
HAL Id: tel-01591441
https://hal.science/tel-01591441v1

Submitted on 21 Sep 2017 (v1), last revised 21 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Theory and Modeling of Complex Nonlinear Delay
Dynamics Applied to Neuromorphic Computing

Bogdan Penkovsky

To cite this version:
Bogdan Penkovsky. Theory and Modeling of Complex Nonlinear Delay Dynamics Applied to Neu-
romorphic Computing. Artificial Intelligence [cs.AI]. Université Bourgogne Franche-Comté, 2017.
English. �NNT : �. �tel-01591441v1�

https://hal.science/tel-01591441v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Theory and Modeling
of Complex Nonlinear Delay Dynamics
Applied to Neuromorphic Computing

Théorie et Modélisation de la Complexité des Dynamiques
Non Linéaires à Retard, Application au Calcul Neuromorphique

■ BOGDAN PENKOVSKY

Abstract

The thesis develops a novel approach to design of a reservoir computer, one of the
challenges of modern Science and Technology. It consists of two parts, both connected
by the correspondence between optoelectronic delayed-feedback systems and spatio-
temporal nonlinear dynamics. In the first part (Chapters 1 and 2), this correspondence
is used in a fundamental perspective, studying self-organized patterns known as chimera
states, discovered for the first time in purely temporal systems. Study of chimera states
may shed light on mechanisms occurring in many structurally similar high-dimensional
systems such as neural systems or power grids. In the second part (Chapters 3 and 4),
the same spatio-temporal analogy is exploited from an applied perspective, designing
and implementing a brain-inspired information processing device: a real-time digital
reservoir computer is constructed in FPGA hardware. The implementation utilizes
delay dynamics and realizes input as well as output layers for an autonomous cognitive
computing system.

Keywords: Reservoir computing, Machine learning, Complex systems, Nonlinear
delay dynamics, Chimera states, FPGA

Résumé

Cette thèse développe une nouvelle approche pour la conception d’un reservoir com-
puter, l’un des défis de la science et de la technologie modernes. La thèse se compose
de deux parties, toutes deux s’appuyant sur l’analogie entre les systèmes optoelectron-
iques à retard et les dynamiques spatio-temporelles non linéaires. Dans la première
partie (Chapitres 1 et 2) cette analogie est utilisée dans une perspective fondamentale
afin d’étudier les formes auto-organisées connues sous le nom d’états Chimère, mis en
évidence une première fois comme une conséquence de ces travaux. Dans la deuxième
partie (Chapitres 3 et 4) la même analogie est exploitée dans une perspective appliquée
afin de concevoir et mettre en oeuvre un concept de traitement de l’information inspiré
par le cerveau: un reservoir computer fonctionnant en temps réel est construit dans
une puce FPGA, grâce à la mise en oeuvre d’une dynamique à retard et de ses couches
d’entrée et de sortie, pour obtenir un système traitement d’information autonome in-
telligent.

Mots-clés: Reservoir computing, Apprentissage automatique, Systèmes complexes,
Dynamique non linéaire à retard, États Chimère, FPGA

To Elena...

Contents

Introduction 1
Structure of the thesis . 3
Main contributions provided by this work 4
Publications . 5
Conference presentations and work dissemination 6

1 Time-delay systems and networks 7
1.1 Nonlinear delayed-feedback systems . 7

1.1.1 Route to chaos in DDE . 9
1.1.2 Interpretation of Ikeda DDEs 12
1.1.3 Space-time representation of DDEs 14
1.1.4 DDE as a time-multiplexed circular network 16
1.1.5 Driven systems . 19

1.2 Artificial neural networks . 20
1.2.1 Approximation of neural behavior 21
1.2.2 Feedforward neural networks . 23
1.2.3 Recurrent neural networks . 26
1.2.4 Neural networks training . 28

1.2.4.1 Supervised vs unsupervised learning 28
1.2.4.2 FNN training . 29
1.2.4.3 RNN training . 30

1.3 Applications of nonlinear delay dynamics 31
1.4 Conclusion . 33

2 Chimera states in nonlinear delayed-feedback systems 34
2.1 Introduction . 34
2.2 Observation of chimera states in delayed-feedback systems 36

2.2.1 Ikeda DDE. The Airy function and two coexisting attractors . . 36
2.2.2 Transient dynamics of Ikeda DDEs 38
2.2.3 Chimera states in a bandpass Ikeda model 40

ix

Contents

2.2.4 Optoelectronic experimental setup 43
2.2.5 Comparison between simulations and experiments 47

2.3 Multistability in the bandpass DDE . 47
2.3.1 Coexistence of chimeras and breathers 47
2.3.2 Coexistence of multiheaded chimera solutions in (ε, δ)−parameter

plane . 50
2.3.3 Chimera basins of attraction . 53

2.4 Conclusion . 55

3 Nonlinear delay systems for neuromorphic computing 56
3.1 Introduction to reservoir computing . 56

3.1.1 Why “reservoir”? . 58
3.1.2 Architecture . 59
3.1.3 Learning procedure . 61
3.1.4 Computation with dynamical systems 62

3.2 Single-node RC approach . 63
3.2.1 DDE as a reservoir . 63
3.2.2 State of the art in delay-based RC 64
3.2.3 Training methods . 65
3.2.4 Model effectiveness measurement 66

3.3 Towards digital RC . 67
3.3.1 DDE solver . 68
3.3.2 Discrete time dynamics . 68
3.3.3 Efficient nonlinear transformation f 70
3.3.4 Fixed-point arithmetic . 71
3.3.5 Multiparametric optimization 72

3.4 Performance benchmark tests . 74
3.4.1 Prediction task . 74
3.4.2 Classification task . 79

3.5 Conclusion . 84

4 FPGA implementation of delay-based RC 86
4.1 FPGA basics . 86

4.1.1 FPGA introduction . 86
4.1.2 Resources of FPGA chip and supporting board 90

4.1.2.1 Physical constraints 90
4.1.2.2 Major types of memory 91
4.1.2.3 Supporting board . 92

4.2 FPGA implementation of RC . 92
4.2.1 High-level RC implementation 93
4.2.2 Data flow . 94

x

Contents

4.2.2.1 Correct by construction circuits 94
4.2.2.2 Pipeline parallelism . 95

4.2.3 Masking and readout operations 96
4.2.4 Reservoir dynamics . 97

4.3 Performance . 98
4.3.1 Chaotic Mackey-Glass time series prediction 99
4.3.2 TI-46 spoken digit recognition 102
4.3.3 Aurora benchmark . 103

4.4 Conclusion . 105

Discussion 106

Bibliography 116

Appendices 127
Appendix A: detailed results of isolated spoken digit recognition task applying

RC to Aurora-2 benchmark using a bandpass model 127
Appendix B: comparison between lowpass dynamics implementations on FPGA

and PC for Aurora benchmark . 131

xi

Introduction

Let us imagine for a minute the place of technology in the future. Today is a typical
day in 2040 and you study a foreign language in a linguistic school. Suppose you study
French. As usual, you arrive by a self-driving taxi. Today is your private lesson, so you
will talk to a computer. The computer is multilingual and you speak French to enhance
your verbal skills. You prefer to combine studying language with learning more about
your hobby, photography. That is why you request articles about photography in the
middle of the 20th century. You also specify to translate these diverse materials into
French, corresponding to your proficiency. The computer replies taking into account
your language level and explaining difficult idioms, meanwhile an interactive catalogue
of analog photography articles is generated. You select the items of interest, and a
book is composed on the fly, tailored to your educational needs. Then, it is sent to
your personal cloud — the storage of all your files accessible from the Internet.

The described picture is not an utopia. A self-driving taxi is slower than the one with
a human driver because of the safety regulations, and the computer cannot motivate
like a real teacher. Therefore, in this future world, real taxi drivers and teachers, who
are experts in their domains, still exist. However, a fine balance between the areas of
humanity and technology has been established: technology is human-oriented. This
is not possible if a self-driving taxi is unsafe or a robotic instructor cannot adapt to
the needs of a visitor: accurate request comprehension, excellent suggestion heuristics,
accessibility of the vocal and video interfaces intelligently tuned for each user and so
on.

All of those requirements are complex technological challenges. To be market-competitive,
self-driving cars should not only drive accurately, but also predict if there are vehicles
and other objects that potentially may create any safety threats. That is exactly what
a responsible human driver does! However, there exists no such machine able to act
as a human driver. The apparent reason for this is that our machines are inherently
not designed to behave as biological organisms. One of the scenarios to alleviate this
shortcoming is by progressive improvement of existing designs, comparing them to the
blueprints found in the nature.

1

Introduction

The following thesis is meant to contribute towards overcoming the challenges of emerg-
ing “smart” technologies via a so-called neuromorphic approach. The neuromorphic
systems are biological neural networks-inspired technologies that are ultimately called
to deal with problems suboptimally solved by the machines invented in the 20th cen-
tury, namely: the problems of fast and energy-efficient cognition, human interaction,
robustness, etc. The journal Frontiers in Neuroscience1 defines those systems as such
that “carry out robust and efficient neural computation using hardware implementations
that operate in physical time. Typically they are event- or data-driven, they employ low-
power, massively parallel hybrid analog/digital VLSI circuits, and they operate using
the same physics of computation used by the nervous system.”

Built of billions of neurons and possessing trillions of interconnections, the human brain
is an impressively complex organ. The brain operates at approximately 1018 FLOP, an
order of magnitude more than the top supercomputer in 2016 Sunway TaihuLight2
(1017 FLOP), yet consuming less than 0.0002% power of TaihuLight (20W out of
15MW). Not only the currently available technology is energy-inefficient but also, fun-
damentally limited: it is based on transistors and the minimal transistor size is esti-
mated to be 5nm; today the industry is already close to 11nm. Finally, the present
technology is not capable to address modern challenges efficiently because it is lim-
ited conceptually: the major part of computing attempts are to some extent restricted
to programmed, designed computation, whereas natural phenomena (e.g. biological
neural systems) exhibit so-called intrinsic computation [1]. The particularity of in-
trinsic computation is that the substrate and the computing mechanism are often the
same thing. The main problem is, however, a lack of knowledge: how is information
stored, how much information is encoded, how is it processed and later transmitted
[1]. Answering any of those questions would be a great step towards new information
processing architectures.

The computational approach we pursue in this work is known as reservoir computing :
the computing substrate does not need to be specifically designed, but can be preexist-
ing, even randomly generated. The major consequence — when comparing to popular
computation methods — is the support of in-materio computing, i.e. physical dynam-
ical systems can be involved directly as computation substrates. Moreover, memory
and computation algorithm are inseparable, and in that way similar to biological neu-
ral systems [2]. Another characteristic feature of reservoir computing that brings it
closer to the brain is highlighted in the recent findings showing that the brain might
be “prewired” to solve certain tasks [3].

The origins of reservoir computing can be traced back to 1940–1950s when multiple
computation paradigms were explored. The pioneering work of McCulloch and Pitts

1http://journal.frontiersin.org/journal/neuroscience/section/neuromorphic-engineering#about
2https://www.top500.org/system/178764

2

Introduction

(1943) [4] laid ground for computations using simple processing units (neurons). A big
step to modern neuroscience and also biologically-inspired information processing was
the biological neuron’s model by Hodgkin and Huxley (1952) [5]. In 1958, Rosenblatt
presented the perceptron in his seminal paper [6], which in many aspects became the
prototype of today’s artificial neural networks. The limits of the perceptron were real-
ized after Minsky and Papert have pointed out in 1969 that a single-layer architecture
is not enough to build a universal approximating machine [7]. This was a devastat-
ing blow to the neural networks community, which led to many discussions. After
years of investigations, the universal approximating capabilities of multi-layer neural
networks were formally proved by Cybenko (1989) [8]. Another significant milestone
was Kohonen’s work (1982) [9] describing self-organizing maps, systems learning with-
out a teacher. The next step forward was achieved with invention of recurrent neural
networks learning by Pineda (1987) [10]. Pineda highlighted three crucial aspects of
such artificial networks, making them close to the biological neural systems: a high
number of degrees of freedom, nonlinearity, and dissipation nature; all three are the
pillars of neuromorphic information processing methods, including the present work.
The approach to recurrent neural networks that now is called reservoir computing, was
independently developed in 2000-s by Maass et al. [11], Jaeger [12], and Steil [13].
Finally, the grounds for our work utilizing a nonlinear time-delay system were laid by
Appeltant et al. (2011) [14].

In this work, we study the class of nonlinear delayed-feedback systems. The dynamical
behavior of those systems evolves in the infinite-dimensional phase space. Such time-
delayed systems may exhibit complex behaviors [15, 16], thus becoming an object
of interest for our reservoir computing paradigm. It turns out that in many aspects
delay dynamical systems are analogous to the ones found in spatially-extended systems
[17, 18, 19], strengthening the link between delay dynamics and neural networks. The
complexity of nonlinear delay systems grows with the length of the delay [15], increasing
system’s dimensionality. High dimensionality is also a property of the brain, a gigantic
network of neurons, and the easiest way to literally built such a large network would be
by finding a clever method to take advantage of the complexity provided by nonlinear
delay dynamics. The limits of delay systems for information processing still have to be
explored. Therefore, those systems have to be studied fundamentally — both inside
and outside of the information processing context.

Structure of the thesis

In Chapter 1, we describe the basic properties of nonlinear delay systems and develop
an analogy between time-delay and spatially-extended systems, such as networks of

3

Introduction

oscillators. We use delay dynamics as an example to introduce driven systems, the
ones with external inputs; then we describe how the information is processed in driven
systems such as neural networks. An application connecting both delay dynamics and
neural networks is reservoir computing, an alternative computation paradigm.

Using the network analogy from Chapter 1, in Chapter 2 we perform numerical and
experimental exploration of a recently discovered in nonlinear delayed-feedback sys-
tems phenomena, known as chimera states. The term originates from symmetrical
networks of coupled oscillators, where chimera states are marking spontaneous sym-
metry breaking resulting in coherent-incoherent motions [20, 21]. Chimera states may
arise in such real-world networks as power grids and networks of neurons in the human
heart, breaking the synchrony and leading to failure of the system [22].

In Chapter 3, we study reservoir computing applications implemented with nonlinear
delay dynamics, where the delay acts as a memory that stores a network of virtual
nodes. The goal is to find an optimal configuration that can be readily realized in a
form digital hardware. Our study is applied for two kinds of problems: prediction and
classification tasks. The prediction of time-series aims at several steps-ahead estimation
of the (future) time-series signal. The task is complicated since a chaotic system
we are predicting is sensitive to any perturbations, making any long-term prediction
inaccurate. The speech recognition task is aimed at comprehension of the human
speech by a machine. One of the known technological difficulties is speech recognition
in noisy environments. We address this challenge with reservoir computing performing
isolated spoken digits recognition on signals with artificially added noise.

The paradigm of nonlinear delay dynamics permits different physical realizations: in
analog, digital, or hybrid electronics, optics and optoelectronics, etc. In Chapter 4,
we build a stand-alone FPGA-based all-digital neuromorphic demonstrator, capable of
prediction and classification tasks. The demonstrator leverages the time-multiplexing
technique to build networks of 1000 virtual nodes capable to work in real-time. Cur-
rently implemented system features the bandwidth up to 12Mb/s with estimated power
consumption of 0.3 W. Since the reservoir computer implementation is completely de-
scribed with an electronic circuit-specific hardware description language, a high-speed
dedicated neuromorphic chip can be ultimately manufactured.

Main contributions provided by this work

Below are highlighted the main outcomes of present work, including both fundamen-
tal and applied research. The fundamental research results in the first observation of
chimera states in a purely temporal system. We underline the main ingredients re-

4

Introduction

quired for chimera states in delay dynamical systems: non-local connections provided
by the integral term, and an asymmetrically shaped nonlinear function supporting
two attractors (fixed-point and chaotic). We demonstrate the multistability in such a
delay system where different chimera solutions coexist depending only on the initial
conditions. We support the numerical studies with experimental evidence.

The applied research aims at electronic reservoir computing demonstrator in the frame-
work of the BIPhoProc (Brain-Inspired Photonic Processor) project, utilizing the same
dynamical system as for chimera states demonstration. We study the possibility to re-
place continuous-time differential equations with their discrete-time versions, highly
suitable for digital implementation. Motivated by hardware efficiency, we perform
several steps of optimization, searching the best-performing dynamics model and the
simplest nonlinear functions. For that purpose, we employ simultaneous parameter
optimization techniques based on genetic algorithms. Finally, we implement a digital
demonstrator and run a series of benchmark tests to validate our approach. Using the
discrete-time delay dynamics approximation and the nonlinearity simplified to piece-
wise linear functions, we still obtain prediction and classification results comparable to
the state of the art. Furthermore, we obtain improved prediction accuracy using the
model with the integral term.

This work was supported financially by the region of Franche-Comté, the Labex AC-
TION program (Contract No. ANR-11-LABX-0001-01), and by the BiPhoProc ANR
project (ANR-14-OHRI-0002-02).

Publications

1. L. Larger, B. Penkovsky, Y. Maistrenko Laser chimeras as a paradigm for mul-
tistable patterns in complex systems. Nature Communications. 6:7752 (2015).

2. Y. Maistrenko, B. Penkovsky, M. Rosenblum Solitary state at the edge of syn-
chrony in ensembles with attractive and repulsive interactions. Phys. Rev. E
89:060901 (2014).

3. L. Larger, B. Penkovsky, Y. Maistrenko Virtual chimera states for delayed-
feedback systems. Phys. Rev. Lett. 111:054103 (2013).

5

Introduction

Conference presentations and work dissemination

1. Oral presentation “Chimera States in Nonlinear Systems with Delayed Feedback”
at “Complex patterns on networks” mini-symposium, Dynamics Days Europe,
Szeged, Hungary, June 6, 2017.

2. Oral presentation “Ma thèse en 180 secondes” (“Three minute thesis”) at the
regional final of the University of Bourgogne Franche-Comté, Dijon, April 4,
2017.

3. Oral presentation “Towards a Brain-Inspired Computer With a Delay Dynamics”
at GDR BioComp, INSA Lyon, October 11, 2016.

4. Invited seminar “Laser Delay Dynamics For Information Processing” at TU Berlin,
Germany, July 13, 2016.

5. Oral presentation “FPGA-Based Reservoir Computing” at FEMTO-ST, Besançon,
July 1, 2016.

6. Oral presentation “Toward New General-Purpose Processor With Nonlinear Tran-
sient Computing” at Dynamics Days Europe, Corfu, Greece, June 9, 2016.

7. Poster “A New Architecture For a General-Purpose Microprocessor” at RNL,
Paris, March 15, 2016.

8. Poster “A New Architecture For a General-Purpose Microprocessor” at Atelier
SMYLE, Arc-et-Senans, September 17–18, 2015.

9. Poster “Chimera States In Laser Delay Dynamics” at NonLinear Summer School,
Peyresq, France, August 21–28, 2015.

10. Poster “Chimera States In Laser Delay Dynamics” at “40 years of Kuramoto
model”, Dresden, Germany, July 27–28, 2015.

11. Poster “Chimera States In Laser Delay Dynamics” at Rencontre Nonlinéaire
(RNL) 2015, Paris, March 15–16, 2015.

12. Oral presentation “Chimera States In Laser Delay Dynamics” at WIAS, Berlin,
Germany, November 25, 2014.

13. Oral presentation “Chimera States In Laser Delay Dynamics” at NonLinear Sum-
mer School, Peyresq, August 23, 2014.

14. Poster “Nonlinear Delay Optoelectronic Oscillator Exhibiting Laminar-Turbulent
Transition” at the colloquium on Subcritical Transition to Turbulence, Cargese,
Corsica, May 7, 2014.

6

Chapter 1

Time-delay systems and networks

1.1 Nonlinear delayed-feedback systems
Qu’est-ce que le passé, sinon du présent qui est en retard?

– Pierre Dac, French humorist

“Oh dear! I shall be too late!”

Time delays are ubiquitous, they are found in numer-
ous real phenomena that develop on a finite speed. For
instance, due to a finite propagation speed, it takes us
around 48 minutes to send or receive a light signal from a
Jupiter’s satellite. Subsequently, delays play a crucial role
in a satellite’s remote control. Understanding the human
brain, where the information is processed with respect to
delayed propagation of chemical signals, is another grand
challenge. In daily life, a traffic jam moves slowly as ev-
eryone drives in a chain of delays. Those delays appear
because of a finite time that takes a driver to see and
to respond to the movement ahead. Sometimes traffic
jams become so slow that the victim drivers remind the
White Rabbit1 who was always late. Finally, everyone in
a shower experienced a delayed feedback right on them-
selves. The water first being too cold, then becomes too
hot. That is the delayed response to turning the tap in

1A personage from “Alice’s Adventures in Wonderland” by Lewis Carroll. Illustration by John
Tenniel.

7

Chapter 1. Time-delay systems and networks

the past, when the water was still perceived as cold. Hurry to switch back the tap, and
the water becomes too cold again.

In this work, we consider a class of dynamical systems with nonlinear delayed feedback
that can be mathematically represented by a delay differential equation (DDE) of the
following type:

τ ẋ(t) + x(t) = f (x(t− τD)) , (1.1.1)

where x(t) ∈ R1 is a dynamical variable, ẋ(t) ≡ dx(t)/dt is its derivative on time, τ
is a linear decay time constant, τD is a time delay, and f : R1 → R1 is a nonlinear
function. To describe the initial state of a system given by Eq. (1.1.1), a function
defining the initial conditions between t = −τD and t = 0 is required. The number of
oscillations with a time scale τ one can fit into the delay τD, is related to the number
of degrees of freedom (or the complexity) for such delay dynamics. An illustration
can be drawn from the example with a traffic jam. Here, the state of the system
are individual velocities of the cars on the road (delay line), where each car adds to
the overall complexity of the dynamics. A phase space is a multidimensional space in
which all the states of a system are represented; every degree of freedom of a dynamical
system is an axis in this space.

Due to the complexity caused by the high dimensionality of the phase space, nonlinear
systems with time delay exhibit a rich variety of behaviors [15, 16]. Such systems
are common in many research fields, finding applications in photonics [23, 24, 25, 26],
biology [27, 28, 29], chaos theory [15, 24, 30], chaos cryptography and communications
[23], and novel computational concepts, including processing and memory units [14,
31, 32, 33, 34, 35, 36, 37, 38].

Prominent example of Eq. (1.1.1) is the Ikeda DDE, which describes the behavior of a
delay oscillator, illuminating transition to the chaos in optics [39]:

τ ẋ(t) + x(t) = β sin2 (x(t− τD) + Φ0) , (1.1.2)

where β is a delayed feedback gain, Φ0 is a constant phase offset, and the linear decay
time τ is assumed to be small with respect to the delay time τD, i.e. τ � τD. In the
literature, such DDEs are referred to as long delay systems.

Another famous example of systems governed by Eq. (1.1.1) is the Mackey-Glass
DDE, with a nonlinear function f(x) = x/ (1 + x10) [27]. Originally describing blood
cell concentration dynamics, Mackey-Glass equation has been extensively studied for
effects of the nonlinear delayed feedback.

8

Chapter 1. Time-delay systems and networks

1.1.1 Route to chaos in DDE

To understand very qualitatively the way complex behavior can emerge from DDE
described by Eq. (1.1.1), a so-called adiabatic approximation can be introduced. When
the parameter τ is small, i.e. let τ → 0, then the dynamics of Eq. (1.1.1) reduces to a
difference equation, i.e. without derivative:

x(t) = f (x(t− τD)) . (1.1.3)

Now, the behavior is fully determined by the nonlinear map f . Without loss of gener-
ality, we can rewrite Eq. (1.1.3) as a recurrence relation:

xn = f(xn−1), (1.1.4)

with discrete time n = 0, 1, The nonlinear function f is usually assumed to be
unimodal, i.e. it has one maximum. The simplest example that illustrates the route
to chaos in the difference equation Eq. (1.1.4) is the logistic map f(x) [40]:

f(x) = λx(1− x), x ∈ [0, 1] (1.1.5)

where λ > 0 is a control parameter. Depending on λ, the discrete dynamical system
governed by Eq. (1.1.5) either stays in a regime of equilibrium, exhibits periodic oscil-
lations, or demonstrates chaotic, aperiodic behavior. When 1 < λ < 3, the dynamics
is trivial: the system rests in a fixed point state x∗ = 1 − 1/λ, x∗ ≡ xn = xn−1 (Fig.
1.1.1, top). However, as soon as λ > 3, the fixed point solution becomes unstable,
and instead, one can observe period-2 oscillation cycle. Crossing another bifurcation
threshold λ ' 3.449, the next period doubling bifurcation occurs, and period-4 cycle
arises in the dynamical system Eq. (1.1.4). At further increase of λ, period doubling
bifurcations continue to occur, producing cycles of period 2m, until at λ∞ ' 3.570 the
dynamics becomes chaotic. The rate of the period doubling bifurcations is known as
the universal Feigenbaum’s constant δF (1978) [41]:

δF = lim
m→∞

λm − λm−1

λm+1 − λm
' 4.669. (1.1.6)

Since δF holds for smooth unimodal f with a non-degenerated maximum, i.e. f ′′ 6= 0,
we can take another, sinusoidal function which fulfills this condition
f ′′ = 2λ cos(2x)|x=π/2 = −2λ 6= 0:

xn = λ sin2(xn−1). (1.1.7)

9

Chapter 1. Time-delay systems and networks

Figure 1.1.1: Upper: Bifurcation diagram of logistic map xn = λxn−1(1− xn−1) with the
control parameter λ. Successive iterates of the map are plotted after transients have died
out. Vertical dashed lines show bifurcation values of λ1 = 3, λ2 ' 3.449, λ3 ' 3.544, λ∞ '
3.57, λ(3) ' 3.828 that precede windows of period-2, period-4, period-8, chaotic motion, and
period-3 window, respectively. Lower: Examples of fixed point, period-2, period-4, and
chaotic regimes.

The bifurcation diagram of this difference equation is depicted in Fig. 1.1.2 (a), where
one can observe a period doubling cascade which eventually leads to chaotic behavior.
The order of bifurcations is exactly the same as for the logistic map described by Eq.
(1.1.5). It appears that for any continuous nonlinear function f periodic orbits in
Eq. (1.1.4) occur in accordance with the Sharkovsky ordering (1964) [42] of all the
periods:

20 ≺ 21 ≺ 22 . . . 2m · 5 ≺ 2m · 3 . . . 22 · 5 ≺ 22 · 3 . . . 21 · 5 ≺ 21 · 3 . . . 7 ≺ 5 ≺ 3. (1.1.8)

Theorem. (Sharkovsky) If a continuous one-dimensional map f has an orbit of period
p and q ≺ p in ordering given by Eq. (1.1.8), it also has an orbit of period q.

For instance, if one can observe period p = 3, then period q = 5 can be also ob-
served since 5 ≺ 3. The same holds true for q = 7 since 7 ≺ 3, and so on. As a

10

Chapter 1. Time-delay systems and networks

(a)

(b)

(c)

(d)

(e)

Figure 1.1.2: Left: (a) Bifurcation cascade of difference equation xn = λ sin2(xn−1) depend-
ing on the control parameter λ; (b) Bifurcations in a continuous-time Ikeda DDE dynamics
0.01ẋ(t) + x(t) = β sin2 (x(t− 1)) depending on the parameter β. Semi-transparent dots de-
note the asymptotic trajectories x(t) over a single time delay interval after a transient of 3000
delays. Right: Typical regimes in the Ikeda DDE: (c) period-2 limit cycle, (d) period-4 limit
cycle, (e) chaotic motion.

consequence, observing a period-3 cycle leads to all other integer periods. Therefore,
observing period-3 window of periodicity indicates that the discrete-time system can
exhibit chaotic motion, i.e. “Period Three Implies Chaos” Li, Yorke (1975) [43]. Thus,
sinusoidal map given by Eq. (1.1.7) follows the same bifurcation scenario as the logistic
map Eq. (1.1.5).

Now, going back from the iterated map Eq. (1.1.7) to the original Ikeda DDE, the
derivative term τ ẋ(t) with nonzero τ has to be introduced:

τ ẋ(t) + x(t) = β sin2 (x(t− τD)) , (1.1.9)

where τD is a delay, 0 < τ � τD is a small parameter, and β is an amplification
coefficient of f . Therefore, Ikeda DDE Eq. (1.1.9) may be considered as a singular

11

Chapter 1. Time-delay systems and networks

perturbation of the difference equation Eq. (1.1.7).

The bifurcation diagram of the class of systems described by Eq. (1.1.9) is depicted
in Fig. 1.1.2 (b). There, the bifurcations are computed with respect to the control
parameter β. Other parameters τ = 0.01 and τD = 1 are set to be constant. As it
can be noticed, bifurcation values of β in the Ikeda DDE Eq. (1.1.9) does agree with
the corresponding one-dimensional map Eq. (1.1.7). One can observe a cascade of
period doubling bifurcations of limit cycles where the new cycles occur with increase
of the control amplification parameter β. As in the case of a one-dimensional map,
the bifurcations lead to chaos. Examples of period-2 and period-4 limit cycles and
chaotic motion can be seen on the right side of Fig. 1.1.2. However, one observes
alternating plateaus of the delay length, instead of the alternating values of xn in the
one-dimensional iterated map Eq. (1.1.7). An essential peculiarity of the time delay
model, which differs DDE Eq. (1.1.9) from difference equation Eq. (1.1.7), is the
absence of the windows of periodicity in the chaotic parameter range β > β∞ ' 2.29.
This is the consequence of the fact that Eq. (1.1.9) is one-dimensional, whereas DDE
Eq. (1.1.7) is infinite dimensional. The two models do not exhibit the same number
of degrees of freedom, or equivalently the same dimensionality. Therefore, Eq. (1.1.9)
cannot be accurately approximated by setting τ = 0.

1.1.2 Interpretation of Ikeda DDEs

Lowpass Filter

τ

f(x)

NL feedback

τD

Delayf (x(t))

τDf (x(t-))

x(t)

x(t)

Figure 1.1.3: Oscillator with nonlinear delayed feedback realizing the Ikeda DDE.

In physical systems, a lowpass filter is responsible for the differential term: the dy-
namical variable x can never change infinitely fast as it is the case in the iterated
map approach. Therefore, the Ikeda DDE is implemented in an architecture com-
prising three principal elements: a delay, a nonlinear function f , and a lowpass fil-

12

Chapter 1. Time-delay systems and networks

ter (Fig. 1.1.3). The signal x(t) is nonlinearly transformed by a nonlinear function
f(x) = sin2 (x+ Φ0) and is delayed by time τD, thus, producing a delayed signal
sin2 (x(t− τD) + Φ0). This signal is consecutively filtered, limiting the system’s fastest
response to a dirac-perturbation to the characteristic response time τ . Thus, non-linear
delay dynamics is realized as a feedback loop, in which a linear filter provides the argu-
ment for the non-linear function f , which in turn then serves as the filter’s input. This
iterative relationship is also schematically illustrated in Fig. 1.1.3. Such architecture
allows for observing the route to chaos in the Ikeda DDE experimentally.

The system in Fig. 1.1.3 includes a lowpass filter, which is described in the Fourier
domain as

H(ω) =
G0

(1 + iωτ)
=
IF (ω)

ID(ω)
, (1.1.10)

where G0 is the filter’s gain, IF (ω) = FT {iF (t)} and ID(ω) = FT {f [iD(t− τD)]} =
FT
{

sin2 [iD(t− τD) + Φ0]
}
are the response and the input to the filter, respectively.

By FT we denote the Fourier transform, which decomposes a function of time into the
frequencies it consists of.

Converting Eq. (1.1.10) from the Fourier into the time domain, first we rewrite the
equation as:

(1 + iωτ)IF (ω) = G0ID(ω). (1.1.11)

By expanding the brackets on the left side and making use of the identity FT−1 (iωX(ω)) =
d
dt
FT−1 (x(t)), i.e. multiplication by iω in the Fourier domain is equivalent to differen-

tiation in the time domain, the Ikeda differential equation becomes:

iF (t) + τ
diF
dt

(t) = G0 sin2 [iD(t− τD) + Φ0] , (1.1.12)

where iF (ω) = FT−1 {IF (ω)} and sin2 [iD(t− τD) + Φ0] = FT−1 {ID(ω)}; FT−1 is the
inverse Fourier transform. Then, Eq. (1.1.12) in a normalized form, often used for
numerical analysis, reads as:

εẋ(s) + x(s) = β sin2 [x(s− 1) + Φ0] (1.1.13)

where s := t/τD is the normalized time and ε := τ/τD is a normalized parameter
representing differential time characteristics of the dynamics. Typically, ε� 1 and the
value 1/ε characterizes the linear “memory” of the differential dynamics. On the other
hand, the nonlinear function f is responsible for the difference dynamics (Eq. (1.1.4))

13

Chapter 1. Time-delay systems and networks

and its nonlinear contribution. Thus, the system’s complexity is determined by the
interaction of the differential and difference parts of the DDE Eq. (1.1.13). Fixing ε,
control parameters are the feedback gain β and the feedback offset phase Φ0. Control
parameter β is responsible for the nonlinear function’s f stretching and Φ0 determines
the horizontal shift of f .

The global impact of events described by DDEs locally in time, might be difficult to
understand. To gain better comprehension of the DDE behavior, a signal processing
approach can be employed. Equation (1.1.13), which provides only local differential
dynamics of the Ikeda model, can be alternatively rewritten as a global convolution
product

x(t) =

∫ t

−∞
h(t− ξ) · f [x(ξ − 1)] dξ, (1.1.14)

where f(x) is a nonlinear function and h(t) is the impulse response function (Fig. 1.1.4)
related to the filtering of the process, i.e. the linear, differential part of Eq. (1.1.13).
Function h(t) is an inverse Fourier transform of the filter’s transfer function H(ω). This
impulse response h(t) is responsible for local interactions within the DDE. Equation
(1.1.14) has no differential term, instead it explicitly provides information how both the
delayed events x(ξ−1) and “local” events h(t−ξ) contribute to the solution x(t).

Figure 1.1.4: Impulse response function h(t) of DDE Eq. (1.1.13), ε = 0.02.

1.1.3 Space-time representation of DDEs

Reminding the example with a traffic jam, one can imagine a delay interval as a section
of a road with many cars. Taking another example, with a delayed hot water in a
shower, one realizes that the delay line is a tube full of water. The common aspect in

14

Chapter 1. Time-delay systems and networks

both cases is that the delay interval has a spatial dimension. This gives us an intuitive
motivation for considering any delay interval as spatial. Indeed, if one tries to study the
dynamics of Eq. (1.1.13), one needs knowledge of the state within the initial interval
of [−1; 0]. To reveal patterns in the DDE’s global behavior, it is useful to represent the
information given by variable x as a (discrete time) iteration of a nonlinear operator
defined on the delay interval. The delay interval is then referred to as virtual space
and the dynamics in Eq. (1.1.13) can be visualized using a two-dimensional space-
time representation, originally proposed by Arecchi et al. (1992) [17, 18, 19] (Fig.
1.1.5).

Figure 1.1.5: Space-time plot: a two-dimensional DDE representation, image adapted from
[17]. Here, σ denotes virtual space within a delay interval and n is discrete time.

The virtual space can be understood as a state of a virtual network. Hence, the
dynamics related to the interactions within the network lies on a significantly longer
timescale than τD. The space-time visualization scheme of otherwise one-dimensional
time traces allows observation of the pattern formation within the virtual space of the
delay interval. Therefore, a convenient mean for dynamics monitoring on a longer scale
is provided.

The virtual space of DDEs is often materialized in experiments. Using an optical delay
line (e.g. a spool of optical fiber), the state of delay line is a “physical” space. An
example with a discrete virtual space [0, N − 1] is an electronic delay line of depth N .
Such a delay line can be realized by a first in-first out (FIFO) memory buffer oftentimes
employed to emulate a delay in electronic/optoelectronic systems. Then, the state of
the FIFO delay line completely changes in a discrete time n := N/fCLK where fCLK is
the FIFO’s clock frequency.

15

Chapter 1. Time-delay systems and networks

1.1.4 DDE as a time-multiplexed circular network

To reveal patterns in the DDE’s global behavior we used the space-time representation.
Each delay interval τD was described as containing a “frozen” state, a snapshot of a
virtual spatial dimension. This description can be formalized with the help of impulse
response h. For that, we interpret h as a local coupling between spatially distributed
nonlinear oscillators. Motivated by the spatio-temporal representation, such a network
would be of circular geometry.

To interpret the Ikeda DDE as a discrete time evolution of a functional trajectory
defined over the normalized time interval [0, 1 + γ], γ = O(εβ), the relation between
DDE solutions and the virtual space-time representation is defined as:

xσ(n) = x(s), σ ∈ [0, 1 + γ], (1 + γ)n+ σ = s, n = 0, 1, 2, . . . (1.1.15)

where each element of xσ(n) is the state of a virtual network of oscillators at discrete
time n and σ ∈ [0, 1 + γ], γ � 1 is a new spatial coordinate defined through x(s) in
the formula (1.1.15).

With the identity (1 + γ)n+ σ = s, Eq. (1.1.14) can be written as iterated functional
sequences

xσ(n) =

∫ n(1+γ)+σ

−∞
h (n(1 + γ) + σ − ξ) · f (x(ξ − 1)) dξ, σ ∈ [0, 1 + γ], n = 0, 1, . . .

(1.1.16)

Changing discrete variable n′ = n/(1 + γ), Eq. (1.1.16) is rewritten as:

xσ(n′) =

∫ n′+σ

−∞
h (n′ + σ − ξ) · f [x(ξ − 1)] dξ. (1.1.17)

Therefore, the temporal dynamics of DDE Eq. (1.1.13) can be interpreted as a func-
tional sequence Gn′ , n

′ = 1, 2, . . ., where Gn′ : gn′−1 → gn′ is a nonlinear integral
operator mapping a function given at [0, 1] onto itself, i.e.:

xσ(n′) = xσ(n′ − 1) + Iσ(n′), σ ∈[0,1] (1.1.18)

where xσ(n′ − 1) =
∫ (n′−1)+σ

−∞ h (t− ξ) · f [x(ξ − 1)] dξ and

Iσ(n′) =
∫ n′+σ

(n′−1)+σ
h (t− ξ) · f [x(ξ − 1)] dξ, t = n′ + σ.

16

Chapter 1. Time-delay systems and networks

Substituting variable ξ′ = ξ−n′, the integral Iσ(n′) is rewritten in a simpler form:

Iσ(n′) =

∫ σ

σ−1

h (σ − ξ′) · f [xξ′(n
′ − 1)] dξ′. (1.1.19)

Equation (1.1.18) describes a spatially-extended system which can be solved, e.g. by
the Euler integration scheme, see [17]. Consequently, Iσ corresponds to a nonlinear
“spatial” coupling in the network of oscillators xσ, continuously distributed within the
interval σ ∈ [0, 1] and evolving in discrete time n′. From equations (1.1.18) and (1.1.19)
it can be seen, therefore, that each “node” xσ(n′) is dependent (a) on its own state one
iteration before xσ(n′ − 1) and (b) on the state of the neighboring nodes through the
impulse response function h.

For instance, in the Ikeda DDE with

f [xξ′(n
′ − 1)] = f [x(ξ′, n′ − 1)] = sin [x(ξ′, n′ − 1) + Φ0] ,

the discrete-time evolution of Eq. (1.1.18) obeys the form of:

xσ(n′) = xσ(n′ − 1) +

∫ σ

σ−1

h(σ − ξ′) · sin [xξ′(n
′ − 1) + Φ0] dξ′. (1.1.20)

The system described by Eq. (1.1.20) can already be considered as a circular network.
This structure is revealed with a comparison to a ring of phase oscillators [20, 21]:

∂

∂t
ϕ(x, t) = ω −

∫ π

−π
G(x− x′) sin (ϕ(x, t)− ϕ(x′, t) + α) dx′, (1.1.21)

where x is the position in space of an oscillator, whose phase is ϕ, ω is the natural
frequency constant, and α is the phase constant. The term ϕ(x, t)− ϕ(x′, t) describes
the oscillators’ phase difference, while G(y) is the distance-dependent coupling kernel.
Derived from the complex Ginzburg-Landau equation and known under the name of
Kuramoto-Sakaguchi model, Eq. (1.1.21) is a phase model commonly utilized to de-
scribe collective synchronization in large ensembles of coupled oscillators. Equation
(1.1.21) is able to capture such distinctive solutions as synchrony and chaos.

Choosing an appropriate co-rotating frame, the natural frequency ω can be set to zero.
Applying α′ := α− π, Eq. (1.1.21) becomes:

∂

∂t
ϕ(x, t) =

∫ π

−π
G(x− x′) sin (ϕ(x, t)− ϕ(x′, t) + α′) dx′, (1.1.22)

17

Chapter 1. Time-delay systems and networks

and when making use of Euler’s discretization with time step ∆t = 1:

∂

∂t
ϕ(x, t) =

ϕ(x, t+ 1)− ϕ(x, t)

(t+ 1)− t
= ϕ(x, t+ 1)− ϕ(x, t). (1.1.23)

Therefore, Eq. (1.1.22) can be read as:

ϕ(x, t+ 1) = ϕ(x, t) +

∫ π

−π
G(x− x′) sin (ϕ(x, t)− ϕ(x′, t) + α′) dx′, (1.1.24)

or equivalently

ϕ(x, t) = ϕ(x, t− 1) +

∫ π

−π
G(x− x′) sin (ϕ(x, t− 1)− ϕ(x′, t− 1) + α′) dx′. (1.1.25)

Coming back to Eq. (1.1.20), the variable x(σ, n′) depends on spatial position σ and
discrete time n′, as does the phase ϕ(x, t) in Eq. (1.1.25); the term h(σ−ξ′) (Fig. 1.1.4)
plays the role comparable to the coupling kernel G(x− x′); finally the constant phase
shift Φ0 is equivalent to α. However, instead of the phase difference ϕ(x, t − 1) −
ϕ(x′, t− 1) coupling in Eq. (1.1.25), there is an amplitude self-coupling x(ξ′, n′ − 1) in
Eq. (1.1.20).

The state of the network xσ is stored in the time delay interval [0; 1]. This interval
corresponds to a linear, circular memory, which for example can readily be implemented
using an optical fiber. In that way, dynamical variable x(t) can be regarded as time-
multiplexing of a network with circular connectivity structure (Fig. 1.1.6).

f

 τD

Figure 1.1.6: The Ikeda DDE as a convolution product between an impulse response function
h(t) and a nonlinear function f(x) having the delayed variable x(t− 1) as its argument.

When a network of oscillators contains discrete nodes as elementary units (e.g. when
dealing with a digital delay line), then space is discrete and Eq. (1.1.18) can be rewritten
as:

18

Chapter 1. Time-delay systems and networks

x[dn+ s] = xs[n] = xs[n− 1] +
s−1∑

k=s−d

h[s− k] · f(x[k − d]), s = 1, 2 . . . d, (1.1.26)

where square brackets [·] denote discretization in time, d is the number of nodes in the
virtual network, i.e. in the discrete delay line.

1.1.5 Driven systems

Until now, only so-called autonomous DDE systems were considered, i.e. without ex-
ternal input. However, in the real world there exist numerous non-isolated systems.
Systems with external input are called driven systems. Modifying Eq. (1.1.1) by includ-
ing external input signal u(t), we obtain a driven DDE (in a normalized form):

εẋ(t) + x(t) = f (x(t− 1) + u(t)) , (1.1.27)

where f(x) is a nonlinear transformation. Equation (1.1.27) is schematically repre-
sented in Fig. 1.1.7.

fu(t)
+

 τD

Figure 1.1.7: A driven DDE, with an external information input u(t).

The drive signal u(t) can be interpreted as a way to inject in the initial condition,
i.e. a waveform defined on a time interval of a duration corresponding to the delay. If
u(t) is such a waveform on [−τD; 0], and zero everywhere else, we have a conceptual
way on how to inject a specific initial condition. After such an initial condition, one
then typically observes the dynamics in an autonomous way. After some transient,
the autonomous dynamics converge toward an asymptotic motion, which is typical one
corresponding to the many different possible solutions along the bifurcation diagram
(a steady state, a periodic motion, or a chaotic motion, depending on the parameter
values set for the system).

19

Chapter 1. Time-delay systems and networks

In the case of a non-zero u(t) over the full time axis, there is continuous injection of
a signal, and consequently the system can not reach an asymptotic state. It is forced
to a continuously transient motion, because of the presence of the signal u(t), which
is then said to trigger a transient trajectory in the phase space of the delay dynamics.
Such a transient trajectory will be later used for information processing according to
a brain-inspired technique known as reservoir computing.

Driven systems are common for other applications. For example, in the case of a sys-
tem identification [44], the system under analysis is driven by a sinusoidal signal u(t).
Another example is the optical information processing demonstrated in [45] for chaos-
based encryption application. Information processing systems are driven, in fact, by
an external information input signal u(t). For instance, voice recognition systems are
driven by a speech waveform u(t), self-driving cars are driven by environment signals
u(t) and so on. In the most general context, the utilization of such driven networks of
nonlinear nodes for information processing defines artificial neural networks, a promi-
nent subject in machine learning field.

1.2 Artificial neural networks
What I cannot create, I do not understand.

– Richard Feynman, Nobel Prize winner in Physics (1965)

Despite the fact that computers are ubiquitous today, their working principle is far from
biological. The human brain, which consumes as little as 20 W of power [46], is able to
recognize familiar faces in presence of noise (e.g. poor lighting conditions) in fractions
of seconds. However, this task is tough even for the fastest modern computers. This
capability poses one of the central problems of biologically inspired hardware: how can
information be processed more efficiently.

Another significant problem is to understand the brain from biological view point.
It is known that the human brain consists of hundred billions of neurons, which are
estimated to have thousand trillions of interconnections. However, little is known about
how does that biological network operate. Understanding of this intricate organization
might be crucial for medicine and related fields. So-called constructive approach has
a goal to approximate the brain, or at least a network of neurons. Building a system
analogous to the brain could help to shed some light onto the organ, which is still
treated mostly as a blackbox.

20

Chapter 1. Time-delay systems and networks

1.2.1 Approximation of neural behavior

Though the anatomy of neural cells is known (Fig. 1.2.1, upper), modeling collec-
tive cell dynamics is an open question. A biologically justified model of a neuron was
introduced by Hodgkin and Huxley in 1952 [5] (Nobel Prize 1963). The model is a
four-dimensional nonlinear system of ordinary differential equations (ODEs). How-
ever, computationally simulating a network of such neurons is extremely hard. Should
one try to compute, for instance, the dynamics of 109 neurons (only 1% of estimated
total neurons in the human brain), the model of Hodgkin-Huxley becomes imprac-
tical because of the amount required resources, such as processing power, memory,
and storage. It is worth mentioning this computational problem represents one of the
global challenges of natural sciences and is addressed by the Human Brain Project2
(1 billion e).

A much simpler neuronal model was proposed by Izhikevich [47]. The model is a
two-dimensional system of ODEs:

v̇ = 0.04v2 + 5v + 140− u+ I,
u̇ = a(bv − u),

(1.2.1)

where v and u are dimensionless variables, characterizing the membrane potential of
the neuron and a membrane recovery variable, respectively. a and b are dimensionless
parameters describing the timescale of the recovery variable u and the sensitivity of the
variable u to the fluctuations of membrane potential v, respectively. External forcing
I represents synaptic currents, making Eq. (1.2.1) a driven system (Section 1.1.5).
Being significantly simpler compared to the original Hodgkin-Huxley model, system of
equations (1.2.1) is still able to capture such typical neural regimes as spiking, chatter-
ing, and bursting. Thus, it can be used to model biologically-plausible neural behavior.
However, even computation with this simplified model is still a complicated engineering
task when dealing with billions of neurons and, therefore, is not yet feasible.

To achieve computational efficiency for biologically-inspired information processing,
one may need to make a further step towards system simplification. Instead of indi-
vidual neurons, modeling a collective behavior of neuronal network can be attempted.
Here artificial neural networks, referred further in the text as neural networks (NNs),
are coming into the play.

Figure 1.2.1 illustrates the idea behind the transition from a biological to a very sim-
plified mathematical, formal model of the neuron. The biological neuron (Fig. 1.2.1,
upper) has a cell body (soma) that receives electrical impulses from other neurons

2http://www.humanbrainproject.eu

21

Chapter 1. Time-delay systems and networks

Biological neuron

Perceptron

uM

u2

u1

1

∑
wM

w2

w1

w0

Inputs

Weights

Activation function

y

Figure 1.2.1: Simplification of the neuron’s architecture for information processing. Upper:
The biological neuron’s model. Image source: [48]. Lower: The perceptron, a formal neuron’s
model. The input vector u = (1, u1, u2, . . . uM) is weighted and nonlinearly transformed via
the activation function, creating a scalar output value y.

through dendrites. The soma performs non-linear processing over the input signals.
If the total input is higher than a certain threshold, then an output impulse is pro-
duced [49]. This impulse is then transmitted through an axon, the long projection
of the neuronal cell that conducts electrical impulses away from the cell body. In
contrast to the biological neuron, the formal neuron called perceptron [6] (Fig. 1.2.1,
lower) captures only the essential of the neuron’s features: input connections, nonlinear
transformation, and the output. Similarly to the neuron, the perceptron performs a

22

Chapter 1. Time-delay systems and networks

thresholded transformation over the received information. As it can be seen from Fig.
1.2.1, perceptron is an extremely refined version of its biological counterpart and we
stress that it is a purely mathematical concept used for the purpose of information
processing.

A single-layer perceptron is mathematically described as:

y = f

(
M∑
i=0

wiui

)
, (1.2.2)

where u = (1, u1, u2, . . . uM) is an input vector (Fig. 1.2.1, lower),
w = (w0, w1,w2, . . . wM) is a weights row-vector, and f is a nonlinear activation func-
tion, e.g. step function, sigmoid, etc. Note, expression

∑M
i=0wiui is the inner product

between the vectors u and w, where the first term w0 · 1 in Eq. (1.2.2) is the input
bias. Thus, using a dot product notation (·) for vectors, Eq. (1.2.2) can be rewritten
as:

y = f (w · u) . (1.2.3)

Comparing Eq. (1.2.3) with physical models of the neuron, such as Eq. (1.2.1), we
point out that there are no time-dependent variables involved in the model anymore.
Thus, perceptron is a mathematical concept, a memoryless function, which maps the
input vector x into the output y. It is necessary to highlight that even though there is
a nonlinear activation function, the perceptron acts as a linear separator, a separation
hyperplane in a n-dimensional phase space.

1.2.2 Feedforward neural networks

Not every problem is linear. In Fig. 1.2.2, there is an example of inputs which cannot
be separated using a straight line, i.e. by a hyperplane in a 2-dimensional space. The
input vectors u = (u1, u2) and the respective target results y of binary operation,
known as XOR (eXclusive OR), are given by Table 1.1.

Therefore, linear separators such as perceptron cannot solve the XOR problem. To
solve it, an additional layer of artificial neurons has to be introduced (Fig. 1.2.3).
Now, the computation has to be done in two stages. In the first stage, the hidden layer
x is a vector calculated as:

23

Chapter 1. Time-delay systems and networks

(a) u1

u2

(b) u1

u2

Figure 1.2.2: (a) The XOR operator cannot be resolved by a separation with a straight
line (a hyperplane in 2D space). (b) Only transition to a higher-dimensional space, which is
equivalent to drawing a curve in 2D space, may allow separation between classes. Coding:
filled dots – 1, hollow dots – 0.

u1 u2 XOR(u1, u2)

0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1: The XOR binary function

x = f1

(
W Iu

)
, (1.2.4)

where u = (u1, . . . uM) and x = (x1, . . . xN) are vectors. Matrix W I ∈ RN×(M+1) is
the input weights matrix, thus the hidden layer consists of multiple perceptrons given
by row-vectors of W I . The result of matrix-vector product W Iu is a vector, which
is transformed by the perceptron’s transfer function f1. The function f1 is applied
element-wise, i.e. f1(x) = (f(x1), . . . f(xN)). Note that if N = 1, Eq. (1.2.4) is
reduced to Eq. (1.2.3). In the second and final stage, the output of the network is
calculated as a perceptron which receives the values from the hidden layer:

y = f2

(
WRx

)
, (1.2.5)

where WR ∈ RK×(N+1) is the readout matrix, K is the output dimension (in Fig. 1.2.3
K = 1), and f2 is another transfer function, which is often the identity. For brevity, we
will assume M := M ′ + 1 and N := N ′ + 1, thus omitting bias inputs when describing
W I ∈ RN×M and WR ∈ RK×N , respectively.

24

Chapter 1. Time-delay systems and networks

u1

u2

y

Hidden
layer

Input
layer

Output
layer

Perceptrons

W I

WR

Figure 1.2.3: A feedforward neural network (FNN) solving the XOR problem. In this
example, the hidden layer consists of two perceptrons x = (x1, x2), each of which receives
two variable inputs u1 and u2, plus a constant input (not marked). The output layer y is
a perceptron with two inputs x1 and x2 coming from the previous (hidden) layer, plus a
constant input (not marked). The connection weights are given by the matrices W I and WR.
Note that the network is not unique, i.e. there exist many possible configurations of W I and
WR solving the same problem.

The computational process within a NN can be well illustrated by solving the XOR
problem. Let the input and the readout matrices be

W I =

(
−10 20 20
30 −20 −20

)
, WR =

(
−3 2 2

)
, (1.2.6)

and let the transfer functions be the following:

f1 =

{
1, if x > 0,

0, if x ≤ 0,
f2(x) = x. (1.2.7)

Here f2 is the identity, thus, the answer is a linear combination of the hidden layer’s
values. Consider an input u1 = 1, u2 = 0. Then, the hidden layer is computed as:

x = f

(
−10 + 20 · u1 + 20 · u2

30− 20 · u1 − 20 · u2

)
= f

(
−10 + 20 · 1 + 20 · 0
30− 20 · 1− 20 · 0

)
=

(
f(10)
f(10)

)
=

(
1
1

)
.

(1.2.8)

25

Chapter 1. Time-delay systems and networks

An answer is obtained, using the state of the hidden layer x:

y = −3 + 2 · x1 + 2 · x2 = −3 + 2 · 1 + 2 · 1 = 1. (1.2.9)

The other combinations of the input u = (u1, u2) can be verified in a similar fash-
ion.

Artificial neural networks given by equations (1.2.4) and (1.2.5) are called feedforward
neural networks (FNNs). FNNs with a single hidden layer of neurons have been proven
[8, 50] to be able to approximate an arbitrary continuous function ytarget on compact
subsets of Euclidean space.
Theorem. If ytarget(u) ∈ C(IM), where IM is the M-dimensional hypercube [0, 1]M ,
C(IM) is the space of continuous functions, and f is a nonconstant, bounded, and
monotonically-increasing continuous function, such that

y(u) = WRf
(
W Iu

)
.

Then for each ε > 0 and u ∈ IM , there exist W I ∈ RN×M and WR ∈ RK×N , such that
‖y(u)− ytarget(u)‖ < ε.

The universal approximation theorem [8] stated above not only provides formal re-
quirements for FNNs but also implies that FNNs are a powerful mean of computation.
Consisting of multiple perceptrons, on the other hand, FNNs can be regarded as a
semblance of collective behavior in biological neuronal systems. The transition from
biologically-justified to biologically-inspired architecture was motivated by computa-
tional efficiency to fit the existing technology.

1.2.3 Recurrent neural networks

FNN architecture provides a one-directional information processing flow3. Recurrent
neural networks (RNNs), on the other hand, represent a class of NNs, the connection
topology of which allows cycles. Such cycles are not present in FNNs, and RNNs
can therefore be regarded as their extension. A schematic illustration is given in
Fig. 1.2.4.

In RNNs, the hidden layer in the middle is typically referred to as the recurrent layer.
As illustrated by the non-exclusively forward-directed connections in Fig. 1.2.4, the
recurrent layer has internal connections which include recurrent loops. Because of the

3Hence the name, feedforward neural networks.

26

Chapter 1. Time-delay systems and networks

u y

Input
layer

Recurrent
layer

Output
layer

W I W WR

Figure 1.2.4: Schematic of information processing flow in a recurrent neural network (RNN).
The recurrent layer, in the middle, retains the information and, therefore, the output of RNN
depends on the previous inputs.

presence of recurrent loops, RNNs provide a distant analogy with the biological brain
[46].

Mathematically, RNNs can be expressed as:

x(n) = f
(
W Iu(n) +Wx(n− 1)

)
, n = 1, . . . , T, (1.2.10)

where matrix W I ∈ RN×M is the input map, W ∈ RN×N is the map of the previous
state of the recurrent layer, and x(n) is the internal state of a network at discrete time
n. The result of computation y(n) is obtained as

y(n) = WRx(n), (1.2.11)

where matrix WR ∈ RK×N is a readout map. As it can be seen from Eq. (1.2.10), the
internal state of the RNN x(n) depends not only on current inputs, but also on the
previous inputs. Such dependence on the previous inputs is the reason why RNNs are
more complex objects comparing to FNNs, where information flows unidirectionally
from input to output.

While FNNs are universal function approximators, RNNs can be regarded as algo-
rithms. The main difference is that functions (or maps) do not have memory (they

27

Chapter 1. Time-delay systems and networks

are stateless) while algorithms do. It has been shown, RNNs are universal approxi-
mators of dynamical systems [51]. Moreover, it has been shown that they are Turing
equivalent [52]. Thus, RNNs constitute a more powerful class of NNs than FNNs.
RNNs can be applied for such problems as system identification, inverse system identi-
fication, filtering, prediction, pattern classification, associative memory, data compres-
sion [53].

1.2.4 Neural networks training

1.2.4.1 Supervised vs unsupervised learning

The most striking idea behind feedforward NNs is a construction of computing network
that can be reused for a wide range of computational problems. Tasks such as spam4

detection, handwriting recognition, face recognition, time series forecasting and many
others, can be regarded as an unknown function ytarget approximation problems. For
instance, in the case of spam detection, the function ytarget(u) has to return one of two
values, true or false, depending if the argument u is a spam or not. In this example,
u is a vector of characters representing an email message. In the case of handwriting
recognition, the function ytarget(u) has to return a character (or a string of characters)
depending on its input u, which is a matrix of pixels representing an image. In the
case of face recognition, ytarget(u) has to identify a face u in a database of known faces.
In the last case, of time series forecasting, ytarget(u) has to predict the forthcoming
(future) element(s) of time series u.

Behind the training of the listed above examples, (a) there is a set of inputs {u(m),m =
1, . . . , Ntotal}, (b) there is a set of corresponding known outputs {ytarget(u

(m)),m =
1, . . . , Ntotal}, and (c) the goal is to find a function y(u), e.g. implemented by a NN.
The function y(u) is required to minimize a certain error measure ‖y(u)− ytarget(u)‖.
The tasks listed above, therefore, belong to a supervised learning class of problems.
The goal of supervised training method is known as generalization of known outcomes.
The present thesis is concentrated around problems solved with the help of supervised
learning.

However, there are problems that do not have a predefined solution. Consider, for
instance, a dataset of arbitrary data, in which there are hidden relations, e.g. clusters,
to be uncovered. If no prior information is given about the number of clusters, their
structure or size, then the system is trained with an unsupervised learning method.
Kohonen networks [9] are an example of such self-organized NNs.

4Irrelevant or inappropriate email messages sent to a large number of recipients.

28

Chapter 1. Time-delay systems and networks

There also exists an intermediate approach known as a reinforced learning [54]. During
the reinforcement learning process no explicit teacher signal is given. However, the
trained system receives a reward upon successful completion of given task or penalty as
a consequence of fail. For instance, reinforced learning is often used to teach intelligent
agents (robots) solving motion problems, such as walking or object manipulations.
There are no explicit instructions, how to balance the robot’s body or position the
limbs. However, upon completion of each training round, the agent receives a certain
reward or “pleasure” function, depending on how close it was to the completion of given
goal.

1.2.4.2 FNN training

Backpropagation is one of the most popular supervised learning methods used in FNNs
training. The objective of the method is to find network weights W I and WR such
that the summed square error is minimized

ER =
1

2Ntotal

Ntotal∑
m=1

∥∥y(u(m))− ytarget(u(m))
∥∥2
.

Before the training, weights in W I and WR are initialized randomly, typically with
small values. The backpropagation is performed iteratively. In each iteration, a forward
pass given by formulas (1.2.4) and (1.2.5) is computed for each training sample. Then,
during the backward pass weights are updated from the output to the input layer. This
procedure allows the error to be incrementally decreased along the direction of the
error gradient ∇E with respect to weights, i.e.

∇E =

Ntotal∑
m=1

∂El(m)

∂wlij
(1.2.12)

according to the rule

new wlij = wlij − α∇E, (1.2.13)

where α is a (small) learning rate, l is the updated layer’s index. This way, new readout
weights wRij ∈ WR, i = 1, . . . , K, j = 1, . . . , N and consequently new input weights
wIij ∈ W I , i = 1, . . . , N, j = 1, . . . ,M are computed. The forward and backward
passes are repeated again until a stop condition, e.g. training convergence. For more
practical details about backpropagation algorithm see e.g. this tutorial [55].

29

Chapter 1. Time-delay systems and networks

Multiple modifications of the backpropagation technique exist, e.g. incremental learn-
ing where the weights are changed after each training sample individually, modifications
with adaptive learning rate α, etc. The algorithm can also be extended to NNs with
multiple hidden layers. However, there are several limitations of the backpropagation
method family. One of the most important limitations is, like all gradient-descent
methods, it is not guaranteed to find a global error minimum. Another major limi-
tation is that training is often slowly converging. Lasting multiple iterations, it may
require substantial computation resources to train a neural network.

1.2.4.3 RNN training

While RNNs have an algorithmic advantage over FNNs5, their training is not as
straightforward using error backpropagation. In addition to problems of local optima
and slow convergence, the learning process is also driven through bifurcations of the
dynamical system [53]. That may slow down or even disrupt the learning process.

Training an RNN is similar to training a FNN with a large number of hidden layers
as we will explain in the following paragraphs. Fig. 1.2.5 (a) shows an example of an
RNN. The input ut together with the recurrent feedback xt (blue arrow), is transformed
by a nonlinear map f . Altogether, the input ut, the feedback xt, and the nonlinear map
f constitute a recurrent layer producing the internal network state xt+1. The resulting
state xt+1 is the input to the next layer, where the readout map g finally returns the
RNN’s answer yt+1.

By unfolding the RNN in time, one is able to obtain a FNN representation (Fig. 1.2.5
(b)). Unfolding for n steps is achieved by n replications of the recurrent layer. That
results in a FNN with n virtual layers that also has n distinct inputs ut, ut+1, . . . , ut+n−1.
Therefore, the inner state x of the initial RNN is dependent on all the past inputs.
That illustrates how RNNs implicitly store the information about the history of all the
previous inputs.

To train such unfolded network, a gradient descent method can be used. This technique
is called back-propagation through time (BPTT). During backpropagation training,
gradients either increase or decrease at each time step. A consequence of the highly
increased network’s depth, is the creation of so-called exploding and, in other cases,
so-called vanishing gradients [12]. Thus, BPTT becomes a non-trivial task requiring
experimentation. Additional tricks (e.g. teacher forcing) are often required to achieve

5Here we have to remind that RNNs have the internal state (memory), while FNNs do not. There-
fore, RNNs are equivalent to algorithms, while FNNs are memoryless maps. The presence of memory
is a tremendous difference that makes RNNs closer to the real brain. Consequently, FNNs are a
conceptually less complex class of NNs.

30

Chapter 1. Time-delay systems and networks

(a)

fut xt+1

xt

g yt+1

(b)

f
ut

xt

f
ut+1

xt+1

. . . f
ut+n−1

xt+n−1
xt+n g yt+n

Figure 1.2.5: (a) A simple RNN where f is a nonlinear activation function and g is a readout
map. (b) The same network, but unfolded in time for n time steps, which transforms it into
an FNN with many layers.

convergence, see [53] for details. Finally, the BPTT procedure drastically increases
computational costs for RNNs training, compared to FNNs with the same number of
real layers.

Artificial neural networks have demonstrated potential in solving such difficult prob-
lems as object recognition [56], playing Go [57] and video games [58], skin cancer
diagnosis [59] and others. However, all those algorithms are mostly implemented on
general-purpose devices such as CPUs and GPUs6. On the other hand, implementa-
tion in dedicated hardware promises higher processing speeds and a much better energy
efficiency. Because of inherit complex dynamics, physical systems realizing nonlinear
delay dynamics are a viable candidate to implement neural networks directly in hard-
ware [60, 61].

1.3 Applications of nonlinear delay dynamics

The diversity of dynamical behavior found in delay systems can be appreciated by
the diversity of dynamical states found in their bifurcation diagram (see Fig. 1.3.1).
Once translated into a discrete representation of dynamical networks, they share a
strong analogy to dynamics widely exploited with artificial neural networks in the field
of machine learning. All three regimes (fixed point, limit cycles, and chaotic regime)
exhibited by DDEs found an application.

Chaotic regime can be used to hide an information signal in chaotic carrier. This idea
is the basis of secure chaos communication where the broadband chaotic waveform re-
places a classical sinusoidal carrier, bringing a ciphering (steganography) functionality
to the transmitted information. Synchronization between chaos systems is the re-
quirement for encryption/decryption of the signal [62]. Therefore, an identical pair of
systems is required. Implementations of a delayed-feedback oscillator provide a major

6Central processing units and graphical processing units.

31

Chapter 1. Time-delay systems and networks

Fixed Point Limit Cycles Chaos

Figure 1.3.1: Bifurcations in the Ikeda DDE

improvement: such implementations significantly increase the phase space comparing
to earlier demonstrations. The benefit of the approach is the increased difficulty to
recover the encryption parameters. Another advantage of such systems is high-speed
encoding achieving up to 10 Gb/s [45, 63].

Limit-cycle solutions of DDEs are also used for practical purposes. This concerns the
microwave generation with very high spectral purity. The resulting ultrastable mi-
crowaves are beneficial for radar applications. The advantage of optoelectronic oscilla-
tors implementing the Ikeda dynamics over classical electromechanical resonator-based
oscillators is in the ability to reach high oscillation frequencies while still featuring
an extreme short term stability as required by radar systems. Moreover, the quality
factor of optoelectronic oscillators is improving as the operating frequency increases
[26, 64].

Systems with asymptotic fixed point solutions are getting higher attention in the non-
linear dynamics community due to the search for alternative information processing
hardware [14]. Until now, decreasing transistors’ sizes were able to speed-up the proces-
sors’ clock rates. That enabled artificial neural networks, which demonstrated a greater
potential in solving machine learning tasks unaccessible before [65, 66, 67, 56, 58, 57].
However, the process of miniaturization is fundamentally limited. The silicon industry
is close to the limits. That may pause the development of artificial neural networks,
relying on speed improvements of general-purpose electronics. A possible way to speed
up those networks is to build specialized hardware natively supporting them. Reser-
voir computing (RC) is a promising RNN training approach that is based on separating
creation of RNN from its training. This paradigm enables a rich variety of new com-
puting hardware, including systems realizing DDEs. One of the main advantages of
RC built on top of DDEs is the efficiency of delayed-feedback oscillator architecture.

32

Chapter 1. Time-delay systems and networks

Implemented in optics [32, 33, 34, 68], such devices can become a photonic alternative
to present digital information processing instruments already facing the fundamental
limits.

1.4 Conclusion

Introduced in the Chapter, nonlinear delayed-feedback systems are present in many
physical processes [16]. In practice one may realize DDE of Ikeda type using delayed-
feedback oscillator architecture. The architecture comprises three principal compo-
nents: a nonlinear transformation, a delay, and a lowpass filter. Because of their
complexity, delayed-feedback systems exhibit a rich variety of behaviors. In order to
better understand the dynamics, we developed an analogy between DDEs and spatially-
extended dynamical systems, approximated by a set of virtual oscillators placed on a
temporal ring. That property along with inherent oscillator homogeneity achieved by
the time multiplexing technique makes nonlinear delayed-feedback systems a tool of
interest, e.g. to study synchronization phenomena in ensembles of coupled oscilla-
tors.

On the other hand, an analogy to spatially-extended systems connects dynamics of
DDEs and those of recurrent neural networks (RNNs). RNNs are generalization of
feedforward neural networks (FNNs), a simple model inspired by biological neuronal
networks. Both RNNs and FNNs are used for information processing. However, due to
increased complexity, RNNs are more difficult to train using methods that are typically
applied to FNNs, e.g. gradient-descent. Among those difficulties are slow convergence,
exploding and vanishing gradients, increases computational costs and others. Reservoir
computing is an alternative RNN training method, solving the listed above problems.
In addition, RNN allows computation directly by DDEs, in asymptotic fixed point
regime. In its turn, DDEs give rise to new hardware [60, 61] implementing delayed-
feedback oscillator architecture. Other applications of DDEs involve other dynamical
regimes, such as limit-cycles (high spectral purity microwave generation [64]) and chaos
(secure chaos communication [45, 63]).

33

Chapter 2

Chimera states in nonlinear
delayed-feedback systems

Nonlinear delay dynamical systems modeled by delay differential equations (DDEs)
can exhibit very complex behavior. Space-time representation allows to treat DDEs
as homogenous networks of coupled oscillators. The self-organized patterns known as
chimera states are characterized by spontaneous symmetry breaking in such homoge-
nous networks. We describe the first experimental observation of chimera states in
optoelectronics. The observed chimera patterns are highly robust, i.e. they can be
found for a wide range of parameters and are stable with respect to the noise in the
experimental setup.

2.1 Introduction

Until recently, there were considered only two extreme cases of synchronization in
homogenous1 networks of coupled oscillators: either synchrony (coherence) or chaos
(incoherence). In [20] it was first demonstrated that both coherent and incoherent
states can coexist. The network described by a phase equation Eq. (1.1.21) with
oscillators continuously distributed in space (Section 1.1.4) was considered in [20]. As
a reminder, the formula is given below:

∂

∂t
ϕ(x, t) = ω −

∫
G(x− x′) sin (ϕ(x, t)− ϕ(x′, t) + α) dx′, (2.1.1)

1Meaning that all the oscillators are identical, i.e. their natural frequencies are equal ωx = ωx′ ≡ ω.

34

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Here the natural frequency ω is a constant indicating a homogenous network. Addi-
tionally, we have to point out that G(y) is the distance-dependent coupling kernel2,
effectively reducing the number of possible connections from global, all-to-all coupling
to a so-called non-local coupling, greater than the smallest oscillator distance and
smaller than the network size. Then, under appropriate initial conditions, the network
of oscillators Eq. (2.1.1) splits into two domains: a coherent and the other, incoherent.
Such state of the network is illustrated Figure 2.1.1.

Figure 2.1.1: Instantaneous distribution of phases in Eq. (2.1.1) exhibiting coherence and
incoherence: The coherence region is from normalized positions 0 to 0.1, and from 0.9 to 1.
The network is made of discrete oscillators forming a closed chain (end of the chain connected
to the beginning). There are 512 oscillators distributed over a chain with a length normalized
to one. The vertical axis is in unit of radians. Image adapted from [20].

The majority of the oscillators’ phases in Figure 2.1.1 are not synchronized, however,
there is a small cluster of synchronized phases, which persists through the time evo-
lution of Eq. (2.1.1). In [21] such coherent-incoherent motion was named a chimera
state. According to the Greek mythology, Chimera was a hybrid creature composed
of several animals. By analogy, chimera states simultaneously exhibit two different
solutions: chaos and synchrony. Chimera states may provide a useful insight on such
phenomena as pattern formation in networks of coupled oscillators of different nature
[20, 21], ventricular fibrillation [22], scenarios of transition to turbulence similar to
[69, 70, 71, 72]. Since the original theoretical work [20], confirmation of chimera state
was found in physical systems such as liquid crystals [73, 74], chemical [75], mechanical
[76, 77], and quantum oscillators [78].

In this Chapter, we describe the first experimental observation of chimera state in a
delay system. We experimentally implement an optoelectronic laser wavelength non-
linear delayed feedback oscillator, which exhibits chimera states. For that purpose we
exploit the analogy between DDEs and spatially-extended systems that was introduced
in Chapter 1. Inspired by chimera states in networks of coupled oscillators, chimera

2Such as G(y) = K
2 exp(−K|y|) in [20] or G(y) = (1 +A cosx)/2π in [21].

35

Chapter 2. Chimera states in nonlinear delayed-feedback systems

states in nonlinear delay dynamics [79, 80, 81] are sustained self-organized patterns
recurring over the delay interval. An essential finding is that chimera patterns can be
modeled by autonomous DDEs, i.e. without any external input breaking the system’s
symmetry.

We characterize chimeras in nonlinear time-delayed systems that are a generalization
of the Ikeda DDE. We find that striking behavior of this type arises in a wide domain
of system parameters. With increase of the amplification gain, chimera solutions are
destroyed, giving rise to a spatiotemporal intermittency and high-dimensional chaos.
On the other hand, the considered delayed-feedback model exhibits multistability, i.e.
different chimera configurations can coexist within the same parameter set. One of
potential applications exploiting high system’s multistability is fast information stor-
age, e.g. [38]. The benefit of our implementation is that it shares the delayed-feedback
architecture, and thus, the dynamical properties with alternative optoelectronic com-
puting systems [33]. This suggests easier integration between both systems.

2.2 Observation of chimera states in delayed-feedback
systems

In Chapter 1, we discussed the route to chaos in DDEs depending on the gain β of a
nonlinear function f . Smaller values of β corresponded to fixed-point solutions, while
bigger values of β gave rise to limit cycles. The limit cycles led to chaos through the cas-
cade of period doubling bifurcations. In the case of fixed point, small values β resulted
in a near-flat shape of the nonlinear function f near extremum. In contrast, higher
values of β resulted in sharp maxima giving rise to chaotic behavior. Subsequently, use
of a nonlinear function f with two different extrema, a broad minimum and a sharp
maximum, will result in one of two solutions: a fixed point or chaos. That type of
function is then required in order to break the symmetry in a nonlinear DDE.

2.2.1 Ikeda DDE. The Airy function and two coexisting attrac-
tors

Behavior of the following DDE is determined by the nonlinear function f :

τ ẋ(t) + x(t) = f (x(t− τD)) , (2.2.1)

where parameter τ is a linear decay time and τD is time delay. As a nonlinear function
f , consider the Airy function with asymmetric extrema:

36

Chapter 2. Chimera states in nonlinear delayed-feedback systems

f(x) =
β

1 +m · sin2(x+ Φ0)
, (2.2.2)

where β is the amplification, or nonlinear function stretching parameter (Figure 2.2.1).
We take β as a control parameter and, for definiteness, fix the other parametersm = 4.7
and Φ0 = −0.4.

0.8 - π x1

x2

0 0.8
x

f(x)

Figure 2.2.1: The Airy function vertically centered around the origin, m = 4.7, Φ0 = −0.4.

To understand the influence of f on the behavior of DDE, a one-dimensional iterated
map is used:

xn = f (xn−1)− f (0)

= β
([

1 +m · sin2(xn−1 + Φ0)
]−1 − c

)
,

(2.2.3)

where the constant term c =
(
1 +m · sin2 Φ0

)−1 has been subtracted to vertically align
f around zero.

The function f has asymmetry: it has a broad minimum f(x1) and a narrow maximum
f(x2) (Figure 2.2.1). That follows, f has two attractors A1 and A2, toward which the
system tends to evolve starting with close initial conditions. Those initial conditions
are known as basins of attraction. The first attractor A1 is a negative fixed point
(Figure 2.2.2). It has a basin of attraction x0 ∈ (0.8 − π; 0). The second attractor
A2, depending on β, is either a fixed point, a limit cycle, or chaotic motion. The
corresponding basin of attraction is x0 ∈ (0; 0.8). Therefore, difference equation Eq.
(2.2.3) has two distinct coexisting solutions depending on the initial condition x0, as
it is shown in Fig. 2.2.2.

Two solutions of the iterative map correspond to distinct attractors of the Airy function.
The question is how such asymmetric function can influence the DDE dynamics.

37

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.2.2: Bifurcation diagram of one-dimensional map Eq. (2.2.3). Depending on the
initial condition x0, solution xn tends to one of two attractors A1 and A2.

2.2.2 Transient dynamics of Ikeda DDEs

Extending the one-dimensional map Eq. (2.2.3) to a DDE of Ikeda type gives

τ ẋ(t) + x(t) =
β

1 +m · sin2 [x(t− τD) + Φ0]
, (2.2.4)

where τD is a time delay and τ � τD is a fast-scale system response time. Let us fix
parameters β = 2, m = 4.7 and Φ0 = −0.4, then the function f has two attractors, A1

is a fixed point and A2 is a chaotic attractor. Normalized with respect to time delay
τD, Eq. (2.2.4) becomes

εẋ(s) + x(s) =
β

1 +m · sin2 [x(s− 1) + Φ0]
, (2.2.5)

where s := t/τD is the rescaled time in dimensionless units, ε := τ/τD, ε � 1 is the
normalized system response time, and x(s−1) is the delay term. With forced sine-wave
initial conditions x(s) = sin (2πs) , s ∈ [−1, 0], switching between the two attractors
A1 and A2 arises. That results in partially regular and partially chaotic behavior on
the delay interval (Fig. 2.2.3, (a)). However, this motion is transient: the coherent low
plateau shrinks with time (Fig. 2.2.3 (b-c)) and eventually dies soon after 600 delay
intervals (Fig. 2.2.3 (d)). The dynamics becomes purely chaotic, given by the attractor
A2.

38

Chapter 2. Chimera states in nonlinear delayed-feedback systems

0 200 400 600 800 1000
t

0.6

0.0

0.6
x
(t

)

150 151t

0.6

0.0

0.6

x
(t

)

(a)

520 521t

(b)

590 591t

(c)

800 801t

(d)

Figure 2.2.3: Transient coherent-incoherent motion in Ikeda dynamics Eq. (2.2.5). Upper:
Time trace of x(t) dynamics for 1200 delay intervals. Lower: Zoom-in of delay-length intervals
revealing shrinking of the coherent regions and their eventual disappearance. Parameters
β = 2, ε = 5 · 10−3, m = 4.7, Φ0 = −0.4.

This phenomenon, when the asymptotic dynamics is given eventually by one of two
co-existing attractors, is common for different classes of DDEs, i.e. also for Eq. (2.2.1).
In the literature, such phenomenon is called coarsening [25, 82, 83]. Coarsening means
that a bistable system3 initially exhibiting both states on delay interval, eventually is
restricted to motion along only one of the two original attractors. In [82] coarsening
was mathematically proved for a class of piecewise smooth functions f . Another DDE,
with a linear delayed feedback was demonstrated in [25]: ẋ = −f(x) + βx(t − τD),
where f(x) = x(x+ 1 + a)(x− 1) is the nonlinear function, a is the measure of global
asymmetry, τD > 10 is long delay, and β is the feedback gain. There, the system had
two stable solutions: a lower and an upper plateau. The initial conditions were forced
such that both, the lower and upper plateaus are assigned inside the delay interval.
However, after some transient time, one of the plateaus ceased to exist, giving rise to
a single stable regime.

Similarly, the bistable system Eq. (2.2.5) is attracted to one of its two attractors.
Employing the space-time plot visualization scheme introduced in Section 1.1.3, we
can observe the coarsening process (Fig. 2.2.4). The new question is if Eq. (2.2.5)
can be modified in such a way that the bistable system, instead of falling into one of
its attractors, can switch between both of them. In other words, can the transient
dynamics depicted in Figs. 2.2.3 and 2.2.4 be stabilized?

3I.e. with two co-existing attractors A1 and A2.

39

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.2.4: Coarsening in the Ikeda dynamics described by Eq. (2.2.5)

2.2.3 Chimera states in a bandpass Ikeda model

Chimera states are exhibited by networks of nonlocally, or long-range coupled oscil-
lators [20]. By analogy, a long-range coupling is required to observe stable chimera
patters in a DDE. The reason why the coherent-incoherent motion in Eq. (2.2.5)
was transient, is likely to be a short-range coupling provided by the differential term
εẋ. In order to introduce a long-range coupling, an additional term is needed. For in-
stance, an integral term that is dependent on all the previous history of a DDE. Indeed,
delayed-feedback systems with an integral term were reported to exhibit qualitatively
new solutions. One example of such solutions are period-1 oscillations with strongly
asymmetric waveforms [84]. The asymmetry was tunable depending on a nonlinear
feedback offset phase. Another example are so-called chaotic breathers evolving on a
slow timescale comparing to time-delay [85].

Bandpass Filter

τ

f (x)

NL feedback

τD

Delayf (x(t))

τDf (x(t-))

x(t)

x(t)

θ

Figure 2.2.5: Ikeda oscillator with a bandpass filter

40

Chapter 2. Chimera states in nonlinear delayed-feedback systems

The transient dynamics in the Ikeda DDE physically corresponds to a dynamics in
a feedback loop with a lowpass filter (Fig. 1.1.3). Replacing the lowpass with a
bandpass filter, the dynamics of a bistable system switching between two attractors
can be stabilized. Consider a bandpass filtered system (Fig. 2.2.5) described in the
Fourier domain:

H(ω) =
(iωθ)G0

(1 + iωθ)(1 + iωτ0)
=
IF (ω)

ID(ω)
(2.2.6)

where G0 is the gain of the filter. Converting from the Fourier into the time domain,
an Ikeda DDE with an integral term 1

θ

∫ t
t0
iF (ξ)dξ is then obtained:

1

θ

∫ t

t0

iF (ξ)dξ +
(

1 +
τ

θ

)
· iF (t) + τ

diF
dt

(t) = iD(t), (2.2.7)

where iD(t) = f (x(t− 1)) is the input of the bandpass filter and iF (t) = x(t) is its
output. In the normalized form, integro-differential Eq. (2.2.7) reads as

δ

∫ s

s0

x(ξ)dξ + (1 + εδ) · x(s) + ε
dx

ds
(s) = f (x(s− 1)) , (2.2.8)

where s = t/τD is normalized time, ε = τ/τD � 1 and δ = τD/θ � 1 are normalized
parameters representing differential and integral time characteristics of the dynamics.
As in Section 2.2.1 we use the Airy nonlinearity as nonlinear function f(x). Taking
into account that εδ � 1, the term εδ · x(s) is small and can be neglected. Then, Eq.
(2.2.8) is rewritten as a system of two DDEs:

εẋ(s) = −x(s)− δ · y(s) + f (x(s− 1)) ,
ẏ(s) = x(s).

(2.2.9)

The difference between (2.2.9) and the original DDE (2.2.5) is the presence of the
integral term δy = δ

∫ s
s0
x(ξ)dξ with δ > 0. Setting δ = 0 therefore reduces Eq. (2.2.9)

to (2.2.5).

The role of the control parameter β can be explained using the bifurcation diagram in
Fig. 2.2.6. The behavior is determined by both attractors A1 and A2 of the iterated map
Eq. (2.2.3) for dynamics shown in Fig. 2.2.2. Indeed, the lower branch influenced by
the attractor A1 remains in a state of equilibrium, while the upper branch determined
by the attractor A2 undertakes a cascade of period doubling bifurcations leading to

41

Chapter 2. Chimera states in nonlinear delayed-feedback systems

(a) (b) (c) (d)

Figure 2.2.6: Upper: Bifurcation diagram for coherent-incoherent motion in Ikeda DDE
with a bandpass filter. The Hopf bifurcation gives birth to a stable period-1 limit cycle at
β ' 0.8. Then, a cascade of period doubling bifurcations in the upper branch occurs until
reaching singularity (chaotic behavior) at β ' 1.65, giving rise to a chimera state. For β > 2,
spatiotemporal intermittency arises. Lower: Time traces of (a) Periodic motion, (b) First
period doubling bifurcation, (c) Chimera state, and (d) Spatiotemporal intermittency are
depicted over two successive delay intervals. Note that all period doubling bifurcations occur
in the upper branch of the bifurcation diagram, influenced by the attractor A2.

chaos. Such a behavior results in coherent and incoherent motions that repeat within
the delay interval, representing chimera state.

In order to illustrate the spatio-temporal character of the dynamics, space-time plots,
visualization schemes from Section 1.1.3, are used (Fig. 2.2.7). There, the evolution
of dynamics, spanning several thousands of delay intervals is illustrated with the color
representation encoding the amplitude of the variable x. Red colors correspond to
positive, blue to negative amplitude values of x, respectively. In contrast to Fig. 2.2.4,
the coherent-incoherent motion over a delay interval does not shrink with time and is
stable for bifurcation parameter β between 1.7 and 2.1 (Fig. 2.2.7 (b)). The shown
dynamics therefore corresponds to coherent and non-coherent states of the underlying
circular network evolving in discrete time.

42

Chapter 2. Chimera states in nonlinear delayed-feedback systems

0 1 + γ
0

103

2 · 103

D
is

cr
et

e
tim

e (a)

β= 1. 4

0 1 + γ

(b)

β= 2

0 1 + γ

(c)

β= 2. 16

0 1 + γSpace σ
0

103

2 · 103

D
is

cr
et

e
tim

e (d)

β= 3

0 1 + γSpace σ

(e)

β= 10

0 1 + γSpace σ

(f)

β= 14

0.6

0.0

0.6

Figure 2.2.7: Spatiotemporal representation of periodic motion (a), chimera state (b), spa-
tiotemporal intermittency (c-e), and chaos (f) in the system Eq. (2.2.9), ε = 5 · 10−3, δ =
8 · 10−3.

Soon after β > 2, the coherent and chaotic regions start to be irregularly interspersed
(β = 2.16, Fig. 2.2.7 (c) and corresponding time trace Fig. 2.2.6 (d)). This regime is
known as spatiotemporal intermittency. Finally, with further increase of β > 13, the
system described by Eq. (2.2.9) becomes turbulent in the form of spatiotemporal chaos
(Fig. 2.2.7 (f)).

2.2.4 Optoelectronic experimental setup

Previously we identified several components required to observe coherent-incoherent
patterns in DDE (Fig. 2.2.5). The first one is a nonlinear function with broad min-
imum and sharp maximum. The second required component is the delay line which
should store the state of the virtual network of oscillators. The final requirement is a
bandpass filter which should provide a long-range coupling within the network. To sat-
isfy those requirements, we employ a Fabry-Pérot interferometer (nonlinear function),
an electronic delay line, and an electronic bandpass filter, respectively.

Figure 2.2.8 schematically illustrates our experimental setup for chimera states obser-
vation4. The first component, a tunable laser diode is a light source, which allows for

4The optoelectronic setup was designed and implemented by L. Larger.

43

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.2.8: Schematics of nonlinear oscillator with delayed feedback, the experimental
setup to observe chimeras

a monochromatic light beam of power P0. The beam’s wavelength λ(t) is within the
infrared light range and is proportional to the control current iDBR:

λ = λ0 + SλiDBR (2.2.10)

where λ0 ' 1549.8 nm, and Sλ ' 0.19 nm/mA is a constant tuning slope efficiency.
Emitted by the laser diode, light is collimated by a lens. Then the light passes through
the second component, a Fabry-Pérot interferometer, a 5mm thick glass plate. The
interferometer’s parallel input and output faces were coated with pairs of dielectric
layers to obtain plane mirrors with intensity reflection coefficient R ' 41% (Fig. 2.2.10,
left). The role of the interferometer in our setup is to nonlinearly transform the light
wavelength into optical intensity. That nonlinear transformation is described by the
Airy function f(Φ):

f(Φ) =
P

P0

=
A

1 +m · sin2 Φ
, (2.2.11)

where the input variable Φ is the signal of the nonlinear system, the instantaneous
wavelength of the laser. Other parameters, A and m for a Fabry-Pérot interferometer
are defined through the reflection coefficient R: A = (1−R)−1 ' 1.69 andm = 4R/(1−
R)2 ' 4.72. The optical intensity transmitted through the Fabry-Pérot interferometer
is then detected by a photodiode, which converts the optical intensity fluctuations P
into voltage fluctuations:

uph = Rph S P, (2.2.12)

44

Chapter 2. Chimera states in nonlinear delayed-feedback systems

where S = 0.9 A/W is the photodiode sensitivity and Rph is the resistance of a typical
transimpedance amplifier used to convert the photocurrent into a voltage. The re-
sulting product Rph S (in V/W) is the conversion efficiency of an integrated amplified
photodiode.

The detected electrical signal passes the fourth component of the setup, a digital elec-
tronic delay line5 containing N elements and running at clock frequency fCLK. As a
result, the signal is delayed by delay τD:

uD(t) = uph(t− τD) = uph(t−NFIFO/fCLK). (2.2.13)

L H

Figure 2.2.9: Bode’s magnitude |H(ω)| plot of a second order bandpass filter. Theory: solid
line, experiment: red crosses.

The last component, an electronic bandpass filter is used to establish the differential
process ruling the dynamics of the oscillator loop. The bandpass filter is characterized
by its high cutoff frequency fH = (2πτ)−1 ' 12.5 kHz and the low cutoff frequency
fL = (2πθ)−1 ' 1Hz. Then, assuming a bandpass filtering in its simplest form, the
corresponding Fourier filter is:

H(ω) =
IF (ω)

ID(ω)
=

(iωθ)G0

(1 + iωθ)(1 + iωτ)

FT−1

−−−→ (2.2.14)

1

θ

∫ t

t0

iF (ξ)dξ +
(

1 +
τ

θ

)
· iF (t) + τ · diF

dt
(t) = iD(t) (2.2.15)

where the delayed signal iD(t) = G0uD(t) is the filter’s input, iF (t) is the filter’s output,
θ = (2πfL)−1 ' 0.16 s and τ = (2πfH)−1 ' 12.7µs are parameters representing

5The delay line is implemented via FIFO (first-in-first-out) memory chip.

45

Chapter 2. Chimera states in nonlinear delayed-feedback systems

integral and differential characteristic response times of the dynamics. The modulus
of the Fourier filter (2.2.14) (Fig. 2.2.9) is then expressed in decibels (dB) as:

|H|dB = 20 · log
G0 · 2πθf√(

1 + (2πθf)2) · (1 + (2πτf)2)
. (2.2.16)

To close the loop, an adder is employed to provide the laser’s control current iDBR(t):

iDBR(t) = iDBR0 + iF (t). (2.2.17)

Figure 2.2.10: The experimental setup. Left: The Fabry-Pérot interferometer between the
laser and photodetector. Right: The live setup that demonstrates chimera waveforms on
each display of the two oscilloscopes.

The experimental setup in action can be seen on the right of Fig. 2.2.10. To summarize,
the amplification parameter β can be changed proportionally to the linear gain G0 of
the bandpass filter. The phase offset Φ0 is determined by current offset iDBR0 . Long
timescale parameter δ = τD/θ is proportional to the time delay τD = NFIFO/fCLK, while
the short time-scale parameter ε = τ/τD is inversely proportional to τD. Therefore, in
order to adjust δ and ε, one can either tune the cutoff frequencies fL and fH (adjusting
the filtering parameters θ and τ) or the time delay τD. The time delay τD is adjusted
by either changing the number of elements in the delay line NFIFO, or by modifying
the delay line’s clock frequency fCLK. The last parameter fCLK is easily tuned in our
setup, thus the parameters δ and ε are in most cases adjusted by changing the time
delay τD, which is typically set to be around 0.1–10ms.

46

Chapter 2. Chimera states in nonlinear delayed-feedback systems

2.2.5 Comparison between simulations and experiments

It is essential to verify the dynamics produced by the experimental setup against our
theoretical model. In order to simulate the physical system’s behavior, we perform
numerical integration. The utilized equations are (2.2.9) and (2.2.2) with fixed param-
eters m = 4.72 and Φ0 = −0.4, corresponding to the expected values in experiment.
It is also necessary to introduce what we call a parametric point — a point on a pa-
rameter plane (ε, δ). If not stated otherwise, the calculations are performed within the
parametric point A : (ε = 0.005, δ = 0.008). For the numerical integration, we employ
a fourth order Runge-Kutta method with a fixed step size hs = ε/10 = 5 · 10−4. For
verification, we compare the results using a third order Bogacki-Shampine method6

with an adaptive step size. Both methods result in dynamical solutions of the same
kind, with the reasonable differences in accuracy corresponding to their orders.

In experiment, we try to match the parametric point A, in which we perform the
numerical simulations. In practice, any other pair of values (ε, δ) with sufficiently large
δ > 0 could be utilized, as it follows from the next Section. The low-pass filter’s
parameter τ ' 12.7µs and the high-pass filter’s parameter θ ' 0.317 s correspond to
the dimensionless values of ε = 0.005 and δ = 0.008, respectively. The delay time is
τD ' 6.15ms.

A striking similarity between numerical and experimental results is highlighted in Fig.
2.2.11. As β increases, chimera solution is destroyed, giving rise to a turbulent-like
behavior. See also Fig. 2.2.6 where the transition to turbulent-like motion is illustrated
with the help of the bifurcation diagram of the model Eq. (2.2.9).

2.3 Multistability in the bandpass DDE

2.3.1 Coexistence of chimeras and breathers

The chimera state is not the unique solution of the system described by Eq. (2.2.9).
As we found [80], chaotic breathers [85] (Fig. 2.3.1 (b)) always coexist with chimeras.
Similarly to chimeras, breathers consist of two parts: a regular and a chaotic part.
However, chimeras evolve on a timescale of delay7, while chaotic breathers evolve on a
much slower time scale of the order of the integral characteristic time θ. The period of
a chaotic breather solution takes hundreds of delay intervals; the exact value depends

6Code implementing Bogacki-Shampine method is provided under MIT license by
http://pydelay.sourceforge.net.

7As already discussed, chimeras span over an interval close to delay [0, 1 + γ].

47

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Simulation Experiment

(a)

(b)

(c)

Figure 2.2.11: Comparison between simulation (left) and experiment (right): (a) Chimera
state; (b)-(c) Transition to turbulent-like spatiotemporal intermittence when progressively
increasing β.

on the parameter δ−1. Regular and chaotic behaviors are alternated resembling, on the
global timescale, neuronal bursting [86].

To highlight the difference between chimeras and breathers, we employ nullcline analy-
sis, technique often applied to study qualitatively the behavior of differential equations.
In the (x, y)−phase plane, a nullcline with respect to the variable x is a set of points
such that ẋ = 0. Therefore, the first nullcline is derived from Eq. (2.2.9):

48

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.3.1: Coexistence of chimeras and chaotic breathers: (a) Time trace of chimera state
(black); (b) Time trace of chaotic breathers; (c) Chaotic breathers (light blue) and chimera
(black) in a two-dimensional phase space along the x-nullcline of Eq. (2.2.9). The timescale
of chimeras is 310 faster than the one of breathers.

δy = −x+
β

1 +m sin2 (x+ Φ0)
, (2.3.1)

where β = 2, Φ0 = −0.4, and δ = 8 · 10−3. The second nullcline, with respect to
variable y, is trivial x ≡ 0 (given by ẏ = 0). In Fig. 2.3.1 (c), there are depicted
breathers and chimeras over single period intervals in the (x, y)−plane, for exactly the
same parameter conditions, but with different initial conditions.

In the parametric regions of chimera existence, the system described by Eq. (2.2.9)
is in principle able to exhibit two different behaviors: chimeras and breathers. It can
be seen from Fig. 2.3.1 (c) that both breather (blue line) and chimera (green line)
follow the first nullcline. However, in the case of chimera, the switching between the
nullcline branches occurs much more rapidly than for the case of breather dynamics.
The breather’s motion, on the other hand, is a more complicated version of the slow-

49

Chapter 2. Chimera states in nonlinear delayed-feedback systems

fast motion, e.g. in FitzHugh-Nagumo neuronal model [87, 88]. The fact of different
solutions coexistence opens new points of discussion: (1) regions of chimera existence
depending on parameters ε and δ, (2) coexistence of different chimera solutions, and (3)
probability of those solutions occurrence in an infinite dimensional phase space.

2.3.2 Coexistence of multiheaded chimera solutions in (ε, δ)−parameter
plane

The behavior of the bandpass Ikeda system is governed by the two-dimensional DDE
Eq. (2.2.9) which is highly multistable:

εẋ(s) = −x(s)− δ · y(s) + f (x(s− 1)) ,
ẏ(s) = x(s).

(2.2.9)

Figure 2.3.2: An example of seven-headed chimera states obtained in a simulation and exper-
imentally. Upper: Time traces of the last delay show seven chaotic intervals (heads). Lower:
Virtual space-time plots reveal stabilization of the seven-headed solution from specially mod-
ulated initial conditions x(t) = sin(7 · 2π · x/Nsamples), t = [−1, 0]. Both numerical and
experimental solutions were obtained close to the parametric point A: (ε = 0.005, δ = 0.008),
with β = 2.

Depending on initial conditions, there exist chimeras with different numbers Nσ of
chaotic regions separated by a steady state within a single delay interval. We call those
chaotic regions heads, and the corresponding solution Nσ-headed chimeras (Fig. 2.3.2).
This suggests exploring their existence in an (ε, δ)−parameter plane. The obtained
parameter regions of multiheaded chimeras existence are depicted in Fig. 2.3.3.

Chimeras with different numbers of heads exist in the blue regions shown in Fig. 2.3.3,
while chaotic breathers can be found in the whole plane, both in numerics and experi-
ments. The main difference is that in experiment, there is a much higher probability to

50

Chapter 2. Chimera states in nonlinear delayed-feedback systems

observe chaotic breathers than chimeras. That discrepancy might be related to pres-
ence of noise and also inaccurate values of parameters such as m and Φ0, which are
not controlled precisely with current experimental setup. In fact, m depends on the
reflection coefficient of the Fabry-Pérot interferometer, and also on the accuracy with
which the laser beam is collimated into the Fabry-Pérot; while the value of Φ0 cannot
be precisely recovered due to the constant system’s drift.

In the first, lightest blue region to the right, only one-headed chimeras can be obtained
(plus breathers). Moving to the left, in the second region, both one- and two-headed
chimeras coexist, depending on the initial conditions. Moving further to the left, high-
order multiheaded chimeras coexist with all previous chimera solutions. For instance,
when starting with a Nσ-headed chimera and gradually decreasing ε (or increasing δ),
the chimera with Nσ heads will continue to exist. However, when starting with a Nσ-
headed chimera and moving to the right, i.e. increasing ε (or moving down, decreasing
δ), the number of heads decreases and the solution will eventually transform into a
one-headed chimera (or breather).

51

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.3.3: Existence of multiheaded chimera states in (ε, δ)−parameter plane with fixed
β = 2. Color regions: numerics, latin numbers: number of heads in experimentally observed
chimeras. Decreasing ε, or increasing δ allows for observing chimera states with higher number
of heads. Moving in opposite direction, multiheaded chimera states loose stability and are
replaced by chimeras with lower number of heads. Finally, in the lower right no chimera states
can be found. Examples of breathers and one-, two-, and three-headed chimeras can be seen
in space-time plot insets. Parameter η := 1 + γ ' 1 is approximately a single delay interval.
Red “A” marks the parametric point A: (ε = 0.005, δ = 0.008) introduced in Section 2.2.5.

Experimentally, a qualitative agreement for the described above behavior was achieved.
By scanning the hyperbolas from top left to bottom right (varying the delay time τD,
thus moving in the (ε, δ)−plane along a hyperbolic curve described by the equation
εδ = 1), we observed transitions from Nσ + 1 to Nσ-headed chimeras that are depicted
by latin numbers in Fig. 2.3.3. The quantitative differences in the size of multiheaded
chimera regions of existence between numerics and experiment might be explained as
previously by noise inherent to the physical system and uncertainty of the drifting
parameter Φ0.

52

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.3.4: Transition from Nσ + 1 to Nσ-headed chimeras in simulation (left) and laser-
based experiment (right) when crossing the existence boundaries: (a) Transition from 2- to
1-headed; (b) Transition from 6- to 5-headed chimeras.

Transitions from Nσ + 1 to Nσ-headed chimeras in simulations and in experiment are
compared in Fig. 2.3.4. Approaching a boundary between Chimera states consisting of
different numbers of heads, the chimera solution starts to oscillate (it is better seen in
Fig. 2.3.4 (a)), and, after a certain transient time, a pair of heads merges, producing
a Nσ − 1-headed chimera solution.

2.3.3 Chimera basins of attraction

Equation (2.2.9) describes a highly multistable DDE for small values of ε, as it can
be concluded from the Fig. 2.3.3. A question which arises is the likelihood to obtain
a certain Nσ-headed configuration for starting from random initial conditions. Such
an investigation requires a statistical (probabilistic) characterization of the chimera’s
basin of attraction. By running a number of random numerical experiment realizations,
with fixed system parameters, we calculate the probability of occurrence of Nσ-headed
chimeras (Fig. 2.3.5).

The obtained results for 300 realizations with random initial conditions, presented
in Fig. 2.3.5, reveal that when decreasing ε the probability of occurrence of high-
order multiheaded chimeras increases. For instance, for δ = 0.02 and the values of
0.007 < ε < 0.015, the most probable solution is the one-headed chimera (red bars),

53

Chapter 2. Chimera states in nonlinear delayed-feedback systems

Figure 2.3.5: Probabilistic distributions reflecting basins of attraction of different chimera
configurations calculated with 300 different random initial conditions for each value of ε.
Three diagrams correspond to different values of δ. The values of initial interval are picked
from a uniform amplitude distribution within the range of x(t) ∈ [−1, 1], t ∈ [−1, 0]; β = 2.

but the two-headed solution also occurs with a high probability. When decreasing ε,
i.e. 0.003 < ε < 0.007, the most probable scenario becomes a two-headed solution
(yellow bars), which coexists with one-, three-, four-headed chimeras. Further decrease
of ε makes three-, four-, and five-headed chimeras more probable, however one- and
two-headed chimeras continue to exist, yet with decreasing probability.

When decreasing parameter δ, the probability to obtain high-order multiheaded chimeras
decreases. With δ = 0.004, the one-headed solution is the most probable for a wider
range of values; the two-headed solutions practically never occur for ε < 0.009. The
regions of existence of higher-order multiheaded chimeras shrink and shift to the left.
With smaller δ = 0.002, one doesn’t observe chimeras with more than two heads. For

54

Chapter 2. Chimera states in nonlinear delayed-feedback systems

ε < 0.009 the most probable in this case is one-headed chimera, while for ε > 0.009,
chaotic breathers occur more frequently than chimeras. That picture is comparable
with the multiheaded coexistence regions depicted in Fig. 2.3.3.

2.4 Conclusion

Chimera states are described as spontaneous partial desynchronization in homogeneous
networks of coupled oscillators. Through the spatiotemporal analogy, delay systems
can be regarded as spatially-extended systems, i.e. networks of oscillators. Moreover, in
DDEs all the virtual nodes of the network are completely identical because of time mul-
tiplexing applied to a single nonlinear node. In spite of the symmetry of DDE, we have
shown that with a specially designed nonlinearity f , coherent-incoherent motions can
occur. However, that motion is transient and has to be stabilized. We were able to ob-
tain stable chimera states after modifying the DDE by including an integral term. The
role of this term to provide a long-range coupling within the network. Experimentally,
inclusion of the term corresponds to a bandpass-filtered delayed-feedback dynamics,
instead of a lowpass-filtered one. Qualitatively new phenomena in bandpass-filtered
DDEs have been previously reported in [84, 85].

Subsequently, our current experimental setup is exploited to study complex self-organized
motions in the homogeneous ensembles of coupled oscillators. Both numerics and ex-
periments reveal coexistence of chimeras and so-called chaotic breathers [85], depending
on the initial conditions. On the other hand, depending on parameters ε and δ in the
model Eq. (2.2.9), the complexity of the observed patterns is changed. This change
affects the probability of a higher number of chaotic heads. In the same time, by
increasing the control parameter β, the system becomes more chaotic. The chaotic re-
gions become interspersed with the coherent ones after β > 2.1. Finally, the structures
disappear giving place to fully developed chaos when β > 13. The observed patterns
can be compared with transition to turbulence, e.g. [70].

A potential use of the bandpass delay dynamics taking advantage of high multistabil-
ity are alternative memories. A so-called regenerative, or self-healing memory8 may
benefit from the chimera pattern robustness. Work in this direction was already re-
ported in [37, 38], also utilizing dynamical systems with delay. Given the multitude of
possible trajectories in the system’s phase space and efficiency of experimental realiza-
tion, DDEs are a candidate for the hardware implementation of reservoir computing
concept, investigated in the following Chapters.

8A dynamical system-based memory that is recoverable after perturbations.

55

Chapter 3

Nonlinear delay systems for
neuromorphic computing

The simplest theory is the best.
– Occam’s razor

The aim of this Chapter is theoretical and numerical study of the recurrent neural
network approach known as reservoir computing, for digital hardware implementation.
In particular, we concentrate on the method exploiting nonlinear dynamics with delayed
feedback playing the role of the reservoir, the recurrent layer. The principal difference
between reservoir computing and other recurrent neural networks is that the nonlinear
part of the network (recurrent layer) is generated separately from the linear readout.
The advantages of the method are (1) rapid training procedure guaranteed to converge,
that also reduces computational costs; and (2) ability to exploit nonlinear dynamical
systems as a computational substrate.

3.1 Introduction to reservoir computing

Every known object in the Universe is bounded to time, that is, it cannot exist with-
out time. Yet every such object with its time-dependent state can be regarded as a
unit of information, and change of the state is information processing1. That naturally
leads to the question, can future computers be designed in a fundamentally different
way than they currently are? In order to better understand this question, the concept

1Computational universe theory is an assumption that quickly computable universes are more likely
than others [89]

56

Chapter 3. Nonlinear delay systems for neuromorphic computing

of computation needs to be formalized. We define computation as a nonlinear trans-
formation of the input information. Following the discussion, we can state the main
components needed for computation in general: (1) ability to inject the information to
be processed, (2) a system performing the nonlinear transformation, and (3) ability to
read the result. The process of computation is the change of the internal state of the
computing system, which can be read directly or indirectly.

At this point it might be illustrating to recall that also a conventional computer is
a physical system. Conventional computation is an exploitation of electrostatic laws
that results in nonlinear transformations implementing Boolean logic2. However, in
our computers there is no physical substrate performing the operations in binary do-
main. All signals are analog and only an arbitrary defined threshold converts these
signals into discrete, binary values. In fact, conventional computers implement a vir-
tual machine executing abstract logic. As such, computation is a general concept,
and a computer, therefore, does not necessary have to be an electronic device, nor a
machine implementing Boolean logic.

The concept of the information processing goes far beyond our current implementa-
tion. For instance, for the realization of a computing device one could alternatively
exploit hydrodynamic or photonic laws. The same claim can be made regarding in-
teractions between organisms, such as bacteria in a controlled environment. In fact,
it has been shown that real life phenomena already provide computation by them-
selves [90, 91, 92]. The principal difference between conventional computers and many
emerging alternatives is the way to exploit the underlying physics of the hardware sub-
strate for computation [61, 91]. Finally, logic itself does not need to be constrained to
binary, as it is prominently illustrated e.g. by the increasing popularity of quantum
computing [93].

All those questions, of physical substrate selection, virtual machine layer versus direct
access, and choice of elementary operations, lead to alternative computation paradigms.
Among those paradigms, reservoir computing (RC) recently emerged [11, 12] as a
novel computing strategy. Behind the idea of RC stands emulation of one physical
phenomenon using the means of another. For instance, surface of water was shown to
be capable of speech recognition, i.e. emulation of a biological system by the means of
a hydrodynamical one [94].

The emulation can be advantageous in several cases. First, when the emulator is as
efficient or even more efficient than the original computing mechanism. For example,
a photonic systems could perform speech recognition with millions of recognized words

2Recall the XOR operator we defined in Section 1.2.2. Fig. 1.2.2 illustrated that this operator
cannot be resolved linearly. XOR is one of the typical transformations performed by a conventional
computer over pairs of bits.

57

Chapter 3. Nonlinear delay systems for neuromorphic computing

per second [95]. Second, when several information processing devices are emulated
at once3. Third, when the emulator is cheaper or consumes fewer resources than the
original system.

3.1.1 Why “reservoir”?

The term reservoir computing stems from one of the earliest examples of such devices
that was a proof-of-concept reservoir of liquid performing simple logical arithmetic [96]
and speech recognition [94]. The idea was that the external information inputs were
perturbing the surface of that liquid, while the nonlinear transient response in the
form of ripples was the computation. For the purpose of information processing, we
also utilize dynamical systems generating a nonlinear response to the external stimuli
before settling back into a steady state. That nonlinear effect is the mean of computa-
tion.

General framework of RC was first developed in early 2000-s independently: bearing a
name of LSMs (liquid state machines) by the group of Maass [11], the name of ESNs
(echo state networks) by the team of Jaeger [12], and of backpropagation-decorrelation
(BPDC) by Steil [13]. The name reservoir computing serves as an umbrella term
connecting those approaches by illustrating the idea where the “reservoir” part of the
processing system is preexisting (even randomly generated) and remains unchanged,
and only the readout component is trained.

RC is frequently referred to as a brain-inspired approach. The first analogy is that
human being does not consciously “design” the mechanics of their brain. On the con-
trary, they inherit it, the brain comes as a preexisting organ. That organ serves as a
general-purpose “device” allowing to quickly adapt to new and unexpected situations.
One of the possible explanations how such adaptability is possible could be the brain is
a complex network. If it is very complex, some of the solution trajectories must already
exist [3] in the high dimensional dynamics of such a system. The remaining procedure,
usually called learning, is rewiring the brain connections so that useful trajectories are
amplified and not useful ones are suppressed4.

Another notable analogy between RC and the brain is the memory hierarchy. Unlike
conventional computers, the human brain has memory inseparable from computing
units (neurons) [2]. RC tries to alleviate this discrepancy by including memory in the
computation procedure.

3That is achievable for the class of task-independent reservoir computers we consider in this work.
See also [11, 34] for the examples of parallel information processing.

4That hypothesis can also explain the forgotten human memories as the “less useful” trajectories
in the brain dynamics.

58

Chapter 3. Nonlinear delay systems for neuromorphic computing

3.1.2 Architecture

INPUT DATA
M c

RESERVOIR

M u

W I

COMPUTED
ANSWER

M x

W R
W

Figure 3.1.1: Typical architecture of a reservoir computer: data are masked with a randomly
generated mask W I , then nonlinearly transformed in a recurrent layer called reservoir, and
finally, linearly recombined by multiplying a readout matrixWR. Only some of the reservoir’s
internal connections are shown for simplicity.

A reservoir computer consists of the three principal functional blocks (Fig. 3.1.1):

1. The input data masking layer, which randomly maps the inputs to the in-
ternal nodes of the reservoir. In general, a linear data masking is performed.

2. The recurrent layer (reservoir), which performs a nonlinear transformation of
the masked data.

3. The readout layer, or readout map, which, after training, linearly recombines
the internal states of the reservoir.

The first two blocks (the masking block and the reservoir) comprise the preexisting
part. They are typically generated with the use of coefficients drawn from a random
distribution with zero mean. The preexisting part can be described as a discrete
evolution equation

x(n) = f
(
W Iu(n) +Wx(n− 1)

)
, n = 1, . . . , T. (3.1.1)

Here W I matrix is the input mask and vector u(n) is the input data vector. Vector
x(n) is a network of “neurons”. The network’s recurrent connections are determined
by the matrix W . Coefficients in W I and W are generated randomly. Finally, f is a
nonlinear transformation, e.g. sigmoid, tanh, sinusoid, etc. The internal state of the
reservoir x(n) described by Eq. (3.1.1) is evolving in discrete time n.

59

Chapter 3. Nonlinear delay systems for neuromorphic computing

Figure 3.1.2: Kernel trick: two linearly non-separable data sets (left) become linearly sepa-
rable in a high-dimensional space (right) after mapping with a similarity function (kernel) φ.
Image source [97].

Nonlinear transformation of the masked inputs via the reservoir’s dynamics in Eq.
(3.1.1) allows projecting the information input into a much higher dimensional space5.
The idea of transition to a higher dimensional space is similar to the machine learning
technique called kernel trick [98]. Fig.3.1.2 illustrates that with appropriate mapping
φ, nonlinearly separable problems become linearly separable in a higher dimensional
feature space6. Similarly to kernel tricks, the preexisting RC part (masking operation
and reservoir transformation) provides a random (implicit) mapping φ. The mapping
allows operating in a high-dimensional feature space7.

The computation is finalized in the last block, called a readout layer. This layer
is typically a linear recombination of the outputs coming from the reservoir. The
computation result, vector y(n) is expressed as:

y(n) = WR · x(n), (3.1.2)

where WR is the readout matrix.

Equation (3.1.1) is equivalent to Eq. (1.2.10), which makes clear that reservoir com-
puter is an RNN. The difference between RC and RNN is only in training. Unlike

5To better understand why operating in higher dimensional space is useful in reservoir computing
and other machine learning techniques, recall, for instance, the XOR operator from Section 1.2.2. A
single-layer perceptron was not able to approximate the XOR function. However, after the initial 2D
inputs were mapped into a 3D space by providing an additional layer of perceptrons, the problem was
solved.

6In machine learning, feature space is a vector space of all possible input information vectors. The
latter vectors are also called feature vectors.

7Even though the random mapping a priory will not be optimal, in practice it is usually sufficient
to make problems linearly solvable [99].

60

Chapter 3. Nonlinear delay systems for neuromorphic computing

RNNs, in RC only the linear readout map WR is trained, while the other matrices
W I and W are generated randomly. That not only solves the RNN training con-
vergence problem, highlighted in Chapter 1, but also makes training procedure much
more efficient. The RC approach drastically reduces time and computational power in
comparison to the full RNN training methods, such as BPTT.

3.1.3 Learning procedure

RC is a supervised learning approach (see Section 1.2.4.1). The learning procedure
we perform in this work is so-called offline learning8 where all the training data are
available ahead.

To train the readout layer, the internal states of the reservoir x(n) have to be recorded.
A two-dimensional matrix Mx consists of vectors x(n) corresponding to reservoir’s
response to each of inputs u(n). The goal of learning procedure is to obtain a matrix
WR, such that WR = argmin

∥∥WR · A− B
∥∥ where A is the reservoir’s response and B

is the teaching matrix containing the desired outputs. That can be achieved by linear
regression. Often, a less computationally expensive method called a ridge regression is
employed instead:

WR = (A · Aᵀ + µ · I)−1(A ·Bᵀ) (3.1.3)
where µ = 10−4 is regularization parameter. Matrix A is the reservoir’s nonlinear
response constructed from the internal x(n), B is a desired outcome, or teaching matrix,
and (·)ᵀ is the matrix transposition operator.

After the readout matrix WR is obtained, an RC system can be actually exploited.
First, a new, unseen inputMu has to be masked and processed by a reservoir, resulting
in a reservoir’s response matrix Mx. The result of computation My is given by a linear
weighting of Mx:

My = WR ·Mx. (3.1.4)

Here, My may or may not be post-processed depending on the task. In an example of
a RC-based classification provided by Fig. 3.1.3, the most “active” row in My is the
one corresponding to the first class. Post-processing by row-wise accumulation over
time allows for discrimination of the answer candidates in classification problems. This
post-processing technique is a so-called winner-take-all NN evaluation method.

8The alternative method is online training, performed while new training samples are coming. The
alternative approach is beneficial when the system needs to adapt to the changes in the environment.
For example, a wireless channel equalization is a typical task that requires online training [100].

61

Chapter 3. Nonlinear delay systems for neuromorphic computing

x =

(W)R

M x

M yT

Figure 3.1.3: Exploitation of the readout matrix WR. Injected into RC system, previously
unseen inputMu produces a responseMx, which is subsequently multiplying a readout matrix
(WR)T . The matrix My is the RC output; the answer, resulting class is encircled in red.

3.1.4 Computation with dynamical systems

The RC network defined by Eq. (3.1.1) is a recurrent neural network (RNN). However,
the RC approach can be generalized to any complex dynamical system conforming to
two properties:

1. Approximation property

2. Separation property

Approximation property requires that similar inputs u(n) produce similar outputs y(n).
This property is required for RC systems to be robust against minor signal changes
such as noise. For instance, without this property, a voice-recognition RC could not be
robust against different speaker accents.

Separation property requires different inputs to be distinguishable. A system has the
separation property if the different inputs u(n) lead to the different internal states
x(n). Reading those internal states should help to differentiate the inputs. Note that
the differences in the internal state should be much higher then the system’s input-
output noise.

Any nonlinear system that obeys the mentioned axioms can be considered a reser-
voir9. Generalization to the dynamical systems satisfying the above properties allows
to exploit physically existent dynamical systems, such as a bucket of water [94] or
a memristive synapses network [101]. Exploiting a dynamical system as a reservoir
gives a background to perform computing in-materio [61, 90], i.e. utilizing a physical
computation system directly instead of building a virtual machine on top of it. Now

9For a more rigorous definition of those properties, see Appendix A in [11].

62

Chapter 3. Nonlinear delay systems for neuromorphic computing

that RC criteria for arbitrary dynamical systems are formalized, we shall examine if
delayed-feedback systems are feasible candidates.

3.2 Single-node RC approach

One of our primary goals is building systems which support RC on the fundamental
hardware level. That would allow not only achieving higher processing speeds and
task parallelism but also reducing the power consumption. For such complex tasks as
speech recognition RC networks with a high number of neurons are required. From
a practical viewpoint, it is not always convenient to build a real network because of
several reasons. The first one is the fabrication cost in terms of resources. For example,
fabrication of a network of thousand Mach-Zehnder modulators10 might substantially
raise the total cost. Another reason is practical infeasibility of completely identical
units, i.e. a homogeneous network, fabrication. The third reason might be the difficulty
to interconnect and control a large network.

To ameliorate the difficulties in RC hardware implementation, a new approach called
a single-node, or a delay-based RC was introduced [14]. The name reflects the fact
that there exists only one physical node, instead of many. The remaining nodes of
the reservoir network are emulated via the time multiplexing technique, introduced in
Section 1.1.4.

3.2.1 DDE as a reservoir

The single-node RC adaptation is schematically illustrated in Fig. 3.2.1. There, the
reservoir is a DDE having its internal state stored within a delay line. Such DDE is
described by the already familiar from Section 1.1.5 driven system equation:

τ ẋ(t) + x(t) = f (x(t− τD) + ρu(t)) , (3.2.1)

where u(t) is the processed information signal and ρ is the amplification factor. As
before, τ is the system’s response time, τD is delay time, and f is a nonlinear trans-
formation. All the emulated nodes of the network span over a delay interval (a virtual
space). The network evolves in discrete time n. The mapping between a DDE and a
virtual network is: x(t) = xσ(n), t = nτD + σ, σ ∈ [0, τD]. Here, virtual space xσ(n) is
comparable to the internal state vector x(n) from Eq. (3.1.1). However, in the case of

10Mach-Zehnder modulators may be used to provide a sinusoidal nonlinear transformation, by
modulating the amplitude of light beam.

63

Chapter 3. Nonlinear delay systems for neuromorphic computing

RESERVOIR

INPUT DATA
M c

M u

W I

COMPUTED
ANSWER

M x

W R

f

 τD

Figure 3.2.1: Single-node RC is based on a network analogy to nonlinear delayed-feedback
systems. The input data is randomly projected in the dynamical system’s state, which is
stored in the delay. The nonlinearly transformed state is subsequently evaluated during the
readout operation.

a continuous time system, there is theoretically an infinite number of values on a delay
interval. In practice, though, the maximal number of distinguishable values xσ(n) can
store is inversely proportional to the response time τ of a dynamical system. Therefore,
the interval xσ(n) contains a finite number of nodes, and thus it is equivalent to a finite
vector of values x(n) in Eq. (3.1.1). A prominent example of single-node approach is
the utilization of a single Mach-Zehnder modulator in the context of RC, instead of
coupling hundreds of them [33, 68].

3.2.2 State of the art in delay-based RC

The first time, a single-node (delay-based) RC demonstrator was attempted at an
optoelectronic analog system [68]. This approach was much improved in [14], where
an analog11 electronic RC was implemented using a Mackey-Glass oscillator. Later,
this work was logically continued in [102], where a mixed analog-digital system was
employed. The first successful optoelectronic implementation was published in [33].
The possibility of photonic, Mach-Zehnder modulator-based RC implementation with
offline data injection was demonstrated. This work was further developed in [103] where
the effects of multiple time-delay feedbacks were studied. Another optoelectronic setup
was reported in [31] and [32] where reservoir dynamics was implemented in optics.

Illustrating that RC can be universal, matrix operations were explored within the RC
hardware framework in [104]. Parallel information processing within an all-optical
system with a delay was demonstrated in [34]. The role of noise in RC optoelectronic
systems and its tackling with input masks modification was discussed in [105]. A

11However, with time-discrete data input

64

Chapter 3. Nonlinear delay systems for neuromorphic computing

recently reported RC setup [106] based on a coherently driven passive cavity combined
with a simple interconnection input mask12 allowed for low noise levels in experiment
while maintaining as good or even improving performance in previous reports.

3.2.3 Training methods

x =

W I0

0

400
60

M u 350

0

400cM
35

0

60

0

Figure 3.2.2: The masking step: a randomly generated mask W I is applied to the input
signal M c to generate the input data Mu.

Below, there are described methods we apply to train single-node RC systems in the
rest of this work.

During the first step of computation, the input data matrix M c ∈ RM×T is masked.
That is achieved by multiplication of a connectivity mask W I ∈ RN×M , which was
randomly generated:

W I ·M c = Mu. (3.2.2)

The role of the masking operation is linear recombination or weighting of the input
features. The mask also expands the input information (low dimension N) into the
high dimensional phase space of the reservoir (dimension M > N). In case of large
number of input dimensions, an input mask W I is often sparse. Then, the role of
masking operation is also to keep the reservoir dynamics close to the operating fixed
point. It is worth mentioning that, once generated, the input mask W I has to be
kept unchanged for each particular task. It is essential that the weighting operation
(masking) is equally applied to the features of all the processed samples. However,
different tasks, even with the same input dimensionality, may require different input
masks. In fact, the choice of W I may substantially affect the performance of the

12This type of mask was introduced in a theoretical work on RC [107].

65

Chapter 3. Nonlinear delay systems for neuromorphic computing

RC system. Unfortunately, there is no known way how to randomly generate W I

with optimal RC characteristics for a particular problem. Multiple matrix generation
parameters, such as value range, value offset, sparsity, etc. are mostly selected as a
result of trial and error process. In Perspectives, on page 115, we propose a method
how to circumvent this limitation.

During the second step, the resulting matrix Mu is converted into time series u(t).
The time series u(t) are then injected into the reservoir described by Eq. (3.2.1).
Note that the elements of matrix Mu are in discrete domain, while the dynamical
system (Eq. 3.2.1) operates in continuous time. First, the two-dimensional ma-
trix M c has to be encoded as a one-dimensional vector u[n]. That is achieved by
an operation known as column-wise matrix flattening13. Next, in order to achieve a
transition to the continuous domain, a so-called sample and hold method is applied:
u(t) ≡ u(nTsamp) = u[n] where Tsamp is a sampling period and u is a vector column in
the input matrixMu ∈ RN×T . In such a way, the information fromMu can be injected
into the reservoir’s delay dynamics.

The third step is the dynamics simulation, where the DDE’s trajectory is perturbed
with external forcing u(t). For numerical simulation, a second-order fixed-step integra-
tion scheme known as improved Euler’s method is applied.

In the fourth step, the reservoir’s response x(t) is processed. A reverse operation to flat-
tening, conveniently named unflattening, is applied. By unflattening, a two-dimensional
matrix Mx ∈ RN×T is constructed column-wise from the sequence x(t).

During the last step, learning process, the readout matrix WR is obtained using Eq.
(3.1.3). Subsequently, the obtained matrix WR is exploited for RC as illustrated in
Fig. 3.1.3, Eq. (3.1.4).

3.2.4 Model effectiveness measurement

A trained system needs to be validated in order to understand how good does a reservoir
computer generalize from the training information. The validation is performed using
data unseen during the training phase. There are several popular evaluation methods
employed, which also depend on the type of the task being solved. Here, we use
widely-known measures for prediction and for classification tasks.

In a case of prediction tasks, the time series signal is divided into two parts. The
first part of the signal is used for training. Then the second part, a target signal

13The internal state of RNN (Eq. (1.2.10)) x(n) is the state of the network. Therefore in a single-
node reservoir (DDE) it is the state of the delay line. Flattening column-wise allows to project each
masked point (column in Mu) into a separate state of the delay line.

66

Chapter 3. Nonlinear delay systems for neuromorphic computing

ytarget is used for model validation by comparing with the actual RC prediction result
y. As an error measure (or an objective function) a normalized root mean square error
(NRMSE) is employed.

NRMSE =

√√√√ 1

Nsσ2
target

Ns−1∑
n=0

(ytarget(n)− y(n))2 , (3.2.3)

where Ns is the number of signal samples. The error is normalized by the variance of
the target signal σ2

target.

In the case of a classification task, an error measure called error rate (ER) is engaged
to estimate how good is the model. It is calculated as a fraction of failed cases over
the total number of test cases.

ER =
failed tests

total tests
· 100% (3.2.4)

In addition, for classification problems with a small data set a method called k-fold
cross-validation is often applied. The idea behind the method is to randomly sepa-
rate the training and previously unseen testing subsets in several rounds. The initial
dataset14 D containing all the input data samples D :=

⋃
{M c} is divided by k non-

overlapping subsets Dt
i with an equal15 number of elements in each:

⋃
i=1..kD

t
i =

D, Dt
i ∩Dt

j = ∅ ∀i 6= j. Then, for each of those subsets Dt
i , also known as test datasets,

a complementary training dataset Dr
i=1..k : Dr

i = D −Dt
i is obtained. For each input

(training) dataset Dr
i an intermediary readout matrix WR

i is calculated. Then, ER is
computed using, an unseen during the training phase, test dataset Dt

i . The result of
cross-validation is the average over ERs after all k folds (rounds).

3.3 Towards digital RC

This Section is based on methods described in Section 3.2.3. Here we propose im-
provements aimed at RC implementation in digital hardware. We also uncover which
techniques can be used in order to improve the accuracy and speed of a delay-based
RC along with the specific hardware-oriented comments.

14Here D, Dt
i , etc. are sets. D −Dt

i is a set difference operator, ∩ and ∪ are set intersection and
set union correspondingly.

15When the total number of elements |D| is not divisible by k there might be some subsets that
contain one element less. It does not effect the procedure, however.

67

Chapter 3. Nonlinear delay systems for neuromorphic computing

3.3.1 DDE solver

In the perspective of numerical simulation of the solution of a differential equation,
one expects to achieve outputs as close as possible both on the computer and on the
actual digital hardware. In both cases, the Heun’s (improved Euler’s) discretization
method is employed to simulate the dynamics. Heun’s method is a second-order ODE
solver known as an explicit trapezoidal rule. The method solving a system of equations
F [xn, xn−delay, un] with a single delay xn−delay is given by equations:

x̃n+1 = xn + ∆t · F [xn, xn−delay, un] ,
xn+1 = xn + ∆t

2
· (F [xn, xn−delay, un] + F [x̃n+1, xn−delay+1, un+1]) ,

(3.3.1)

where ∆t is the integration time step, F [xn, xn−delay, un] = ε−1 (f [xn−delay + ρun]− xn)
is derived from Eq. (3.2.1), un is the information signal, and f(x) is a nonlinear function
(e.g. f(x) = sin2(x+Φ0)). Index n indicates that the operated variables are discretized
in time, i.e. xn = x(t0 + n∆t). The method given by Eq. (3.3.1) can be extended to
any number of variables and/or delays in a straightforward way.

The advantage over higher order methods is hardware implementation efficiency. Unlike
higher-order Runge-Kutta methods, there is no need of interpolation, which arises
in DDE solving. On the other hand, Heun’s method evaluates the derivative in two
points, thus, improving accuracy comparing to the first-order Euler method. Therefore,
the method we use is a compromise between higher integration accuracy and efficient
hardware implementation.

3.3.2 Discrete time dynamics

Section 3.3.1 illustrated the fact that implementation of the delay-based RC on a digital
electronic device is a discrete approximation of a continuous-time delay dynamics. In
that sense, simulation of the Ikeda dynamics is already discrete in time, through the
introduction of non-zero integration time step ∆t, such that dx/dt ' (xn − xn−1)/∆t.
In the latter case, the goal of simulation is to get an approximation of a physical system
through the use of an integration time step ∆t small enough compared to the fastest
characteristic time ruling the physical continuous time motion, i.e. ∆t � τ , where τ
is the fast response time in Eq. (3.2.1):

τ ẋ(t) + x(t) = f (x(t− τD) + ρu(t)) , (3.2.1)

This, for instance, can be achieved when the DDE is calculated each clock cycle cor-
responding to a time step ∆t, while the dynamics of the fastest system’s timescale

68

Chapter 3. Nonlinear delay systems for neuromorphic computing

changes not instantaneously, but during P time steps. Then, in the context of RC,
each processed data point u(t) has to be held for P samples (see Fig. 3.3.1, left) so that
the system can respond to the perturbation. We call this information injection into
continuous-time systems with non-instantaneous response a P -oversampling. In other
case, when u(t) is held for much less than P time steps, P -oversampling automatically
plays a role of noise removal, i.e. the DDE is less sensitive to short perturbations
u(t).

0 10 20 30 40
n

0

1

2

3

4

5

u
[n

]

With oversampling

0 2 4 6 8
n

0

1

2

3

4

5
No oversampling

Figure 3.3.1: Discrete inputs encoded as constant levels with oversampling ×5 times (left)
and equivalent digital inputs with no oversampling, or one input per clock cycle (right).

However, for practical goals of information processing (RC), the accuracy of the physi-
cal system approximation may not be critical. On the contrary, each data point of the
input data signal u(t) has to be processed as fast as possible. That is maximized when
each data point is processed during the minimal processing time, i.e. a clock cycle of
a digital system. In that sense, stepping away from the physical continuous time ap-
proximation requirement ∆t� τ is a possible compromise. Thus, ∆t can be increased
as long as the RC produces satisfactory results. That means, ∆t can be comparable to
τ and oversampling can be avoided (Fig. 3.3.1, right).

To investigate this issue and to understand how far the dynamics is approximated, we
will make use of convolution product representation of DDEs introduced in Chapter 1.
In discrete time case, the filter can be defined by a impulse response function h[n]. The
input-output relation reads as a discrete time convolution product described by Eq.
(1.1.26). The system has an instantaneous response if it responds to an input impulse
held only during one time step (clock cycle).

In Fig. 3.3.2, there is a comparison of oversampled dynamics and the one with no over-

69

Chapter 3. Nonlinear delay systems for neuromorphic computing

sampling. It can be seen that even though the dynamical trajectories are not identical,
the version without oversampling still produces a comparable result. In the case of
no oversampling (black dots), each point directly corresponds to a virtual node of the
reservoir; whereas in the case of oversampling (blue crosshairs), an additional step (e.g.
interpolation) is required in order to map the virtual nodes. All RC implementations
in this work, both PC and FPGA, exploit the discretized version of the Ikeda DDE
where ∆t is smaller or comparable to the fastest characteristic time τ .

0 50 100 150 200
n

0.0

0.2

0.4

0.6

0.8

1.0

h
[n

]

Oversampling ×10

No oversampling

Figure 3.3.2: The system’s response function h[n] of case with ×10 oversampling (light blue)
and corresponding approximation with no oversampling (black). The number of samples on
the horizontal axes corresponds to the oversampled case.

3.3.3 Efficient nonlinear transformation f

a a+ b

0

b

f(
x
)

Figure 3.3.3: Hard sigmoid nonlinear function f(x) = max(0,min(b, x− a))

From the point of view of digital electronics, implementation of an arbitrary nonlin-
ear function f is typically in the form of a lookup map, i.e. memory containing the

70

Chapter 3. Nonlinear delay systems for neuromorphic computing

approximate values of f . The lookup map along with auxiliary modules may consume
significant device resources, especially in terms of memory. That is why we prefer,
where possible, to replace f with such a nonlinear function that would be inherently
supported by the digital hardware, and thus being resource efficient. A good candidate
for f therefore is a hard sigmoid (Fig. 3.3.3), a piecewise approximation of a sigmoid
function:

f(x) = max(0,min(b, x− a)), (3.3.2)

or alternatively described via:

f(x) =


0

x− a
b

x < a

a ≤ x < b+ a

b+ a ≤ x

(3.3.3)

where a and b are constants. From the digital electronics point of view, the hard sigmoid
would require as much as two comparator circuits and no additional memory.

Another, yet even simpler nonlinear function that can be utilized in the DDE is a
so-called rectifier function:

f(x) =

{
x

0

if x > 0,

otherwise,
(3.3.4)

which can be also expressed as f(x) = max(0, x). Rectifier function was derived au-
tomatically from Eq. (3.3.3) by evolutionary algorithm (described in Section 3.3.5).
An electronic circuit implementing the function f comprises only a comparator. That
makes f described by equations (3.3.3) and (3.3.4) extremely efficient.

So-called rectified linear units (ReLU), functions of type f(x) = max(0, x) are trending
in machine learning community [67]. The advantage of ReLUs over tanh or sigmoid
is faster learning of multi-layer FNNs, avoiding need of unsupervised pre-training [67].
We anticipate positive impact of ReLUs might have on RNNs, which are equivalent to
FNNs with a large number of hidden layers (explained in Section 1.2.4.3).

3.3.4 Fixed-point arithmetic

The most crucial remaining difference between common digital hardware and a CPU is
the usage of floating point operations. Their support may be not practical to implement

71

Chapter 3. Nonlinear delay systems for neuromorphic computing

in hardware. The main reasons for that are speed and area.

Speed. Floating point operations require up to four clock cycles on modern processors
such as Intel.

Area. Digital electronic devices contain a limited number of logic gates that can
work in parallel. Floating point standards require not only 32 or 64 bits, but also
“housekeeping” infrastructure.

Digital devices usually provide fixed-point arithmetic. The name reflects the fact that
the number of fractional bits remains constant during operations. Fixed point arith-
metic is done within a single clock cycle. On the other hand, the floating point arith-
metic is superior: it gives much better precision and usually avoids the unexpected over-
flows. However, many devices have built-in support only for integer arithmetic. The
integer arithmetic can be equivalently interpreted as fixed-point. Therefore, fixed-point
arithmetic consuming less area is inherently supported. Subsequently, the limitations of
this arithmetic have to be considered during theoretical RC system investigations.

3.3.5 Multiparametric optimization

Different tasks may require different parameter sets in order to achieve the best per-
formance. Parameters from Ikeda-type models (Eq. (3.2.1)), such as β, ε, δ,Φ0, ρ and
others result in a high dimensional parameter space. Those parameters need to be op-
timized simultaneously every time to adopt the reservoir dynamics to a new problem.
Methods that are usually applied include Monte-Carlo simulations and grid search.
However, both of them have a drawback: a rapidly growing number of RC simulations
to be done when the number of parameters increases. Each simulation corresponds to
a complete reservoir training with a new set of parameters, therefore, the parameter
optimization procedure can take a significant amount of time.

Inspired by [108], we propose a different strategy. The reservoir is still treated like a
black box, but its parameter configuration is optimized via evolutionary algorithms.
The strategy is the following: a conventional computer configures the RC device by
adjusting the controllable parameters. The advantages of such approach: (1) the evolu-
tionary algorithm permits to effectively cut the number of searches and (2) this method
can be applied to any physical RC candidate, including, but not limited to electronic,
photonic, mechanic reservoirs, etc. This idea also works when both the reservoir and
the evolutionary algorithm are performed on the computer.

The type of evolutionary algorithm we chose is genetic algorithms (GAs), which is a
biologically-inspired optimization approach. GAs imitate a natural selection process
by implementing two probabilistic operators: crossover and mutation. The parame-

72

Chapter 3. Nonlinear delay systems for neuromorphic computing

ters being optimized by GA, i.e. the reservoir configuration, are encoded as chromo-
somes Qi. The crossover operator is responsible for information exchange between the
chromosomes. Mutation operator does occasional random change in a small fraction
of chromosomes. Initially, a population of chromosomes {Qi}, i = 1 . . . Npop of size
Npop = 50 is randomly pregenerated. The generation is evaluated according to a cer-
tain rule, a fitness function. In the case of RC, many possible functions can be chosen
for that purpose16. Similarly to natural selection, the fittest chromosomes have the
highest probability to survive and produce offsprings. Then, the next generation of
chromosomes is built according to the genetic operators. Therefore, each next genera-
tion tends to be fitter in average than the previous one. In total we run up to N gen = 30
generations, exploring not more than Npop · N gen = 50 · 30 = 1500 configurations of
RC. The algorithm usually converges to an optimal solution before the 20th generation,
effectively cutting the time of an optimal configuration search.

Implementation of genetic operators is context-dependent, in particular it depends on
the chosen chromosome encoding. Among the popular encoding schemes are strings,
such as a string of numbers, and trees, such as a tree of transformation functions.
To explore the multiparametric space, we use a binary representation of our pa-
rameters, i.e. chromosomes Qi are encoded as binary strings. A chromosome Qi =
concat(Qi

1Q
i
2, . . . Q

i
K), i = 1 . . . Npop is a concatenation of binary encoded parameters

Qi
k =

{
qij : qij ∈ {0, 1}

}
, k = 1 . . . K, where K is the total number of parameters be-

ing optimized. Each parameter Qi
k uses fixed-point notation and has a bit resolution

6 ≤ Mk
bits ≤ 10 bits. The bit resolution is higher if the sensitivity to the parameter

is considered to be higher. Binary encoding of chromosomes allows for a straightfor-
ward definition of the mutation and crossover operators. The unary mutation operator
MUT, which produces 12% of the new generation, is defined as:

MUTQi =
{
q̂ij
}
, where q̂ij =

{
not qij
qij

if pj < pbit,

otherwise,
j = 1 . . .Mbits, (3.3.5)

here q̂ij ∈ {0, 1} is a bit in a mutated chromosome, pj are randomly generated numbers
within the range of (0, 1), the constant pbit = 0.2 is the probability of bit mutation,
and Mbits =

∑K
k=1M

k
bits is the chromosome length. The binary crossover operator ⊗

produces the remaining 88% of the new generation:

Qa ⊗Qb = {q̂j} , where q̂j =

{
qaj if pj < 0.5,

qbj otherwise,
j = 1 . . .Mbits (3.3.6)

16The ones we have utilized in this work have been introduced in Section 3.2.4

73

Chapter 3. Nonlinear delay systems for neuromorphic computing

where q̂ij ∈ {0, 1} is a bit in a child chromosome, the bit qaj comes from the parent
chromosome Qa, and qbj , from the parent chromosome Qb.

The ratio between the entities produced by crossover and mutation operators might be
different and effects mostly the speed of GA search in terms of explored configurations.
In addition, we keep track of the best configuration chromosomes of all generations
in case if the best configuration was found in one of the previous generations. We
must admit GAs guarantee only that the found solution is locally optimal. Due to
their probabilistic nature, there is no guarantee that GAs will find a globally optimal
solution or that the same solution would be found when the search is repeated.

3.4 Performance benchmark tests

In the machine learning community, there exists a multitude of popular benchmarking
tasks used for evaluation and comparison between different techniques. Among them,
we have chosen tasks widely used in the RC community: Mackey-Glass chaotic time
series prediction and spoken digit recognition based on TI-46 data set. Additionally,
we have also implemented a benchmark test less popular for RC evaluation, though
generally known in the machine learning: Aurora-2, a more complex spoken digits
recognition benchmark.

3.4.1 Prediction task

Prediction, or forecasting, is a common computational problem. A classical approach
solving it would be to build a mathematical model using explicit equations. For in-
stance, given a canon shot, the task is to predict how far the canon ball will go. If all
the relevant variables—initial velocity of the ball and the direction—are known, one
can build a model to calculate the trajectory. However, this classical approach does not
work as perfectly to predict such phenomena as weather conditions or a stock market
decline. Those processes may contain hidden variables or their initial conditions may
be unknown, and therefore other than classical methods are needed [109]. The machine
learning approach to prediction is the “future” signal reconstruction by learning from
the past time series, whereas the dynamics model is considered as a “black box”. This
means, there is no information provided about factors influencing the dynamics, such
as climate conditions or behavior of the market players. In this Section, we approach
the forecasting problem from RC perspective.

Prediction of chaotic time series is a typical problem where only a part of the informa-
tion is available. Chaotic signal properties, i.e. sensitivity to small perturbations, make

74

Chapter 3. Nonlinear delay systems for neuromorphic computing

the task problematic. As a chaotic system, the Mackey-Glass equation (see Section 1.1)
is often used:

dx̃(t)

dt
=

βx̃(t− τ̃D)

1 + x̃10(t− τ̃D)
− γx̃(t), (3.4.1)

0 50 100 150 200 250 300 350 400
Time

0.6

0.9

1.2

Figure 3.4.1: Example of Mackey-Glass time series where two chaotic signals diverge with
time. The depicted time traces lengths are of 25 delays τ̃D. The solutions were obtained by
simulating Eq. (3.4.1) with the integration step ∆t = 0.1, much smaller compared to the
response time τ = γ−1 = 10. Then, the solutions were downsampled to 425 samples. The
distance between the displayed signals in terms of NRMSE Eq. (3.2.3) is 0.87.

where x̃(t) is a dynamical variable and β and γ are constants. Chaotic dynamics in
DDE given by Eq. (3.4.1) can be achieved with β = 0.2, γ = 0.1, and delay τ̃D = 17
(Fig. 3.4.1). Here, the characteristic response time τ is implicitly defined through
γ−1 = 10 time units. The longer is the delay τ̃D, the more chaotic becomes the system,
i.e. Lyapunov exponents grow with increase of τ̃D. We make use of the chaotic time
series generated by Eq. (3.4.1) to study the forecasting abilities of RC with a simplistic
architecture (introduced in Section 3.2). Note that Eq. (3.4.1) and its parameters
are hidden from RC predictor. We explore the role of different shapes of nonlinear
function f , as well as multiparametric reservoir dynamics optimization in the context
of prediction task.

The following methods are used to prepare the prediction data set. First, Eq. (3.4.1) is
solved for 105 ·∆t integration time steps (corresponding to 588 time delays τ̃D). Before
the data are processed by RC, they are downsampled17 with a downsampling factor of
10. As a result, there are 104 data points obtained. The first T r = 5000 data points
are then used to train the reservoir, whereas the last T t = 5000 points comprise the
validation data set.

The first stage of RC is the masking procedure that randomly maps the input values into
internal state space (Section 3.1.3). The step is performed as a matrix multiplication

17That step is supposed to remove possible redundancy in the input data.

75

Chapter 3. Nonlinear delay systems for neuromorphic computing

W I ·M c = Mu, where W I ∈ RN×M is the input mask and M c ∈ RM×T is the input
data. The training dataset consists of T r = 5000 scalar data points, therefore M c ∈
R1×5000. The reservoir’s size should be a good compromise between low complexity
and possible overfitting18, which we empirically estimate to be N = 1000, therefore
W I ∈ R1000×1. The values W I are randomly drawn from a uniform distribution in the
range of [0.1; 0.3].

As a consequence of the masking step, the data matrix Mu ∈ R1000×5000 is obtained.
Then, Mu is transformed by the reservoir’s dynamics (Eq. (3.2.1)). To provide the in-
put signal u, matrix Mu is flattened column-wise (Section 3.2.3). That transformation
results in a data vector u ∈ R5,000,000. Since discrete dynamics without oversampling is
utilized (Section 3.3.2), the input signal is already recorded as vector u. Technically,
this means that during each discrete time step ∆t, a new value un ∈ u is fed to DDE
solver (Eq. (3.3.1)). Equation (3.2.1) is then solved for all 5 · 106 integration time
steps, and a vector x ∈ R5,000,000 is obtained directly as a concatenation of x(t) ≡ xn.
Response matrix Mx ∈ R5,000,000 is constructed by column-wise unflattening of vector
x.

Offline learning is then performed using ridge regression (Eq. (3.1.3)). For time series
prediction, the reservoir’s response matrix A ∈ RN×T consists of the first T = T r−H =
5000 − H columns of Mx, where H is the prediction horizon. Therefore, matrix A
corresponds to the nonlinearly transformed (or processed by reservoir) information
about the past inputs. The teaching matrix B is the Mackey-Glass time-series to be
predicted. That is, the original signal M c shifted by prediction horizon H time steps
to the left19. Therefore, matrix B ∈ R1×5000−H consists of the last T r −H = 5000−H
columns ofM c. As a result of ridge regression, a readout matrix WR is obtained.

Finally, the prediction is run over unseen validation data set in order to calculate
prediction NRMSE (Eq. (3.2.3)). Below, we compare prediction errors with respect
to four different configurations of the reservoir dynamics. The input signal masking,
training, and evaluation procedures are identical in all four cases.

First, we look at a reservoir based on an Ikeda DDE Eq. (3.2.1), a so-called low-pass
model. Two cases, depending on f are considered. In the first case, the Ikeda model
with a sinusoidal nonlinearity is used:

18If N is too small, then the system would not contain enough dimensions to generalize; whereas
if N is too big, the system may overfit, i.e. learn from random noise in training data. In both cases,
the so-called validation error (error on data unseen during training) is bigger than for optimal N .

19To indicate a “future” signal, since the aim is to teach RC prediction. Shifting to the left can be
done only offline, i.e. when all the data is collected; it is a reverse operator to delay (looking in the
past) operator, which is shifting signal to the right.

76

Chapter 3. Nonlinear delay systems for neuromorphic computing

f(x) = β cos2 (x+ Φ0) . (3.4.2)

This nonlinearity can be obtained in an experiment using a Mach-Zehnder modulator,
such as in [33, 103]. One therefore obtains the following DDE:

εẋ(t) = −x(t) + β cos2 (x(t− 1) + ρ · u(t) + Φ0) , (3.4.3)

where, x(t− 1) is the delayed term, and u(t) is the input signal. Parameters obtained
as a result of a genetic algorithm (GA) optimization against a prediction horizon of
H = 20 steps (corresponding to 1.2 τ̃D) are ε = 3.13 · 10−3, β = 1.69, Φ0 = 3.13 · 10−2,
ρ = 7.88.

In a second experiment, we evaluate possible performance degradation replacing si-
nusoidal f(x) with a hard sigmoid (Eq. (3.3.2)). We use a version of Ikeda DDE
with negative nonlinear contribution of delayed feedback (suggested by GA, Section
3.3.5):

εẋ(t) = −x(t)− βf (x(t− 1) + ρu(t)) , (3.4.4)

where f = max(0,min(b, x − a)), where parameters a = 0.44, b = 0.81 are derived by
GA. Other parameters ε = 0.01, β = 1.69, ρ = 7.2 are also derived by GA. The number
of nodes is fixed N = 1000. Using the hard sigmoid nonlinearity, comparable results in
terms of NRMSE are obtained. The two top curves in Fig. 3.4.2 summarize the results
for the low-pass model.

From Fig. 3.4.2, it can be seen that the accuracy of prediction degrades as the predic-
tion horizon expands. The increasing prediction error is a natural property of all chaotic
systems, due to the intrinsic property of sensitivity to initial conditions. Therefore, any
long-term forecasting of chaotic systems is impractical. Surprisingly, the prediction ac-
curacy of the system with a hard sigmoid (piecewise sigmoid approximation) is not
worse than the one of the original system with a smooth cos2 nonlinearity. That might
be explained by GA that was able to find an optimal dynamical configuration (ε, β,
ρ) exactly for this kind of nonlinearity. This result allows for flexible selection of a
nonlinear function f depending on the target system, e.g. digital one.

Because a bandpass model was the one used for chimera states observation, we are
curious to know if this modified Ikeda model is also able to provide any benefits for
RC. The bandpass model Eq. (3.4.5) contains an integral term δ · y(t), and therefore,
the corresponding virtual network possesses a long-range coupling topology, which in
turn may provide a more complex dynamics (see also Section 2.2.3):

77

Chapter 3. Nonlinear delay systems for neuromorphic computing

20 40 60 80 100 120 140 160
Prediction horizon

10-3

10-2

10-1
lo

g1
0(

N
R

M
SE

)

Lowpass with cos2

Lowpass with hard sigmoid
Bandpass with cos2

Bandpass with hard sigmoid

Figure 3.4.2: Mackey-Glass chaotic time series prediction. The bandpass model significantly
outperforms the low-pass one for both sinusoidal and hard sigmoid nonlinearities. In the same
time, the two nonlinearities f give similar results. The reservoir’s dynamics parameters were
automatically selected by GA in all four cases.

εẋ(t) = −x(t)− δ · y(t) + βf (x(t− 1) + ρu(t)) ,
ẏ = x(t).

(3.4.5)

where u(t) is the input information signal, ρ is its amplification, δ > 0, reminding that
δ = 0 reduces Eq. (3.4.5) to the classical Ikeda model Eq. (3.2.1). Again, we start with
a sinusoidal f (Eq. (3.4.2)). Using GA, the obtained reservoir dynamics parameters
are ε = 1.56 · 10−3, δ = 0.94, β = 2, Φ0 = −1.97, ρ = 7.25. In the fourth and last
experiment, with the hard sigmoid f , the respective parameters are ε = 1.56 · 10−3,
δ = 1.266, β = 1.125, a = 0.25, b = 1.75, ρ = 4.75. In comparison to the classical Ikeda
dynamics, i.e. with a low-pass filter, we notice that the model Eq. (3.4.5) significantly
improves prediction accuracy. The prediction error is lower both in the case of cos2

nonlinearity (Fig. 3.4.2, solid green curve) and the hard sigmoid (Fig. 3.4.2, black
dashed line). The parameter sets obtained by GA produce comparable results for the
both nonlinearities. Additionally, the advantage of GA over a single-parameter scan
for a bandpass model can be seen in Fig. 3.4.3.

78

Chapter 3. Nonlinear delay systems for neuromorphic computing

20 40 60 80 100 120
Prediction horizon

10-3

10-2

10-1

lo
g1

0(
N

R
M

SE
)

Timeseries prediction optimization

Single parameter scan
GA optimization

Figure 3.4.3: RC time series prediction task accuracy achieved by single-parameter opti-
mization (dashed) and by genetic algorithm (solid line). GA optimization yields a result better
by an order of magnitude. In both cases the bandpass model (Eq. (3.4.5)) is considered.

3.4.2 Classification task

Classification is a problem to identify—given a predefined set of samples—in which
category belongs to a new, previously unseen example. Typical examples of classifica-
tion tasks are: to determine if a product is defective or not, if a patient suffers a certain
illness and which one, what kind of object is in the scene: a human, an animal or a
building. The classification problems solved below utilize the same RC architecture
and methods for time series prediction task with the differences only in W I and WR

dimensions.

Two instances of classification, namely speech recognition, are covered in the Section.
In both cases we investigate the isolated spoken digit recognition task with different
recognition difficulty levels. The first one contains clean records of five female speak-
ers, while the second one contains clean and noisy records of mixed genders and age,
increasing the task complexity. In that case, the entire digit’s sound information is
required to make a decision.

As in the case of forecasting, training is performed by solving ridge regression (3.1.3).
However, teaching matrix B for classification problems is different: it is a horizontal
concatenation of matrices M̃y

i corresponding to each training sample. A matrix M̃y
i ∈

RK×Ti is a one-hot encoded desired output (Fig. 3.4.4), i.e. the correct class at each

79

Chapter 3. Nonlinear delay systems for neuromorphic computing

moment of time 1..Ti, where Ti corresponds to a training sample duration:

M̃y
i (k, 1 . . . Ti) =

{
[1, 1, . . . 1]

[0, 0, . . . 0]

if k is correct class,
otherwise.

, k = 1 . . . K. (3.4.6)

Figure 3.4.4: Matrix M̃y
i corresponding to a desired training sample, the first out of ten

classes. This training sample has duration of 35 time units.

Speech recognition Numerous modern applications, starting from everyday on-
line search and virtual assistants, ending with space applications20, benefit from voice
recognition techniques. The basic goal of voice recognition is to find in a predefined
dictionary of symbols (such as words or phonemes) those corresponding to the sounds
articulated by a human. Isolated spoken digit recognition task is an example voice
recognition problem. In this case, the dictionary consists of ten symbols 0 . . . 9.

A common practice in spoken digit recognition is initial preprocessing of the sound
waveform. One of standard techniques is Lyon’s Passive Ear model that mimics dy-
namics of the inner ear’s auditory portion, the human cochlea [110]. Spirally shaped
cochlea contains hairs sensitive only to specific frequencies. Hairs close to the or-
gan’s entrance are responsive to the higher frequencies, while the ones deeper in the
cochlea, to the lower frequencies. Imitating the cochlear transformations, sound waves
are converted from the time to the frequency domain within a sliding window. The
transformation occurs within approximately 10 ms. A cochleagram is constructed by
applying a set of gammatone filters g(t) to the signal:

g(t) = atn−1e−2πbtcos(2πfct+ θ) (3.4.7)
20See e.g. http://blog.neospeech.com/neospeech-first-texttospeech-in-space/

80

Chapter 3. Nonlinear delay systems for neuromorphic computing

where fc is central frequency, a is the gain, b is the bandwidth, n = 4 is the order of
the filter, θ is the phase and is usually set to zero.

The resulting cochleagramM c is a matrix with a fixed number of rows (typically 60–90
rows) corresponding to the frequency channels on an equivalent rectangular bandwidth
(ERB) scale. The number of columns in M c is variable for each individual record
(between 30 and 90 columns) and reflects the duration of a spoken word. However,
even after this bio-inspired preprocessing, human speech cannot be identified with
linear regression. Therefore, a more sophisticated machine learning approach, such as
RC, is required.

TI-46 benchmark TI-46 database is a conventional classification test benchmark
used in machine learning community. It is particularly known in RC research [31, 34,
107, 111, 112, 113, etc.]. The records contain utterances by five female speakers. Each
digit is pronounced ten times by every speaker, resulting in a total of 500 data records.
We use TI-46 benchmark as an entry-level classification problem.

The data records are preprocessed using Lyon’s model, which results in cochleagram
matrices M c ∈ R86×Ti . The number of frequency channels is usually proportional to
the recordings sampling rate, e.g. the records in TI-46 are sampled at 12.5 kHz. The
number of cochleagram columns Ti is proportional to the record length. Being relatively
simple, the benchmark does not require a very high dimensionality. Therefore, the
reservoir can be restricted to a moderate number of virtual nodes N = 400.

The first step of RC, masking, is done via multiplying a pregenerated random sparse
matrix W I by the cochleagram matrices M c

i . The density of W I is 25% with non-zero
elements drawn from the set of {−1, 1}. The dimensions of W I ∈ RN×86 are related to
the number of cochleagram channels and the number of reservoir nodes. The resulting
masked input Mu

i is flattened into the one-dimensional input signal u(t) that is then
nonlinearly transformed by Ikeda delay dynamics. Here we employ the driven Ikeda
DDE (Eq. (3.2.1)) with a sinusoidal21 nonlinearity f(x) = sin2 (x+ Φ0):

εẋ(t) = −x(t) + β sin2(x(t− 1) + ρ · u(t) + Φ0) (3.4.8)

Parameters ε = 2.5 · 10−3,Φ0 = 0.01 are kept fixed, whereas β and ρ are optimized via
grid search. The optimal result was obtained for β = 1.3 and ρ = 0.4. Alternatively, all
the parameters could be optimized simultaneously using genetic algorithms or another

21We also tested the hard sigmoid nonlinearity yielding worse recognition accuracy. This problem
can be an interesting starting point for the future investigation in the context of speech recognition
task.

81

Chapter 3. Nonlinear delay systems for neuromorphic computing

multiparametric optimization technique, as it was done e.g. in chaotic time series pre-
diction task. To measure the model effectiveness, we perform a 5-fold cross-validation
(see Section 3.2.4), meaning that each training dataset Dr

i consists of 400 voice record-
ings, and each corresponding test dataset Dt

i has 100 recordings. As a result, we get a
word error rate (WER) equal to 0.4%, i.e. two wrong recognitions out of 500. We run
the experiment ten times shuffling the dataset, and the content of randomly chosen
training versus testing datasets insignificantly affects the performance (±0.4%).

In the RC community there exists a hypothesis (formulated in [114], see also [115, 116])
that the dynamical system utilized for information processing should operate on the
“edge of chaos”. The asymptotic fixed point state—recoverable when no information
is coming—should allow for the approximation property of the system. The proximity
to the bifurcation threshold, on the other hand, should allow for a multitude of possi-
ble trajectories of the system, driven through the high dimensional state space while
processing the input. That should preserve the separation property.

To check the consistency of the edge of chaos hypothesis, consider Ikeda dynamics (Eq.
(3.4.8)) with no input, i.e. ρ = 0. Now, the bifurcations of such autonomous system
can be studied depending on the control parameter, amplification β. Scanning the
control parameter reveals a transition from a fixed point to a periodic, and then, chaotic
motion. The obtained bifurcation diagram is depicted by green dots in Fig. 3.4.5.

Then, the speech recognition is solved progressively scanning β. Blue crosshairs depict
the corresponding classification error. The best results are obtained close to the first
bifurcation threshold, around βop ' 1.3.

Aurora benchmark Introduced in the early 2000s by the Motorola company, the
AURORA-2 benchmark test is a speech recognition task known in the telecom industry.
The test introduces not only clean data, but also artificially added noise that was
previously recorded in different environments (car, subway, street, etc.). Moreover, the
number and the variety of recordings is much richer than in TI-46, e.g. the data in
Aurora-2 were collected with the help of speakers of mixed age and gender. We employ
Aurora-2 to study how can a real-world problem be tackled with RC.

Similarly to the previous benchmark, we preprocess the data using Lyon’s Ear model.
Sampled at 8 kHz, sound waveforms produce cochleagrams with 64 frequency channels.
To be able to compare the results with the ones of TI-46, we solve the isolated spoken
digit recognition problem. There are more than 5100 records of isolated digits, which
comprise four major parts: one training dataset (2400 records) and three different
test datasets (2700 records in total). The different test subsets, in additional to clean
data, provide several noisy environments. In test A there are subway, babble, car, and
exhibition noisy environments; test B, restaurant, street, airport, and train station;

82

Chapter 3. Nonlinear delay systems for neuromorphic computing

Figure 3.4.5: Accuracy of speech recognition in terms of WER (blue crosshairs) depending
on the control parameter β and corresponding bifurcation diagram (green dots) of Ikeda delay
dynamics underlying RC.

and test C, subway and street, respectively. Additionally, all the data in Test C have
artificially altered spectrum. That corresponds to acceptable distortions during data
transmission.

clean 20 15 10 5 0 -5
SNR, dB

0

25

50

75

W
ER

, %

Test A

0.4 ·103 nodes
103

1.5 ·103

clean 20 15 10 5 0 -5
SNR, dB

Test B

clean 20 15 10 5 0 -5
SNR, dB

Test C

Figure 3.4.6: AURORA-2 benchmark results: average WERs for reservoir sizes of 0.4 · 103,
103 and 1.5 · 103 virtual nodes trained on mixed (clean and noisy) data.

83

Chapter 3. Nonlinear delay systems for neuromorphic computing

Since the digit “0” is pronounced either as “zero” or just “o”, we define eleven possible
outcomes instead of ten. The input mask W I ∈ RN×64 is a sparse matrix generated
similarly to the previous task, with non-zero elements drawn from set of {−1, 1}. Em-
pirically, we found that input masks W I with 30% density are performing slightly
better than those with 25% density. We test reservoirs with N = 400, 1000 and 1500
nodes. The reservoir’s dynamics model is the bandpass model with a sinusoidal non-
linearity:

τ ẋ(t) = −x(t)− δ · y(t) + β sin2 [x(t− τD) + ρu(t) + Φ0] ,
ẏ = x(t),

(3.4.9)

where τ = 3.125 ·10−2, δ = 0.828, β = −1.297, Φ0 = −3.5, and ρ = 0.61 are parameters
optimized by the GA exclusively on the training data. The results are summarized in
Fig. 3.4.6. With sufficiently large number of nodes, the recognition is robust (under
10% WER) for clean data and noisy data with signal to noise (SNR) ratios of 20
and 15 dB in tests A and B. However, our system is robust only for clean data and
SNR=20 dB in test C. See also Section 4.3.3 for comparisons with the state of the art
in RC and with our hardware implementation; in Appendix A there is also a detailed
report corresponding to each test.

3.5 Conclusion

Future computing systems are not restricted to electronics. Biologically-inspired com-
puting systems are promising to drastically increase energy efficiency comparing to
modern devices. One of those alternatives is reservoir computing (RC), a simplified
approach to training RNNs that is fast and converging [12]. RC enables usage of
dynamics as computational substrate and takes advantage of the underlying system’s
complexity. In the Chapter, we introduced a single-node approach to RC [14, 68] and
employed DDE with a nonlinear delayed feedback (Eq. (3.2.1)). The delay was re-
garded as a memory containing state of a virtual network of time-multiplexed nodes in
continuous time.

It was shown that the single-node approach to RC can be efficient in discrete time. As a
confirmation, all the simulations in the Chapter have exploited the time-discretization
of nodes. This optimization was targeting digital devices implementing RC. Another
crucial change was nonlinearity f simplification in DDEs. Additionally, generic algo-
rithms, a subset of evolutionary algorithms, were employed to obtain an optimal DDE
parameter settings.

84

Chapter 3. Nonlinear delay systems for neuromorphic computing

We ran a series of benchmark tests to validate the discrete-time RC realization. Per-
forming chaotic time series prediction with RC technique, we demonstrated that pre-
diction is possible even when (1) the exact model is unknown (hidden from RC) and
(2) the initial conditions are unknown or randomly generated. Two dynamical models
were compared: a classical Ikeda and an Ikeda model with a bandpass filter. A sur-
prising fact was that the addition of the integral term significantly improved the time
series prediction. A possible reason is a long-term memory requirement, which was
enhanced by the integral term inclusion. Finally, in voice recognition tasks, we have
demonstrated that reservoir’s virtual network increase was needed as the problem’s
complexity was growing. Next, we will utilize our optimizations in a digital electronics
RC implementation.

85

Chapter 4

FPGA implementation of delay-based
RC

In this part of work, RC implemented in a digital hardware is discussed. FPGA, a flex-
ible platform for digital systems design, is chosen for RC research and implementation.
Low energy consumption and real-time processing support make FPGA highly valuable
in practical applications. Recent progress in FPGA technology causes rapid changes
in the electronics market1. We also consider FPGA as a promising RC platform.

4.1 FPGA basics

4.1.1 FPGA introduction

A field-programmable gate array (FPGA) is a reconfigurable integrated circuit. It can
be viewed as an array of logic blocks, routing channels and I/O (input-output) pads
(Fig. 4.1.1). Each logic block consists of multiple logic cells (Fig. 4.1.2) that can
be configured using so-called lookup tables (LUT) memory. Before FPGA device can
operate, the LUTs need to be populated with a circuit configuration.

All the FPGA circuits are running in parallel, i.e. every component of the system
is working independently from others. That is the main difference from information
processing in CPU (central processing unit) where only one command is executed per

1Recently, Intel bought Altera, one of the two biggest FPGA companies. That
was a consequence of Microsoft’s advances in information processing using FPGAs, see
https://www.wired.com/2015/06/microsoft-knows-exactly-intels-future/.

86

Chapter 4. FPGA implementation of delay-based RC

Figure 4.1.1: Simplified FPGA architecture. The logic blocks are interconnected via routing
channels. Processed information is entering/coming out the FPGA through the I/O pads.
Image source [117].

clock cycle. FPGA’s massive parallelism allows achieving a processing system speedup.
Techniques and mechanisms of building a reliable RC system that leverages its built-in
parallelism will be discussed in Section 4.2.

Figure 4.1.2: A typical FPGA logic cell (simplified) comprising two lookup tables, full adder,
three multiplexers, and a flip-flop logic elements. The function of this circuit is defined by
configuration loaded in lookup tables. Image source [118].

The main advantages of implementing RC on FPGA:

1. FPGAs are standalone, meaning there are no dependencies on external comput-

87

Chapter 4. FPGA implementation of delay-based RC

ing devices, e.g. CPUs, for all information processing steps. The coefficients,
parameters and other details of initial configuration can be stored in the FPGA’s
memory.

2. Their reconfigurability is valuable for a use case where different hardware config-
urations can be tested with easiness comparable to conventional programming.
This property allows designing flexible research platforms to study different RC
aspects.

3. Massive parallelism allows increasing the processing speed.

4. Working in so-called hard real-time, FPGA is useful for systems performing di-
agnostics and control systems.

5. Heterogenous computing: in addition to RC units, FPGA can easily host a “soft”
CPU core, FFT and other information processing cores, all of them working in
parallel.

6. FPGA is a standard electronic component, off-the-shelf device capable to inter-
face virtually any existing electronic equipment.

7. Low energy consumption of a typical FPGA device might be crucial for real-
world applications, such as embedded systems working on battery. For instance,
depending on configuration and clock speed, the estimated power requirement for
Xilinx Artix-7 FPGA in the context of RC is 0.2–0.4 W [119]. It is significantly
lower than, for instance, 73–95 W consumed by Intel Core i5 CPU family or 43W
by Radeon HD 7750 GPU2.

8. Compact size and low costs. The latest low-end FPGA boards can be credit-
card size and cost as low as 100 e. That is much cheaper than, for example,
an application-specific integrated circuits (ASIC) alternative. Any functionality
supported by ASIC is also achievable by FPGA. On the other hand, an FPGA
design can be used later to build a dedicated RC chip.

However, there are several common technological limitations of FPGAs:

1. FPGAs, especially the cheapest ones, have slower clocks than CPUs.

2. FPGA design is very specific and demands to satisfy much more constraints,
comparing to software design (discussed in Section 4.1.2.1).

3. Tools for FPGA design lag far behind their software development counterparts
(IDEs, analysis tools, hardware description languages, etc.).

2A modern graphical processing unit with low power consumption.

88

Chapter 4. FPGA implementation of delay-based RC

Figure 4.1.3: Digilent Nexys4 hosting Artix-7 FPGA chip, upon which RC is implemented.

4. The number of so-called open-source designs is very limited both for component
designs (known as Intellectual Property (IP) blocks) and for hardware (FPGAs
and supporting boards itself). The commercial licenses are often restrictive and
expensive.

5. The previous three limitations inevitably lead to longer development cycles, in
contrast to CPU or GPU programming.

Comparing also to other RC trends such as photonic implementations, FPGA-based
RC is competitive in many practical aspects. However, there are situations where
alternative implementations win. For instance, photonic RC devices are capable of
much higher processing speeds. However, those can be exploited only when there is
no I/O bottleneck, i.e. the information has to be already encoded as a light signal.
Otherwise, the information processing speed would be limited by electronic devices
linked with optical components.

FPGA-based RC has the biggest potential in the industries where a combination of
low costs and low energy consumption is a requirement. A viable FPGA-based RC ap-
plication candidate is a fuel-cell device. The fuel-cell is an electricity source exploiting
energy of exothermic chemical reactions. It is different from batteries since it requires
constant supply of chemical reagents such as oxygen (coming from air) and hydrogen.
The problem is the performance degradation and limited lifetime of fuel-cells [120, 121],
complex nonlinear dynamical systems. To increase the lifetime, “smart” real-time mon-

89

Chapter 4. FPGA implementation of delay-based RC

itoring and control is needed [122, 123, 124]. The tricky requirement is that fuel-cells
should also provide energy for their own monitoring/control. That is why minimizing
energy impact of monitoring devices is also critical.

Under the framework of the BIPhoProc (Brain-Inspired Photonic Processor) project
(ANR-14-OHRI-0002-02), a neuromorphic processor is being constructed for the fuel-
cell diagnostics. BIPhoProc is a joint project between the Energy department at
FEMTO-ST and the FCLab at CNRS Research Federation. The FPGA device has
been chosen as it satisfies both critical requirements: (1) real-time operation and (2)
low energy impact. The FPGA-based RC architecture described in the remaining
Chapter is directly relevant to the project.

4.1.2 Resources of FPGA chip and supporting board

All the electronic circuits in FPGA are working simultaneously, inherently allowing
massive parallelism3. However, modern FPGA chips are more than logic gates and
programmable interconnections between them. Apart from programmable logic itself,
FPGAs host a variety of integrated circuits, called primitives or hard blocks, such as
block RAMs (random-access memories), DSP (digital signal processing) slices4, etc.
The adjective “hard” used in this context indicates that the implemented logic is pre-
defined on a factory, i.e. hard circuits are not programmable. On the other hand, they
may allow higher processing speeds comparing to programmable logic. Physical prox-
imity of the hard blocks to reconfigurable circuitry permits to easier satisfy physical
device constraints.

4.1.2.1 Physical constraints

When developing a FPGA design, one has to bear in mind several fundamental limita-
tions of an FPGA project. First of all, there is a finite number of the logic elements and
interconnections between them. Thus, the FPGA design should be small enough to
to be mapped onto an actual FPGA device. This characteristic is known a consumed
area of FPGA. The smaller is the area, the less logic elements are involved.

Another crucial constraint is timing. When developing an FPGA project, one needs
to respect the signal’s arrival time limit. In the simplest case, if the path between
logic elements exchanging signals at the same clock cycle is too large, the signals may

3E.g. Artix-7 FPGA device XC7A100T provides 101440 logic cells, which in total contain millions
of logic gates.

4DSP slices implement predefined circuits such as multipliers, accumulators, binary pattern match-
ers, etc.

90

Chapter 4. FPGA implementation of delay-based RC

not arrive before the next clock cycle. That may cause an unstable and unpredictable
behavior of the circuit. Often, logically correct circuits may be physically unimple-
mentable because of this issue. To alleviate this, there exist several design strategies
such as logic simplification, saving information in the intermediate registers5, decreas-
ing the clock frequency and others. To achieve timing closure, the project may need to
be redesigned with the help of the latter techniques.

Speed and synchronization problems are also noticeable when dealing with FPGA.
Latency describes the number of clock cycles needed for information unit to finish
its task. For example, multiply-and-accumulate circuits frequently do multiplication
during the first clock cycle and addition during the next one. Thus, latency is two
clock cycles. Throughput is the number of processed bits per clock cycle, which is
inversely proportional to latency. Synchronization problems may arise when dealing
with circuits running in parallel and sharing common data or instructions.

The need to satisfy not only the functional requirements but also the physical con-
straints, elevate FPGA design complexity comparing to CPU. Unlike FPGA. in CPU
programming there is a single constraint, functional correctness. CPU program is con-
sidered correct if it is functionally correct. Decreased complexity of CPU programming
process is only possible because problems of area, timing, synchronization and so on
are solved by the designers of a CPU itself. The very idea of CPU is a reusable (pro-
grammable) electronic circuit without need to be rewired. FPGAs, on the other hand,
are circuits that need to be “rewired” in order to be useful. This rewiring, however,
gives any FPGA designed more freedom and enables all the processes to be executed
at the same time.

4.1.2.2 Major types of memory

Special attention has to be paid to different available memories. Right choice of memory
may significantly improve the throughput and ability to achieve a timing closure. There
exist various kinds of memories and in general they may be classified as (1) internal
with respect to the FPGA chip or external; and (2) volatile or permanent. Volatile
memories tend to operate faster than permanent, but they usually need constant power
supply. Permanent memory, on the contrary, stores information even after device is
powered off.

The most common internal volatile memories are distributed RAM and block RAM.
The first one is implemented using FPGAs memory elements (lookup tables) and the
second one constitutes hard memory units hosted on the same chip as the FPGA logic.
Proximity to programmable logic implies shorter wire lengths, and thus, allows for

5The technique is known as pipelining.

91

Chapter 4. FPGA implementation of delay-based RC

higher clock rates. Often, FIFO (first-in-first-out) memories are based on available
block RAMs, however distributed RAM may be employed for FIFO functionality as
well. The downside of using distributed RAM is increased FPGA project implemen-
tation time as a result of individual lookup tables allocation by accompanying FPGA
design tools.

There exist a variety of external volatile memories, such as cellular RAM, DDR3 RAM,
etc. External memories tend to have larger volumes, but lower throughput than in-
ternal ones. Finally, external non-volatile memories, e.g. flash memory, are used to
permanently store information. In practical applications, FPGAs can be self-configured
from data stored on a non-volatile memory device.

4.1.2.3 Supporting board

Typically, FPGA devices are sold already integrated into support boards. That boards
may contain periphery such as different I/O devices, external memories, sensors, etc.
Our project was realized on a Artix-7 FPGA hosted on Digilent Nexys 4 board (Fig.
4.1.3). For RC development along with the FPGA logic we utilize on-chip block RAMs
and PLLs (phase-locked loops) to generate a system clock (@50 MHz) and slower
peripheral clocks. I/O components of the support board: 7-segment displays, switches,
LEDs6, UART7 port are also used. For practical applications, we interface 12-bit AD
(analog to digital) and DA (digital to analog converters) converters8 connected to the
Nexys 4 board through so-called PMOD9 ports. The maximal throughput rate of the
current analog-digital converters pair is limited by 1 MHz, yet it can be increased by
replacing the devices.

4.2 FPGA implementation of RC

The first FPGA demonstrations of a single-node RC approach appeared in [35, 125].
In [35], a mixed digital-analog RC circuit was introduced: the nonlinearity f of the
Mackey-Glass type (Eq. (3.4.1)) was analog and external to the FPGA, while the rest
of the components were digital and implemented by the FPGA (masking, reservoir’s
delay, readout, etc.). TI-46 spoken digits recognition and one-step-ahead Santa Fe
chaotic time series prediction [126] tasks were reported. In [125], the demonstrator
employed a purely digital circuit that was also simulating the reservoir dynamics in a

6Light-emitting diodes.
7Universal asynchronous receiver/transmitter.
8The particular models we utilize are Digilent Pmod AD1 and Pmod DA4.
9Peripheral Module interface defined by Digilent company.

92

Chapter 4. FPGA implementation of delay-based RC

form of Mackey-Glass type DDE, solved with a first-order Euler method. A temporal
pattern classification task as well as time series prediction were reported.

In our work, a completely digital circuit is employed with the nonlinear delayed-
feedback reservoir dynamics simulated by the second-order Heun’s method (Section 3.3.1).
That is expected to improve numerical integration accuracy using equivalent to [125]
number of bits (16 bits). Along with time-series prediction, we evaluate RC on a
challenging task of speech recognition.

4.2.1 High-level RC implementation

Reservoir computer in FPGA implements all the principal blocks introduced in Chap-
ter 3. Executed on FPGA, system consists of masking, reservoir and readout layers
(Fig. 4.2.1).

Figure 4.2.1: Complete RC implementation based on FPGA. The readout is trained before-
hand (offline learning).

The masking layer is a matrix multiplication operationMu = W I ·M c, where the input
maskW I is a matrix residing in a readonly memory (ROM) of the device andM c is the
input data matrix. As described in Section 3.2.3, the masked data matrix Mu ∈ RN×T

is injected to the reservoir as a signal uk[n], n = 0 . . . N − 1 where uk, k = 0..T − 1
is a k-th column in matrix Mu. The reservoir is a digital implementation of Ikeda

93

Chapter 4. FPGA implementation of delay-based RC

DDE (Eq. (3.2.1)) with a delay stored in a FIFO-memory. The nonlinear function
f is implemented either as a stored in ROM lookup map for arbitrary nonlinearities
(e.g. sinusoidal f(x) = β sin2(x+ Φ0)) or a circuit, e.g. realizing hard sigmoid f(x) =
max(0,min(b, x − a)), to save the FPGA’s resources. The reservoir’s state x[n] is
added to a masked input signal u[n]. On the other hand, the internal state x[n] is
transferred to the next layer, readout. The readout matrix WR is calculated on a
computer during offline learning and is also stored in ROM. Columns in matrix Mx

are constructed from x[n], coming from the reservoir’s transformation. Multiplied by
the internal state matrix Mx, WR produces My, the result of reservoir computation.
Arrows in Fig. 4.2.1 represent 16-bit data buses. To synchronize the data flow we apply
a technique producing correct by construction circuits.

4.2.2 Data flow

4.2.2.1 Correct by construction circuits

The principal blocks in Fig. 4.2.1 such as masking, reservoir dynamics, and the readout
need a communication channel. In the most simple case, the communication can be
done synchronously, i.e. all the data points move on the same clock. However, those
components may work on different timescales. Communication with PC is also asyn-
chronous. Therefore, clocked asynchronous communication is preferable. In certain
cases, data may be buffered by a dual-clock FIFO memory.

However, this issue can be also resolved with information processing flows that produce
correct by construction circuits, i.e. when a combination of correct components pro-
duces a correct bigger circuit. This method has an additional advantage when verifying
the circuits: every component may be tested in isolation.

We employ a synchronization technique known as the backpressure protocol10. A node
in the data flow conforms to the protocol if:

1. It does not consume incoming data when the input data is not valid.

2. It updates its outputs only when the next node is ready.

Correct-by-construction circuits approach also means that new components can be
effortlessly added. Moreover, the backpressure protocol is implementing pipeline par-
allelism, a parallelization strategy to speedup computation of sequential data.

10For more technical information see https://hackage.haskell.org/package/clash-prelude-
0.10.6/docs/CLaSH-Prelude-DataFlow.html

94

Chapter 4. FPGA implementation of delay-based RC

4.2.2.2 Pipeline parallelism

Parallelization allows computation speed-up without increasing the clock speed. There
are two main parallelization strategies: data parallelism and pipeline parallelism. The
first one is achieved by dividing the data between identical processing units. For
instance, that is the strategy widely applied in GPU programming. However, not all
data can be equally split, e.g. numerical DDE solving. Still, processing speed can be
increased by applying a parallelization strategy known as pipeline parallelism.

Pipeline parallelism increases processing speed over a sequence of data that travel
between several processing units (e.g. masking, reservoir transformation, readout).
The pipelined circuits are composed in analogous way to automobile assembly line.
In automobile production, a semi-finished assemblies are simultaneously passed from
stage to stage where the parts are added. For instance, on the early stage an engine
is installed, on the next stage the hood is installed, then, the wheels and so on. If
each part requires 20 minutes, then to build an automobile of three parts without a
pipeline, 60 minutes are needed per automobile. Employing a pipeline strategy, the
responsibility is split between several stages working simultaneously. Building the first
automobile, while the first stage is working, the second and the third are waiting. After
the part has passed the first stage, it passes to the second stage and a new part arrives.
Now, the first stage is working with the second part and the second state, with the first
one. Finally, the first part comes to the last stage, the next part, to the second stage
and a new part arrives to the first stage. After the first hour, the first car is produced.
However, the second car is ready after only 20 minutes after the first car was built.
The reason for that is all the stages were working in parallel. Thus, every new car
can be produced in 20 minute intervals. The same idea is in information processing
pipeline. Every major component (a so-called IP block) in Figure 4.2.1—such as the
masking block, the reservoir, and the readout—is a stage in the pipeline.

In reality the situation may be more complicated. For instance, if the last stage in the
automobile assembly line takes 30 instead of 20 minutes, that immediately increases
the interval of automobile production to 30 minutes. In that case, other techniques
might be applied for such bottleneck stages to minimize waiting time. For instance, the
analogy to data parallelism in automotive industry is wheels installation. Each pair
of wheels are mounted independently and simultaneously. This parallelization divides
time from 30 to 15 minutes. In FPGA-based RC for instance, we may exploit data
parallelism to speed-up matrix multiplication (Section 4.2.3).

95

Chapter 4. FPGA implementation of delay-based RC

4.2.3 Masking and readout operations

Both masking and readout operations are described in the most general way as matrix
multiplications M = A·B (Fig. 4.2.2). In both cases, the multiplied matrix A ∈ RK×N

is constant and the elements of multiplying matrix B ∈ RN×T come from the signal
bj ≡ b[j], j = 1, 2, Our system is required to work continuously in real time, that
means the multiplying matrix B tends to have an infinite number of columns T →∞.
Let b(n) 3 bj, n = 1, . . . T, j = 1, . . . , N be the n-th column-vector in B. Then, to
satisfy the constraint T → ∞, it is sufficient to perform matrix-vector multiplication
A · b(n) in time before the next vector b(n+1) becomes available.


M
· · ·
· · ·
· · ·
· · ·︸ ︷︷ ︸

T

 K

 =


A

· · · · ·
· · · · ·
· · · · ·
· · · · ·︸ ︷︷ ︸

N

 K

×


B
· · ·
· · ·
· · ·
· · ·
· · ·︸ ︷︷ ︸

T

 N


Figure 4.2.2: Matrix multiplication

To achieve higher throughput, the operation of matrix-vector multiplication can be
parallelized by dividing the multiplied matrix A horizontally into several sub-matrices.
Then the coefficients of the sub-matrices have to split up among matrix-vector multi-
plication circuits. All those circuits then receive the input signal bj ∈ b(n). This kind
of procedure exploiting data parallelism is known as SIMD (single instruction, multiple
data) computing.

There are many possible ways to design a matrix-vector multiplication circuit. In the
case of asynchronous data flow such as backpressure protocol (Section 4.2.2), a three-
stage matrix-vector multiplication can be implemented: replication, multiplication-
accumulation, and filtering. The advantages of the approach are: (1) support for
asynchronous data flow, (2) only one memory buffer storing intermediate results is
required, and (3) each of the stages can be verified in isolation. During the replication
stage, the received data point bj ∈ b(n) is repeated K times and is sent to the second
stage. During the second stage, partial multiplication products m(j+1)

i = m
(j)
i + aij · bj

are calculated sequentially. Here i = 1, . . . , K, j = 1, . . . , N , m = (m1,m2, . . . ,mK)
is a memory buffer storing the partial products, and aij is a value at i-th row and
j-th column in the matrix A. During the last stage, filtering, intermediate multipli-
cation products are ignored and only the final matrix-vector multiplication results are
returned.

96

Chapter 4. FPGA implementation of delay-based RC

4.2.4 Reservoir dynamics

Both FPGA and computer implementations share Heun’s scheme to solve DDE (Sec-
tion Section 3.3.1). However, FPGA does not provide floating point arithmetic. The
available fixed-point fractional number representation has precision limited to 2−m,
where m is the number of bits after the radix point. This may cause discrepancies
between the implementation on PC and the one on FPGA. Additionally, the system
has to be monitored for overflows, i.e. incorrect computation results when the existing
number of bits is not sufficient to represent the values. Staying invisible to the digital
hardware user, overflows are severe computation mistakes, therefore, they should be
avoided at all costs.

In our RC implementation, the DDE solver is operating on 16-bit data values. The
representation of fractional numbers is the following: 1 bit determines the sign, 2 bits
are representing the integral part and 13 bits stand for the fractional part. The values
are bounded between 4−2−13 ≈ 3.99988 and −4.0. Our preliminary investigations have
shown that for certain tasks, such as spoken digit recognition minimum 5 fractional
bits are needed, while for time series prediction higher precision of at least 13 fractional
bits is required. Thus, minimum 16 bits are needed to cover both types of tasks.

The second order fixed step Heun’s method:

x̃n+1 = xn + ∆t · F [xn, xn−delay, un] ,
xn+1 = xn + ∆t

2
· (F [xn, xn−delay, un] + F [x̃n+1, xn−delay+1, un+1]) ,

(4.2.1)

where delay is the depth of a FIFO-based delay memory and F [·] represents the right
hand equation of the DDE being solved:

τ ẋ(t) = −x(t) + βf (x(t− τD) + ρu(t)) ,

Using discrete notation xn ≡ x[n] and dividing both sides by τ , the last equation can
be rewritten as

F [xn, xn−d, un] =
dx

dt
=

1

τ
(−xn + βf (xn−delay + ρun)) .

A fixed time step ∆t = 10−2 is used. From digital electronics point of view, mul-
tiplication by 10−2 can be approximated using a shift by 6 bits to the right, thus,
∆t ' 2−6 = 1.5625 · 10−2. Automatically derived by GA, τ is e.g. 3.125 · 10−2 or
1/τ = 25, thus ∆t/τ = 1/2. This allows for simplification of Eq. (4.2.1)

97

Chapter 4. FPGA implementation of delay-based RC

x̃n+1 = xn + 1
2
· F̃ [xn, xn−delay, un] ,

xn+1 = xn + 1
4
·
(
F̃ [xn, xn−delay, un] + F̃ [x̃n+1, xn−delay+1, un+1]

) (4.2.2)

where F̃ (xn, xn−delay, un) = −xn + βf (xn−delay + ρun) . This scheme is implemented in
FPGA using the pipelining technique, where intermediate operations of multiplication
and addition are stored in register stages.

Another problem in reservoir dynamics implementation is approximation of a nonlinear
function f . There are several alternative ways to resolve this issue, such as CORDIC
(COordinate Rotation DIgital Computer) algorithm to calculate trigonometric func-
tions or interfacing FPGA with an external analog nonlinear circuit. We employ yet
another solutions.

To emulate sinusoidal nonlinearities, we build a lookup memory table with 14-bit ad-
dress range effectively covering range [−2; 2) with 2−12 step (or address) resolution. The
table contains 14-bit unsigned integers interpreted as signed fixed-point values with 13
fractional bits, i.e. table has 2−13 value resolution. As a simplification strategy, the
lookup table is replaced with a hard sigmoid (Eq. (3.3.2)).

4.3 Performance

Nominal processing speed of our FPGA-based reservoir computer with 1000 virtual
nodes is 12Mb/s. For instance, estimated number of recognized words at this rate
using our methods is up to 350words/s11 with FPGA working at the rate of 0.05GHz.
In contrast, a Intel Core i7-3520M CPU running at clock speed of 2.9GHz is estimated
to recognize the same number of words per second12 using equivalent RC methods.
The reasons why FPGA’s processing speed does not deteriorate at slower clock rate
of FPGA are inherent parallelism, usage of fixed-point instead of floating point arith-
metic, and other optimizations (e.g. lookup maps). However, the mentioned CPU
requires 35-40W of power, comparing to 0.2-0.4W by Artix-7 FPGA. As another ex-
ample, real-time control tasks, the rate of 1.5 MB/s means a million processed points
(12-bit wide) per second. Optimizing the number of parallel operations and interfac-
ing to a physically implemented Ikeda dynamics can further improve the processing
speed with 3× to 50× speedup, depending on the task. Implementing our design as

11Even faster than real-time.
12RC processing on a CPU may vary depending on the operating system, programming language

and libraries used, etc. For our checks we used compiler GHC 7.10.2 with -O2 optimization flag.
The running system was Mac OS X 10.11. Performance-critical libraries were BLAS/LAPACK, linear
algebra packages.

98

Chapter 4. FPGA implementation of delay-based RC

ASIC13, one could potentially achieve a further computation speed-up compared to
FPGA. Data processing speed in our PC–FPGA demonstrations14 is limited only to
RSR232 serial communication protocol used to transfer data between the PC and the
RC demonstrator. The digital circuits are designed and formally verified in a high-level
functional hardware description language CLaSH15 with a subsequent low-level VHDL
(VHSIC hardware description language) code generation. In the remaining part of the
Chapter we discuss FPGA-based RC evaluation using the benchmark tests introduced
in Section 3.4.

4.3.1 Chaotic Mackey-Glass time series prediction

For chaotic time series prediction task, the methods described in Section 3.4.1 are
used. The data points from Mackey-Glass time series are generated by a PC (Input
block in Figure 3.4.4). The prediction is done via the Nexys 4 FPGA board connected
by a serial cable. The data exchange protocol between PC and FPGA is standard
RS232.

During the training step, the FPGA contains only two blocks from Figure 4.2.1: the
masking block and the reservoir. During the masking stage, the input signal M c ∈
R1×T is multiplying the input mask W I ∈ RN×1: W I ·M c = Mu. The coefficients of
W I are stored in ROM. During the next stage, reservoir transformation, the signal u(t)
representing the elements of the matrix Mu, is perturbing the DDE dynamics:

εẋ(t) = −x(t)− βf (x(t− 1) + ρu(t)) , (4.3.1)

where f is the hard sigmoid (Eq. (3.3.2)); parameters optimized against a 20-step
prediction horizon are ε = 0.01, β = 1.69, a = 0.44, b = 0.81, ρ = 7.2, and N = 1000 is
the number of reservoir nodes. The result of processing, data matrix Mx is returned
back to the PC16. There, all the readout weights are subsequently computed in offline
fashion, i.e. via ridge regression:

WR = (Mx1 · (Mx1)ᵀ + µ · I)−1(Mx1 · (My)ᵀ), (4.3.2)

where Mx1 is Mx excluding the last h columns and My is the teaching signal, Mx

excluding the first H columns, H = 20 (1.2 τ̃D) is the prediction horizon, and µ = 10−4

13Application specific integrated circuit.
14Roughly 80Kb/s, a fraction of the nominal speed
15http://clash-lang.org
16The elements of the matrix Mx are constructed column-wise from the signal x(t).

99

Chapter 4. FPGA implementation of delay-based RC

is the regularization parameter. Then, the obtained coefficients WR are placed in the
readout block of the FPGA. This step finishes FPGA-based RC training.

Utilization of dataMx produced by the FPGA is needed to ensure that the DDE solving
with fixed-point arithmetic will not deteriorate the readout accuracy. Alternatively,
fixed-point arithmetic could be emulated on the PC. However, the former method with
FPGA-generatedMx, is preferable as it also provides the additional data for electronic
circuit verification.

After the readout coefficients WR ∈ R1×N have been placed to FPGA, the prediction
is performed as

(
WR

)ᵀ ·Mx multiplication. During our research, it appeared that the
accuracy of the prediction is sensitive to the resolution of the readout operation. Be-
cause of this reason, the readout arithmetic has resolution of 21 instead of 13 fractional
bits. After the computation of

(
WR

)ᵀ ·Mx product, the 8 extra bits are truncated
before the result is sent back to PC (Output in Fig. 4.2.1).

The predicted signal is evaluated using 5000 points of data after the transient of 1000
points; NRMSE is the calculated error measure. In Table 4.1, there is a summary after
different prediction configurations.

Description Arithmetic NRMSE
Simulation on PC 32 bits, Float 0.057

FPGA 16 bits, Fixed 0.059
FPGA + signal smoothing 16 bits, Fixed 0.056

Table 4.1: Comparison between PC- and FPGA-based chaotic time series prediction against
the prediction horizon H = 20 steps (1.2 τ̃D).

The prediction on PC is done with using 32 bit floating point data type. The FPGA
prediction with a 16 bits fixed width representation (13 fractional bits, i.e. precision is
2−13) results in NRMSE of 0.059. The corresponding Fig. 4.3.1 shows the difference
between the original and the predicted signals. From that Figure, one may notice
that after the transient period of approximately 190 data points, the dynamics of
the reservoir stabilizes and the prediction becomes much more accurate. The caused
washout transient is the result of RC predictor’s internal state initialization in the
beginning of the prediction. The transient effects can be less visible if, in addition
to the readout weights, RC predictor is provided with appropriate initial conditions.
This means the state of the delay line in the end of learning process has to be also
preserved. However, in different DDE implementations (e.g. photonic) this might be
not practical.

100

Chapter 4. FPGA implementation of delay-based RC

0 200 400 600 800 1000
0.4

0.6

0.8

1.0

1.2

1.4

1.6
H=20

Original signal
Predicted by FPGA

0 200 400 600 800 1000
Time

0.1

0.0

0.1

Differences

Figure 4.3.1: 20-step ahead (1.2 τ̃D delays ahead) FPGA-based RC prediction, NRMSE =
0.059. Upper: The first 1000 data points predicted by FPGA (green) are transposed on top
of the chaotic Mackey-Glass signal generated by computer (black). The prediction horizon
H = 20 is marked by a blue horizontal line. Lower: Zoom-in of difference plot between the
actual and the predicted signals.

The last row in Table 4.1 corresponds to NRMSE obtained after the predicted signal
was post-processed. Post-processing is done by applying a first order leaky integrator
filter. The filter performs smoothing over the received signal. Setting filter’s parameter
λ = 0.5 allows removing some of the undesired noise, and thus decreases the resulting
NRMSE. Surprising outcome is that the post-processed FPGA signal results in even
lower NRMSE, than that predicted with floating-point arithmetic, but without post-
processing. This indicates that even without floating-point precision, FPGAs can be
concurrent to CPU-based RC predictors. Leaky integrator filtering can be realized
either on PC or FPGA. However, we implemented post-processing on PC only for
demonstration reasons.

Figure4.3.2 generalizes prediction accuracy against different horizons, both on PC and
FPGA. The dashed green line marking simulations on PC is gradually increasing as
prediction horizon expands. This reflects the fact that a long-term prediction is usually
less accurate than a short-term one. The horizon of 20 steps is a local minimum. That
can be explained by the fact that the GA optimization targeted exactly this prediction

101

Chapter 4. FPGA implementation of delay-based RC

Figure 4.3.2: RC prediction accuracy with DDE (Eq. (4.3.1)). PC-based RC implementa-
tion is depicted as a dashed green line. FPGA masking and reservoir dynamics (with computer
readout) is marked by black solid line. Complete FPGA-based prediction is indicated by green
stars, while the best result achieved with leaky integrator post-processing, is marked by blue
circles. The difference between PC and FPGA implementations is in precision: 32-bit floating
point on PC versus 16-bit fixed-width on FPGA.

horizon.

Close to the prediction accuracy line comes a black solid line marking experimental re-
sults. In this experiment, FPGA is used for masking and nonlinear transformation done
by DDE, and the readout operation is performed on PC. The small variation between
those two lines is caused by differences in precision between PC and FPGA. Another
experimental results are indicated by green stars. They are obtained exclusively with
data coming from FPGA. The fact that green stars practically lie on the solid line,
indicates that the readout resolution of 21 fractional bits is accurate enough to ap-
proximate the floating-point readout. Finally, the best results in terms of NRMSE, are
marked by blue circles. Those are obtained with post-processing the FPGA output by
the leaky integrator filter.

4.3.2 TI-46 spoken digit recognition

The architecture for the classification tasks is identical to the one used for prediction
tasks and is illustrated in Fig. 4.2.1. Therefore, the procedure of training FPGA-based

102

Chapter 4. FPGA implementation of delay-based RC

RC and its evaluation is similar to those previously described. The difference, however,
is in the input matrix dimensionsW I ∈ RN×86. The exploited reservoir dynamics model
is from Section 3.4.2:

εẋ(t) = −x(t) + β sin2(x(t− 1) + ρ · u(t) + Φ0),

with parameters ε = 2.5 · 10−3, β = 0.56,Φ0 = 0.01, ρ = 0.4, and N = 400 nodes.
Another feature of this new implementation is the 16-bit lookup map used to implement
arbitrary nonlinear functions, e.g. sinusoidal.

As before, the readout mask WR is trained offline:

WR = (A · Aᵀ + µ · I)−1(A ·Bᵀ), (4.3.3)

where matrix A is the horizontal concatenation of all the matricesMx
i ∈ RN×T obtained

after each processed cochleagram M c
i ∈ R86×T , and matrix B ∈ R10×N is one-hot

encoded class corresponding to the correct digit value (Fig. 3.4.4). To evaluate the
effectiveness of the recognition, the resulting matrices My

i ∈ R10×T are sent back to
the computer.

On the computer, the resulting answer y is calculated as y = argmax (ỹ) where the
vector ỹ =

∑
nM

y
i (k, n), k = 0..9; and matrix row number k, is the recognized class

index. The maximal column number T in My
i is different for each output as it is

proportional to the input record length. Alternatively, the described above winner-
take-all calculation can be implemented on the FPGA. For the sake of argument,
however, we demonstrate that the architecture from Fig. 4.2.1 can be used without
modifications.

Performing 5-fold cross-validation (see Section 3.2.4), we run independently 5 FPGA
configurations. The difference between the configurations is in the readout matrices
WR
i trained on different subsets Dr

i of the initial dataset D. Then, as before, we
validate our model using testing datasets Dt

i = D −Dr
i : Dt

i ∩Dt
j = ∅∀i 6= j (the full

dataset D = ∪iDt
i , i = 1..5). As a result we obtain WER = 0.2% that is comparable

to our PC-based RC.

4.3.3 Aurora benchmark

The TI-46 benchmark results are indicating that RC can be applied to more compli-
cated tasks. Previously described in Section 3.4.2, Aurora benchmark has almost five
times bigger isolated digits dataset comparing to TI-46.

103

Chapter 4. FPGA implementation of delay-based RC

The procedure of FPGA-based RC validation on Aurora is very similar to TI-46. The
input mask W I ∈ RN×64. The number of the input dimensions M = 64 is the result
of the passive Lyon’s ear preprocessing scheme applied to the recordings sampled at
8 kHz. The reservoir dynamics model is:

εẋ(t) = −x(t) + β sin2(x(t− 1) + ρ · u(t) + Φ0),

with parameters ε = 1.56 ·10−1, β = 1.11, Φ0 = −3.02, ρ = 1.15. The number of nodes
is increased to N = 1000. WR is trained using ridge regression as before.

clean 20 15 10 5 0 -5
SNR, dB

0

25

50

75

100

W
ER

, %

Test A

FPGA
PC
Jalalvand2011

clean 20 15 10 5 0 -5
SNR, dB

Test B

clean 20 15 10 5 0 -5
SNR, dB

Test C

Figure 4.3.3: Comparison between FPGA and computer implementations of a lowpass Ikeda
model. Dynamics parameters are: ε = 1.56 · 10−1, β = 1.11, Φ0 = −3.02, ρ = 1.15. The
reservoir’s size is 1000 nodes. Jalalvand2011 indicates results in [127], averaged over the three
tests.

In Fig. 4.3.3, there is a comparison between PC (solid blue line) and FPGA (crosshairs)
implementations. The figure reveals a perfect agreement between both PC and FPGA.
For the reference, a state of the art result in RC inspired by hidden Markov chains
with 5 hidden states per digit [127] is highlighted with a dashed line. Apart from
the different model, a different audio preprocessing scheme is applied. In our work
cochleagrams are employed, whereas in [127] the Mel Frequency Cepstral Coefficient
(MFCC) technique is applied. Another significant difference in our work is a monolithic
reservoir of N = 1000 nodes, versus 4000 nodes in [127]. Due the limitations of a low-
cost FPGA hardware, we were not able to scale to 4000 nodes. While Test A gives
results pretty similar to [127], even with only 1000 nodes, Tests B and C reveal that
there might be a potential problem with signal preprocessing in our case. More detailed
experimental FPGA recognition results are summarized in tables of Appendix B.

104

Chapter 4. FPGA implementation of delay-based RC

4.4 Conclusion

FPGA is a flexible platform for digital electronics design. Containing millions of logical
gates working in parallel, FPGA is used for performance-intensive tasks such as real-
time image and video processing, prediction, control and others. Another advantage of
the device is relatively low costs and low energy consumption. That makes FPGA is a
strong candidate for applications such as real-time monitoring and control on mobile
platforms. That is why we consider FPGA as a promising RC platform.

For the sake of demonstration, in FPGA we developed a simple RC architecture from
Fig. 4.2.1 consisting of the three principal stages: masking, reservoir, and readout.
All the principal stages asynchronously communicate with each other, as well as with
PC providing the data. The masking and the readout components were implemented
as matrix multiplication operations, while reservoir dynamics was embodied in the
Ikeda-like DDE, without the integral term. Our RC architecture was reused without
modifications both for time series prediction and classification tasks.

We have reproduced the four benchmark tests from Chapter 3 using the FPGA-based
RC implementation. Even though the computation resolution of FPGA is worse com-
pared to CPU, i.e. there is no floating number support, the results stand close to the
ones obtained in a computer simulation. Surprisingly, FPGA-based time series predic-
tion consistently outperformed the PC-based version. That was the result of applying
a noise-removing filter to the FPGA prediction. As a consequence, under appropriate
post-processing techniques, FPGAs can be applied to prediction tasks without any
major accuracy loss. Another tasks, voice and recognition, produced results close to
the PC-based version.

Finally, FPGA’s ability to work in hard real-time is beneficial for interfacing with other
physical systems. For instance, reservoir dynamics that was simulated inside FPGA as
Ikeda DDE instead can be implemented by a real laser dynamics. The only change to
FPGA is plugging in a pair of AD-DA converters.

105

Discussion

Chimera states

A fresh look on phenomena in the networks of coupled oscillators was suggested in
present work by discovering purely temporal chimera states [79, 80]. Those self-
organized structures appear in the Ikeda DDEs with a bandpass filter and asymmetric
nonlinear functions. In this thesis, we explored chimeras in one-dimensional virtual
space because of single-delay DDEs. However, the study of multi-dimensional chimera
systems, i.e. the ones in DDEs with several delay lines, is promising. The main re-
quirement for such systems is that the delays should lie on different timescales, i.e.
τ q−1
D � τ qD where q is an index. This study is likely to lead to appearance of new
complex structures in the virtual networks. From RC point of view, this may reveal
the self-organizing or unsupervised learning potential of those multistable systems, e.g.
associative memory which requires presence of many coexisting attractors.

Reservoir computing

Even though reservoir computing (RC) is a relatively new approach, it proved to be
effective for machine learning tasks such as nonlinear system identification, prediction,
and classification [128]. In this work we have examined the utility of a single-node RC
approach based on discrete-time version of the Ikeda DDE. Then, we have successfully
implemented a stand-alone real-time RC system in hardware. Now, there are plenty of
possible directions to further investigate. The most crucial, in author’s opinion, is to
develop RC by solving real-world, practical problems.

106

Discussion

Alternative methods

While the RC approach is new and not fully studied, this thesis does not claim to
cover all the possible aspects related RC. Below are listed several methods that could
be investigated, but were omitted in favor of clarity and consistency of the work.

RC. Feedback from the readout

A more general case of RC architecture with a feedback coming from the readout could
be also studied:

x(n) = f
(
W I · u(n) +W · x(n− 1) +W F · y(n− 1)

)
. (4.4.1)

Here W I matrix is the input mask and vector u(n) is the input data vector. Vector
x(n) is a network of “neurons”. The network’s recurrent connections are determined by
the matrix W . The matrix W F is the feedback weights map. Coefficients in W I , W ,
and W F are generated randomly. Usually after the network’s training, the input u(n)
is disconnected, i.e. u(n) = 0, n > n0. This architecture with the output feedback is
particularly useful for time series prediction, see e.g. [129] for more details.

RC. Prediction in a spiking regime

Optimized using a GA, time series prediction with a bandpass model significantly
outperforms the model without an integral term. Curiously, the derived bandpass
model does not work in a fixed point regime when there is no external input. In fact,
its asymptotic regime is spiking (limit cycle) behavior. It is necessary to take into
account that Ikeda-like models are known to describe behavior of a neuron with delay
[130, 131]; the model with inertia from [132] directly corresponds to the bandpass
model. It is worth to investigate how does spiking regime contribute to time series
prediction. It would be curious to understand if that is the reason why the bandpass
model outperforms the lowpass one.

RC. A DSP implementation

Alternatively, instead of using a numerical integrator, an architecture with explicit
digital filtering could realize the delayed-feedback dynamics. In principle, there was
no preference which method to use. A chimera state demo using a digitally-filtered
architecture was developed on the FPGA, but was not covered in this thesis. In the

107

Discussion

end, both approaches, explicit digital filtering and numerical integrations, give very
close results with the only major difference in the implementation details.

Other tasks: Image recognition

Figure 4.4.1: Handwritten digit examples from the MNIST data set

Another challenging classification problem is image recognition. The MNIST database,
containing isolated handwritten digit samples (Fig. (4.4.1)), is often utilized as a
benchmark. It is a databank of mt = 60, 000 training and mv = 10, 000 validation
samples. The MNIST database contains 8-bit greyscale images of handwritten digits,
so there are ten possible classification outcomes. The size of each image is 28 × 28
pixels.

In contrast to tasks such as spoken digit recognition, there is no apparent time-
dependent information in the input signal. In other words, there are no temporally-
encoded information, therefore, we may not benefit from delay dynamics. Thus, the
delayed feedback is not used.

The global spatial correlation between the pixels is provided by the input mask, thus,
the input images are reshaped as M = 28× 28 = 784 dimensional vectors. Before the
image data are masked, we run a preprocessing scheme to reduce the input dimensions
and, in the same time, to compress the data. The motivation of dimensionality reduc-
tion is to remove possible linear dependencies in the data. The reasons for compression

108

Discussion

are technical: (1) to enhance the data transmission rate and (2) to scale down the
input mask matrix so that it would occupy less space in an actual RC device.

As dimensionality reduction algorithm, we may employ principal components analysis
(PCA) first introduced in [133]. The idea behind the algorithm is to identify the
principal components, i.e. linear combinations of the input variables that have maximal
variance. By analyzing correlations between the input data vectors, PCA is able to
determine if multidimensional data fall into a volume with less dimensions. Then, a
projection transformation is defined to remove the components with the least variance,
and the number of dimensions is effectively reduced. For instance, by identifying 30
components with the maximal variance, the dimensionality of the input image vectors
is reduced from M = 784 to Mpc = 30 dimensions.

To perform the preprocessing, a covariance matrix Σ of dimensions (M ×M) is com-
puted from the data set of mt = 60, 000 training samples:

Σ =
1

m

m∑
i=1

u(i)(u(i))ᵀ (4.4.2)

where u(i)(u(i))ᵀ, i = 1, . . .mt is the cross-product of the i-th training sample. Then,
the eigenvectors matrix U of covariance matrix Σ is computed. The compression ma-
trix Upc ∈ RMpc×M is constructed by taking the first Mpc rows of the transposed ma-
trix of eigenvectors UT . Then, Upc is multiplied by all data vectors u(i), resulting in
new compressed samples u(i)

1 = Upcu
(i) of Mpc dimensions. The reverse operation of

decompression can be done by multiplication of the transposed compression matrix
(Upc)

ᵀ ∈ RM×Mpc , i.e. u
(i)
decompressed = (Upc)

ᵀu
(i)
1 . During the validation on the test

dataset, the matrix Upc that was obtained during training is reused as a part of mask-
ing procedure, to perform the preprocessing in exactly same manner as for the training
data.

The compressed data do not anymore contain spatial correlation. Thus, to spatially
re-correlate the pixels, a new input mask W I

1 is obtained by multiplying the randomly
generated sparse mask W I ∈ RN×M and the decompression matrix (Upc)

ᵀ:

W I
1 = W I(Upc)

ᵀ, (4.4.3)

where W I
1 ∈ RN×Mpc is the new input mask.

In the first numerical experiment, we compare the model with an integral term δ · y
(δ > 0) and the model with δ = 0:

τ ẋ(t) = −x(t)− δ · y(t) + β sin2 (ρu(t)) ,
ẏ = x(t),

(4.4.4)

109

Discussion

where τ = 0.1, β = 1.1, ρ = 10−3 are optimized with GA. The values of δ = 0
and δ = 0.1 correspond to the classical Ikeda and the Ikeda with a bandpass filter,
respectively. In Fig. 4.4.2, the accuracy of RC-based recognition of the two models is
illustrated depending on the number of nodes N . Digit error rate (DER) is a fraction
of correctly recognized digit images per total number of recognition attempts. First,
we see the tendency to saturation, i.e. the accuracy becomes almost constant for
N > 1500. Second, the low-pass and bandpass models produce practically the same
results. This might indicate that this particular task is not memory-sensitive, but only
sensitive to the dimensionality. The delayed-feedback and long-term memory (provided
by the integral term δ · y) are not required, however increasing N actually improves
the result.

300 600 900 1200 1500 1800
Reservoir size, N

4

6

8

10

D
ig

it
er

ro
r r

at
e,

 %

Lowpass (Ikeda) model
Bandpass model

Figure 4.4.2: Digit error rate depending on the reservoir size N . The integral term δ · y
(bandpass model) does not improve the accuracy of handwritten digits recognition.

Such compression algorithms as PCA are called lossy, i.e. the information cannot
be completely restored after decompression. Consequently, noise is artificially added
to data proportionally to the amount of compression. However, it turns out that
applying PCA not only decreases the number of dimensions but also enhances the
recognition accuracy. That indicates that (1) adding noise to training data may improve
recognition accuracy and, more important, (2) the meaningful information falls on a
much smaller volume than the original inputs. The images are centered, and therefore
the information is encapsulated in 20×20 = 400 pixels. The large amount of peripheral
pixels (784− 400 = 384) remain blank and convey no information at all.

In the second numerical experiment employing PCA, the reservoir’s dynamics is given
by:

τ ẋ(t) = −x(t) + βf (ρu(t)) , (4.4.5)

where parameters τ = 0.02, β = 3.125·10−2, ρ = 6.4·10−3 are again obtained by the GA.
Interestingly, the nonlinearity, ReLU function f(x) = max(0, x), is blindly obtained by

110

Discussion

the GA! Such type of nonlinearity drastically simplifies practical implementation of
digital circuits.

300 600 900 1200 1500 1800
Reservoir size, N

4

6

8

10
D

ig
it

er
ro

r r
at

e,
 %

No preprocessing
With PCA, 26× compression

Figure 4.4.3: Handwritten digits recognition improvement achieved by dimensionality reduc-
tion (compression) of the MNIST images. In both cases, lowpass-filtered reservoir dynamics
is described by Eq. (4.4.5) with f(x) = max(0, x).

In Fig. 4.4.3, there is a comparison between error rates of applying RC to the original
and to the ×26 times compressed MNIST images. As it can be seen, preprocessing by
dimensionality reduction significantly improves the classification accuracy (solid green
line) comparing to the original, unprocessed inputs (dashed black line). In practice,
running the whole MNIST benchmark using RC approach takes mere 17 seconds on
a mid-2012 laptop with 2.9GHz Intel Core i7 CPU, including the PCA preprocessing
stage, and yields an error rate of 3.96% for N = 800 nodes. In contrast, training
one epoch of a typical state-of-the art convolutional neural network (CNN) such as
Keras17 results in DER = 2.24%, but it takes 206 seconds (12 times longer) to train
and evaluate on the same laptop. A compromise can be achieved with 2, 000 nodes
RC that takes around 77 seconds to train and evaluate, still resulting in lower error
rates: DER = 1.86%, which highlights the computational efficiency of single-node RC
methods.

FPGA implementation

Before FPGA training, MNIST image data are preprocessed (or compressed) on a PC
by applying the PCA technique. The immediate advantage of image compression is
faster data exchange between the PC and the FPGA. On the FPGA, data is consecu-
tively decompressed and masked. It is achieved in one step by multiplying a modified
maskW I

1 = W I(Upc)
ᵀ, whereW I ∈ RN×784 is randomly generated and (Upc)

ᵀ ∈ R784×30

is the decompression matrix obtained after the PCA. Therefore, another advantage is
17Based on the MNIST example from https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py

111

Discussion

W I
1 ∈ RN×30 occupies 784/30 ≈ 26 times less memory inside the FPGA than W I

would.

The reservoir dynamics is realized by an ODE:

τ ẋ(t) = −x(t) + βf (ρu(t)) , (4.4.6)

with parameters τ = 0.02, β = 3.125 · 10−2, ρ = 6.4 · 10−3. The rectifier nonlinearity f
is employed:

f(x) =

{
x

0

if x > 0,

otherwise.

By fixing the reservoir’s size N = 800, one is able to evaluate the reservoir’s learning
capacity. As before, the validation is performed on a separate predefined in MNIST
dataset of mv = 10, 000 samples. With the maximal training dataset size mt = 60, 000,
the best FPGA validation error rate of 4.02% is obtained. In the same time, the worst
learning error rate is 3.92%. Those rates can be explained. Keeping fixed validation
dataset size mv = 10, 000, the validation error rate decreases as the number of train-
ing samples mt is increased since the model receives more information about possible
configurations. Meanwhile, the learning error rate can only increase as the dataset
increases. That is related to the fact that additional data complicate the model, i.e. it
becomes more and more difficult to generalize the existing information. These trends
are illustrated in Fig. 4.4.4. The training and validation curves are approaching towards
each other as the training dataset size mt increases.

103 104 2 · 104 3 · 104 4 · 104 5 · 104 6 · 104

Training dataset size, mt

0

2

4

6

8

10

D
ig

it
er

ro
r r

at
e,

 %

Learning error
Validation error

Figure 4.4.4: Learning and cross-validation error curves for FPGA-based RC depending on
the training dataset size mt. The fixed number of nodes is N = 800.

112

Discussion

At approximately mt = 30, 000, the learning and validation error curves come very
close, meaning that additional increase dataset size mt will not improve learning.
Therefore, we estimate the learning capacity of the given reservoir to be equal to
30, 000 training samples. The only way to achieve the improvement is increasing the
system’s complexity. One of the ways to do that is increasing reservoir’s size N . This
was demonstrated in Figs. 4.4.2 and 4.4.3.

Image recognition conclusions

The image recognition task, in contrast to previous tasks, allowed use of a simplified
model: the task did not require neither long-term memory provided by an integral term,
nor delayed feedback. Again, as with time-delay based RC, the main advantage was
extremely fast learning. Additionally, our work revealed that a preprocessing step of
dimensionality reduction actually improves the recognition results by 30-40%. In [134],
the digit error rate of 0.92% was achieved using three connected reservoirs, totaling in
48, 000 nodes. Our PC-based result was twice less accurate (1.86%), however only a
single-layer reservoir of 2, 000 nodes was employed. Therefore, our implementation is
very competitive in terms of computational efficiency with respect to the state of the
art in the field of image recognition.

Reservoir computing applications

One yet unsolved practical problem is fuel cells diagnosis, prediction and control. Fuel
cell arrays are alternative energy generating devices based on chemical reactions. The
main advantage of the devices is ecological sustenance since the only byproducts of
energy production are water and heat. Thus, fuel cells have a great potential in every-
day life. Their drawback is a limited lifetime. In order to maximize its life span, it is
crucial to be able, first to diagnose any possible failure of fuel cell subsystems (such as
supply of oxygen, hydrogen, cooling system, etc.) in realtime, and second to be able to
predict such failures and the state of the fuel cells in the future. The requirement is a
low-power hardware solution. Another viable application is the control of femtosecond
lasers, unsolved at the moment task. It involves realtime control of intricate nonlinear
dynamics of the system, a job where RC comes in hand.

Our research indicates that those problems can be approached with FPGA-based RC.
The main limiting factors are: (1) An ability to create a valid teacher signal required by
RC, which is a supervised learning approach. (2) In the case of laser control problem,
the input signal is an image, thus it is high-dimensional. Like in the handwritten digits
recognition task, the preliminary goal is to reduce the input dimensionality.

113

Discussion

From the application view point, further development of the RC system is required.
For instance, the FPGA-based RC would greatly benefit from interchangeable exter-
nal memories such as SD cards to store mask and readout configurations making the
hardware more versatile. Possible creation of ASIC18 RC chip would be a logical step
towards industrial applications. This would allow pushing the clock speeds of RC
further by an order of magnitude.

Last but not least there is the theoretical view point where it might be appealing
to extend RC with other learning techniques, such as reinforcement or unsupervised
learning. Alternatively, other learning approaches might be integrated into and/or
cooperating with RC.

Functional RC programming

Another opportunity to develop the RC framework is creation of functional reservoir
networks. That means, if each of the reservoirs was trained to perform an elementary
function, for instance:

f(t) = sin [x(t)] , g(t) = x2(t), h(t) = x(t− τ), (4.4.7)

then the composition of reservoirs should be able to produce the composition of func-
tions G:

g · f · h = sin2 [x(t− τ)] . (4.4.8)

Here we used a right to left notation for the functional composition: f ·g ≡ f [g(x)].

Our preliminary research indicates that such a composition is possible. It opens a
possibility of programming using functional RC blocks. To benefit from such a situa-
tion, instead of elementary mathematical functions, more complex RC blocks such as
control, image or sound recognition units can be utilized. That would be one more step
towards the development of RC-based AI. The functional approach can be especially
effective if implemented in real hardware where all the units can run in parallel.

18An application-specific integrated circuit (ASIC), an circuit customized for a particular use, a
“hard” chip. In contrast, FPGA is a “soft”, programmable chip.

114

Discussion

Digital hardware-oriented improvements

Pseudo-random input mask generation

Digital hardware has limited resources, and it is wise to use them sparingly. One of
the biggest memory-hungry components is the input mask W I . Using a dense matrix
encoding, it may require up to 1Mb of memory for the Aurora task. However, the
mask is generated randomly, and thus it is one of many possible random configurations.
There is no objective reason why this mask should not be generated deterministically.
Therefore, all the coefficients of the input mask would be generated on the fly, and thus
saving the memory. This idea was first introduced in [107]. However, we would prefer to
take best of two worlds — purely random, to get the best results, and deterministic, to
save the memory. That means we would like to generate a sequence of pseudo-random
numbers. For example, employing a so-called xorshift routine.

Optimal input mask generation

On the other hand, it is also interesting to maximize the accuracy of the system.
GA or any other evolutionary technique can be employed to create the optimal input
mask. To preserve the benefits of the previous optimization, deterministic input mask
generation, GA should operate on the space of algorithms. The goal would be to find
a perfect deterministic algorithm to create an optimal mask that suits one or several
problems.

Deep reservoirs

An unexplored horizon of “deep” reservoir learning lies ahead. One may relate this com-
plex network-centric approach to success of deep learning techniques in recent years.
During the past decade, deep learning proved to be very powerful to solve complex
problems [56, 57, 59, 67]. The level of the accuracy allows deep neural networks com-
peting with human experts. Those networks are essentially feed-forward (not recurrent)
neural networks consisting of the multiple hidden layers. The effectiveness of such a
system is achieved due to (1) abundance of hidden layers that perform detection start-
ing from primitive objects (like edges) and finishing with more conceptual ones (such
as living beings) and (2) very large number of training samples.

At the moment little is known about deep reservoir networks, i.e. the ones where
multiple reservoirs are the units of a macro-network (e.g. as in [135]). The opportunities
of such a construction have not been investigated. A diversity of directions such as

115

Discussion

network density, size, (non)homogeneity19, and topology are still left to be explored.
However, the main question is: how to design the training signals, which have to
back-propagate through hidden reservoir layers?

The idea of deep reservoirs is actively discussed in the RC community20, however, not
so much research was done on that [134, 135]. It means that RC is still in its early
origin. Moving further in the RC deep networks direction, a great option is to work
in artificial intelligence development. First, is to study the possibility of creation of
a high level programming language, where elementary units are reservoirs with some
predefined fuzzy logic21 functionality. Thus, programming task would be designing
the system based on such elementary blocks. Finally, can reservoir computer play
chess?

19I.e. if the reservoirs should be identical or differ. If they should differ, then where should be the
difference? The input mask characteristics, dynamics, the number of nodes or all of them altogether?

20E.g. in talks on Beyond! von Neumann bottleneck workshop, May 18th-21th, 2016
21A form of logic in which the truth values may be any number between 0 and 1

116

Bibliography

[1] Crutchfield, J. P., Ditto, W. L. & Sinha, S. Introduction to focus issue: Intrinsic
and designed computation: Information processing in dynamical systems—beyond the
digital hegemony. Chaos: An Interdisciplinary Journal of Nonlinear Science 20, 037101
(2010).

[2] Indiveri, G. & Liu, S. C. Memory and information processing in neuromorphic systems.
Proceedings of the IEEE 103, 1379–1397 (2015). arXiv:1506.03264v1.

[3] Enel, P., Procyk, E., Quilodran, R. & Dominey, P. F. Reservoir computing properties
of neural dynamics in prefrontal cortex. PLOS Computational Biology 12, e1004967
(2016).

[4] McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics 5, 115–133 (1943). arXiv:1011.
1669v3.

[5] Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and
its application to conduction and excitation in nerves. J. Physiol. 117, 500–544 (1952).

[6] Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65, 386–408 (1958).

[7] Minsky, M. & Papert, S. Perceptrons: An Introduction to Computational Geometry,
vol. 165 (1969).

[8] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control
Signals Systems 2, 303–314 (1989).

[9] Kohonen, T. Self-organized formation of topologically correct feature maps. Biological
Cybernetics 43, 59–69 (1982).

[10] Pineda, F. J. Generalization of back-propagation to recurrent neural networks. Physical
Review Letters 59, 2229–2232 (1987).

[11] Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states:
a new framework for neural computation based on perturbations. Neural Comput 14,
2531–2560 (2002).

117

arXiv:1506.03264v1
arXiv:1011.1669v3
arXiv:1011.1669v3

Bibliography

[12] Jaeger, H. The “echo state” approach to analysing and training recurrent neural net-
works. German National Research Center for Information Technology GMD Technical
Report 148:34 (2001).

[13] Steil, J. Backpropagation-decorrelation: online recurrent learning with o(n) complex-
ity. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat.
No.04CH37541), vol. 2, 843–848 (IEEE, 2004).

[14] Appeltant, L. et al. Information processing using a single dynamical node as complex
system. Nature Communications 2, 466–468 (2011).

[15] Farmer, D. J. Chaotic attractors of an infinite-dimensional dynamical system. Physica
D: Nonlinear Phenomena 4, 366–393 (1982).

[16] Erneux, T. Applied Delay Differential Equations, vol. 3 (Springer-Verlag, New York,
2009).

[17] Arecchi, F. T., Giacomelli, G., Lapucci, A. & Meucci, R. Two-dimensional representa-
tion of a delayed dynamical system. Physical Review A 45, 4225–4228 (1992).

[18] Giacomelli, G., Meucci, R., Politi, A. & Arecchi, F. T. Defects and spacelike properties
of delayed dynamical systems. Physical Review Letters 73, 1099–1102 (1994).

[19] Giacomelli, G. & Politi, A. Relationship between delayed and spatially extended dy-
namical systems. Physical review letters 76, 2686–2689 (1996).

[20] Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally
coupled phase oscillators. Nonlinear Phenomena in Complex Systems 5, 380–385 (2002).

[21] Abrams, D. & Strogatz, S. H. Chimera states for coupled oscillators. Physical Review
Letters 93, 174102 (2004).

[22] Panaggio, M. J. & Abrams, D. Chimera states: coexistence of coherence and incoherence
in networks of coupled oscillators. Nonlinearity 28, R67–R87 (2015).

[23] Larger, L., Goedgebuer, J.-p. & Udaltsov, V. Ikeda-based nonlinear delayed dynamics
for application to secure optical transmission systems using chaos. Comptes Rendus
Physique 5, 669–681 (2004).

[24] Larger, L., Lacourt, P.-A., Poinsot, S. & Hanna, M. From flow to map in an experimental
high-dimensional electro-optic nonlinear delay oscillator. Physical Review Letters 95,
043903 (2005).

[25] Giacomelli, G., Marino, F., Zaks, M. A. & Yanchuk, S. Coarsening in a bistable system
with long-delayed feedback. EPL (Europhysics Letters) 99, 58005 (2012).

118

Bibliography

[26] Larger, L. Complexity in electro-optic delay dynamics: modelling, design and applica-
tions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 371, 20120464–20120464 (2013).

[27] Mackey, M. C. & Glass, L. Oscillation and chaos in physiological control systems.
Science (New York, N.Y.) 197, 287–9 (1977).

[28] Milton, J. G., Longtin, A., Beuter, A., Mackey, M. C. & Glass, L. Complex dynamics
and bifurcations in neurology. Journal of Theoretical Biology 138, 129–147 (1989).

[29] Feng, J., Sevier, S. A., Huang, B., Jia, D. & Levine, H. Modeling delayed processes in
biological systems. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
94, 1–9 (2016). 1605.07304.

[30] Chembo, Y. K., Jacquot, M., Dudley, J. & Larger, L. Ikeda-like chaos on a dynamically
filtered supercontinuum light source. Physical Review A 94, 023847 (2016).

[31] Paquot, Y. et al. Optoelectronic reservoir computing. Scientific reports 2 (2012).

[32] Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical
reservoir computing. Optics Express 20, 22783–22795 (2012). 1207.1619.

[33] Larger, L. et al. Photonic information processing beyond turing: an optoelectronic
implementation of reservoir computing. Optics express 20, 3241–9 (2012).

[34] Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information
processing. Nature Communications 4, 1364–1367 (2013).

[35] Soriano, M. C. et al. Delay-based reservoir computing: Noise effects in a combined ana-
log and digital implementation. IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS 26, 388–393 (2015).

[36] Hermans, M., Soriano, M. C., Dambre, J., Bienstman, P. & Fischer, I. Photonic delay
systems as machine learning implementations. Journal of Machine Learning Research
1–22 (2015). 1501.02592.

[37] Garbin, B., Javaloyes, J., Tissoni, G. & Barland, S. Topological solitons as addressable
phase bits in a driven laser. Nat Commun 6 (2015).

[38] Romeira, B., Avó, R., Figueiredo, J. M. L., Barland, S. & Javaloyes, J. Regenerative
memory in time-delayed neuromorphic photonic resonators. Scientific Reports 6, 19510
(2016). 1503.07781.

[39] Ikeda, K. Multiple-valued stationary state and its instability of the transmitted light
by a ring cavity system. Optics Communications 30 (1979).

[40] May, R. M. Simple mathematical models with very complicated dynamics. Nature 261,
459–467 (1976).

119

1605.07304
1207.1619
1501.02592
1503.07781

Bibliography

[41] Feigenbaum, M. J. Quantitative universality for a class of nonlinear transformations.
Journal of Statistical Physics 19, 25–52 (1978).

[42] Sharkovsky, A. N. Coexistence of cycles of a continuous map of the line into itself.
International Journal of Bifurcation and Chaos 05, 1263–1273 (English translation)
(1995).

[43] Yorke, J. A. & Li, T.-Y. Period three implies chaos. The American Mathematical
Monthly 82, 985–992 (1975). arXiv:1011.1669v3.

[44] Hoagg, J. B., Lacy, S. L., Babuska, V. & Bernstein, D. S. Sequential multisine excitation
signals for system identification of large space structures. American Control Conference,
2006 6 pp.– (2006).

[45] Lavrov, R., Jacquot, M. & Larger, L. Nonlocal nonlinear electro-optic phase dynamics
demonstrating 10 gb/s chaos communications. IEEE Journal of Quantum Electronics
46, 1430–1435 (2010).

[46] Douglas, R. J. & Martin, K. A. Recurrent neuronal circuits in the neurocortex. Current
Biology 27, 496–500 (2004).

[47] Izhikevich, E. M. Simple model of spiking neurons. IEEE Transactions on Neural
Networks 14, 1569–1572 (2003). ArXiv.

[48] The neuron. URL https://upload.wikimedia.org/wikipedia/commons/1/10/
Blausen_0657_MultipolarNeuron.png.

[49] Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal dynamics. Cambridge
Univ. Press 14–17 (2015).

[50] Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural
Networks 4, 251–257 (1991). arXiv:1011.1669v3.

[51] Funahashi, K. & Nakamura, Y. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural Networks 6, 801–806 (1993).

[52] Kilian, J. & Siegelmann, H. T. The dynamic universality of sigmoidal neural networks.
Information and Computation 128, 48–56 (1996).

[53] Jaeger, H. A tutorial on training recurrent neural networks, covering bppt, rtrl, ekf
and the "echo state network" approach. GMD Report 159, German National Research
Center for Information Technology 1–46 (2002).

[54] Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press,
1998).

[55] Nielsen, M. How the backpropagation algorithm works. URL http://
neuralnetworksanddeeplearning.com/chap2.html.

120

arXiv:1011.1669v3
ArXiv
https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png
https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png
arXiv:1011.1669v3
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html

Bibliography

[56] Russakovsky, O. et al. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision 115, 211–252 (2015). 1409.0575.

[57] Silver, D. et al. Mastering the game of go with deep neural networks and tree search.
Nature 529, 484–489 (2016).

[58] Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015). 1312.5602.

[59] Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542, 115–118 (2017).

[60] Athale, R. & Psaltis, D. Optical computing, past & future. Optics and Photonics News
32–39 (2016).

[61] Dale, M., Miller, J. F. & Stepney, S. Advances in Unconventional Computing, vol. 22
of Emergence, Complexity and Computation (Springer International Publishing, Cham,
2017).

[62] Pecora, L. M. & Carroll, T. L. Synchronization in chaotic systems. Physical Review
Letters 64, 821–824 (1990).

[63] Udaltsov, V. S. et al. Bandpass chaotic dynamics of electronic oscillator operating with
delayed nonlinear feedback. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 49, 1006–1009 (2002).

[64] Chembo, Y. K. et al. Dynamic instabilities of microwaves generated with optoelectronic
oscillators. Optics Letters 32, 2571–2573 (2007).

[65] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep con-
volutional neural networks. Advances In Neural Information Processing Systems 1–9
(2012). 1102.0183.

[66] Taigman, Y., Yang, M., Ranzato, M. & Wolf, L. Deepface: Closing the gap to human-
level performance in face verification. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 1701–1708 (2014). 1501.
05703.

[67] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

[68] Paquot, Y., Dambre, J., Schrauwen, B., Haelterman, M. & Massar, S. Reservoir comput-
ing: a photonic neural network for information processing. Proc. SPIE 7728, 77280B–
77280B–12 (2010).

[69] Barkley, D. & Tuckerman, L. S. Computational study of turbulent laminar patterns in
couette flow. Physical Review Letters 94, 1–4 (2005). 0403142v1.

121

1409.0575
1312.5602
1102.0183
1501.05703
1501.05703
0403142v1

Bibliography

[70] Barkley, D. Modeling the transition to turbulence in shear flows. Journal of Physics:
Conference Series 318, 032001 (2011). 1107.3697.

[71] Brethouwer, G., Duguet, Y. & Schlatter, P. Turbulent–laminar coexistence in wall
flows with coriolis, buoyancy or lorentz forces. Journal of Fluid Mechanics 704, 137–
172 (2012).

[72] Duguet, Y. & Schlatter, P. Oblique laminar-turbulent interfaces in plane shear flows.
Physical Review Letters 110, 034502 (2013).

[73] Hagerstrom, A. M. et al. Experimental observation of chimeras in coupled-map lattices.
Nature Physics 8, 658–661 (2012).

[74] Verschueren, N., Bortolozzo, U., Clerc, M. G. & Residori, S. Spatiotemporal chaotic
localized state in liquid crystal light valve experiments with optical feedback. Physical
Review Letters 110, 1–5 (2013).

[75] Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in popu-
lations of coupled chemical oscillators. Nature Physics 8, 662–665 (2012).

[76] Martens, E. A., Thutupalli, S., Fourrière, A. & Hallatschek, O. Chimera states in
mechanical oscillator networks. Proceedings of the National Academy of Sciences of the
United States of America 110, 10563–7 (2013).

[77] Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K. & Maistrenko, Y. Imperfect
chimera states for coupled pendula. Scientific reports 4, 6379 (2014).

[78] Viennot, D. & Aubourg, L. Quantum chimera states. Physics Letters, Section A:
General, Atomic and Solid State Physics 380, 678–683 (2016). 1408.4585.

[79] Larger, L., Penkovsky, B. & Maistrenko, Y. Virtual chimera states for delayed-feedback
systems. Physical Review Letters 111, 054103 (2013).

[80] Larger, L., Penkovsky, B. & Maistrenko, Y. Laser chimeras as a paradigm for multistable
patterns in complex systems. Nature Communications 6, 7752 (2015).

[81] Semenov, V., Zakharova, A., Maistrenko, Y. & Schöll, E. Delayed-feedback chimera
states: Forced multiclusters and stochastic resonance. EPL (Europhysics Letters) 115,
10005 (2016). 1511.03634.

[82] Sharkovsky, A. N., Maistrenko, Y. & Romanenko, E. Difference equations and their
applications, vol. 250 of Mathematics and Its Applications 250 (Springer Netherlands,
Dordrecht, 1993), 1 edn.

[83] Giacomelli, G., Marino, F., Zaks, M. A. & Yanchuk, S. Nucleation in bistable dynamical
systems with long delay. Physical Review E 88, 062920 (2013).

122

1107.3697
1408.4585
1511.03634

Bibliography

[84] Weicker, L. et al. Strongly asymmetric square waves in a time-delayed system. Physical
Review E 86, 055201 (2012).

[85] Chembo, Y. K., Colet, P., Larger, L. & Gastaud, N. Chaotic breathers in delayed
electro-optical systems. Physical Review Letters 95, 203903 (2005).

[86] Chay, T. R. & Rinzel, J. Bursting, beating, and chaos in an excitable membrane model.
Biophysical Journal 47, 357–366 (1985).

[87] FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal 1, 445–466 (1961).

[88] Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating
nerve axon. Proceedings of the IRE 50, 2061–2070 (1962).

[89] Pancomputationalism or the computational universe theory (2017). URL https://en.
wikipedia.org/wiki/Digital_physics.

[90] Kari, L. & Rozenberg, G. The many facets of natural computing. Communications of
the ACM 51, 72 (2008).

[91] Stepney, S., Abramsky, S., Adamatzky, A., Johnson, C. G. & Timmis, J. Grand chal-
lenge 7: Journeys in non-classical computation. Visions of Computer Science, London,
UK 407–421 (2008).

[92] Gelenbe, E. Natural computation. Computer Journal 55, 848–851 (2012).

[93] Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Science
Advances 3, e1601540 (2017). 1508.00420.

[94] Fernando, C. & Sojakka, S. Pattern recognition in a bucket. In Proceedings of the 7th
European Conference on Artificial Life, 588–597 (2003).

[95] Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based
architecture: Million words per second classification. Physical Review X 7, 011015
(2017).

[96] Adamatzky, A. & De Lacy Costello, B. Experimental logical gates in a reaction-diffusion
medium: The xor gate and beyond. Physical Review E - Statistical, Nonlinear, and Soft
Matter Physics 66, 1–6 (2002).

[97] Kernel machine. URL https://upload.wikimedia.org/wikipedia/commons/f/fe/
Kernel_Machine.svg.

[98] Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3, 127–149 (2009).

123

https://en.wikipedia.org/wiki/Digital_physics
https://en.wikipedia.org/wiki/Digital_physics
1508.00420
https://upload.wikimedia.org/wikipedia/commons/f/fe/Kernel_Machine.svg
https://upload.wikimedia.org/wikipedia/commons/f/fe/Kernel_Machine.svg

Bibliography

[99] Scardapane, S. & Wang, D. Randomness in neural networks: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7, e1200 (2017).

[100] Antonik, P., Smerieri, A., Duport, F., Haelterman, M. & Massar, S. Fpga implementa-
tion of reservoir computing with online learning. Belgian-Dutch Conference on Machine
Learning (2015).

[101] Lin, Y.-p. et al. Physical realization of a supervised learning system built with organic
memristive synapses. Scientific Reports 6, 31932 (2016).

[102] Keuninckx, L. Electronic systems as an experimental testbed to study nonlinear delay
dynamics. Phd thesis, Vrije Universiteit Brussel, Brussels, Belgium (2016).

[103] Martinenghi, R. Démonstration opto-électronique du concept de calculateur neuromor-
phique par reservoir computing. Phd thesis, University of Franche-Comte, Besancon,
France (2013).

[104] Brunner, D., Soriano, M. C. & Fischer, I. High-speed optical vector and matrix oper-
ations using a semiconductor laser. IEEE Photonics Technology Letters 25, 1680–1683
(2013).

[105] Soriano, M. C. et al. Optoelectronic reservoir computing: tackling noise-induced per-
formance degradation. Optics Express 21, 12–20 (2013).

[106] Vinckier, Q. et al. High-performance photonic reservoir computer based on a coherently
driven passive cavity. Optica 2, 438–446 (2015).

[107] Rodan, A. & Tino, P. Minimum complexity echo state network. IEEE Transactions on
Neural Networks 22, 131–144 (2011).

[108] Thompson, A. An evolved circuit, intrinsic in silicon, entwined with physics. Evolvable
Systems: From Biology to Hardware 1259, 390–405 (1996).

[109] Farmer, J. D. & Sidorowich, J. J. Predicting chaotic time series. Phys. Rev. Lett 59,
845–848 (1987).

[110] Slaney, M. Lyon’s cochlear model. Apple Technical Report 1–79 (1988).

[111] Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y. K. & Larger, L. Photonic
nonlinear transient computing with multiple-delay wavelength dynamics. Phys. Rev.
Lett 244101, 1–4 (2012).

[112] Schrauwen, B., D’Haene, M., Verstraeten, D. & Campenhout, J. V. Compact hardware
liquid state machines on fpga for real-time speech recognition. Neural Networks 21,
511–523 (2008).

[113] Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon
photonics chip. Nature communications 5, 3541 (2014).

124

Bibliography

[114] Langton, C. G. Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D: Nonlinear Phenomena 42, 12–37 (1990). 9306003.

[115] Schurmann, F., Meier, K. & Schemmel, J. Edge of chaos computation in mixed-mode
vlsi - a hard liquid. In Saul, L. K., Weiss, Y. & Bottou, L. (eds.) Advances in Neural
Information Processing Systems 17, 1201–1208 (MIT Press, 2004).

[116] Bertschinger, N. & Natschläger, T. Real-time computation at the edge of chaos in
recurrent neural networks. Neural computation 16, 1413–36 (2004).

[117] Wikipedia. Fpga structure. URL https://upload.wikimedia.org/wikipedia/
commons/e/e2/Fpga_structure.svg.

[118] Wikipedia. Fpga cell example. URL http://upload.wikimedia.org/wikipedia/
commons/1/1c/FPGA_cell_example.png.

[119] Xilinx power estimator tool. URL https://www.xilinx.com/products/technology/
power/xpe.html.

[120] Yousfi-Steiner, N., Moçotéguy, P., Candusso, D. & Hissel, D. A review on polymer
electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, con-
sequences and diagnostic for mitigation. Journal of Power Sources 194, 130–145 (2009).

[121] Gerard, M., Poirot-Crouvezier, J. P., Hissel, D. & Pera, M. C. Oxygen starvation
analysis during air feeding faults in pemfc. International Journal of Hydrogen Energy
35, 12295–12307 (2010).

[122] Yousfi Steiner, N., Hissel, D., Moçotéguy, P. & Candusso, D. Diagnosis of polymer
electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling.
International Journal of Hydrogen Energy 36, 3067–3075 (2011).

[123] Jouin, M., Gouriveau, R., Hissel, D., Péra, M.-C. & Zerhouni, N. Prognostics and
health management of pemfc – state of the art and remaining challenges. International
Journal of Hydrogen Energy 38, 15307–15317 (2013).

[124] Jouin, M., Gouriveau, R., Hissel, D., Péra, M. C. & Zerhouni, N. Prognostics of pem
fuel cell in a particle filtering framework. International Journal of Hydrogen Energy 39,
481–494 (2014).

[125] Alomar, M. L. et al. Digital implementation of a single dynamical node reservoir com-
puter. IEEE Transactions on Circuits and Systems II: Express Briefs 62, 977–981
(2015).

[126] Makridakis, S. Time series prediction: Forecasting the future and understanding the
past. International Journal of Forecasting 10, 463–466 (1994).

125

9306003
https://upload.wikimedia.org/wikipedia/commons/e/e2/Fpga_structure.svg
https://upload.wikimedia.org/wikipedia/commons/e/e2/Fpga_structure.svg
http://upload.wikimedia.org/wikipedia/commons/1/1c/FPGA_cell_example.png
http://upload.wikimedia.org/wikipedia/commons/1/1c/FPGA_cell_example.png
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html

Bibliography

[127] Jalalvand, A. Connected digit recognition by means of reservoir computing. In INTER-
SPEECH 2011 (Florence, Italy, 2011).

[128] Lukoševičius, M. Reservoir Computing and Self-Organized Neural Hierarchies. Phd
thesis, Jacobs University Bremen, Bremen, Germany (2011).

[129] Jaeger, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wireless communication. Science 304, 78–80 (2004).

[130] Gyori, I. & Hartung, F. Stability analysis of a single neuron model with delay. Journal
of Computational and Applied Mathematics 157, 73–92 (2003).

[131] Maisnam, S. & Singh, R. K. B. Generalization of neuron network model with delay
feedback 1, 1–12 (2015). 1507.04552.

[132] Li, C., Chen, G., Liao, X. & Yu, J. Hopf bifurcation and chaos in a single inertial
neuron model. Eur. Phys. J. B 41, 337–343 (2004). 0411027.

[133] Pearson, K. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 559–
572 (1901).

[134] Jalalvand, A., Wallendael, G. V. & Walle, R. V. D. Real-time reservoir computing
network-based systems for detection tasks on visual contents. 7th International Confer-
ence on Computational Intelligence, Communication Systems and Networks (CICSyN)
146–151 (2015).

[135] Keuninckx, L., Danckaert, J. & Van der Sande, G. Real-time audio processing with a
cascade of discrete-time delay line-based reservoir computers. Cognitive Computation
(2017).

All the listed URLs were accessible in December 2016.

126

1507.04552
0411027

Appendices

Appendix A: detailed results of isolated spoken digit
recognition task applying RC to Aurora-2 benchmark
using a bandpass model

Clean 1 Clean 2 Clean 3 Clean4
Test A 2.0 2.5 4.2 4.9
Test C 5.4 7.5 - -

(a) 400 virtual neurons. Learning WER is 1.9%

Clean 1 Clean 2 Clean 3 Clean4
Test A 0.3 1 1 2.5
Test C 3.4 3.9 - -

(b) 1000 virtual neurons. Learning WER is 0.7%

Clean 1 Clean 2 Clean 3 Clean4
Test A 0 1.8 0.7 1.8
Test C 3.4 3.2 - -

(c) 1500 virtual neurons. Learning WER is 0.4%

Table 4.2: Word error rates after reservoir validation. Training on clean data.

127

Appendices

SNR/dB Subway Babble Car Exhibition Average
Clean 6 6 7.4 7 6.6
20dB 6.4 9.3 12.4 9.5 9.4
15dB 8.4 12.5 13.8 14.437 12.3
10dB 14.8 22.6 23 20.8 20.3
5dB 25.2 37.3 41.7 41.9 36.4
0dB 60 66.3 69.6 71.1 66.8
-5dB 85.2 84.9 88 82 85

(a) Test A, training on both clean and noisy data

SNR/dB Restaurant Street Airport Train station Average
Clean 6 6.1 7.4 7 6.6
20dB 8 21.9 15.5 15.5 15.2
15dB 11.4 28.7 19 26.4 21.4
10dB 17.1 50.2 29.3 44.7 35.3
5dB 36.2 72.8 45.9 58.8 53.4
0dB 66.4 86 71 76 74.9
-5dB 78.9 90.3 84.5 86.3 85

(b) Test B, training on both clean and noisy data

SNR/dB Subway (MIRS) Street (MIRS) Average
Clean 8.7 9 8.8
20dB 18.1 30.8 24.5
15dB 22.8 46.6 34.7
10dB 46.3 74.2 60.3
5dB 68.1 87.8 78
0dB 79.2 89.6 84.4
-5dB 85.9 91.4 88.7

(c) Test C, training on both clean and noisy data

Table 4.3: WERs (%) for a reservoir of 400 virtual neurons. Learning WER is 12.8%.

128

Appendices

SNR/dB Subway Babble Car Exhibition Average
Clean 1.7 2.5 2.8 5.6 3.2
20dB 4.4 5.4 4.6 6.3 5.2
15dB 6 7.9 6 8.8 7.1
10dB 10.1 7.9 12.7 12.7 10.8
5dB 16.1 22.9 30.4 26.1 24
0dB 44.6 50.5 65.4 62.7 55.9
-5dB 76.2 83.2 87.3 79.2 81.5

(a) Test A, training on both clean and noisy data

SNR/dB Restaurant Street Airport Train station Average
Clean 1.7 2.5 2.8 5.6 3.2
20dB 5.4 10.8 5.7 7.7 7.4
15dB 7.7 16.5 8.8 11.6 11.2
10dB 8.7 34.8 16.6 27.5 21.9
5dB 28.9 64.9 38.5 48.9 45.4
0dB 66.1 81 67.8 69.4 71.1
-5dB 80.2 89.6 82.3 84.9 84.2

(b) Test B, training on both clean and noisy data

SNR/dB Subway (MIRS) Street (MIRS) Average
Clean 4.7 6 5.4
20dB 10.4 16.8 13.6
15dB 14.1 34.8 24.4
10dB 31.9 68.5 50.2
5dB 66.8 83.9 75.3
0dB 79.9 88.5 84.2
-5dB 84.2 91.4 87.8

(c) Test C, training on both clean and noisy data

Table 4.4: WERs (%) for a reservoir of 1000 virtual neurons. Learning WER is 5.9%.

129

Appendices

SNR/dB Subway Babble Car Exhibition Average
Clean 2 2.5 1.4 3.9 2.5
20dB 4 3.9 4.2 5.6 4.4
15dB 4 5.7 5.7 8 5.85
10dB 8.7 6.8 9.2 8.8 8.4
5dB 12 19.4 26.5 21.1 19.8
0dB 39.9 45.9 65.7 57 52.1
-5dB 75 81.4 87.3 77.8 80.3

(a) Test A, training on both clean and noisy data

SNR/dB Restaurant Street Airport Train station Average
Clean 2 2.5 1.4 3.9 2.5
20dB 4.7 9 4.6 6 6
15dB 6 13.6 6.7 8.5 8.7
10dB 4.7 27.6 13 21.8 16.8
5dB 19.5 58.1 32.2 41.5 37.8
0dB 58.4 79.6 65.4 70.4 68.4
-5dB 79.5 89.2 83 87.7 84.9

(b) Test B, training on both clean and noisy data

SNR/dB Subway (MIRS) Street (MIRS) Average
Clean 3 4.3 3.6
20dB 8.4 10.8 9.6
15dB 11.7 28.3 20
10dB 17.5 58.4 37.9
5dB 44 81.7 62.8
0dB 68.5 87.8 78.1
-5dB 79.5 91.4 85.5

(c) Test C, training on both clean and noisy data

Table 4.5: WERs (%) for a reservoir of 1500 virtual nodes. Learning WER is 4%.

130

Appendices

Appendix B: comparison between lowpass dynamics
implementations on FPGA and PC for Aurora bench-
mark

SNR/dB Subway Babble Car Exhibition Average
Clean 1.3 3.6 2.8 5.3 3.3
20dB 3.4 5.4 4.2 7.4 5.1
15dB 5.7 6.1 6 10.9 7.2
10dB 9.4 10.8 11.7 15.5 11.8
5dB 15.8 25.1 33.9 28.5 25.8
0dB 46.3 50.5 71.7 61.6 57.5
-5dB 77.2 81.7 88.3 79.9 81.8

(a) Test A, training on both clean and noisy data

SNR/dB Restaurant Street Airport Train station Average
Clean 1.3 3.6 2.8 5.3 3.3
20dB 4 9 4.6 7.4 6.2
15dB 4.7 16.5 8.8 12.3 10.6
10dB 8 33.7 17 29.2 22
5dB 20.8 64.9 36.4 52.5 43.6
0dB 50.3 81 63.6 76 67.7
-5dB 79.5 90 84.1 84.9 84.6

(b) Test B, training on both clean and noisy data

SNR/dB Subway (MIRS) Street (MIRS) Average
Clean 5 7.9 6.5
20dB 12.1 19 15.5
15dB 17.8 35.5 26.6
10dB 33.6 60.6 47.1
5dB 57.4 83.5 70.4
0dB 75.2 90.7 82.9
-5dB 81.9 91.4 86.6

(c) Test C, training on both clean and noisy data

Table 4.6: Aurora benchmark WERs (%). Computer implementation of a reservoir of
1000 virtual neurons. A lowpass Ikeda model (3.4.8) is utilized as a reservoir. Parameters
ε = 1.56 · 10−1, β = 1.11, Φ0 = −3.02, ρ = 1.15 are obtained by GA. Learning WER is 5.7%.

131

Appendices

SNR/dB Subway Babble Car Exhibition Average
Clean 2 4.3 3.2 6 3.9
20dB 3.7 6.8 3.9 9.2 5.9
15dB 6.7 7.2 7.1 10.9 8
10dB 9.4 11.1 11.7 16.2 12.1
5dB 17.1 25.8 32.2 28.5 25.9
0dB 45 52.3 73.9 63.4 58.6
-5dB 78.2 82.1 87.6 77.5 81.3

(a) Test A, training on both clean and noisy data

SNR/dB Restaurant Street Airport Train station Average
Clean 2 4.3 3.2 6 3.9
20dB 4 10.4 4.9 7.7 6.8
15dB 6.4 17.2 11 13.4 12
10dB 9.4 33.7 19.1 27.8 22.5
5dB 20.8 65.2 36.7 52.8 43.9
0dB 54.7 81.7 64.3 76.1 69.2
-5dB 79.5 90.7 85.2 86.3 85.41

(b) Test B, training on both clean and noisy data

SNR/dB Subway (MIRS) Street (MIRS) Average
Clean 5.7 7.5 6.62
20dB 11.7 20.8 16.3
15dB 18.8 35.8 27.3
10dB 35.2 60.2 47.7
5dB 60.1 84.2 72.2
0dB 77.5 90 83.7
-5dB 84.6 91.8 88.2

(c) Test C, training on both clean and noisy data

Table 4.7: Aurora benchmark WERs (%). FPGA implementation of a reservoir of 1000
virtual neurons. A lowpass Ikeda model (3.4.8) is utilized as a reservoir. Parameters ε =
1.56 · 10−1, β = 1.11, Φ0 = −3.02, ρ = 1.15 are obtained by GA. Precision of arithmetic
operations is 1.22 · 10−4. Learning WER is 6%.

132

Abstract

The thesis develops a novel approach to design of a reservoir computer, one of the challenges
of modern Science and Technology. It consists of two parts, both connected by the correspond-
ence between optoelectronic delayed-feedback systems and spatio-temporal nonlinear dynam-
ics. In the first part (Chapters 1 and 2), this correspondence is used in a fundamental perspective,
studying self-organized patterns known as chimera states, discovered for the first time in purely
temporal systems. Study of chimera states may shed light on mechanisms occurring in many
structurally similar high-dimensional systems such as neural systems or power grids. In the
second part (Chapters 3 and 4), the same spatio-temporal analogy is exploited from an applied
perspective, designing and implementing a brain-inspired information processing device: a
real-time digital reservoir computer is constructed in FPGA hardware. The implementation
utilizes delay dynamics and realizes input as well as output layers for an autonomous cognitive
computing system.

Keywords

Reservoir computing, Machine learning, Nonlinear delay dynamics,
Complex systems, Chimera states, FPGA

Résumé
Cette thèse développe une nouvelle approche pour la conception d'un reservoir computer, l'un
des défis de la science et de la technologie modernes. La thèse se compose de deux parties,
toutes deux s'appuyant sur l'analogie entre les systèmes optoelectroniques à retard et les dynam-
iques spatio-temporelles non linéaires. Dans la première partie (Chapitres 1 et 2) cette analogie
est utilisée dans une perspective fondamentale afin d'étudier les formes auto-organisées connues
sous le nom d'états Chimère, mis en évidence une première fois comme une conséquence de ces
travaux. Dans la deuxième partie (Chapitres 3 et 4) la même analogie est exploitée dans une
perspective appliquée afin de concevoir et mettre en oeuvre un concept de traitement de
l'information inspiré par le cerveau: un reservoir computer fonctionnant en temps réel est con-
struit dans une puce FPGA, grâce à la mise en oeuvre d'une dynamique à retard et de ses couches
d'entrée et de sortie, pour obtenir un système traitement d'information autonome intelligent.

Mots-clés

Reservoir computing, Apprentissage automatique, Systèmes complexes,
Dynamique non linéaire à retard, États Chimère, FPGA

	Introduction
	Structure of the thesis
	Main contributions provided by this work
	Publications
	Conference presentations and work dissemination

	1 Time-delay systems and networks
	1.1 Nonlinear delayed-feedback systems
	1.1.1 Route to chaos in DDE
	1.1.2 Interpretation of Ikeda DDEs
	1.1.3 Space-time representation of DDEs
	1.1.4 DDE as a time-multiplexed circular network
	1.1.5 Driven systems

	1.2 Artificial neural networks
	1.2.1 Approximation of neural behavior
	1.2.2 Feedforward neural networks
	1.2.3 Recurrent neural networks
	1.2.4 Neural networks training
	1.2.4.1 Supervised vs unsupervised learning
	1.2.4.2 FNN training
	1.2.4.3 RNN training

	1.3 Applications of nonlinear delay dynamics
	1.4 Conclusion

	2 Chimera states in nonlinear delayed-feedback systems
	2.1 Introduction
	2.2 Observation of chimera states in delayed-feedback systems
	2.2.1 Ikeda DDE. The Airy function and two coexisting attractors
	2.2.2 Transient dynamics of Ikeda DDEs
	2.2.3 Chimera states in a bandpass Ikeda model
	2.2.4 Optoelectronic experimental setup
	2.2.5 Comparison between simulations and experiments

	2.3 Multistability in the bandpass DDE
	2.3.1 Coexistence of chimeras and breathers
	2.3.2 Coexistence of multiheaded chimera solutions in (,)-parameter plane
	2.3.3 Chimera basins of attraction

	2.4 Conclusion

	3 Nonlinear delay systems for neuromorphic computing
	3.1 Introduction to reservoir computing
	3.1.1 Why ``reservoir''?
	3.1.2 Architecture
	3.1.3 Learning procedure
	3.1.4 Computation with dynamical systems

	3.2 Single-node RC approach
	3.2.1 DDE as a reservoir
	3.2.2 State of the art in delay-based RC
	3.2.3 Training methods
	3.2.4 Model effectiveness measurement

	3.3 Towards digital RC
	3.3.1 DDE solver
	3.3.2 Discrete time dynamics
	3.3.3 Efficient nonlinear transformation f
	3.3.4 Fixed-point arithmetic
	3.3.5 Multiparametric optimization

	3.4 Performance benchmark tests
	3.4.1 Prediction task
	3.4.2 Classification task

	3.5 Conclusion

	4 FPGA implementation of delay-based RC
	4.1 FPGA basics
	4.1.1 FPGA introduction
	4.1.2 Resources of FPGA chip and supporting board
	4.1.2.1 Physical constraints
	4.1.2.2 Major types of memory
	4.1.2.3 Supporting board

	4.2 FPGA implementation of RC
	4.2.1 High-level RC implementation
	4.2.2 Data flow
	4.2.2.1 Correct by construction circuits
	4.2.2.2 Pipeline parallelism

	4.2.3 Masking and readout operations
	4.2.4 Reservoir dynamics

	4.3 Performance
	4.3.1 Chaotic Mackey-Glass time series prediction
	4.3.2 TI-46 spoken digit recognition
	4.3.3 Aurora benchmark

	4.4 Conclusion

	Discussion
	Bibliography
	Appendices
	Appendix A: detailed results of isolated spoken digit recognition task applying RC to Aurora-2 benchmark using a bandpass model
	Appendix B: comparison between lowpass dynamics implementations on FPGA and PC for Aurora benchmark

