to find the optimization sequence that
represents a trade-off between two conflicting objectives. So, how can we help
compiler users to automatically tune compilers and choose the optimiza-
tion set that satisfies some specific non-functional requirements?

Monitoring the resource usage of automatically generated code: Analyzing
the resource usage of optimized or generated code requires a dynamic and adaptive
solution that efficiently extracts those properties. Due to the software diversity and
hardware heterogeneity, monitoring the resource usage of each execution platform
becomes challenging and time-consuming. So, how can we ease this process
and provide efficient support to help generator users/experts to evaluate
the non-functional behavior of generated code in terms of resource usage?



Chapter 3

State of the art

In this chapter, we present the state of the art of this thesis. We discuss previous efforts
in three research areas: (1) code generator testing, (2) compiler auto-tuning, and (3)
lightweight virtualization for software testing and monitoring.

We first discuss existing techniques related to code generators testing. We start by
studying the state of the art approaches related to the automatic functional testing of
code generators. In a second stage, since there are few research efforts that investigate the
automatic non-functional testing of code generators, we rather focus on studying the oracle
problem in software testing and the different methods applied to alleviate this problem.
We end this section by providing a summary table of these approaches.

Afterwards, we move to present a brief introduction to the iterative compilation research
filed and we identify several problems that have been investigated in this field. We discuss as
well several techniques applied to the compiler auto-tuning process. To sum up, we provide
a summary table, showing the most important research efforts in iterative compilation.

Finally, we discuss in the last section the system-level virtualization technology as means
of automatic software deployment, monitoring, and testing. We provide then, examples
of existing solutions in academia and industry that opted for this technology to automate
software testing and monitoring.

This chapter is structured as follows:

Section 3.1 reviews existing techniques for code generators testing and the principal
categories of oracles.

In Section 3.2, we provide a survey of the most used compiler auto-tuning techniques
to construct the best set of optimization options.

39
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Then, in Section 3.3, we discuss the use of containers as a lightweight execution en-
vironment. In particular, we present several research efforts that used this solution for
software testing and monitoring.

Finally, Section 3.4 provides a summary of the state of the art and we discuss the
challenges we are addressing in this thesis.

3.1 Testing code generators

Testing the manually written code has always been a crucial task to ensure that the code
is correct. It aims to prove that the code is functionally correct using techniques such
as unit testing, integration testing, acceptance testing, etc. These techniques help to find
errors that engineers make when developing code. When a code generator is used, adequate
testing approaches are needed to detect errors caused by the automatic code generation.
Verifying that the code generator is correct will increase the confidence in the tool and
users will continue to use it for production code generation.

The key objective of this section is to present the existing research efforts that have
been presented to address:

e The problem of automatic code generator testing: We provide an overview
of the approaches that aimed to automatically test code generators in terms of func-
tional properties.

e The problem of automatic non-functional testing of code generators Auto-
matic code generator testing poses different challenges, especially for the test oracle
definition. Therefore, we provide an overview of the commonly known test oracle
definition approaches in software testing.

3.1.1 Functional testing of code generators

Most of the previous work on code generator testing focuses on checking the correct func-
tional behavior of generated code | , , , , , , ].

In the case of automatic code generation against executable models, various ap-
proaches have been proposed to automatically verify the model-to-code translation. Ver-
ification purpose is to check that the generated code correctly implements the designed
model. Thus, the model is tested against its requirements and the code can be verified
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against the executable model by means of dynamic testing. For this purpose, both the
model and the generated code are executed to be later exploited. This approach is pre-
sented and discussed in several research efforts [SWC05, SCDPO7, CNIKSP10,J514, BROA].
Authors of these papers argue that this approach is not only applicable for model-based
code generators but also for all kinds of code generators, unless the input model/source
code is executable.
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Figure 3.1: Automatic functional testing of code generators

As it is shown in Figure 3.1, both the generated executable and the simulated model
are executed with the same input. The determination of the input test stimuli can use a
structural testing criteria on model level (model coverage) and code level (code coverage) to
generate high-quality test vectors. Afterwards, the two outputs are compared with respect
to certain acceptance criteria. The comparison procedure is known in the software testing
community as equivalence, comparative, or back-to-back testing approach [Vou90, MclK98].

The great advantage of this approach is that the test oracle is simple to define. It rep-
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resents the comparison between two or more output results. According to | , ],
there are four stages of comparison that can be performed. They are described as follows
(see Figure 3.1):

e Model-in-the-Loop (MiL): The simulation of the model on the host machine is termed
MiL. The MiL test purpose is to generate a reference test results (expected values).
Moreover, MiLL simulation captures the specified behavior of the model that is to
be implemented in general-purpose language later on. It also checks the validity of
the model with respect to the functional requirements. The only problem that could
occur during a MiLL execution is that the model would fail to execute.

e Software-in-the-Loop (SiL): The execution of the generated object code on the host
machine with the same stimuli used for the MiL is termed as Sil.. The execution
results should be comparable to the results obtained during MiL.. The aim of Sil,
is to detect translation errors such as arithmetical problems, and to measure code
coverage. Once the system detects a defect, the testing environment should provide
the tester with a suitable navigation tool to jump to the erroneous data variable in
order to fix it.

e Processor-in-the-Loop (PiL): PiL tests the object code on the target processor. It
generates the cross compiled source code and executes it on the target processor
machine. Of course, compiler optimizations can be applied to enhance the code
quality. Then, the test scenario is executed on the target processor (e.g., target

embedded systems as in | ]). The aim of PiL is to verify the code behavior on
the target processor and to measure code efficiency (e.g., profiling, memory usage,
ete.).

e Hardware-in-the-Loop (HiL): Finally, during HiL, the software embedded into the
target chip is executed. For that purpose, the target hardware is connected to a
real-time simulation system simulating the plant. The model originally developed no
longer simulates the physical environment signals, a dedicated hardware is specially
designed for this purpose. The aim of HiL is to check the correct software behavior
on real hardware.

In this context, Conrad et al. | | applied the approach described above by pre-
senting an automated testing approach to assess the equivalence between Simulink models
and the generated code. This approach is called Code Generation Verification (CGV).
CGV assesses the numerical equivalence between the model used (i.e., Simulink models)
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and the generated code (i.e., the executables derived from the generated C Code). In fact,
each individual model-to-code translation is followed by a verification phase to assess that
the input Simulink model used for code generation and the output (i.e., the object code
derived from the model via code generation and compilation) produce the same numerical
results when stimulated with identical inputs. In their equivalence testing approach, they
use to run the model used for code generation using simulation and the generated code
with the same input stimuli (test vectors) followed by a numerical comparison of the out-
puts (result vectors). Then, they check whether or not the semantics of the model have
been preserved during code generation, compilation, and linking, by comparing the result
vectors, which are the outputs resulting from stimulation with identical test vectors of the
model and the generated code. More precisely, the simulation results should be similar to
the execution results. However, when defining the result vector comparison, they tolerate
limited differences between both results. They argue that some factors between simulation
and execution may cause a small difference between both executions such as limited preci-
sion of floating point numbers, target optimized code constructs, etc. Thus, they define an
application-dependent threshold. So, two result vectors are considered sufficiently similar
when their difference is less than a specific threshold value. They illustrate the CGV-based
translation validation in the context of embedded automative software by using Simulink
and Real-Time Workshop Embedded Coder for verification. They assess their approach by
verifying the numerical equivalence between Simulink models and C generated code. They
calculate the absolute difference between simulation results and execution results. Then,
they compare this difference to the defined tolerance threshold. They show that for some
input test suites there exist mismatched signals (with high variation value) which represent
an inconsistency between designed models and executed signal.

In | |, the automatic code generation tool is certified to a particular safety standard
(IEC 61508-3). Compliance of the model with a standard helps to demonstrate that the
model is well-formed according to the certification and that it meets all requirements for
later code generation. The process of code generator evaluation (described above) is used
to show that the generated code is equivalent to the model (that respect the IEC 61508-3
safety standard)

Stuermer et al. | | present a systematic test approach for model-based code gen-
erators. They investigate the impact of optimization rules for model-based code generation
by comparing the output of code and model executions. If these outputs are equivalent, it
is assumed that the code generator works as expected. They evaluate the effectiveness of
this approach by means of testing optimizations performed by the TargetLink code gener-
ator. Test vectors are generated using a structural coverage of the model and generated
code. They have used Simulink as a simulation environment of models.
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In [ ], authors present a testing approach of the Genesys code generator framework
which tests the translation performed by a code generator from a semantic perspective
rather than just checking for syntactic correctness of the generation result. Basically,
Genesys realizes back-to-back testing by executing both the source model as well as the
generated code on top of different target platforms. Both executions produce traces and
execution footprints are then compared with each other.

Another alternative for validating a code generator would be to use formal proofs
[ , |. This involves mathematically proving that the code generation transfor-
mation process is correct and that each code generation rule preserves the model semantic.
Denney et al. | | extend an existing code generator such that it produces all logical an-
notations that are required for formal safety proofs. These proofs certify that the program
does not violate certain conditions during its execution. This approach is integrated into
the AUTOBAYES and AUTOFILTER code generators. They used it to prove that the
generated code satisfies both language-specific properties such as array-bounds safety or
proper variable initialization and domain-specific properties such as vector normalization,
matrix symmetry, or correct sensor input usage.

3.1.1.1 Summary of functional testing approaches

Inspired by the work of Sturmer et al. | |, we provide a summary of the existing tech-
niques that are applied to test the automatic code generation, some of them are described
above:
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Table 3.1: Summary of several approaches applied for testing code generators | ]

Level Testing technique Objectives
Model Functional MiLL simu- | —Verify that the model reflects its functional require-
lation/testing ment specification
—Check validity of the model within the development
environment without resource limitations of target en-
vironment
Structural MiL testing | —Explore possible pathways within the model by deter-
(model coverage) mining test cases on the basis of the model structure
Adoption of modeling | —Rely on experiences and expert knowledge
guidelines
—Reveal design errors at an early development stage
Code Tool certification —Independent approval which guarantees that tech-
generator niques, applied for developing and verifying the tool,
are in compliance with the requirements of a certifica-
tion standard
Testing —Ensure that the code generator has been tested rig-
orously
—Validate that specific translation functions (e.g., op-
timisations) behave as expected
Formal proof —Show by means of mathematical proofs that each code
generation (rule) preserves the model semantics
Adoption of standards | ~Ensure that the code generator has been developed
and guidelines following a systematic development process / quality
management system
Generated | Functional SiLi testing | —Detect translation errors
code

Functional PilL testing

—Check validity of the code behavior taking into ac-
count the target CPU architecture

Functional Hil testing

—~Check behavior of the code when it is deployed in the
target hardware device

Structural
MiL/HiL/PiL testing

—Determine test cases on the basis of the code structure
and explore possible execution pathways

Static analysis

—Check that code conforms to coding guidelines/stan-
dards

—Detect optimization opportunities such as dead code,
etc.
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3.1.2 Non-functional testing of code generators

Previous work on non-functional testing of code generators focuses on comparing, as oracle,
the non-functional properties of hand-written code to automatically generated code | ,

]. As an example, Strekelj et al. | ] implemented a simple 2D game in both the
Haxe programming language (a high-level language) and the target programming language,
and evaluated the difference in performance between the two versions of code. They showed
that the generated code through Haxe has better performance than the hand-written one.

In | |, authors compare some non-functional properties of two code generators,
the TargetLink code generator and the Real-Time Workshop Embedded Coder. They also
compare these properties to manually written code. The code run on a C166 microprocessor
as a target which is an embedded system. The metrics used for comparison are ROM and
RAM memory usage, execution speed, readability, and traceability. Many test cases are
executed to see if the controller behaves as expected. The comparison results show that
the generated code by TargetLink is more efficient than the manually-written code and the
other generated code in terms of memory and execution time. They also show that the
generated code can be easily traced and edited.

Cross-platform mobile development has been also part of the non-functional testing
goals since many code generators are increasingly used in industry for automatic cross-
platform development. In | , ], authors compared the performance of a set of
cross-platform code generators and presented the most efficient tools.

3.1.2.1 The oracle problem

One of the most important aspects we are interesting in while testing code generators is
the test oracle. 1t is the mechanism that verifies whether the outputs of the program for
the executed test cases are correct or not.

Compared to many aspects of test automation, the problem of automating the test
oracle is still challenging and less well solved. Only few techniques are available to generate
test oracles. In most of the cases, designing and implementing test oracles are still manual
and expensive activities. That is because the test oracles are not always available and
may be hard to define or too difficult to apply [ |. This is commonly known as the
“oracle problem”. As pointed out in | ], the oracle problem has been “one of the most
difficult tasks in software testing” but it is often ignored by researchers.

In this context, the automatic testing of code generators particularly implies the oracle
problem. When testing compilers, for example, it is quite difficult to automatically verify
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the equivalence between the source code and object code. This task becomes even more
complicated when some optimizations are applied to the machine code. When testing code
generators, the verification of the equivalence between the high-level system specification
and the generated code is also challenging.

As we discussed in Section 3.1.1 about the automatic functional testing of code gener-
ators, the test oracle is often defined as a back-to-back comparison between the output of
the system specification and the generated code. When it comes to test the non-functional
properties such as the resource usage or execution speed, this problem becomes more crit-
ical. There is no clear definition about how the oracle should be defined except the few
research efforts, discussed in Section 3.1.2.

The research community has proposed several approaches | , ] to allevi-
ate the oracle problem. In a recent survey, Harman et al. | | classify test oracles in
three categories specified oracles, implicit oracles, and derived oracles. We give an overview
of these three categories as they have described:

e Specified oracles:

Specified oracles can be generated from several kinds of specifications, such as alge-
braic specifications or formal models of the system behavior. For example, Stocks
et al. | , | discuss an approach for deriving test cases and oracles from
specification. The idea is that the formal specification of a software can be used as a
guide for designing functional tests. Then, test oracles can be associated with indi-
vidual test templates (test case specifications). Thus, they construct abstract models
of expected outputs, called oracle templates. The approach is illustrated with test
oracle templates for the Z specification.

Specified oracles are effective in identifying errors. However, the task of defining and
maintaining specifications is very expensive and time consuming. The applicability
of specified oracles is therefore limited and they are also less adopted in industry.

e Implicit oracles:

Implicit oracle refers to the detection of obvious faults such as a program crash,
abnormal termination, or execution failure. Thus, oracle definition does not require
any domain knowledge or formal specification to implement, and as a consequence,
it does not need any prerequisites about the behavior or semantics of the program
under test.

Implicit oracles | , | are easy to obtain at practically no cost. At the
same time, implicit oracles are mostly incomplete, since they are not able to identify
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internal problems and complex failures, but they help to detect, in a black-box way,
general errors like system crashes or un-handled exceptions.

As an example, fuzz testing | | is one of the methods where implicit oracles are
used to find anomalies, such as crashes. The idea of fuzzing is to generate random
inputs and pass them to the system under test to find anomalies. Bugs detection
is based on the efficiency of generated inputs/data. If an anomaly is detected, the
tester reports it by identifying the input triggering it. Fuzzing is commonly used to
detect security vulnerabilities, such as buffer overflows, memory leaks, exceptions,
ete. | ].

Kropp et al. | | present an approach to test the robustness of the system under
test using implicit oracles. This approach relies on the creation and execution of
invalid input robustness tests. Specifically, these tests are designed to detect crashes
and hangs caused by invalid inputs to function calls. The results show that be-
tween 42% and 63% of components on the POSIX systems measured had robustness
problems.

Ricca and Tonella | | focus on developing patterns to detect anomalies. They
consider a subset of possible anomalies that can be found in web applications such
as navigation problems, hyperlink inconsistencies, etc. Their empirical results show
that 60% of the web applications considered in their study exhibit anomalies and
execution failures.

Derived oracles:

Derived oracles are derived from various artifacts (e.g., documentation, system exe-
cutions) or properties other than specifications.

For example, in regression testing, oracles can be derived from the executions of
previous versions of the software under test. In this case, the derived oracles will
verify if the new software version behaves as the original one | |. For example,
EvoSuite and Randoop derive test oracles from previous versions of the system under
test.

Oracles can also be automatically derived from program invariants [ ]. In-
variants can help programmers characterizing aspects of program execution and iden-
tifying program properties that must be preserved when modifying code. They report
properties that were true over the observed executions of all programs such as “y =
2%r+8”, “array a is sorted”, etc. The Daikon invariant detector® is an open source
tool that applies machine learning techniques to infer these invariant properties.

nttps://plse.cs.washington.edu/daikon/
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Another type of derived oracles are pseudo-oracles (also known as differential testing,
dual coding, and N-version programming | ]). The concept of a pseudo-oracle
is introduced by Davis and Weyuker | . A pseudo-oracle is program that is
capable of providing the expected outputs and check the correctness of the system
by comparing the outputs of multiple independent implementations. It checks the
consistency of the results of the different software versions of the systems, when the
same functionality is executed. An inconsistency can be detected when one or more
versions of the system trigger failures. For example, in compiler testing, different
versions of the same program are generated by applying some optimizations. The
functionality of the program under test remains the same for all versions. The oracle
is defined, in this case, as a comparison between the functional outputs of the different
versions | ]-

Additionally, oracles can be derived from properties of the system under test. For
instance, a metamorphic testing (MT) method has been proposed to alleviate the or-
acle problem | |]. MT is an automated testing method that employs expected
properties of the target functions to test programs without human implication. MT
exploits the relation between the inputs and outputs of special test cases of the sys-
tem under test to derive metamorphic relations (MRs) defined as test oracles for
new test cases. MT recommends that, given one or more test cases (called source or
original test cases) and their expected outcomes, one or more follow-up test cases can
be constructed to verify the necessary properties (i.e., metamorphic relations) of the
system or function to be implemented. For a given problem, usually more than one
MR can be identified. It is therefore important to select suitable MRs for effective
bugs detection.

MT was recently applied for compiler testing. Le et al. | | present an approach
called equivalence modulo inputs (EMI) testing. The idea of this approach is to pass
different program versions (with same behavior) to the compiler in order to inspect
the output similarity after code compilation and execution. So, given a deterministic
program P and a set of input values I, the authors propose to create equivalent
versions of the program by profiling its execution and pruning un-executed code (by
identifying the statements not covered by I and mutating or deleting a subset of the
dead statements of P). Once a program and its equivalent variant are constructed,
both are used as input to the compiler under test and then, inconsistencies in their re-
sults are checked. Inconsistencies represent, in this case, deviations in the functional
behavior. This method has detected 147 confirmed bugs in two open source C com-
pilers, GCC and LLVM. EMI testing is an example of metamorphic testing. In fact,
the program variants are in a metamorphic relationship with one another and with P,
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with respect to I. Another application of the equivalence-based method is presented
by Tao et al. | | to test the semantic-soundness property of compilers. They
use three different techniques in generating equivalent source code programs and then
test the mutants with the original programs, such as replacing an expression with
an equivalent one. Empirical results show that their approach is able to detect real
issues in GCC and ICC compilers. A metamorphic approach has also been used to
test GLSL compilers via opaque value injection | ].

Pseudo-oracles and metamorphic oracles have similar concept. Pseudo-oracles need
different implementations of the same program specification while in metamorphic
testing, follow-up test cases (program variants) must be derived from original program
under test through program transformations.

3.1.2.2 Summary: oracle definition approaches

We provide in Table 3.2 a summary of the several oracle definition techniques described

above:

Table 3.2: Summary of test oracle approaches

Oracle

Method

Objectives

Specified oracles

—Assertions and contracts

—Specification-based  lan-
guages

—Algebraic  specification
languages

—Use of notions of specifications as a
source of oracle information.

Implicit oracles

—Fuzz testing
—Load testing
—Robustness checking

—Identify obvious faults such as crashes,
memory leaks, un-handled exceptions,
abnormal program termination, etc.

Derived oracles

~Metamorphic testing
—N-version programming
—Regression testing
—Back-to-back testing
—Invariant detection

—Oracles are derived from various arti-
facts (e.g., documentation, system exe-
cutions) or properties (e.g., metamorphic
relations) of the system under test.

— Check the consistency of the results
of the different versions of the systems,
when the same functionality is executed.
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3.2.1 Iterative compilation

Iterative compilation, also known as optimization phase selection, adaptive compilation, or
feedback directed optimization | ], consists in applying software engineering tech-
niques to produce better and more optimized programs. The key objective of iterative
compilation is to find the best optimization sequence that leads to the fastest and highest-
quality machine code.

The basic idea of iterative compilation is to explore the compiler optimization space by
measuring the impact of optimizations on software performance. Several research efforts
have investigated this optimization problem, such as Search-Based Software Engineering
(SBSE) techniques, to guide the search towards relevant optimizations regrading perfor-
mance, energy consumption, code size, compilation time, etc. Experimental results have
been usually compared to standard compiler optimization levels.

It has been proven that optimizations are highly dependent on the target platform and
on the input program which makes the task of searching for the best optimization sequence
very complex | .

In the following sections, we describe the classical iterative compilation process and we
discuss the relevant techniques and approaches that have been presented to tackle some of
the challenges related to compiler optimization we have identified in the previous chapter,
namely:

e The problem of optimization-space exploration: We present several approaches
that have addressed the combinatorial explosion problem of possible compiler opti-
mizations.

e The problem of multi-objective optimization: We present several techniques
that aimed to find trade-offs between multiple non-functional properties.

3.2.2 Implementation of the iterative compilation process

The implementation of an iterative compilation system consists mainly on applying a
sequence of steps to enhance the quality of the generated code. Figure 3.2 shows a general
overview of the main steps needed to ensure the implementation of the iterative compilation
process.
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Figure 3.2: Overview of the iterative compilation process

List of transformations:

The iterative process starts by defining the optimization space. It represents the
list of optimizations that the compiler has to evolve during the search for the best
optimization sequences.

Search engine:

It applies a search algorithm or method to efficiently explore the large optimization
search space. In fact, it takes as input the previously defined list of transformations
and decides which optimizations will be retained at the end of the search.

Compiler:

Once the optimization sequence is defined, the target compiler (e.g., GCC, LLVM)
is called to compile the input program and also perform initial machine independent
optimizations.

Machine-independent optimizations:
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This results in an initial machine independent optimized program. These optimiza-
tions are performed during code generation and impact all target systems. It includes
optimizations that are applied during the parse tree mapping to the intermediate code
and the optimization applied to the intermediate code itself.

— Machine-dependent optimizations:

For further optimization, the compiler applies from the provided optimization se-
quence the machine dependent optimizations. This includes optimizations applied
during the mapping of intermediate code to assembler and optimizations applied
directly on the generated object code.

— Quality evaluation:

It consists on evaluating the quality of the optimized code. Many non-functional
properties can be evaluated like code size, execution time, resource usage, power
consumption, etc.

This model represents the classical and typical iterative compilation process. Of course,
there exist many ways and adaptations to implement this process. The implementation of
the iterative process depends on the algorithm used, the problem addressed, the technolo-
gies used, etc. Our contribution regarding compiler auto-tuning respects this model. The
goal of the next subsections is to present the different state of the art approaches related
to iterative compilation.

3.2.3 Iterative compilation search techniques

In Section 2.4.2 of Chapter 2, we presented several issues with optimizing compilers that
make the activity of compiler auto-tuning very complex such as the huge number of op-
timizations, conflicting objectives, optimization impact, etc. In this section, we discuss
the available tools and approaches dedicated to the automatic search for optimal compiler
settings, and give an overview of known approaches that addressed these several compiler
optimization challenges. In each subsection, we identify and discuss a particular problem
and we present the best known approaches proposed to solve it.

3.2.3.1 Auto-tuning: a mono objective optimization

The compiler auto-tuning technique has been used in many optimization scenarios. What
all of this prior work on iterative compilation have in common is that it focuses on a single
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objective function to be optimized. For example, researchers typically focus on speeding up
the performance of compiled code which constitutes the major optimization objective for
most iterative compilation approaches | , , , , , ].

So, the problem has been often adapted as a mono-objective search problem where
the speedup is the main concern for most of the previous work. Genetic algorithms (GA)
[ , | present an attractive solution to this problem. GA-based approaches
compute an initial population using a set of optimizations, generally defined under the
standard compiler levels -Ox. Then, at each iteration, the individuals (i.e., option sets) that
comprise the generation are evaluated by measuring the execution time of each solution.
The results are sorted and pass through a breeding and mutation stage to form the next
generation. This process continues until a termination condition is reached. At the end,
the algorithm returns the best optimization set that led to the highest performance.

For example, ACOVEA? (Analysis of Compiler Options via Evolutionary Algorithm),
is an open source tool that applies GAs to find the best options for compiling programs
with the GCC compiler. In this context, best solutions define those options that produce
the fastest executable program from a given source code. This tool was even included in
the Gentoo Linux repository to help users to find the best set of optimizations.

The ESTO framework | | studies the application of GA to the problem of selecting
an optimal option set for a specific application and workload. ESTO regards the compiler
as a black box, specified by its external-visible optimization options. ESTO supports a
GA variant named budget-limited genetic algorithm which reduces the population size
exponentially and then reduce the time needed to evaluate the different evaluations. The
authors ran experiments on the SPEC2000 benchmark suite and tested 60 optimization
options within three compilers: GCC, XLC and FDPR-Pro. Results of ESTO are compared
to GCC -0O1 and -03, to XLC -03, and to FDPR-Pro -O3. The results show that ESTO
is capable to construct optimization levels that yield to better performance than standard
options.

3.2.3.2 Escaping local optimum

A common problem in iterative compilation is the local optimum. In fact, the search
space of optimizations for a specific program could be very huge and it generally contains
many local minima in where the search algorithm could be trapped | ]. There-
fore, researchers in this field try to build robust techniques and algorithms to avoid such
problem. In [ ], Bodin et al. tried to analyze this search space and they found

2https://github.com/Acovea/libacovea
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that the optimization space is highly non-linear containing many local minima and some
discontinuities. This paper focuses on parameterized transformations. The small area of
the transformation space considered in this paper is composed of three parameterized op-
timizations: loop unrolling (with unroll factors from 1 to 20), loop tiling (with tile sizes
from 1 to 100) and padding (from 1 to 100). They focus on reducing the compilation and
execution time of optimized programs and use a simulator to target embedded processors.
They use a compiler framework developed to optimize multimedia programs for embedded
systems. They analyze these optimizations across four CPU architectures (UltraSparc,
R10000, Pentium Pro, and TriMedia-1000) and the matrix multiplication is selected as the
program to optimize. The proposed search algorithm visits a number of points at spaced
intervals, applying the appropriate transformation, executing the transformed program
and evaluating its worth by measuring the execution time. Those points lying between
the current global minimum and the average are added to an ordered queue. Iteratively,
such points are removed from the queue and points within the neighboring region are in-
vestigated, again at spaced intervals. This process is continued until a specific number of
points are evaluated and the fastest transformed program is reported. They show that in
the case of large transformation spaces, they can achieve within 0.3% of the best possible
time by visiting, less then 0.25% of the space. They find the minimum after visiting up to
less than 1% of the space.

Cooper et al. | | describe their experience exploring the search space of compi-
lation sequences. They report the results of exhaustively enumerating several search spaces
of sequences of length 10 chosen from 5 transformations. They show that the search space
has many local minima, and that random-restart hill climbing is an effective strategy to
overcome this problem.

Another way to efficiently explore the large search space in compiler optimization is the
Design Space Exploration (DSE) technique | : |. The DSE is based on a
clustering approach for grouping functions with similarities and exploration of a reduced
search space resulting from the combination of optimizations previously suggested for the
functions in each group. The identification of similarities between functions uses a data
mining method that is applied to a symbolic code representation. They compare their
approach to the GA and their experimental results reveal that the DSE-based approach
achieves a significant reduction in the total exploration time of the search space (20x over
a GA approach) and a performance speedup (41% over the baseline).
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3.2.3.3 Phase ordering problem

Phase ordering is also an important problem in iterative compilation which explores the
effect of different orderings of optimization phases on program performance. In fact, when
using some compilers such as LLVM, it is important to define the right order of applying
optimizations. Thus, researchers in this field try to apply search techniques in order to
find the right optimization sequence. However, reordering optimization phases is extremely
hard to support in most production systems, including GCC due to their use of multiple
intermediate formats and complex inherent dependencies between optimizations. So gen-
erally, compilers manage internally the order of applying optimizations and do not give the
hand to the user to choose this order, avoiding conflicts and compilation issues.

When the order is managed by the users, exhaustively evaluating all orderings of opti-
mization phases is infeasible due to the huge number optimization phases. This problem
becomes more complex by the fact that these phases interact with other optimizations in
a complex way. For example, even if we keep the same set of optimizations for an input
program, varying the order of applying these optimization phases can produce different
code, with potentially significant performance variations amongst them.

In this field, Whitfield | ] developed a framework based on axiomatic specifications
of optimizations, including both pre and post conditions before and after applying opti-
mizations. For a selected set of optimizations, the framework is used to determine those
interactions among the optimizations that can create conditions and those that can destroy
conditions for applying other optimizations. Then, from these interactions, an application
order is derived to obtain the potential benefits of the optimizations that can be applied
to a program. This framework was employed to list the potential enabling and disabling
interactions between optimizations, which were then used to derive an application order
for the optimizations

Kulkarni et al. | , ] proposed an exhaustive search strategy to find op-
timal compilation sequences for each function of a program. They exhaustively enumerated
all distinct function instances for a set of programs that would be produced from different
phase-orderings of 15 optimizations. This exhaustive enumeration was made possible by
detecting which phases were active and whether or not the generated code was unique,
making the actual optimization phase order space much smaller than the attempted space.
This exhaustive enumeration allowed them to construct probabilities of enabling/disabling
interactions between different optimization passes in general and not specific to any pro-
gram. They use this idea to prevent the combinatorial explosion of the total number of
sequences to be tested. They were able to find all possible function instances that can be
produced by different phase orderings for 109 out of the 111 total functions they evaluated.
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Cooper et al. | | adapts the GA to solve the optimization phase ordering problem.
They target embedded systems and focus on reducing the code size. They choose 10
program transformations to evolve in Fortran compiler. The solutions generated by their
algorithm are compared to solutions found using a fixed optimization sequence. Their
technique was successful for reducing the code size by 40% compared to the standard
sequence.

In another work | ], the same authors explored phase orders at program-level
with randomized search algorithms based on GAs, hill climbers, and randomized sampling.
They target a simulated abstract RISC-based processor with a research compiler. They
report properties of several generated sub-spaces of phase ordering and the consequences
of those properties for the search algorithms.

3.2.3.4 Evaluating iterative optimization across multiple data sets

Most iterative optimization studies find the best compiler optimizations through repeated
runs on the same data set. The problem is that if we select the best optimization sequence
for an input data set through the iterative process, we do not know if it will be the best
for the same program but with another data sets. Thereby, researchers in this field try
to investigate this problem by evaluating the effectiveness of iterative optimization across
a large number of data sets. In particular, since there is no existing benchmark suite
with a large number of data sets, Chen et al. | | attempt to collect 1000 data
sets called KDataSets for 32 programs, mostly derived from the MiBench benchmark.
Then, they exercise iterative optimization on these collected data sets in order to find the
best optimization combination across all data sets. They use random search to generate
random optimization sequences for the ICC compiler (53 flags) and the GCC compiler (132
optimizations). They demonstrate that for all 32 programs (from MiBench), they were able
to find at least one combination of compiler optimizations that achieves 86% or more of
the best possible speedup across all data sets using ICC (83% for GNU’s GCC). This
optimal combination is program-specific and yields speedups up to 1.71 on ICC and 2.23
on GCC over the highest optimization level (-Ofast and -O3, respectively). This means
that a program can be optimized on a collection of data sets and it can retain near optimal
performance for most other data sets. However, they tested their approach on only one
single benchmark and one target architecture.



58 CHAPTER 3. STATE OF THE ART

3.2.3.5 Conflicting objectives: a multi-objective optimization

Several research efforts attempt to find trade-offs between two (or more) non-functional
properties | : , , : : : : ).

In COLE | |, the authors considered that the problem of compiler optimizations can
be seen as a multi-objective problem where two non-functional properties can be enhanced
simultaneously. Thus, they investigated the standard levels of compiler optimization by
searching for pareto optimal levels that maximize both performance and compile time.
They show that by using the multi-objective genetic algorithm (in their experiment they
used SPEA2), it is possible to find a set of compiler optimization sequences that are more
pareto-effective in terms of performance and compile time than the standard optimization
levels (-O1, -02, -03, and -Os). The motivation behind this approach is that these standard
levels were set up manually by compiler creators based on fixed benchmarks and data sets.
For the authors, these universal levels may not be always effective on unseen programs and
there exist higher levels that provide better trade-offs in terms of code quality. They used
the SPEC2000 CPU benchmark, which is a popular benchmark suite for evaluating the
compiler performance. They evolved 60 optimization flags that are defined in the standard
levels -O1, -02, -O3, and -Os. They run iterative compilation on one single machine
shipped with Intel CPU Pentium 4 and they compared the proposed algorithm (SPEA2) to
random search as well as to standard optimization levels. The experimental results using
GCC (v4.1.2) show that the automatic construction of optimization levels is feasible in
practice, and in addition, yields better optimization levels than GCC’s manually derived
optimization levels. However, they do not provide a guarantee that the new explored
optimization levels will be optimal for other applications.

Martinez et al. | | propose an adaptive worst-case execution time aware
compiler framework for automatic search of compiler optimization sequences. Compared to
the previously described approaches, authors in this work focus on generating efficient code
for embedded systems. Therefore, they focus on crucial properties for real-time systems
such as average-case execution time (ACET), worst-case execution time (WCET), power
consumption and code size. They explore the performance of compiler optimizations with
conflicting goals. Thus, they try to find suitable trade-offs between these objectives in
order to identify pareto optimal solutions using multi-objective algorithms. The objective
functions try to minimize the WCET-ACET and WCET-Code size properties. They ap-
ply three evolutionary multi-objective algorithms namely IBEA, NSGA-IT and SPEA2 and
compare their results to standard levels (-O1, -O2 and -O3). They evolve 30 optimizations
within the WCC compiler and perform experiments on top of one single machine shipped
with Intel Quad-Core CPU processor. They pick up 35 programs from various bench-
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marks such as DSPstone, MediaBench, MiBench, etc. They find that NSGA-II is the most
promising algorithm for the given problem. The discovered optimization sequences signifi-
cantly outperform standard optimization levels. In fact, the highest standard optimization
level -O3 can be outperformed for the WCET and ACET on average by up to 31.33%
and 27.43%, respectively. The same approach performs as well for the WCET-Code size
optimization with a 30.6% WCET reduction over -O3. However, the code size increases
by 133.4%. They argue that the WCET and the code size are typical conflicting goals. If
a high improvement of one objective function is desired, a significant degradation of the
other objective must be accepted.

In | |, the TACT framework is presented. Compared to previous approaches,
TACT is designed primarily for automatic tuning on embedded systems running Linux.
Thus, the target CPU architecture for this tool is the ARM architecture (ARM Cortex-
A9) and 200 options are used in the GCC compiler for ARM. TACT supports multiple
optimization objectives, so it can tune either for a single optimization parameter, or for two
objective functions simultaneously, for example, for performance and code size (or compile
time). So, it applies the SPEA2 algorithm and GA for mono-objective optimizations. The
results show how the SPEA2 outperforms the standard GCC levels (-O2, -O3 and -Os)
across several open-source popular applications such as C-Ray, Crafty Chess, SciMark,
x264 and zlib.

3.2.3.6 Predicting optimizations: a machine learning optimization

Machine learning has been also proposed by several research efforts to tune compilers.
Compared to evolutionary algorithms, using machine learning in compiler optimization
has the potential of reusing knowledge across the different iterative compilation runs, gain-
ing the benefits of iterative compilation to learn the best optimizations across multiple
programs and architectures.

Generally, machine learning applications create in an offline phase a prediction model,
which will be used to determine the compiler optimization set that should be applied to
unseen programs in the online phase. The main advantage of this technique is to reduce
the number of required program evaluations.

In the Milepost project | | for example, authors start from the observation that
similar programs may exhibit similar behavior and require similar optimizations, so it is
possible to correlate program features and optimizations together to predict good transfor-
mations for unseen programs, based on previous optimization experience. Thereby, they
provide a modular, extensible, self-tuning optimization infrastructure that can automati-
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cally learn how to best optimize programs for configurable heterogeneous processors based
on the correlation between program features, run-time behavior and optimizations. The
proposed infrastructure is based on a machine learning compiler that presents an Inter-
active Compilation Interface (ICI) and plugins to extract program features (such as the
number of instructions in a method, number of branches, etc) and select optimization
passes.

The Milepost framework proceeds in two distinct phases: training and deployment.
During the training phase, information about the structure of programs (input training
programs) is gathered, showing how they behave under different optimization settings.
Such information allows machine learning tools to correlate aspects of program structure,
or features, with optimizations, building a strategy that predicts good combinations of
optimizations. After running an iterative process that evaluates different combinations of
optimizations on top of the training programs/features, predictive models are created to
correlate a given set of program features with profitable program transformations. Then,
in the deployment phase, the framework analyzes new unseen programs by determining
the program features and passes them to the new created models to predict the most
profitable optimizations to improve execution time or other metrics depending on the user’s
optimization requirements. GCC was selected as the compiler infrastructure. They evolved
100 optimization flags under -O1, -O2 and -O3 levels and compared their results to the -O3
level and to the random search. The experimental results show that it is possible to improve
the performance of the MiBench benchmark suite automatically using iterative compilation
and machine learning on several platforms, including x86: Intel and AMD, and the ARC
configurable core family. Using the machine learning-based framework, they were also
able to learn a model that automatically improves the execution time of some individual
MiBench programs by a factor of more than 2 while improving the overall MiBench suite by
11% on reconfigurable ARC architecture, without sacrificing code size or compilation time.
Furthermore, their approach supports general multi-objective optimization where a user
can choose to minimize not only the execution time but also the code size and compilation
time.

3.2.3.7 Summary: auto-tuning compiler techniques

We provide in Table 3.3 a summary of several iterative compilation approaches, most
of them are described above. We classify these approaches based on the problem they
are tackling. Sometimes, the research papers address more than one issue in iterative
compilation. This is not an exhaustive study of all iterative approaches but, it gives an
overview of several research efforts involved in different areas during the past 20 years.
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Table 3.3: Summary of iterative compilation approaches
Local Phase | Multiple | Conflicting | Learning | Multiple | Multiple-
optimum | ordering | data sets | objectives | Methods | CPUs | compilers

Whitfield et al.”90

- + - - - - -

Bodin et al.’98
- - - - - + -

Kulkarni et al.”06

| | : - : : : : :

Cooper et al.’06
[ ] + + - - - + -

Bashkansky et al.’07

- - - - - + +

Hoste et al.’08
- - - _|_ - - -

Lokuciejewski et al.’10

[LPE*10) : - : + : - :

Chen et al.’10
- - + - - + +

Fursin et al’11
] - - - + + + -

Pekhimenko et al’11
[PB1] : : : - : :
Plotnikov et al.’13

- - - + - - -

3.3 Lightweight system virtualization for automatic
software testing

The key objective of this section is to present examples of the existing research efforts that
have been presented to address:

e The problem of hardware heterogeneity and software diversity: For in-
stance, we show the benefit of using a container-based infrastructure to tackle this
problem. Thus, we present several research efforts that opted for this technology to
facilitate software testing.

e The problem of resource usage monitoring: We discuss existing solutions ap-
plied for automatic resource usage extraction in a micro-services infrastructure.

The use of virtualization such as Virtual Machines (VMs) is very useful to tackle the
problem of hardware and software platforms heterogeneity. In industry, a number of com-
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mercial usage scenarios benefit from virtualization techniques to provide services to the
end users. For example, Amazon EC2 makes VMs available to the customers who can
use them to run their own computer applications or services on the cloud. Thus, a user
can create, launch and terminate new VMs as needed. However, VMs are known to be
very expensive in terms of system resources and performance | |. In fact, each new
VM instance constitutes of a virtual copy of all the hardware of the host machine which
increases resource usage and overhead | |. Container-based virtualization presents
an interesting alternative technology to VMs. The container technology is an operating-
system-level virtualization which imposes little to near zero overhead. Programs in virtual
instances use the operating system’s system call interface and do not need to be emulated
or ran in an intermediate virtual machine, as it is the case for VMware, QEMU or Xen.
For instance, Docker? is a popular engine that offers the ability to deploy applications and
their dependencies into lightweight containers that are very cheap to create. Processes
executed in a Docker container are isolated from other processes running in the host OS or
in other Docker containers. The Docker solution aims to address the challenges of resource
usage and performance overhead caused by the full-stack virtualization.

Several authors | , , , | compared the performance of the
traditional VM solution to the container-based operating system technology. They showed
that containers result in better performance than VMs since they induce less overhead.

3.3.1 Application in software testing

In software development, the container technology becomes more and more used in order
to create a portable, consistent operating environment for development, deployment, and
testing in the cloud | ]. In the following, we discuss some of the state of the art
approaches that choose the container technology as a mechanism to solve some research
testing problems.

Marinescu et al. | | have used Docker as technological basis in their repository
analysis framework Covrig to conduct a large-scale and safe inspection of the revision his-
tory from six selected Git code repositories. For their analysis, they run each version of
a system in isolation and collect static and dynamic software metrics, using a lightweight
container environment that can be deployed on a cluster of local or cloud machines. Each
container is used to configure, compile, and test one program revision, as well as collect the
metrics of interest, such as code size and coverage. The motivation of using such infras-
tructure is to provide a clean and configurable execution environment to run experiments.

3https://www.docker.com
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According to the authors, the use of Docker as a solution to automatically deploy and
execute the different program revisions has clearly facilitated the testing process.

Another Docker-based approach is presented in the BenchFlow?2 project which focuses
on benchmarking BPMN 2.0 engines | |. This project is dedicated to the performance
testing of workflow engines. In this work, Ferme et al. present a framework for automatic
and reliable calculation of performance metrics for BPMN 2.0 Workflow Management Sys-
tems (WfMSs). According to the authors, benchmarking WfMSs raises many challenges: 1)
the system deployment complexity due to the distributed nature of these models execution;
2) the high number of configuration options required to integrate the deployment of the
system under test, i.e., the WfMS; 3) the complexity of the execution behaviors that can
be expressed by modern modeling and execution languages such as BPMN2. Therefore,
to address these problems, BenchFlow exploits Docker as a containerization technology,
to enable the automatic deployment and configuration of the WfMSs. Thus, the WfMSs
are automatically deployed and undeployed using Docker. Each component involved in
the benchmark are packaged as Docker images to be deployed and executed on different
servers connected by a dedicated local network. For each Docker instance, a new instance
of the business models set is executed by the Wt during the experiment. Thanks to Docker,
BenchFlow automatically collects all the data needed to compute the performance metrics,
and to check the correct execution of the tests (metrics related the RAM/CPU usage and
execution time). Their experimental results show that a simple business model running on
two popular open-source WfMSs reveal important performance scalability issues.

Hamdy et al. | | propose Pons, a web based tool for the distribution of pre-
release mobile applications for the purpose of manual testing. Pons facilitates building,
running, and manually testing of Android applications directly in the browser. Based
on Docker technology, this tool gets the developers and end users engaged in testing the
applications in one place, alleviating the tester’s burden of installing and maintaining
testing environments, and providing a platform for developers to rapidly iterate on the
software and integrate changes over time. Thus, it speeds up the testing process and
reduces its cost. Pons utilizes Docker by predefining Docker images that contain the
required services and tools to build Android applications, starting from the operating
system up to the software development kit. A container is then built using one of these
images to store the source code of a mobile application at a specific moment of history in a
sandbox environment. Pons creates then, an Android emulator inside the Docker container
to run the tests. The results are streamed at runtime in the web browser.
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3.3.2 Application in runtime monitoring

Runtime monitoring is important in the area of cloud computing | ]. Like VMs
before them, containers require a monitoring mechanism. It should provide both historical
and timely information about the resource usage of containers.

In industry, many commercial solutions are proposed to efficiently monitor applications
running inside containers. For example, the Datadog* and cAdvisor® agents use the na-
tive Docker accounting metrics to gather the CPU, memory, network, and 1/O metrics of
the running containers. CAdvisor allows to monitor containers running in the same host
machine. As an alternative, Scout® is used to aggregate metrics from different hosts and
containers in a distributed architecture. As an orchestration system for Docker contain-
ers, we cite the open project Kubernetes”. It allows to quickly and efficiently respond to
customer demand by deploying applications using multiple hosts and containers on the
cloud. This clustering framework is shipped with a monitoring tool called Heapster® that
provides a base monitoring platform on Kubernetes. Heapster collects and interprets vari-
ous signals like resource usage, lifecycle events, etc, and exports cluster metrics via REST
endpoints. It supports a pluggable storage backend such as InfluxDB with Grafana and
Google Cloud Monitoring. Most of these tools provide web-based dashboards to visualize
resource consumption at runtime as well as alerting mechanism that can be triggered if
metrics go above or below a configured threshold. Other examples of Docker monitoring
tools exist such as: Sensu Monitoring Framework, Prometheus, Sysdig Cloud, etc.

Runtime monitoring of containers has been also applied to solve research problems.
As an example, Kookarinrat et al. | | have investigated the problem of auto-sharding
in NoSQL databases using a container-based infrastructure for runtime monitoring. The
auto-sharding technique is used to divide data in the database and distribute it over multi-
ple machines in order to scale it horizontally. In fact, selecting the right key is challenging.
It could lead to either an improvement of the performance and capability of a database or
to performance issues (i.e., by selecting a wrong key) which could lead to a system halt.
Therefore, authors analyzed and evaluated such suggested properties by studying how the
variation of a shard key’s choices could impact the DB performance. They simulated an
environment using Docker containers and measured the read/write performance of vari-
ety of keys. Inside each container, they executed write/read queries into the MongoDB

4www.datadoghq.com

Shttps://github.com/google/cadvisor
Shttps://scoutapp.com
"https://kubernetes.io
8https://github.com/kubernetes/heapster


www.datadoghq.com
https://github.com/google/cadvisor
https://scoutapp.com
https://kubernetes.io
https://github.com/kubernetes/heapster

65

database and used Docker stats to automatically retrieve information about the memory
and CPU usage.

Sun et al. | ] present a tool to test, optimize, and automate cloud resource
allocation decisions to meet QoS goals for web applications. Their infrastructure relies on
Docker to gather information about the resource usage of deployed web servers.

Containers monitoring has been applied in other research efforts related especially to
cloud computing and virtualization | : .

3.4 Summary & open challenges

The analysis of the state of the art reveals several challenges. We describe below some of
the challenges we have identified in both areas of iterative compilation and code generator
testing:

e Limits of existing work when testing code generators (the oracle prob-
lem): Most of the work related to the automatic testing of code generators define
an equivalence functional oracle to compare the result of MiL, SiLL and PiL. In case
of non-executable models, this comparison becomes impossible. Particularly, the or-
acle problem for testing the non-functional properties of the generated code has been
avoided and not addressed by existing research efforts. The only comparison that
has been made consists in comparing the hand-written code to the automatically
generated code. The key objective of this comparison is to show that the generated
code has better or equivalent performance properties compared to the human code.
= We believe that more advanced testing techniques as described in Sec-
tion 3.1.2.1 can be applied to automatically detect code generator issues.

e Limits of existing techniques when exploring the large optimization search
space (a multimodal problem): As showed earlier, different techniques are ap-
plied during the iterative compilation process to explore the large optimization search
space. It has been showed that the optimization search space is a multimodal prob-
lem, containing many local optima. For effective search, some authors use to involve
only few optimizations (2 to 10) or to prune some paths in order to reduce this large
search space. Genetic Algorithms are largely applied in most of the previous works.
However, this technique may fall in the local optimum problem.
= The optimization search space is multimodal and very large. An alter-
native solution to the classical approaches is needed to tackle this problem.
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e Lack of solutions that deal with conflicting objectives when auto-tuning

compilers (a multi-objective optimization problem): When trying to optimize
software performance, many non-functional properties and design constraints must
be involved and satisfied simultaneously to better optimize code. However, improv-
ing program execution time can result in a high resource usage which may decrease
system performance especially for resource-constrained devices. Therefore, it is im-
portant to construct optimization levels that represent multiple trade-offs between
resource usage and performance, enabling the user to choose among different optimal
solutions which best suit the system requirements. Actually, there are only few work
that address the compiler optimization as a multi-objective optimization problem.
= To deal with conflicting objectives, it is important to find a consensus
between several non-functional properties when optimizing code to handle
both, the resource usage and performance requirements

Limits of existing approaches to handle the software platform and hard-
ware requirements (the problem of software diversity and hardware het-
erogeneity): Testing generators requires the execution of the generated code on
different hardware and software platforms. Most of the existing research techniques
apply a naive approach by running the generated code on different machines or using
simulators for some configurations. Configuring the target execution environment
to run the generated code and test it is time-consuming. Particularly, for generator
users, it becomes very difficult to deploy and test the generated software artifacts in
front of the increasing diversity of hardware and software platform settings.

= A highly configurable execution environment is needed to handle the
software and hardware requirements.

Lack of solutions that evaluate the resource usage properties when eval-
uating the generated code: There is almost no research effort to deal with the
non-functional properties of automatically generated code such as the resource usage.
Most of the related work (in code generator testing) focus on the functional correct-
ness of the generated code without putting too much emphasizes on the quality of the
generated code. We claim that evaluating properties such as resource usage is very
important in order to ensure an efficient production code generation. In iterative
compilation, most of the existing work tend to reduce the execution time, code size,
compilation time, etc. There is almost no work that evaluates the memory and CPU
usage of the optimized code.

= An effective monitoring solution is needed to evaluate the resource
usage properties of automatically generated code
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To the reader: summary of
contributions

In the rest of this thesis, we present our approaches that contribute to achieve our goal:
automatic non-functional testing and tuning of configurable generators. Figure 3.3 depicts
an overview of how the different contributions we propose are connected to each other and
how they contribute to address the challenges of the state of the art, described earlier.

This thesis makes three main contributions:

e Contribution I: Automatic non-functional testing of code generator fami-
lies (in blue):

In this contribution (Chapter 4), we propose an approach for automatic non-functional
testing of code generators. As discussed earlier, existing solutions lack of automation
and efficiency to find code generator issues. Particularly, the oracle problem as well
as the test of non-functional properties are not addressed. In this contribution, we
address the limitations of the state of the art, so we describe an approach based
on metamorphic testing and statistical analysis to efficiently detect inconsistencies
within code generator families. Starting from a set of high-level benchmarks and
test suites, we automatically generate source code to five target software platforms
(i.e., using a code generator family). We execute the generated code and evaluate
the resource usage metrics using the lightweight testing infrastructure presented in
contribution III. Inconsistencies are then reported for further inspection.

e Contribution II: NOTICE, An approach for auto-tuning compilers (in
red):

We address in this contribution two main problems: exploring the large optimiza-
tion search space and finding trade-offs between conflicting objectives. Thus, we
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Figure 3.3: Summary of contributions

present in Chapter 5, an adaptation of the Novelty Search algorithm to the prob-
lem of compilers auto-tuning. Our contribution focuses on tuning GCC compilers
based on randomly generated C programs. This approach shares the same moni-
toring infrastructure as the previous contribution in order to evaluate the impact of
discovered optimization sequences on resource usage. The outcome of this approach
is the best set of optimization options for a given hardware architecture, for a given
input program, and for a specific non-functional property (i.e., execution time, CPU
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consumption, and memory usage). We also conduct a multi-objective optimization
to tackle the problem of conflicting objectives (e.g., memory usage and execution
time).

e Contribution III: A lightweight execution environment for automatic gen-
erators testing (in green):

We propose in Chapter 6, a common infrastructure used by both previous contribu-
tions to gather information about the quality of generated code in terms of memory
and CPU usage. It serves as a lightweight execution environment to easily run tests
across different software and hardware settings. In particular, it is based on micro-
services, namely Docker, in order to automate software deployment, execution and
monitoring. Finally, we provide a mechanism to visualize at runtime the resource
consumption of running programs. This contribution addresses the limitations of the
state of the art, namely the lack of solutions that handle the software and hardware
diversity when testing/tuning generators.

The validation of each contribution is presented in the corresponding chapter. Different
experiments are used to illustrate the characteristics of each solution we present.






Chapter 4

Automatic non-functional testing of
code generator families

Generative software development has paved the way to the creation of numerous code
generators that automatically translate high-level system specifications into multi-target
executable code. To preserve software reliability and quality, generated code has to be
tested with the same effort as for the manually written code. Any issue with code gener-
ators should be detected and corrected as early as possible in order to ensure the correct
behavior of delivered software. We presented in Chapter 3 several approaches that address
the automatic functional testing of code generators. However, automatically testing the
non-functional properties of generated code remains a challenging task that has not been
addressed yet.

This chapter describes a testing approach that automatically detects anomalies in code
generators in terms of non-functional properties (i.e., resource usage and performance). In
fact, we adapt the idea of metamorphic testing to the problem of code generators testing.
Hence, our approach relies on the definition of high-level test oracles (i.e., metamorphic re-
lations) to check the potential inefficient code generator among a family of code generators.
Moreover, we apply different statistical methods in order to automate the inconsistencies
detection. We evaluate our approach by analyzing the performance of Haxe, a popular
high-level programming language that involves a set of cross-platform code generators.
Experimental results show that our approach is able to detect some performance inconsis-
tencies that reveal real issues in Haxe code generators.

This chapter is organized as follows:

Section 4.1 presents the motivations behind this work. In particular, we discuss three
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motivation examples and the challenges we are facing.

Section 4.2 presents the traditional process for non-functional testing of a code generator
family.

Section 4.3 describes the general approach overview and the testing strategy.

In Section 4.4, the evaluation and results of our experiments are discussed. Hence, we
provide more details about the experimental settings, the code generators under test, the
benchmark used, the evaluation metrics, etc. We discuss then the evaluation results.

Finally, we conclude in Section 4.5.

4.1 Context and motivations

4.1.1 Code generator families

Today, different customizable code generators can be used to easily and efficiently generate
code for different software platforms, programming languages, operating systems, etc. This
work is based on the intuition that a code generator is often a member of a family of code
generators | -

Definition (Code generator family). We define a code generator family as a set of code
generators that takes as input the same language/model and generate code for different
target software platforms.

For example, this concept is widely used in industry when applying the “write once,
run everywhere” paradigm. Users can benefit from a family of code generators (e.g.,
cross-platform code generators | |) to generate from the manually written (high-
level) code, different implementations of the same program in different languages. This
technique is very useful to address diverse software platforms and programming languages.

As motivating examples for this research work, we can cite three approaches that in-
tensively develop and use code generator families:

a. Haxe. Haxe' | | is an open source toolkit for cross-platform development which
compiles to a number of different programming platforms, including JavaScript, Flash,

http://haxe.org/


http://haxe.org/

75

PHP, C++, C#, and Java. Haxe involves many features: the Haxe language, multi-
platform compilers, and different native libraries. The Haxe language is a high-level pro-
gramming language which is strictly typed. This language supports both, functional and
object-oriented programming paradigms. It has a common type hierarchy, making certain
API available on every target platform. Moreover, Haxe comes with a set of code genera-
tors that translate manually-written code (in Haxe language) to different target languages
and platforms. This project is popular (more than 1440 stars on GitHub).

b. ThingML. ThingML? is a modeling language for embedded and distributed sys-
tems | ]. The idea of ThingML is to develop a practical model-driven software
engineering tool-chain which targets resource-constrained embedded systems such as low-
power sensors and microcontroller-based devices. ThingML is developed as a domain-
specific modeling language which includes concepts to describe both software components
and communication protocols. The formalism used is a combination of architecture mod-
els, state machines and an imperative action language. The ThingML tool-set provides a
code generator family to translate ThingML to C, Java and JavaScript. It includes a set of
variants for the C and JavaScript code generators to target different embedded systems and
their constraints. This project is still confidential, but it is a good candidate to represent
the modeling community practices.

c. TypeScript. TypeScript®is a typed superset of JavaScript that compiles to plain
JavaScript | |. In fact, it does not compile to only one version of JavaScript. It
can transform TypeScript to EcmaScript 3, 5 or 6. It can generate JavaScript that uses
different system modules ('none’, ’commonjs’, "amd’, ’system’, 'umd’, ’es6’; or ’es2015’)%.
This project is popular (more than 22478 stars on GitHub).

Functional testing of a code generator family is simple. Since the produced programs
are generated from the same high-level program, the oracle can be defined as a compar-
ison between their functional outputs, which should be the same. In fact, based on the
three sample projects presented above, we remark that all GitHub code repositories of the
corresponding projects use unit tests to check the correctness of code generators.

In terms of non-functional tests, we observe that ThingML and TypeScript do not pro-
vide any specific tests to check the consistency of code generators regarding the memory or

2http://thingml.org/

3https://www.typescriptlang.org/

4Each of this variation point can target different code generators (function emitES6Module vs emi-
tUMDModule in emitter.ts for example).
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CPU usage properties. Haxe provides two test cases® to benchmark the resulting generated
code. One serves to benchmark an example in which object allocations are deliberately
(over) used to measure how memory access/GC mixes with numeric processing in differ-
ent target languages. The second test evaluates the network speed across different target
platforms.

4.1.2 Issues when testing a code generator family

The main difficulties when testing the resource usage properties of code generators is that
we cannot just observe the execution of produced code, but we have to observe and compare
the execution of generated programs with equivalent (or reference) implementations (i.e.,
in other languages). Even if there is no explicit oracle to detect inconsistencies for a
single code generator, we could benefit from the family of code generators to compare the
behavior of several generated programs and detect singular resource consumption profiles
that could reveal a code generator inconsistency | ].

As a consequence, we define a code generator inconsistency as:

Definition (code generator inconsistency). A generated code that exhibits an unez-
pected behavior in terms of performance or resource usage compared to all equivalent im-
plementations in the same code generator family.

Next section discusses the common process used by developers to test the non-functional
properties of generated code. We also illustrate how we can benefit from code generator
families to identify unexpected behaviors.

4.2 The traditional process for non-functional testing
of a code generator family

A reliable and acceptable way to increase confidence in code generators is to validate and
check the functional behavior of generated code, which is a common practice in generators
testing | , , |. However, proving that the generated code is functionally
correct is not enough to claim the effectiveness of the code generator under test.

Shttps://github.com/HaxeFoundation/haxe/tree/development/tests/benchs
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Figure 4.1: An overall overview of the different processes involved to ensure the code
generation and non-functional testing of produced code from design time to runtime: the
classical way

In fact, code generators have to respect different requirements to preserve software
reliability and quality [ |. In this case, ensuring the quality of generated code re-
quires examining several non-functional properties such as code size, resource or energy
consumption, execution time, etc | |. Figure 4.1 summarizes the classical steps re-
quired to ensure the code generation and non-functional testing of a code generator family.
We distinguish four major steps: software design using high-level system specifications,
code generation, code execution, and non-functional testing of generated code.

In the first step, software developers have to define, at design time, the software be-
havior using a high-level abstract language (DSLs, models, program, etc). Afterwards,
developers can use platform-specific code generators to ease the software development and
automatically generate code for different languages and platforms. We depict, as an ex-
ample in Figure 4.1, three code generators from the same family capable to generate code
to three software programming languages (Java, C# and C++). The first step is to gen-
erate code from the previously designed model. Afterwards, generated software artifacts
(e.g., Java, C#, C++, etc.) are compiled, deployed and executed across different target
platforms (e.g., Android, ARM/Linux, JVM, x86/Linux, etc.). Finally, to perform the
non-functional testing of generated code, developers have to collect, visualize and com-
pare information about the performance and efficiency of running code across the different
platforms. Therefore, they generally use several platform-specific profilers, trackers, instru-
menting and monitoring tools in order to find some inconsistencies or bugs during code
execution | , |. Finding inconsistencies within code generators involves analyz-
ing and inspecting the code and that, for each execution platform. For example, one way
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to handle that, is to analyze the memory footprint of software execution and find memory
leaks | |. Developers can then inspect the generated code and find some fragments of
the code-base that have triggered this issue. Then, they report this information in order
to fix, refactor, and optimize the code generation process. Compared to this classical (and
manual) testing approach, our proposed work seeks to automate the last three steps: the
code generation and execution on top of different software platforms, and the detection of
non-functional issues.

4.3 Approach overview

Our contributions in this work are divided into two parts:

e First, we describe our testing infrastructure. This contribution addresses the problem
of software diversity, as discussed in Chapter 2.

e Second, we present a methodology for automatic detection of inconsistencies in code
generator families. This approach addresses the oracle problem when testing the
non-functional properties.

4.3.1 An infrastructure for non-functional testing using system
containers

In this contribution, we focus on evaluating the non-functional properties related to the
resource usage and performance of generated code. To do so, many system configurations
(i.e., execution environments, libraries, compilers, etc.) must be taken into account to
efficiently generate and test code.

However, tuning different applications (i.e., generated code) with different configura-
tions on one single machine is complex. A single system has limited resources and this
can lead to performance regressions. Moreover, each execution environment comes with a
collection of appropriate tools such as compilers, code generators, debuggers, profilers, etc.
Therefore, we need to deploy the test harness, i.e., the produced binaries, on an elastic
infrastructure that provides facilities to the code generator developers to ensure the deploy-
ment and monitoring of generated code in different environment settings. Consequently,
the testing infrastructure provides support to automatically:

1. Deploy the generated code, its dependencies, and its execution environments
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2. Execute the produced binaries in an isolated environment
3. Monitor the execution

4. Gather resource usage metrics (CPU, Memory, etc.)

To ensure these four main steps, we rely on system containers [SPF07] as a dynamic
and configurable execution environment for running and evaluating the generated programs
in terms of resource usage.

1 1 1 1 ! 1
i Software Design \ Code Generation | Code Execution H Runtime monitoring engine :| Inconsistencies detection H
e >l > >ie > < >
; \ i ; ’ ;
Container A Container A’ ( Y
SUT Footprint A’
0 Generate= -
Code Qo port C# 0:’ F
Generator A = —> [
on L
c
I
° Container B Container B’ b Request Footprint B’
an | pal | Ee SuT =
Design o HTTP >
gn || DSL E Generate = -
(Model) ’E = JAVA c ~___~ requests
- : Code o? [} \ ‘
Generator = Resource usa 2
ge —
[ Footprint C
£ DB
Container C Container C’ B
3 c —
SUT G " © _./
enerate
> o C++
Code Q?
Generator

Figure 4.2: A technical overview of the different processes involved to ensure the code
generation and non-functional testing of produced code from design time to runtime.

Figure 4.2 shows the container-based infrastructure used for testing code generators.
Compared to the classical method presented in Figure 4.1, we add the following features:

— At the code generation level: Code generators are configured inside different contain-
ers in order to generate code for the target platform.

At the code execution level: Libraries, compilers and different dependencies are con-
figured in different containers in order to execute the generated code. For each target
platform, a new instance is created.

At the non-functional testing level: We add a runtime monitoring engine (based on
containers) in order to extract and save the resource usage metrics of all running
containers. Finally, inconsistencies detection involves the analysis of the resource
usage data extracted from the database in order to find issues with the generated
code. This step is discussed in details in the next section.
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Chapter 6 provides more details about the technical choices we have made to synthesize
this testing infrastructure.

4.3.2 A metamorphic testing approach for automatic detection
of code generator inconsistencies

We discussed in Section 3.1.2.2 several approaches proposed by the software testing com-
munity in order to alleviate the oracle problem. Among the attractive approaches that
can be applied to test code generators, we distinguish the metamorphic testing approach
(derived oracles). In the following, we describe the basic concept of metamorphic testing
and our adaptation of this method for the non-functional testing of code generator families.

4.3.2.1 Basic concept of metamorphic testing

In this section, we shall introduce the basic concepts of metamorphic testing (MT), pro-
posed by Chen et al. | |. The idea of MT is to derive test oracles from the relation
between test cases outputs instead of reasoning about the relation between test inputs and
outputs.

MT recommends that, given one or more test cases (called “source test cases”, “original
test cases”, or “successful test cases”) and their expected outcomes (obtained through
multiple executions of the target program under test), one or more follow-up test cases can
be constructed to verify the necessary properties (called Metamorphic Relations MRs) of
the system or function to be implemented. In this case, the generation of the follow-up
test cases and verification of the test results require the respect of the MR.

The classical example of MT is that of a program that computes the sin function. A
useful metamorphic relation for sin functions is sin(z) = sin(m - z). Thus, even though the
expected value for the source test case sin(50) for example in not known, a follow-up test
case can be constructed to verify the MR defined earlier. In this case, the follow-up test
case is sin(m - 50) which must produce an output value that is equal to the one produced
by the original test case sin(50). If this property is violated, then a failure is immediately
detected. MT generates follow-up test cases as long as the metamorphic relations are
respected. This is an example of a metamorphic relation: an input transformation that
can be used to generate new test cases from existing test data, and an output relation MR,
that compares the outputs produced by a pair of test cases. MR can be any properties
involving the inputs and outputs of two or more executions of the target program such as
equalities, inequalities, convergence constraints, and many others.
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Because MT checks the relation among several executions rather than the correctness
of individual outputs, it can be used to fully automate the testing process without any
manual intervention. However, constructing the metamorphic relations is typically a man-
ual task that demands thorough knowledge of the program under test. It also depends on
the application context and domain. The effectiveness of metamorphic testing is highly
dependent on the identified metamorphic relations, and designing effective metamorphic
relations is thus a critical step when applying metamorphic testing.

We describe in the next section our adaptation of MT to the problem of non-functional
testing of code generator families.

4.3.2.2 Adaptation of the MT approach to detect code generator inconsisten-
cies

In general, MT can be applied to any problem in which a necessary property involving
multiple executions of the target function can be formulated. Some examples of successful
applications are presented in | |. We note that MT is recently applied to compilers
testing | : : ]-

To apply MT, there are four basic steps to follow:

1. Find the properties of the system under test: the system should be investigated
manually in order to find intended MRs defining the relation between inputs and
outputs. This is based on the source test cases.

2. Generate/select test inputs that satisfy the MR: this means that new follow-up test
cases must be generated or selected in order to verify their outputs using the MR.

3. Execute the system with the inputs and get outputs: original and follow-up test cases
are executed in order to gather their outputs.

4. Check whether these outputs satisfy the MR, and if not, report failures.

We develop now these four points in details to show how we can adapt the MT approach
to the code generator testing problem.
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4.3.2.3 Metamorphic relation

Step 1 consists in identifying the necessary properties of the program under test and
represent them as metamorphic relations. As already stated, a metamorphic relation is a
relation derived from different system executions. We use the MR definition as presented
in | 7 |

Definition (Metamorphic relation). Let (z1, s, ..., xx) be a series of inputs to a func-
tion f, where k > 1, and f(x1,22,...,xx) be the corresponding series of results. Suppose
(f(xin), f(mi2), ..., [(Tim)) is a subseries, possibly an empty subseries, of (f(x1), f(z2),...,
f(zx)). Let (xpy1, Tpyo, ..., Ty) be another series of inputs to f, where n > k + 1, and
(f(@rs1), f(@ps2),eens f(22n)) be the corresponding series of results. Suppose, further, that

there ezists relations r(xy, xa,..., T, f(zi), f(), .oy [(Tim), Thi1, Tha2,---, Tpn)) and
' (x1, Tay..., Tn, f(x1, f(22,..., f(x,)) such that v must be true whenever r is satisfied.
We say that

MR = (x17$27 cony Ly f(ml)a f(xQ)v SERS) f(xn) ‘

T(ZI;l, X2y ooy Ty f(xil)7 f(xiQ)a cevey f(gjz’m); Lh+1y Lk+2, 7xn))

= ’I"/(ZEl,CEQ, ...,Ilfn,f(xl)a f(l’g), ) f(flfn))

1s a metamorphic relation. When there is no ambiguity, we simply write the metamor-
phic relation as

MR: if r(z1, 29, ooy T, f(@i1), f(Ti2), oooey [(Tim), Tha1s Thso, ooy Tn))
then v/ (x1, o, ..., Ty, f(x1), f(x2), ..., f(T0))-

Furthermore, x1,%o,...,xx are known as source test cases and Tpii,Tiio, ..., Typ ATE
known as follow-up test cases

A code generator family can be seen as a function: C': I — P, where [ is the domain
of valid high-level source programs and P is the domain of the target programs that are
generated by the different code generators of the same family. The property of a code
generator family implies that the generated programs P share the same behavior as it is
specified in I.

The availability of multiple generators with comparable functionality allows us to adapt
the MT in order to detect non-functional inconsistencies. In fact, if we can find out proper
relation R (see Equation 4.1) of the non-functional behavior, we can get the metamorphic
relation and conduct MT for testing code generator families. Let f(P(t;)) be a function
that calculates the non-functional output (such as execution time or memory usage) of the
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input test suite (¢;), running on a generated program (P). Since we have different program
versions generated in the same family, we denote by (Pi(t;), P(t;),..., Pu(t;)) the set of
generated programs. The corresponding outputs would be (f(Py), f(FPz),..., f(P,)). Thus,
our MR looks like this:

R(Pi(ti), Pa(ti), .-, Pa(ti)) = R(f(P1(:)), f(Pa(ti)), -, f(Pu(ts))) (4.1)

On the one hand, we use the following equation P (t;) = P»(t;) to denote the functional
equivalence relation between two generated programs P; and P, from the same family. This
means that the generated programs P, and P, have the same behavioral design, and for
any test suite ¢;, they have the same functional output. If this relation is not satisfied, then
there is at least one faulty code generator that produced incorrect code. In this work, we
focus on the non-functional testing, so we ensure that this relation is ensured by excluding
all the programs that do not exhibit the same behavior.

On the other hand, since we are comparing equivalent implementations of the same
program written in different languages, we assume that the memory usage and execution
time should be more or less the same with a small variation for each test suite across
the different versions. Obviously, we are expecting to get a variation between different
executions because we are comparing the execution time and memory usage of test suites
that are written in different languages and executed using different technologies (e.g., inter-
preters for PHP, JVM for Java, etc.). This observation is also based on initial experiments,
where we evaluate the resource usage/execution time of several test suites across a set of
equivalent versions generated using a code generator family (presented in details in the
evaluation, Section 4.4). As a consequence, we use the notation A{f(Pi(t;)), f(Pa(t:))} to
designate the variation of memory usage or execution time of test suite execution t; across
two versions of generated code P, and P, written in different languages. We suppose that
this variation should not exceed a certain threshold value T', otherwise, we raise a code
generator inconsistency. Based on this intuition, the MR can be represented as:

Pi(ti) = Po(ti) = .. = Polti) = A{f(Pu(8)), f(Pa(ti), s f(Pa(t))} < T (0 >2) (4.2)

This MR is equivalent to say that: if a set of functionally equivalent programs are
generated using the same code generator family ((Pi(t;), Py(t;),...,Pu(t;)), and with the
same input test suite ¢;, then the comparison of their non-functional outputs (f(P;(¢;)),
f(Py(t:)),-.., f(Pu(t;))) should be the same while taking into account a tolerance interval
defined by the variation A that shall not exceed a specific threshold value T'.
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The generated code that violates this metamorphic property represents an inconsistency
and its corresponding code generator is considered as defective.

4.3.2.4 Metamorphic testing

Repeat
\L AN JAN / [N
() P2(x) Execution f('31.(X)) Ver#iflcr\;tion

Figure 4.3: The metamorphic testing approach for automatic detection of code generator
inconsistencies

So far, we have defined the MR necessary for inconsistencies detection. We describe
now our automatic metamorphic testing approach based on this relation (Steps 2, 3, and
4). Figure 4.3 shows the approach overview. The code generator family takes the same
input program I and generate a set of equivalent test programs (P;, Ps,...,P,). This cor-
responds to Step 2. In our MT adaptation, follow-up test cases represent the equivalent
test programs that are automatically generated using a code generator family. Test suites
are also generated automatically since we suppose that they are already defined at design
time. In fact, the same test suite (test cases + input data values) is passed to all gener-
ated programs. Then, generated programs and their corresponding test suites are executed
(Step 3). Afterwards, we measure the memory usage or execution time of these generated
programs (f(Pi(t;)), f(Pa(ti)),..., f(Pn(t;))). Finally, the execution results are compared
and verified using the MR defined earlier (Step 4). In this process, inconsistencies will be
reported when one of the follow-up equivalent test program violates the MR.

4.3.2.5 Variation threshold

One of the questions that may be raised when applying our MT approach is how can we
find the right variation threshold T from which an inconsistency is detected? Answering
this question is very important to prove the effectiveness of our MT approach. To do so,
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we conduct a statistical analysis of our non-functional data in order to find an accurate
threshold value T'. Before that, the non-functional outputs need to be prepared to make
them suitable for the statistical methods employed by our methodology. Thus, we describe
first our process for data preparation.

Data preparation

As depicted in Table 4.1, each program comes with a set of test suites (t1, ta,..., ty).
Evaluating a test suite requires the calculation of the memory usage or execution time
F(P(t), [(Pa(ti))se..s f(Pu(t;)) where (1 < i < m) for all target software platforms.
Thus, obtained results represent a matrix where columns indicate the non-functional value
(raw data) for each target software platform and rows indicate the corresponding test suite.

Target platform 1 | Target platform 2 Target platform n
t f(P(t)) f(P(th)) f(Pa(t1))
ta f(Pi(t2)) f(Pa(t2)) f(Pa(t2))
) F(Py(tn)) F(Paltn)]

Table 4.1: Results of test suites execution

The non-functional data should be converted into a format that can be understood by
our statistical methods. One way to compare these non-functional outputs is to study the
factor differences. In other words, we would evaluate for each target platform the number
of times (the factor) that a test suite takes to run compared to a reference execution.
The reference execution corresponds to the minimum obtained non-functional value of ¢;
execution across the n target platforms. The resulting factor is the ratio between the
actual non-functional value and the minimum value obtained among the n versions. The
following equation is applied for each cell in order to transform our data:

_ f(P(t))
Min(f(Pi(t)), ... f(Pu(ti))

The reference execution will automatically get a score value F' = 1. The maximum
value is the one leading to the maximum deviation from the reference execution. For
example, let P; be the generated program in Java. If the execution time needed to run t;
yields to the minimum value f(P;(¢1)) compared to other versions, then f(P; (1)) will get
a factor value F' equal to 1 and the other versions will be divided by f(P;(t1)) to get the
corresponding factor values compared to Java.

F(f(P(t:))) (4.3)
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Statistical analysis

In our MT approach, an inconsistency is a resource usage/performance variation that
exceeds a specific threshold value T'. We propose the use of two variation analysis methods
[ ]: principal components analysis (PCA) and range charts (R-chart). Table 4.2
gives an overview of these two statistical methods. The key objective of these methods
is to evaluate the memory usage and performance variation, and consequently defining an
appropriate T" value for our MR.

Technique | Method
R-chart Define T as a variation between an upper and lower control limit
PCA A cutoff value of the PC score distances defines the T

Table 4.2: Variation analysis approaches

R-Chart

In this approach, the variation evaluation between the different versions is determined by
comparing the non-functional measurements based on a statistical quality control technique
called R-Chart or range chart | ]. R-Chart is used to analyze the variation within
processes. It is designed to detect changes in variation over time and to evaluate the
consistency of process variation. R-Chart uses control limits (LCL and UCL) to represent
the limits of variation that should be expected from a process. LCL denotes the Lower
Control Limit and UCL denotes the Upper Control Limit.

When a process is within the controlled limits, any variation is normal. It is said that
the process is in control. Outside limit variations, however, it is considered as deviation
and the R-chart is considered as out of control which means that the process variation
is not stable. Thus, it tells that there is an inconsistency leading to this high variation
deviation (see Figure 4.4).

In our case, a process represents the n non-functional outputs obtained after the exe-
cution of a test suite ¢;. As we defined the MR, the variation within a single process has
to be lower than a threshold 7. In our settings, this variation must be between the LCL
and UCL.

Therefore, for each test suite we calculate the range R corresponding to the difference
between the maximum and minimum non-functional outputs across all target platforms.

R(t:) = Max(f(Pi(t:)), .. f(Pu(t:)) — Min(f(Pi(ti), ., f(Pa(t:))) (4.4)
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Figure 4.4: The R-Chart process

R quantifies the variation results when running the same test suite t; across different
program versions. To determine whether the variation is in control or not, we need to
determine the control limits values. UCL and LCL reflect the actual amount of variation
that is observed. Both metrics are a function of R-bar (R). R is the average of R for all
test suites. The UCL and LCL are calculated as follows:

UCL = D,R
! (4.5)
LCL = D3R

where Dy, Ds, are control chart constants that depend on the number of variables inside
each process (see constants values®).

For example, for a family composed of less than 7 code generators, the D3 value is
equal to 0, and as a consequence LCL = 0. In this case, the UCL represents the threshold
T value from which we detect a high variation deviation, leading to an inconsistency. As
we stated earlier, the UCL is a function of R, and R is a function of range differences. So,
the UCL value (or T') is sensitive to new test suites. So, when a new test suite is executed,
the T value is updated and the variation is evaluated with the new threshold value.

We present in the following an alternative statistical approach to analyze the variation
of all our data.

Shttp://www.bessegato.com.br/UFJF/resources/table_of_control_chart_constants_old.pdf
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PCA

With a large number of program versions, the matrix of non-functional data (Table 4.1)
may be too large to study and interpret the variation properly. There would be too
many pairwise correlations between the different versions to consider and the variation
is impossible to display (graphically) when test suites are executed in more than three
target software platforms. With 12 variables, for example, there will be more than 200
three-dimensional scatter plots to be designed to study the variation and correlations. To
interpret the data in a more meaningful form, it is therefore necessary to reduce the number
of variables composing our data.

Principal Component Analysis” (PCA) is a multivariate statistical approach that uses
an orthogonal transformation to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables called Principal Components
(PCs). It can be applied when data are collected on a large number of variables from a
single observation. Thus, we apply the PCA approach to our case study because our di-
mension space as it is presented in Table 4.1, is composed of a set of processes (test suites)
where n variables (e.g., target programming languages) are composing each observation.
The variability within our model is correlated to these n variables representing the test
suites running on n target platforms.

The main objective of applying PCA is to reduce the dimensionality of the original data
and explain the maximum amount of variance with the fewest number of principal com-
ponents. To do so, PCA is concerned with summarizing the variance-covariance matrix.
It involves computing the eigenvectors and eigenvalues of the variance-covariance matrix.
The eigenvectors are used to project the data from n dimensions down to a lower dimen-
sional representation. The eigenvalues give the variance of the data in the direction of the
eigenvector. The first eigenvector is the vector which defines the direction of maximum
variance in the data. The first principal component is calculated such that it accounts for
the greatest possible variance in the data set. The second principal component is calcu-
lated in the same way, with the condition that it is uncorrelated with (i.e., perpendicular
to) the first principal component and that it accounts for the next highest variance. The
eigenvector associated with the largest eigenvalue has the same direction as the first princi-
pal component. The eigenvector associated with the second largest eigenvalue determines
the direction of the second principal component. PCA uses many data transformations
and statistical concepts. We are not interested in studying all the mathematical aspects
of PCA. Thus, we use an existing R package® to transform and reduce our data into two
PCs in order to visualize the variation of all our data points in a 2-dimensional space.

"https://en.wikipedia.org/wiki/Principal_component_analysis
8http://factominer.free.fr/
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Our intuition behind the PCA approach is to conduct a general and complete analysis
of variation in order to find extreme variation points at the boundaries of the multivariate
data. These extreme points represent, from a statistical perspective, outliers. Following
our MT approach, these points correspond to the inconsistencies (or deviations) we would
detect. Outliers have an important influence over the PCs. An outlier is defined as an
observation which does not follow the model followed by the majority of the data. One way
to detect outliers is to use a metric called Score Distance (SD). SD measures the dispersion
of the observations within the PCA space. It thus measures how far an observation lies
from the rest of the data within the PCA subspace. SD measures the statistical distance
from a PC score to the center of the scores. For an observation x; the score distance is

defined as:

where a is the number of PCs forming the PCA space, t;; are the elements of the score
matrix obtained after running PCA, and ), is the variance of the j” PC which corresponds
to the j** eigenvalue. In order to find the outliers, we compute the 97.5%-Quantile Q of

the Chi-square distribution as a cutoff value of the SD (/X2 ¢g75)- It corresponds to a

confidence ellipse that covers 97.5% of the data points. According to the table of the
Chi-Square distribution®, this value is equal to v/7.38 = 2.71. Any sample whose SD is
larger than the cutoff value, is identified as an outlier (or inconsistency). This cut-off value
represents the variation threshold T" we would define for our MR using the PCA approach.

We move now to present the evaluation of our approach.

4.4 Evaluation

So far, we have presented an automated approach for detecting inconsistencies within code
generator families. So, we shape our goal as this research question:

RQ1: How effective is our metamorphic testing approach for automati-
cally detecting inconsistencies in code generator families?

To answer this question, we evaluate the implementation of our approach by explaining

Shttps://store.fmi.uni-sofia.bg/fmi/statist/education/Virtual_Labs/tables/tables3.
html
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the design of our empirical study and the different methods we used to assess the effective-

ness of our approach. The experimental material is available for replication purposes'’.

4.4.1 Experimental setup
4.4.1.1 Code generators under test: Haxe compilers

In order to test the applicability of our approach, we conduct experiments on a popular
high-level programming language called Haxe and its code generators. Haxe is an open
source toolkit for cross-platform development which compiles to a number of different
programming platforms, including JavaScript, Flash, PHP, C++, C# and Java. Haxe
involves many features: the Haxe language, multi-platform compilers, and different native
libraries. The Haxe language is a high-level programming language which is strictly typed.
This language supports both functional programming and object-oriented programming
paradigms. It has a common type hierarchy, making certain API available on every targeted
platform. Haxe comes with a set of compilers that translate manually-written code (in
Haxe language) to different target languages and platforms. Haxe code can be compiled
for applications running on desktop, mobile and web platforms. It comes also with a set of
standard libraries that can be used on all supported targets and platform-specific libraries
for each of them.

The process of code transformation and generation can be described as following: Haxe
compilers analyze the source code written in Haxe language. Then, the code is checked and
parsed into a typed structure, resulting in a typed abstract syntax tree (AST). This AST is
optimized and transformed afterwards to produce source code for the target platform/lan-
guage. Haxe offers the option of choosing which platform to target for each program using
command-line options. Moreover, some optimizations and debugging information can be
enabled through command-line interface, but in our experiments, we did not turn on any
further options.

The Haxe code generators constitute the code generator family we would evaluate in
this work.

4.4.1.2 Cross-platform benchmark

One way to prove the effectiveness of our approach is to create benchmarks. Thus, we
use the Haxe language and its code generators to build a cross-platform benchmark. The

Onttps://testingcodegenerators.wordpress.com/
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proposed benchmark is composed of a collection of cross-platform libraries that can be
compiled to different targets. In these experiments, we consider a code generator family
composed of five target Haxe compilers: Java, JS, C++, CS, and PHP code generators. To
select cross-platform libraries, we explore github and we use the Haxe library repository!!.
So, we select seven libraries that provide a set of test suites with high code coverage scores.

In fact, each Haxe library comes with an API and a set of test suites. These tests,
written in Haxe, represent a set of unit tests that covers the different functions of the
API. The main task of these tests is to check the correct functional behavior of generated
programs. To prepare our benchmark, we remove all the tests that fail to compile to
our five targets (i.e., errors, crashes and failures) and we keep only test suites that are
functionally correct in order to focus only on the non-functional properties. Moreover, we
add manually new test cases to some libraries in order to extend the number of test suites.
The number of test suites depends on the number of existing functions within the Haxe
library.

Library | #TestSuites | Description

Color 19 Color conversion from/to any color space
Core 51 Provides extensions to many types
Hxmath A 2D/3D math library

Format Format library such as dates, number formats

6
4
Promise 5 Library for lightweight promises and futures
5
5

Culture Localization library for Haxe
Math Generation of random values

Table 4.3: Description of selected benchmark libraries

We use then these test suites to transform functional tests into stress tests. This can be
useful to study the impact of this load on the resource usage properties of the five target
versions. We run each test suite 1K times to get comparable values in terms of resource
usage. Table 4.3 describes the Haxe libraries that we have selected in this benchmark to
evaluate our approach and the number of test suites used per benchmark. In total, we
have 95 test suites to execute across all benchmark programs.

4.4.1.3 Evaluation metrics used

We evaluate the efficiency of generated code using the following non-functional metrics:

Unttp://thx-1ib.org/
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-Memory usage: It corresponds to the maximum memory consumption of the running
test suite. Memory usage is measured in MB

-Ezecution time: The execution time of test suites is measured in seconds.

We recall that our testing infrastructure is able to evaluate other non-functional prop-
erties of generated code such as code generation time, compilation time, code size, CPU
usage. We choose to focus, in this experiment, on the performance (i.e., execution time)
and resource usage (i.e., memory usage). Collecting resource usage metrics is ensured by
our monitoring infrastructure, presented in Chapter 6.

4.4.1.4 Setting up infrastructure

To assess our approach, we configure our previously proposed container-based infrastruc-
ture in order to run experiments on the Haxe case study. Figure 4.5 shows a big picture
of the testing infrastructure considered in these experiments.

Haxe Library
@ C# ’ + Test suites
Code Execution | |l«—— |Java' =] Code generation
TG+t and compilation Target Software
Platform

Runtime

@ Monitoring

%—a— 4

7 ) ) Software
Resource usage Incon3|stgn0|es Tester
data detection

Figure 4.5: Infrastructure settings for running experiments

First, a first component is created in where we install the Haxe code generators and
compilers. It takes as an input the Haxe library we would evaluate and the list of test
suites (Step 1). It produces as an output the source code files relative to the target
software platforms. Afterwards, generated files are compiled (if needed) and automatically
executed within the execution container (Step 2). This component is a pre-configured
container instance where we install the required execution environments such as PHP
interpreter, node (for JS), mono (for C#), etc. In the meantime, while running test suites
inside the container, we collect runtime resource usage data (Step 3). Chapter 6 presents
more details about the monitoring engine. Finally, in Step 4, we analyze the non-functional
data in order to detect code generator inconsistencies.
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4.4.2 Experimental methodology and results

In the following paragraphs, we report the methodology we used to answer RQ1 and the
results of our experiments.

4.4.2.1 Method

We now conduct experiments based on the new created benchmark libraries. The goal of
running these experiments is to observe and compare the behavior of generated code using
the defined MR in order to detect code generator inconsistencies.

Therefore, we set up, first, our container-based infrastructure as it is presented in
Section 4.3.1 in order to generate, execute, and collect the memory usage of our test
suites. Afterwards, we prepare and normalize the gathered data to make it valuable for
the statistical analysis. Then, we conduct the R-chart and PCA analysis as described in
Section 4.3.2.5 in order to analyze the performance and resource usage variations. This
will lead us to define an appropriate formula of the MR, used to automatically detect
inconsistencies within code generator families (Section 4.3.2.4). Finally, we report the
inconsistencies we have detected.

4.4.2.2 Results

R-chart results

The results of R-charts for the seven benchmark programs relative to the performance
and resource usage variations are reported in Figures 4.6 and 4.7. In Figure 4.6, we report
the performance variation corresponding to the range difference R between the maximum
and minimum execution time of each test suite across the five targets (Java, JS, C++, C#,
and PHP). Data is normalized, dividing all values by the minimum execution time per test
suite. The LCL for our experiments is always equal to 0 because the D3 constant value as
defined in Equation 4.5, is equal to zero according to the R-chart constants table!?. In fact,
the D3 constant changes depending on the number of subgroups. In our experiments, our
data record is composed of five subgroups corresponding to the five target programming
languages. The central line (in green) corresponds to R-bar. This value changes from one
benchmark to another depending on the average of R for all test suites in the benchmark.

2nttp://wuw.bessegato.com.br/UFJF/resources/table_of_control_chart_constants_old.pdf
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Figure 4.6: Performance variation of test suites across the different Haxe benchmarks
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As a consequence, UCL, which is a function of R-bar, changes as long as we add new
test suites to the experiments. UCL is equal to D, * R where Dy = 2.114 according to
the R-chart constants table. We recall that the average variation R-bar and the threshold
value UCL change dynamically by adding new test suites to the corresponding benchmark.
We note as well that these parameter values are appropriate to each benchmark program.
We made the threshold values specific for each benchmark because we believe that the
variation is highly dependent on the application domain and on the program under test.
The R-charts used for visualizing the memory usage variation follow the same concept as
we have just been describing for performance variation.

Results in Figure 4.6, show that most of the performance variations are in the interval
[0 — UCL], which corresponds to in-control variation zone as it is described in Section
4.3.2.5. However, we remark for several test suites that the performance variation becomes
relatively high (higher than the UC'L value of the corresponding benchmark program). We
detect 11 among 95 performance deviations lying in the out of control variation zone. For
the other test suites, the variation is even less than the total average variations R-bar.
There are only 7 test suites among the remaining 84 ones where the variation lies in the
interval [R — UCL). This variation is high but we are not detecting it as a performance
deviation because according to the R-chart, variation in this zone is still in-control. The 11
performance deviations we have detected can be explained by the fact that the execution
time of one or more test suites varies considerably from one language to another. This
argues the idea that the code generator has produced a suspect code behavior, which led
to a high performance variation. We provide later better explanation about the faulty code
generators.

Similarly, Figure 4.7 resumes the comparison results of test suites execution regarding
the memory usage. The variation in this experiment are more important than previous
results. This can be argued by the fact that the memory utilization and allocation patterns
are different from one language to another. Nevertheless, we can recognize some points
where the variation is extremely high. Thus, we detect 15 among 95 test suites that exceed
the corresponding UCL value. When the variation is below UCL, we detect 14 among
the 80 remaining test suites where the variation lies in the interval [R — UC'L], which is
relatively high. One of the reasons that caused this variation may occur when the test
suite executes some parts of the code (in a specific language) that strangely consume a lot
of resources. This may not be the case when the variation is lower than the R for example.

To resume, we have detected 11 extreme performance variations and 15 extreme memory
usage variations among the 95 executed test suites. We assume then, that faulty code
generators, in identified points, represent a threat for software quality since the generated
code has shown symptoms of poor-quality design.
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PCA results

We apply the PCA approach as an alternative to the R-chart approach. Figure 4.8
shows the dispersion of our data points in the PC subspace. PC1 et PC2 represent the
directions of our two first principal components, having the highest orthogonal variations.
Our data points represent the performance variation (Figure 4.8(a)) and the memory usage
variation (Figure 4.8(b)) of the 95 test suites we have executed. Variation points are colored
according to the benchmark program they belong to (displayed in the figure legend). At
the first glance, we can clearly see that the variation points are situated in the same area
except some points that lie far from this data cluster. In Figure 4.8(a), the pink points
corresponding to the Math benchmark show visually the largest variation. The three Core
test suites (in red) which are identified as performance deviations in R-chat, show also a
deviation in the PCA scatter plot. Points 91 relative to the Math benchmark is deviating
from the cloud point. However, in the R-chart diagram, it is not detected as a performance
deviation (see the test suite 3 of Figure 4.6(g)). In fact, this test suite takes more than 80
times to run. Compared to other test suites, the performance variation does not exceed
80. In effect, PCA performs a complete analysis of the whole data we have collected in all
benchmarks. Thus, variations are displayed with respect to all test suites variations in all
benchmarks. The variation evaluation is not limited within the benchmark program as we
used to do using R-charts. We report the same results in Figure 4.8(b) about the memory
usage variation in the PCA.

To confirm this observation, we present in Figure 4.9, the results of our outliers detection
approach. We identify 4 inconsistencies (or outliers) in each diagnostic plot. Inconsistencies
in Figure 4.8(a) are relative to the performance deviations. Points 31 and 32 correspond to
the test suites 12 and 11 in benchmark Core of Figure 4.6(a). Points 91 and 95 correspond
to the test suites 3 and 1 in benchmark Math of Figure 4.6(g). For memory usage variation,
we detect points 25, 29, 82, and 92 which corresponds relatively to the test suites 21 and
6 of benchmark Core, 2 of benchmark Promise, and 3 of benchmark Math. We can clearly
see that this technique helps to identify extreme-value outliers, which are mostly covered
by the R-chart approach. We used 97.5%-Quantile of the Chi-square distribution to define
the cutoff value which is commonly used in the literature | : ]. If we decrease
this value we will be able to detect more variation points.



98CHAPTER 4. AUTOMATIC NON-FUNCTIONAL TESTING OF CODE GENERATOR FAMILIES

s
£ 1
3 | Bench
10~ !
4 : . Color
< : . Core
1 . Culture
8 : I Format
1 . H
{ xmath
: [ wmath
: . Promise
6 131
1%
)
1
| L]
1
4 1
1
1
|
83 1
° 1
123
38
2l g1 ®
2824
iyl
ok - i 2 19 o
s ®
.
1
1
|
2 | .
1
1
1
|
-4 1
! Axis 1 (56.07%)
0 2 4 6 8 10 12 14
(a) Test suites relative to the execution times
B i
85 '
: [ J
S i Bench
~ 1
718 ! W color
< : - Core
1 . Culture
6 : . Format
: . Hxmath
5 : - Math
: . Promise
1
4 1
1 29
1
[ ]
3 I
1
1
1 40
2 1 °
1
\ 3
1 ! @ 32
1 69 24 L]
T ?. 59
o——14 PG —— . B o S B B i R
@ °
183
1 :. 51
| °
1
2 |
| 25
1 [ ]
-3 :
1
{ 82
1 [ J
4 | Axis 1 (51.45%)
-1 0 1 2 3 4 5 6 7 8 9 10 11

(b) Test suites relative to the memory consumptions

Figure 4.8: PCAs showing the dispersion of our data over the PC subspace



99

(¢} 0 — o
©
© - ° °
©
a a
(] o (%]
[} © ©
» IR
© S
o < - o
= = [e]
3 3
) )
___________________ e
_____________________________________________ .
o ~ 4 o
~ 4
° [e] ° o e}
o o o
oo °% 06009, ° o Oo oo o o . . o
W 9o o o O 000, ) ®o %25;@&@ O @ @ O ORRP LS B ©
© &% %% ¥ Oooo‘%)%oco mooémlsfip%o 9 oo © oOQ% o0 oéIIDCPOO 0o &0 00 o OOQ) °
o o
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
Object number Object number
(a) Performance deviations (b) Memory usage deviations

Figure 4.9: Diagnostic plots using score distance SD. The vertical lines indicate critical
values separating regular observations from outliers (97.5%)

Detected inconsistencies

Now that we have observed the performance and memory usage variations of test suites
execution, we can analyze the extreme points we have detected using R-chart to observe
in greater depth the source of such deviation. For that reason, we present in Table 4.4
and 4.5 the raw data values of these test suites leading to an extreme variation in terms of
execution time and memory usage. We report the inconsistencies gathered from the first
approach, R-chart.

Table 4.4 shows the execution time factor of each test suite execution in a specific target
language. This factor is scaled with respect to the lowest execution time among the five
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Benchamrk | Test Suite | Java | JS | CPP | CS | PHP | UCL(R) | Defective CG
Color TS19 1.90 | 1 | 237 | 331 61.84 | 13.08 PHP
1 [ 159 | 1.67 | 2.78 | 148.20 PHP
114 | 271 1 | 3.63 | 258.94 PHP
Core T54 198 (204 1 1336 26136 92 PHP
1T [ 1.05] 1.86 | 239 50.30 PHP
938 [ 143 1 |282] 51.72 PHP
Hxmath TS1 514 [110] 1 225 5056 | 297 PHP
Format TS2 116 | 1.27| 1 |3.35] 81.85 | 70.66 PHP
Promise TS2 152 | 1.85| 1 | 151 27.67 | 21.76 PHP
Culture TS5 1.62 | 1 | 1.27 |2.02 ] 27.29 | 14.47 PHP
Math TS1 415 | 1 | 541 | 470 | 481.68 | 273.24 PHP

Table 4.4: Raw data values of test suites that led to the highest variation in terms of
execution time

4

targets. We also report the UC'L defined per benchmark. In the last column, we report
the code generator that caused such large deviation. To do so, we designate by defective
CG, the code generator that led to a performance variation higher than the UCL value.

We can clearly see that the PHP code has a singular behavior regarding the performance
with a factor ranging from x27.29 for test suite 5 in benchmark Culture (Culture_TS5) to
x481.7 for Math_TS1. For example, if Math TS1 takes 1 minute to run in JS, the same
test suite in PHP will take around 8 hours to run which is a very large gap. The highest
factor detected for other languages is x5.41 which is not negligible but it represents a small
deviation compared to PHP deviations. While it is true that we are comparing different
versions of generated code, it was expected to get some variations while running test cases
in terms of execution time. However, in the case of PHP code generator, it is far to be
a simple variation, but it is a code generator inconsistency that led to such performance
regression.

Meanwhile, we gather information about the points that led to the highest variation in
terms of memory usage. Table 4.5 shows these results. Again, we can identify a singular
behavior of the PHP code regarding the memory usage with a factor ranging from x52.47
to x675. For other test suites versions, the factor varies from x1 to x160.84. We observe
as well a singular behavior of the Java code for Core_TS6, Core_TS32, and Promise TS2,
yielding to a variation higher than the UCL. These results prove that the PHP and Java
code generators are not always effective and they constitute a threat for the generated
software in terms of memory usage.
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Benchmark | Test suite | Java JS | CPP | CS | PHP | UCL | Defective CG

TS4 1 2.29 | 147 | 3.59 | 82.46 PHP
Color TS5 1 3.08 | 1.83 | 4.53 | 109.69 | 43.53 PHP
TS14 1 1.32 | 1.00 | 2.03 | 64.45 PHP

TS6 250.77 | T1.71 1 69.90 | 454.15 PHP & Java
TS20 2.31 1.34 1 3.27 | 296.10 PHP
TS21 11.90 1 14.63 | 36.18 | 620.22 PHP
TS22 1 2.70 | 1.74 | 4.69 | 247.32 PHP
Core TS32 | 27078 [ 2.27 | 1 | 5.61 | i53.37 | 003 Java
TS33 1.82 1.12 1 54.19 | 250.35 PHP
TS34 1 1.17 | 1.48 | 3.90 | 236.97 PHP
TS40 160.84 | 1.10 1 49.43 | 259.20 PHP
Hxmath TS2 1 1.16 | 1.91 | 2.82 | 296.16 | 181.11 PHP

Promise TS2 214.53 | 92.45 1 57.68 | 224.41 | 106.82 | PHP & Java
Culture TS4 2.75 1.01 | 2.52 1 52.47 | 34.63 PHP
Math TS3 1.29 1 1.72 | 3.60 | 675.00 | 464.80 PHP

Table 4.5: Raw data values of test suites that led to the highest variation in terms of

memory usage
4

To give more insights about the source of this issue, we provide in the following further
analysis of these inconsistencies.

4.4.2.3 Analysis

These inconsistencies need to be fixed by code generator creators in order to enhance the
quality of generated code (PHP code for example). Since we are proposing a black-box
testing approach, our solution is not able to provide more precise and detailed information
about the part of code causing these performance issues, which is one of the limitations of
our testing approach.

Therefore, to understand this unexpected behavior of the PHP code when applying the
test suite Core_T'S4 for example, we looked (manually) into the PHP code corresponding
to this test suite. In fact, we observe the intensive use of “arrays” in most of the func-
tions under test. Arrays are known to be slow in PHP and PHP library has introduced
much more advanced functions such as array_fill and specialized abstract types such as
“SplFizedArray”'® to overcome this limitation. So, by just changing these two parts in the

Bnttp://php.net/manual/fr/class.splfixedarray.php


http://php.net/manual/fr/class.splfixedarray.php

10€HAPTER 4. AUTOMATIC NON-FUNCTIONAL TESTING OF CODE GENERATOR FAMILIES

generated code, we improve the PHP code speed with a factor x5 which is very valuable.
We also reduce the memory usage of this test suite by a factor of x2.

In short, the lack of use of specific types, in native PHP standard library, by the PHP
code generator such as SplFizedArray shows a real impact on the non-functional behavior
of generated code. Obviously, the types used during code generation are not the best ones.
In contrast, selecting carefully the adequate types and functions to generate code can lead
to performance improvement.

4.4.3 Threats to validity

We resume, in the following paragraphs, external and internal threats that can be raised:

Ezxternal validity refers to the generalizability of our findings. In this study, we perform
experiments on Haxe and on a set of test suite selected from Github and from the Haxe
community. For instance, we have no guarantee that these libraries cover all Haxe language
features. Consequently, we cannot guarantee that our approach is able to find all the
code generators issues unless we develop a more comprehensive test suite. Moreover, the
threshold defined to detect the singular performance behavior has a huge impact on the
precision and recall of the proposed approach. Experiments should be replicated to other
case studies to confirm our findings.

Internal validity is concerned with the use of a container-based approach. Even if
it exists emulators such as Qemu'* that allow to reflect the behavior of heterogeneous
hardware, the chosen infrastructure has not been evaluated to test generated code that
target heterogeneous hardware machines. In addition, even though system containers are
known to be lightweight and less resource-intensive compared to full-stack virtualization,
we would validate the reliability of our approach by comparing it with a non-virtualized
approach in order to see the impact of using containers on the accuracy of the results.

Ynttps://goo.gl/SxKGle
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4.5 Conclusion

In this work we have described a metamorphic testing approach for automatic detection
of code generator inconsistencies. Our approach is based on the intuition that a code
generator is often a member of a family of code generators. Therefore, we benefit from
the existence of multiple generators with comparable functionality (i.e., code generator
families) to apply the idea of metamorphic testing, defining high-level test oracles (i.e.,
metamorphic relations) as test oracles. We define the metamorphic relation as a comparison
between the variations of performance and resource usage of code, generated from the same
code generator family. Any variation that exceeds a specific threshold value is automatically
detected as an anomaly. We apply two statistical methods (i.e., principal component
analysis and range-charts) in order to automate the inconsistencies detection. We evaluate
our approach by analyzing the performance of Haxe, a popular high-level programming
language that involves a set of cross-platform code generators. We evaluate the properties
related to the resource usage and performance for five different target software platforms.
We run a bench of test suites across 7 Haxe benchmark libraries in order to verify the
metamorphic relation (i.e., the performance and memory usage variation) for each of them.
Experimental results show that our approach is able to detect, among 95 executed test
suites, 11 performance and 15 memory usage inconsistencies, violating the metamorphic
relation. We answered RQ1, showing that our approach can automatically detect real
issues in code generator families. In particular, we show that we could find at least two
kinds of errors: the lack of use of a specific function and an abstract type that exist in
the standard library of the target language which can reduce the memory usage/execution
time of the resulting program. These issues need to be investigated and fixed by code
generator maintainers/experts.






Chapter 5

NOTICE: An approach for
auto-tuning compilers

Ensuring the code quality during software development is very important in software engi-
neering. It provides facilities to the software developers to maintain, test, and debug their
source code. When it comes to the compiler level, ensuring the quality of generated code
highly depends on the applied configurations (i.e., optimizations) to the compiler.

However, as discussed in Chapter 2, compiler tuning is challenging because of the
huge number of potential optimization combinations, making it hard and time-consuming
for software developers to find/construct the sequence of optimizations that satisfies user
specific non-functional requirements. It also requires a comprehensive understanding of
the underlying system architecture, the target application, and the available compiler
optimizations. We also note that when trying to optimize software performance, many
non-functional properties and design constraints must be involved and satisfied simultane-
ously to better optimize code. Sometimes, improving program execution time can result
in a high resource usage which may decrease system performance. For example, embed-
ded systems for which code is generated often have limited resources. Thus, optimization
techniques must be applied whenever possible to generate efficient code and improve per-
formance (in terms of execution time) with respect to available resources (CPU or memory
usage) | |. Therefore, it is important to construct optimization levels that represent
multiple trade-offs between non-functional properties, enabling the software designer to
choose among different optimal solutions which best suit the system specifications.

As discussed in the state of the art chapter, there are many approaches that address
these optimization issues in order to help users configuring (or tuning) compilers with
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respect to many non-functional properties such as code size, energy consumption, execution
time, etc.

This chapter presents an alternative approach to previous research efforts. We present
NOTICE, an approach for automatically tuning compilers. Our approach is based on
micro-services to automate the deployment and monitoring of different variants of op-
timized code. NOTICE is an on-demand tool that employs mono and multi-objective
evolutionary search algorithms to construct optimization sequences that satisfy user key
objectives (execution time, code size, compilation time, CPU or memory usage, etc.). In
this chapter, we make the following contributions:

e We introduce a novel formulation, compared to previous related work, of the com-
piler optimization problem using Novelty Search | ]. NS is applied to tackle the
problem of optimizations diversity and then, providing a new way to explore the huge
optimization search space.

e We also demonstrate that NOTICE can be used to automatically construct optimiza-
tion levels that represent optimal trade-offs between multiple non-functional proper-
ties. In our approach, we study the relationship between the runtime execution of
optimized code and the resource consumption profiles (CPU and memory usage) by
providing a fine-grained understanding and analysis of compilers behavior regarding
optimizations. Thus, we study the trade-offs execution time/memory usage, etc.

e We conduct an empirical study to evaluate the effectiveness of our approach by
verifying the optimizations performed by the GCC compiler. Our experimental re-
sults show that NOTICE is able to auto-tune compilers according to user choices
(heuristics, objectives, programs, etc.) and construct optimizations that yield to
better performance results than standard optimization levels using mono-objective
and multi-objective optimizations. We also demonstrate that NOTICE can be used
to automatically construct optimization levels that represent optimal trade-offs be-
tween the speedup and memory usage.

This chapter is organized as follows:

Section 5.1 describes the motivation and the challenges behind this work. We present
in this section the GCC compiler as a motivation example to better explain the problem.
The GCC compiler will also be used by NOTICE to evaluate and validate our approach.

In Section 5.2, the proposed search-based technique, i.e., Novelty Search (NS), is pre-
sented. We describe our NS adaptation to the compiler auto-tuning problem. Thus, we
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present in details the algorithm, the evaluation metrics and the iterative evolutionary pro-
cess.

In Section 5.3, we conduct an empirical study to evaluate our approach. Thus, we
evaluate the implementation of our approach by explaining the design of our experiments,
the research questions we set out to answer and the methods we used to answer these
questions.

Finally, discussions and concluding remarks are provided in Section 5.4.

5.1 Motivation

In the past, researchers have shown that the choice of optimization sequences may influ-
ence software performance | , |. As a consequence, software-performance
optimization becomes a key objective for both software industries and developers, which
are often willing to pay additional costs to meet specific performance goals, especially for
resource-constrained systems.

Universal and predefined sequences, e.g., O1 to O3 in GCC, may not always produce
good performance results and may be highly dependent on the benchmark and the source
code they have been tested on | : : |. Indeed, each one of these opti-
mizations interacts with the code and in turn, with all other optimizations in complicated
ways. Similarly, code transformations can either create or eliminate opportunities for other
transformations and it is quite difficult for users to predict the effectiveness of optimizations
on their source code program. As a result, most software engineering programmers that
are not familiar with compiler optimizations find difficulties to select effective optimization

sequences | ].
Machine -
—>  Code Evaluation

Compiler

{0000 1

Optimizations

A

Compiler auto-tuning

Source
Code [

Front-end
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Figure 5.1: Process of compiler optimization exploration
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To explore the large optimization space, users have to evaluate the effect of optimiza-
tions according to a specific non-functional objective (see Figure 5.1). Optimizations influ-
ence on different properties such as execution time, compilation time, resource consump-
tion, code size, etc. Thus, finding the optimal optimization combination for an input source
code is a challenging and time-consuming problem.

It is important to notice that performing optimizations to source code can be so ex-
pensive at resource usage that it may induce compiler bugs or crashes. Indeed, in a
resource-constrained environment and because of insufficient resources, compiler optimiza-
tions can lead to memory leaks or execution crashes | ]. Thus, it becomes necessary
to test the non-functional properties of optimized code and check its behavior regarding
optimizations which can lead to performance improvement or regression.

Example: GCC compiler

The GNU Compiler Collection, GCC, is a very popular collection of programming compil-
ers, available for different platforms. GCC exposes its various optimizations via a number
of flags that can be turned on or off through command-line compiler switches.

For instance, version 4.8.4 provides a wide range of command-line options that can be
enabled or disabled, including more than 150 options for optimization. The diversity of
available optimization options makes the design space for optimization level very huge,
increasing the need for heuristics to explore the search space of feasible optimization se-
quences. As it is shown in Table 5.1, we count 76 optimization flags that are enabled by the
four default optimization levels (O1, O2, O3, Ofast). Each standard level is composed by
a number of optimizations. These levels are defined by compiler designers based on their
experiences and preliminary experiments. The goal of defining these standard levels is to
build general and program independent sequences that represent trade-offs among several
non-functional properties.

For instance, O1 enables the optimization flags that reduce the code size and execution
time without performing any optimization that reduces the compilation time. It turns on
32 flags. O2 increases the compilation time and reduces the execution time of generated
code. It turns on all optimization flags specified by O1 plus 35 other options. O3 is
more aggressive level which enables all O2 options plus 8 more optimizations. Finally,
Ofast is the most aggressive level which enables optimizations that are not valid for all
standard-compliant programs. It turns on all O3 optimizations plus one more aggressive
optimization. This results in a huge space with 27¢ possible optimization combinations.



Table 5.1: Compiler optimization options enabled by GCC standard levels
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Level

Optimization option

Level

Optimization option

01

-fauto-inc-dec
-fcompare-elim
-fcprop-registers
-fdce

-fdefer-pop
-fdelayed-branch
-fdse
-fguess-branch-probability
-fif-conversion2
-fif-conversion
-fipa-pure-const
-fipa-profile
-fipa-reference
-fmerge-constants
-fsplit-wide-types
-ftree-bit-ccp
-ftree-builtin-call-dce
-ftree-ccp
-ftree-ch
-ftree-copyrename
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-slsr
-ftree-sra
-ftree-pta
-ftree-ter
-funit-at-a-time

03

-finline-functions
-funswitch-loops
-fpredictive-commoning
-fgcse-after-reload
-ftree-vectorize
-fvect-cost-model
-ftree-partial-pre
-fipa-cp-clone

Ofast

-ffast-math

02

-fthread-jumps
-falign-functions
-falign-jumps
-falign-loops
-falign-labels
-fcaller-saves
-fcrossjumping
-fese-follow-jumps
-fese-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize
-fexpensive-optimizations
-fgese
-fgcse-Im
-thoist-adjacent-loads
-finline-small-functions
-findirect-inlining
-fipa-sra
-foptimize-sibling-calls
-fpartial-inlining
-fpeephole2
-fregmove
-freorder-blocks
-freorder-functions
-frerun-cse-after-loop
-fsched-interblock
-fsched-spec
-fschedule-insns
-fschedule-insns2
-fstrict-aliasing
-fstrict-overflow
-ftree-switch-conversion
-ftree-tail-merge
-ftree-pre
-ftree-vrp
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Optimization flags in GCC can be turned off by using “fno-"+flag instead of “f’+flag in
the beginning of each optimization. We use this technique to play with compiler switches.

5.2 Evolutionary exploration of compiler optimizations

Many techniques (meta-heuristics, random search, etc.) can be used to explore the large set
of optimization combinations of modern compilers. In our approach, we particularly study
the use of the Novelty Search (NS) technique to identify the set of compiler optimization
options that optimize the non-functional properties of code.

5.2.1 Novelty search adaptation

In this work, we aim at providing a new alternative for choosing effective compiler opti-
mization options compared to the state of the art approaches. In fact, since the search
space of possible combinations is too large, we aim at using a new search-based technique
called Novelty Search | ] to tackle this issue. The idea of this technique is to explore
the search space of possible compiler flag options by considering sequence diversity as a
single objective. Instead of having a fitness-based selection that maximizes one of the
non-functional objectives, we select optimization sequences based on a novelty score show-
ing how different they are compared to all other combinations evaluated so far. NS is a
divergent evolutionary algorithm which rewards optimization sequences that diverge from
previously discovered ones. Thus, evolution can be viewed as a divergent process compared
to the traditional convergent approaches such GAs that exert the selection pressure based
on fitness values.

Moreover, we claim that the search towards effective optimization sequences is not
straightforward since the interactions between optimizations is too complex and difficult
to define. For instance, in a previous work [ ], Chen et al. showed that handful
optimizations may lead to higher performance than other techniques of iterative optimiza-
tion. In fact, the fitness-based search may be trapped into some local optima that cannot
escape | ]. This phenomenon is known as “diversity loss”. For example, if the
most effective optimization sequence that induces less execution time lies far from the
search space defined by the gradient of the fitness function, then some promising search
areas may not be reached. The issue of premature convergence to local optima has been
a common problem in evolutionary algorithms. As discussed in the state of the art, many
methods are proposed to overcome this problem | ]. However, all these efforts use a
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fitness-based selection to guide the search. Considering diversity as the unique objective
function to be optimized may be a key solution to this problem.

Therefore, during the evolutionary process, we select optimization sequences that re-
main in sparse regions of the search space in order to guide the search towards novelty.
In the meantime, we choose to gather the non-functional metrics relative to the resource
consumption (memory and CPU usage) of optimized code.

Algorithm 1: Novelty search algorithm for compiler optimization exploration
Require: Optimization options O
Require: Program C
Require: Novelty threshold 7
Require: Limit £
Require: Nearest neighbors K
Require: Number of evaluations N
Ensure: Best optimization sequence best_sequence
1. initialize_parameters(L, T, N, K)
create_archive(L)
generated_code < compile(”-00”,C)
minimum_usage < execute(generated_code)
population < random_sequences(O)
repeat
for sequence € population do
generated_code < compile(sequence,C)
memory_usage < execute(generated_code)
novelty_metric(sequence) < distF'romKnearest(archive, population, K)
if novelty_metric > T then
archive < archive U sequence
end if
if memory_usage < minimum_usage then
best_sequence < sequence
MINIMUM_USAGE <— MEMOTY_USAge
17: end if
18: end for
19:  new_population < generate_new_population(population)
20: generation < generation + 1
21: until generation = N
22. return best_sequence

© ® 3 > o~ wN

e
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Generally, NS acts like GAs (Example of GA use in | |). However, NS needs extra
changes. First, a new novelty metric is required to replace the fitness function. Then, an
archive must be added to the algorithm, which is a kind of a database that remembers
individuals that were highly novel when they were discovered in past generations. Algo-
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rithm 1 describes the overall idea of our NS adaptation. The algorithm takes as input a
source code program and a list of optimizations.

We initialize first the novelty parameters and create a new archive with limit size L
(lines 1 & 2). In this example, we gather information about memory consumption. In lines
3 & 4, we compile and execute the input program without any optimization (O0). Then,
we measure the resulting memory consumption. By doing so, we will be able to compare
it to the memory consumption of new generated solutions. The best solution is the one
that yields to the lowest memory consumption compared to OO0 usage. Before starting
the evolutionary process, we generate an initial population with random sequences. Lines
6-21 encode the main NS loop, which searches for the best sequence in terms of memory
consumption. For each sequence in the population, we compile the input program, execute
it and evaluate the solution by calculating the average distance from its k-nearest neighbors.
Sequences that get a novelty metric higher than the novelty threshold T are added to the
archive. T defines the threshold for how novel a sequence has to be before it is added to
the archive. In the meantime, we check if the optimization sequence yields to the lowest
memory consumption so that, we can consider it as the best solution. Finally, genetic
operators (mutation and crossover) are applied afterwards to fulfill the next population.
This process is iterated until reaching the maximum number of evaluations.

5.2.1.1 Optimization sequence representation

For our case study, a candidate solution represents all compiler switches that are used in
the four standard optimization levels (O1, O2, O3 and Ofast). Thereby, we represent this
solution as a vector where each dimension is a compiler flag. The variables that represent
compiler options are represented as genes in a chromosome. Thus, a solution represents the
CFLAGS value used by GCC to compile programs. A solution has always the same size,
which corresponds to the total number of involved flags. However, during the evolutionary
process, these flags are turned on or off depending on the mutation and crossover operators
(see example in Figure 5.2). As well, we keep the same order of invoking compiler flags
since that does not affect the optimization process and it is handled internally by GCC.

5.2.1.2 Novelty metric

The Novelty metric expresses the sparseness of an input optimization sequence. It measures
its distance to all other sequences in the current population and to all sequences that were
discovered in the past (i.e., sequences in the archive). We can quantify the sparseness of a
solution as the average distance to the k-nearest neighbors.
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gcc —c test.c —03 -fno-comp?re-elim -fno-cprop-registers -fdce -fdef(‘e’r-pop -fno-dse ... —o test.o

ThTeTrfthel]

Figure 5.2: Solution representation

If the average distance to a given point’s nearest neighbors is large then it belongs to
a sparse area and will get a high novelty score. Otherwise, if the average distance is small
so it belongs certainly to a dense region then it will get a low novelty score. The distance
between two sequences is computed as the total number of symmetric differences among
optimization sequences. Formally, we define this distance as follows :

distance(S1,52) = |S1 A S2| (5.1)

where S1 and S2 are two selected optimization sequences (solutions). The distance
value is equal to 0 if the two optimization sequences are similar and higher than 0 if there
is at least one optimization difference. The maximum distance value is equal to the total
number of input flags.

To measure the sparseness of a solution, we use the previously defined distance to
compute the average distance of a sequence to its k-nearest neighbors. In this context, we
define the novelty metric of a particular solution as follows:

k
1
NM(S) = T Z distance(S, ;) (5.2)
i=1

where y; is the " nearest neighbor of the solution S within the population and the
archive of novel individuals.

5.2.2 Novelty search for multi-objective optimization

A multi-objective approach provides a trade-off between two objectives where the devel-
opers can select their desired solution from the Pareto-optimal front. The idea of this
approach is to use multi-objective algorithms to find trade-offs between non-functional
properties of generated code such as <FEzecutionTime—MemoryUsage>. The correlations
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we are trying to investigate are more related to the trade-offs between resource consumption
and execution time.

For instance, NS can be easily adapted to multi-objective problems. In this adaptation,
the SBSE formulation remains the same as described in Algorithm 1. However, in order
to evaluate the new discovered solutions, we have to consider two main objectives and
add the non-dominated solutions to the Pareto non-dominated set. We apply the Pareto
dominance relation to find solutions that are not Pareto dominated by any other solution
discovered so far, like in NSGA-II | , ]. Then, this Pareto non-dominated
set is returned as a result. There is typically more than one optimal solution at the end
of NS. The maximum size of the final Pareto set cannot exceed the size of the initial
population.

5.3 Evaluation

So far, we have presented a sound procedure for auto-tuning compilers through the use
of NS. In this section, we evaluate the implementation of our approach by explaining the
design of our empirical study; the research questions we set out to answer and different
methods we used to answer these questions. The experimental material is available for
replication purposes'.

5.3.1 Research questions

Our experiments aim at answering the following research questions:

RQ1: Mono-objective SBSE Validation. How does the proposed diversity-based
exploration of optimization sequences perform compared to other mono-objective algorithms
in terms of memory and CPU consumption, execution time, etc.?

RQ2: Sensitivity. How sensitive are input programs to compiler optimization op-
tions?

RQ3: Impact of optimizations on resource consumption. How compiler opti-
mizations impact on the non-functional properties of generated programs?

RQ4: Trade-offs between non-functional properties. How can multi-objective
approaches be useful to find trade-offs between non-functional properties?

'https://noticegcc.wordpress.com/
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To answer these questions, we conduct several experiments using NOTICE to validate
our global approach for compiler auto-tuning.

5.3.2 Experimental setup
5.3.2.1 Programs used in the empirical study

To explore the impact of compiler optimizations a set of input programs are needed. To
this end, we use a random C program generator called Csmith | ]. Csmith is a tool
that can generate random C programs that statically and dynamically conform to the C99
standard. It has been widely used to perform functional testing of compilers | ,

, | but not the case for checking non-functional requirements. Csmith can
generate C programs that use a much wider range of C features including complex control
flow and data structures such as pointers, arrays, and structs. Csmith programs come with
their test suites that explore the structure of generated programs (i.e., high quality code
coverage). Yang et al. | | argue that Csmith is an effective bug-finding tool because
it generates tests that explore atypical combinations of C language features. They also
argue that larger programs are more effective for functional testing. Thus, we run Csmith
for 24 hours and gathered the largest generated programs. We depicted 111 C programs
with an average number of source lines of 12K. 10 programs are used as training set for
RQ1, 100 other programs to answer RQ2 and one last program to run RQ4 experiment.
The selected Csmith programs are described in more details at [mbo].

Moreover, we run experiments on commonly used benchmarks named Collective Bench-
mark (cBench) | |. It is a collection of open-source sequential programs in C targeting
specific areas of the embedded market. It comes with multiple datasets assembled by the
community to enable realistic benchmarking and research on program and architecture op-
timization. cBench contains more than 20 C programs. Table 5.2 describes the programs
we have selected from this benchmark to evaluate our approach. These real world bench-
mark programs are used to study the influence of compiler optimizations on the resource
usage in RQ3 experiments.

5.3.2.2 Parameters tuning

An important aspect for meta-heuristic search algorithms lies in the parameters tuning
and selection, which are necessary to ensure not only fair comparison, but also for poten-
tial replication. NOTICE implements three mono-objective search algorithms (Random



116 CHAPTER 5. NOTICE: AN APPROACH FOR AUTO-TUNING COMPILERS

Program Source lines | Description
automative_susan_s 1376 Image recognition package
bzip2e 5125 Compress any file source
code
bzip2d 5125 Decompress zipped files
office_rsynth 4111 Text to speech program pro-

duced by integrating vari-
ous pieces of code

consumer_tiffmedian 15870 Apply the median cut algo-
rithm to data in a TIFF file

consumer_tiffdither 15399 Convert a grey-scale image
to bi-level

Table 5.2: Description of selected benchmark programs

Search (RS), NS, and GA | ]) and two multi-objective optimizations (NS and NSGA-
IT | |). Each initial population/solution of different algorithms is completely ran-
dom. The stopping criterion is when the maximum number of fitness evaluations is reached.
The resulting parameter values are listed in Table 5.3. The same parameter settings are
applied to all algorithms under comparison.

NS, which is our main concern in this work, is implemented as described in Section
5.2.1. During the evolutionary process, each solution is evaluated using the novelty metric.
Novelty is calculated for each solution by taking the mean of its 15 nearest optimization
sequences in terms of similarity (considering all sequences in the current population and
in the archive). Initially, the archive is empty. Novelty distance is normalized in the range
[0-100]. Then, to create next populations, an elite of the 10 most novel organisms is copied
unchanged, after which the rest of the new population is created by tournament selection
according to novelty (tournament size = 2). Standard genetic programming crossover
and mutation operators are applied to these novel sequences in order to produce offspring
individuals and fulfill the next population (crossover = 0.5, mutation = 0.1). In the
meantime, individuals that get a score higher than 30 (threshold T), they are automatically
added to the archive as well. In fact, this threshold is dynamic. Every 200 evaluations, we
check how many individuals have been copied into the archive. If this number is below 3,
the threshold is increased by multiplying it by 0.95, whereas if solutions added to archive
are above 3, the threshold is decreased by multiplying it by 1.05. Moreover, as the size of
the archive grows, the nearest-neighbor calculation that determines the novelty scores for
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Table 5.3: Algorithm parameters

Parameter Value | Parameter Value
Novelty nearest-k | 15 Tournament size 2
Novelty threshold | 30 Mutation prob. 0.1
Max archive size | 500 Crossover 0.5
Population size 50 Elitism 10
Individual length | 76 Scaling archive prob. | 0.05

individuals becomes more computationally demanding. So, to avoid having low accuracy
of novelty, we choose to limit the size of the archive (archive size = 500). Hence, it follows
a first-in first-out data structure which means that when a new solution gets added, the
oldest solution in the novelty archive will be discarded. Thus, we ensure individual diversity
by removing old sequences that may no longer be reachable from the current population.

Algorithm parameters were tuned individually in preliminary experiments. The param-
eter values chosen are the mostly used in the literature | , |. The value that
yielded the highest performance score was chosen.

5.3.2.3 Evaluation metrics used

For mono-objective algorithms, we use to evaluate solutions using the following metrics:

-Memory Consumption Reduction (MR): corresponds to the percentage ratio of memory
usage reduction of running container over the baseline. The baseline in our experiments
is OO0 level, which means a non-optimized code. Larger values for this metric mean better
performance. Memory usage is measured in bytes.

-CPU Consumption Reduction (CR): corresponds to the percentage ratio of CPU usage
reduction over the baseline. Larger values for this metric mean better performance. The
CPU consumption is measured in seconds, as the CPU time.

-Speedup (S): corresponds to the percentage improvement in execution speed of an
optimized code compared to the execution time of the baseline version. Program execution
time is measured in seconds.

5.3.2.4 Setting up infrastructure

To answer the previous research questions, we configure NOTICE to run different ex-
periments. Figure 5.3 shows a big picture of the testing and monitoring infrastructure
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considered in these experiments.

Program(s) under test

'
@ Code Compilation @
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Figure 5.3: NOTICE experimental infrastructure

First, a meta-heuristic (mono or multi-objective) is applied to generate specific opti-
mization sequences for the GCC compiler (step 1). During all experiments, we use GCC
4.8.4, as it is introduced in the motivation section, although it is possible to choose another
compiler version using NOTICE since the process of optimizations extraction is done au-
tomatically. Then, we compile the input source code program using the set of generated
optimizations (step 2). Afterwards, we execute the optimized code within a new container
instance (step 3). While running the optimized code, we collect resource usage metrics
(step 4). More details about the runtime monitoring engine are provided in Chapter 6.
Finally, NOTICE evaluates the set of optimizations, giving a performance/resource usage
score to the current solution (step 5). The choice of non-functional metrics depends on
experiment objectives (Memory improvement, speedup, trade-offs, etc.).

5.3.3 Experimental methodology and results

In the following paragraphs, we report the methodology and results of our experiments.
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5.3.3.1 RQ1. Mono-objective SBSE validation

Method To answer the first research question RQ1, we conduct a mono-objective search
for compiler optimization exploration in order to evaluate the non-functional properties
of optimized code. Thus, we generate optimization sequences using three search-based
techniques (RS, GA, and NS) and compare their performance results to standard GCC
optimization levels (01, 02, O3, and Ofast).

In this experiment, we choose to optimize for execution time (S), memory usage (MR),
and CPU consumption (CR). Each non-functional property is improved separately and
independently of other metrics. We recall that other properties can be also optimized
using NOTICE (e.g., code size, compilation time, etc.), but in this experiment, we focus
only on three properties.

Training set
programs
— Optimizati Search for best
Optimizations S best Unseen Non-functional
- i sequence Improvement
_ Non-functional sequence q programs p

Metric

Figure 5.4: Evaluation strategy to answer RQ1 and RQ2

As it is shown on the left side of Figure 5.4, given a list of optimizations and a non-
functional objective, we use NOTICE to search for the best optimization sequence across
a set of input programs that we call “the training set”. This “training set” is composed
of random Csmith programs (10 programs). We apply then generated sequences to these
programs. Therefore, the code quality metric, in this setting, is equal to the average
performance improvement (S, MR, or CR) and that, for all programs under test.

To summarize, in this experiment we aim to: (1) compare the performance of our
proposed diversity-based exploration of optimization sequences (NS) to GA and RS; and
(2) demonstrate that NOTICE is able to find the optimal solution relative to the input
training set.

Results Table 5.4 reports the comparison results of three non-functional properties CR,
MR, and S. At the first glance, we can clearly see that all search-based algorithms outper-
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Table 5.4: Results of mono-objective optimizations

Ol |02 |03 [Ofast | RS | GA | NS
S 1.051 | 1.107 | 1.107 | 1.103 | 1.121 | 1.143 | 1.365
MR(%) | 48 | -84 |42 |61 10.70 | 15.2 | 15.6
CR(%) |-13 |5 |34 |- 182 | 222 | 235

form standard GCC levels with minimum improvement of 10% for memory usage and 18%
for CPU time (when applying RS).

Our proposed NS approach has the best improvement results for three metrics with
1.365 of speedup, 15.6% of memory reduction and 23.5% of CPU time reduction across all
programs under test. NS is clearly better than GA in terms of speedup. However, for MR
and CR, NS is slightly better than GA with 0.4% improvement for MR and 1.3% for CR.
RS has almost the lowest optimization performance but is still better than standard GCC
levels.

We remark as well that applying standard optimizations has an impact on the execution
time with a speedup of 1.107 for O2 and O3. Ofast has the same impact as O2 and O3 for
the execution speed. However, the impact of GCC levels on resource consumption is not
always efficient. O2, for example, increases resource consumption compared to O0 (-8.4%
for MR and -5% for CR).

This can be explained by the fact that standard GCC levels apply some aggressive
optimizations that increase the performance of generated code and deteriorate system
resources.

Key findings for RQ1.

— Best discovered optimization sequences using mono-objective search techniques always
provide better results than standard GCC optimization levels.

— Novelty Search is a good candidate to improve code in terms of non-functional properties
since it is able to discover optimization combinations that outperform RS and GA.

5.3.3.2 RQ2. Sensitivity

Method Another interesting experiment is to test the sensitivity of input programs to
compiler optimizations and evaluate the general applicability of best optimal optimization
sets, previously discovered in RQ1. These sequences correspond to the best generated
sequences using NS for the three non-functional properties S, MR and CR (i.e., sequences
obtained in column 8 of Table 5.4).
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Thus, we apply best discovered optimizations in RQ1 to new unseen Csmith (100 new
random programs) and we compare then, the performance improvement across these pro-
grams (see right side of Figure 5.4). We also apply standard optimizations, O2 and O3,
to new Csmith programs in order to compare the performance results. The idea of this
experiment is to test whether new generated Csmith programs are sensitive to previously
discovered optimizations or not.

If so, this will be useful for compiler users and researchers to use NOTICE in order to
build general optimization sequences from their representative training set programs.

Speedup CR MR

1.7 70 35
16 60 30
1.2 50 25
13 40 20
1.2 30 15
11 20 10

1 10 5
0.9 0 0

02 03 NS 02 03 NS -5 2 NS

Figure 5.5: Boxplots of the obtained performance results across 100 unseen Csmith pro-
grams, for each non-functional property: Speedup (S), memory (MR) and CPU (CR) and
for each optimization strategy: O2, O3 and NS

Results Figure 5.5 shows the distribution of memory, CPU and speedup improvement
across 100 new Csmith programs. For each non-functional property, we apply O2, O3 and
best NS sequences. Speedup results show that the three optimization strategies lead to
almost the same distribution with a median value of 1.12 for speedup. This can be explained
by the fact that NS might need more time to find the sequence that best optimizes the
execution speed. Meanwhile, O2 and O3 have also the same impact on CR and MR which
is almost the same for both levels (CR median value is 8% and around 5% for MR).

However, the impact of applying best generated sequences using NS clearly outperforms
02 and O3 with almost 10% of CPU improvement and 7% of memory improvement. This
proves that NS sequences are efficient and can be used to optimize resource consumption of
new Csmith programs. This result also proves that Csmith code generator applies the same
rules and structures to generate C code. For this reason, applied optimization sequences
always have a positive impact on the non-functional properties.



122 CHAPTER 5. NOTICE: AN APPROACH FOR AUTO-TUNING COMPILERS

Key findings for RQ2.

— It is possible to build general optimization sequences that perform better than standard
optimization levels

— Best discovered sequences in RQ1 can be mostly used to improve the memory and CPU
consumption of Csmith programs. To answer RQ2, Csmith programs are sensitive to
compiler optimizations.

5.3.3.3 RQ3. Impact of optimizations on resource usage

In this experiment, we evaluate the impact of applying the standard optimization levels
and the new discovered sequences on the resource usage. We also study the correlation
between speedup and resource consumption of generated code. The idea of this experiment
is to: (1) prove, or not, the usefulness of involving resource usage metrics as key objectives
for performance improvement; (2) the need, or not, of multi-objective search strategy to
handle the different non-functional requirements such as resource usage and performance
properties.

In the following, we describe two methods to run experiments. The first is based on
Csmith programs and the second is based on Cbench programs.

Method 1 In this experiment, we use NOTICE to provide an understanding of opti-
mizations impact, in terms of resource consumption, when trying to optimize for execution
time. Thus, we choose one instance of obtained results in RQ1 related to the best speedup
improvement (i.e., results obtained in line 1 of Table 5.4) and we study the impact of
speedup improvement on memory and CPU consumption. We also compare the resource
usage data to standard GCC levels as they were presented in Table 5.4. Improvements are
always calculated over the non-optimized version (O0). The following measurements are
based on the training set of 10 Csmith programs.

Results 1 Figure 5.6 shows the impact of speedup optimization on resource consumption.
For instance, O2 and O3 that led to the best speedup improvement among standard opti-
mization levels in RQ1, present opposite impact on resource usage. Applying O2 induces
-8.4% of MR and -5% of CR. However, applying O3 improves MR and CR respectively
by 3.4% and 4.2%. Hence, we note that when applying standard levels, there is no clear
correlation between speedup and resource usage since compiler optimizations are generally
used to optimize the execution speed and never evaluated to reduce system resources.
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On the other hand, the outcome of applying different mono-objective algorithms for
speedup optimization also proves that resource consumption is always in conflict with
execution speed. The highest MR and CR is reached using NS with respectively 1.2% and
5.4%. This improvement is considerably low compared to scores reached when we have
applied resource usage metrics as key objectives in RQ1 (i.e., 15.6% for MR and 23.5% for
CR). Furthermore, we note that generated sequences using RS and GA have a high impact
on system resources since all resource usage values are worse than the baseline.

These results agree to the idea that compiler optimizations do not put too much em-
phasis on the trade-off between execution time and resource consumption.
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Figure 5.6: Impact of speedup improvement on memory and CPU consumption for each
optimization strategy

Method 2 Now, we study the impact of applying standard levels (01, 02, O3, Ofast) on
the memory usage of 5 different Cbench programs. We compare the results with solutions
generated using NOTICE, having the best memory consumption reduction (i.e., generated
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by NS). Figure 5.7 shows this comparison across different benchmark programs. It presents
the percentage of saved memory by standard and novelty optimizations over OO0 level (no
optimization applied).
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Figure 5.7: Evaluating the amount of saved memory after applying standard optimization
options compared to best generated optimization using NS

Results 2 As expected, the results show that NS clearly outperforms standard optimiza-
tions for all benchmark programs. Using NS, we are able to reach a maximum memory
consumption reduction of almost 26% for the case rsynth program against a maximum of
18% reduction using Ofast option. We remark as well that the impact of applying stan-
dard optimizations on memory consumption for each program differs from one program to
another. Using O1 for bzip2e and O2, O3 for tiffmedian increase the memory consumption
by almost 13 %. This agrees to the idea that standard optimizations does not produce
always the same impact results on resource consumption and may be highly dependent on
the benchmark and the source code they have been tested on.
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Key findings for RQ3.

— Optimizing software performance can induce undesirable effects on system resources.
— A trade-off is needed to find a correlation between both software performance and
resource usage.

5.3.3.4 RQ4. Trade-offs between non-functional properties

Method Finally, to answer RQ4, we use NOTICE again to find trade-offs between non-
functional properties. In this experiment, we choose to focus on the trade-off < ExecutionTime—
MemoryUsage>. In addition to our NS adaptation for multi-objective optimization, we
implement a commonly used multi-objective approach namely NSGA-IT | . We
denote our NS adaptation by NS-II. We recall that NS-II is not a multi-objective approach
as NSGA-II. It uses the same NS algorithm. However, in this experiment, it returns the
optimal Pareto front solutions instead of returning one optimal solution relative to one
goal. Apart from that, we apply different optimization strategies to assess our approach.
First, we apply standard GCC levels. Second, we apply best generated sequences relative
to memory and speedup optimization (the same sequences that we have used in RQ2).
Thus, we denote by NS-MR the sequence that yields to the best memory improvement
MR and NS-S to the sequence that leads to the best speedup. This is useful to compare
mono-objective solutions to new generated ones. In this experiment, we assess the efficiency
of generated sequences using only one Csmith program. We evaluate the quality of the
obtained Pareto optimal optimization based on raw data values of memory and execution
time. Then, we compare qualitatively the results by visual inspection of the Pareto fron-
tiers. The goal of this experiment is to check whether it exists, or not, a sequence that can
reduce both execution time and memory usage. We report the comparison results of our
NS adaptation for optimizations generation to the current state-of-the-art multi-objective
approaches namely NSGA-II.

Results Figure 5.8 shows the Pareto optimal solutions that achieved the best perfor-
mance assessment for the trade-oft <FzecutionTime-MemoryUsage>. The horizontal axis
indicates the memory usage in raw data (in Bytes) as it is collected using NOTICE. In sim-
ilar fashion, the vertical axis shows the execution time in seconds. Furthermore, the figure
shows the impact of applying standard GCC options and best NS sequences on memory
and execution time.

Based on these results, we can see that NSGA-II performs better than NS-II. In fact,
NSGA-II yields to the best set of solutions that presents the optimal trade-off between the
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two objectives. Then, it is up to the compiler user to use one solution from this Pareto
front that satisfies his non-functional requirements (six solutions for NSGA-II and five for
NS-II). For example, he could choose one solution that maximizes the execution speed
in favor of memory reduction. On the other side, NS-II is capable to generate only one
non-dominated solution. For NS-MR, it reduces as expected the memory consumption
compared to other optimization levels. The same effect is observed on the execution time
when applying the best speedup sequence NS-S. We also note that all standard GCC levels
are dominated by our different heuristics NS-II, NSGA-II, NS-S and NS-MR.

This agrees to the claim that standard compiler levels do not present a suitable trade-off
between execution time and memory usage.
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Figure 5.8: Comparison results of obtained Pareto fronts using NSGA-II and NS-II
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Key findings for RQ4.

— NOTICE is able to construct optimization levels that represent optimal trade-offs be-
tween non-functional properties.

— NS is more effective when it is applied to mono-objective search.

— NSGA-II performs better than our NS adaptation for multi-objective optimization.
However, NS-II performs clearly better than standard GCC optimizations and previously
discovered sequences in RQ1.

5.3.4 Discussions

Through these experiments, we showed that NOTICE is able to provide facilities to com-
piler users to test the non-functional properties of generated code. It provides a support
to search for the best optimization sequences through mono-objective and multi-objective
search algorithms. NOTICE infrastructure has shown its capability and scalability to sat-
isfy user requirements and key objectives in order to produce efficient code in terms of
non-functional properties.

During all experiments, standard optimization levels have been fairly outperformed by
our different heuristics. Moreover, we have also shown (in RQ1 and RQ3) that optimizing
for performance may be, in some cases, greedy in terms of resource usage. For example,
the impact of standard optimization levels on resource usage is not always efficient even
though it leads to performance improvement. Thus, compiler users can use NOTICE
to evaluate the impact of optimizations on the non-functional properties and build their
specific sequences by trying to find trade-offs among these non-functional properties (RQ4).

We would notice that for RQ1, experiments take about 21 days to run all algorithms.
This run time might seem long but, it should be noted that this search can be conducted
only once, since in RQ2 we showed that best gathered optimizations can be used with
unseen programs of the same category as the training set, used to generate optimizations.
This has to be proved with other case studies. Multi-objective search as conducted in
RQ4, takes about 48 hours, which we believe is acceptable for practical use. Nevertheless,
speeding up the search speed may be an interesting feature for future research.
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5.3.5 Threats to validity

Any automated approach has limitations. We resume, in the following paragraphs, external
and internal threats that can be raised:

Ezxternal validity refers to the generalizability of our findings. In this study, we perform
experiments on random programs using Csmith and we use iterative compilation techniques
to produce best optimization sequences. We believe that the use of Csmith programs as
input programs is very relevant because compilers have been widely tested across Csmith
programs | , |. Csmith programs have been used only for functional testing,
but not for non-functional testing. However, we cannot assert that the best discovered
set of optimizations can be generalized to industrial applications since optimizations are
highly dependent on input programs and on the target architecture. In fact, experiments
conducted on RQ1 and RQ2 should be replicated to other case studies to confirm our
findings; and build general optimization sequences from other representative training set
programs chosen by compiler users.

Internal validity is concerned with the causal relationship between the treatment and
the outcome. Meta-heuristic algorithms are stochastic optimizers, they can provide differ-
ent results for the same problem instance from one run to another. Are we providing a
statistically sound method or it is just a random result? Due to time constraints, we run all
experiments only once. Following the state-of-the-art approaches in iterative compilation,
previous research efforts | , ] did not provide statistical tests to prove
the effectiveness of their approaches. This is because experiments are time-consuming.
However, we can deal with these internal threats to validity by performing at least five
independent simulation runs for each problem instance.

5.3.6 Tool support overview

NOTICE provides also a GUI interface. The goal of this tool support is to help users
to easily use NOTICE and finely auto-tune GCC compilers. This tool has been used to
answer all previous research questions.

As shown in Figure 5.9, NOTICE provides different features to help compiler users to:

e Select the input program under test: by generating a new Csmith program
or by selecting an existing C program such as Cbench benchmark programs. The
generation of a new Csmith program is done randomly.
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Figure 5.9: Snapshot of NOTICE GUI interface

e Select datasets: In case the selected program requires a dataset such as the case
for Cbench programs, NOTICE allows the user to choose the dataset for the selected
program. We recall that Cbench comes with a set of 20 datasets for each benchamrk
program.

e Select the target computer architecture: choose the processor architecture
where the experiments will be running such as x64, x86, ARM. In our experiments,
we use native GCC compiler of the host machine, with x64 architecture.

e Define the compiler version: For now, NOTICE supports all GCC compiler
versions from 3.x to 5.x. The process of extracting the target optimizations to evolve
is done automatically (i.e., optimizations enabled by O1, 02, O3 and Ofast)

e Configure the monitoring components: This refers to the containers needed
to extract all the information about the resource consumption. Configuring these
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components is possible with NOTICE such as image versions, labels, ports, logins,
passwords.

e Choose ip address of the cloud host machine: NOTICE allows to run experi-
ments remotely thanks to its micro-service infrastructure. Thus, we enable the user
to select the ip of the remote machine.

e Define resource constraints to running container: In case we would run op-
timizations under resource constraints, it is possible to define memory and CPU
constraints. By default, these option are disabled.

e Choose the search method: The user can select either a mono objective or multi-
objective search.

e Choose the meta-heuristic algorithm: NOTICE supports GA, RS, and NS for
mono objective search and NS, RS, and NSGA-II for multi-objective optimization.

e Choose the number of iterations: The user can define the number of iterations for
each algorithm which corresponds to the number of generated optimization sequences.

e Choose the search time: Instead of limiting the number of iterations, the user
can fix a limited tuning time (in hours).

e Choose the tuning goals: The goal can be reducing the execution time, memory,
CPU, code size, or compilation time. For multi objective search, users can choose
trade-offs between these objectives.

e Edit evolutionary algorithm settings: Tuning the evolutionary parameters (showed
in Table 5.3) such as the population size, the novelty search settings, mutation and
crossover probabilities, etc.

The console output (i.e., the execution result of this tool) displays at the end, the
comparison results of standard optimization levels to the new discovered solutions.



131

5.4 Conclusion

Modern compilers come with huge number of optimizations, making complicated for com-
piler users to find best optimization sequences. Furthermore, auto-tuning compilers to
meet user requirements is a difficult task since optimizations may depend on different
properties (e.g., platform architecture, software programs, target compiler, optimization
objective, etc.). Hence, compiler users merely use standard optimization levels (O1, 02,
O3 and Ofast) to enhance the code quality without taking too much care about the impact
of optimizations on system resources.

In this chapter, we have introduced first a novel formulation of the compiler optimiza-
tion problem based on Novelty Search. The idea of this approach is to drive the search
for best optimizations toward novelty. Our work presents the first attempt to introduce
diversity in iterative compilation. Experiments have shown that Novelty Search can be
easily applied to mono and multi-objective search problems. In addition, we have reported
the results of an empirical study of our approach compared to different state-of-the-art
approaches, and the obtained results have provided evidence to support the claim that
Novelty Search is able to generate effective optimizations. Second, we have presented an
automated approach for automatic extraction of non-functional properties of optimized
code, called NOTICE. NOTICE applies different heuristics (including Novelty Search) and
performs compiler auto-tuning through the monitoring of generated code in a controlled
sand-boxing environment. In fact, NOTICE uses a set of micro-services to provide a fine-
grained understanding of optimization effects on resource consumption. We evaluated the
effectiveness of our approach by verifying the optimizations performed by GCC compiler.
Then, we studied the impact of optimizations on memory consumption and execution time.
Results showed that our approach is able to automatically extract information about mem-
ory and CPU consumption. We were also able to find better optimization sequences than
standard GCC optimization levels and construct optimizations that present optimal trade-
offs between speedup and memory usage.






Chapter 6

A lightweight execution environment
for automatic generators testing

6.1 Introduction

Software platforms diversity and hardware heterogeneity, as discussed in Chapter 2, con-
stitutes a major obstacle for software testing. In fact, running tests requires many envi-
ronment configurations and settings in order to test the whole application. For example,
testing a web application requires the installation of the Maven dependencies, web server,
libraries, etc. When software developers upgrades the web server version for example,
they need to rebuild the application and run the same integration tests in order to check
that no errors have been incorporated. Thus, testing applications using different execution
environments and system settings becomes very time consuming and tedious.

For instance, as we discussed in Chapter 4 and 5, to evaluate the automatically gener-
ated code (by either code generators or compilers), we use to generate code, compile it, and
then run test cases. To do so, different system configurations were required to ensure these
steps such as installing the generator version (GCC or Haxe versions), install interpreters,
compilers, Maven dependencies, etc.

One way to test these configurable generators is to use the virtualization technology.
For instance, an alternative method leverages container-based system virtualization (e.g.,
Docker, as discussed in Section 3.3) to automate the code generation, deployment, and
testing inside pre-configured software containers. This technology enables to mimic the
execution environment settings and reproduce the tests in isolated and highly configurable
system containers.
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When it comes to evaluate the resource consumptions of automatically generated code,
this technology becomes very valuable because it allows a fine-grained resource management
and isolation. Moreover, it facilitates resource usage extraction and limitation of programs
running inside containers.

This chapter presents a technical description of this lightweight runtime environment
and its benefit for automating the non-functional testing of generated code. This infras-
tructure is used in our two first contributions as means to run tests in a configurable
execution environment and to efficiently collect resource consumption metrics.

This chapter is organized as follows:

Section 6.2 introduces system containers as a lightweight execution environment. We
show the benefit of using this technology to automate software testing.

Section 6.3 describes the runtime monitoring components required to collect resource
usage metrics.

Section 6.4 shows the adaptation of this sandboxing infrastructure to the generator case
study as it is used in Chapters 4 and 5.

Finally, we conclude in Section 6.5.

6.2 System containers as a lightweight execution en-
vironment

System containers are operating system-level virtualization method that allows running
multiple isolated Linux systems on a control host using a single Linux kernel. Containers
share the same OS and hardware as the hosting machine and it is very useful to use them
in order to create new configurable and isolated instances to run. Container-based virtu-
alization reduces the overhead associated with having each guest running a new installed
operating system such the case for virtual machines. This approach can also improve the
performance because there is just one operating system taking care of hardware calls. The
Linux kernel provides the control groups' (Cgroups) functionality that allows the limitation
and prioritization of resources (CPU, memory, block 1/0O, network, etc.) inside containers
so that, one container does not starve the others in terms of resources.

For instance, Docker? is a popular container-based technology that automates the de-
ployment of any application as a lightweight, portable, and self-sufficient container, running

Inttps://fr.wikipedia.org/wiki/Cgroups
2https://wuw.docker.com
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virtually on a host machine | ]. Today, Docker is one of the most popular infrastruc-
ture technology adopted in cloud computing | ]. For example, in 2015, Docker had
about 3% market share, and by 2017 it is running on 15% of the hosts®. Using Docker, it
is possible to define pre-configured applications and servers to host as virtual images. It
also defines the way the service should be deployed in the host machine using configuration
files called Dockerfiles. Moreover, we can enable some configuration options to control and
limit resources. For example, we can provide option flags to limit how much memory or
CPU usage each service is allowed to consume, associate CPU cores to each service, etc.

In short, the main advantages of this micro-services approach are:

e The use of containers induces less performance overhead compared to using a full
stack virtualization solution | |. Indeed, instrumentation and monitoring tools
for memory profiling like Valgrind | ] can induce too much overhead.

e Thanks to the use of Dockerfiles, it is possible to easily configure the execution
environment in order to build and customize applications using numerous settings
(e.g., generator version, dependencies, host IP and OS, optimization options, etc.).
Thus, we can use the same configured Docker image to execute different instances of
the same application. For hardware architecture, containers share the same platform
architecture as the host machine (e.g., x86, x64, ARM, etc.).

e Docker uses Linux control groups (Cgroups) to group processes running in the con-
tainer. This allows us to manage the resources of a group of processes, which is very
valuable. This approach increases the flexibility when we want to manage resources,
since we can manage every group individually. For example, if we would evaluate the
non-functional requirements of generated code within a resource-constraint environ-
ment, we can request and limit resources within the execution container according
to the needs.

e Although containers run in isolation, they can share data with the host machine and
other running containers. Thus, non-functional data relative to resource consump-
tion can be gathered and managed by other containers (i.e., for storage purpose,
visualization)

3https://www.datadoghq.com/docker-adoption/
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6.3 Runtime Monitoring Engine

In order to monitor the applications (i.e., tests) running within containers, we aim to use
a set of Docker components to ease the extraction of resource usage information.

6.3.1 Monitoring Container

First, a monitoring component is needed to collect the resource usage and performance
characteristics of running containers. As discussed earlier, Docker relies on Cgroups file
systems to expose a lot of metrics about accumulated CPU cycles, memory, block I/O us-
age, etc. Therefore, our monitoring component automates the extraction of these runtime
performance metrics stored in Cgroups files. Among the popular ways to do that is to
monitor each container via the Docker API, or by installing an agent for detailed visibility
inside each container. The Docker client already provides a command-line tool to inspect
containers’ resource consumption. The command docker stats, for example, can be used
to get the stats about the running containers at runtime. If we want to do that manually,
we can access to live resource consumption of each container available at the Cgroups file
system via stats found in “/sys/fs/cgroup/cpu/docker/(longid)/” (for CPU consumption)
and “/sys/fs/cgroup/memory/docker/(longid)/” (for stats related to memory consump-
tion). Our monitoring component automates the process of service discovery and metrics
aggregation for each new container. Thus, instead of gathering manually metrics located
in Cgroups file systems, it extracts automatically the runtime resource usage statistics
relative to the running component (i.e., the executed test suite within a container). We
note that resource usage information is collected in raw data. This process may induce
a little overhead because it performs a very fine-grained accounting of resource usage on
running container. Fortunately, this may not affect the gathered data since we run only
one test suite or application within each container. To ease the monitoring process, we
integrate cAdvisor, a Container Advisor®. cAdvisor monitors service containers at runtime
as described above. It has been widely used in different projects such as Heapster® and
Google Cloud Platform®.

However, cAdvisor monitors and aggregates live data over only 60 seconds interval.
Therefore, we record all data over time, since container’s creation, in a time-series database.
It allows the end users to run queries and define non-functional metrics from historical data.

4https://github.com/google/cadvisor
Shttps://github.com/kubernetes/heapster
Shttps://cloud.google.com/
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Thereby, to make the gathered data truly valuable for resource usage monitoring, we link
our monitoring component to a back-end database container.

6.3.2 Back-end Database Container

This component represents a time-series database back-end. It is plugged with the pre-
viously described monitoring component to save the non-functional data for long-term
retention, analytics and visualization. During application execution, resource usage stats
are continuously sent to this component. When a container is killed, we are able to ac-
cess to its relative resource usage metrics through the database. We choose a time series
database because we are collecting time series data that correspond to the resource uti-
lization profiles of programs execution.

We use InfluxDB7, an open source distributed time-series database as a back-end to
record data. InfluxDB allows the user to execute SQL-like queries on the database. For
example, the following query reports the maximum memory usage of container “gener-
ated_code_v1” since its creation:

select max (memory_usage) from stats
where container_name=’generated_code_v1’

To give an idea about the data gathered by the monitoring component and stored in
the time-series database, we describe in Table 6.1 these collected metrics:

Metric | Description

Name Container Name

T Elapsed time since container’s creation
Network | Stats for network bytes and packets
Disk IO | Disk I/O stats

Memory | Memory usage

CPU CPU usage

Table 6.1: Resource usage metrics recorded in InfluxDB

Apart from that, we provide information about the application size (e.g., size of gener-
ated binaries) and the compilation time required to produce code. For instance, resource

"https://github.com/influxdata/influxdb
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usage statistics are collected and stored using the previously described components. It
is relevant to show resource usage profiles of running programs overtime. To do so, we
present a front-end visualization container for resource usage profiling.

6.3.3 Front-end Visualization Container

Once we gather and store resource usage data, the next step is visualizing them. That is
the role of the visualization container. It will be the endpoint component that we use to
visualize the recorded data. Therefore, we provide a dashboard to run queries and view
different resource consumption profiles of running components, through a Web UI. Thereby;,
we can compare visually the profiles of resource consumption among containers. Moreover,
we can use this component to export the data currently being viewed into static CSV
document. So, we can perform statistical analysis on this data to detect inconsistencies
or performance anomalies. As a visualization component, we use Grafana®, a time-series
visualization tool available for Docker. Grafana lets us display live results over time in
much pretty looking graphs. Same as InfluxDB, we use SQL queries to extract the non-
functional data from the database for visualization and analysis.

6.4 The generator case study

We present now an adaptation of this micro-service infrastructure to the generator case
study, as applied in Chapters 4 and 5. We recall that we used containers as means for
running different variants of optimized code in Chapter 5, and for running a bench of test
suites across different software platforms in Chapter 4. The runtime monitoring compo-
nents, presented in this chapter, are used in both contributions to evaluate the resource
usage of generated code. An overview of the micro-service and technical solutions applied
for the generator case study are shown in Figure 6.1. In the following, we describe in
details the infrastructure settings. The experimental material is also available online”!?.

Code generation Before starting to monitor and test applications, we have to deploy
the generated code (by compilers or code generators) on different Docker containers. Thus,
instead of configuring all generators under test (GUTSs) within the same host machine, we

8https://github.com/grafana/grafana
9https://testingcodegenerators.wordpress.com/
Onttps://noticegcc.wordpress. com/
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deploy each GUT within a container. To do so, we create a new configuration image
for each GUT (i.e., the Docker image) where we install all the libraries, compilers, and
dependencies needed to ensure the code generation and compilation. Thereby, the GUT

produces code within multiple instances of pre-configured Docker images.
Dockerfiles to configure all these settings. We use the public Docker registry!!

Uhttps://hub.docker.com/

So, we use
(a cloud-


https://hub.docker.com/
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based registry service) to save and manage all our Docker images. Once code generation is
done, the generated output files are saved in a shared repository. In Docker environment,
this repository is called data volume. It is a specially-designated directory within containers
that shares data with the host machine and with other running containers.

Deployment and execution Next, generated code (in the data volume) is executed
individually inside an isolated Docker container. By doing so, we ensure that each executed
program runs in isolation without being affected by the host machine or any other processes.
Moreover, since a container is cheap to create, we are able to create too many containers
as long as we have new programs to execute (e.g., new optimized code, test suite for a
specific software platform, etc.). Since each program execution requires a new container
to be created, it is crucial to remove and kill containers that have finished their job to
eliminate the load on the system. We run the experiment on top of a private data-center
that provides a bare-metal installation of Docker. On a single machine, containers are
running sequentially and we pin p cores and n Gbytes of memory for each container!?.
Once the execution is done, resources reserved for the container are automatically released
to enable spawning next containers. Therefore, the host machine will not suffer too much
from performance trade-offs.

Runtime monitoring While running containers, we run the three monitoring containers
described above in order to monitor the running workload. To do so, we use Docker
Compose'® to run all containers simultaneously. The concept of Docker Compose is similiar
to Dockerfiles. It uses a configuration file to run and link multi-container Docker services.
We set up the Compose file so that we run all services and particularly to map running
containers to cAdvisor and InfluxDB, using Docker ports and network links in order to
stream resource usage data.

Resource usage extraction The end users have two ways to extract the information
about the resource usage of generated code. It is possible to directly request the remote time
series database via HTTP requests, executing SQL-like queries like the example presented
in Section 6.3.2. They can request different metrics such as CPU, memory usage, disk
writing speed, etc. An alternative solution is to visualize the resource consumption of
generated code within the web-based dashboard provided by Grafana. The visualization

12, and n can be cofigured
Bhttps://docs.docker. com/compose/overview/


https://docs.docker.com/compose/overview/
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tool is not used when auto-tuning and testing generators because we just needed to extract
the CPU or memory usage for each test or optimized code.

We use the same hardware across all experiments in Chapters 4 and 5: an AMD A10-
7700K APU Radeon(TM) R7 Graphics processor with 4 CPU cores (2.0 GHz), running
Linux with a 64 bit kernel and 16 GB of system memory.

Limitations. We would notice that this testing infrastructure can be generalized and
adapted to other case studies other than generators. Using system containers, any software
application/generated code can be easily executed and monitored using Docker. However,
among the limitations of this micro-services infrastructure is that containers require Linux
kernel to run. Running Docker engine on macOS or Windows requires a virtual machine
to deploy small Linuz-based OS that has Docker pre-installed. Collecting the resource us-
age of these windows containers for example, may induce an overhead due to the use of
Docker within virtual machines, which may affect the accuracy of gathered resource usage
data. In addition, resource isolation in Docker has some limitations, especially for disk 1/0
metrics. It has been recently proven [ /, that the isolation layer does not prop-
erly isolate the shared resources when running disk-intensive workloads within containers,
causing some performance interferences.

6.5 Conclusion

We presented in this chapter, the technical details of the infrastructure used to collect the
non-functional metrics (e.g., memory and CPU consumptions) of automatically generated
code (by either compilers or code generators). This solution offers effective support for
automatically deploying, executing, and testing the generated code in different environment
settings. The same monitoring infrastructure is used to evaluate quality of generated code
in the two first contributions of this thesis. The experiments conducted in Chapters 4 and
5 showed the usefulness of this infrastructure for tuning and testing generators.
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Chapter 7

Conclusion and perspectives

In this chapter, we first summarize all the contributions of this thesis, recalling the chal-
lenges and how we addressed each of them. Next and finally, we discuss some perspectives
for future work.

7.1 Summary of contributions

Generative software development has paved the way for the creation of multiple genera-
tors that serve as a basis for automatically generating code to a broad range of software
and hardware platforms. With full automatic code generation, users are able to rapidly
synthesize software artifacts for various software platforms. In addition, they can easily
customize the generated code for the target hardware platform since modern generators
(i.e., C compilers) become highly configurable, offering numerous configuration options
that the user can apply. The quality of automatically generated software is highly cor-
related to the configuration settings as well as the generator itself. Therefore, we have
highlighted, throughout this thesis, the challenges that we face when testing and auto-
tuning configurable generators.

In reviewing the state of the art, we identified numerous approaches for testing gen-
erators. However, few of them evaluate the non-functional properties of automatically
generated code, namely the performance and resource usage properties. The main issue
we have identified when testing the non-functional properties is the oracle problem, since
there is no a clear definition of how the oracle might be defined when it comes to the
test of the performance and resource usage properties. Similarly, research in auto-tuning
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generators, especially compilers, has been studied for decades, proposing different solutions
for exploring the large optimization search space. However, they do not exploit the recent
advances in search-based software engineering to effectively find the best configuration set.

From a software engineering point of view, this thesis contributes to improve the quality
and reliability of generators. In particular, we provide a mechanism that helps generator
creators/maintainers to efficiently test their created code generators, and thus provide
evidence to the end users of the quality of generated code. We also provide facilities
to the generator users to effectively auto-tune exiting generators in order to produce a
high-quality code.

The contributions are summarized as follows:

Our first contribution addresses the problem of non-functional testing of generators. In
particular, we tackle the oracle problem in the domain of code generators testing. Thus, we
propose an approach for automatically detecting inconsistencies in code generators in terms
of non-functional properties (i.e., resource usage and performance). Our approach is based
on the intuition that a code generator is often a member of a family of code generators.
Therefore, we benefit from the existence of multiple generators with comparable function-
ality (i.e., code generator families) to apply the idea of metamorphic testing | ],
defining high-level test oracles (i.e., metamorphic relations) as test oracles. We define the
metamorphic relation as a comparison between the variations of performance and resource
usage of code, generated from the same code generator family. Any variation that exceeds
a specific threshold value is automatically detected as an anomaly. We apply two statis-
tical methods (i.e., principal component analysis and range-charts) in order to automate
the inconsistencies detection. We evaluate our approach by analyzing the performance
of Haxe, a popular high-level programming language that involves a set of cross-platform
code generators. We evaluate the properties related to the resource usage and performance
for five different target software platforms. We run a bench of test suites across 7 Haxe
benchmark libraries in order to verify the metamorphic relation (i.e., the performance and
memory usage variation) for each of them. Experimental results show that our approach
is able to detect, among 95 executed test suites, 11 performance and 15 memory usage
inconsistencies, violating the metamorphic relation. These results show that our approach
can automatically detect real issues in code generator families.

The second contribution addresses the problem of generators auto-tuning. Particularly,
we are interested in auto-tuning compilers because of the large number of configuration
options (i.e., optimizations) they offer to control the quality of the generated code. In this
context, we exploit the recent advances in search-based software engineering in order to
provide an effective approach to tune compilers (i.e., through optimizations) according to
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user’s non-functional requirements (i.e., performance and resource usage). Our approach,
called NOTICE, applies a novel formulation, compared to previous related work, of the
compiler optimization problem using the Novelty Search algorithm | ]. Novelty Search
is applied to tackle the problem of optimizations diversity and then, providing a new way
to explore the huge optimization search space. In fact, since the search space of possible
combinations is multi-modal | | and too large, we apply this technique is to explore
the search space of possible compiler optimization options by considering sequence diver-
sity as a single objective. We conduct an empirical study to evaluate the effectiveness of
our approach by verifying the optimizations performed by the GCC compiler. Our experi-
mental results show that NOTICE is able to auto-tune compilers according to user choices
(heuristics, objectives, programs, etc.) and construct optimizations that yield to better
performance results than standard optimization levels and classical genetic algorithms.
We also demonstrate that NOTICE can be used to automatically construct optimization
levels that represent optimal trade-offs between the speedup and memory usage using
multi-objective algorithms.

Evaluating the resource usage of automatically generated code is complex because of the
diversity of software and hardware platforms that exist in the market. To handle this prob-
lem, we present in the third contribution the technical details of the infrastructure used to
collect the non-functional metrics (e.g., memory and CPU consumptions) of automatically
generated code (by either compilers or code generators). In fact, we benefit from the recent
advances in lightweight system virtualization, in particular container-based virtualization,
in order to offer effective support for automatically deploying, executing, and monitoring
the generated code in heterogeneous environment. The same monitoring infrastructure is
used to evaluate the experiments conducted in the two first contributions.

7.2 Perspectives

The work presented in this thesis represents a step towards proving support to evaluate
configurable generators. In the reminder of this chapter we will describe possible improve-
ments and extensions to the contributions of this thesis.

Tracking the source of code generator inconsistencies In Chapter 4, we present
a black-box testing approach that identifies the presence of potential issues within code
generator families. However, we do not provide detailed information about the source of
the issues. We investigate the generated code manually in order to fix the bug. As a future
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work, we believe that a traceability method can be applied to track the inconsistency, at
the source code level. Thus, we can help code generator maintainers to easily identify the
source of the bugs (e.g., parts of the code that affect the software performance), and fix
the issues.

Improving the efficiency of our auto-tuning approach We plan to explore more
trade-offs among resource usage metrics e.g., the correlation between CPU consumption
and speedup. Using the Docker technology, we can easily run containers on different
host machines, in the cloud. As a future work, we want to evaluate our approach across
different hardware architectures. We also intend to provide more facilities to NOTICE
users in order to test optimizations performed by modern compilers such as Clang, LLVM,
etc. Finally, NOTICE can be easily adapted and integrated to new case studies. As an
example, we would inspect the behavior of code generators since different optimizations
can be performed to generate code from models | ]. The same approach can be
applied as long as the code generator accept many configuration options.

Speed up the time required to tune and test generators Throughout the exper-
iments conducted in this thesis, we use to run containers sequentially. This can take too
much time. In particular, the tuning time grows exponentially as long as we have new
configurations to evaluate. In order to reduce the time needed to run and monitor multiple
versions of generated code (e.g., optimized versions), we intend to deploy tests on many
nodes in the cloud using multiple containers in parallel. Doing so, we will be able to ac-
celerate the testing process. Solutions as Docker Swarm! already exist and can be applied
to manage clusters of containers running in parallel in the cloud.

Interact with generator experts in order to improve our testing approach Few
months after running our experiments, the Haxe community has released a new version of
the PHP code generator? with many performance improvements, especially for arrays. As
we expected, they introduced advanced functions (array_fill*) for arrays initialization in
order to improve their performance. Actually, we are discussing with the Haxe community
in order to expand our testing approach, introducing new target software platforms to
test and creating new benchmark programs with large number of test suites. Finally, we

https://docs.docker.com/engine/swarm/

2https://github.com/HaxeFoundation/haxe/releases/tag/B.4.0

3https://github.com/HaxeFoundation/haxe/blob/f375ec955b41550546e494e9f79a5deefalb9bac/
std/php7/Global . hx#L226


https://docs.docker.com/engine/swarm/
https://github.com/HaxeFoundation/haxe/releases/tag/3.4.0
https://github.com/HaxeFoundation/haxe/blob/f375ec955b41550546e494e9f79a5deefa1b96ac/std/php7/Global.hx#L226
https://github.com/HaxeFoundation/haxe/blob/f375ec955b41550546e494e9f79a5deefa1b96ac/std/php7/Global.hx#L226
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may evaluate the impact of the new code generator improvements (i.e., running the same
experiments with new code generator versions) and check if the fixes have eliminated the
previously identified inconsistencies.

Test amplification in the context of generators testing When testing generators,
we write test suites manually using high-level benchmarks. Writing test suites for each
benchmark is time-consuming. Hence, inconsistencies detection is limited to the parts of
code executed by our test suites. An emerging testing field called Test Amplification is
recently presented by Danglot et al. | |, to improve the efficiency of test suites.
It consists in modifying or creating new tests from existing ones so as to improve an
engineering goal such as improving coverage, improving properties of the application under
test, crash reproduction, fault localization, etc. This technique is useful in agile software
development (i.e., DevOps) to synthesize new tests according to the changes made during
code deployment and execution. Test amplification is the core idea of the European project
STAMP* which aims to develop test amplification tools to increase the levels of automation
in software testing. In this context, we can adapt our testing approach to generate or create
new test suites to detect more inconsistencies. Based on the new changes made within code
generators, new test suites have to be generated efficiently to track the non-functional
failures.

Leveraging the metamorphic approach for testing large-scale distributed sys-
tems In a component-based architecture, distributed and heterogeneous applications in-
volve a set of configurable nodes that communicate with each other. Efficiently testing
the different configurations of distributed systems is quite challenging, especially for the
non-functional properties. It requires the generation of new configurations of the same
distributed application and then run tests across all configurations. An idea is to leverage
metamorphic testing in order to evaluate the configuration changes at runtime. A good
metamorphic relation can be defined as a comparison between the non-functional proper-
ties of a new system configuration and a reference one. We can benefit from this technique
to evaluate the non-functional properties of distributed systems such as scalability, security,
network efficiency, etc. For instance, we plan to use Kevoree®, a multi-platform distributed
model tool, that facilitates application deployment within a highly configurable distributed
environment.

‘https://stamp.ow2.org
Shttp://kevoree.org/


https://stamp.ow2.org
http://kevoree.org/
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Abstract

Generative software development has paved the way for the creation of multiple
generators (code generators and compilers) that serve as a basis for automati-
cally producing code to a broad range of software and hardware platforms. With
full automatic code generation, users are able to rapidly synthesize software ar-
tifacts for various software platforms. In addition, they can easily customize
the generated code for the target hardware platform since modern generators
(i-e., C compilers) become highly configurable, offering numerous configuration
options that the user can apply. Consequently, the quality of generated soft-
ware becomes highly correlated to the configuration settings as well as to the
generator itself.

In this context, it is crucial to verify the correct behavior of generators.
Numerous approaches have been proposed to verify the functional outcome of
generated code but few of them evaluate the non-functional properties of auto-
matically generated code, namely the performance and resource usage proper-
ties.

This thesis addresses three problems:

Non-functional testing of generators: We benefit from the existence
of multiple code generators with comparable functionality (i.e., code generator
families) to automatically test the generated code. We leverage the metamor-
phic testing approach to detect non-functional inconsistencies in code generator
families by defining metamorphic relations as test oracles. We define the meta-
morphic relation as a comparison between the variations of performance and
resource usage of code, generated from the same code generator family. We
evaluate our approach by analyzing the performance of HAXE, a popular code
generator family. Experimental results show that our approach is able to auto-
matically detect several inconsistencies that reveal real issues in this family of
code generators.

Generators auto-tuning: We exploit the recent advances in search-based
software engineering in order to provide an effective approach to tune generators
(i.e., through optimizations) according to user’s non-functional requirements
(i.e., performance and resource usage). We also demonstrate that our approach
can be used to automatically construct optimization levels that represent opti-
mal trade-offs between multiple non-functional properties such as execution time
and resource usage requirements. We evaluate our approach by verifying the
optimizations performed by the GCC compiler. Our experimental results show
that our approach is able to auto-tune compilers and construct optimizations
that yield to better performance results than standard optimization levels.

Handling the diversity of software and hardware platforms in soft-
ware testing: Running tests and evaluating the resource usage in heteroge-
neous environments is tedious. To handle this problem, we benefit from the
recent advances in lightweight system virtualization, in particular container-
based virtualization, in order to offer effective support for automatically deploy-
ing, executing, and monitoring code in heterogeneous environment, and collect
non-functional metrics (e.g., memory and CPU consumption). This testing in-
frastructure serves as a basis for evaluating the experiments conducted in the
two first contributions.
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