K. Bradnam and J. Fass, Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species, GigaScience, vol.2, issue.1, p.10, 2013.
DOI : 10.1186/2047-217X-2-10

URL : https://hal.archives-ouvertes.fr/hal-00868822

N. Nagarajan and M. Pop, Parametric Complexity of Sequence Assembly: Theory and Applications to Next Generation Sequencing, Journal of Computational Biology, vol.16, issue.7, pp.897-908, 2009.
DOI : 10.1089/cmb.2009.0005

M. Chaisson and P. Pevzner, Short read fragment assembly of bacterial genomes, Genome Research, vol.18, issue.2, pp.324-354, 2008.
DOI : 10.1101/gr.7088808

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203630

E. Myers and G. Sutton, A Whole-Genome Assembly of Drosophila, Science, vol.287, issue.5461, pp.2196-204, 2000.
DOI : 10.1126/science.287.5461.2196

E. Myers, The fragment assembly string graph, Bioinformatics, vol.21, issue.Suppl 2, pp.79-85, 2005.
DOI : 10.1093/bioinformatics/bti1114

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-60, 2009.
DOI : 10.1093/bioinformatics/btp324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234

B. Langmead and S. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-366, 1923.
DOI : 10.1093/bioinformatics/btp352

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322381

H. Lee and M. Schatz, Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score, Bioinformatics, vol.28, issue.16, pp.2097-105, 2012.
DOI : 10.1093/bioinformatics/bts330

V. Deshpande, E. Fung, S. Pham, and V. Bafna, Cerulean: A Hybrid Assembly Using High Throughput Short and Long Reads, In: Lecture Notes in Computer Science, vol.8126, pp.978-981
DOI : 10.1007/978-3-642-40453-5_27

URL : http://arxiv.org/abs/1307.7933

F. Ribeiro, D. Przybylski, S. Yin, T. Sharpe, S. Gnerre et al., Finished bacterial genomes from shotgun sequence data, Genome Research, vol.22, issue.11, pp.2270-2277, 2012.
DOI : 10.1101/gr.141515.112

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483556

P. Pevzner, H. Tang, and M. Waterman, An Eulerian path approach to DNA fragment assembly, Proceedings of the National Academy of Sciences, vol.291, issue.5507, pp.9748-53, 2001.
DOI : 10.1126/science.1058040

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55524

A. Bankevich, S. Nurk, D. Antipov, A. Gurevich, M. Dvorkin et al., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, Journal of Computational Biology, vol.19, issue.5, pp.455-77, 2012.
DOI : 10.1089/cmb.2012.0021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519

L. Salmela and E. Rivals, LoRDEC: accurate and efficient long read error correction, Bioinformatics, vol.30, issue.24, pp.3506-3520, 2014.
DOI : 10.1093/bioinformatics/btu538

URL : https://hal.archives-ouvertes.fr/lirmm-01100451

X. Yang, S. Chockalingam, and S. Aluru, A survey of error-correction methods for next-generation sequencing, Briefings in Bioinformatics, vol.14, issue.1, pp.56-66, 2013.
DOI : 10.1093/bib/bbs015

G. Benoit, D. Lavenier, C. Lemaitre, and G. Rizk, Bloocoo, a memory efficient read corrector, European Conference on Computational Biology
URL : https://hal.archives-ouvertes.fr/hal-01092960

M. Wang, Y. Ye, and H. Tang, Graph Approach to the Quantification of Closely-Related Genomes in a Microbial Community, Journal of Computational Biology, vol.19, issue.6, pp.814-839, 2012.
DOI : 10.1089/cmb.2012.0058

L. Huang, V. Popic, and S. Batzoglou, Short read alignment with populations of genomes, Bioinformatics, vol.29, issue.13, pp.361-70, 2013.
DOI : 10.1093/bioinformatics/btt215

A. Dilthey, C. Cox, Z. Iqbal, M. Nelson, and G. Mcvean, Improved genome inference in the MHC using a population reference graph, Nat Genet, vol.47, issue.6, pp.682-690, 2015.
DOI : 10.1101/006973

G. Holley and P. Peterlongo, Blastgraph: Intensive approximate pattern matching in sequence graphs and de-bruijn graphs

R. Karp and . Problems, In: 50 Years of Integer Programming, pp.219-260, 1958.

R. Chikhi, A. Limasset, S. Jackman, J. Simpson, and P. Medvedev, On the representation of de bruijn graphs, In: Research in Computational Molecular Biology, pp.978-981
URL : https://hal.archives-ouvertes.fr/hal-01524525

D. Zerbino and E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Research, vol.18, issue.5, pp.821-830, 2008.
DOI : 10.1101/gr.074492.107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2336801

R. Chikhi and G. Rizk, Space-efficient and exact de Bruijn graph representation based on a Bloom filter, Algorithms for Molecular Biology, vol.8, issue.1, pp.22-32, 2013.
DOI : 10.1101/gr.131383.111

URL : https://hal.archives-ouvertes.fr/hal-00753930

C. Vroland, M. Salson, and H. Touzet, Lossless Seeds for Searching Short Patterns with High Error Rates, In: Combinatorial Algorithms, pp.364-75, 2014.
DOI : 10.1007/978-3-319-19315-1_32

URL : https://hal.archives-ouvertes.fr/hal-01079840

D. James, . Watson, H. Francis, and . Crick, A structure for deoxyribose nucleic acid, Bibliography Nature, issue.1, p.171, 2004.

S. Eric, . Lander, M. Lauren, B. Linton, C. Birren et al., Initial sequencing and analysis of the human genome, Nature, issue.6822, pp.409860-921, 2001.

C. Venter, D. Mark, E. W. Adams, . Myers, W. Peter et al., al. The sequence of the human genome, science, issue.5507, pp.2911304-1351, 2001.

F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences, pp.5463-5467, 1977.
DOI : 10.1073/pnas.74.12.5463

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/pdf

R. David, S. Bentley, . Balasubramanian, P. Harold, . Swerdlow et al., Accurate whole human genome sequencing using reversible terminator chemistry, nature, issue.7218, pp.45653-59, 2008.

J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle et al., Real-Time DNA Sequencing from Single Polymerase Molecules, Science, vol.26, issue.14, pp.323133-138, 2009.
DOI : 10.1038/sj.emboj.7601780

H. Andrew, . Laszlo, M. Ian, . Derrington, C. Brian et al., Decoding long nanopore sequencing reads of natural dna, Nature biotechnology, issue.8, pp.32829-833, 2014.

D. Aird, G. Michael, W. Ross, M. Chen, T. Danielsson et al., Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries, Genome Biology, vol.12, issue.2, p.18, 2011.
DOI : 10.1093/bioinformatics/btp324

URL : http://doi.org/10.1186/gb-2011-12-2-r18

C. Juliane, C. Dohm, T. Lottaz, H. Borodina, and . Himmelbauer, Substantial biases in ultra-short read data sets from high-throughput dna sequencing, Nucleic acids research, vol.36, issue.16, pp.105-105, 2008.

P. Encode, The encode (encyclopedia of dna elements) project, Science, vol.306, issue.5696, pp.636-640, 2004.

S. Roy, J. Ernst, V. Peter, P. Kharchenko, N. Kheradpour et al., Identification of functional elements and regulatory circuits by drosophila modencode, Science, issue.6012, pp.3301787-1797, 2010.

J. Harrow, A. Frankish, M. Jose, E. Gonzalez, M. Tapanari et al., GENCODE: The reference human genome annotation for The ENCODE Project, Genome Research, vol.22, issue.9, pp.1760-1774, 2012.
DOI : 10.1101/gr.135350.111

J. Todd, . Treangen, L. Steven, and . Salzberg, Repetitive dna and next-generation sequencing: computational challenges and solutions, Nature Reviews Genetics, vol.13, issue.1, pp.36-46, 2012.

J. Kim, A. Akshay, . Bhinge, C. Xochitl, . Morgan et al., Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment, Nature Methods, vol.270, issue.1, pp.47-53, 2005.
DOI : 10.1186/1471-2105-4-32

S. David, A. Johnson, . Mortazavi, M. Richard, B. Myers et al., Genomewide mapping of in vivo protein-dna interactions, Science, issue.5830, pp.3161497-1502, 2007.

K. Räihä and E. Ukkonen, The shortest common supersequence problem over binary alphabet is NP-complete, Theoretical Computer Science, vol.16, issue.2, pp.187-198, 1981.
DOI : 10.1016/0304-3975(81)90075-X

G. Granger, O. Sutton, . White, D. Mark, . Adams et al., Tigr assembler: A new tool for assembling large shotgun sequencing projects, Genome Science and Technology, vol.1, issue.1, pp.9-19, 1995.

X. Huang and A. Madan, CAP3: A DNA Sequence Assembly Program, Genome Research, vol.9, issue.9, pp.868-877, 1999.
DOI : 10.1101/gr.9.9.868

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC310812/pdf

L. René, . Warren, G. Granger, . Sutton, J. Steven et al., Assembling millions of short dna sequences using ssake, Bioinformatics, vol.23, issue.4, pp.500-501, 2007.

R. William, J. A. Jeck, . Reinhardt, A. David, . Baltrus et al., Extending assembly of short dna sequences to handle error, Bioinformatics, vol.23, issue.21, pp.2942-2944, 2007.

W. Eugene, . Myers, G. Granger, . Sutton, L. Art et al., al. A whole-genome assembly of drosophila, Science, issue.5461, pp.2872196-2204, 2000.

F. Stephen, W. Altschul, W. Gish, . Miller, W. Eugene et al., Basic local alignment search tool, Journal of molecular biology, vol.215, issue.3, pp.403-410, 1990.

R. Staden, A mew computer method for the storage and manipulation of DNA gel reading data, Nucleic Acids Research, vol.8, issue.16, pp.3673-3694, 1980.
DOI : 10.1093/nar/8.16.3673

A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics, vol.29, issue.8, pp.1072-1075, 2013.
DOI : 10.1093/bioinformatics/btt086

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624806

W. Eugene and . Myers, The fragment assembly string graph, Bioinformatics, vol.21, issue.2, pp.79-85, 2005.

T. Jared, R. Simpson, and . Durbin, Efficient construction of an assembly string graph using the fm-index, Bioinformatics, vol.26, issue.12, pp.367-373, 2010.

T. Jared, R. Simpson, and . Durbin, Efficient de novo assembly of large genomes using compressed data structures, Genome research, vol.22, issue.3, pp.549-556, 2012.

N. Govert-de-bruijn, A combinatorial problem, 1946.

D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, Graph-theoretic analysis of structured peer-to-peer systems, Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications , SIGCOMM '03, pp.395-406, 2003.
DOI : 10.1145/863955.863999

M. Frans, K. David, and R. Karger, Koorde: A simple degree-optimal distributed hash table, International Workshop on Peer-to-Peer Systems, pp.98-107, 2003.

A. Pavel, H. Pevzner, . Tang, S. Michael, and . Waterman, An eulerian path approach to dna fragment assembly, Proceedings of the National Academy of Sciences, pp.9748-9753, 2001.

P. Medvedev, K. Georgiou, G. Myers, and M. Brudno, Computability of Models for Sequence Assembly, International Workshop on Algorithms in Bioinformatics, pp.289-301, 2007.
DOI : 10.1007/978-3-540-74126-8_27

R. Daniel, E. Zerbino, and . Birney, Velvet: algorithms for de novo short read assembly using de bruijn graphs, Genome research, vol.18, issue.5, pp.821-829, 2008.

R. Chikhi and P. Medvedev, Informed and automated k-mer size selection for genome assembly, Bioinformatics, vol.30, issue.1, p.310, 2013.
DOI : 10.1093/bioinformatics/btt310

URL : https://hal.archives-ouvertes.fr/hal-01477511

R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, GigaScience, vol.1, issue.1, p.18, 2012.
DOI : 10.1186/2047-217X-1-18

URL : http://doi.org/10.1186/2047-217x-1-18

A. Bankevich, S. Nurk, D. Antipov, A. Alexey, M. Gurevich et al., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, Journal of Computational Biology, vol.19, issue.5, pp.455-477, 2012.
DOI : 10.1089/cmb.2012.0021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519

J. Mark, . Chaisson, A. Pavel, and . Pevzner, Short read fragment assembly of bacterial genomes, Genome research, vol.18, issue.2, pp.324-330, 2008.

J. Butler, I. Maccallum, M. Kleber, A. Ilya, . Shlyakhter et al., ALLPATHS: De novo assembly of whole-genome shotgun microreads, Genome Research, vol.18, issue.5, pp.810-820, 2008.
DOI : 10.1101/gr.7337908

Y. Peng, C. Henry, S. Leung, . Yiu, Y. Francis et al., IDBA ??? A Practical Iterative de Bruijn Graph De Novo Assembler, Annual International Conference on Research in Computational Molecular Biology, pp.426-440, 2010.
DOI : 10.1007/978-3-642-12683-3_28

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.195

T. Jared, K. Simpson, . Wong, D. Shaun, J. E. Jackman et al., Abyss: a parallel assembler for short read sequence data, Genome research, vol.19, issue.6, pp.1117-1123, 2009.

R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang et al., De novo assembly of human genomes with massively parallel short read sequencing, Genome Research, vol.20, issue.2, pp.265-272, 2010.
DOI : 10.1101/gr.097261.109

S. Gnerre, I. Maccallum, D. Przybylski, F. J. Ribeiro, N. Joshua et al., High-quality draft assemblies of mammalian genomes from massively parallel sequence data, Proceedings of the National Academy of Sciences, pp.1513-1518, 2011.
DOI : 10.1038/462021a

T. Conway, J. Wazny, A. Bromage, J. Zobel, and B. Beresford-smith, Gossamer -- a resource-efficient de novo assembler, Bioinformatics, vol.28, issue.14, pp.1937-1938, 2012.
DOI : 10.1093/bioinformatics/bts297

R. Chikhi and G. Rizk, Space-efficient and exact de bruijn graph representation based on a bloom filter, International Workshop on Algorithms in Bioinformatics, pp.236-248, 2012.
DOI : 10.1186/1748-7188-8-22

URL : https://hal.archives-ouvertes.fr/hal-00753930

N. Nagarajan and M. Pop, Parametric Complexity of Sequence Assembly: Theory and Applications to Next Generation Sequencing, Journal of Computational Biology, vol.16, issue.7, pp.897-908, 2009.
DOI : 10.1089/cmb.2009.0005

M. Chaisson, P. Pevzner, and H. Tang, Fragment assembly with short reads, Bioinformatics, vol.20, issue.13, pp.2067-2074, 2004.
DOI : 10.1093/bioinformatics/bth205

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.2786

H. Daniel, K. Huson, E. W. Reinert, and . Myers, The greedy path-merging algorithm for contig scaffolding, Journal of the ACM (JACM), vol.49, issue.5, pp.603-615, 2002.

M. Boetzer, V. Christiaan, . Henkel, J. Hans, D. Jansen et al., Scaffolding pre-assembled contigs using SSPACE, Bioinformatics, vol.27, issue.4, pp.578-579, 2011.
DOI : 10.1093/bioinformatics/btq683

M. Boetzer and W. Pirovano, Toward almost closed genomes with GapFiller, Genome Biology, vol.13, issue.6, 2012.
DOI : 10.1186/gb-2009-10-10-r103

URL : http://doi.org/10.1186/gb-2012-13-6-r56

S. Gao, D. Bertrand, K. Burton, N. Chia, and . Nagarajan, Operalg: Efficient and exact scaffolding of large, repeat-rich eukaryotic genomes with performance guarantees, Genome biology, vol.17, issue.11, 2016.

J. Flot, H. Marie-nelly, and R. Koszul, Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures, FEBS Letters, vol.111, issue.20PartA, pp.5892966-2974, 2015.
DOI : 10.1073/pnas.1416014111

URL : https://hal.archives-ouvertes.fr/pasteur-01419996

R. Kajitani, K. Toshimoto, H. Noguchi, A. Toyoda, Y. Ogura et al., Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads, Genome Research, vol.24, issue.8, pp.241384-1395, 2014.
DOI : 10.1101/gr.170720.113

Y. Peng, C. Henry, S. Leung, . Yiu, Y. Francis et al., Meta-IDBA: a de Novo assembler for metagenomic data, Bioinformatics, vol.27, issue.13, pp.94-101, 2011.
DOI : 10.1093/bioinformatics/btr216

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117360

T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara, MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads, Nucleic Acids Research, vol.40, issue.20, pp.155-155, 2012.
DOI : 10.1093/nar/gks678

J. Pellicer, F. Michael, . Fay, J. Ilia, and . Leitch, The largest eukaryotic genome of them all?, Botanical Journal of the Linnean Society, vol.164, issue.1, pp.10-15, 2010.
DOI : 10.1111/j.1095-8339.2010.01072.x

F. Temple, . Smith, S. Michael, and . Waterman, Identification of common molecular subsequences, Journal of molecular biology, vol.147, issue.1, pp.195-197, 1981.

S. Batzoglou, B. David, K. Jaffe, J. Stanley, S. Butler et al., ARACHNE: A Whole-Genome Shotgun Assembler, Genome Research, vol.12, issue.1, pp.177-189, 2002.
DOI : 10.1101/gr.208902

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155255

P. Ferragina and G. Manzini, Opportunistic data structures with applications, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.390-398, 2000.
DOI : 10.1109/SFCS.2000.892127

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.7615

B. Langmead, C. Trapnell, M. Pop, L. Steven, and . Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, 2009.
DOI : 10.1186/gb-2009-10-3-r25

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234

I. Birol, A. Raymond, D. Shaun, S. Jackman, R. Pleasance et al., Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data, Bioinformatics, vol.29, issue.12, p.178, 2013.
DOI : 10.1093/bioinformatics/btt178

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673215

D. Shaun, . Jackman, P. Benjamin, H. Vandervalk, J. Mohamadi et al., Abyss 2.0: Resource-efficient assembly of large genomes using a bloom filter, Genome Research, p.214346, 2017.

C. Thomas, . Conway, J. Andrew, and . Bromage, Succinct data structures for assembling large genomes, Bioinformatics, vol.27, issue.4, pp.479-486, 2011.

D. Okanohara and K. Sadakane, Practical Entropy-Compressed Rank/Select Dictionary, Proceedings of the Meeting on Algorithm Engineering & Expermiments, pp.60-70, 2007.
DOI : 10.1137/1.9781611972870.6

URL : http://arxiv.org/abs/cs/0610001

G. Marçais and C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers, Bioinformatics, vol.27, issue.6, pp.764-770, 2011.
DOI : 10.1093/bioinformatics/btr011

C. Purcell and T. Harris, Non-blocking Hashtables with Open Addressing, International Symposium on Distributed Computing, pp.108-121, 2005.
DOI : 10.1007/11561927_10

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.2672

G. Rizk, D. Lavenier, and R. Chikhi, DSK: k-mer counting with very low memory usage, Bioinformatics, vol.29, issue.5, p.20, 2013.
DOI : 10.1093/bioinformatics/btt020

URL : https://hal.archives-ouvertes.fr/hal-00778473

S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-grabysz, KMC 2: fast and resource-frugal k-mer counting, Bioinformatics, vol.31, issue.10, pp.311569-1576, 2015.
DOI : 10.1093/bioinformatics/btv022

URL : http://arxiv.org/abs/1407.1507

C. Ye, Z. Sam-ma, H. Charles, M. Cannon, Y. Pop et al., Exploiting sparseness in de novo genome assembly, BMC Bioinformatics, vol.13, issue.Suppl 6, 2012.
DOI : 10.1093/bioinformatics/btr319

URL : http://doi.org/10.1186/1471-2105-13-s6-s1

S. El-metwally, M. Zakaria, and T. Hamza, LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads, Bioinformatics, vol.32, issue.21, p.470, 2016.
DOI : 10.1093/bioinformatics/btw470

J. Pell, A. Hintze, R. Canino-koning, A. Howe, M. James et al., Scaling metagenome sequence assembly with probabilistic de Bruijn graphs, Proceedings of the National Academy of Sciences, pp.13272-13277, 2012.
DOI : 10.1090/S0002-9947-1943-0012401-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421212

R. Chikhi and G. Rizk, Space-efficient and exact de bruijn graph representation based on a bloom filter, Algorithms for Molecular Biology, vol.8, issue.11, 2013.
DOI : 10.1186/1748-7188-8-22

URL : https://hal.archives-ouvertes.fr/hal-00753930

K. Salikhov, G. Sacomoto, and G. Kucherov, Using cascading bloom filters to improve the memory usage for de brujin graphs, Algorithms for Molecular Biology, vol.9, issue.11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00824697

R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev, On the representation of de bruijn graphs, International Conference on Research in Computational Molecular Biology, pp.35-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01524525

E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru et al., HipMer, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, p.14, 2015.
DOI : 10.1007/3-540-45749-6_33

J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji, SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores, BMC Bioinformatics, vol.15, issue.Suppl 9, p.2, 2014.
DOI : 10.1186/gb-2010-11-11-r116

URL : http://doi.org/10.1186/1471-2105-15-s9-s2

J. Meng, S. Seo, P. Balaji, Y. Wei, B. Wang et al., SWAP-Assembler 2: Optimization of De Novo Genome Assembler at Extreme Scale, 2016 45th International Conference on Parallel Processing (ICPP), pp.195-204, 2016.
DOI : 10.1109/ICPP.2016.29

M. Burrows, J. David, and . Wheeler, A block-sorting lossless data compression algorithm, 1994.

M. Roberts, W. Hayes, R. Brian, . Hunt, M. Stephen et al., Reducing storage requirements for biological sequence comparison, Bioinformatics, vol.20, issue.18, pp.3363-3369, 2004.
DOI : 10.1093/bioinformatics/bth408

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.9748

L. Steven, . Salzberg, M. Adam, A. Phillippy, D. Zimin et al., Gage: A critical evaluation of genome assemblies and assembly algorithms, Genome research, vol.22, issue.3, pp.557-567, 2012.

T. Conway and A. J. Bromage, Succinct data structures for assembling large genomes, Bioinformatics, vol.27, issue.4, p.479, 2011.
DOI : 10.1093/bioinformatics/btq697

URL : http://arxiv.org/abs/1008.2555

R. Chikhi, A. Limasset, and P. Medvedev, Compacting de Bruijn graphs from sequencing data quickly and in low memory, Bioinformatics, vol.32, issue.12, pp.201-208, 2016.
DOI : 10.1093/bioinformatics/btw279

URL : https://hal.archives-ouvertes.fr/hal-01395704

A. Jarrod, I. Chapman, S. Ho, S. Sunkara, . Luo et al., Meraculous: de novo genome assembly with short paired-end reads, PloS one, vol.6, issue.8, p.23501, 2011.

E. Drezen, G. Rizk, R. Chikhi, C. Deltel, C. Lemaitre et al., GATB: Genome Assembly & Analysis Tool Box, Bioinformatics, vol.30, issue.20, pp.302959-2961, 2014.
DOI : 10.1093/bioinformatics/btu406

URL : https://hal.archives-ouvertes.fr/hal-01088571

J. Pieter and . Jong, Sequencing and assembly of the 22-gb loblolly pine genome, Genetics, vol.196, issue.3, pp.875-890, 2014.

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo, Fast and scalable minimal perfect hashing for massive key sets, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566246

C. Marchet, A. Limasset, L. Bittner, and P. Peterlongo, A resource-frugal probabilistic dictionary and applications in (meta) genomics. arXiv preprint, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386744

C. Marchet, L. Lecompte, A. Limasset, L. Bittner, and P. Peterlongo, A resource-frugal probabilistic dictionary and applications in bioinformatics, 2017.

L. Feuk, R. Andrew, . Carson, W. Stephen, and . Scherer, Structural variation in the human genome, Nature Reviews Genetics, vol.37, issue.2, pp.85-97, 2006.
DOI : 10.1002/ajmg.a.30621

P. Peterlongo, N. Schnel, N. Pisanti, M. Sagot, and V. Lacroix, Identifying SNPs without a Reference Genome by Comparing Raw Reads, International Symposium on String Processing and Information Retrieval, pp.147-158, 2010.
DOI : 10.1007/978-3-642-16321-0_14

URL : https://hal.archives-ouvertes.fr/inria-00514887

F. Jacob, . Degner, C. John, . Marioni, A. Athma et al., Effect of read-mapping biases on detecting allele-specific expression from rna-sequencing data, Bioinformatics, issue.24, pp.253207-3212, 2009.

Y. Débora, . Brandt, R. Vitor, . Aguiar, D. Bárbara et al., Mapping bias overestimates reference allele frequencies at the hla genes in the 1000 genomes project phase i data, G3: Genes| Genomes| Genetics, vol.5, issue.5, pp.931-941, 2015.

H. Peter, T. Sudmant, E. J. Rausch, . Gardner, E. Robert et al., An integrated map of structural variation in 2,504 human genomes, Nature, issue.7571, pp.52675-81, 2015.

C. Genomes-project, A global reference for human genetic variation, Nature, vol.526, issue.7571, pp.68-74, 2015.

A. Danek, S. Deorowicz, and S. Grabowski, Indexes of Large Genome Collections on a PC, PLoS ONE, vol.387, issue.10, p.109384, 2014.
DOI : 10.1371/journal.pone.0109384.s001

G. Holley, R. Wittler, and J. Stoye, Bloom Filter Trie ??? A Data Structure for Pan-Genome Storage, International Workshop on Algorithms in Bioinformatics, pp.217-230, 2015.
DOI : 10.1007/978-3-662-48221-6_16

B. Paten, M. Adam, . Novak, M. Jordan, E. Eizenga et al., Genome graphs and the evolution of genome inference. bioRxiv, p.101816, 2017.

A. Dilthey, C. Cox, Z. Iqbal, R. Matthew, G. Nelson et al., Improved genome inference in the mhc using a population reference graph, Nature genetics, vol.47, issue.6, pp.682-688, 2015.
DOI : 10.1101/006973

N. Nguyen, G. Hickey, R. Daniel, B. Zerbino, D. Raney et al., Building a Pan-Genome Reference for a Population, Journal of Computational Biology, vol.22, issue.5, pp.387-401, 2015.
DOI : 10.1089/cmb.2014.0146

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424974

R. Durbin, Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT), Bioinformatics, vol.30, issue.9, pp.1266-1272, 2014.
DOI : 10.1093/bioinformatics/btu014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998136

M. Adam, E. Novak, B. Garrison, and . Paten, A graph extension of the positional burrows-wheeler transform and its applications, International Workshop on Algorithms in Bioinformatics, pp.246-256, 2016.

M. Wang, Y. Ye, and H. Tang, Graph Approach to the Quantification of Closely-Related Genomes in a Microbial Community, Journal of Computational Biology, vol.19, issue.6, pp.814-825, 2012.
DOI : 10.1089/cmb.2012.0058

M. Garber, G. Manfred, M. Grabherr, C. Guttman, and . Trapnell, Computational methods for transcriptome annotation and quantification using RNA-seq, Nature Methods, vol.19, issue.6, pp.469-477, 2011.
DOI : 10.1093/nar/gkq1015

B. Liu, H. Guo, M. Brudno, and Y. Wang, deBGA: read alignment with de Bruijn graph-based seed and extension, Bioinformatics, vol.32, issue.21, p.371, 2016.
DOI : 10.1093/bioinformatics/btw371

G. Benoit, D. Lavenier, C. Lemaitre, and G. Rizk, Bloocoo, a memory efficient read corrector, European Conference on Computational Biology, p.2014
URL : https://hal.archives-ouvertes.fr/hal-01092960

I. Minkin, A. Patel, M. Kolmogorov, N. Vyahhi, and S. Pham, Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool for Closely Related Microbial Genomes, International Workshop on Algorithms in Bioinformatics, pp.215-229, 2013.
DOI : 10.1007/978-3-642-40453-5_17

URL : http://arxiv.org/abs/1307.7941

S. Marcus, H. Lee, C. Michael, and . Schatz, SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips, Bioinformatics, vol.30, issue.24, pp.3476-3483, 2014.
DOI : 10.1093/bioinformatics/btu756

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253837

I. Minkin, S. Pham, and P. Medvedev, TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomes, Bioinformatics, p.609, 2016.
DOI : 10.1093/bioinformatics/btw609

URL : http://arxiv.org/abs/1602.05856

T. Beller and E. Ohlebusch, Efficient Construction of a Compressed de Bruijn Graph for Pan-Genome Analysis, Annual Symposium on Combinatorial Pattern Matching, pp.40-51, 2015.
DOI : 10.1007/978-3-319-19929-0_4

H. Lee, C. Michael, and . Schatz, Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score, Bioinformatics, vol.28, issue.16, pp.2097-2105, 2012.
DOI : 10.1093/bioinformatics/bts330

Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. Mcvean, De novo assembly and genotyping of variants using colored de Bruijn graphs, Nature Genetics, vol.44, issue.2, pp.226-232, 2012.
DOI : 10.1016/0198-8859(91)90078-N

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272472

A. Gustavo, J. Sacomoto, R. Kielbassa, R. Chikhi, P. Uricaru et al., K is s plice: de-novo calling alternative splicing events from rna-seq data, BMC bioinformatics, vol.13, issue.6, p.5, 2012.

K. Son, P. A. Pham, and . Pevzner, Drimm-synteny: decomposing genomes into evolutionary conserved segments, Bioinformatics, vol.26, issue.20, pp.2509-2516, 2010.

B. Langmead, L. Steven, and . Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-359, 2012.
DOI : 10.1093/bioinformatics/btp352

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322381

A. Limasset and B. Cazaux, Read mapping on de Bruijn graphs, BMC Bioinformatics, vol.13, issue.Suppl 6, p.237, 2016.
DOI : 10.1186/1748-7188-8-22

URL : https://hal.archives-ouvertes.fr/hal-01349636

X. Yang, P. Sriram, S. Chockalingam, and . Aluru, A survey of error-correction methods for next-generation sequencing, Briefings in Bioinformatics, vol.14, issue.1, pp.56-66, 2013.
DOI : 10.1093/bib/bbs015

Y. Liu, J. Schröder, and B. Schmidt, Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data, Bioinformatics, vol.29, issue.3, pp.308-315, 2013.
DOI : 10.1093/bioinformatics/bts690

H. Li, BFC: correcting Illumina sequencing errors, Bioinformatics, vol.31, issue.17, p.290, 2015.
DOI : 10.1093/bioinformatics/btv290

URL : https://academic.oup.com/bioinformatics/article-pdf/31/17/2885/17085106/btv290.pdf

L. Song, L. Florea, and B. Langmead, Lighter: fast and memory-efficient sequencing error correction without counting, Genome Biology, vol.30, issue.11, p.509, 2014.
DOI : 10.1093/bioinformatics/btt310

URL : http://doi.org/10.1186/preaccept-9663167051308943

H. Mohamadi, H. Khan, and I. Birol, ntCard: a streaming algorithm for cardinality estimation in genomics data, Bioinformatics, p.832, 2017.
DOI : 10.1093/bioinformatics/btw832

D. Earl, K. Bradnam, J. St-john, A. Darling, D. Lin et al., Assemblathon 1: A competitive assessment of de novo short read assembly methods, Genome Research, vol.21, issue.12, pp.2224-2241, 2011.
DOI : 10.1101/gr.126599.111

URL : https://hal.archives-ouvertes.fr/inria-00637571

R. Keith, . Bradnam, N. Joseph, A. Fass, P. Alexandrov et al., Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species, GigaScience, vol.2, issue.1, p.10, 2013.

M. Ellen, K. Leffler, . Bullaughey, R. Daniel, . Matute et al., Revisiting an old riddle: what determines genetic diversity levels within species?, PLoS Biol, vol.10, issue.9, p.1001388, 2012.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, Journal of Computational Biology, vol.19, issue.5, pp.455-477, 2012.
DOI : 10.1089/cmb.2012.0021

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519

V. Aleksey, G. Zimin, D. Marçais, M. Puiu, . Roberts et al., The masurca genome assembler, Bioinformatics, issue.21, pp.292669-2677, 2013.

J. Mark, G. Chaisson, and . Tesler, Mapping single molecule sequencing reads using basic local alignment with successive refinement (blasr): application and theory, BMC bioinformatics, vol.13, issue.1, p.238, 2012.

K. Fai-au, J. G. Underwood, L. Lee, and W. Wong, Improving pacbio long read accuracy by short read alignment, PloS one, vol.7, issue.10, p.46679, 2012.

M. Madoui, S. Engelen, C. Cruaud, C. Belser, L. Bertrand et al., Genome assembly using Nanopore-guided long and error-free DNA reads, BMC Genomics, vol.29, issue.8, p.327, 2015.
DOI : 10.1093/bioinformatics/btt086

URL : http://doi.org/10.1186/s12864-015-1519-z

M. Boetzer and W. Pirovano, SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information, BMC Bioinformatics, vol.15, issue.1, p.211, 2014.
DOI : 10.1186/1471-2105-13-238

URL : http://doi.org/10.1186/1471-2105-15-211

V. Deshpande, D. Eric, S. Fung, V. Pham, and . Bafna, Cerulean: A Hybrid Assembly Using High Throughput Short and Long Reads, International Workshop on Algorithms in Bioinformatics, pp.349-363, 2013.
DOI : 10.1007/978-3-642-40453-5_27

URL : http://arxiv.org/abs/1307.7933

C. Chin, H. David, P. Alexander, . Marks, A. Aaron et al., Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nature Methods, vol.472, issue.6, pp.563-569, 2013.
DOI : 10.1016/S0076-6879(10)72001-2

J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing Chromosome Conformation, Science, vol.295, issue.5558, pp.1306-1311, 2002.
DOI : 10.1126/science.1067799

O. Jacob and . Kitzman, Haplotypes drop by drop, Nature biotechnology, vol.34, issue.3, pp.296-298, 2016.

I. Neil, V. Weisenfeld, P. Kumar, D. Shah, . Church et al., Direct determination of diploid genome sequences. bioRxiv, p.70425, 2016.

L. Salmela and R. Walve, Eric Rivals, and Esko Ukkonen Accurate selfcorrection of errors in long reads using de bruijn graphs, Bioinformatics, p.321, 2016.