- -.... .

PhD Defence, July 10th, 2017

The Physical Layer for Low Power Wide Area Networks: A Study of Combined Modulation and Coding Associated with an Iterative Receiver

Yoann Roth

under the supervision of

Laurent Ros, PhD Jean-Baptiste Doré, PhD Vincent Berg

General Context

Internet-of-Things

Internet-of-Things (IoT)

"Global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving interoperable information and communication technologies." [1]

Global infrastructure interconnecting things based on existing and evolving communication technologies

- things: sensors, actuators, but also vehicles, buildings
- ${\scriptstyle \bullet }$ existing $\left[\ldots \right]$ communication technologies: legacy networks are used
- evolving communication technologies: new networks must be deployed
- Estimated 10% of the IoT connections are done using Low Power Wide Area (LPWA) networks [2]

^[1] International Telecommunication Union (ITU-T), Overview of the Internet-of-Things, 2012

^[2] Rebbeck, Mackenzie, and Afonso, Low-powered wireless solutions have the potential to increase the M2M market by over 3 billion connections, 2014

Long range communication

^[3] Machina Research, LPWA Technologies - Unlock New IoT Market Potential, 2014

- Long range communication
- ► Low energy consumption: minimize the constraint on the power amplifier

^[3] Machina Research, LPWA Technologies - Unlock New IoT Market Potential, 2014

- Long range communication
- ► Low energy consumption: minimize the constraint on the power amplifier
- Low data rate is assumed

^[3] Machina Research, LPWA Technologies - Unlock New IoT Market Potential, 2014

- Long range communication
- ► Low energy consumption: minimize the constraint on the power amplifier
- Low data rate is assumed
- Example of LPWA applications:
 - ▶ Water metering: water consumption is transmitted to the water provider
 - Parking sensors: detect available parking spots and inform customers

^[3] Machina Research, LPWA Technologies - Unlock New IoT Market Potential, 2014

Conclusion

General Context

This work

- Analyze the problem of LPWA transmission and identify strategies
- Propose an innovative solution
- Study and optimize the scheme
- Confront its performance to the existing LPWA environmement and powerful solutions

.....

.....

Coplanar Turbo-FSK

nalysis 000000000000 Application

Conclusion

1. Low Sensitivity, Strategies and Existing Solutions

2. Coplanar Turbo-FSK

3. Analysis

4. Application to Low Power Wide Area Networks

5. Conclusion

1.1.1

.....

....

Conclusion

1. Low Sensitivity, Strategies and Existing Solutions

- 1.1 Long Range and Sensitivity
- 1.2 Main strategies
- 1.3 Maximum Achievable Spectral Efficiency
- 1.4 Forward Error Correction
- 1.5 Existing Solutions
- 1.6 Conclusion

2. Coplanar Turbo-FSK

3. Analysis

4. Application to Low Power Wide Area Networks

5. Conclusion

.

Coplanar Turbo-FSK 000000000000000 nalysis 00000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Friis Equation (free path loss)

$$d^2 = \frac{P_t G_t G_r}{P_r} \left(\frac{\lambda_w}{4\pi}\right)^2$$

d: distance between TX and RX

Coplanar Turbo-FSK

nalysis 00000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Increase power at TX ? Regulation problem $d^{2} = \frac{P_{t}G_{t}G_{r}}{P_{r}} \left(\frac{\lambda_{w}}{4\pi}\right)^{2}$

d: distance between TX and RX

Coplanar Turbo-FSK

nalysis

Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Coplanar Turbo-FSK

nalysis 00000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Coplanar Turbo-FSK

nalysis 000000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Friis Equation (free path loss)

$$d^{2} = \frac{P_{t}G_{t}G_{r}}{P_{r}} \left(\frac{\lambda_{w}}{4\pi}\right)^{2}$$

Reduce required power at RX ?

d: distance between TX and RX

nalysis 000000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Reduce required power at RX ?

d: distance between TX and RX

• Required power at RX is characterized by the sensitivity (*P*_{req}):

Sensitivity of a Receiver (P_{req})

Friis Equation (free path loss)

Level of received signal power P_r required for a specific Quality of Service (QoS)

nalysis 000000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Long Range and Sensitivity

How to achieve long range communication?

Reduce required power at RX ?

d: distance between TX and RX

• Required power at RX is characterized by the sensitivity (*P*_{req}):

Sensitivity of a Receiver (Preq)

Friis Equation (free path loss)

Level of received signal power P_r required for a specific Quality of Service (QoS)

Long range can be achieved by ensuring a low level of sensitivity

nalysis

Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Main strategies

- Reduce the sensitivity:
 - Reduce the data rate mandatory for long range solutions
 - Reduce E_b (intrinsic to the technique selected)

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Main strategies

- Reduce the sensitivity:
 - Reduce the data rate mandatory for long range solutions
 - Reduce E_b (intrinsic to the technique selected)
- Commonly used metric for receivers: the Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio

Coplanar Turbo-FSK

nalysis 00000000000 pplication

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Main strategies

Sensitivity (in dBm, at 15°C)

$$P_{\text{req}}^{\text{dBm}} = (\text{SNR})_{\min}^{\text{dB}} + 10\log_{10}(B) - 174$$

- Two main strategies:
 - Reduce the bandwidth *B* (narrow band signaling)
 - Reduce the required SNR

Coplanar Turbo-FSK

nalysis 00000000000 pplication

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Main strategies

Sensitivity (in dBm, at 15°C)

$$P_{\text{req}}^{\text{dBm}} = (\text{SNR})_{\min}^{\text{dB}} + 10\log_{10}(B) - 174$$

- Two main strategies:
 - Reduce the bandwidth *B* (narrow band signaling)
 - Reduce the required SNR

nalysis 00000000000 pplication

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Main strategies

Sensitivity (in dBm, at 15°C)

$$P_{\text{req}}^{\text{dBm}} = (\text{SNR})_{\min}^{\text{dB}} + 10\log_{10}(B) - 174$$

- Two main strategies:
 - Reduce the bandwidth *B* (narrow band signaling)
 - ► Reduce the required SNR

• SNR =
$$\frac{E_b}{N_0} \cdot \eta$$

- Reduce the spectral efficiency η
- Reduce the E_b/N_0 required for the QoS
- Reduce both

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce the spectral efficiency

- Reduce the spectral efficiency η : repetition factor
 - Information bits are repeated λ times
 - Receiver recombines the repetitions

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce the spectral efficiency

- Reduce the spectral efficiency η : repetition factor
 - Information bits are repeated λ times
 - Receiver recombines the repetitions

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce the spectral efficiency

- Reduce the spectral efficiency η : repetition factor
 - Information bits are repeated λ times
 - Receiver recombines the repetitions

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce both η and E_b/N_0

- Reduce both η and E_b/N_0 : *M*-ary orthogonal modulation
- Principle:
 - ► *M*: size of the alphabet
 - Distinct elements of the alphabet are orthogonal to each other
 - ▶ Scalar product between two symbols *s*_{*i*} and *s*_{*k*} of the alphabet:

$$\langle s_i, s_k
angle = 0$$

► Groups of log₂(*M*) bits have a unique association to one symbol from the alphabet

Application 000000000000000 Conclusion

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce both η and E_b/N_0

- Reduce both η and E_b/N_0 : *M*-ary orthogonal modulation
- Example
 - ▶ Pulse Position Modulation (PPM): time localization
 - Alphabet for M = 4:

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce both η and E_b/N_0

- Reduce both η and E_b/N_0 : *M*-ary orthogonal modulation
- Example
 - ► Frequency Shift Keying (FSK): frequency localization
 - Alphabet for M = 4:

Instantaneous power of the signal equal to 1: constant envelope

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce both η and E_b/N_0

- Reduce both η and E_b/N_0 : *M*-ary orthogonal modulation
- Performance

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Main strategies: Reduce both η and E_b/N_0

- Reduce both η and E_b/N_0 : *M*-ary orthogonal modulation
- Performance

alysis

pplication 0000000000000 Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Main strategies

- These techniques allow for low levels of sensitivity
- Are they efficient regarding the limits of the information theory ?

Analysis Doooooooooooo

Low Sensitivity, Strategies and Existing Solutions

Maximum Achievable Spectral Efficiency

Shannon Theorem

The maximum achievable data rate (the capacity) over Additive White Gaussian Noise (AWGN) for an arbitrarily small level of error is given by [4]:

$$C = B \cdot \log_2\left(1 + \mathsf{SNR}\right)$$

Reaching the limit = efficient use the resource

Maximum Achievable Spectral Efficiency

$$\eta_{\max} = \frac{C}{B} = \log_2\left(1 + \mathsf{SNR}\right)$$

• Expressed in E_b/N_0 , the limit is

$$\left(\frac{E_b}{N_0}\right)_{\min} = \frac{2^{\eta} - 1}{\eta} \quad \xrightarrow[\eta \to 0]{} -1.59 dE$$

^[4] Shannon, "A mathematical theory of communication", 1948

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Analysis Doooooooooooo Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Low Sensitivity, Strategies and Existing Solutions

Maximum Achievable Spectral Efficiency

Maximum Achievable Spectral Efficiency

Analysis Doooooooooooo Application

Conclusion 000

Low Sensitivity, Strategies and Existing Solutions

Maximum Achievable Spectral Efficiency

- Are they efficient regarding the limits of the information theory ? NO
- Additional gain in E_b/N_0 can be obtained using Forward Error Correction (FEC)

- Principle:
 - Redundancy is added at the transmitter side (reduces η)
 - The receiver uses this redundancy to reduce the E_b/N_0 required for the QoS
- Various families: block codes, convolutional codes, ...
- Some families can even reach the capacity (LDPC, Polar Codes [5])

 ^[5] Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", 2009

nalysis

pplication

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Forward Error Correction: Turbo Codes

- Turbo Code [6] is a powerful FEC scheme
- Principle (TX):

► Two interleaved versions of the message are encoded and sent

^[6] Berrou, Glavieux, and Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes", 1993

Forward Error Correction: Turbo Codes

- Turbo Code [6] is a powerful FEC scheme
- Principle (RX):

- Probabilistic decoding
- ► Two decoders use the Bahl, Cocke, Jelinek and Rajiv (BCJR) algorithm [7]
- ► Iterative decoding: exchange of information between the two decoders

^[6] Berrou, Glavieux, and Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes", 1993

^[7] Bahl et al., "Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)", 1974

Forward Error Correction: Turbo Codes

- Turbo Code [6] is a powerful FEC scheme
- Typical Bit Error Rate (BER) performance:

^[6] Berrou, Glavieux, and Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes", 1993

Analysis

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Forward Error Correction

nalysis

Application 000000000000000 Conclusion

Low Sensitivity, Strategies and Existing Solutions

Forward Error Correction

- What are the strategies selected by the existing solutions ?
- The solutions mix fundamental techniques (modulation or FEC)

PHY-layer	Modulation	FEC
Sigfox	DBPSK	?
LoRa based	Orthogonal	Hamming
802.15.4k, RPMA	DBPSK	CC [171 133] + repetition
NB-IoT based	BPSK/QPSK	TC [13 15] + repetition

- Large number of possible configurations, resulting in various levels of η
- Performance over AWGN for small information block size (1000 bits or 125 bytes)

Coplanar Turbo-FSK

nalysis

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Coplanar Turbo-FSK

nalysis 0000000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Coplanar Turbo-FSK

nalysis 000000000000 Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Coplanar Turbo-FSK

nalysis

Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

Coplanar Turbo-FSK

nalysis

Application

Conclusion

Low Sensitivity, Strategies and Existing Solutions

nalysis 0000000000000

Low Sensitivity, Strategies and Existing Solutions

Conclusion

- LPWA requirements:
 - ► Long range: requires low levels of sensitivity
 - Low energy consumption: minimize the variations of the envelope
- Low data rate is assumed (+ short block sizes)
- Target area: low η + low E_b/N_0
- Best technique so far: use a TC + repetition (NB-IoT)
 - ► Offers a large range of spectral efficiency i.e. more applications
 - Short block size: reduce the performance

Conclusion

- Alternative to the strategy FEC + repetition: use ultra low rate FEC
- Example: Turbo-Hadamard [7]
 - Based on the combination of a binary orthogonal block code (Hadamard codes) and a convolutional code
 - Uses a turbo receiver
 - Very low E_b/N_0

^[7] Ping, Leung, and Wu, "Low-rate turbo-Hadamard codes", 2003

Conclusion

- Alternative to the strategy FEC + repetition: use ultra low rate FEC
- Example: Turbo-Hadamard [7]
 - Based on the combination of a binary orthogonal block code (Hadamard codes) and a convolutional code
 - Uses a turbo receiver
 - Very low E_b/N_0

Our work

We propose an extension of the initial scheme Turbo-Hadamard: Coplanar Turbo-FSK

^[7] Ping, Leung, and Wu, "Low-rate turbo-Hadamard codes", 2003

.....

nalysis

Application

Conclusion

Contents

1. Low Sensitivity, Strategies and Existing Solutions

2. Coplanar Turbo-FSK

- 2.1 Origins
- 2.2 Transmitter Overview
- 2.3 Encoder
- 2.4 Trellis
- 2.5 Modulation
- 2.6 Turbo Receiver
- 2.7 Conclusion

3. Analysis

4. Application to Low Power Wide Area Networks

5. Conclusion

Yoann Roth, Phd Defence

Analysis Doooooooooooo pplication 00000000000000 Conclusion

Coplanar Turbo-FSK

Analysis Dooooooooooooo pplication

Conclusion

Coplanar Turbo-FSK

Analysis 2000000000000 pplication

Conclusion

Coplanar Turbo-FSK

Analysis Doooooooooooo

Conclusion

Coplanar Turbo-FSK

Analysis

Conclusion

Coplanar Turbo-FSK

Coplanar Turbo-FSK

Analysis 2000000000000 pplication

Conclusion

Coplanar Turbo-FSK

Analysis Doooooooooooo pplication 00000000000000 Conclusion

Coplanar Turbo-FSK

- Turbo-Hadamard FEC scheme [8]:
 - Uses binary Hadamard codes as orthogonal alphabet
 - More than two encoders can/should be used
 - Various possible choices for the convolutive part
- Low rate, high performance

^[8] Ping, Leung, and Wu, "Low-rate turbo-Hadamard codes", 2003

Origins

- Turbo-Hadamard FEC scheme [8]:
 - Uses binary Hadamard codes as orthogonal alphabet
 - More than two encoders can/should be used
 - Various possible choices for the convolutive part
- Low rate, high performance

Our proposition

Coplanar Turbo-FSK: a modulation scheme inspired by the Turbo Hadamard FEC

^[8] Ping, Leung, and Wu, "Low-rate turbo-Hadamard codes", 2003

Coplanar Turbo-FSK

Analysis Dooooooooooooo Application

Conclusion

Coplanar Turbo-FSK

Coplanar Turbo-FSK

Analysis Doooooooooooo Application

Conclusion 000

Coplanar Turbo-FSK

Transmitter Overview

- λ stages = the *Q* bits are encoded λ times
- Each stage performs the same operations

Segmentation

10010	1 1 0 1 1	1 0 0 0 <mark>0</mark>	
		1	
		0	
		1	
		1	
		$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	
		1	
		1	
		0	
		0	
		\sim	

How is the alphabet constructed ? Coplanar FSK

- Coplanar FSK:
 - Allow N_L points ($N_L \ge 1$) for each frequency
 - Coplanar values are roots of the unity
 - Only subsets of the alphabet are orthogonal

M/2 required frequencies

Yoann Roth, Phd Defence

M/8 required frequencies

- λ versions of the information block were sent \blacksquare architecture with λ decoders is required
- <u>Turbo receiver</u>: combines detection of the symbols and iterative decoding

Coplanar Turbo-FSK

- Coplanar Turbo-FSK is our patented modulation scheme [9], inspired from Turbo Hadamard
 - ▶ Denomination Turbo-FSK: when FSK alphabet is considered
- Four main parameters:
 - ► *Q*: information block size
 - λ : number of repetitions
 - N_L : number of coplanar points
 - ► *M*: size of the modulation alphabet
- It is a combination of orthogonal modulation, convolutional code and a turbo receiver
- The Coplanar FSK modulation allows for a constant envelope and flexibility in spectral efficiency

^[9] Roth et al., "Transmission/Reception System Based on the Use of a Joint Orthogonal and Linear Modulation", 2017

Coplanar Turbo-FSK

- What is the best strategy for the turbo receiver ?
- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
- Coplanar Turbo-FSK: what is the optimum combination of parameters ?

Sensitivity, Strategies and Solutions

Conclusion

1. Low Sensitivity, Strategies and Existing Solutions

2. Coplanar Turbo-FSK

3. Analysis

- 3.1 Receiver's Strategy
- 3.2 Turbo-FSK
- 3.3 Coplanar Turbo-FSK
- 3.4 Conclusion

4. Application to Low Power Wide Area Networks

5. Conclusion

Yoann Roth, Phd Defence

July 10th, 2017 40 - 74

1. Low Schsterrey, Strategies and Existing Solution

.....

Conclusion

• What is the best strategy for the turbo receiver ?

- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
- Coplanar Turbo-FSK: what is the optimum combination of parameters ?

Conclusior 000

Analysis Receiver's Strategy

At the transmitter: encoding and modulation are strongly dependent

- At the transmitter: encoding and modulation are strongly dependent
- Coupled strategy: *a priori* information from the other decoders is reused at the demodulation level

 Application

Conclusion

Analysis Receiver's Strategy

Complexity can be reduced by considering another strategy

- Complexity can be reduced by considering another strategy
- Uncoupled strategy: demodulation and decoding are uncoupled and are treated independantly

 Application 00000000000000 Conclusion

Analysis Receiver's Strategy

Impact of the selected strategy on the performance ?

- Impact of the selected strategy on the performance ?
- BER performance for the two decoders

- Impact of the selected strategy on the performance ?
- BER performance for the two decoders

 The reduction of complexity of the uncoupled strategy is not worth the performance loss

- Impact of the selected strategy on the performance ?
- BER performance for the two decoders

Very low levels of SNR are reached

- What is the best strategy for the turbo receiver ?
- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
- Coplanar Turbo-FSK: what is the optimum combination of parameters ?

- <u>Turbo-FSK</u>: orthogonal alphabet
- 3 parameters λ , Q and M (N_L is set to 1)
- Asymptotic analysis is considered (i.e. for infinite size of *Q*)
- Parameter *Q* discarded: only 2 parameters

Coplanar Turbo-FSK

Analysis

pplication

Conclusion

Analysis Turbo-FSK: Optimization

Optimization

Objective: find couple of *M* and λ which minimizes the E_b/N_0

Evaluation of the performance of the receiver

^[10] S. ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes", 2001
Analysis Turbo-FSK: Optimization

Optimization

Objective: find couple of *M* and λ which minimizes the E_b/N_0

Evaluation of the performance of the receiver

- EXIT Chart [10]: semi-analytical tool for iterative processes
- The threshold of the receiver can be estimated using the EXIT chart

Threshold of the Receiver

Minimum E_b/N_0 required for the receiver to be able to correct erroneous codewords assuming **perfect independence** between the multiple transmitted versions

Adaptation of the EXIT chart to FSK signaling

^[10] S. ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes", 2001

Analysis Turbo-FSK: Optimization

• For various values of M and λ , thresholds are evaluated versus the spectral efficiency

- What is the best strategy for the turbo receiver ?
- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
- Coplanar Turbo-FSK: what is the optimum combination of parameters ?

Analysis

Application

Conclusion

Analysis Coplanar Turbo-FSK

Coplanar Turbo-FSK: extra parameters

Coplanar Turbo-FSK: extra parameters

- Only subsets of the alphabet are orthogonal
- Distance between symbols \neq constant
- ► The choice of association binary words ⇔ symbols from the alphabet (mapping) has consequences
- ▶ *M*! possible mappings

Coplanar Turbo-FSK: extra parameters

- Only subsets of the alphabet are orthogonal
- Distance between symbols \neq constant
- ► The choice of association binary words ⇔ symbols from the alphabet (mapping) has consequences
- ▶ *M*! possible mappings
- <u>Best choice over non-exhaustive search</u>: scattering orthogonal dimensions in the trellis

Coplanar Turbo-FSK: extra parameters

- Only subsets of the alphabet are orthogonal
- Distance between symbols \neq constant
- ► The choice of association binary words ⇔ symbols from the alphabet (mapping) has consequences
- ► *M*! possible mappings
- <u>Best choice over non-exhaustive search</u>: scattering orthogonal dimensions in the trellis
- Repartition of the coplanar points:
 - Coplanar points can take any value
 - It may disrupt the constant envelope property

Coplanar Turbo-FSK: extra parameters

- Only subsets of the alphabet are orthogonal
- Distance between symbols \neq constant
- ► The choice of association binary words ⇔ symbols from the alphabet (mapping) has consequences
- ► *M*! possible mappings
- <u>Best choice over non-exhaustive search</u>: scattering orthogonal dimensions in the trellis
- Repartition of the coplanar points:
 - Coplanar points can take any value
 - It may disrupt the constant envelope property
 - ► Best performance (with exceptions): roots of unity (+ constant envelope)

Analysis

pplication

Conclusion

Analysis Coplanar Turbo-FSK

• Optimization is cumbersome (very large number of parameter's combination)

Conclusior

- Optimization is cumbersome (very large number of parameter's combination)
- Evaluation of the asymptotic performance for a given value of M and λ
- The best parameter's couple of the orthogonal case (M = 512 and $\lambda = 3$) is selected
- Only N_L varies
- Computation of the thresholds using the EXIT chart

Coplanar Turbo-FSK

Analysis

Application

Conclusion

Analysis

Application

Conclusion

Analysis

Conclusion

- What is the best strategy for the turbo receiver ?
 - *a priori* information is reused at the demodulation level

- What is the best strategy for the turbo receiver ?
 - *a priori* information is reused at the demodulation level
- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
 - Optimization using the EXIT chart: M = 512 and $\lambda = 3$ at 0.28dB of capacity at $5.2 \cdot 10^{-3}$ bits/s/Hz

- What is the best strategy for the turbo receiver ?
 - *a priori* information is reused at the demodulation level
- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
 - Optimization using the EXIT chart: M = 512 and $\lambda = 3$ at 0.28dB of capacity at $5.2 \cdot 10^{-3}$ bits/s/Hz
- Coplanar Turbo-FSK: what is the optimum combination of parameters ?
 - Optimization tedious due to a large number of parameters
 - ► Allows for higher levels of spectral efficiency ...
 - ... at the expense of some performance loss for large values of N_L

Conclusion

- What is the best strategy for the turbo receiver ?
 - *a priori* information is reused at the demodulation level
- Turbo-FSK: what parameters give the lowest E_b/N_0 ?
 - Optimization using the EXIT chart: M = 512 and $\lambda = 3$ at 0.28dB of capacity at $5.2 \cdot 10^{-3}$ bits/s/Hz
- Coplanar Turbo-FSK: what is the optimum combination of parameters ?
 - Optimization tedious due to a large number of parameters
 - ► Allows for higher levels of spectral efficiency ...
 - ... at the expense of some performance loss for large values of N_L
- Only asymptotic performance was considered

Conclusion

- Performance of the Turbo-FSK in the LPWA context (short block sizes) ?
- Further integration to existing technologies ?

....

.....

Coplanar Turbo-FSK

nalysis 000000000000 Application

Conclusion 000

1. Low Sensitivity, Strategies and Existing Solutions

2. Coplanar Turbo-FSK

3. Analysis

4. Application to Low Power Wide Area Networks

- 4.1 Comparison to Existing Solutions
- 4.2 Integration in an OFDM framework
- 4.3 Conclusion

5. Conclusion

1.1

nalysis Dooooooooooo Application

Conclusion 000

Application to Low Power Wide Area Networks

- Performance of the Turbo-FSK in the LPWA context (short block sizes) ?
- Further integration to existing technologies ?

nalysis 000000000000 Application

Conclusion 000

Application to Low Power Wide Area Networks

Comparison to Existing Solutions

• Existing solutions presented previously:

PHY-layer	Modulation	FEC
Sigfox	DBPSK	?
LoRa based	Orthogonal	Hamming
802.15.4k, RPMA	DBPSK	CC [171 133] + repetition
NB-IoT based	BPSK/QPSK	TC [13 15] + repetition

- The Turbo-FSK is considered (orthogonal alphabet)
- AWGN and an information block size Q = 1000 are considered
- Averaged over random interleavers

nalysis 0000000000000 Application

Conclusion

Application to Low Power Wide Area Networks

Comparison to Existing Solutions

nalysis 0000000000000 Application

Conclusion

Application to Low Power Wide Area Networks

Comparison to Existing Solutions

Sensitivity, Strategies and Solutions

Coplanar Turbo-FSK 000000000000000 Analysis Doooooooooooo Application

Conclusion

Application to Low Power Wide Area Networks

Comparison to Existing Solutions

Application

Application to Low Power Wide Area Networks

Comparison to Existing Solutions

Comparison to Existing Solutions

- Turbo-FSK satisfies the LPWA requirements:
 - Long range, low data rate: can reach low levels of SNR, even for short packet sizes
 - Low consumption: low complexity transmitter (+ constant envelope)
- Offers a gain versus existing solutions
- Implementation on low cost platform has been demonstrated possible [11]

^[11] Estavoyer, Roth, Doré, and Berg, "Implementation and Analysis of a Turbo-FSK Transceiver for a New Low Power Wide Area Physical Layer", 2016

Coplanar Turbo-FSK 000000000000000 alysis

Application

Conclusion 000

Application to Low Power Wide Area Networks

- Performance of the Turbo-FSK in the LPWA context (short block sizes) ?
- Further integration to existing technologies ?

Application

Conclusion 000

Application to Low Power Wide Area Networks

- Previous comparison: standalone version of Turbo-FSK
- Coexistence with existing cellular networks
- Current generation of cellular network (LTE) + NB-IoT: Orthogonal Frequency Division Multiplexing (OFDM)

Application

Conclusion 000

Application to Low Power Wide Area Networks

- Previous comparison: standalone version of Turbo-FSK
- Coexistence with existing cellular networks
- Current generation of cellular network (LTE) + NB-IoT: Orthogonal Frequency Division Multiplexing (OFDM)
- Can the Coplanar Turbo-FSK scheme be integrated in such a framework ?
- Performance using this implementation ?

Application

Conclusion

Application to Low Power Wide Area Networks

- **OFDM**: frequency multiplexing
- Complex symbols are mapped on the N_A active carriers

Application

Conclusion

Application to Low Power Wide Area Networks

- <u>OFDM</u>: frequency multiplexing
- Complex symbols are mapped on the N_A active carriers
- Typical time-frequency allocation:

- \blacksquare FSK signaling: only one frequency of the N_A active carriers is excited
- Information is in the index of the frequency
- Coplanar FSK: the frequency carries a complex value

Integration in an OFDM framework

- FSK signaling: only one frequency of the N_A active carriers is excited
- Information is in the index of the frequency
- Coplanar FSK: the frequency carries a complex value
- Typical time-frequency allocation:

Integration of FSK signal is possible

Application

Conclusion

Application to Low Power Wide Area Networks

Integration in an OFDM framework: System compared

- Performance using this implementation ?
- Comparison of 3 systems:
 - ► TC-OFDM:

QPSK symbols + TC [13 15] + repetition

► TC-SC-FDMA:

QPSK with precoding + TC [13 15] + repetition

- Coplanar Turbo-FSK
- Performance in terms of:
 - Variation of the envelope
 - > Packet Error Rate (PER) under multipath Rayleigh fading channel
- OFDM framework:

 $\Delta f = 15$ kHz, 128-FFT, Cyclic prefix: 9 samples, $N_A = 16$ active carriers

Integration in an OFDM framework: Envelope variations

- Variations of the envelope: characterized by the Instantaneous-to-Average Power Ratio (IAPR)
- Considers all the samples that will be amplified, not just the maximum

Integration in an OFDM framework: Envelope variations

- Variations of the envelope: characterized by the Instantaneous-to-Average Power Ratio (IAPR)
- Considers all the samples that will be amplified, not just the maximum

Integration in an OFDM framework: Envelope variations

- Variations of the envelope: characterized by the Instantaneous-to-Average Power Ratio (IAPR)
- Considers all the samples that will be amplified, not just the maximum

Coplanar Turbo-FSK minimizes the constraint on the power amplifier

Application

Conclusion

Application to Low Power Wide Area Networks

Integration in an OFDM framework: Scenarios

- Performance under multipath Rayleigh slow fading
- Two considered scenarios:

PHY-layer	TC-OFDM/ TC-SC-FDMA	Turbo-FSK	Γ.	TC-OFDM/ TC-SC-FDMA	Coplanar Turbo-FSK	
N_L	-	1		-	32	
λ	17.76	5		3.13	3	
R	8.24kbps			46.68kbps		

Application

Conclusion 000

Application to Low Power Wide Area Networks

Integration in an OFDM framework: Scenarios

- Performance under multipath Rayleigh slow fading
- Two considered scenarios:

PHY-layer	TC-OFDM/ TC-SC-FDMA	Turbo-FSK	TC-OFDM/ TC-SC-FDMA	Coplanar Turbo-FSK		
N_L	-	1	· ·	32		
λ	17.76	5	3.13	3		
R	8.24k	bps	46	46.68kbps		

 ETU profile (frequency selectivity): Delay spread τ = 5μs

Application

Conclusion 000

Application to Low Power Wide Area Networks

Integration in an OFDM framework: Performance

Performance for both scenarios (using max log approximation):

Analysis Doooooooooooooo Application

Conclusion 000

Application to Low Power Wide Area Networks

Integration in an OFDM framework: Performance

• Performance for both scenarios (using max log approximation):

Low rate: outperforms TC-SC-FDMA and comparable to TC-OFDM

Application

Conclusion 000

Application to Low Power Wide Area Networks

Integration in an OFDM framework: Performance

• Performance for both scenarios (using max log approximation):

- Low rate: outperforms TC-SC-FDMA and comparable to TC-OFDM
- High rate: performance loss due to the use of a large size of N_L

Application

Conclusion 000

Application to Low Power Wide Area Networks

Integration in an OFDM framework: Conclusion

- Can the Coplanar Turbo-FSK scheme be integrated in such a framework ?
 - Integration in OFDM framework is possible and straightforward due to FSK signaling
- Performance using this implementation ?
 - ► Coplanar Turbo-FSK has performance close to TC-OFDM...
 -while having a constant envelope
 - Performance loss increases for higher values of N_L

Coplanar Turbo-FSK 000000000000000 nalysis Dooooooooooooo Application

Conclusion 000

Application to Low Power Wide Area Networks

- Turbo-FSK offers a gain in performance compared to existing solutions
- Coplanar Turbo-FSK can coexist with current standards and be used as an additionnal mode for LPWA transmission
 - ▶ Offers a trade-off between performance and constant envelope

Sensitivity, Strategies and Solut
000000000000000000000000000000000000000
·
1 11 111 11
·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
***** ***
· · · · · · ·
· · · · · · · · · · · · · · · · · · ·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
,
1 111 1 1 1 1 1 1
· · · · · · · · · · · · · · · · · · ·
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1

· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Coplanar Turbo-FSK

nalysis

Application

Conclusion

1. Low Sensitivity, Strategies and Existing Solutions

2. Coplanar Turbo-FSK

3. Analysis

4. Application to Low Power Wide Area Networks

5. Conclusion

Yoann Roth, Phd Defence

- The problem of LPWA transmission was clearly defined, the various strategies presented
 - ► The strategy following the reduction of the SNR was considered

- The problem of LPWA transmission was clearly defined, the various strategies presented
 - ► The strategy following the reduction of the SNR was considered
- A solution based on the combination of orthogonal modulation, convolutional code and an iterative receiver was proposed
 - Coplanar Turbo-FSK fits the LPWA requirements

- The problem of LPWA transmission was clearly defined, the various strategies presented
 - ► The strategy following the reduction of the SNR was considered
- A solution based on the combination of orthogonal modulation, convolutional code and an iterative receiver was proposed
 - Coplanar Turbo-FSK fits the LPWA requirements
- Asymptotic performance of the scheme was assessed using the EXIT chart
 - ► The best asymptotic performance is at 0.28dB of the capacity
 - Higher levels of spectral efficiency are obtained at the expense of a loss in E_b/N_0

- The problem of LPWA transmission was clearly defined, the various strategies presented
 - ► The strategy following the reduction of the SNR was considered
- A solution based on the combination of orthogonal modulation, convolutional code and an iterative receiver was proposed
 - Coplanar Turbo-FSK fits the LPWA requirements
- Asymptotic performance of the scheme was assessed using the EXIT chart
 - ► The best asymptotic performance is at 0.28dB of the capacity
 - Higher levels of spectral efficiency are obtained at the expense of a loss in E_b/N_0
- Coplanar Turbo-FSK is a low power constant envelope alternative to very powerful solutions
 - The scheme offers a gain versus existing solutions
 - It can coexist with current systems

- The use of another orthogonal modulation (Zadoff-Chu CAZAC sequences) has been considered for Coplanar Turbo-FSK, and showed promising performance
 - Extension of the scheme to other orthogonal modulations and/or other coplanar distribution could be considered

^[12] Polyanskiy, Poor, and Verdu, "Channel Coding Rate in the Finite Blocklength Regime", 2010

Perspectives

- The use of another orthogonal modulation (Zadoff-Chu CAZAC sequences) has been considered for Coplanar Turbo-FSK, and showed promising performance
 - Extension of the scheme to other orthogonal modulations and/or other coplanar distribution could be considered
- Complexity of the receiver was evaluated in the OFDM framework
 - A more intensive study and optimization of the receiver should be considered
 - ► Extension to weighted max log algorithm, interleaver design, ...

^[12] Polyanskiy, Poor, and Verdu, "Channel Coding Rate in the Finite Blocklength Regime", 2010

Perspectives

- The use of another orthogonal modulation (Zadoff-Chu CAZAC sequences) has been considered for Coplanar Turbo-FSK, and showed promising performance
 - Extension of the scheme to other orthogonal modulations and/or other coplanar distribution could be considered
- Complexity of the receiver was evaluated in the OFDM framework
 - A more intensive study and optimization of the receiver should be considered
 - ► Extension to weighted max log algorithm, interleaver design, ...
- Signal detection: problematic for low levels of SNR

^[12] Polyanskiy, Poor, and Verdu, "Channel Coding Rate in the Finite Blocklength Regime", 2010

Perspectives

- The use of another orthogonal modulation (Zadoff-Chu CAZAC sequences) has been considered for Coplanar Turbo-FSK, and showed promising performance
 - Extension of the scheme to other orthogonal modulations and/or other coplanar distribution could be considered
- Complexity of the receiver was evaluated in the OFDM framework
 - ► A more intensive study and optimization of the receiver should be considered
 - ► Extension to weighted max log algorithm, interleaver design, ...
- Signal detection: problematic for low levels of SNR
- Consideration of non-coherent detection: can ease the frequency synchronization of FSK

^[12] Polyanskiy, Poor, and Verdu, "Channel Coding Rate in the Finite Blocklength Regime", 2010

Perspectives

- The use of another orthogonal modulation (Zadoff-Chu CAZAC sequences) has been considered for Coplanar Turbo-FSK, and showed promising performance
 - Extension of the scheme to other orthogonal modulations and/or other coplanar distribution could be considered
- Complexity of the receiver was evaluated in the OFDM framework
 - A more intensive study and optimization of the receiver should be considered
 - ► Extension to weighted max log algorithm, interleaver design, ...
- Signal detection: problematic for low levels of SNR
- Consideration of non-coherent detection: can ease the frequency synchronization of FSK
- Tighter bounds should be considered for short block size [12]

Yoann Roth, Phd Defence

^[12] Polyanskiy, Poor, and Verdu, "Channel Coding Rate in the Finite Blocklength Regime", 2010

Published Work

Patents (1)

- "Transmission/Reception System Based on the Use of a Joint Orthogonal and Linear Modulation", 2017
- International Journals (3)
 - "Turbo-FSK, a physical layer for low-power wide-area networks: Analysis and optimization" Elsevier Comptes Rendus Physique, 2017
 - "Coplanar Turbo-FSK: A Flexible Physical Layer for IoT" To be submitted, 2017
 - "Contenders for Low Power Wide Area Networks" To be submitted, 2017
- Conferences (6)
 - "Turbo-FSK: A New Uplink Scheme for Low Power Wide Area Networks"
 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 2015
 - "Turbo-FSK : une nouvelle technique de communication montante pour les réseaux longue portée basse consommation"

Colloque Gretsi, Lyon, France, 2015

 "Nouvelle technique de communication pour les réseaux longue portée basse consommation : optimisation et comparaison"

Journées scientifiques de l'URSI 2016, Rennes, France, 2016

"A Comparison of Physical Layers for Low Power Wide Area Networks" 11th EAI International Conference on Cognitive Radio Oriented Wireless Networks (Crowncom), Grenoble, France, 2016

"EXIT Chart Optimization of Turbo-FSK: Application to Low Power Wide Area Networks" 9th International Symposium on Turbo Codes & Iterative Information Processing 2016 (ISTC'16), Brest, France, Sept. 2016.

"Implementation and Analysis of a Turbo-FSK Transceiver for a New Low Power Wide Area Physical Layer"

2016 International Symposium on Wireless Communication Systems (ISWCS): Special sessions (ISWCS'2016 - Special sessions), Poznan, Poland, 2016

. -....... 1.1 ···· ··· · · · ***** *** $\sim 10^{-10}$ 1.1 1,0000 A POINT OF A REAL

APPENDICES

The EXIT Chart	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
	6. T 6.1 6.2 6.3	he EXIT Ch Computation Interpretation Threshold	art			Contents
	7. S	hort Block S	Sizes			
	8. C	Coplanar FSF	<			
	9.	mplementat	ion (Turbo-FSK)			
	10.	Turbo-ZC				
	11.	Turbo-Hada	ımard			
	12.	Receiver's S	trategy			

The EXIT Chart ●○○	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
					The EXIT Char	
						Computation

The EXIT Chart ●○○	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					The EX	XIT Chart
						Computation

• Evaluates the response of the receiver to a specific level of *a priori* information

The EXIT Chart ●○○	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					The EX	XIT Chart
						Computation

information is evaluated

- Evaluates the response of the receiver to a specific level of *a priori* information
- For a given value of noise power (i.e. a given E_b/N_0)

The EXIT Chart ○●○	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					The EX	XIT Chart
						Interpretation

Intersection with the diagonal indicates if the receiver converges

The EXIT Chart ○●○	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					The EX	XIT Chart
						1

Interpretation

Intersection with the diagonal indicates if the receiver converges

The EXIT Chart ○○●	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					The EX	XIT Chart
						Threshold

Threshold of the receiver can be estimated

The EXIT Chart ○○●	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					The EX	KIT Chart
						Threshold

Threshold of the receiver can be estimated, and accurately predicts the performance

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
						Contents
	6. 7	The EXIT Ch	art			
	7. \$ 7.1 7.2	Short Block S Turbo-FSK: Perf Coplanar Turbo	Sizes formance with Short Block S -FSK: Performance with Sho	Sizes ort Block Sizes		
	8. (Coplanar FSI	K			
	9.	mplementat	ion (Turbo-FSK)			
	. 10.	Turbo-ZC				
	11.	Turbo-Hada	ımard			
	12.	Receiver's S	trategy			

The EXIT Chart	Short Block Sizes	Coplanar FSK	Implementation (Turbo-FSK)	Turbo-ZC	Turbo-Hadamard	Receiver's Strategy
000	●○	O	0000	000	000	00000

Short Block Sizes

Turbo-FSK: Performance with Short Block Sizes

The EXIT Chart	Short Block Sizes	Coplanar FSK	Implementation (Turbo-FSK)	Turbo-ZC	Turbo-Hadamard	Receiver's Strategy
000	○●	O	0000	000	000	00000

Short Block Sizes

Coplanar Turbo-FSK: Performance with Short Block Sizes

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strateg	
						Contents	3
	6. 7	he EXIT Ch	art				
	7. 5	hort Block S	Sizes				
	8. (8.1	Coplanar FSI BER Performano	K ce				
	9.	mplementat	ion (Turbo-FSK)				
	10.	Turbo-ZC					
	11.	Turbo-Hada	imard				
	12.	Receiver's S	trategy				
Yoann Roth, Phd Defe	nce				July 1	0th, 2017 Back	up

The EXIT Chart 000	Short Block Sizes	Coplanar FSK ●	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
					Сор	lanar FSK
					BF	R Performance

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK)	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy 00000
						Contents
	6.	The EXIT Ch	art			
	7.	Short Block S	Sizes			
	8.	Coplanar FSI	K			
	9. 9.1 9.2 9.3	Implementat Packet-Error Ra TX Power consu RX Power consu	ion (Turbo-FSK) te measurements mption measurements mption measurements			
	10.	. Turbo-ZC				
	11.	. Turbo-Hada	ımard			
	12.	. Receiver's S	trategy			

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) ●○○○	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
			In	pleme	ntation (Tu	urbo-FSK)

Packet-Error Rate measurements

Gain predicted by simulation is observed under controlled environnement

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) ○●○○	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
			In	npleme	ntation (Tu	urbo-FSK)
			тх р	ower consu	motion measure	ments: MSP/30

- Using the Turbo-4FSK encoder: increase complexity
 - ▶ What is the impact on the consumption of the MSP430 (µ-controller)?

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) ००००	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
			In	pleme	ntation (Tu	ırbo-FSK)

TX Power consumption measurements: TX power reduction

- PER performance: \sim 5dB of performance gain
 - > TX transmit power can be reduced by 5dBm for the same PER performance
 - ▶ What is the impact on the consumption of the CC1200 (RF chip)?

RX Power consumption measurements: TX power reduction

Power consumption at RX, MSP430

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC ○○○	Turbo-Hadamard 000	Receiver's Strategy 00000
						Contents
	6. 1	The EXIT Ch	art			
	7. 9	Short Block S	Sizes			
	8. (Coplanar FSF	<			
	9.	mplementat	ion (Turbo-FSK)			
	10. 10.1 10.2 10.3	Turbo-ZC Zadoff-Chu Seq Performance un PAPR	uences der Static Rayleigh Slow Fa	ding Channel		
	11.	Turbo-Hada	ımard			
	12.	Receiver's S	trategy			

Receiver's Strategy	Turbo-Hadamard 000	Turbo-ZC ●○○	Implementation (Turbo-FSK) 0000	Coplanar FSK O	Short Block Sizes	The EXIT Chart 000
Turbo-ZC						
Chu Sequences	Zadoff-					

- Zadoff-Chu (ZC) Sequences: can form an orthogonal alphabet (Constant Amplitude Zero Autocorrelation sequences)
- Information is in the delay of the sequence
- Coplanar ZC: sequence is multiplied by a complex value
- Typical time-frequency allocation:

- Construction of the ZC sequence in the frequency domain
- Integration in the OFDM framework is possible

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC ○●○	Turbo-Hadamard 000	Receiver's Strategy	
					-		

Turbo-ZC

Performance under Static Rayleigh Slow Fading Channel

The EXIT Chart	Short Block Sizes	Coplanar FSK	Implementation (Turbo-FSK)	Turbo-ZC	Turbo-Hadamard	Receiver's Strategy
000		O	0000	○○●	000	00000
						Turbo-ZC

PAPR

000	OO	O O	0000	000	000	00000
						Contents
	6. 1	The EXIT Ch	art			
	7. 5	Short Block S	Sizes			
	8. (Coplanar FSI	K			
	9.	mplementat	ion (Turbo-FSK)			
	10.	Turbo-ZC				
	11. 11.1 11.2	Turbo-Hada BER Performane Thresholds	amard ^{ce}			
	12.	Receiver's S	trategy			

T Chart	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard ●○○	Receiver's Strategy
					Turbo-H	ladamard
					BE	R Performance

The EXIT Chart	Short Block Sizes	Coplanar FSK	Implementation (Turbo-FSK)	Turbo-ZC	Turbo-Hadamard	Receiver's Strategy
000		O	0000	000	○●○	00000
					Turbo-F	ladamard

Thresholds

- Turbo-Hadamard is systematic (lower E_b/N_0 + higher spectral efficiency)
- Bi-orthogonal alphabet: even higher spectral efficiency

The EXIT Chart	Short Block Sizes	Coplanar FSK	Implementation (Turbo-FSK)	Turbo-ZC	Turbo-Hadamard	Receiver's Strategy
000		O	0000	000	○O●	00000
					Turbo-⊢	ladamard

Thresholds

- Turbo-Hadamard is based on binary codes, integration is OFDM framework leads to high IAPR
- Applicable for single carrier modulation (BPSK + Turbo-Hadamard), but higher η

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK)	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
						Contents
	6. T	he EXIT Ch	art			
	7. S	hort Block S	Sizes			
	8. C	Coplanar FS	K			
	9. Ir	nplementat	ion (Turbo-FSK)			
	10.	Turbo-ZC				
	11.	Turbo-Hada	amard			
	12. 12.1 12.2 12.3	Receiver's S Strategies Trellis Metric Performance	Strategy			

• Uncoupled strategy: the detector computes the LLR (probabilistic demodulation)

$$L(b) = \log \frac{p(r \mid b = +1)}{p(r \mid b = -1)} = \log \sum_{i \in \mathcal{B}_{1}^{n}} p(r \mid s^{i}) - \log \sum_{i \in \mathcal{B}_{-1}^{n}} p(r \mid s^{i}).$$
Likelihood of a codeword from the alphabet
Computes likelihood of the
M codewords and deduces
LLR of the encoded bits
Observation
from Channel
Detector
Coplanar FSK
Decoder

Coupled strategy: the detector feeds codeword likelihoods

 $p\left(\mathbf{r} \mid \mathbf{s}^{i}\right)$

BCJR: associates the metric (LLR or likelihoods) to the *M* branches of the trellis

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy
					Receiver's	s Strategy
						Performance

EXIT chart: threshold following the uncoupled strategy

The EXIT Chart 000	Short Block Sizes	Coplanar FSK O	Implementation (Turbo-FSK) 0000	Turbo-ZC 000	Turbo-Hadamard 000	Receiver's Strategy ○○○○●
					Receiver's Strategy	
						Performance

EXIT chart: threshold following the coupled strategy of Turbo-FSK

