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Abstract: In agricultural markets, producers incur price and production

risks as well as other risks related to production contingencies. These risks

impact the producer activity and could decrease his income. The globaliza-

tion of markets, particularly those of agricultural commodities, provides

hedging instruments including futures contracts which will serve to de-

velop a hedging strategy. However, the situation whereby single futures

contract-based positions could offset many risks leads to incomplete mar-

ket. Especially, an producer looking for better hedging strategy could also

include insurance, option contract or mutual funds to further guarantee his

income, especially when crop yields are lower than expected.

We investigate the hedging strategies in static framework as well as in con-

tinuous time framework. Prior, we analyze the behavior of agricultural

prices using various statistical approaches and suggest appropriate price

modeling for data at hands. The static hedging strategy also accounts for

rollover process which gives raise to additional risks due to spread between

new futures and nearby futures and inter-crop hedging. We particularly ad-

dress hedging strategy that combines futures and insurance contracts. Since

decisions making in static framework does not include price changes along

the hedging horizon, optimal hedging strategy in continuous time frame-

work will take into account jumps and seasonality by combining futures

and option contracts.



Résumé : Sur les marchés agricoles, les producteurs encourent les risques

de prix et de production ainsi que d’autres types de risques liés aux aléas

de production. Ces risques impactent l’activité du producteur et pourraient

diminuer ses revenus. La mondialisation des marchés, en particulier ceux

des matières premières agricoles, permet de développer une stratégie de

couverture en utilisant des instruments comme les contrats à terme. Cepen-

dant, la situation selon laquelle une position basée seulement sur un contrat

futures devrait couvrir tous les risques entraîne un marché incomplet. Le

producteur en recherche de meilleure stratégie de couverture pour ajouter

un contrat d’assurance ou d’option pour garantir davantage ses revenus,

surtout lorsque les rendements des cultures prévus diminuent.

Nous étudions, ici les stratégies de couverture dans le cadre statique, ainsi

que dans le cadre de temps continu. Avant, nous analysons le comporte-

ment des prix des matières premières agricoles en utilisant diverses ap-

proches statistiques afin de suggérer la modélisation des prix adéquate

aux données. La stratégie de couverture statique comprend également

le processus de retournement de positions qui pourrait entraîner d’autres

risques supplémentaires en raison de l’écart entre les nouveaux contrats

à terme et des contrats à terme à proximité ainsi que la couverture inter-

culture. Nous proposons une stratégie de couverture qui combine des

contrats futures et d’assurance. Comme la prise de décisions dans le

cadre statique ne tient compte des mouvements quotidiens de prix le

long de l’horizon de couverture, la stratégie de couverture optimale en

temps continu combine des positions en contrat à terme et options tout en

prenant en compte les sauts et la saisonnalité dans la dynamique des prix.
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Chapter 1

General Introduction

Commodity prices are subjected to variations of production levels of their

underlying assets, as well as to factors related to their economic rationale

such as calendar seasons or crop years, consumption and policies, supply

and demand balance, inventories . . . Commodities trading incurs various

risks in both market and in production process. However, the major part

of producers’ revenue is composed of their crops and any adverse price

move will affect their activities. On one hand, the globalization of commod-

ity markets provides financial derivatives like futures, forwards or options

to hedge against these risks by shifting them to investors that are looking

for speculative opportunities. On the other hand, commodities can also be

stored in order to avoid disruptions due to shortage that generates cost of

carry stemming from quality deterioration along with storage period. In

agricultural markets, a way to avoid these carry costs is to enter the deriva-

tives markets where prices are agreed at inception for a future date, in some

way, as contingencies of physical goods. Derivatives instruments postpone

the delivery at future date while avoiding real risks. Thus, the holding of

commodities in inventories in order to face up to eventual scarcity episodes

in the future plays a key role in the relationship between spot price and the

futures price.

Arguably, the impact of price variability on the real economy is of greatest
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in the commodity markets. Price variations in these markets relate to every

economic entity; from individuals, to organizations and economies. There-

fore, the risk management in the commodity industry is of great importance.

Individuals need to manage these risks in order to preserve their revenue,

firms to protect their bottom lines and competitiveness, and the countries to

protect their macroeconomic stability. Specifically, agricultural commodities

are of concern since they are natural resources that are consumed as basic

necessities for human diet. They are also used in a number of applications

as well. For instance, corn is used in everything from artificial sweeteners

to fuel sources and also papers and containers.

Futures markets are the institutions of both risk management and price dis-

covery.1 In futures markets, the competing expectations of market partici-

pants interact to form the "price discovery mechanism" that will reflect a broad

range of information about upcoming market conditions. Specifically, fu-

tures are mainly used as hedging instruments against the exposition in cash

positions. But, as they do not equate to direct exposure of actual commod-

ity prices; they will be bets on the expected future spot prices. For instance,

a wheat producer who plants a crop is betting that the price of wheat will

not drop so low that he would have been better off not to have planted the

crop at all. This bet is inherent to the farming business, but the producer

may prefer not to make it. Hence, he can hedge this bet by selling a wheat

futures contract.

Aside the price risk management, there are a lot of positive externalities as-

sociated with hedging. Recall that futures contracts in commodity trading

takes place with standardization in sizes as well as in qualities in order to

improve efficiency for their extractions, distributions and consumption pro-

cesses. Hence, the hedging and price discovery functions of futures mar-

1Blau [Blau 1944] (p. 1) had stated that "commodity futures exchanges are market organi-
zations specially developed for facilitating the shifting of risks due to unknown future changes in
commodity prices; i.e., risks which are of such a nature that they cannot be covered by means of
ordinary insurance." However, insurance contracts have been improved to become comple-
ments of futures markets.
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kets will enhance the efficiency of production, storage and marketing oper-

ations. Hedging also ensures continuity of cash flows in that it will protect

the producer from volatile price movements, and will thereby guarantee

uninterrupted and stable revenue streams by bringing some certainty in the

production process. That boils down to certainty in production planning at

a guaranteed minimum price by using commodity futures to hedge.

Furthermore, agricultural futures markets also serve as an effective hedge

against inflation, since prices of foods are often among the first to rise when

prices begin to climb. Gorton and Rouwenhorst [Gorton 2006] found that

commodity futures returns and inflation are positively correlated to larger-

scale at longer horizons. Indeed, commodity futures returns are volatile

relatively to inflation, their longer-term correlations better capture the infla-

tion properties of a commodity investment. Agricultural futures can also

perform well when global population is growing, or when a growing mid-

dle class leads to increased demand. Besides, agricultural futures some-

times function as a hedge against volatility in equity markets when geopo-

litical tensions in emerging and frontier markets will arise as a result of food

shortages.

In agricultural markets, futures contracts allow to hedge against both mar-

ket and production risks and their price discovery function is embedded in

the price change processes and production contingencies. Production risk

leads to additional uncertainties that can further lower crop yields and will

affect expected prices. Indeed, futures contracts are settled daily and like

any other assets, commodity prices can suddenly change with substantial

variations; generally, due to news announcements, reforms, political un-

rest or weather vagaries. A striking example is the political unrest in Ivory

Coast, where cocoa prices had peaked in 2002 and 2003. Another illustration

of such price moves comes from weather vagaries (coffee production during

the Brazilian frost) or prompt extra export demand that (in case of China)

can impact final production. Therefore, using futures contracts against all

18



these risks together may not be as effective, if not worse.

The sudden and significant price variation within a very short period is re-

ferred as to price jump. Hence, the situation whereby a unique position in

a futures contract is taken to hedge multiple sources of risk altogether leads

to market incompleteness. Even if there may be an optimal hedge strat-

egy for all the risks, this will be difficult to achieve. The financial literature

refers such situation to a non-unique martingale measure. Indeed, all risk

processes should be martingales under an equivalent measure. In a such

strategy, the risk measure is not unique since there is more than one risk

source to hedge with only one state variable.

The issue of hedging such goods against adverse market moves is promi-

nent with the main advantage for the hedge being to significantly lower

risk in a portfolio context. The most traditional theory justifying the merit

of hedging is Price Risk Insurance Theory in which hedging provides in-

surance against risks arising from price fluctuations. Keynes [Keynes 1930],

Hicks [Hicks 1939] and Kaldor [Kaldor 1940] had supported hedging as a

risk mitigation tool. Then, portfolio theory, initiated by Markowitz, had

stated hedging as insurance tool against risks by reducing them in tandem

with expectation maximization. This theoretical framework has been ap-

plied by Johnson [Johnson 1960] and Stein [Stein 1961] to explain hedging

as a tool to mitigate risk and earn returns.

There is no effective hedging strategy that would completely eliminate all

risks. Rather, it attempts to transform unacceptable risks into an acceptable

form; like shifting commodity price risk from hedger to speculators. How-

ever, when a hedge becomes ineffective, it bring about losses that may result

in bankruptcy. An example was the Metallgesellschaft AG case; the German

largest conglomerate that went nearly bankrupt after suffering US$1.5 bil-

lion losses from its energy derivative trading activities in December 1993. At

the time, the price of oil had dropped while the futures market turned from

backwardation to contango and the combination of these market moves led

19



to serious losses on futures position for Metallgesellschaft AG.

Furthermore, a hedge strongly relies on the situation it is applied to, as well

as the costs associated to the strategies being implemented. In futures mar-

kets, the mismatch between the position in the underlying asset and the

futures contract makes the hedging strategy less effective and the risks will

not be sufficiently offset. This difference of positions between the underly-

ing and hedging instrument is the basis risk generated by the hedged po-

sition. Particularly in commodity markets, when futures contracts mature,

they do not exist anymore. An agricultural producer with commitment over

a multiple crop years need long maturity hedge instrument. To keep long

term hedge with agricultural futures, one has to initiate a rollover strategy

process. This consists in rolling over from a position in nearby futures con-

tract to a longer term futures contract. The switch of positions of the two

futures contracts incurs additional basis risk due to adverse price spread.

This is known as rollover risk and will come from market situation and

production contingencies. The production risk will also matter if output

is lower than expected. For instance, in rolling short futures positions, the

most ideal situation would be a contango market with a decreasing price

environment since it offers two opportunities to generate gains. A decreas-

ing price that will obviously generate gains for the short futures position

and a contango market that allows the hedger to sell futures at a discount

to the spot price, thus, allowing more gains when the spot price decreases.

The inverse situation will generate basis risk.

Basis risk and rollover risk are really worrisome as outcomes of inefficient

hedging strategy. Paroush and Wolf [Paroush 1989, Paroush 1992] had in-

troduced basis risk in futures market literature by showing how it influences

the optimal output and hedge together with other parameters. But ear-

lier, Holthausen [Holthausen 1979] had dealt with hedging and production

models in the absence of basis risk to show under which circumstances an

agricultural firm, either over-hedges or under-hedges or even full-hedges
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his output and the effect of increasing risk aversion on the hedge. More

generally, the issue of hedging with futures contracts has been investigated

using various approaches which deeply rely on the optimization technique.

Particularly in static framework, many papers in the literature on hedg-

ing issues with futures contract have focused on the modeling aspect and

this has gone in tandem with effectiveness measures. However, the exist-

ing measures of hedging effectiveness are not consistent because none of

the optimization technique to derive hedge ratios turns out to be superior

based on them.

In static framework, optimization techniques include minimum-variance,

mean-variance, semi-variance, mean-Gini and generalized semi-variance.

The minimum-variance is the simplest approach but it does not include

portfolio aspects like expected returns or more generally the risk psychol-

ogy that relates the aversion, prudence and temperance. The other methods

come in order to enhance it on taking into account such relevant features.

The mean-variance incorporates expected return and risk aversion. For ex-

ample, Rolfo [Rolfo 1980] had applied mean-variance technique to derive

optimal hedging strategy under price risk and output risk for countries that

export agricultural products. The semi-variance concept captures only the

downside risk, instead of both profits and losses the considered by variance

for hedge strategy to reduce only average losses. Plus, the generalized semi-

variance, also referred to as lower partial moments (LPM) approach, has

been applied in futures hedging literature (Chen et al. [Chen 2001]; for in-

stance in Lien and Tse [Lien 2000]) to include risk psychology with stochas-

tic dominance approach. The mean-Gini approach is also consistent with

stochastic dominance as well as with expected utility maximization; espe-

cially this could be applied when the mean-variance is bound to fail because

of non-normality of returns or biased estimators of ordinary least square;

see Shalit and Yitzhaki [Shalit 1984]. Other contributions rely on the uncon-

ditional aspect of volatility as risk measure and will be based on conditional

distribution approaches like Autoregressive Conditional Heteroskedastic-
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ity (ARCH), Generalized ARCH (Baillie and Myers [Baillie 1991]) or multi-

period model (Cecchetti et al. [Cecchetti 1988], Chen et al. [Chen 2013] and

Lien and Luo [Lien 1993]). Furthermore, Fernandez [Fernandez 2008] and

Conlon and Cotter [Conlon 2012] have applied a wavelet2 decomposition

technique to show time horizon effects on the hedge ratio.

In continuous framework, Ho [Ho 1984] and Adler Detemple [Adler 1988a]

are pioneers to investigate hedging with futures contract in commodity mar-

ket. These papers have derived optimal hedging strategies via dynamic pro-

gramming method as applied in Merton [Merton 1971] in portfolio context.

Specifically, the hedging portfolio mainly includes the cash position as non-

traded and trading assets consisting in futures contract and other assets like

option, stocks or bonds. The authors had considered Brownian motion to

represent the risk sources in their approaches and have still stressed about

the ineffective of optimal hedge strategy.

The purpose of this thesis is to develop hedging strategies in a portfolio con-

text, for storable commodities. Particularly, the issue of hedging with finan-

cial market is considered for agricultural commodities. Hedging strategies

are to reduce, as much as possible, losses due to prices fluctuations, and pro-

duction decisions. Hence, the basic task of hedging instruments is to pro-

vide a counter position that will provide a guarantee against losses in part

or in full, depending on the nature of the hedge. Before planting, a producer

shall decide how he is guaranteeing his income at harvesting. The hedging

strategy is analyzed in in portfolio in both static and dynamic frameworks.

In the static framework, the hedging problem is stated and some approaches

as well as their empirical applications are presented. Mainly, we derive op-

timal strategies that combines futures and insurance contracts for market

risk as well as production risk in rollover process. Since the decisions mak-

ing in a static framework do not account for feedback patterns along the

2The wavelet method is a refinement of Fourier analysis that decomposes time series
into its high- and low-frequency components which is short- and long-term variation, re-
spectively.
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hedging period, the same issue is investigated in dynamic framework. In-

deed, price dynamics substantially influence portfolio strategies along the

hedging period.

In continuous time, we analyze hedging shortcomings that may come from

either the modeling aspect (risk representation through only Brownian mo-

tion) or hedging instruments. On one hand, dynamic hedging strategies in-

clude market moves and particularly those relating to price jumps. This pro-

vides sharper analysis of commodity futures price behavior as highlighted

in Chapter 2. The jump detection tests Barndorff-Nielsen and Shephard

[Barndorff-Nielsen 2006], Aït-Sahalia and Jacod [Aït-Sahalia 2009] are ap-

plied to real data and jump component is significant to be included in price

dynamics of commodity futures at hands. However, hedging with only fu-

tures contract has to be improved. On another hand, an alternative hedging

strategy is to include an option written on non-traded asset. The hedge

portfolio with option enhance the hedging strategy by further reducing un-

certainties.

The thesis is organized in four main chapters. The first chapter applies

recent statistical tests on agricultural futures prices to highlight stylized

facts. The empirical study suggests futures prices to follow "mean-reverting

jump-diffusion" with seasonal long-run and volatility. Then, the second

chapter addresses the model estimation in a two-stage procedure. First,

the estimation of mean-reversion speed and periodic long-run parameter is

handled using least square. Second, the residuals of the first step allow to es-

timate the remaining parameters with particle Monte Carlo Markov Chains

method. The third and fourth chapters investigate the hedging strategies,

respectively, in static and dynamic frameworks. Mainly, static hedging in-

cludes market and production risks with applications, while the dynamic

hedging strategy will add to the futures contract, option written on the non-

traded.
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Chapter 2

Agricultural Futures: Economics

and Stylized Facts

Abstract: Fundamentals of agricultural commodities are driven

by production, inventory and spot price which, all together, con-

tribute to futures price behavior. Following related literature,

we describe their futures prices behavior relating to their eco-

nomic rationales with emphasis on the stylized facts. Particu-

larly, mean-reversion, seasonality and jumps are observed on the

futures prices of grains and soft commodities. We highlight these

stylized facts by conducting various econometric tests on futures

prices in such a way that the features can be taken into account

all together. Furthermore, we show that, in the market, the term

structure of the selected commodities tends to be in contango.
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2.1 Introduction

The history of agricultural markets has tremendous experience regarding its

stylized facts due to various market regulations and their production fash-

ions. The investigation of stylized facts is an usual way to address prior

analysis of financial assets for any portfolio strategy that includes. Hence,

appropriate empirical analysis helps to highlight the features that would be

taken into account for the behavior of asset prices. A massive literature has

dealt with stylized facts of asset prices. For instance, Cont [Cont 2001] has

compiled various statistical methods to conduct empirical analysis of asset

price data; Carr et Al. [Carr 2002] has analyzed the fine structure of asset re-

turns, and had show the departure from normal distributed returns due to

non-zero skewness and high kurtosis, what characterizes the density func-

tion like a spike. Although agricultural commodities prices are of specific

in that they on production of physical goods, they will still remain compat-

ibles with such investigation. Indeed, Mandelbrot [Mandelbrot 1963] had

applied similar analysis long ago to highlight stylized facts of cotton prices.

Specifically, the literature on the economic rationale for commodity price be-

havior is based on two mainstreams as distinguished by Fama and French

[Fama 1987]: theory of normal backwardation and theory of storage. The

theory of normal backwardation (Keynes [Keynes 1930]) emphasizes the

risk reallocation role of futures markets in term of risk premium paid by

hedgers to speculators while the theory of storage (Kaldor [Kaldor 1939])

deals with the importance of the convenience yield in storage decisions.

This literature also includes empirical analysis to evidence such theories

of prices behavior. For instance, Houthakker [Houthakker 1957] and Coot-

ner [Cootner 1960] had showed the existence of risk premia to support the

theory of backwardation while Dusak [Dusak 1973] and Carter, Rauser and

Schmitz [Carter 1983] examined the risk premium within the context of

Capital Asset Price Model, and had come to opposite conclusions. Bren-

nan [Brennan 1958] had found no significant evidence of risk premia and
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had further formalized the theory of supply of storage. Fama and French

[Fama 1987], Bessembinder [Bessembinder 1992] had come to mixed evi-

dence of a risk premium. Roon, Nijman, and Veld [De Roon 2000] revealed

strong evidence for "cross-hedging" pressure and risk premia. A recent ap-

proach by Gorton et al. [Gorton 2013] tries to combine the two theories to

endogenously derive basis and the risk premium.

Apart from the stylized facts known for classical financial assets, commod-

ity prices depict mean-reversion and seasonal pattern (Bessembinder et

al. [Bessembinder 1996], Andersson [Andersson 2007], Geman and Nguyen

[Geman 2005], Sørensen [Sørensen 2002]). In commodity markets, mean-

reversion behavior is often viewed as the long term equilibrium; seasonality

simply relates to seasonal fashion of production in tandem with supply and

demand and either stochastic volatility or jumps may characterizes the non

normality of prices returns. Mandelbrot [Mandelbrot 1963] in stressing the

spiky shape of returns density function in agricultural markets, he had sug-

gested a modeling approach based on the class of Paretian distributions. Re-

cent literature in quantitative finance represents asset prices with Lévy pro-

cesses with jump components. Such analyzes on agricultural prices include

Hilliard and Reis [Hilliard 1999] and recently Schmitz et al. [Schmitz 2014].

However, the existing literature on empirical studies for commodity mar-

kets mainly deals with non normality, mean-reversion and seasonality. To

our knowledge, empirical analysis for jumps evidence in commodity prices

is lacking. In this chapter, we apply recent studies of Aït-Sahalia and Ja-

cod [Aït-Sahalia 2009, Aït-Sahalia 2011] on jump and their activities using

daily futures prices to evidence such consideration in agricultural markets.

In practice, using observed futures prices, we test for inter-temporal rela-

tionship, mean-reversion, seasonality of both long run average return and

monthly volatility.

The chapter is organized as follows. The first section deals with preliminar-

ies of commodity markets with focus on real market variables as well as ef-
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ficiency of commodity futures markets. The next section describes the styl-

ized facts and the economic rationale. The third section investigates empir-

ical analysis of selected agricultural futures and the last section concludes.

2.2 Fundamentals of commodity futures prices

This section presents how determinants of real market evolve and how

they relate to their futures1 prices behavior. We base on the two tradi-

tional theoretical approaches (theory of normal backwardation and theory

of storage) to hedging, speculation, and commodity inventories to derive

the futures price behavior. The theories are complementary in their expla-

nation of commodity price formation and are foundations of modern com-

modity pricing theories as formulated by Brennan [Brennan 1991], Schwartz

[Schwartz 1997], and Routledge et al. [Routledge 2000] for example.

2.2.1 Market determinants: production, inventory and price

Prices, rates of production and inventory levels are interrelated in commod-

ity markets. These real market variables are determined at equilibrium in

two interconnected markets: a cash market for immediate purchases and

sales of the produced good, and a market for inventories held by both pro-

ducers and consumers of the commodity. In these markets, equilibrium af-

fects and will be affected by changes in price volatility. Specially, for storable

commodities, like agricultural goods, inventories play a key role in price

formation process. In a competitive markets, the stochastic fluctuations

in production and/or consumption for such commodities are absorbed by

inventories and to reduce costs2. Inventories are also used to reduce the

fluctuations in demand and to avoid stock-outs. Then, production is deter-

1Futures and forward contracts are considered as same if interest rate is deterministic.
2Inventories serve to reduce costs of adjusting production to avoid stock-outs for

both producers and consumers (when commodity is used as production input), Pindyck
[Pindyck 2001].
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mined in light of spot price and price for storage.

In such markets, spot prices do not come from the intersection of supply and

demand directly. Instead, the difference between production and consump-

tion characterizes cash market which is function of spot price, St, and other

demand shifting variables, Z1,t, (aggregate income, population growth. . . )

and random shocks in market. Similarly, supply is function of spot price,

also supply shifting variables Z2,t (salary, capital stocks,etc. . . ) and ran-

dom shocks from drought, frost, or thunderstorms, political risks, changes

in taste and consumption patterns etc. Let denote by ut all random shocks

in cash market. The changes in inventories, ∆It, correspond to the net de-

mand as the difference between supply and demand. Then the spot price

is the inverse of net demand function of inventory variations, demand and

supply shifting variables and shocks in the markets,

St = f(∆It; Z1,t, Z2,t, ut). (2.1)

Therefore, market-clearing in the cash market implies a relationship be-

tween the spot price and the changes in inventories. For instance, a higher

price is associated to a more supply and less demand, and thus to a impor-

tant net demand. So, the variations of inventory levels will affect the price

at which the market clears making commodity market behavior to depend

on equilibrium in both cash market and storage market.

To see this, consider the market for storage. The supply of storage is the to-

tal quantity held in inventories It. In equilibrium, this quantity must equal

the demanded quantity which is a function of the price. The price of storage

is the "payment" for the privilege of holding a unit of inventory. For agricul-

tural goods, it is equal to the marginal value corresponding to the value of

the flow of services accruing from holding the marginal unit in inventory:

the convenience yield, CYt. Convenience yield is small when the total stock

of inventories is large (because one more unit of inventory will be of little

extra benefit), but it can rise sharply when the stock becomes very small.
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Subsequently, the demand for storage function is downward sloping and

convex in convenience yield and this is same for its inverse function.

Then, demand for storage is function of convenience yield and other vari-

ables Z3,t such as consumption (or production), volatility of price σt, spot

price and any other variables that affect demand. Thus market-clearing

in the storage market implies a relationship between marginal convenience

yield (the price of storage) and the demand for storage. Finally, equilibrium

in storage market is described using inverse function of this demand.

CYt = g(It; Z3,t, σt, u′
t) (2.2)

Market-clearing in the storage market implies a relationship between con-

venience yield (the price it takes to store) and the demand for storage. Equa-

tions (2.1) and (2.2) describe their dynamic equilibrium in both the cash and

storage markets. Note that if there are no exogenous shocks (Z1,t, Z2,t, Z3,t

and σt), the system will reach a steady-state equilibrium at ∆It = 0 (see

Pindyck [Pindyck 2001] for how changes in exogenous intervene in equilib-

rium.).

On the other side, commodity prices are risky and consumers and produc-

ers often seek ways of hedging and trading risk. For this, futures and for-

ward contracts, options, swaps, and other derivatives are traded as finan-

cial instruments to reduce these risks. Price volatility3 drives the demand

for hedging, whether it is done via financial derivatives (futures contracts

or options) or via physical instruments (inventories).

Price volatility is one of main causes of fluctuations in the net demand

function, which, in turn, results from fluctuations in consumption, demand

and/or production and vice-versa (speculative buying and selling). An in-

3Volatility is a key determinant of the values of commodity-based contingent claims,
such as futures contracts, options on futures, and commodity production facilities. Indeed,
such production facilities can usefully be viewed as call options on the commodity itself,
Pindyck [Pindyck 2001].
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crease in price volatility is followed by more variations of production and

consumption which implies an increase in the demand for storage in order

to buffer these fluctuations in production and consumption. But this will

also result in an upward shift in the net demand curve. Thus, inventories

have effect of reducing the magnitude of short-run market price fluctuations

in that they are low when volatility is high. Equilibrium in the two markets

affects and will be affected by changes in the level of price volatility which

is relevant in driving short-run commodity cash and storage market behav-

iors.

These changes in the spot price, inventory levels, and convenience yield

will be accompanied by changes in futures prices and thus in the futures-

spot spread that is referred to as basis. Basis is also a function of marginal

value of storage for a commodity inducing a fundamental relationship be-

tween spot price, futures price, and inventory behavior that is captured by

futures markets. Futures contracts provide relevant information about the

two markets because they are jointly used as vehicle for hedging risk.

2.2.2 Futures price behavior

Futures prices relate to spot prices as well as their term structure behavior

that evolves with changes in strategies, particularly those including stor-

age of commodity. A major determinant for this relation is convenience

yield which induces relevant features for hedging and speculation based on

physical markets.

Recall that a futures prices represents the expected spot price under the risk

neutral probability measure. A position in a futures contract then relies on

anticipations of the corresponding future spot price along with inventory

decisions, storage costs, and interest rate. This leads a futures prices to be

the discounted expected of its future spot price under no-arbitrage and com-
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plete market conditions.4 If Ft,T is the price at t of the futures contract that

will mature at time T > t, the discount factor is the evolution over time of

continuously compounded risk-less interest rate, rt,T , plus the cash value of

storage costs, wt,T , adjusted by convenience yield, CYt,T .

Ft,T = St exp
{[

rt,T + wt,T − CYt,T

]
(T − t)

}
. (2.3)

The interest rate, rt,T , is the cost of financing the purchase of the physical

commodity while, wt,T , is the cost that is associated with its ownership. The

convenience yield, CYt,T , is the utility of holding the physical commodity,

in contrast to a pure contractual agreement for the delivery of specific com-

modity to meet scarcity in market. Convenience yield is subtracted from

risk-free rate and storage cost because it reduces the cost of ownership of

the asset.

What matters the most, when trading in commodity futures markets is risk

premium5 as sustainable return (Gorton et al. [Gorton 2013]). Averse pro-

ducers are willing shift future spot prices risk on planned output to specula-

tors by selling futures and speculators will receive risk premia in exchange

for long-term financial exposure to future spot prices risk. Then, the risk

premium is a function of term structure pattern (downward and upward)

and thus will constitute an incentive and a reward to undertaking risk above

the risk-free rate (but not for ability to predict market moves).

The two theories describe how inventory level of a commodity is funda-

mental determinant for risk premium and basis; each focusing on differ-

ent aspects of futures markets. The theory of normal backwardation, for-

malized mainly by Keynes [Keynes 1930] and Hicks [Hicks 1939], explains

4Lautier [Lautier 2009] points out some sources of imperfections that influence the no-
arbitrage conditions.

5The risk premium is the expected excess return and the excess return being the differ-
ence between the current futures price and the spot price at expiry of futures contract. The
difference between a contemporaneous futures price and a current spot price is the basis,
Gorton et al. [Gorton 2013].
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futures price formation from the net short hedging pressure while the the-

ory of storage of Kaldor [Kaldor 1939], Brennan [Brennan 1958] and Telser

[Telser 1958] focuses on spot price formation in relation to futures based on

cost-of-carry and the convenience yield, that gives rise to a premium on

commodity inventories in periods of scarcity.

Recalling that basis is the return coming from purchasing the commodity at

t and selling it at t for delivery at T ,

St − Ft,T , or
(
St − Ft,T

)
/St. (2.4)

The theory of normal backwardation focuses the expected variation of the

difference between spot price at current time and at futures contract matu-

rity T , and the expected risk premium, prt,T , to explain the basis.

St − Ft,T = Et[St − ST ] + Et[prt,T ]. (2.5)

Hence, futures prices is a downward biased estimator of future spot prices.

The hedging imbalance caused by producers and the uncertainty in price

will jointly determine the size of risk premium, prt,T . Then, the forecast bias

of spot price for maturity T is the expected premium prt,T that naturally

induces the backwardation,

Et[prt,T ] = Et[ST ] − Ft,T . (2.6)

Note that when surplus stocks exist, futures price can vary above the current

spot price. This situation, known as contango, is adjusted to backwardation

situation by at least the amount due to cost-of-carry.6 However, this also

leads to another risk premium on excess stocks, St rt,T .

The theory of backwardation as natural downward slope of term structure

6Keynes [Keynes 1930] defined cost-of-carry as an allowance for deterioration of qual-
ity, warehouse and insurance charges, interest charges, and a "remuneration against the
changes in the money-value of the commodity during which it has to be carried".
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is controversial, as the role of inventories in futures price formation is not

sufficiently explained, Telser [Telser 1958]. Cootner [Cootner 1960] general-

ized the idea in the sense that futures prices may carry either a positive or

a negative risk premium. An alternative explanation of futures backwarda-

tion comes from theory of storage.

According to the theory of storage, the inventory behavior over time hori-

zon relates to the intertemporal price differences between futures and spot

prices. That is the negative of basis as the interest forgone, St rt,T , plus the

marginal storage cost, wt,T , minus the marginal convenience yield from an

additional unit of inventory, CYt,T :

Ft,T − St = St rt,T + wt,T − CYt,T . (2.7)

The role of futures markets in storage decisions comes from arbitrage that

ensures that the amount of contango in the futures price curve will be lim-

ited by the marginal cost of storing one additional unit of the commodity. If

inventories are large, hedging the commodity on the futures market ensures

a return to storage that covers storage costs and storage will be encouraged

to support what would otherwise be a very low price. However, in case

of shortage, the convenience yield, CYt,T , increases, the marginal return to

storage becomes negative, and backwardation arises. Indeed, more stock

will be carried if the price is expected to rise and vice versa the risk pre-

mium, St rt,T , increases with the amount of stocks held. Stocks will not be

held a normal threshold and this risk on spot market for storable commodi-

ties can partly or entirely be transferred to speculators on the futures market

in short position.

The theory of normal backwardation and the theory of storage to explain

futures basis are interrelated through the phenomenon of carrying charge

or arbitrage hedging. Seasonal changes in inventories as well as changes

in supply and demand will be the determinants for the appropriate ap-

proach. Indeed, high inventories and low spot price will lead to futures
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prices that match cost-of-carry based calculations including a risk premium

for the commodity stocks. However, the risk premium on stocks will be

close to zero for high spot price and quasi-null inventories. In this case, fu-

tures price will come from market expectations including a risk premium

depending on market imperfections as e.g. short-selling constraints.

In nutshell, the theory of storage assumes stable supply and demand con-

ditions though the absence of price expectations while the theory of normal

backwardation incorporates investor anticipation of the changes in market

conditions but excludes the embedded timing option in the spot commod-

ity’s price. In all cases, price formation in futures markets results from

both current available information and expectations on supply and demand.

Then what matters the most is how prices reflect supply and demand and

facilitates the carrying of inventories through hedging to make the market

viable. This issue relates to market efficiency and is addressed in the follow-

ing.

2.2.3 Efficiency of agricultural futures markets

In financial markets, price changes7 come from new information arrival

(Karpoff [Karpoff 1987]) and will provide clues to infer about any agents’ at-

titudes. Specifically, in agriculture dominated economies, prices are the ma-

jor concern of the producers, investors, traders and policy makers. Hence,

understanding the underlying core behavior of commodity futures is vital

for better decision making. The issue relates to the commodity markets effi-

ciency.

A market is efficient when prices always fully reflect available information

(Fama [Fama 1970]). This means that no profit can be made with monop-

olistically controlled information. Fama [Fama 1970] states three forms of

7A measure of price changes is volatility but it is equivalent to squared price variations.
Clark [Clark 1973] used squared price changes of futures prices of cotton to represent new
information arrival.
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efficiency test: weak, semi-strong and strong. The weak form of efficiency

examines whether current prices fully reflect the information contained in

historical prices. The concept of unbiasedness is a more restrictive version

of this form. The semi-strong form test examines how quickly prices reflect

the announcement of public information while the strong form investigates

whether investors have private information that is not fully reflected in the

market prices.

The usefulness of futures markets lies in their ability to forecast spot prices

at a specified future date. Thus, they provide agents a way of manag-

ing the risks associated with trading in a given commodity, Kellard et al.

[Kellard 1999]. That is an efficient futures market provides a mechanism

for managing the risk associated with the uncertainty of future events in

cash market. In an efficient commodity market, the futures price will be

the optimal forecast, in term of information, of future spot price at futures

maturity and any random unpredictable error will have zero-mean. The ef-

ficient market hypothesis, according the no-arbitrage condition, can then be

reduced to the joint hypothesis that agents are, in an aggregate sense, en-

dowed with rational expectations and are risk neutral such that the futures

price is an unbiased estimator of the future spot price (Taylor [Taylor 1995]).

Hence, the hypothesis that futures price is unbiased forecast of spot price

boils down a joint hypothesis of market efficiency and risk neutrality.

Efficient market implies that the futures price, Ft,T , for a contract expiring

at time T , is the unbiased predictor of the future spot price,

Ft,T = E [ST |Ft] with t ∈ [0, T ], (2.8)

where the E [·|Ft] is the expectation formed at time t ∈ [0, T ] on information

set available, Ft, at that instant. To test for efficiency in futures market, a

natural model specification is to assume rational expectations, that is

ST = E [ST |Ft] + errT (2.9)
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where errt is rational expectation error term orthogonal to all sets in Ft in-

cluding the lagged forecasts errors. Then, testing for both unbiasedness and

market efficiency together is carried out by specifying the linear regression

model

ST = b̄0 + b̄1Ft,T + errT (2.10)

with the null hypothesis is b̄0 = 0 and b̄1 = 1. As result, the hypothesis

that a futures price is an unbiased estimator of spot price is joint hypoth-

esis that markets are efficient and that there is no risk premium. The test

for weak form of efficient market hypothesis is carried out through the un-

predictability of current returns from past returns. When returns come to

be non-stationary, serial autocorrelation test that includes error correction

models are performed. However, this test8 only focus on linear correlations

of price changes in short horizon. Indeed, returns series can be linearly

uncorrelated and but non-linearly dependent; Granger [Granger 2001]. An

alternative approach is to apply test techniques that take into account the

nonlinear serial dependency structures.

The tests for efficiency market hypothesis constitute a useful first step

in the evaluation of the social utility of futures markets (Kellard et al.

[Kellard 1999]). However, despite a large body of research on efficiency,

there is no consensus on whether markets are efficient or not; see Ramírez

et al. [Ramírez 2015]. The main reason comes from the fact that markets

switch between efficiency and inefficiency at different periods and measur-

ing the degree of efficiency will give more insight than testing it. Besides,

such tests do not provide information about the degree of efficiency in any

specific market to allow for a quantitative comparison of the functioning of

different futures markets. Adaptive market hypothesis theory have been

proposed in which the degree of efficiency is based on factors like num-

ber of competitors, the magnitude of profit opportunities available and the

8Conventional tests for efficient market hypothesis include serial autocorrelation test
using the Ljung-Box portmanteau Q-statistic, the runs test of Shiller and Perron, and the
variance ratio test amongst others.

37



adaptability of market participants. Plus, it allows to detect non-linearity in

certain period of time.

To analyze the efficiency of futures markets for each commodity selected,

we first perform two unit root tests that check for the stationarity of returns

series: the traditional augmented Dickey Fuller test with the assumption

of Gaussian errors and the residual augmented least squares (RALS) tech-

nique (Im et al. [Im 2014]), which does not require knowledge of a specific

density function or functional form. Besides processing the efficiency test

in (2.10) on returns series, we use Hinich portmanteau bicorrelation test (in

Appendix A.3), which is a third order extension of the standard correla-

tion tests for white noise and detects nonlinear serial dependence in non-

overlapped time windows.

All along this section, we have pointed out the key state variables as deter-

minant factors of commodity markets from related references and have also

addressed a way to rely on these factors with relative market efficiency. The

following section is devoted specific factors that will describe the behavior

of futures prices and are known as stylized facts.

2.3 Stylized facts of agricultural commodities

This section defines the usual stylized facts of commodity prices in the liter-

ature with focus on their economic rationales. Mean-reversion, seasonality

and either jumps or stochastic volatility are referred to as the main features

observed in commodity markets, across a wide range of instruments, in time

periods.

2.3.1 Mean-reversion

The mean-reverting behavior is often used for the modeling of the dy-

namic of many commodity prices as result of their economic rationales

and empirical evidences. Andersson [Andersson 2007], Bessembinder et al.
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[Bessembinder 1995], Geman [Geman 2009] use mean-reversion to model

commodity futures prices. The concept of mean-reversion comes from

prices or returns that alternate temporary at high and low levels to converge

towards an equilibrium value over time. It is opposed to permanent shock

effect of random walk, Andersson [Andersson 2007]. For storable commodi-

ties, mean-reversion is mainly induced by supply and demand imbalance

or by the no-arbitrage relation between spot and futures prices. As illus-

trated by Back and Prokopczuk [Back 2013a], on one hand, prices go up

when shortages occur, leading to higher investments in production facili-

ties or more producers entering the market, which leads to higher supply;

albeit with a certain lag in time. The higher supply will then push prices

down again and vice versa. On the other hand, following the arguments of

the theory of storage, inventory withdrawals will also lead to higher spot

prices while the futures price does not change as much since the resulting

higher convenience yield has an offsetting effect. Hence, convenience yield,

in reflecting market’s expectations of future availability of the commodity,

induces mean reverting feature to positive correlation with spot price or the

risk premium impact on prices.

Furthermore, a negative relationship between interest rates and prices will

also induce mean-reversion phenomenon. For instance, Bessembinder et

al. [Bessembinder 1995] tested investors expectation for spot price regard-

ing mean-reversion under the risk neutral measure using term structure of

futures prices. Indeed, term structure of futures prices describes several be-

havioral points that the investors expect spot price to exhibit it. Hence, find-

ing an inverse relation between price levels and the term slope will then im-

ply a low rate of appreciation of expected inter-temporal price when prices

rise, and vice versa.

The mean-reversion feature is related to the notion of stationary processes

that intend to capture price effects due to temporary periods of excess sup-

ply and demand. It is represented by stochastic Ornstein-Uhlenbeck (OU)
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process. A general Ornstein-Uhlenbeck process is the solution of the fol-

lowing stochastic differential equation, Barnsdorff-Nielsen and Shephard

[Barndorff-Nielsen 2001]

dXt = κ(x̄ − Xt)dt + dLt, (2.11)

where κ > 0 is the rate of reversion to the long-run average x̄ and (Lt)t≥0 is a

Lévy process with L0 = 0 a.s. that is characterized by its triplet (mt, σ2
t , ν) on

probability space (Ω, F ,P). The parameters mt and σt are respectively the

drift term and diffusion coefficient of the Lévy process. The Lévy measure,

ν, characterizes the number of jumps per time unit and is also referred to as

intensity or activity of the process. The measure ν satisfies the conditions

ν({0}) = 0 and
∫
R(1 ∧ x2)ν(dx) < ∞.

Mean-reversion as stated in Equation (2.11) expresses the fact that changes

in returns are proportional to deviation from average return with Lévy error

term. Geman [Geman 2007] gives a general definition of mean-reversion of

a Markov process as equivalent to a process having a finite invariant mea-

sure which characterizes the stationarity of the process also viewed as its

equilibrium state. Note that if (Lt)t≥0 is a Brownian motion, the process

(Xt)t≥0 will be the classical Ornstein-Uhlenbeck process.

To recognize the behavior of mean-reversion on data belongs to econometric

issue via unit root test. Common unit root tests9 rely on the assumption of

Gaussian noise regarding the asymptotic distribution of the test.10 That is,

if Lévy noise in equation (2.11) has finite variance, both Gauss-Markov and

CLT will hold. But this requires Lévy measure to be finite,
∫
R ν(dx) < ∞.

a.s. When the variance is not finite, unit root test can still be perform based

9Augmented Dickey-Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS),
Phillips-Perron, and GLS-detrended ADF test proposed by Elliot, Rothenberg, Stock (ERS)
are known as unit root tests.

10Gaussian noise with finite variance leads to minimum variance estimator for parame-
ters via Gauss-Markov theorem. Finite variance is required for the Central Limit Theorem
(CLT) to hold in hypothesis testing to guarantee asymptotic normally distribution.
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on residual augmented least squares (RALS) methodology.

Mean-reversion behavior has been discussed in futures markets literature.

Andersson [Andersson 2007] has suggested a test that uses hedging er-

rors rather than unit root test (Barkoulas et al. [Barkoulas 1997]) arguing

that unit root test for mean-reverting has only very low power for applica-

tion on commodity prices. Brooks and Prokopczuk [Brooks 2013] stressed

difficulties in estimating several stochastic volatility models with jumps

in mean-reversion framework for commodity prices. Other investigations

do not reject the mean-reverting behavior for commodity prices, but they

have pointed out the time varying or the stochastic equilibrium level, (Tang

[Tang 2012] and Schwartz and Smith [Schwartz 2000] respectively).

2.3.2 Jump or stochastic volatility

In short intervals of time, financial markets seem to experience drastic price

swings than expected. Such swings may due to either jumps or stochastic

volatility. Both ump and stochastic volatility relate to extreme events and

will help to represent sources of risk for risk management, portfolio allo-

cation and derivatives pricing. Using them in the market model makes it

incomplete.

The idea of stochastic volatility has emerged with shortcoming of con-

stant volatility in the Black-Scholes model option pricing to repre-

sent persistence in the price process (Barndorff-Nielsen and Shephard

[Barndorff-Nielsen 2001]). Stochastic volatility is associated with diffusion

component, thus predictable11, while jumps correspond to sudden and un-

predictable changes in prices. That is to say, a jump will occur once instantly

11For example, futures prices near maturity are more sensitive to new information, hence
more volatile. The theory of storage predicts that shifts in supply and demand can induce
stochastic convenience yield which will imply stochastic volatility because on their inverse
relation. Nielsen and Schwartz [Nielsen 2004] has used this idea to model the spot volatility
as a function of convenience yield level in order to avoid using information on inventory
levels that may be unavailable. Geman and Nguyen [Geman 2005] derive scarcity model
with inverse volatility.
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and stochastic volatility characterizes the integration of process such as a

piling up effects. However, jumps correspond to impact of the new infor-

mation arrivals (general announcements - scheduled earnings or unsched-

uled news - speculative bubbles, sudden and rare events) on prices. In agri-

cultural markets, jumps may also come from any event that will suddenly

shift supply and demand12 such as weather vagaries, decline in food pro-

duction growth, excessive speculations of institutional investors etc. Man-

delbrot [Mandelbrot 1963] had firstly stressed the discontinuities in com-

modity markets due to heavy-tailed distribution of the cotton price returns.

He had found out that cotton daily prices vary more frequently than sug-

gested by Brownian motion process. Later, Hilliard and Reis [Hilliard 1999]

showed the improvement of jump-diffusion models over diffusion model

in commodity markets.

The basic problem to represent extreme event in a model with of stochastic

volatility or jump starts with non zero skewness and high kurtosis. Jump or

stochastic volatility component can be specified in commodity price model

for a (see for example Schmitz et al [Schmitz 2014]). But, as the analy-

sis here deals with monthly volatility, we only will focus on jump fea-

ture and let the volatility to be deterministic. There are several ways to

test for jumps in financial time series (Dumitru and Urga [Dumitru 2012]).

Barndorff-Nielsen and Shephard [Barndorff-Nielsen 2006], Aït-Sahalia and

Jacod [Aït-Sahalia 2009] and Podolskij and Ziggel [Podolskij 2010] have de-

signed several hypothesis testing methods for this purpose among others.

The Barndorff-Nielsen and Shephard (BNS) test is based on consistency of

integrated volatility estimators while the Aït-Sahalia and Jacod (ASJ) test

uses the power variation (that is generalized in Barndorff-Nielsen and Shep-

hard [Barndorff-Nielsen 2006]) of processes at different time scales. The ad-

vantage of ASJ test procedure over the BNS one is that it can be also applied

even if jumps have infinite activity because the estimator of realized multi-

12For example, Deaton and Laroque [Deaton 1992] characterized jumps as the occasional
sharp price spikes due to scarcity.
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power variation is robust to any jump activity. We apply, on agricultural

futures returns, the jump detection tests of Barndorff-Nielsen and Shephard

[Barndorff-Nielsen 2006] and Aït-Sahalia and Jacod [Aït-Sahalia 2009] that

are summarized in Appendix A.5.1.

Jumps are characterized by their size and occurrence (either finite or infi-

nite) in a time interval. The size refers to its variation and the occurrence

to its activity. Jumps with finite activity are always of finite variation, while

infinite activity jump processes may have either finite or infinite variation.

One may have better idea on the kind of jump to specify in price model us-

ing the other test of Aït-Sahalia and Jacod [Aït-Sahalia 2011] where the test

statistic is similar to the one of jump detection tests with additional param-

eter for arbitrary cutoff level. For, finite activity, compound Poisson process

charcterizes the jump component since it is the only one process with a finite

number of jumps in a finite time interval among Lévy pure jump processes.

All other pure jump processes exhibit an infinite number of small jumps in

any finite time interval.

In addition, we also test a la Aït-Sahalia and Jacod [Aït-Sahalia 2010] for

necessity to include Brownian motion component in presence of jumps.

In the absent of jumps, Brownian motion is usually included even it may

be useless. The test statistic is simply the inverse of jump activity test

statistic in Aït-Sahalia and Jacod [Aït-Sahalia 2011] (Le Courtois and Wal-

ter [Le Courtois 2014]).

2.3.3 Seasonality features of commodity prices

There seems not to exist a commonly accepted definition of seasonality.

However, Back et al. [Back 2013b] quoted from Svend Hylleberg 13 that,

seasonality is

". . . the systematic, although not necessarily regular, intra-year move-

13Svend Hylleberg, Modelling Seasonality, Oxford University Press, 1992.
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ment caused by the changes of the weather, the calendar, and timing of

decisions, directly or indirectly through the production and consump-

tion decisions made by agents of the economy. These decisions are influ-

enced by endowments, the expectations and preferences of the agents,

and the production techniques available in the economy."

The supply process of agricultural commodities depends on the growing

and harvesting periods along with the weather changes, which will drive

their seasonal pattern of commodity prices. For example, the markets are

inclined to push prices lower during harvest time because supply is abun-

dant and the risk of the unknown weather interference in the yield has dis-

sipated. Conversely, grain prices are often pressed higher during the plant-

ing and growing seasons as speculators price in weather risk premium.

These events are consistent with theory of storage, Deaton and Laroque

[Deaton 1992]. Meanwhile, even if commodity prices display seasonality,

the cash-and-carry arbitrage relationship still holds, albeit this is not the

case in financial markets (investors will easily anticipate that and take ad-

vantage).

Furthermore, the seasonality in commodity markets does not make the

prices predictable. Varying factors intervene in supply and demand even

if the outcome looks the same on prices. Every year, some supply and de-

mand factors can be counted on to occur, some do not. Plus, seasonality is

not guaranteed to repeat itself on average in the future, their pattern may

shift14 in time or there are underlying factors influencing prices along with

the obvious fundamentals.

In the literature, Fama and French [Fama 1987] found strong seasonal

variations in convenience yields for agricultural products and Sørensen

[Sørensen 2002] had documented seasonal patterns in futures prices over

the 1972-1997 period for soybeans, corn, and wheat of the Chicago Board of

14For example, sometimes the so-called corn-harvest lows occurs in mid-October, in
other years it occurs in September or does not occur until December.
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Trade. Karali and Thurman [Karali 2010] also found statistically significant

seasonal patterns in the volatility for soybeans, corn, and wheat markets

and Back et al. [Back 2013b] study how volatility seasonality affects option

prices in commodity markets.

2.4 Empirical properties of agricultural futures

Commodities as primary needs contribute to the increasing interest of in-

vestors in their futures markets as save haven. Commodity instruments

are strikingly different from stocks and bonds, thus on empirical proper-

ties. This motivates the demand for derivative instruments based on opera-

tional contingencies embedded in delivery of the commodity goods. Then,

commodity futures prices are analyzed so as to set up appropriate portfolio

strategies.

Using empirical observations guides in setting up models of prices behav-

iors that are required in portfolio decisions consistent with expectations.

However, notice that stylized facts are so binding in that ad hoc stochas-

tic processes with the same set of properties will not be easy to replicate.

One has to rely on futures prices data to hope capturing these with a model.

Using datasets of selected commodities that we describe the construction,

we investigate their empirical properties by testing the stylized facts men-

tioned in Section 2.3.

2.4.1 Data

Daily futures prices of selected commodities are collected from Bloomberg.

These commodities are traded on American exchanges, Chicago Mercantile

Exchange (CME) for grains and on Intercontinental Exchange (ICE) for soft

commodities. Their inventory data come from United States Department of

Agriculture (USDA) and ICE websites respectively for grains and softs.
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2.4.1.1 Futures price data

We extract the settled price data from January 1990 up to August 2015 for

eight agricultural futures, namely grains and softs15 reported in Table 2.1.

The table contains, for each commodity, exchange place, delivery months

and tick value.

Table 2.1: Selected commodities

Commodity Exchance Delivery months
Grains Corn CME 3, 5, 7, 9, 12

Oat CME 3, 5, 7, 9, 12
Rough Rice CME 1, 3, 5, 7, 9, 11
Soybeans CME 1, 3, 5, 7, 8, 9, 11
Wheat CME 3, 5, 7, 9, 12

Softs Cocoa ICE 3, 5, 7, 9, 12
Coffee ICE 3, 5, 7, 9, 12
Cotton ICE 3, 5, 7, 10, 12

The delivery month is the cash-settled month of futures contract where buyer and
seller exchange cash. To save space, figures are the calendar months.

Futures contracts traded in commodity markets are of short maturity and

will be active for few months only. For grain and soft commodities, futures

contracts mature in calendar months with time series of their price avail-

able for shorter periods. The analysis of futures price behavior gains more

insight with long historical time series. There are several methods to build

up long time series with futures prices depending on the objective.

Herein, two kind of futures data will be used : expiry-month price and

nearby contracts. Nearby futures prices have been used by in Bessembinder

et al. [Bessembinder 1995] or as closest in Sørensen [Sørensen 2002]. The

two kinds of data are build up using end-to-end concatenation that rolls

from the expiring contract to next nearest contract without adjusting. The

nearby futures are available in Bloomberg and we only construct the expiry-

months data. The drawback of this end-to-end concatenation is that de-
15We use this classification following Gorton et al. [Gorton 2013].
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pending on whether the market is in backwardation or in contango, the

continuous price will exhibit upward or downward jumps at splice points.

The expiry-month price is a transformation of futures prices into a time se-

ries of the same delivery month over successive years to display a long pe-

riod historical data. We concatenate futures contract of a specific delivery

month of a year to the same futures contract of the same delivery month of

the following year. For example, the corn expiry-month price, it is to con-

catenating the March 1990 to March 1991 and so up to March 2015. The

expiry-month will serve to highlight how average price level behaves from

delivery month to another (Sørensen [Sørensen 2002]).

The second category of data has the advantage to represent actual values

in current market. Unlike the expiry-month time series, the distortion due

to rolling over to the next nearest contract is not pronounced for nearby

contract data. Particularly, as spot is elusive to define because of different

locational settled prices, these datasets will provide the front nearby price

as proxy for spot price like in Fama and French [Fama 1987]. However, the

proportion of missing values in price time series increases with long maturi-

ties. We exclude nearby contracts with missing values over 1% proportion.

Under this proportion, missing values are filled by simple linear interpola-

tion. The fourth nearby contract of both Oat and Rough Rice encompasses

more than 10% and the proportion of missing values will increase for their

long maturity contracts (n◦ 4, 5 and 6). Hence, only the first three contracts

are kept for this two commodities.

Prices of nearby contracts are represented in Appendix A.2.1 for the selected

commodities over the 1990-2015 period. Simple inspection suggests two

distinct periods: from 1990 to late 2006 that depicts a relatively flat trend,

and from early 2007 up to 2015 with upward trend. In the early period,

futures prices seems to exhibit stylized facts such as seasonality or mean-

reversion as well as price spikes at some points in time. But, seasonality

and mean-reversion are difficult to identify. In the second period, prices
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look more volatile with spikes specific to each commodity. Subsection A.5.4

below deals with statistical analysis of futures returns with aim to point out

relevant prices behaviors.

A more changing price behavior occurred for the selected commodities un-

der study with different intensities. This observation is associated with fac-

tors such as imbalance in supply and demand, political stability and specu-

lation. Over the 1990-2006 period, most of futures prices seem to experience

a unique price spike. This largely had come from a surge in price due to low

acreage planted with low yield in United States during 1995-1996. In that

period unfavorable factors including bad weather for corn and soybeans,

low usage of stocks for wheat and oat, Brazilian frost and drought for cof-

fee and strong export demand from China in the case of cotton. The surge

in prices had resulted in low supply16 which had implied productions of

more crop the following year in order to induce price falls, Dunsby et al.

[Dunsby 2008]. In 2002 and 2003, the price of soybeans and cocoa spiked

due to low production of soybeans in United States and Brazil (two of the

largest producers) and political unrest in Côte d’Ivoire. While in the same

period wheat price decreased as a consequence of high stocks.

The 2007-2015 period encompasses the global food crisis of 2007-2008 driv-

ing by economic factors such as low global stocks/use ratios combined

with uncertainty about size of crop in 2007-2008, growing food demand

in developing countries (China, India, ...), lower production growth rate,

biofuel production17 based on agricultural commodities, speculation bub-

ble, weak United States dollar, panic buying and export bans, Gutierrez

[Gutierrez 2013].

16Production variation relies on acreage harvested and will yield per acreage via the
weather, while consumption increases with large demand because of additional use in in-
dustry. Besides, the extra production of certain commodity leads to low production for
other commodities in term of acreage and yields to low supply insufficient for usual de-
mand and prices increase.

17Biofuel programs in the United States and European Union leads to a greater use of
corn and vegetable oil which results in price increase for these commodities
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2.4.1.2 Inventory Data

In general, there is, likely, no common source for inventory data, because of

physical delivery at different locations. A common nomenclature for them

is still at a conceptual stage. Meanwhile, using the same data source of Gor-

ton et al. [Gorton 2013], we collect inventory levels time series on ICE web-

site (for soft commodities) and on United States Department of Agriculture

(USDA) website (for grains). The inventory data of grains are of different

frequencies.18 All data span period from March 1990 to December 2015 and

observation frequencies are reported in table 2.2. Each observation period

is the total of in-farm and off-farm inventories.

Table 2.2: Inventory data characteristics

Commodity Frequency Period
Grains Corn 3, 6, 9, 12 1990 - 2015

Oat 3, 6, 9, 12 1990 - 2015
Rough Rice 3, 8, 10, 12 1990 - 2015
Soybeans 3, 6, 9, 12 1990 - 2015
Wheat 3, 6, 9, 12 1990 - 2015

Softs Cocoa∗ Monthly 2002 - 2015
Coffee Monthly 1996 - 2015
Cotton∗ Weekly 1990 - 2002

* Data are not available over the whole the 1990 - 2015 period.

Figure 2.1 displays the inventory levels of the selected commodities. For soft

commodities, the inventory levels are seasonal with slight upward trend.

Meanwhile, there is a downward trend for oat inventory levels because

of decrease in production as other cash crops such as corn, soybeans, and

wheat have become more profitable and due to decrease in its use as a live-

stock feed ingredient and as a rotation crop (USDA). Also, over the same

period, production activity of corn, soybeans, and wheat is more volatile

with steady trend.

18Notice that, the links pointed in Appendix B1 of Gorton et al. [Gorton 2013] for
monthly or weekly inventory data are no more available on The United States Department
of Agriculture website, they have been updated to harvest seasons framework.
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Most striking is world wide rice production that has experienced a new

high record in 2010-2011 period due to large demand in emerging marking

(China, India, Indonesia, Bangladesh, etc...) as well as in United States. Rice

price had dropped down as exhibited in Figure A.3 as response to increase

in supply.

2.4.1.3 Summary statistics

We provide descriptive statistics on returns of nearby futures prices in the

aim to infer the behavior of agricultural prices at hands. These statistics are

displayed for the whole period as well as the two distinguished periods,

from 1990 to 2006 and from 2007 to 2015.

For the majority of commodities, the average returns are positive and will

vary irrespective of the commodity and the nearby contract over the whole

period. The same reasoning holds over the pre 2006 period, albeit the aver-

age returns of coffee and cotton are negative. After 2006, the average returns

are pronounced from a short term contract to longer term what indicates

large variations of futures prices in that period. Accordingly, volatility in

the same period is higher than the previous period for most of commodities.

Furthermore, volatility decays with maturity regardless of the commodity,

what also evidences the Samuelson effect: the shorter the time-to-maturity

the more volatile futures prices. However, rough rice and cocoa exhibit the

converse situations. Rough rice prices have varied very little from late 2011

up to end august 2015. According to USDA report of that period, low prices

of rice came from announcement of Department of Agriculture’s Commod-

ity Credit Corporation on the prevailing world market rice prices and loan

deficiency payment rates applicable to 2009 crop. The cocoa case also due

to little change and erosion effect of volatility.

Back to statistics, another well known property of asset returns is autocorre-

lated volatility as shown by the Ljung-Box test statistics of squared returns

in column Q(10). It expresses the fact that relatively small returns values
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Figure 2.1: Inventory levels
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of quiet periods alternate with relatively volatile ones where price varia-

tions are rather large. Mandelbrot [Mandelbrot 1963] had characterized this

property as volatility clustering where high-volatility events tend to cluster

in time.

The third and fourth moments together indicate shape of risk distribution

for returns and are also used to reject their normality hypothesis. Indeed,

commodities here are, in general, negatively skewed with high kurtosis.

The negative skewness suggests that losses are more likely to occur than

profits. High kurtosis that decays with the contract maturity will refer to

more frequent extreme events in shorter term contracts than the longer ones,

again consistent with Samuelson effect. Hence, shorter time-to-maturity are

more sensitive to new information as noted by Black [Black 1976a]. But

when combining negative skewness with high kurtosis, it is still not clear

if extreme losses are likely to occur than extreme profits over the whole pe-

riod. Leverage effect as reported in column LE, originally advocated by

Black [Black 1976b] provide more information on this issue.

Leverage effect19 reflects an asymmetric response of volatility to positive

and negative past returns. Increases in volatility are larger when previous

returns are negative than for the same magnitude of positive returns. How-

ever, this effect is reverse in commodity markets because the rise in volatility

make prices to go up and panic is set in the markets. For instance, this seems

to be the case with data at hands within the world food crisis 2007-2008

or from late 2010 up to 2013. Using t-statistic based tests, leverage effect

is not significantly different from zero over the period 1990-2015 for most

of the commodities. This means that drastic price moves may not come

from changes in returns as assumed in 2.4.1. Large price variations may

come from extra production of a specific commodity instead of another one

which due to available acreage or the conjunction usage may widen the dis-

crepancy in supply and demand. For instant, extra corn planted in United

19Leverage effect is correlation between the squared returns at date t and the returns at
date t − 1 that is significant, [Black 1976b], [Cont 2001].
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States for ethanol production and high demand for livestock feed affects the

soybean meal production (USDA). Consequently corn prices went up and

farmers reacted accordingly by supplying the market with more soybean.

This has increased the dependence level between different commodities.

Finally, we do not investigate autocorrelation since organized futures mar-

kets are known to be liquid and will not exhibit significant autocorrelations

since Mandelbrot has argued that, “arbitrage tends to whiten the spectrum of

price changes”, Cont [Cont 2001]. Besides, for non-Gaussian time series such

as the ones at hands (heavy tails due to high kurtosis), the autocorrelation

function may be difficult to interpret and will not capture the dependence

structure.
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Table 2.3: Descriptive statistics

N Mean (%) Std. dev. (%) High moments Extremes (%) t-Stats

Commodity Nearby Total 90-06 06-15 Total 90-06 06-15 Total 90-06 06-15 Skew Kurt. Min. Max LE(%) Q(10)
Corn 1 6197 4283 1913 1.70 2.92 -0.99 27.68 23.73 34.95 -1.21 25.03 -27.62 12.76 0.44 64

2 6197 4283 1913 1.74 2.89 -0.85 25.98 22.13 33.04 -0.38 12.44 -22.31 12.41 1.8 290
3 6197 4283 1913 1.80 2.85 -0.53 25.04 21.10 32.16 -0.47 11.54 -17.43 10.79 1.48 372
4 6197 4283 1913 1.93 2.67 0.29 23.61 19.52 30.89 -0.29 9.27 -15.10 10.31 0.98 631
5 6197 4283 1913 2.00 2.45 0.91 22.12 17.93 29.42 -0.26 8.52 -14.48 9.74 -0.14 1080
6 6197 4283 1913 1.97 2.43 0.95 20.99 16.84 28.17 -0.19 7.72 -9.25 9.65 -0.33 1930

Oat 1 6203 4281 1921 3.52 3.43 3.70 35.86 34.93 37.86 -1.14 13.75 -25.45 15.43 -0.27 108
2 6203 4281 1921 3.01 3.27 2.43 29.78 28.71 32.06 -0.07 15.81 -16.46 12.89 -1.57 343
3 6203 4281 1921 2.61 3.07 1.59 27.60 26.47 30.00 -0.33 6.69 -18.97 11.15 -1.47 174

Rough Rice 1 6200 4282 1917 2.18 1.86 2.86 26.84 27.55 25.20 0.11 27.29 -24.45 28.08 -1.41 57
2 6200 4282 1917 2.10 1.87 2.60 24.13 24.32 23.72 0.08 7.86 -13.24 14.35 1.36 260
3 6200 4282 1917 2.07 1.85 2.52 22.78 22.88 22.56 -0.29 11.18 -18.43 10.27 0.79 153

Soybeans 1 6202 4282 1919 3.12 1.16 7.66 25.42 22.97 30.20 -0.99 21.08 -23.41 20.32 -14.37* 1073
2 6202 4282 1919 2.62 1.13 5.97 23.38 21.77 26.64 -0.64 9.21 -16.49 6.73 -4.02* 743
3 6202 4282 1919 2.37 1.06 5.22 23.05 21.47 26.24 -0.49 7.91 -14.20 6.77 -4.30* 981
4 6202 4282 1919 2.32 1.06 5.13 22.36 20.69 25.74 -0.32 6.53 -9.22 7.06 -2.67* 1442
5 6202 4282 1919 2.32 1.10 5.15 21.54 19.87 24.89 -0.27 6.48 -8.11 7.04 -2.23 1697
6 6202 4282 1919 2.34 1.10 5.11 20.75 19.08 24.07 -0.30 6.84 -9.61 7.07 -2.35 1689

Tables 2.3 and 2.4 report descriptive statistics of daily excess returns to nearby contracts for each agricultural commodity. There is in: column 1 the commodity name; column 2 the nearby contract;
columns 3-5 (labeled “N”) the number of daily observations in each sample; columns 6-8 the percent per annum of average excess return for each sample; columns 9-11 the annualized standard deviation
(defined as the standard deviation of daily returns multiplied by the square root of 252) for each sample; columns 12-13 (labeled “High moments”) skewness and kurtosis; columns 14-15 (labeled
“Extremes”) minimum and maximum; columns 16-17 (labeled “t-Stats”) LE is leverage effect with (*) when it is significantly different from zero using ; Q(10) is the Ljung-Box portmanteau test for the
null hypothesis of no autocorrelation in the squared returns up to order 10. The test statistic is asymptotically χ2 distributed with 10 degrees of freedom with critical value of 23.21 at level of 1%.
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Table 2.4: Descriptive statistics (continued)

N Mean (%) Std. dev. (%) High moments Extremes (%) t-Stats

Commodity Nearby Total 90-06 06-15 Total 90-06 06-15 Total 90-06 06-15 Skew Kurt. Min. Max LE Q(10)
Wheat 1 6203 4284 1918 1.11 1.20 0.92 31.05 28.10 36.79 -0.53 18.26 -28.61 23.30 -9.34* 650

2 6203 4284 1918 1.45 1.60 1.11 28.04 24.03 35.39 0.08 5.97 -10.91 11.08 -1.07 1102
3 6203 4284 1918 1.89 1.91 1.86 27.02 22.68 34.81 -0.48 12.20 -23.48 9.09 -0.93 252
4 6203 4284 1918 1.93 1.82 2.16 25.34 21.18 32.79 -0.50 11.95 -22.04 8.21 -1.33 346
5 6203 4284 1918 1.87 1.82 1.98 23.16 19.10 30.35 -0.22 7.78 -12.16 8.15 0.81 1483
6 6203 4284 1918 1.72 1.76 1.87 22.16 18.23 29.65 -0.22 7.78 -10.16 7.55 0.69 1483

Cocoa 1 6197 4246 1950 5.06 3.36 8.39 30.66 31.35 29.11 0.11 5.58 -10.01 12.74 1.09 339
2 6197 4246 1950 5.03 3.41 8.21 29.36 29.68 28.65 0.05 5.62 -9.96 12.15 0.60 411
3 6197 4246 1950 4.96 3.39 7.99 28.12 28.21 27.91 -0.01 5.52 -9.95 9.49 0.94 461
4 6197 4246 1950 4.85 3.34 7.77 27.34 27.37 27.27 -0.02 5.57 -9.99 9.15 0.87 500
5 6197 4246 1950 4.75 3.28 7.60 26.69 26.67 26.72 -0.04 5.61 -9.94 8.73 1.31 536
6 6197 4246 1950 4.66 3.24 7.40 26.20 26.09 26.43 -0.05 5.68 -10.01 8.52 1.33 513

Coffee 1 6188 4252 1950 3.48 -1.16 2.01 37.69 28.33 29.70 0.88 16.39 -15.03 31.88 7.08* 886
2 6188 4252 1950 3.47 -1.10 1.83 36.70 23.70 29.52 0.25 10.86 -20.77 23.23 -1.37 1059
3 6188 4252 1950 3.44 -1.02 1.81 34.37 22.06 29.10 -0.06 10.94 -23.20 20.55 -4.09 853
4 6188 4252 1950 3.39 -0.53 1.63 32.79 20.21 27.47 0.04 9.51 -18.30 19.64 -4.82 917
5 6188 4252 1950 3.29 -0.31 1.62 31.52 18.49 25.60 0.06 7.49 -13.45 17.54 -4.89 1050
6 6188 4252 1950 3.21 -0.18 1.26 30.66 15.94 23.88 -0.01 7.69 -15.58 17.00 -4.11 967

Cotton 1 6203 4252 1950 -0.25 -1.16 2.01 28.77 28.33 29.70 -0.93 24.04 -30.43 18.96 -6.12 98
2 6203 4252 1950 -0.25 -1.10 1.83 25.67 23.70 29.52 -0.25 7.52 -15.86 9.89 -0.12 495
3 6203 4252 1950 -0.19 -1.02 1.81 24.49 22.06 29.10 -0.99 16.74 -20.55 7.76 0.39 169
4 6203 4252 1950 0.09 -0.53 1.63 22.74 20.21 27.47 -0.61 13.43 -16.80 10.76 3.2* 681
5 6203 4252 1950 0.24 -0.31 1.62 20.98 18.49 25.60 -0.45 10.41 -13.33 9.49 -0.76 1212
6 6203 4252 1950 0.21 -0.18 1.25 18.79 15.94 23.87 -0.02 7.42 -6.33 9.54 -1.88 3503
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Table 2.5 reports the correlations matrix between the different selected com-

modities. The soft commodities present low correlations amongst them-

selves and with grains. While grains are mutually dependent up to 30%,

except with rough rice. This may be due to larger production of rice in

Asian countries as compared to US. Particularly, one can think interchange-

ability of the grains in various domain that makes the production a product

in place of another one.

Table 2.5: Returns correlation matrix of nearby futures

Corn Oat R. rice Soybeans Wheat Cocoa Coffee Cotton
Corn 1
Oat 0.46 1
R. rice 0.19 0.15 1
Soybeans 0.53 0.37 0.21 1
Wheat 0.54 0.35 0.15 0.35 1
Cocoa 0.10 0.08 0.05 0.11 0.08 1
Coffee 0.10 0.11 0.03 0.09 0.11 0.14 1
Cotton 0.16 0.10 0.07 0.18 0.14 0.10 0.07 1

All correlations observed are significant at significant level of 1%.

To go beyond the data description with the aim to set up commodity prices

models, we apply more elaborated testing procedures in order to attain

a higher level of understanding the underlying dynamics of commodities

prices. This is addressed in the following subsection.

2.4.2 Testing for futures markets efficiency

The efficiency tests of futures markets starts with the checking the station-

arity of the returns series. The returns are considered as realization of sta-

tionary process if unit root hypothesis is rejected. Otherwise, serial cointe-

gration or error correction model can be run for the market efficiency test.

When unit root is rejected, two efficiency tests will be performed. The first

test checks for a = 0 and b = 1 in the regression model (2.10) on (stationary)

returns series standing for both efficiency and unbiasedness simultaneously.

However, as the regression model in (2.10) is linear the test results may not
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be consistent whatever their issues. The second test for market efficiency

aims to include non linearity as the relative market efficiency approach. The

adaptive market hypothesis concept is investigated, herein, with the Hinich

portmanteau bicorrelation test decribed in Appendix A.3.

2.4.2.1 Unit root tests

Table 2.6 presents the values of test statistic for both ADF and RALS unit

root tests. These values suggest the rejection of the null hypothesis that re-

turns are integrated for the two tests. Hence, returns of commodities futures

at hands can be considered as stationary. Therefore, we run the efficiency

tests based on the returns series.

Table 2.6: Test statistics of ADF and RALS unit root tests

Nearby contracts

Commodity 1 2 3 4 5 6
Corn -74.55 -74.34 -74.65 -11.25 -11.91 -9.94

-79.87 -76.78 -77.12 -14.76 -13.57 -11.65
Oat -20.32 -13.70 -12.35

-21.57 -15.43 -13.83
Rough Rice -72.91 -71.84 -72.20

-73.42 -75.46 -70.43
Soybeans -7.60 -9.22 -13.03 -10.97 -19.70 -20.60

-9.54 -9.08 -14.41 -13.23 -20.84 -23.46
Wheat -79.48 -76.87 -77.73 -77.62 -79.42 -79.42

-80.32 -78.22 -79.01 -78.74 -80.46 -81.03
Cocoa -6.27 -3.62 -5.558 -3.928 -4.09 -4.07

-9.43 -4.39 -7.064 -5.056 -6.03 -5.98
Coffee -10.80 -10.28 -10.30 -9.38 -10.01 -9.43

-12.54 -14.01 -13.23 -9.98 -10.79 -13.18
Cotton -9.09 -6.06 -5.73 -5.29 -7.53 -5.22

-11.13 -7.94 -8.12 -8.08 -11.12 -5.02

The null hypothesis is that there is unit root against the alternative that there is no unit root. For each
commodity, the test statistics are displayed on first line for ADF test and on the second line for RALS unit
root test. The critical values at levels 1% and 5% are respectively -3.48 and -2.89 for ADF tes and respectively
-3.571 and -3.571 for test RALS unit root test.
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2.4.2.2 Efficiency tests

With stationary returns series of both spot and futures for the commodities

at hands, one can estimate the regression model in equation (2.10). Mean-

while, since prices are not stationnary, the equation (2.10) has to be modified

to its equivalent as follows

ST − St

St

= b̃0 + b̃1
Ft,T − St

St

+ ˜errT . (2.12)

Then, the regression model will be run on data sample provided by equa-

tion (2.12) to be consistent with the no-arbitrage condition that futures price

equals the spot price at expiry date.

The results showed in Table 2.7 do not reject that a = 0 is significant at 5%

level, but b = 1 seems not to be relevant in most of cases. Therefore, spot

price will be considered as unbiased estimator of futures prices. Hence, the

futures markets is said to be inefficient even if they could sometimes switch

to efficiency. Indeed, considering the term structure, efficiency is more ex-

pected in long term than in short term in linear framework. This assertion

is not evidence with the commodities at hands. However, the rejection of

linear dependence may not capture the whole structure. Non-linearity can

also bias the estimates and contradicts the efficient market hypothesis. The

mixed conclusions lead to use adaptive market hypothesis concept which

allows to investigate relative efficiency with nonlinear test as well as degree

of inefficiency.

To test for the adaptive market hypothesis with the Hinich test, one first

needs to pre-whiten the data to remove the linear structure of data. Because

data are stationary, we will fit the appropriate autoregressive model of or-

der p, AR(p). For this purpose, only the front nearby prices are used to es-

timate the AR(p) model order20 for each commodity. Hence, any remaining

20The results are the same with the other nearby prices for all the commodities under
study.

58



Table 2.7: Linear model efficiency

Statistics

Commodity a b R2 RMSE
Corn C2 7.9e-7 0.893 0.935 0.0007

C3 8.7e-7 0.814 0.914 0.0009
C4 -5.8e-6 0.798 0.969 0.0010
C5 -1.3e-5 0.918 0.963 0.0010
C6 -1.6e-5 0.908 0.968 0.0010

Oat O2 1.8e-5 0.920 0.918 0.0012
O3 3.7e-5 0.890 0.881 0.0014

Rough rice RR2 9.3e-6 0.924 0.989 0.0009
RR3 1.2e-5 0.908 0.893 0.0011

Soybeans S2 2.4e-5 0.857 0.903 0.0007
S3 3.8e-5 0.793 0.922 0.0008
S4 4.1e-5 0.782 0.868 0.0009
S5 3.9e-5 0.811 0.838 0.0009
S6 3.5e-5 0.879 0.831 0.0010

Wheat W2 -1.4e-5 0.901 0.951 0.0008
W3 -2.9e-5 0.724 0.903 0.0011
W4 -3.3e-5 0.599 0.848 0.0012
W5 -3.6e-5 0.881 0.851 0.0012
W5 -5.1e-5 0.859 0.861 0.0011

Cocoa QC2 5.1e-5 0.812 0.979 0.0007
QC3 1.1e-6 0.791 0.966 0.0007
QC4 1.0e-6 0.738 0.956 0.0007
QC5 1.3e-6 0.757 0.946 0.0008
QC6 6.9e-8 0.757 0.959 0.0007

Coffee KC2 1.5e-5 0.694 0.959 0.0012
KC3 8.4e-6 0.709 0.948 0.0012
KC4 4.4e-6 0.712 0.944 0.0012
KC5 3.4e-6 0.691 0.944 0.0012
KC6 4.2e-6 0.695 0.931 0.0012

Cotton CT2 -1.1e-6 0.708 0.828 0.0011
CT3 -3.5e-6 0.692 0.822 0.0012
CT4 -1.3e-5 0.697 0.783 0.0013
CT5 -1.9e-5 0.692 0.769 0.0013
CT6 -1.9e-5 0.694 0.765 0.0013

R2 is coefficient of determination of linear regression and RMSE stands for root mean squared error.
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serial dependence will be to due the nonlinear structure of residuals. The

whitened residuals are then analyzed following the procedure described in

Appendix A.3.

To perform the H-test, we use the pre-whitened residuals from AR(p) model

that are divided into monthly residuals to constitute the non-overlapped

moving time windows. That is 308 non-overlapped moving time windows

from January 1990 to august 2015. Table 2.8 presents the results of AR(p)

model order and the H-test. The number of significant windows indicates

where the presence of nonlinear serial dependence is identified along with

the epochs in which it occurs. For the sample under study, such periods

are indicative of evidence of adaptive market hypothesis on the commodity

futures markets.

The null hypothesis of H-test is that, the time series of each window are

realizations of a stationary pure white noise process that has zero bicorre-

lations, defined by (A.7) in Appendix A.3. The alternative hypothesis is

these bicorrelations are non-zero meaning that there exists third-order non-

linear dependence in the data generation process. The rejection of the null

hypothesis implies the presence of nonlinear dependence in the series and,

therefore market inefficiency.

Furthermore, given the results of the number of windows in which nonlin-

ear dependence is detected, the degree of inefficiency can thereby be esti-

mated. This goes from 15.91% of windows for cocoa to 28.90% of the win-

dows in the case of rough rice.

Table 2.8: Hinich non linear test results

Commodities

Corn Oat R. rice Soy. Wheat Cocoa Coffee Cotton
AR(p) AR(4) AR(5) AR(3) AR(5) AR(4) AR(3) AR(3) AR(5)
nb. wind. 308 308 308 308 308 308 308 308
Signif. wind. 87 60 89 62 83 49 53 54
Deg. of ineff 28.25% 19.48% 28.90% 20.13% 26.95% 15.91% 17.21% 17.53%

AR(p), nb. wind. and Signif. wind. respectively stand for AR(p) model, number of windows and
number of significant windows.
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2.4.3 Testing for stylized facts in commodity prices

We aim to test for continuity, mean-reversion, presence of jumps, seasonal-

ity, and inter-temporal relationship (backwardation and contango) on daily

futures prices at hands. Stylized facts are driven by various factors that

may be distinct. But, these features can not be tested simultaneously, hence

applying the Bonferroni multiple testing procedure21 will allow to adjust

significance levels as they were performed together. So, the probability of

having at least one significant result due to chance remains as an adjusted

significant level. That is the significant level of each test is divided by the

number of performed tests.

In order to derive the required test statistics for decisions, both nearby and

expiry-month futures prices data are used. Recall that nearby futures prices

contain splice points from data concatenation. In order, not to bias the test-

ing procedures, specially in detecting jumps, the same tests are also run on

a real quoted futures prices. The data of such futures are selected over the

highly variation period of nearby futures prices.

2.4.3.1 Testing for mean-reversion of commodity futures prices

On evidencing the mean-reversion feature, one can22 use the results from

unit root tests. For the commodity prices at hands, the values of test statis-

tics in table 2.6 do not reject the hypothesis that futures prices follow mean-

reverting process. Both ADF and RALS tests lead to the same conclusion

and RALS gives more consistency to mean-reversion behavior as ahead for

whatever testing for jump will be. Indeed, the classical mean-reverting pro-

cess as stated by Ornstern-Uhlenbeck has Gaussian noise and the presence

of jump could affect the values of ADF test statistic while the RALS unit root

test does not require to specify a density function for residuals.

21False discovery rate and positive false discovery rate methods give similar results.
22That is a non-stationary process can also contain mean-reversion (Kim and Park

[Kim 2013])

61



Mean-reversion comes from transitory of shock effects that cause price to

deviate from its underlying value and will gradually move toward the

underlying fundamental value (see Yoon and Brorsen [Yoon 2005]). From

Fama [Fama 1970], the efficient market hypothesis asserts that asset prices

are unpredictable. Any efficiency is short-lived and could not be exploited

to out-perform. So, the mean-reverting behavior violates the market effi-

ciency hypothesis. Indeed, with mean-reversion, underlying value is pre-

dictable and this will also motivate futures hedging in commodity mar-

kets. Particularly, for rollover hedging to increase expected returns, futures

price returns should follow a mean-reverting process (see Yoon and Brorsen

[Yoon 2005]).

2.4.3.2 Testing for jump and their impact in agricultural market

Even the probability of having jump increase with decreasing observation

time step, jumps can still be observed in daily data. For instance, Figure 5

in Aït-Sahalia [Aït-Sahalia 2004] shows that the probability that a 10% log-

return involves one jump as a function of the daily sampling is about 60%.

This motivates the investigation of jumps presence in daily returns of com-

modity futures prices at hands.

Figures in Appendix A.2.1 exhibit sudden large variations of futures prices

at certain periods that suggest the presence of jumps. To check for the pres-

ence of jumps with the procedures mentioned in paragraph 2.3.2 and de-

scribed in Appendix A.4, we use both nearby prices and a real quoted fu-

tures prices. Indeed, nearby futures are concatenated futures prices and the

gaps at the splice points could biased the jump test if these gars are substan-

tial on the underlying time data. Thus, jump tests are also performed on

data of real quoted futures prices of a specific year which is selected on the

basis of both volatility and kurtosis computed year-to-year.23. In so doing,

only periods where the futures price varies the most are considered for each

23As it is well known that key indicators for the presence of jumps are volatility and
kurtosis, no results are displayed

62



commodity.

Tables 2.9 and 2.10 display, respectively, the results of BNS and ASJ tests

for the nearby futures prices. For the ASJ test, power and time scale are

respectively set at p = 4 and k = 3. To save space, details of test results are

moved to Appendix A.5.1.

Table 2.9: BNS jump detection test

Commodities

Contrat Corn Oat R. Rice Soy. Wheat Cocoa Coffee Cotton
1 9.01 11.84 11.84 3.78 6.00 7.06 4.39 7.11

9.49 12.22 12.22 4.90 6.28 7.32 4.80 7.74
2 7.05 6.33 6.06 7.59 5.05 7.65 4.66 4.88

7.35 6.56 6.16 7.86 5.01 7.89 4.79 4.93
3 7.78 8.16 7.17 7.87 8.04 7.34 3.91 7.11

8.21 8.49 7.30 8.05 8.19 7.58 4.04 7.14
4 7.66 7.37 7.03 6.71 3.93 5.55

7.98 7.55 6.99 6.89 4.12 5.61
5 5.95 6.56 5.93 6.62 2.94 4.77

6.17 6.81 5.89 6.81 3.03 4.86
6 5.40 6.55 6.18 6.56 7.10 3.01

5.51 6.76 6.20 5.95 7.30 3.11

The null hypothesis of no jump is rejected if the test statistic is greater than 2.807 (at 0.2%) cor-
responding to significant level of 1% in multiple testing. For each nearby contract, the first line
corresponds to zT P test statistic and the second one to zQP test statistic.

For all the commodities, the BNS test rejects the null hypothesis of no jump

and this regardless of the term structure. The ASJ procedure checks for

either presence or absence of jumps at significant levels of 1% and 2%

that corresponds to 5% and 10% respectively in multiple testing. The test

statistic Ŝ(4, 3, ∆n)t converge towards 1 at low rate. This may come daily

prices that are used instead of high frequency as suggested by the authors

[Aït-Sahalia 2009]. The absence of jump is rejected, except for wheat on the

first two contracts, oat and coffee. However, the presence of jumps is not

rejected for any commodity price and, this, irrespective of their maturity. To

disentangle whether presence of jumps is due to concatenation process or

price shocks, we have refined the jump detection procedure by performing

the same test on the real quoted futures prices. Table A.4 in Appendix A.5.1
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displays the results where there is a conflicting conclusion for some com-

modities compared to the nearby prices case. For real quoted futures prices,

corn, soybeans, wheat and cotton yield to same results, while jumps seem

to be present in oat and coffee futures prices and the presence of jumps is

rejected in rough rice and cocoa cases. So, concatenation method may im-

pact the jump tests results for rough rice and cocoa, oat and coffee futures

prices.

Meanwhile, putting together the jump evidence on time series of real

quoted futures prices with the planting and harvesting periods in table 2.12

over a year allows to infer where jumps may originate from. Indeed, con-

sidering a the harvesting period that spans the sample period used to check

for the presence of jumps on real quoted futures prices, jumps look to occur

either within or between that periods depending upon the commodity. The

inter-harvesting jumps are mainly due to exogenous shocks on agricultural

supply or demand that inventories are stored for, while the intra-harvesting

jumps may come from either external factors or the storage market value.

For grain commodities, maturity effect, the seasonality in inventory levels

in figure 2.1 and planting and harvesting periods in table 2.12 are part of

origin of price jumps. Indeed, recorded inventory levels are the highest just

after the harvesting period. As illustration, inventory level of corn is higher

in December (inventory level is recorded on 1st) the harvesting period end

in November.

Table 2.10: Decision of ASJ jump detection test

Commodities

Contract Corn Oat R. rice Soy. Wheat Cocoa Coffee Cotton
1 J noJ J J noJ J noJ J

2 J noJ J J noJ J noJ J

3 J noJ J J J J noJ J

4 J J J J noJ J

5 J J J J noJ J

6 J J J J noJ J

The symbol "J" stands for presence of jump and "noJ" means there is no jump
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When the jump is considered, its activity will also matter. Hence, one

has to distinguish between large jumps in finite number (finite activity)

and small jumps in either finite or infinite number (infinite activity). An-

other test of Aït-Sahalia and Jacod [Aït-Sahalia 2011] id helpful to de-

termine whether jumps have finite or infinite activity. The test statistic

of jump activity test is the inverse of the test statistic of continuity test

([Aït-Sahalia 2010],[Le Courtois 2014]). It appears that all futures prices en-

compass continuous component and when jump is considered, the will be

of finite activity.24 Details for jump activity and continuous component are

displayed in Appendixes A.5.2 and A.5.3.

Thus, with the above tests in 2.4.3.1, the process can be assumed to be of the

type "mean-reverting jump diffusion" when the jump is considered. The next

paragraph investigates the statistical issue of seasonal patterns for the fu-

tures prices as agricultural products are grown and harvested in a seasonal

fashion.

2.4.3.3 Testing for seasonality

The seasonal fashion of growing and harvesting agricultural products af-

fects both the price levels and volatility, Geman and Nguyen [Geman 2005].

Based on both visual inspection of graphic 2.2 and descriptive statistics on

expiry-month data in Table 2.11, seasonal pattern can be considered.

We report mean and standard deviation of expiry-month prices (Sørensen

[Sørensen 2002]) in table 2.11 that figure 2.2 also displays. Over a specific

year, prices variations appear to be seasonal. The averages of futures prices,

represented in bar chart, hit a peak in July for coffee and cotton but De-

cember for Cocoa. They reach their bottom in January except for cotton

that is in December. For grains, the average futures price of rough rice and

soybeans behave similar to soft commodities. These averages hits a peak

in July (rough rice and soybeans) and a bottom in January. But for corn,

24Some of futures contract reject the null hypothesis of both finite and infinite activity
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oat and wheat, the peaks are respectively in September, March and January

with a bottom in December, September and November respectively. More-

over, the price variations of a year behave similarly as average futures prices

in term of seasonality, even for wheat, cocoa and coffee where peaks slightly

shift to May, July and September respectively. Putting altogether seasonal

features with the planting and harvesting periods (reported in table 2.12)

shows clear evidences that futures prices are high and more volatile just be-

fore the harvesting (in scarcity periods) and go down with high inventory

levels, Black [Black 1976a].

Table 2.11: Summary statistics of Expiry-month prices

Expiry-Month

Commodity Jan. Mar. May Jul. Aug. Sept. Oct. Nov. Dec.
Corn 6410 6389 6353 6370 6353

329.71 336.43 329.43 340.00 326.40
142.75 147.74 137.17 149.73 137.01

Oat 6396 6337 6241 6126 6211
205.82 206.57 205.82 200.97 201.81
89.20 89.37 88.71 87.46 86.96

Rough rice 6226 6052 5919 5901 5769 6014
9.86 9.96 10.20 10.23 9.87 9.76
3.68 3.74 3.85 3.88 3.63 3.66

Soybeans 6375 6374 6376 6376 6344 6272 6329
759.43 768.30 778.67 791.00 786.83 772.45 762.49
287.64 292.12 299.50 308.03 304.08 293.73 289.92

Wheat 6455 6333 6283 6278 6517
456.92 449.76 439.29 447.91 451.11
180.64 182.76 177.42 180.99 180.64

Cocoa 6475 6433 6386 6339 6279
1708.12 1713.33 1714.90 1715.78 1717.52
671.23 672.59 673.55 673.23 672.68

Coffee 6337 6362 6473 6346 6286
118.43 119.06 121.32 121.12 119.40
61.41 59.02 68.23 72.93 59.20

Cotton 6371 6369 6345 6332 6306
68.80 69.91 70.48 68.25 67.65
18.15 20.19 20.47 17.01 16.01

For each commodity, observations number of that month within the period considered, mean futures prices and variation are displayed on
first, second and third lines.

Seasonality test is also conducted on monthly volatility that is estimated

from nearby futures prices. Historical volatility is computed as standard

deviation of daily returns which are grouped by month for each year in

order to check their seasonal pattern via Fisher test. Table 2.13 reports the

values of test statistic of null hypothesis being the absence of seasonality.
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Figure 2.2: Mean and variation of futures prices: Expiry-month data
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Table 2.12: Planting and harvesting seasons

Commodity Planting Harvesting
Corn Apr. - Jun. Oct. - Nov.
Oat Apr. - May Aug. - Sept.
Rough Rice Mar. - May Aug. - Oct.
Soybeans Apr. - Jun. Sept. - Nov.
Wheat* Apr. - May Aug. - Sept.

Aug. - Oct. May - Jul.
Cocoa
Coffee Nov. - Feb.
Cotton Mar. - Jun. Sept. - Dec.

*Winter and Spring

This is rejected except for cocoa and coffee suggesting the seasonal volatility.

Graphics in Appendix A.2.2 display the monthly volatility patterns.

Table 2.13: Testing for seasonality on monthly volatility

Commodities

Nearbys Corn Oat R. rice Soy. Wheat Cocoa Coffee Cotton
1 9.91 6.33 8.37 6.60 4.39 0.56 1.18 3.07
2 9.51 6.77 6.98 8.92 3.95 1.38 1.67 3.28
3 8.46 7.09 6.85 7.41 4.55 1.23 1.07 3.24
4 6.71 7.73 4.85 1.10 1.05 2.42
5 8.87 7.75 3.85 1.05 1.04 3.00
6 9.79 7.39 3.71 0.99 0.83 1.93

The test compares the sum of squared errors between a model with trend and a model with trend
and seasonality component. This test is called Fisher seasonality test, and it uses test statistic which
is compared to values of theoretical of Fischer-Snedecor table (2.311 which is the 1% corresponding
to five multiple testing of Fisher distribution with 11 and 253 degrees of freedom.). Seasonality is
considered when test statistic value is greater than the theoretical value.

2.4.3.4 Inter-temporal relationship

The inter-temporal relation of futures contracts is the slope of term structure

and will refer to as measure of anticipation for risk premium. Depending

on the upward or downward slope, the market is said to be in situation

of contango or backwardation respectively. Whatever the market situation,

appropriate strategies can be based on it using additional information on
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inventories level25 and futures markets.

Formally the slope is given by (Gorton et al. [Gorton 2013])

s(t, Ti) =
F (t, Ti)
F (t, T1)

− 1, i > 1; (2.13)

where F (t, T1) is nearest futures price is taken as proxy for the spot price,

Stt, and F (t, Ti)i>1 is the futures price of longer maturity contracts. Expres-

sion in equation (2.13) allows to estimate time series of slopes expressed in

terms of increase proportion over the spot price for different maturities. For

a given maturity, Ti0 , with i0 > 1, if s(t, Ti0) is positive, then the market is in

contango within the period [1, i0], else the market is in backwardation. One

can then check for consistency of slope sign along the maturities slope time

series.

Figure 2.3 exhibits the slope time series, for different commodities futures

prices with their maturities, over the 1990-2015 period. Based on graphical

representations, mixed situation holds even if contango is likely to be more

pronounced than backwardation except for soybeans, for which the graph-

ical representation does not depict a clear-cut situation. One can also rely

on average26 slopes for each commodity are provided in table 2.14. On this

basis, only soybeans seems to be more in backwardation than in contango;

all other commodities appear to be in contango.

2.5 Conclusion

For storable commodities, we relate the market situation in term of effi-

ciency and how fundamentals like production, inventory and spot interact

to drive the futures prices. Based on analysis of commodity data prices,

we draw the dynamic of the futures prices behavior. Particularly, various

25In the case of equity futures, the slope is solely driven by the risk-free rate through
arbitrage arguments.

26Other statistics like median or mode can be use.
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Figure 2.3: Difference between nearby futures and spot price expressed as
percentage of the spot price 70



Table 2.14: Average difference between nearby futures and
spot price expressed as percentages of the spot price

Nearby contracts

Commodity N slope 2 slope 3 slope 4 slope 5 slope 6
Corn 6198 1.992 3.653 4.724 5.554 6.512
Oat 6204 1.362 2.964
Rough rice 6201 1.732 3.237
Soybeans 6204 -1.102 -2.218 -3.388 -4.387 -5.188
Wheat 6203 2.009 3.310 4.279 5.559 5.523
Cocoa 6198 1.427 2.820 4.120 5.363 6.607
Coffee 6189 1.899 3.703 5.412 7.073 8.730
Cotton 6204 1.097 2.035 2.595 3.184 3.849

All average are significantly different from zero based on student test.

statistical tests are conducted. Market efficiency, mean-reverting, jump as

well as seasonality in both price levels and monthly volatility can be con-

sidered for the dynamic of futures prices. Commodity markets are rejected

to be efficient linearly over the whole period, instead nonlinear efficiency

occur at certain periods. Besides, the unit root test used for market efficient

hypothesis allows to suggest the mean-reverting behavior for all the com-

modity futures prices. Thus, returns on futures contract are, in some extent,

predictable and futures contracts constitute thereby consistent hedging in-

struments against production and market risks.

Furthermore, we apply both Barndorff-Nielsen and Shephard

[Barndorff-Nielsen 2006] and Aït-Sahalia and Jacod [Aït-Sahalia 2009,

Aït-Sahalia 2011] tests to detect the presence of jumps. To our knowledge,

jump detection procedures are not yet applied in agricultural markets

even if models with jump component are suggested in many papers of

agricultural commodity markets. To this end, time series of both the nearby

futures prices as well as real quoted futures prices of specific year are used

to distinguish whether jumps are due to concatenation process. However,

the jump detection tests are originally designed for high frequency data,

and we apply on daily data instead. Anyway, results allow to infer that

jumps may come from both maturity and market value of storage for most
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of commodities and external factors like political unrest, large demand due

to population growth etc. . . seem to affect futures prices in lesser extend.

Seasonality evidences are based on Fisher test for monthly volatility and

graphic representations for long-run mean. For all the agricultural com-

modities, seasonality is suggested to be relevant features. Finally, we also in-

vestigate the inter-temporal relationship to address whether the term struc-

ture will depict, on average, upward or downward slope. For all the se-

lected commodities, the converse situation is observed most of the time.

However, the identification of stylized facts does mainly contribute to ap-

propriate investment strategy to adopt. Usually, these features are captured

by parameters in price model. Hence, all these stylized facts will permit to

state a model for futures prices of these agricultural commodities at hands.

The following Chapter addresses the model estimation of the selected agri-

cultural commodities.
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Chapter 3

Modeling of commodity prices

Abstract: This Chapter investigates the modeling of agricultural

futures prices. We agricultural prices follow mean-reverting

jump-diffusion process in light of stylized facts of Chapter 2.

Specifically, the drift term is periodic making the estimation to

be conducted in two-stage procedure. The first step allows to es-

timate the equilibrium parameters related to the drift term using

least square method. In the second step, we apply the particle

MCMC filtering method on the residuals from the first step to

obtain the remaining parameters.
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3.1 Introduction

Asset prices modeling consists in estimating a set of parameters to repre-

sent key factors that drive the behavior of assets in market dynamics. Such

models usually base on stylized facts and will be composed of both deter-

minable component and error term. A process of semi-martingale class1 is

flexible enough to include all these factors together in a model. Particularly,

commodity price modeling in the financial literature is addressed with Lévy

processes which are Itō type semi-martingales.

The modeling of commodity prices has improved in tandem with the in-

creased interest to the products through the trading volume and variety of

contracts. Usually, the need of modeling asset prices comes with hedg-

ing and speculation strategies. On that way, the stylized facts serve as

guide. The dynamic of futures prices in commodity markets can be either

derived from spot price model (see for example Schwartz [Schwartz 1997]

or Geman and Nguyen [Geman 2005]) or straightly posited (see Crosby

[Crosby 2008]). For agricultural commodities, there are well known em-

pirical properties related to operational contingencies embedded in deliv-

ery of the trading of their derivatives. Besides, convenience yield as utility

of holding the physical good (agricultural commodities) also affects invest-

ment strategies. All these features are combined to make agricultural prices

to behave with mean-reversion, seasonality and jump.

Lévy processes have statistical properties that are rich enough to include

all the above mentioned features. Many studies had used Lévy processes

to represent agricultural markets. For instance, Schwartz [Schwartz 1997]

and Geman and Nguyen [Geman 2005] used continuous framework with

Brownian representing risk factors in commodity markets. Hilliard and Reis

[Hilliard 1999, Hilliard 1998], Deng [Deng 2000], Crosby [Crosby 2008] and

1Delbaen and Schachermayer [Delbaen 1994] had proved that the class of semi-
martingale processes is optimal in self-financial strategies
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recently Schmitz et al. [Schmitz 2014] included jump component to model

agricultural prices.

We aim to derive a trade-off between theoretical and empirical coherences

that will behave like the stylized facts of agricultural futures price, hence

a price model that should include mean-reversion, seasonality and jumps.

The financial literature represents mean-reversion with Ornstein-Uhlenbeck

process. But this process in Gaussian and to account for fat-tailed, the er-

ror term will be replaced by Lévy process with jump. Since using the tests

of Aït-Sahalia and Jacod [Aït-Sahalia 2009, Aït-Sahalia 2011] in Chapter 2

have suggested finite activity jump, the compound Poisson process is natu-

ral candidate to accommodate the jump feature in this futures price dynam-

ics. Deterministic seasonality is incorporated by trigonometric functions on

the diffusive parameter. Finally the model can be set up in form of stochastic

differential equation of Lévy-driven Ornstein-Uhlenbeck process.

Data-generating system of jump-diffusion processes belongs to class Marko-

vian processes. The optimal parameters of Markov processes are considered

to be those that maximize the sample likelihood function. However, the ex-

act maximum likelihood estimation of parameters is usually infeasible be-

cause closed-form likelihood function is available for stochastic differential

equation only in very limited cases. For instance, the likelihood functions in

Merton [Merton 1976] and Press [Press 1967] have infinite series represen-

tation. To overcome the estimation limits we apply a particle Monte-Carlo

Markov Chains approach to draw the parameters estimate of the considered

Lévy process.

The Chapter consists of three parts followed by conclusion. Section 3.2 sets

up the model relative to the stylized facts of Chapter 2. Section 3.3 is de-

voted to the two-stage estimation procedure for the model and Section 3.4

is application on agriculture futures prices at hands.

76



3.2 A model for agricultural futures price

In agricultural markets, spot prices are not the same in different locations

where deliveries take place at different places and will not be easy to define

in agricultural markets due to location constraints. Then, we directly posit

the futures price dynamic to follow mean-reverting jump-diffusion stochas-

tic differential equation.

3.2.1 Model setting

We consider a financial market living on stochastic basis of a fixed proba-

bility space (Ω, F,P) with information filtration (Ft)t>0, that we assume to

satisfy usual conditions.2 Assume the market is arbitrage-free, so there will

exist an equivalent martingale measure , P̃, of statistical measure P under

which futures prices are martingales. However, since jump risk matters, the

markets will be incomplete.

Model estimation with jump component is tedious in two ways. First, re-

gardless the equivalent martingale measure , jumps are infrequent and will

lead to estimation difficulties for adequate model precision. Second, it is

not easy to choice the appropriate equivalent martingale measure under

which futures prices should be martingales so as not to mislead the dif-

ferent risks behavior. Following empirical investigations in Chapter 2, we

posit the futures price to follow mean-reverting jump-diffusion with peri-

odic long-run mean and seasonal volatility. Seasonality in volatility is rep-

resented by trigonometric function as in Geman and Nguyen [Geman 2005],

but the seasonal long-run mean is modeled as periodic long-run mean over

a year.
2A filtered probability space that satisfies the usual conditions is complete (i.e. F0 con-

tains all P-null sets) and right-continuous (i.e. Ft = Ft+ :=
⋂

s>t Fs, ∀t, meaning that any
information known immediately after t is also known at t). The natural filtration induced
by a counting process is right-continuous, and the completed natural filtration of a Lévy
process is right-continuous. Together the two classes of processes cover a large chunk of the
theory, and so if one of them is the driving source of randomness, it’s very mild to assume
right-continuity.
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Denote by Ft,τ the price at time t of commodity futures that will mature at

time τ . Let’s Xt = ln(Ft,τ ) with Ft,τ > 0, ∀t > 0 when there is no ambiguity

on the maturity τ . Under the statistical measure P, the process Xt satisfies

the following stochastic differential equation

dXt =
[
µt − κXt − λJ

∫
zν(dz)

]
dt + σtdWt + JdYt, P − a.s. (3.1)

where κ is the rate of reversion to the long-run mean, µt and σt > 0 the

volatility. Both long-run mean, µt, and the volatility, σt, are determinis-

tic and seasonal functions of time that are stated differently. The process

W = (Wt)t>0 is a Brownian motion under P and J ∈ (−1, 1) is a jump

scaling factor. The process Y = (Yt)06t6T is a compound Poisson; that is

Yt :=
∑Nt

k=1 Zk where N := (Nt)06t6T is a Poisson process with jump intensity

λ > 0 and the process Z := (Zt)06t6T represent the jump size. The jump size

process Z := (Zt)06t6T is identically and independently distributed with

Lévy measure, ν(dz), and also independent of counting process Nt. The

Lévy measure, ν(dz), satisfies the condition
∫
R min(|x|, 1)ν(dz) < ∞ to rep-

resent finite variation with finite activity where m = E[Zt] < ∞.

The dynamic in equation (3.1) can also be written in form as the expression

(2.11) of Chapter 2 where the variation of uncertainty modeled by a Lévy

process, L = (Lt)t>0 as

dLt = −λJ
∫

zν(dz)dt + σtdWt + JdYt and µt = κx̄.

The periodicity of the long-run mean, µt, is represented by the combination

of real-valued functions e1, . . . , ep, for p ∈ N,

µt =
p∑

ℓ=1

µℓeℓ(t), (µ1, . . . , µp) ∈ Rp.

The seasonality of volatility, σt, is in form of exponential of trigonometric
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function given by

σt = σeα sin[2π(t+β)], σ > 0, α > 0, β ∈ [−0.5, 0.5].

For modeling purposes, one needs equivalent martingale measure to the

statistical measure, P under which the market is in equilibrium. We address

the measure change from statistical measure, P, to risk-neutral measure, P̃,

of the process in (3.1).

3.2.2 Market price of risk

Given the model setup in (3.1), market price of commodity risk comes from

both continuous and jump risks. Under P, the market is incomplete because

of two risk sources by assuming the absence of opportunity of arbitrage

in the market, the equivalent martingale measure will not be unique. We

assume the risk-neutral measure to be fixed by the market.

For simplicity, assume the riskless return to be zero and denote by X̃t the

log futures price under equivalent martingale measure , P̃

dX̃t =
[
µt − κX̃t + σtη − λ̃J

∫
zν(dz)

]
dt + σtdW̃t + JdỸt, P̃ − a.s. (3.2)

where η is the market price for continuous risk. The stochastic process W̃ =

(W̃t)t>0 is a Brownian motion under P̃. η only perturbs the drift term from

continuous risk and there is another set of perturbations specific to jump

component Yt in equation (3.2). Namely, we assume that the jump intensity

λ becomes λ̃ under P̃ as follows (Aït-Sahalia and Matthys [Aït-Sahalia 2014])

λ̃ = eaλ, a ∈ R.

The scalar a amplifies or diminishes the jump intensity. From equation (3.2)

we note that perturbation of the intensity alters the drift term and will also

change the frequency of jumps occurrence in the Poisson process Nt of fu-
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tures price dynamic (3.1). For instance, when jumps are downward, only

the compensation will lead to higher expected returns when assets prices

are low and vice-versa for lower expected returns when asset prices are

upward. This is consistent with the empirical risk and return trade-off ob-

served in financial markets. In other words, compensating the jump process

leads Ft,M to carrying a risk premium for intensity misspecification. The

second perturbation of jump component affects the jump size Lévy mea-

sure and we assume the Lévy measure of jump size distribution to be the

same under two probability measures.

3.3 Model estimation procedure

The aim is to estimate the parameters of the process in equation (3.1) based

on observation stream {X̃tj
}j=1,...,n. As data are generally observed dis-

cretely in time, we consider constant time step, ∆t > 0; so the observation

points are {tj = j∆t, j = 1, . . . , n}. The estimation is proceeded in two-stage

framework due to seasonal long-run included in drift term in (3.1). The first

step applies the approach in Franke and Kott [Franke 2013] to estimate the

parameters of periodic drift term and the speed of mean-reversion of Lévy

driven Ornstein-Uhlenbeck process. These parameters are also referred to

equilibrium parameters since they characterize the equilibrium state. The

second step uses the residuals from the first step to fit the appropriate Lévy-

driven models via particle Monte Carlo Markov Chain approach.

3.3.1 Model under equivalent martingale measure P̃

Let’s denote the vector of the parameters in the first step by

ϑ = (µ1, . . . , µp, κ) ∈ Rp × R+
∗ .
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Then, the drift term in (3.1) could be represented in the form of inner prod-

uct

ϕ(t, x) · ϑ =
p∑

ℓ=1

µℓeℓ(t) − κx,

where ϕ(t, x) is (p+1)-dimensional function that is periodic in t to represent

the seasonal pattern of long-run mean. That is, ϕ(t, x) looks like





ϕ(t, x) = (e1(t), . . . , ep(t), −x) ,

ϕ(t + δ, x) = ϕ(t, x), ∀x.
(3.3)

where δ is the period. Then, the model stated in equation (3.1) can also be

written as follows

dXt = ϕ(t, Xt) · ϑ dt + dLt, X0 = x0, P − a.s. (3.4)

with (Lt)t>0 the Lévy error term. Under the equivalent martingale measure

P̃, the equation (3.4) can be written as follows

dX̃t = ϕ(t, X̃t) · ϑ dt + dL̃t, X0 = x0, P̃ − a.s. (3.5)

where

dL̃t =
[
σtη − λeaJ

∫
zν(dz)

]
dt + σtdW̃t + JdỸt, P̃ − a.s. (3.6)

Then, the transformation of Xt into X̃t only comes from the change of mea-

sure effect on error term dLt that gives dL̃t, corresponding to adjustment of

market equilibrium. Actually, if θ is the vector of parameters of L̃t, all the

parameters in model (3.5) will be combined as vector Θ = (ϑ,θ).

3.3.2 First step: Estimation of equilibrium parameters

The parameters µ1, . . . , µp, κ characterize the equilibrium state. Franke and

Kott [Franke 2013] have applied least square method to estimate periodic

81



long-run mean of Lévy-driven Ornstein-Uhlenbeck process. The model in

expression (3.2) is Lévy-driven Ornstein-Uhlenbeck process and its drift

term can be expressed as linear combination of the parameters µ1, . . . , µp, κ.

Assume that the real-valued functions e1(t), . . . , ep(t) form an orthonormal

system in L
2
(
[0, δ], 1

δ
dµ

)
; else, without loss of generality they can be orthog-

onalized via Gram-Schmidt orthogonalization algorithm,

∫ δ

0
eℓ(t)ek(t) =





δ, ℓ = k

0, ℓ Ó= k.
(3.7)

Natural choices3 for real-valued functions e1, . . . , ep are trigonometrical

functions. For 0 6 k 6 ⌊p/2⌋

e2k(t) = sin

(
2πkt

δ

)
and e2k+1(t) = cos

(
2πkt

δ

)
.

These functions satisfy the conditions in (3.7) and they are orthogonal in

L
2
(
[0, δ], 1

δ
dµ

)
. Furthermore, assume that the total period spanned by ob-

servations T is a multiple of period δ,

T = nδ, and n ∈ N. (3.8)

The least square estimator of the drift parameters of Lévy driven Ornstein-

Uhlenbeck process is based on discretization of stochastic differential equa-

tion in (3.4),

∆X̃(j+1)∆t = ϕ(j∆t, X̃j∆t)ϑ∆t + ∆L̃(j+1)∆t, j = 0, . . . , n (3.9)

3The functions e2k(t) = sin(kt) and e2k+1 = cos(kt), 0 6 k 6 ⌊p/2⌋ are the basis of
Fourier expansion, which is used to represent any squared integrable function. So any
periodic drift can be approximated by a linear combination of these functions.
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and ϑ is found using the following objective function

h : ϑ Ô−→
n∑

j=0

(
∆X̃(j+1)∆t − ϕ(j∆t, X̃j∆t)ϑ∆t

)2

(3.10)

where n = ⌊T/∆t⌋−1. The authors in [Franke 2013] have shown that, under

the assumptions (3.7) and (3.8), the solution that minimizes h(ϑ) is

ϑ̂ = Q−1
T,∆t RT,∆t (3.11)

and will converge, in probability, to continuous-time least square estimator

that is consistent, and asymptotically normal,

ϑ = Q−1
T RT . (3.12)

In the expression (3.12), the matrix QT is given by

QT =


TIp −rT

−r′
T vT


 (3.13)

with Ip the p−dimensional identity matrix, rT and vT are defined as follows

rT =

(∫ T

0
e1(t)X̃tdt, . . . ,

∫ T

0
ep(t)X̃tdt

)′

and vT =
∫ T

0
X̃2

t dt.

RT ∈ Rp+1 is the vector given by

RT =

(∫ T

0
e1(t)dX̃t, . . . ,

∫ T

0
ep(t)dX̃t , −

∫ T

0
X̃t−dXt

)′

. (3.14)

Note that, this convergence comes from the càdlàg property of (X̃t)06t6T
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and as ∆t → 0, it holds for any ℓ, k ∈ {1, . . . , p}

n∑

j=0

eℓ(j∆t)ek(j∆t)∆t −→
∫ T

0
eℓ(t)ek(t)dt

n∑

j=0

eℓ(j∆t)∆X̃(j+1)∆t −→
∫ T

0
eℓ(t)dX̃t.

3.3.3 Second step: fitting the residuals

Consider the expression in (3.6) that constitute the residuals the from first

step estimation. Assume that the jump sizes follow exponential law of pa-

rameter b,

Zk ∼ exp(b), with ν(dz) = be−bz, b > 0, z > 0. (3.15)

Then, the vector of parameters for residuals in (3.6) is

θ := (α, β, σ, η, λ, a, b) (3.16)

A jump-diffusion models can be estimated using filtering methods when

the closed form maximum likelihood function is intractable. Therefore, we

apply a filtering approach that aims to reproduce the distributional prop-

erty of parameter based on the observations. Such methods are based on

Bayesian approaches and will include Kalman filter, particle filter, MCMC

among others. The Kalman filter is applied in Gaussian noise context and

will not be recommended in presence of jump as in this case. The particle

filter is an alternative to Kalman filter where the error term is not Gaussian.

Recall that in a Bayesian approach, the parameters are considered as latent

random variables, θ := (θt)06t6T , and the posterior distribution is of interest

p(θ0:n|L̃0:n) =
p(L̃0:n|θ0:n)p(θ0:n)

p(L̃0:n)
, (3.17)

with L̃0:n and θ0:n respectively stand for the vector of join random variables
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(L̃t0 , . . . , L̃tn
) and (θt0 , . . . ,θtn

).

In expression (3.17), p(L̃0:n|θ0:n) is the exact likelihood function with the re-

sulting posterior distribution form Bayes formula p(θ0:n|L̃0:n) and p(L̃0:n) is

data marginal density function defined as

p(L̃0:n) =
∫

p(L̃0:n|θ0:n)p(θ0:n)dθ0:n.

Bayesian inference is addressed for model parameters’ estimation with the

assumption of the prior density function p(θ0:n) that expresses the personal

beliefs and knowledge of the phenomenon. Instead, filtering does focus on

sampling from the prior density function p(θ0:n). Importance sampling al-

gorithm such as Sequential Importance Sampling (SIS) or Sequential Importance

Resampling (SIR) belong to class of Monte Carlo sequential methods that are

used in calculation of the posteriori distribution. In particle filter methods,

a collection of weighted points, called particles, are generated recursively

to approximate the distribution p(θ0:n|L̃0:n). A particle is computed as soon

as an observation is available and this makes the implementation of particle

filter computationally intensive and may become cumbersome.

An alternative approach is the particle Markov chain Monte Carlo (PM-

CMC) where the p(L̃0:n|θ0:n) is replaced by its particle filter approximation

p̂(L̃0:n|θ0:n). The statistical theory underlying method is detailed in Andrieu

et al. [Andrieu 2010] which gives the exact approximations. The particle

MCMC aims to combine particle filter and MCMC method. The main idea

of PMCMC is to use Sequential Monte Carlo methods to propose some θ0:n

in a Metropolis-Hastings algorithm targeting the posterior distribution of

θ0:n. We apply particle marginal Metropolis-Hastings (PMMH) algorithm

(in Andrieu et al. [Andrieu 2010]) that leaves p(L̃0:n|θ0:n) invariant with er-

godic sample under weak assumptions.

Assume that sampling from the conditional density p(θ0:n|L̃0:n). It is natural
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to suggest a proposal density for the Metropolis-Hastings update of

q(θ′
0:n|θ0:n) = q(θ′|θ)p(L̃0:n|θ′) (3.18)

so that the only degree of freedom in the algorithm is q(θ′|θ). Therefore, the

Metropolis-Hastings acceptance ratio is given by

min



1,

p̂(L̃0:n|θ0:n)p(θ0:n)q(θ′|θ)

p̂(L̃0:n|θ′
0:n)p(θ′

0:n)q(θ|θ′)



 (3.19)

3.3.4 Model validation

In model specification for asset prices, there is always a misspecification risk

that could impact an investment strategy. In that case, model validation

tools help to decide the consistency of the estimations on real data. We will

apply residuals based test to check for parameter consistency on data at

hands.

This consists in testing the residuals for stationary white noise. That is to

check for zero autocorrelation for non-zero lags using Box-Pierce or Ljung-

Box statistical tests. Under the null hypothesis that {εj} is a sequence of

independent and identically distributed random variables, the two corre-

sponding test statistics have asymptotic chi-square distributions.

3.4 Application on agricultural futures prices

We implement the above described two-stage procedure to estimate the pa-

rameters for mean-reverting jump-diffusion in Matlab 2014. The first step

is simple ordinary least square model on nearby futures prices to derive

the parameters of drift term. Then, estimation in the second step on the

residuals follows with application of PMMH algorithm from Andrieu et Al.

[Andrieu 2010].

Recall that the stochastic process in expression (3.2) is affine jump-diffusion.
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Then using the affine transformation of Duffie et al. [Duffie 2000], the model

of log futures prices is given by (Aiube et al. [Aiube 2008])

X̃t,M = µM + e−κ(M−t)X̃t,M + A(M − t) + B(M − t) (3.20)

where

A(M − t) = −
η

κ

(
1 − e−κ(M−t)

)
+

σ2
t

4κ

(
1 − e−2κ(M−t)

)

B(M − t) = λeaJ
∫ M

t

[
exp

(
1
b
e−κ(M−z) + 1

2b2 e−2κ(M−z)
)

− 1
]

dz

3.4.1 Mean-reversion estimation: speed and periodic long-

run means

The first step in estimation procedure gives the values of equilibrium pa-

rameters ϑ̂ = (µ̂1, . . . , µ̂p, κ̂) for each commodity. These values are reported

in Table 3.1 where we only consider the significant values according to Stu-

dent test, otherwise, a dash mark is reported in lieu of a value. Note that

the speed of mean-reversion is the same for all maturities while the values

of long-run mean clearly show consecutive up and down levels.

3.4.2 Estimates: fitting the residuals

In the second step, the values of κ̂ from the first step estimation as well

as the jump scale parameter J are plugged as scalars. Specifically, we set

J = 0.8 and will apply the PMMH algorithm as particle MCMC methods

to obtain the estimates of θ = (α, β, σ, η, λ, a, b). The filtering process starts

with initial vector θ0.4 At each time step, state variables are filtered and will

constitute a collection of observations to be used as sample. Then, applying

maximum likelihood estimation on filtered state variables, one can derive

the target parameters. The Berndt-Hall-Hall-Hausman (BHHH) algorithm

4Optimizers are usually sensitive to initial conditions, so Monte Carlo can be used to
choose a number of starting points in the solution space like in EM algorithm.
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Table 3.1: Speed and periodic long-run mean of mean reversion

Commodity κ µ1 µ2 µ3 µ4 µ5 µ6

Corn C1 0.01200 0.00027 -0.00006 -0.00016 -0.00029 0.00206
C2 0.00047 -0.00010 -0.00041 -0.00037 0.00204
C3 0.00035 0.00003 -0.00035 -0.00033 0.00201
C4 0.00034 0.00014 -0.00047 -0.00024 0.00192
C5 0.00025 0.00001 -0.00057 -0.00032 0.00184
C6 0.00024 0.00009 -0.00032 -0.00026 0.00175

Oat O1 0.00761 0.00016 0.00008 0.00082 -0.00067 0.00144
O2 0.00037 -0.00024 0.00031 -0.00011 0.00107
O3 0.00039 -0.00026 0.00037 0.00019 0.00094

Rough rice RR1 0.00206 0.00056 -0.00009 -0.00017 0.00051 0.00090
RR2 0.00068 -0.00002 0.00010 0.00043 0.00078
RR3 0.00049 0.00021 0.00031 0.00042 0.00072

Soyebans S1 - - - - - -
S2 - - - - - -
S3 0.00571 -0.00009 -0.00019 -0.00001 0.00012 0.00005 -0.00027
S4 -0.00005 -0.00014 0.00003 0.00003 -0.00004 -0.00032
S5 -0.00008 -0.00021 -0.00001 0.00007 -0.00010 -0.00039
S6 -0.00016 -0.00012 -0.00007 0.00011 -0.00008 -0.00031

Wheat W1 0.00839 0.00002 -0.00120 0.00059 0.00039 0.00139
W2 0.00021 -0.00103 0.00075 0.00035 0.00116

W3∗ - - - - - -
W4 -0.00021 -0.00088 0.00059 0.00044 0.00101
W5 0.00003 -0.00086 0.00045 0.00039 0.00087

W6∗ - - - - - -
Cocoa QC1 0.00627 -0.00041 0.00010 -0.00031 -0.00064 0.00087

QC2 -0.00036 0.00001 -0.00043 -0.00057 0.00078
QC3 -0.00034 -0.00004 -0.00052 -0.00053 0.00075
QC4 -0.00030 -0.00009 -0.00054 -0.00050 0.00073
QC5 -0.00032 -0.00014 -0.00054 -0.00047 0.00077
QC6 -0.00033 -0.00009 -0.00048 -0.00053 0.00071

Coffee KC1 0.00818 0.00017 -0.00012 0.00008 -0.00005 0.00173
KC2 0.00026 -0.00002 0.00013 0.00011 0.00167
KC3 0.00022 -0.00010 0.00017 0.00005 0.00155
KC4 0.00025 -0.00012 0.00021 0.00002 0.00151
KC5 0.00029 -0.00015 0.00024 -0.00001 0.00150
KC6 0.00024 -0.00021 0.00021 -0.00004 0.00150

Cotton CT1 0.00876 0.00006 -0.00027 -0.00023 0.00003 0.00209
CT2 -0.00022 -0.00004 -0.00010 -0.00003 0.00190
CT3 0.00000 -0.00020 0.00002 -0.00016 0.00208
CT4 0.00008 -0.00008 -0.00018 -0.00028 0.00214
CT5 -0.00007 -0.00007 -0.00018 -0.00021 0.00218
CT6 0.00008 -0.00005 -0.00006 -0.00024 0.00208

* In some case, the matrix QT in expression (3.13) is singular.

is appropriate to give more consistent results for the likelihood function op-

timization.

Parameter estimates are all significant at level 5% as well as the values of

Ljung-Box test statistic that suggest not to reject the null hypothesis of inde-

pendence residuals at same level of significance. Furthermore the parameter

estimates are closed to empirical estimates of Chapter 2.
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Table 3.2: Lévy noise parameters

Commodity α̂ β̂ σ̂ η̂ λ̂ â b̂ Q(10)
Corn 0.9112 0.0014 0.3174 0.0613 0.2106 0.0022 0.806 3.741

[0.015] [0.315] [0.049] [0.218] [0.114] [0.036] [0.216]
Oat 1.6303 0.0009 0.3208 0.0570 0.1301 0.0016 0.320 2.938

[0.156] [0.036] [0.116] [0.326] [0.514] [0.374] [0.344]
Rough rice 2.1873 0.0035 0.2435 0.0093 0.1035 -0.0013 0.402 2.249

[0.336] [0.245] [0.255] [0.349] [0.514] [0.054] [0.284]
Soybeans 0.7811 -0.0003 0.2934 0.0014 0.1407 -0.0018 0.692 1.951

[0.279] [0.415] [0.219] [0.237] [0.614] [0.128] [0.009]
Wheat 2.0230 0.0088 0.3425 0.0071 0.3007 0.0053 0.984 3.938

[0.195] [0.364] [0.105] [0.037] [0.259] [0.025] [0.006]
Cocoa 1.4914 0.0002 0.2891 0.0915 0.0952 -0.0021 0.315 1.604

[0.278] [0.124] [0.096] [0.057] [0.150] [0.196] [0.514]
Coffee 0.8457 0.0368 0.2984 0.0071 0.1203 0.0018 0.575 2.385

[0.312] [0.052] [0.098] [0.210] [0.209] [0.201] [0.354]
Cotton 2.0225 0.0016 0.2624 0.0009 0.3142 0.0119 0.475 2.080

[0.405] [0.421] [0.354] [0.319] [0.321] [0.322] [0.136]

The numbers in brackets are the standard deviation of estimate. For the Ljung-Box test, the quantile at 5% is 3.940.

3.5 Conclusion

Futures prices of agricultural commodities have been modeled as a mean-

reverting jump-diffusion process with seasonality in both long-run mean

and volatility. Typically, the mean-reverting process is a time varying trend

with error term. Specifically for the futures prices at hands the errors term

is jump-diffusion to address the non skewness and kurtosis effect as well as

sudden price variation in the market. As the mean-reverting jump-diffusion

process is affine jump-diffusion, we follow the transformation approach of

Duffie et al. [Duffie 2000] to state the model. The estimation of parameters

on futures prices data at hands is conducted in two-stage procedure due to

periodic long-run mean. This permits to obtain the values for speed and

periodic long-run mean in the first step using least square technique. Then,

the residuals from the first step are used as input data to estimate the re-

maining parameters with PMCMC method. Finally, the portemanteau test

of Ljung-Box is applied to show consistency of futures price model.

For all the selected commodities, the long-run varies with the delivery

month with consideration of the up and down levels caused by supply and

demand imbalance in mean-reversion. This allows to use mean-reversion
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as tool both to identify the trading range for a futures price and to compute

the average price for the specific period that will take into account profits

and losses. As illustration, when the current futures price is higher than

the average price, the commodity is attractive for hedging. But this leads to

higher supply later which will push prices down. The speed of reversion is

an alert of how the market reverts to average price. Corn, wheat and cotton

seem to revert faster than other commodities with significant volatility and

jump intensity.
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Chapter 4

Static Hedging

Abstract: We deal with the hedging issue for a producer in pres-

ence of market and production risks. We derive an optimal strat-

egy to tackle the additional risk due to rolling over the futures

contracts. In practice, these risks include market risk and mainly

production risk within the inter-crop season. We address how

an insurance contract could enhance the futures hedging onto

further guarantee the producer revenue. In static framework,

many hedging strategies have been developed in the literature

but the existing measures of effectiveness are lacking. We ap-

ply ranking-based approach for various hedging strategies. This

uses L-moment and will allow to rank the hedge portfolios with

regard to their performance. The application on futures prices

data at hands shows that taking into account market and pro-

duction risks leads to better hedging strategy based on the L-

performance effectiveness measure.
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4.1 Introduction

The establishment of public commodity markets in the 19th century has

improved standardization, transparency, efficiency, as well as hedging for

physical good prices. A futures contract is a standardized instrument that

allows to transfer the risk of commodities from hedgers (for instance pro-

ducers) to speculators which will bear these risks until delivery date. At

any given time, a futures price reflects either the price expectations of buy-

ers and sellers of a good at delivery in the future and will also contribute to

establish a balance between production and consumption or the additional

information about supply and demand as it becomes available. Hence, fu-

tures price is a forecast of spot price subject to changes that it is adjusted

for.

Hedging in futures markets consists in a counterbalancing transaction in-

volving a position in the futures contract that is the opposite of the position

in the cash market. In agriculture, producers incur the risk of substantial lost

coming from uncertainties related to adverse price variations of their crop

due to bad weather, storage. These risks are also strongly correlated with

the quantity, cost and quality of production. Thus, taking a counterbalanced

position in futures markets provides a hedge for the good and the producer

will be guaranteed to receive, at maturity of the futures contract, a predeter-

mined price.1 The position in futures market has to be set appropriately to

reduce the risks, as much as possible, at maturity of futures contract to make

the hedging strategy optimal. The choice of appropriate position in futures

contract is decision making problem like portfolio management where the

producer holds a non-tradable from planting time to harvest time.

A large body of literature has investigated the problem of optimal hedging

strategy in futures markets. Various techniques either minimize a risk func-

tion or maximize an expected utility function of wealth in static or dynamic

1Alternative ways to hedge commodity production consist in stabilization funds or
Government supports, see for example in Modest and Marcus [Marcus 1984].
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framework. Whatever the framework, the main difference between the two

approaches is that minimizing a risk function will result in pure hedge while

maximizing also includes a speculative component according to risk aver-

sion. Such risk functions include variance, semi-variance for downside risk

which is generalized as lower partial moments (Chen et al. [Chen 2001] and

Lien and Tse [Lien 2000]), while examples of expected utility maximization

are mean-variance, mean-Gini (Shalit and Yitzhaki [Shalit 1984]). For in-

stance, Rolfo [Rolfo 1980] had used mean-variance technique to derive op-

timal hedge ratio under price risk and output risk for exporter countries in

agricultural markets. Besides, other methods that rely on stochastic domi-

nance concept have been investigated.

Recall that in static framework, decision making problem relies on two

dates: the initial time when the decision has to be made for the final time of

delivery. The hedging strategy is dependent of the optimization technique

and could be more or less effective. According to Chen et al. [Chen 2013],

there is no single optimal hedge ratio that is distinctly superior to the oth-

ers unless an appropriate criterion is defined. The performance measures of

hedging strategies like Ederington [Ederington 1979] effectiveness, Sharpe-

type ratio of Howard and D’Antonio [Howard 1987] and certainty equiv-

alent are also misleading due to their downward bias. Then, they imply

under-reported hedging strategy. To enhance the hedging performance

measure, we apply L-moment to provide the ranking of different hedging

strategies.

Furthermore, when the hedging horizon is longer than the futures contract

maturity, the position in futures market can be maintained by holding a con-

tract until near the maturity. This process is known as rollover strategy. It

consists in closing out the active position and taking a new position in fu-

tures contract of longer maturity. The rollover incurs the risks that would

not arise if the position were in a single long term futures contract. Indeed,

depending on the market situation (backwardation or contango), the strat-
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egy is affected by the spread between the old contract and the new contract

of longer maturity, and this gives rise to rollover risk. Particularly, the ba-

sis is further affected by the additional risk of the rollover strategy. Such

risk mainly includes production risk within the inter-crop periods. Gard-

ner [Gardner 1989] had dealt with rollover hedging when long term futures

market is missing with constant output while Baesel and Grant [Baesel 1982]

derived optimal sequential strategy for quantity risk. We analyze an opti-

mal hedging strategy for both price and quantity risks that takes into ac-

count the rollover process. In so doing, the hedging approaches of Gardner

[Gardner 1989] and Baesel and Grant [Baesel 1982] are combined on rollover

issue. This results into optimal hedging strategy for price risk and quantity

risk in term of basis hedging and production covered by insurance pay-

off. Finally, using the L-performance measure shows the superiority of this

strategy over other strategies.

This Chapter is organized as follows. The first section states the issue of

hedging strategies by and its motivations. The second one describes the

existing approaches of hedge strategies in the portfolio context, the hedging

effectiveness measures and therefore the shortcomings of these hedge ratios.

The investigation of the hedging effectiveness measures presents a way to

select the hedging strategy by ranking the hedge portfolios’ performance.

In the third section, optimal hedging strategy is derived, in term of basis

risk for quantity risk along with the rollover process. The section four is

devoted to applications on commodity data followed by a conclusion.

4.2 Related works on hedging with futures mar-

kets

Hedging belongs to risk management that fundamentally consists in trans-

forming a state of nature to new one compatible with the expectations of

economic agents. To this end, a financial hedge consists in specific position
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of an asset that should reduce, as much as possible, the risk incurred with

another existing position. This risk comes from the mismatch between the

underlying and the hedging instrument and referred to as basis risk. Spe-

cially, hedging with futures contract allows the producer to transfer his risks

in market to speculators that will bear them for a premium. Commodity fu-

tures are the simplest hedging instrument and their first motive as hedging

instrument lies in the need for optimal balance between tolerable risk and

return that reduces risks in price, in production as well as in storage.

Many papers in the financial literature have investigated the use of futures

contracts to offset uncertainties in commodity markets. The research stream

on futures hedging had started with Price Insurance Theory and has ana-

lyzed the hedging as a way to avoid loss due to any price move related

to positions in futures markets. As economic rationale for hedging, Keynes

[Keynes 1930], Hicks [Hicks 1939] and Kaldor [Kaldor 1939] argued that the

producers shift the risk to speculators by paying a premium. So did Work-

ing [Working 1962] for risk insurance2, but had firstly advocated on earning

returns theory where a sort of arbitrage is to enter the market only when

the producer perceives a promising opportunity for profit. That is to say, a

decision for hedging could also include speculation purpose and does not

have to be limited to pure risk hedging only.

Later on, Portfolio Theory approach of Markowitz has been applied to futures

hedging in order to investigate the producer’s risk-return trade-off. Thus,

the hedge portfolio considers in priority the asset to be hedged, the non-

traded position, then the futures contract as hedging instrument. This state-

ment can be found among other, in Rolfo [Rolfo 1980] and Ho [Ho 1984]

in respectively static dynamic frameworks. The producer is then maxi-

mizing the expected utility of his wealth. For active markets, the hedg-

ing can include other traded assets to derive optimal hedging strategy like

2“The reason for producers to have their orders executed expeditiously is to reduce the
interval in which their inventories are left uncovered, exposed to the risk of price change”,
Pennings and Leuthold [Pennings 2000]
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in Adler and Detemple [Adler 1988a]. However, Pennings and Leuthold

[Pennings 2000] noticed that William3 had stressed the difficulty for the

portfolio approach to diversify the risk in production, transport and pro-

cessing (commodity availability) that inventories absorb and which will also

motivates the use of futures contracts. In addition, the portfolio theory in

hedging assumes the initial position of inventories to be unhedged is ex-

tremely sensitive to the predetermined position. Aside, pure insurance and

portfolio approaches to hedging, there is Loan Markets Theory and Liquidity

Theory.4 Kamara [Kamara 1982] argued that the three theories contribute,

in explaining why producers hedge: “the producer’s position in futures is

motivated partially by the desire to stabilize income and partially by the

desire to increase the expected profits”. Meanwhile, it is clear that all the

approaches are all based on optimization techniques.

The literature of futures hedging also focuses on the optimization method

applied to derive the static ratio. Among the various optimization tech-

niques, the minimum-variance serves as reference for comparison with

other optimization approaches. The minimum-variance approach penalizes

both upside and downside deviation of returns from the mean. For instance,

an agricultural producer that wants to hedge his business is much more

worried by the downside shock from a target level of revenues than the up-

side deviation. Hence, minimum-variance hedge ratio may lead to subopti-

mal hedging recommendations. The mean-variance approach is consistent

with expected utility theory if all uncertainty factors satisfy the location-

scale5 condition. To overcome this shortcoming, alternative approaches

consistent with stochastic dominance concept have been developed. They

include mean-extended-Gini (MEG), lower partial moment (LPM), Value-

3Williams J. C., The economic function of futures markets, Cambridge University Press,
1986.

4Other motivations for hedging with futures markets relate to loan markets theory and
to liquidity theory. Loan markets theory refers to hedging operation by getting the acces-
sibility for a period of time while liquidity theory is the provision that organized markets
facilitate.

5Normal distribution is typically assumed but will not be realistic in practice.
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at-Risk (VaR) and conditional Value-at-Risk (CVaR). Sequential approaches

have been also investigated to take into account period and horizon ef-

fects on hedge ratios. For instance, Cecchetti et al. [Cecchetti 1988], Chen

et al. [Chen 2013] and Lien and Luo [Lien 1993] derived hedge ratio in

multi-period analysis, Baillie and Myers [Baillie 1991] based their anal-

ysis on conditional distribution approach (ARCH: autoregressive condi-

tional heteroskedastic and GARCH: generalized ARCH) and Fernandez

[Fernandez 2008]; Conlon and Cotter [Conlon 2012] applied wavelet de-

composition to derive hedge ratio according to hedging horizon.

4.3 Some hedging approaches in static frame-

work

We consider agricultural farmers that plant and will harvest only one com-

modity that requires all his financial resources so they do not diversify their

wealth into other crops or financial assets. Every producer faces uncer-

tainty with respect to both price and output and, for example, could sell

futures contracts against his expected harvest, but find his actual harvest

either higher or lower than expected. The farmer could hedge the risk as-

sociated to his crop through futures contracting. Then, what matters is the

decision of the optimal hedge ratio that will lower as much as possible the

incurred risks.

Formally, the farmer’s optimal hedging problem can be stated as follows.

Consider an hedging period with initial date, t = 0, and final date, t = T .

At time t = T , the producer is expecting to sell his production of unknown

quantity QT , at prevailing spot price ST . Assume that there is exists an

active futures market. We also consider the futures contract to live over the

time horizon [0, T ]. Denote by F0 the futures price at time t = 0 and by FT

the futures price at T . If the hedging horizon is longer than T , the futures

contract will be rolled over to the next period and this analysis is addressed
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in section 4.4. For now, the issue of the farmer, is to find the hedging strategy

that will provide the optimal hedge for both price and output risks. This

consists in deciding, at initial date, the position, x, in futures market. The

farmer’s portfolio modifies from ST QT to the hedge portfolio defined as

follows

WT = ST QT − x∆FT , (4.1)

where ∆FT stands for FT − F0, the net variation of futures price with the

hedging horizon. Equivalently, the hedge portfolio return is given by

Rh =
ST QT Rs − xFT Rf

ST QT

= Rs − hRf , (4.2)

where Rs and Rf are respectively the spot and futures returns with

Rs =
ST − S0

S0

and Rf =
FT − F0

F0

and h the hedge ratio defined by

h =
xFT

ST QT

. (4.3)

There are various approaches to derive the hedge ratio, h, that rely on pro-

ducer’s preference according to either risk psychology or risk ordering. The

risk psychology stream relates to expected utility that involves coefficients

like aversion, prudence and temperance while risk ordering stream relies

on stochastic dominance concept. In context of agricultural farmer, we re-

call the various hedge ratio according to these two streams.

4.3.1 Hedge ratios based on risk psychology

The basic hedge ratio minimizes the variance of the hedge portfolio returns

Rh and had been introduced by McKinnon [McKinnon 1967] for a commod-

ity producer. The minimum-variance hedge ratio, that we denote h∗
minV,

gives the position in futures contract that will make the hedge portfolio
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variance as small as possible to reduce the risk incurred in spot price re-

turn at maturity T . The minimum-variance hedge ratio is the solution of

the following program

min
h

V[WT ] =⇒ h∗
minV =

Cov [Rs, Rf ]
V[Rf ]

(4.4)

This hedge ratio is pure hedge and it does not account for the portfolio ex-

pected return that allows for speculative component in the same time. The

shortcoming of minimum-variance hedge ration is that, in case of multi-

ple contracts, it is pronounced on low volatility contracts at the expense of

exploiting correlation properties (Stoyanov [Stoyanov 2011]). Therefore, the

mean-variance is generally seen as the extension (see for example Anderson

and Danthine [Anderson 1981], Duffie [Duffie 1989]) of minimum-variance

strategy that takes into account the producer’s preference in terms of port-

folio return and risk aversion γ.

The mean-variance is also referred to as quadratic utility when returns dis-

tribution is normally distributed. It is derived by maximizing the expected

quadratic utility function,

max
h

{
E[Rh] −

γ

2
V[Rh]

}
⇒ h∗

MV =
Cov [Rs, Rf ]

V[Rf ]
−

E[Rf ]
γV[Rf ]

. (4.5)

where h∗
MV is composed of the pure hedge component, h∗

minV, in equation

(4.4) and a speculative component. Mean-variance hedge ratio allows the

the risk-averse producer can hedge his income variability on the futures

markets by buying or selling futures.

The amount of futures for speculation is determined by risk aversion and fu-

tures price variability. The speculative component position then converges

towards zero with infinite risk aversion (γ → ∞) or if the futures price

process is martingale (E[FT ] = F0). That is the case where the producer is

extremely reluctant to take risks or does not expect any additional return.
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Pure speculative strategy holds whenever the spot and the futures are un-

correlated in case of no insurance motive. Futures trading by producers

results from a mixture of hedging and speculative motives.

Similarly, using Arrow-Pratt approximation of risk premium by second-

order Taylor-expansion, the producer’s preference as quadratic utility func-

tion makes the mean-variance hedge ratio equivalent to the case where the

portfolio returns are normally distributed. Subsequently, when the returns

are not normally distributed, the mean-variance hedge ratio will be subop-

timal and the quadratic utility then becomes unrealistic. In practice, nor-

mality assumption fails because fat tails distribution.

An extension of the Arrow-Pratt approximation to fourth-order Taylor ex-

pansion leads to coefficients of prudence and temperance that are respec-

tively associated to third and fourth moments.6 The corresponding expected

utility maximization program is given by

max
h

{
E[Rh] −

γ

2
V[Rh] +

χ

6
M3[Rh] −

ψ

24
M4[Rh]

}
, (4.6)

where M3 and M4 are respectively third and fourth centered moments and

the coefficients χ and ψ express, respectively the taste for asymmetry and

aversion to fat tails. However, the optimization problem in program (4.6)

is usually solved numerically. Instead, by using skewness and kurtosis in

place of third and fourth moments the maximization program becomes

max
h

{
E[Rh] −

ζ

2
V[Rh] + ϕ s3(Rh) −

ξ

2
s2

4(Rh)

}
, (4.7)

with s3 and s4 being skewness and kurtosis operator respectively with mod-

ified set of coefficients for risk psychology. The hedge ratio, solution of the

6Alternative method based on higher moments to derive the hedge ratio without Taylor
expansion has been developed in from Brooks et al. [Brooks 2012]
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above program is as follows (Le Courtois and Walter [Le Courtois 2014])

h∗
SK =

E[Rh] + ϕs3(Rh)
ζV [Rh] − ξs2

4(Rh)
. (4.8)

This has similarity with the mean-variance hedge ratio, h∗
MV, in equation

(4.5). The hedge ratio h∗
SK includes asymmetry and fat tails influences on re-

spectively the mean and the variance of the hedge portfolio. Indeed, skew-

ness and kurtosis together capture risk distribution of the hedge portfolio in

that skewness indicates difference between profits and losses and kurtosis

the occurrence of extreme events.

Other utility function can be used to derive hedge ratio in static framework.

For instance, Rolfo [Rolfo 1980] had also considered logarithm preference

and suggested futures contract trading as hedging instrument for variability

in both the price and the production of its output. Meanwhile, alternative

way to deal with hedging problem is to consider risk ordering concept.

4.3.2 Hedge ratio based on risk ordering

The risk ordering approach for hedging strategies corresponds to hedge ra-

tios that are consistent with stochastic dominance concept7 known to cap-

ture the properties of a distribution. Particularly, these hedge ratios rank dif-

ferent hedge portfolios according to preference (with only limited informa-

tion about the utility function of a particular consumer) with no constraint

on taste and aversion or particular distribution. They include mean-extend-

Gini, lower partial moment approach (Chen et al. [Chen 2013], Lien and

Tse [Lien 2000]) as well as famous risk measures in finance such as Value-at-

Risk and Conditional Value-at-Risk. The purpose is then to minimize a risk

specific measure.

Let’s R1 and R2 be two random variables defined on probability space,

7The rationales for the stochastic dominance are well documented in Rothschild M. &
Stiglitz J. E., ”Increasing risk I. A definition”. Journal of Economic Theory, 2, 225-243; 1970.
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(Ω, F , (Ft)t>0,P) with their respective cumulative distribution function,

G1(x) = P(R1 6 x) and G2(x) = P(R2 6 x).

Recall that R1 dominates R2 by the first-order (respectively by the second-

order) stochastic dominance, SD1 (respectively, SD2) if and only if all in-

vestors that prefer more to less (respectively are risk-averse) would prefer

R1 to R2. We denote the SD1 relation by R1 ²SD1 R2 and the SD2 relation by

R1 ²SD2 R2. Formally, R1 is said to first-order stochastically dominate R2, if

G1(x) 6 G2(x), ∀x.

R1 is said to second-order stochastically dominate R2, if

∫ x

∞
G1(x)dx 6

∫ x

∞
G2(x)dx, ∀x.

The first-order stochastic dominance relation corresponds to all choices

made by investors with monotonic expected utility function while the

second-order stochastic dominance relation is all choices made by risk-

averse expected-utility investors. We simply write R1 ²SD1 R2 and R1 ²SD2

R2 whenever R1 dominates R2 according to SD1 and SD2 respectively. Be-

sides, the first-order stochastic dominance relation implies the second-order

stochastic dominance relation,

R1 ²SD1 R2 =⇒ R1 ²SD2 R2.

4.3.2.1 Mean-extended-Gini hedge ratio

The MEG coefficient is a non-negative, non-decreasing and bounded func-

tion of a risk parameter 1 6 δ < ∞. Following Shalit and Yitzhaki

[Shalit 1984], it can be applied to a hedge portfolio returns, Rh,

Γh(δ) =
∫ b

a
(1 − Gh(Rh)) dRh −

∫ b

a
(1 − G(Rh))δ dRh, (4.9)
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where a, b with (a 6 b) are real numbers and G is the cumulative probability

distribution of the portfolio return Rh. The parameter δ plays the role of risk

aversion as the extend-Gini coefficient can be viewed as risk premium that

should be subtracted from the expected value of portfolio. Hence, when

δ = 1 the investor is risk neutral and Γh(0) = 0; for a risk-seeker, 0 6 δ < 1

and when δ > 1, the investor is risk-averse.

Consider two portfolios, say R1 and R2, with their respective returns distri-

bution G1 and G2. Let’s (ǫn)n∈N∗ be the sequence defined as follows

ǫn =
∫ b

a
(1 − G1(x))n dx −

∫ b

a
(1 − G2(x))n dx. (4.10)

Yitzhaki and Schechtman [Yitzhaki 2012] have proved that if ǫn > 0, R1 ²SD1

R2 and R1 ²SD2 R2. Consequently, mean-extended-Gini coefficient Γδ(Rh) is

the risk measure and can be minimized to achieve an optimal hedging strat-

egy8, h∗
MEG. However, as the mean-extended-Gini coefficient in equation (4.9)

is difficult to evaluate in practice since there is no explicit analytic formula,

Shalit and Yitzhaki [Shalit 1984] have suggested the following expression

Γh(δ) = −δCov
(
Rh , (1 − G(Rh))δ−1

)
(4.11)

that leads to the optimal hedge ratio (Shalit [Shalit 1995]) given by

h∗
MEG =

Cov
(
Rs , (1 − G(Rh))δ−1

)

Cov (Rf , (1 − G(Rh))δ−1)
. (4.12)

Therefore, the mean-extended-Gini hedge ratio can be estimated under as-

sumption of probability distribution.

8The producer can also obtain an efficient set based on each value of δ. The efficient set
is progressively reduced when the producer performs the mean-extended-Gini analysis for
different values of δ and retains only the intersection of the efficient sets.
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4.3.2.2 Hedging with lower partial moment

Lower partial moment belongs to class of downside risk measures. Down-

side risks only focus on the losses and then considers the worse case sce-

narios from a target level of revenues. The lower partial moment is char-

acterized by two parameters, the target level return, c, that determines the

shortfalls and the power, n, of the shortfalls. The lower partial moment of

the hedge portfolio returns, Rh, is defined by

ℓn(c, Rh) =
∫ c

−∞
(c − Rh)n dG(Rh), n ∈ N, (4.13)

where the cases n < 1 and n > 1 characterize, respectively a risk seeking

investor and implies risk averse investor (Fishburn [Fishburn 1977]9). Note

that semi-variance is a special case of lower partial moment approach, with

c = 0 and n = 2, ℓ2(2, ·).

Furthermore, the lower partial moment satisfies the first and second or-

der stochastic dominance relations and can be used as risk measure. Bawa

[Bawa 1978] showed that nth order lower partial moment is consistent with

stochastic dominance of the (n + 1)th order. Lien and Tse [Lien 2000] had

observed that, when n > 1, the nth order lower partial moment is given by

ℓn(c, Rh) = E {[max(0, c − Rh)]n} . (4.14)

The first order condition with right to the hedge ratio is

−nE
{
[max(0, c − Rh)]n−1 Rf

}
= 0,

with the second order condition always satisfied (positive).

9The Fishburn risk measure has the same form but allows for a non integer, positive
power function.
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4.3.2.3 Hedge ratio based on VaR and CVaR

From Ogryzak and Ruszczyński [Ogryczak 2002] Value-at-Risk and condi-

tional Value-at-Risk (hence, from now on VaR and CVaR ) satisfy SD1 and

SD2 properties respectively. VaR and CVaR belong to the class of downside

risk measures when dealing with hedging. They measure the “potential

losses” associated with a risky position on a predefined horizon, at a given

risk level α ∈ (0, 1). Specially, VaR indicates the potential loss of amount

at probability 1 − α for a strategy over a specified time horizon, while the

CVaR, as an extension of VaR, gives the total amount of a given loss event.

Formally, the VaR at probability level α for the hedge portfolio returns Rh is

defined as

VaRα(Rh) = inf {x ∈ R,P(Rh > x) 6 1 − α} , (4.15)

and the corresponding CVaR is as follows

CVaRα(Rh) = E [−Rh| − Rh > VaRα(Rh)] . (4.16)

Thus, given an amount, VaR stresses how often a portfolio could loose and

CVaR will indicate the potential loss beyond a given amount. Meanwhile,

VaR lacks the sub-additivity property, which is fundamental for portfolio

diversification and will provide no information about the portfolio losses

corresponding to period of predefined risk. The CVaR is sub-additive and

accounts for tail risk. Hence, it allows portfolios optimization as shown in

Rockafellar and Uryasev [Rockafellar 2002]. Besides, CVaR overcomes lack

of sub-additivity and indifference to tail losses, but will require a large size

data for consistent estimation even more sensitive to estimation errors than

VaR.
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The optimization problems10 for VaR and CVaR are given by

h∗
VaR = arg min h ∈ RVaRα(Rh)

h∗
CVaR = arg min h ∈ RCVaRα(Rh)

(4.17)

However, one knows that VaR and CVaR measures depend on the distri-

bution of the hedge portfolio returns which would lead hedging strategy

extremely dependent on predetermined risk level α and distribution.

Overall, each hedge ratio leads to a specific hedging strategies that depends

upon the approach used. That is to say with the same data, the hedging

strategy to apply, among the above described, remains elusive. A criteria to

distinguish them is hedging effectiveness that evaluates the hedging perfor-

mance.

4.3.3 Hedging effectiveness

Hedging performance is a measure of hedging effectiveness that serves

as criterion to compare the consistency in both estimation and post sam-

ples of different hedge ratios. There are three main measures of effec-

tiveness in financial literature that relate to futures hedging: Edering-

ton [Ederington 1979] measure, Howard and D’Antonio [Howard 1987]

Sharpe-type measure and the certain equivalent measure. Ederington

[Ederington 1979] has first defined effectiveness measure to indicate the re-

duction effect provided by the futures contract in term of the percentage

reduction of the hedge portfolio variance over the spot asset variance,

HEED = 1 −
V[Rh]
V[Rs]

. (4.18)

10These problems require to assume that VaRα and CVaRα are continuously differen-
tiable in h and that the distributions of the spot return Rs and futures return Rf have posi-
tive density.
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According to this measure, in equation (4.18), a hedge ratio is deemed better

than another if it leads to a smaller variance of the hedge portfolio.

The Howard and D’Antonio [Howard 1987] measure takes into account

both expected return and volatility of hedge portfolio,

HESH =
E[Rh] − r

σh

−
E[Rs] − r

σs

, (4.19)

where r is the risk-free interest rate and σh and σs are respectively the return

volatilities of hedge portfolio and the spot.

The third criteria of hedging effectiveness is based on the certainty equiv-

alent measure and is defined such that position in futures contract equates

its same expected utility.

E[u(Rs + e)] = E[u(Rs − hRf )],

where u is an increasing and concave utility function and e is the certainty

equivalent.

Recall that, in all the above three cases, hedging effectiveness is based on

the estimated hedge ratio. Lien [Lien 2006, Lien 2012] has shown that all

these measures are unreliable because they are downward biased leading

to under-reported hedging strategy. Specifically, the Ederington measure is

likely to perform only with minimum-variance hedge ratio. In the case of

portfolio non normality (as results of spot and futures returns’ distribution

asymmetry and fat tails), the Sharpe-type hedging effectiveness will fail to

onsider relevant properties of portfolio.

To overcome this limits, we propose a ranking based measure of hedg-

ing effectiveness by applying the L-performance defined with regard to L-

moment approach. The advantage of using L-moment relies on their con-

sistency in estimation. The L-performance measure ranks different hedge

portfolios regardless the methodology of the hedge ratio. Darolles et al.
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[Darolles 2009] have used L-performance criterion to rank hedge funds on

different portfolio strategies just as Sharpe-ratio ranking.

Let’s denote by HELP the effective L-performance and by Lh
q,p and Ls

q,p be L-

performance of respectively hedge portfolio and spot asset for given q and

p. The L-performance effectiveness is defined by

HELP = Lh
q,p − Ls

q,p (4.20)

where the L-performances Lh
q,p and Ls

q,p are presented in Appendix 4.21.

To estimate a L-performance, consider a sample of independent and iden-

tically distributed returns ri, i = 1, . . . , N with their order statistics: r1:N ≤

. . . ≤ rN :N . The estimator of L-performance is a ratio of the two linear com-

binations of order statistics given by

L̂q,p,N =

∑N
i=1 ri:NP1,p

(
i

N

)

∑N
i=1 ri:NP2,q,p

(
i

N

) , (4.21)

for L-performance defined11 on u ∈ (0, 1), p ∈ N and 0 ≤ q ≤ p − 1 and

polynomials P1,p and P2,q,p described as follows

P1,p(u) =
(2p + 1)!

p!
up(1 − u)p.

P2,q,p(u) =
(2p + 1)!

q!(2p − q)!

[
u2p−q(1 − u)q − uq(1 − u)2p−q

]

The L-performance estimator is consistent and asymptotically normal, un-

der standard regularity conditions, Darolles et al. [Darolles 2009].

In the aims of comparing the hedge ratios as well as the hedging effective-

ness, we compute the different hedge ratios using commodity futures de-

scribe in Chapter 1. The estimation procedures are addressed in Appendix

11Notice that, in practice, it is insightful to consider several different pairs of parameters
q, p to obtain alternative rankings of portfolios with respect to L̂q,p,N .
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B.1. These applications is addressed in section 4.5.

4.3.4 Limits of existing hedge ratios

So far, the issue of hedging commodity revenue with futures market has

considered both maturity date and delivery date as similar. In reality, these

dates may differ mainly when there is no futures contract of long maturity.

One could think about a producer that has to set a hedging strategy for his

activity against either adverse price and yield variation over the planting

season with available futures contracts which mature earlier than the de-

livery date, say T . In this situation, the above described hedge ratios in

section 4.3 will not be effective due to dates mismatch between the position

in futures market and cash position. Typically, when the production pe-

riod exceeds maturity date of the active futures contract, the producer will

usually initiate a rollover strategy. It consists in closing out the position in

the nearby futures few days prior to its maturity date and taking another

position in a contract with longer maturity. The rollover strategy is subject

to additional basis risk. Gardner [Gardner 1989] had suggested a rollover

marketing strategy as a way to efficiently hedge against the additional ba-

sis risk in this situation. However, his strategy includes constant outputs

neglecting the production risk that matters for storable commodities.

In agricultural markets, price and output uncertainties are interrelated in

that prices react inversely to large variations of output (Conroy and Rendle-

man [Conroy 1983]). The combination of these two risks rises the problem

of the appropriate position in hedging instruments, specially for the futures

contract with longer maturity that should also account for the additional

basis risk in the rollover process. But, for the rollover strategy, production

risk is also relevant in inter-crop period for stock and the coming crop year

on uncertainties related to weather conditions that could lead to imperfect

hedge. Hence, hedging in rollover strategy need to be extended to tackle

the inter-crop season to further guarantee revenue over long time exposure.
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Additional hedging instruments are insurance products designed12 for agri-

cultural producers that have the opportunities to purchase an insurance

contract. In the next section we investigate the optimal hedging strategy

that include an insurance policy.

4.4 Optimal sequential hedging

The optimal sequential hedging combines the approach of Gardner

[Gardner 1989] on rolling over futures contracts and the sequential hedging

of Baesel and Grant [Baesel 1982] to derive a hedging strategy that accounts

for both price and production risk using futures and insurance contracts.

4.4.1 The Strategy

Consider an agricultural producer that plans to sell13 his crop for the T > 2

coming years. Since futures contracts are available with short maturities,

using a rollover strategy on their positions, they can lock in price, in the

first year, for the T coming years. Multiyear futures contracts, or sequential

rollovers as a substitute, make more sense, along Working’s [Working 1953]

lines, as a device for locking in receipts within an T -years period, argued

[Gardner 1989].

In rollover strategy, a producer faces additional risks including stocks dete-

rioration, low revenue for the coming crop years due to production risk like

weather conditions, etc. The producer can purchase an insurance contract

to further hedge his revenue. On using insurance to reduce these risks, the

producer need an optimal policy together with the futures hedging strategy.

12For instance, in United States, the Risk Management Agency has introduced together
with private insurance companies, a variety of agricultural insurance contracts. The pro-
ducer can buy insurance contract based on individual yields (Income Protection, IP, or
Revenue Assurance, RA) or on aggregate yields (Group Risk Income Protection, GRIP),
see Mahul and Wright [Mahul 2003].

13We consider the harvest time and sale time to be the same. Otherwise, sale takes place
later and there will be only price risk to manage with storage cost.

111



An insurance policy is described by the couple (I(·), prem) where I(·) and

prem are respectively the risk-neutral indemnity payed to risk-averse pro-

ducer and insurance premium. We assume; at any time t, the premium

to depend on actuarial value of the policy and the indemnity function to

be non-negative and less than the insured value (see Mahul and Wright

[Mahul 2003]),

0 6 It(x) 6 x, ∀x > 0 and prem = ζE[It(x)] (4.22)

with ζ(0) = 0, ζ ′(x) > 1 for all x > 0 is deterministic loading factor. An

optimal insurance contract for a crop year is the insurance premium and the

indemnity function that maximize the producer’s expected utility of gross

revenue under the above mentioned constraints:

max
It(·),prem

E
[
u

(
Rt + It(·) − prem

)]
(4.23)

with Rt the producer gross revenue at time t. The indemnity function de-

pends on insurance contract and the wealth process is function of both the

indemnity and the marketing strategy.

Consider a revenue insurance (like Income Protection, IP, or Revenue Assur-

ance, RA) where the producer chooses a proportion of the expected revenue

to insure. In such insurance contract, the price at which the crop is valued

moves with price changes in the market. Therefore, the producer will re-

ceive indemnity equal to the difference between the percentage of the value

he has insured and the revenue at end of period, if only if the former is

greater than the latter. For simplicity, assume the expected revenue at time

t to be the average revenue at time t − 1,

Et−1[StQt] := Ft−1,tQ̄t−1,

with Et−1 being the conditional expectation on information available at t−1
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and Q̄t−1 is the average output14 over the period [0, t − 1]. The indemnity

schedule It(·) is as follows

It(St, Qt; υt) =
[
υtFt−1,tQ̄t−1 − StQt

]+

, υt ∈ (0, 1] (4.24)

where the notation [·]+ stands for max(0, ·) function. The producer has to

decide the proportion υt of his expected revenue to choose according to his

hedging strategy with future contract.

Consider a producer following the marketing strategy as in Gadner

[Gardner 1989], his wealth will rely on the sequential rollover strategy for

achieving the whole T -years period hedge. That is, in planting season, T

crops, each of quantity Qt, t = 1, . . . , T are sold for delivery at the beginning

of the next crop year. If Ft,t+1, t ∈ {0, 1, 2, . . . , T − 1}, is the price of futures

contract traded at t for delivery at t + 1. The producer’s wealth at initial

time, t = 0, is given by

W0 = F0,1Q1,T , (4.25)

with F0,1 being the price of futures contract traded at initial time for delivery

at end of the first crop year and Q1,T is the total quantity for first year to T .

More generally, we denote the total quantity for period from t = j to t = T

by

Qj,T =
T∑

t=j

Qt, j ∈ {1, . . . , T}.

At inception of the hedging strategy, no indemnity could be received but the

decision about υ1 is made for t = 1 by paying a premium prem. Determining

the premium at a time step is a pricing issue and relates to insurance com-

pany. So, we neglect the term prem. Indeed, we assume that the producer

has already select his insurance contract and he does know the correspond-

14In more realistic case, the expression Et[StQt] is estimated in a surrounding geographic
area and in futures market. This estimators of individual yield and price are imperfect
and will affect the optimal insurance policy. We consider the insurance contract, already
chosen by the producer and we assume that Et−1[St] = Ft−1,t (no arbitrage condition) and
no correlation between St and Qt.
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ing premium. We then focus on deciding the optimal futures hedge and

proportion of the expected revenue following market outcome. This aims at

comparing how insurance contract will impact the the hedging strategy in

futures market.

At time t = 1, a number of T contracts are bought at price F1,1. At the same

time, the first crop Q1 is sold at spot price S1 and the remaining contracts

T − 1 of total quantity Q2,T are rolled over by selling futures for delivery at

T . The wealth, W1, at end of the first crop year, is

W1 = W0 − F1,1Q1,T + S1Q1 + F1,2Q2,T − cQ1,T + I1(S1, Q1; υ1) (4.26)

where F1,1Q1,T is the cost of buying back the initial sales, S1Q1 is the spot

market revenue, F1,2Q2,T the sale of period ahead futures, and cQ1,T is trans-

action costs (brokerage fees and opportunity cost of margin funds), with c

the amount of these costs per bushel traded. The expression in (4.26) can

also be written in the following form,

W1 = W0 + sp1Q2,T − cQ1,T + max
(

b1Q1 , υ1F0,1Q0 − F1,1Q1

)
, (4.27)

where b1 and sp1 are respectively the basis and the spread15 and Q0 has to

be set.

Analogously, at any time t < T , there are T − t − 1 contracts bought back

at price Ft,t and Qt will be sold at spot price St with the remaining contracts

T − t of total quantity Qt,T rolled over by selling futures for delivery at T .

The wealth, Wt, at end of the tth crop year follows as

Wt = Wt−1 + sptQt+1,T − cQt,T + max
(

btQt , υtFt−1,tQ̄t−1 − Ft,tQt

)
. (4.28)

15The basis at time t on futures contract for delivery at t + 1 is bt = St − Ft,t+1 and the
spread between the period ahead futures and nearby futures prices is spt = Ft,t+1 − Ft,t
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At the final time T , the wealth, WT , over the T -years period is given by

WT = WT −1 − FT,T QT + ST QT − cQT + IT (ST , QT ; υT )

= WT −1 − cQT + max
(

bT QT , υT FT −1,T Q̄T −1 − FT,T QT

) (4.29)

The sequence of quantities (Qt)t=1...,T can be determined by using the back-

ward recursive technique. At each step, as soon as the quantity, Qt, is ob-

tained, the insurance policy, υt, can be settled afterward.

4.4.2 The solution

Consider a producer with quadratic utility where the objective to maximize

the expected wealth subject to wealth variance constraint,

E
[
u(Wt)

]
= E[Wt] −

γ

2
V[Wt], t ∈ {1, . . . , T} (4.30)

where γ is the risk aversion parameter of the producer. Note that the pro-

ducer aversion may change from period to period in the rollover process,

but since it is a given parameter, herein we will let it constant over the whole

period.

Since the max function is not differential along the line x = y; ∀x, y ∈ R and

the optimization problem boils down to two cases. That is, the producer’s

wealth, over each period [t, t + 1], t ∈ {1, . . . , T − 1}, depends upon

(i) either the revenue at end of each period, if it is greater than the pro-

portion of expected revenue,

(ii) or a part of expected revenue, if it is greater than the revenue at end of

each period.

So, the wealth at any time does not include the revenue at end of each period

and a proportion of expected revenue all together. However insurance con-

tract is purchased by the production whatever his expectation in the mar-
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ket. Particularly, the case (ii) addresses a guarantee against production risk

when the crop yield is lower than expected.

Let’s start the optimization problem at final time of the hedging horizon T

and apply backward recursion to determine the quantities for earlier dates.

Using expression (4.29), the quantity QT and the wealth WT are such that

one has:

⋄ in case (i), υT FT −1,T Q̄T −1 < ST QT ,

E
[
u(WT )

]
= WT −1 + QT (E[bT ] − c) −

γQ2
T

2
V[bT ]; (4.31)

with the optimal quantity for futures contract given by

Q∗,φ
T =

E[bT ] − c

γV[bT ]
(4.32)

⋄ in case (ii), υT FT −1,T Q̄T −1 > ST QT ,

E
[
u(WT )

]
= WT −1 +υT FT −1,T Q̄T −1 −QT (E[FT,T ]+c)−

γQ2
T

2
V[FT,T ] (4.33)

where the optimal quantity in futures contracts and insurance policy

are respectively given by

Q∗,υ
T = −

E[FT,T ] + c

γV[FT,T ]
and

υ∗
T = 1 −

E[FT,T ]Q∗,υ
T

FT −1,T Q̄T −1

(4.34)

The proportion, υ∗
T , of the expected revenue is given at optimal crop yield

according to the expected futures price. Observe that, in the case (ii) where

revenue insurance payoff is paid to the producer, crop yield will be so low to

make the insurance payoff as maximum as possible, (see (4.24)). The insur-

ance payoff is a decreasing function of the crop yield until a trigger function

(see Mahul and Wright [Mahul 2003]). Since the worse case scenario would

116



be no crop yield and the producer will have bought the insurance contract at

the total expected revenue, the proportion, υ∗
T , is given by expression (4.34).

Similarly, to find the optimal hedging strategy at any time t prior to final

time T , consider the two cases (i) and (ii) with their corresponding expected

utility expressions at time t. For t < T , we follow the backward recursion

and replace Qt+1 by Q∗
t+1, determined earlier, in expression (4.28). It gives

raise to

⋄ in case (i), υtFt−1,tQ̄t−1 < StQt,

E
[
u(Wt)

]
≡ Qt(E[bt]−c)−

γ

2

{
Q2

tV[bt]+2QtQ
∗
t+1,TCov(bt, spt)

}
; (4.35)

with the optimal quantity of futures contract being

Q∗,φ
t =

E[bt] − c

γV[bt]
−

Q∗
t+1,TCov(bt, spt)

γV[bt]
(4.36)

⋄ in case (ii), υtFt−1,tQ̄t−1 > StQt,

E
[
u(Wt)

]
≡ −Qt(E[Ft,t]+c)−

γ

2

{
Q2

tV[Ft,t]−2QtQ
∗
t+1,TCov(Ft,t, spt)

}
(4.37)

where the optimal quantity in futures contracts and insurance policy

at time t are respectively given by

Q∗,υ
t = −

E[Ft,t] + c

γV[Ft,t]
+

Q∗
t+1,TCov(Ft,t, spt)

γV[Ft,t]
, and

υ∗
t = 1 −

E[Ft,t]Q
∗,υ
t

Ft−1,tQ̄t−1

.

(4.38)

Let Q∗
t , t ∈ {1, . . . , T}, be the optimal quantity to rollover from nearby fu-

tures contract to new one with,

Q∗
t =





Q∗,φ
t if crop yield is lower than expected

Q∗,υ
t otherwise.
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Over the hedging horizon, [0, T ], the optimal quantity depends upon risk

aversion, transaction costs, the spread and either the basis or the futures

price at end of period. Specially, when the crop yields are lower than ex-

pected, indemnity is paid to the producer based on the proportion, υ∗
T as

compensation. This guarantees the producer in the situations when drastic

weather conditions hold leading to low revenue.

The component with the spread, spt reflects profit and loss relation in fu-

tures market at the same time, scaled by the expected optimal hedge at

future dates. Particularly, at any time t prior to final time T , the optimal

quantity, Qt, differs from the optimal quantity at T , QT with adjustment

term of the hedge at future dates. Hence, at the end of hedging horizon, the

optimal quantity does not include the spread since the producer will close

the hedge and will not consider another futures contract in this strategy.

4.5 Empirical applications

Recall that two categories of price data where used in Chapter 2, the nearby

contract prices with the front contract as proxy for spot price and expiry

month prices. We will apply the hedge strategies by considering the last

nearby as futures contract. In order to compares strategies of hedge ratios

with the sequential hedging strategy, we restrict the period of analysis to

three years, that is from August 1st, 2012 to July 31th, 2015. We exclude

soybeans meal commodity as the results look similar to soybean case.
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Table 4.1: Estimation of Hedge ratios

minV MV SK MEG LPM VaR CVaR

Commodity est. eff. est. eff. est. eff. est. eff. est. eff. est. eff. est. eff.
Corn 1.081 0.797 1.915 0.322 1.916 0.322 1.162 0.737 1.062 0.797 1.091 0.797 1.194 0.798

0.000 1.471 0.001 3.903 0.001 3.903 0.000 1.907 0.000 1.307 0.000 1.557 0.000 1.544
0.007 1e-04 0.012 1e-04 0.012 1e-04 0.008 1e-04 0.008 1e-04 0.008 1e-04 0.021 1e-04

Oat 1.127 0.494 1.604 0.406 1.605 0.406 1.253 0.417 1.336 0.477 1.139 0.494 1.148 0.434
1e-04 0.730 2e-04 1.146 2e-04 1.146 1e-04 0.865 1e-04 0.945 1e-04 0.742 1e-04 0.782
0.018 1e-04 0.020 1e-04 0.020 2e-04 0.018 1e-04 0.019 1e-04 0.018 1e-04 0.018 1e-04

R. rice 0.8002 0.472 2.395 -1.40 2.399 -1.42 0.481 0.326 0.354 0.326 0.818 0.472 0.838 0.397
-1e-04 2.077 7e-04 5.657 7e-04 5.655 -3e-04 0.187 -4e-04 0.086 -1e-04 2.198 -1e-04 2.219
0.009 0.001 0.019 3e-04 0.019 3e-04 0.011 0.000 0.010 0.000 0.009 1e-04 0.009 1e-04

Soybeans -0.11 0.006 1.067 -0.66 1.067 -0.66 -0.13 0.009 -0.10 0.006 -0.09 0.005 -0.07 0.003
-5e-04 -0.20 0.000 1.886 0.000 1.886 0.000 1.286 -5e-04 -0.18 -5e-04 -0.16 -5e-04 -0.16
0.016 0.000 0.020 1e-04 0.020 1e-04 0.016 0.000 0.016 0.000 0.015 0.000 0.017 1e-04

Wheat 1.101 0.825 1.841 0.452 1.840 0.453 0.815 0.698 0.844 0.780 1.108 0.825 1.121 0.7253
1e-04 2.899 4e-04 3.922 4e-04 3.924 0.000 0.932 0.000 0.827 1e-04 2.959 1e-04 2.5589
0.007 1e-04 0.013 2e-04 0.013 2e-04 0.009 1e-04 0.008 1e-04 0.007 1e-04 0.008 1e-04

Cocoa 1.227 0.838 -2.32 -6.19 -2.33 -6.19 1.283 0.816 1.235 0.838 1.209 0.838 1.259 0.738
-1e-04 -13.1 0.002 -3.38 0.002 -3.38 -1e-04 -12.8 -1e-04 -13.4 0.000 -12.4 0.000 -11.8
0.004 -3e-04 0.027 0.000 0.027 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000

Coffee 1.125 0.979 0.840 0.916 0.839 0.916 1.124 0.857 1.082 0.977 1.123 0.979 1.133 0.868
0.000 -0.40 1e-04 1.576 0.000 1.575 0.000 0.506 0.000 0.806 0.000 -0.37 0.000 -0.37
0.004 -1e-04 0.007 0.000 0.007 0.000 0.003 0.000 0.004 0.000 0.003 0.000 0.004 0.000

Cotton 1.146 0.536 1.420 0.505 1.420 0.505 0.714 0.431 0.814 0.491 1.149 0.536 1.367 0.503
0.000 2.030 0.000 2.026 0.000 2.026 0.000 1.341 0.000 1.541 0.000 2.033 0.000 2.033
0.009 1e-04 0.009 1e-04 0.009 1e-04 0.009 1e-04 0.010 1e-04 0.009 1e-04 0.009 1e-04

For each approach, the first column is labeled "est." as estimates of hedge ratio, average return and standard deviation for the corresponding hedge portfolio are given below on second and third lines respectively.
The second column displays the estimates of effectiveness measures of Ederington [Ederington 1979], HEED , Howard and D’Antonio [Howard 1987], HESH , and L-performance, HELP respectively on first, second

and third lines.
We consider the riskless interest rate to be r = 0.
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Table 4.1 displays estimates of hedge ratios as presented in Section 4.3. It is

clearly apparent that mean-variance and skweness-kurtosis based methods

seem to be more consistent that other in that Sharpe ratio measure is higher

for the hedge ratios in the first two method than the others. Besides, these

two hedge ratios are relatively closed. The other methods also look similar

with more differences. This classification is more pronounced in case of

rough rice and cocoa when opposite position is suggested by the two classes

of hedge ratios. In the optimization program, the hedge ratios from mean-

variance and skweness-kurtosis methods maximize the objective function

while the other methods minimize their objective function. This shows how

hedging strategy depends on the optimization program with regard to the

producer’s preference. Besides, as expected, even hedge ratios may vary

substantially from one approach to another, there is no clear cut to stand

for method of optimization based on effectiveness measures. Indeed, the L-

performance effectiveness measure is closed to zero for all these strategies.

The sequential hedging strategy requires assumption of distribution for

spot and futures prices. Instead, we assume historical returns over the

three-years period for both spot and futures prices. We set the Q0 as in

(4.27) to the average output until july 2012. Herein, the rollover dates is

chosen arbitrary16 at end of July for all commodities. Table 4.2 exhibits

results of optimal sequential hedging strategy which are more consistent,

based on L-performance effectiveness, than those of Table 4.1. Measures of

L-performance effectiveness are all significantly greater than zero for all the

commodities. Besides, the HEED measure is sensibly lower for the sequen-

tial strategy, what suggests the superiority of L-performance over the other

effectiveness measures.

Besides, note that adding an insurance contract to futures contract in

rollover hedging seems to decrease the number of futures contracts when

low crop is expected. This effect of insurance contract is illustrated in the

16In more reality case, rollover date are published
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Table 4.2: Optimal sequential hedging strategy

Commodity Q∗
1 Q∗

2 Q∗
3 HEED HESH HELP

Corn 1.402 1.402 0.486 0.313 1.735 2.013
0.614 0.615 0.715

Oat 0.691 0.872 -1.501 0.402 1.808 2.371
0.765 0.815 0.565

R. rice 0.277 0.273 0.392 0.676 2.049 5.452
0.603 0.591 0.652

Soybeans 0.101 0.091 0.687 0.595 1.176 3.715
0.893 0.912 0.852

Wheat 0.302 0.309 0.767 0.292 3.810 4.174
0.593 0.612 0.552

Cocoa 0.422 0.417 0.668 0.682 1.210 3.152
0.851 0.863 0.801

Coffee 1.810 1.793 1.610 0.362 2.144 3.143
0.551 0.563 0.611

Cotton 0.154 1.154 1.319 0.427 1.385 2.763
0.901 0.552 0.549

We set transaction costs to zero (c = 0);
Q∗

1 , Q∗

2 , Q∗

3 are displayed on first line for each commodities. There are respectively the
number of futures contracts for july 2013, 2014 and 2015.
HELP is L-performance effectiveness measure.

hedging strategies for the first two years and the first year respectively for

oat and cotton. Therefore, combining futures and insurance contracts will

further reduce market and production risk. Specially, insurance contract is

addressed in low crop yield situation.

4.6 Conclusion

The purpose of hedging has received many contributions in literature of

futures market. For storable commodities, the hedging issue is of specific

in that the asset is often non-traded. Futures contracts are the usual instru-

ments to cover the farmer from the losses, but their use requires appropriate

hedging strategies because of market moves. Hence, there is no guarantee

of achieving the goal of reducing the price risk with only futures hedge. In-

deed, when harvest fails, the the losses increase at final time and farmer may
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go bankruptcy. Other hedging strategies have been studying; the rollover

strategy that consists in lock in price for longer time period by sequentially

closing position in nearby contract and taking other in new futures contract

along long time period.

We have investigated different approaches of hedging with futures contract

in agricultural markets. We have first described the existing approaches

that do not consider output risk due to production contingencies like bad

weather condition, pests infestation for stored goods. In these strategies

output is considered as deterministic and strategies strongly depend on the

approaches. Besides, there is no clear cut for a best approach over the other

based the existing effectiveness measures.

Since most of producers in agriculture strongly rely on revenue from their

activity, production risk is relevant. Hence, management of risk should in-

clude production risk contribute to avoid substantial losses on final income.

In addition, the rollover strategy is subject to larger production risk within

the inter-crop periods and then and additional basis risk.

We derive sequential optimal hedging with rollover process that takes into

account production risks. The strategy requires both futures market and

insurance contract that are combined to further guarantee the producer a

level of gross revenue. The resulting hedge depends on spread between

nearby futures and new futures contracts as well as either the basis or the

expected futures price at end of each period such that when the crop yields

are lower than expected indemnity is paid to producer as compensation by

insurance company.

In order to distinguish the hedging approaches, we estimate hedging ratio

from described static hedging strategies for commodity data at hands and

described in Chapter 2. The results show how difficult is to select the best

strategies based on the existing effectiveness measure. However, the ap-

plication of L-performance measure is significant on the sequential strategy

with insurance contract.
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Hedging in static framework only requires the price distribution at initial

and final dates of each period to compute various moment for various hedge

ratios. Futures prices ae settled daily and one may gain additional informa-

tion about price behavior by using price pattern over the hedging horizon.

Then, the hedging problem in continuous time framework by modeling the

prices is addressed in following chapter 5.
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Chapter 5

Dynamic hedging

"You can think of hedging as a bit like sailing. You

can move where you want almost regardless of the

direction of the wind, by adjusting the sail so that

you make use of the component that you need".

Alexander Lipton, Merrill Lynch

Abstract: We investigate the optimal hedging strategy for an

producer in continuous time framework with a position in fu-

tures market over a crop year. We consider the agricultural

prices to follow mean-reverting jump-diffusion process in light

of empirical analysis of Chapter 2. The optimal hedging strategy

is conducted with expected utility maximization. The hedging

strategy with only futures contract remains deficient. Then, a

put option is be written to further reduce risks faced the pro-

ducer. The optimal hedging strategy is achieved by using the

approach of expected utility maximization. It turns out that only

the future contract is insufficient to cover the risks incurred by a

producer. Thus, it is written put option to further reduce the risk

of loss of a producer.
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5.1 Introduction

The modeling in continuous time has been pioneered by Merton

[Merton 1969] financial economics with the intertemporal consumption and

portfolio choice problem of an investor in a stochastic dynamic program-

ming setting. Later, Ho [Ho 1984] and Adler and Detemple [Adler 1988a,

Adler 1988b] used this setting for hedging purpose in commodity markets.

They had dealt with finding the optimal position in futures contract that re-

duces the risks incurred by non-traded in portfolio context. Furthermore,

the empirical analysis in Chapter 2 has stressed about including jumps as

sudden and substantial of price variation to improve hedging strategy in

agricultural markets. This chapter investigates the extend to which hedg-

ing strategy in continuous time setting will take into account behavior of

agricultural prices at hands.

The problem hedging in agricultural market consists in reducing the risk

incurred by non-traded asset with appropriate positions in other assets

or derivatives such as futures contract and option. Such issue relates to

commodity producers who need to secure their future incomes. Gener-

ally, perfect hedge is not feasible and optimal hedging strategy is derived

instead. In continuous time framework, the optimal hedging problem in

commodity market has been studied via expected utility maximization and

Ho [Ho 1984] and Adler and Detemple [Adler 1988a, Adler 1988b] had con-

sidered asset price driven by only Brownian risk. We extend the problem

by adding jump risk and consider asset price dynamics to follow mean-

reverting jump-diffusion processes. In doing so, the market is incom-

plete due to jump risk as well as imperfect correlation between the two

asset. Hence, the equivalent martingale measure is no more unique in

no-arbitrage condition. The imperfect correlation implies basis risk that

Monoyios [Monoyios 2004] has investigated with put option under Brow-

nian motion risk. The expected utility maximization is conducted under

minimal martingale measure to result in optimal strategy. Such portfolio
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strategies with in jump-diffusion process have been also investigated by

Aït-Sahalia and Matthys [Aït-Sahalia 2014] with robust martingale measure

under growth entropy criteria.

The structure of this is as follows. The first section derives hedging strat-

egy with futures contract presence of consumption rate. Since, this trading

strategy strongly relies on market dynamics as well as quantity risk, and in

the second section, we include put option to further reduced cash position

risk.

5.2 Hedging jump risk in commodity market

Consider an economy that lives on stochastic basis of a fixed probability

space (Ω, F, {Ft},P) with finite horizon [0, T ]. Information is gathered as

filtration {Ft; t ∈ [0, T ]} generated by Brownian motions and Poisson pro-

cesses and satisfies usual conditions.

5.2.1 Models setting

Consider two asset prices (S, F ) := (St, Ft)06t6T that follow mean-reverting

jump-diffusion process. The asset with price St is a non-traded asset and

Ft represents futures price process that is traded in the market. The two

price processes are mean-reverting jump difuusion and satisfy the stochastic

differential equations, for 0 6 t 6 T ,

dSt

St−

=
[
κ1(µ1,t − ln St) − λ1J1

∫
zν1(dz)

]
dt + σ1,tdW1,t + J1dY1,t, (5.1)

dFt

Ft−

=
[
κ2(µ2,t − ln Ft) − λ2J2

∫
zν2(dz)

]
dt + σ2,tdW2,t + J2dY2,t (5.2)

where (W1, W2) = (W1,t, W2,t)06t6T is 2-dimensional Brownian motion with

constant correlation −1 6 ρ 6 1, such that dW1,tdW2,t = ρdt. For i = 1, 2,
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the parameters κi and µi are constants and represent, respectively, the speed

of mean-reversion and the long-run mean return. The coefficient σi,t is the

deterministic volatility function of asset i. The process Yi := (Yi,t)06t6T is a

compound Poisson; so, Yi,t :=
∑Ni,t

n=1 Zi,n with independent jump counting

process Ni := (Ni,t)06t6T and jump size process Zi := (Zi,t)06t6T . Ni is a

Poisson process with intensity λi > 0 and Zi := (Zi,t)06t6T is independent

process distributed with Lévy measure νi(dz) that satisfies the condition
∫
R min(|x|, 1)νi(dz) < ∞. Also, we assume the independent jump compo-

nents for the two assets with their price dynamics (5.1) and (5.2) written

under the statistical measure P.

Besides, consider that there is costless information process, Q := (Qt)06t6T ,

about the delivery is continuously gathered and allows the hedger to revise

his beliefs. The process Q is diffusion satisfies the stochastic differential

equation

dQt

Qt

= αdt + ςdW3,t (5.3)

where α and ς are respectively the average and the diffusion coefficients

of Q; the process (W3,t)06t6T is a standard Brownian motion process corre-

lated to Brownian motion (W2,t)06t6T of futures price dynamic by constant

̺, −1 6 ̺ 6 1. The process (Qt)06t6T allows to update anticipations about

yield at harvest-time.

Consider an hedger with deterministic consumption rate c := (ct)06t6T at

time t that are committed to the terminal value, at time T , of a position in

cash position ST QT . Besides, trading takes place continuously in two se-

curities, a risk-less bond at constant interest rate, r > 0, and in the futures

contract Ft. A futures position is taken by marking to market a margin ac-

count according to a process ω := (ωt)06t6T that constitutes credits and deb-

its at time t. The credits (or debits) are added at the constant continuously

compounding rate r to the hedger’s margin account Vt. We assume that

losses bringing the account to a negative level are covered by borrowing at
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the same interest rate, and ignore transactions costs and other institutional

features. Then, the margin account has the following form

Vt =
∫ t

0
er(t−s)ωsdFs −

∫ t

0
ctdt (5.4)

where the re-investment at time s of ωsdFs at rate r leads to er(t−s)ωsdFs at

time t. Then, applying Itō’s Lemma gives its stochastic differential equation

representation in the following form

dVt =
[
rVt − ct + ωtFtκ2(µ2,t − ln Ft) − ωtFtλ2J2

∫
zν2(dz)

]
dt

+ ωtFtσ2,tdW2,t + ωtFtJ2dY2,t

(5.5)

Given a strategy ωt in futures contract, in the absence of any income de-

rived outside the investments in these two assets, the hedger’s wealth, Wt,

satisfies the stochastic differential equation

dWt = d(StQt) + dVt (5.6)

In equation (5.6), the expression d(StQt) operates as a pure information pro-

cess in that the two dynamics (5.4) and (5.6) live in the same filtration as

proven in Adler and Detemple [Adler 1988a].

Like in Chapter 3, consider there is an equivalent martingale measure under

which the price dynamics are martingale. Since the market is incomplete,

the equivalent martingale measure is not unique and one need minimal mar-

tingale measure under which hedging strategy will be optimal with these

dynamics. This minimal martingale measure comes from entropy criteria

over the set of equivalent martingale measures (see Aït-Sahalia and Matthys

[Aït-Sahalia 2014] and Zariphopoulou [Zariphopoulou 2001]). Herein, we

assume the risk-neutral measure to be minimal martingale measure for sim-

plicity. Then, the dynamic (5.5) under the minimum martingale measure is

posited to be
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dVt =
[
rVt − ct + ωtFt

(
κ2(µ2,t − ln Ft) − σ2,tη − λ2e

aJ2

∫
zν2(dz)

)]
dt

+ ωtFtσ2,tdW̃2,t + ωtFtJ2dỸ2,t.
(5.7)

Under the minimal martingale measure, the hedger problem is to find a

trading strategy {ct, ωt}06t6T , among the admissible strategies, that maxi-

mizes his expected utility

J (V, F, S, Q, t) = max
{cu,ωu}t6u6T

E0
t

[∫ T

t
U(cu, u)du + B(WT )

]
(5.8)

subject to the boundary condition

J (V, F, S, Q, T ) = B(WT , T ), with WT = VT + ST QT (5.9)

where E0
t denotes the expectation conditional on the information available

at time t under the minimal martingale measure. The total wealth at end of

period, T , is given by the sum WT = VT + ST Qt and U(·, t) is an instanta-

neous utility function for consumption such that

∂U

∂c
> 0 and

∂2U

∂c2
< 0.

The constraint in (5.9) is the boundary condition with the bequest utility

function, B(·, T ), of wealth assumed to be concave. This condition takes into

account the hedger modification with regard to intermediate cash positions

in non-traded asset.

5.2.2 Optimal hedging strategy

The optimal hedging strategy is the solution of (5.8) and will give the opti-

mal consumption rate c∗
t and position in futures contract ω∗

t that, together,

maximizes expected utility of the hedger’s wealth. We derive Hamilton-

Jacobi-Bellman (HJB) equation characterizing the optimal solution by using
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stochastic dynamic programming and Itō lemma for semi-martingale pro-

cesses

0 = max
ct,ωt

{
U(ct, t) + JV

[
rVt − ct + ωtFt

(
κ2(µ2,t − ln Ft) − σ2,tη − λ2eaJ2

∫
zν2(dz)

) ]

+
1

2
JV V ω2

t F 2
t σ2

2,t + JV F ωtF
2
t σ2

2,t + JV SωtFtStρσ1,tσ2,t + JV QωtFtQt̺ςσ2,t

+ Ftλ2ea

∫ [
J (Vt− + Vt−ωtJ2z, t) − J (Vt−, t)

]
ν2(dz)

}

(5.10)

subject to terminal condition in (5.9). We subscript value function J with

the variable to represent its partial derivative with regard to this variable.

In (5.10), we neglect the terms that are not affected by the control variables.

The maximization program can be expressed in two optimal decision rules

(consumption rate and futures positions) that can be determined separately

with respect to derived utility. The first optimization program is

0 = max
ct

{
U(ct, t) − JV ct

}
. (5.11)

which leads to

Uc(c
∗
t , t) = JV =⇒ c∗

t = U−1
c

(
JV

)
(5.12)

because in expression (5.11), an increase in consumption would lead to an

increase in utility while a decrease in wealth would lead to decrease in de-

rived utility.

The second optimization program is given by

max
ωt

{
JV ωtFt

[
κ2(µ2,t − ln Ft) − σ2,tηλ2eaJ2

∫
zν2(dz)

]
+

1

2
JV V ω2

t F 2
t σ2

2,t

+ JV F ωtF
2
t σ2

2,t + JV SωtFtStρσ1,tσ2,t + JV QωtFtQt̺ςσ2,t

+ Ftλ2ea
∫ [

J (Ft− + Ft−ωt−J2z, t) − J (Ft−, t)
]
ν2(dz)

}
.

(5.13)

To solve (5.12) and (5.13), additional assumptions on hedger’s preferences

and jump-size distribution are required. We consider a hedger with pref-
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erences represented by exponential utility functions for both instantaneous

and terminal utility functions

U(x, t) = −e−rt−γx (5.14)

B(x, T ) = −e−rT −γx (5.15)

with constant risk aversion parameter γ ∈ (0, 1). The function B(·, T ) is

assumed to be similar to the instantaneous utility function U(·, t) for simpli-

fication to avoid analysis of trade-off between the utility of inter-temporal

consumption and the utility of the terminal wealth.

Under exponential utility, we conjecture that one can find a solution to

(5.10) of the form (see Monoyios [Monoyios 2004] and Zariphopoulou

[Zariphopoulou 2001])

J (V, F, S, Q, t) = −e−γϕ(t,T )v
(
E0

t,y

[
e−χ(T −t)−γ̟2ST QT

])1/̟2

(5.16)

where ϕ(t, T ) = er(T −t), 06t6T and Vt = v is the time t endowment of wealth.

E0
t,y denotes expectation under the minimal martingale measure conditional

on ST g(QT ) = y with χ defined market price of risk come from both contin-

uous and jump components according to the minimal martingale

χ =
1
2

η2̟2 + λ2(e
a − 1), ̟2 = 1 − ρ2.

Then, the differentiations of (5.16) lead to

JV (V, F, S, Q, t) = −γϕ(t, T )J (V, F, S, Q, t)

JV V (V, F, S, Q, t) = γ2ϕ2(t, T )J (V, F, S, Q, t)

JV F (V, F, S, Q, t) = −γϕ(t, T )JF (V, F, S, Q, t)

JV S(V, F, S, Q, t) = −γϕ(t, T )JS(V, F, S, Q, t)

JV Q(V, F, S, Q, t) = −γϕ(t, T )JS(V, F, S, Q, t)

(5.17)

Plus, we assume that the jump-sizes follow exponential distribution with
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parameter b > 0

ν2(dz) = bebz, z < 0. (5.18)

Using (5.16) and the differentiation of value function allow to write

0 = −γϕ(t, T )ωt

[
κ2(µ2,t − ln Ft) − σ2,tη −

λ2eaJ2

b

]
+

1

2
γ2ϕ2(t, T )ω2

t Ftσ
2
2,t

− γϕ(t, T )
JF

J
ωtFtσ

2
2,t − γϕ(t, T )

JS

J
ωtStρσ1,tσ2,t

− γϕ(t, T )
JQ

J
ωtQt̺ςσ2,t + λ2ea

∫ [
e−γϕ(t,T )Ft−ωt−J2z − 1

]
ν2(dz).

(5.19)

We fix J2 = −1 to consider only negative jumps and take the differential

with respect to ωt yields to

γϕ(t, T )ωtFtσ
2
2,t +

λ2eaFtb

γϕ(t, T ) (b − γϕ(t, T )Ftωt)
2 =

[
κ2(µ2,t − ln Ft) − σ2,tη −

λ2ea

b

]

+
JF

J
Ftσ

2
2,t +

JS

J
Stρσ1,tσ2,t

+
JQ

J
Qt̺ςσ2,t.

(5.20)

Let

A(b) = γ2ϕ2(t, T )b2, B(b) = −2γ3ϕ3(t, T )b, C(b) = γ3ϕ3(t, T ),

D(b) = −
κ2

σ2
2,t

(
µ2,t − ln Ft

)
+

η

σ2,t

+
λ2e

a

σ2
2,t

(1
b

+ Ft

)

−
JF

J
Ft −

JS

J

Stρσ1,t

σ2,t

−
JQ

J

Qt̺ς

σ2,t

(5.21)

then equation (5.20) is cubic polynomial in ωtFt and we set xt := ωtFt,

C(b)x3
t + B(b)x2

t + A(b)xt + D(b) = 0. (5.22)

To solve equation we apply Cardano’s method of trigonometric approach.

Let

p(b) =
B(b)
C(b)

, q(b) =
A(b)
C(b)

, m(b) =
D(b)
C(b)
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Besides, let

G(b) =
3q(b) − p2(b)

9
, R(b) =

9p(b)q(b) − 27m(b) − p2(b)

54
∆ = G3(b) + R2(b) (5.23)

such that the solution of equation (5.22) subject to the integral convergence

condition b − γϕ(t, T )xt > 0 is given by

x∗
t = 2

√
−G3(b) cos


1

3
arccos


 R(b)√

−G3(b)





 −

p(b)
3

(5.24)

The optimal investment strategy x∗
t refers to drift, jump intensity compen-

sation and cash position portfolio weights. To see that, only the coefficient

D(b) in (5.21) that intervenes in x∗
t via the coefficient R(b) is dependent from

the market moves. Indeed, as soon as the risk aversion is set up and the

average jump-size is estimated, x∗
t will still vary as function of cash posi-

tion. The trading strategy is also affected by mean-reversion speed, peri-

odic long-run, seasonality in volatility and jump-sizes. In fact, assuming

that proportions of indirect utilities (of futures and spot prices and quan-

tity) over the function value may be interpreted as parameters that evolve

inversely with risk aversion, the optimal investment strategy in futures con-

tract strongly relies on expected cash positions as well as wealth.

Then, using futures contract allows to lower part of the risks because when

the futures price and production risks are highly, correlated either positively

or negatively (adverse position in futures contract), it leads to a important

reduction of the total incurred risk. However jump risk in futures price may

deter their position adversely yielding to loss depending on the jump-sizes.

Furthermore, the optimal consumption rate c∗
t is also function of both ex-

pected cash position and endowment of Vt = v at time t,

c∗
t =

1
γ

ln(γ) − ϕv +
1

γ̟2
ln

(
E0

t,y

[
e−χ(T −t)−γ̟2ST QT

])
(5.25)

The producter’s optimal consumption rate and strategies depend upon his

wealth position. When his wealth is uncertain, he would consume less and
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would take more important position in futures. That is, when the producter

incurs risk, he will hedge more for future consumption in order to lower

risk unanticipated fall in consumption.

At the end, the using position in futures contracts as hedging strategy need

to be performed since both wealth and cash position uncertainties will sub-

stantially affect the strategies. An alternative is to add another derivative

on the non-traded asset. We address the case of European put option in

following section.

5.3 Hedging basis risk with put option

Previously, cash position relates to non-traded and futures contract is used

as hedging instrument against adverse moves of its position. In this section,

we add to the initial investment strategy an European put option written on

the non-traded asset with payoff h(ST ) at maturity T , where h is a continu-

ous function.

In this framework the investor’s account is credited at time T with π units

of the option payoff h(ST ). Then, the hedger’s optimization problem is now

the trading strategy x̃ := (x̃t)06t6T in the class of admissible strategies to

achieve the supremum

J π(t, v, y) := max
x̃t

E0
t,v,y

[
u (VT + πh(ST ))

]
(5.26)

where Vt follows the same stochastic differential equation in (5.7) and E0
t,v,y

denotes expectation under the minimal martingale measure conditional on

information available at t, Vt = v and St = y. In this strategy, the consump-

tion rate is neglected. Besides, one requires the initial endowment of the op-

tion πh(ST ) to be bounded below, which covers long positions in calls and

puts, short positions in puts but excludes short call positions (see Monoyios

[Monoyios 2004]).
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With the same assumptions of section 5.2, the application of Itō formula on

(5.26) leads to the same differential equation in (5.19) subject to Vt = v and

St = y. Therefore, the conjecture of the value function with option credit at

maturity T is still given by

J π(t, v, y) = −e−γϕ(t,T )v
(
EQ

t,y

[
e−χ(T −t)−γ̟2πh(ST )

])1/̟2

. (5.27)

Then, to derive optimal hedging strategy x̃t, the option price is necessary.

5.3.1 The asking price of the put option

Recall that the option price with jump-diffusion process relies on the as-

sumption of jump-size distribution. We consider the jump-size to follow

exponential distribution of parameter b and the option price can be deter-

mined with Kou [Kou 2002] model. The Kou option price model is double

exponential distribution for the jump-size. Herein, we only focus on nega-

tive jumps.

Consider a put option where h(ST ) = (K − y)+ for K > 0. The price of a

European put of maturity T and strike K is given by (see Kou [Kou 2002]

and Kou and Wang [Kou 2004])

PT (k) = e−rTE0
[(

ek − S0e
ST /S0

)+
]

(5.28)

where k = ln(K). Hence, the utility indifference asking price at time t 6 T

of a European put with payoff h(ST ) = PT (k) is given by (see Monoyios

[Monoyios 2004])

pa(t, y) =
e−r(T −t)

γ̟2
ln

(
E0

t,y

[
eγ̟2PT (k)

])
. (5.29)

The greek, ∆, the sensitivity of the option with respect to underlying price,

can be estimated by inverting the derivative of the option’s Laplace trans-
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form (see Kou [Kou 2007])

∂PT (k)
∂S0

= L−1
ξ

(
f̂P (ξ)

)
, ξ > 1. (5.30)

with L−1
ξ the Laplace inversion with respect to ξ. The Laplace transform

with respect to k for the put option PT (k) is

f̂P (ξ) =
∫ ∞

−∞
e−ξkPT (k) = e−rT Sξ

0

ξ
exp [ψ(−(ξ − 1)T )] , ξ > 1 (5.31)

Function ψ(z) is the Lévy exponent of characteristic function of the spot

price process obtained via affine transformation as in Chapter 3.

5.3.2 Optimal hedging strategy

In the framework of (5.26), consider the situation where there is no position

in option in the investment strategy; that is π = 0

J (t, v) := J 0(t, v, y). (5.32)

This situation exactly corresponds to the investment strategy in (5.24) where

hedging is carried out with only futures contract. Furthermore, following

the analysis in Monoyios [Monoyios 2004], we consider the situation of a

debit of one unit of the option payoff h(ST ) which corresponds to π = −1.

The classical definition of the utility indifference selling price or simply the

ask price of the claim, pa(t, y), is the solution of

J (t, v) = J −1 (t, v + pa(t, y), y) (5.33)

Let x̃−1 := (x̃−1
t ), 0 6 t 6 T be the optimal trading strategy for the problem

with value function J −1 (t, v + pa(t, y), y). The difference between the opti-

mal strategy for π = −1 and π = 0, represents the additional position taken
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in the hedging instrument as a result of the sale of the claim. That is,

x̃h
t = x̃−1

t − x̃t, (5.34)

where x̃h
t is hedging strategy associated to the sale of the claim at the ask

price pa(t, y). The strategy, x̃h
t , corresponds the classical option hedging

strategy when futures price is perfectly correlated to spot price (ρ = ±1)

and perfectly correlated to quantity process (̺ = ±1). Since the jump com-

ponents of the two assets are independent, they will not affect this relation-

ship. Therefore, the differential of (5.33) with respect to y yields

J −1
y (t, v + pa(t, y), y) = −J −1

v (t, v + pa(t, y), y) pa
y(t, y) (5.35)

where pa
y(t, y) is derivative with respect to ST = y.

Then, a fundamental result from Monoyios [Monoyios 2004] follows. The

hedging strategy for the sale of the put option at the asking price pa(t, y) at

time t ∈ [0, T ] is to hold ωa
u shares of the futures contract at time u 6 t, given

by

ωa
u =

ρσ1,uSu

σ2,uFu

∂pa(u, y)
∂y

(5.36)

where pa
y(t, y) is function of delta hedging,

∂pa
y(t, y) = e−r(T −t) ∂PT (k)

∂S0

= L−1
ξ

(
f̂P (ξ)

)
, ξ > 1

(5.37)

The strategy in (5.36) is discounted delta hedge. Delta hedging strategy

expresses a corresponding change in the underlying price to how much of

the change will be reflected in the option price. The discount factor relates

to maturity effect in that hedging position is further tempered with longer

time-to-maturity. Hence, the option really affects the hedging closer to ma-

turity.
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5.4 Conclusion

We have derived optimal hedging strategy with asset price following mean-

reverting jump-diffusion process. This market is incomplete and the hedg-

ing problem is conducted in expected utility maximization framework un-

der minimal martingale measure. We consider exponential utility function

under which a distortion method can be used to conjecture the value func-

tion. The solution to optimization program follows with further assump-

tions on jump-size distribution.

In the first instance, we consider hedging with futures contract and strat-

egy strongly depends on market moves and production risk. To further

reduce the basis risk, European put option has been considered later. Opti-

mal hedging strategy with put option results in hedging with futures plus a

discounted delta hedging strategy. The delta hedging strategy with option

is well known to reduce the price risk of underlying asset.
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Chapter 6

General Conclusion

All around the world, production of commodities relies on many uncertain

factors. These factors may become unfavorable for a producer, specially in

agriculture that mainly serves for human diet. The main risks in agricul-

tural production coming from changes in prices and outputs than expected.

Indeed, at harvest time, prices could be unfavorable with regard to costs

and the expected yield crop. Then, the producer should look for a way to

guarantee as much as possible his revenue against these risks. The financial

market is an alternative to transfer these risks to investors that are able bear

them for a premium paid by producers. Commodity markets allow produc-

ers, in need, to hedge their crop revenue, but they also serve as save haven

for investors.

In financial markets, various instruments can be used to develop hedging

strategies. Such strategies mainly include derivatives on spot price like fu-

tures, forwards or options contracts. The derivatives allow to postpone de-

livery at future date and this at predetermined price. Producers could lock

in price for a certain maturity date. Besides, because derivatives are spec-

ulative but also subject to various risk which may result in important loss,

a producer with positions in the above mentioned derivatives could also,

nevertheless, look for additional revenue in the market. Another hedging
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instrument is insurance contract that is like option, but it will be specially

used to address production risk in case of low crop yield. The insurance

contract guarantees the underwritten proportion of expected yield crop.

In this thesis, the study have been set out to investigate the modeling agri-

cultural futures prices and the issue of hedging strategies in portfolio con-

text. Hedger is a producer whose portfolio strategy is consisted of non-

traded asset as spot price and futures, options or insurance contracts to

cover his revenue against adverse price moves or production deficiency.

Hedging strategy requires prior market investigation in order to address

appropriate expectations. In commodity markets, stylized facts are infor-

mational to draw dominant economic rationales. Empirical analysis on past

data is usual way to draw economic factors as model and then, expectations

will be made following predictions, preferences and contexts. Accordingly,

appropriate hedging strategy iss developed with regard to the producer ex-

pectations. To this end, we have investigate hedging issue in both static and

dynamic frameworks.

The thesis has explored the following aspects:

⋄ Behavior of commodity prices: Using econometric tools on commodity

prices data at hands, we have checked for well known stylized facts

in literature: mean-reversion, seasonality and presence of jumps. The

tests on daily prices are conducted in such that all the features can be

considered all together in price model as economic factors. These tests

have shown that, commodity market is likely to be inefficient with

mean-reversion and finite jump activity. Mean-reversion feature re-

flects the equilibrium state of price that temporary deviates from its

fundamental value. This relies on how supply and demand imbal-

ance will fluctuate to converge towards the equilibrium price. Plus,

there is seasonal behavior in both the long-run of mean-reversion and

monthly volatility to relate the calendar shape on prices. That is to

say that seasonal patterns come from respectively delivery of futures
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contracts and crop year. Jumps come from relevant changes due to

the sudden news and especially in inter-crop season periods. They

represent additional market risk to manage in dynamic hedging.

⋄ Modeling the agricultural futures prices: In light of the highlighted styl-

ized facts in Chapter 2, mean-reverting jump-diffusion process with

periodic long-run mean and seasonal volatility is posited as model for

the agricultural prices at hands. Such dynamic without jump is simi-

lar to those that have been investigated earlier in the literature where a

deterministic function is considered for the seasonal component in the

trend (see Geman and Nguyen [Geman 2005]). Jumps occur randomly

and infrequently and their consideration will make difficult the esti-

mation of the process under study with maximum likelihood. Hence,

we carry out the estimation in two-stage procedure. In the first step,

the speed of mean-reversion as well as periodic long-run mean param-

eters are estimated with least square technique. In the second step, we

apply particle MCMC method to estimate the remaining parameters

with the residuals of the first step. Particle MCMC are applied, in-

stead of Kalman filter, because non Gaussian noise. Particle MCMC is

proven to be robust Bayesian method in that the exact likelihood func-

tion of the measure process conditional on parameters of interest is

approximated by particle filtering which is known to be more consis-

tent. The parameters are then considered as latent random variables.

The implementation of this estimation procedure gives parameter es-

timates that are validated with Ljung-Box test on residuals.

⋄ Static optimal hedging strategy: In static framework, many approaches

according to the hedger’s preference have been investigated. They

lead to optimal hedge ratios that strongly depend on the approach.

Hence, it is difficult to distinguish which strategy is the best among

all the hedge ratios based on the Ederington performance measure.
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To overcome this limit of effectiveness measure, we have suggested

L-performance measure to rank strategies according to their perfor-

mance. Then, we have derived the optimal hedging strategy with fu-

tures contract in presence of market risk and output risk when long

term futures market is missing. Such strategy is implemented with

rollover process. The rollover hedging consists in switching from

nearby futures contract to more distant futures contract. This is to

maintain the position in futures contract along with hedge portfolio

horizon. However, this strategy incurs additional risk, the rollover

risk, because of price spreads between the nearby futures contract and

the futures with longer maturity. The optimal hedging strategy in

rollover performs on other strategies on both market and output risks

in in intra- and inter- crop year. Using L-performance to rank strate-

gies according to their performance, it comes out that the combination

of futures and insurance contracts is the best hedging strategy over the

others. Specifically, insurance contract guarantee a proportion of crop

revenue when the crop yield is lower than expected.

⋄ Dynamic optimal hedging strategy : To account for daily settlement and

the stylized facts tested in chapter 2, we investigate the hedging strat-

egy in continuous framework. The hedging horizon considered is sim-

ilar to a crop year. The optimal strategy in continuous time frame-

work is conducted in utility maximization setting where the producer

is looking for the dynamic position in futures contract and consump-

tion rate. In this hedging situation, since the spot and futures are not

perfectly correlated and there is presence of jumps, the market is in-

complete. And this is so when the cash market is non-traded asset.

The optimization is conducted under the minimal martingale mea-

sure. We show that hedging with futures contract can be improved

with additional put option in the hedge portfolio.
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Future direction of research

We have investigated hedging strategy to reduce risks related to adverse

move that could lower the income of a producer in agricultural markets.

This issue is extensible to consider multi-commodity hedging with regard

to situation of many goods as a way diversify production risk. In this case,

correlation risk also matters and it will be interesting to analyze, the par-

ticular case of incomplete market in term of number of futures contracts to

consider for the optimal hedge.

On another side, depending on the framework, the hedging problem can

also be extended. In static framework, an alternative to improve hedging

strategy could be to include, a non-path dependent claim on spot price to

manage basis and rollover risks. Finally, in continuous time framework,

the study lacks of application on market data. Such empirical investigation

would definitely be a complement to address commodity management pol-

icy. Specifically, it will allow the analysis how dynamic strategies behave

in both intra-crop and inter-crop year for long hedging horizon with miss-

ing futures markets. To this end, the redundancy of insurance contract is

stressed in term of linearity and non-linearity in the hedging strategy.
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Appendix A

Appendix of Chapter 1

A.1 Basic on commodity markets

A commodity is a physical good that is often (but not always) a primary

input to production processes that generate a refined good. There are dif-

ferent kinds of commodities traded and three classes1 may be distinguished:

energy (crude oil, natural gas, . . .), metal (silver, gold, copper, . . .), and agri-

culture (corn, wheat, soybean, cocoa, . . .).

There is an increasing appetite of investors for commodity markets as save

haven and this contributes to uncertainty associated to their economy as

well as their price fluctuations. Relevant commodity markets are in the

USA: CME Group (Chicago Mercantile Exchange), [Gorton 2013]. For ex-

ample, in the USA, commodity markets are regulated by the Commodity

Futures Trading Commission - (CFTC). There are other organized markets,

in Europe (the NYSE Liffe and the London Commodity Exchange - LCE),

in Osaka (Kansai Commodities Exchange, KANEX). Market actors consist

of hedgers and speculators. Hedgers are producers, traders and agribusi-

nesses while speculator are market liquidity providers such as participants

1An other classification of commodities exists as soft and hard that distinguishes perish-
able commodity from the others. Soft commodity include consumption commodities that
depend on weather like agriculture and livestock and hard commodities are energy and
metals (precious and industrial).
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in Hedge Funds.

Commodities are effectively traded in physical markets for immediate de-

livery, but also they are also exchanged in financial markets as financial in-

struments. The financial instruments of commodity markets are spot and its

derivatives that are used for both hedging and speculation. Forwards, fu-

tures, and options are the most common and traditional hedging instrument

although more complex derivatives such as swaps, exotic options, real op-

tions, and credit derivatives have emerged in recent years. Futures contracts

are the most important instruments traded for agricultural commodities as

they are highly regulated. In following paragraphs, spot and traditional

instruments assets are described.

A.1.1 Spot price

A spot price reflects all the characteristics that satisfy required quality of a

commodity good. It is the current market price at which a commodity is

traded at a given location. Due to wide swings2 in either demand or supply,

spot prices are not easy to define. This makes the level of volatility also dif-

ficult to forecast accurately because of swings in production and consump-

tion. Finally, spot price appears to be strongly correlated with unexpected

inflation.

For this reason, most of financial exchanges relate to futures (or forward)

contracts instead of cash market. Indeed, the main feature of financial

derivatives is the exchange of the underlying asset that takes place at fu-

ture date upon an agreed price. Forward and futures are the instruments to

hedge and to trade risk for a maturity.

2Extreme weather (drought, frost, or thunderstorms) can reduce the harvest or even
destroy it entirely, new technologies that help for production, political risks may disrupt
production and distribution, changes in taste and consumption patterns.
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A.1.2 Forward contract

A forward contract is an agreement between two parties to buy or sell an

asset (of any kind) at an agreed future date and at a specified price called

exercise price. In commodity markets, forward contracts involve physical

settlement at maturity and most of them are cash-settled. At inception of

forward contract, no initial payment and no transfer of ownership of the

underlying are required because exercise price is equal to initial forward

price in order to fix the value of forward contract at initial date.

Formally, consider a forward contract written at initial time t = 0 and that

will mature at T with t ∈ [0, T ] being the current time. Let’s K be the exercise

price, Gt,T the forward price at time t that will mature at T and V G
t the

market value of forward contract. At inception of forward contract, we have

V G
0 = 0 and K = G0,T . (A.1)

To find the forward price, assume the financial market is arbitrage free, com-

plete and perfect with bt,T the value at time t default-free discount bond that

pays one numÃ c©raire at T . Let St be the spot price at t which equates the

forward price at maturity T .

ST = GT,T and V G
T = GT,T − K. (A.2)

At time t = 0, conditions (A.1) and (A.2) combined with no-arbitrage as-

sumption leads to,

V G
0 = S0 − Kb0,T = 0 =⇒ G0,T =

S0

b0,T

. (A.3)

G0,T being the equilibrium forward price at inception and more generally,

Gt,T =
St

bt,T

for t ∈ [0, T ]. (A.4)
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This pricing of forward contract also works even if there are storage

costs associated with holding the underlying asset, Jarrow and Oldfield

[Jarrow 1981].

A forward contract is traded between two parties. At maturity, there are

always a looser and a winner. The former gives to the latter GT,T − G0,T in

one of the two following forms:

⋄ effective delivery of the underlying asset at ST = GT,T against pay-

ment of G0,T ,

⋄ or by payment of:

⋆ GT,T − G0,T by the seller to the buyer if GT,T > G0,T ,

⋆ or G0,T − GT,T by the buyer to the seller if G0,T < GT,T .

In practice, it is not easy to unwind a forward contract before it matures.

For example an opposite position at time t in forward contract will just fixe

its values at Gt,T − G0,T at that time.

Forward contracts incur default risk because they are traded over-the-

counter and are not easy to offset. Futures contracts, instead may be an

alternative to forward contracts.

A.1.3 Futures contract

Futures contracts have originated with agricultural commodities (corn, oats,

and wheat) in U.S. Chicago Board of Trade (CBOT). Seemingly, futures con-

tracts are like forward that are traded in organized markets3 and are stan-

dardized in their expiration date, the size of contract, quality of physical

commodity. Futures contract are traded with initial margin4 from two coun-

terparts and are daily settled. Initial margins are held by a clearinghouse

3Such organized markets are Chicago Board of Trade (CBOT), Euronext Paris SA, etc. . .
4Margins in futures trading significantly differ from the margin in stock or bond trading

and it is low (usually 7% to 10% of the value of the contract being traded).
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being the intermediate and regulator. This makes the value of a futures con-

tract to be marked to market with daily settlement of profits and losses. If

Ft,T is the price of a futures contract at time t ∈ [0, T ], the daily margin paid

or received by the buyer is Ft,T − Ft−1,T while the seller disburses or collects

Ft−1,T − Ft,T . The daily settlement implies the value of futures contract to be

zero everyday.

Futures contracts more liquid and less risky than forward in that they can

easily be cancelled at any time before maturity. Futures contract may be

seen as many forward contracts, each forward maturing everyday until the

expiry of futures contract. Otherwise, forward and futures look similar be-

cause they indicate price expectations and the economy’s direction since

they are viewed as forecast of future spot price in the short-run (Houthakker

[Houthakker 1968], Chow et al. [Chow 2000]). However, they are not sim-

ilar as they may appear. The main difference between them is that futures

contracts are daily settled whereas forward contracts are settled at matu-

rity. This implies futures prices to be greater (less) than forward prices if the

risk-free interest rate is stochastic and positively (negatively) correlated to

spot price.5 They differ in taxation, transactions costs and margin rules and

market standards. Futures contracts present low counterpart risk because

of the clearinghouse.

Practically, a buyer pays G0,T for forward contract and FT,T for futures con-

tract. Chow et al. [Chow 2000] and Pindyck [Pindyck 2001] argued that

there no significant difference exists between forward and futures prices for

most of commodities. Another famous derivatives traded in commodity

markets are options.

5"To see why this is so, note that if the interest rate is non-stochastic, the present value of the
expected daily cash flows over the life of the futures contract will equal the present value of the
expected payment at termination of the forward contract, so the futures and forward prices must
be equal. If the interest rate is stochastic and positively correlated with the price of the commodity
(which we would expect to be the case for most industrial commodities), daily payments from price
increases will on average be more heavily discounted than payments from price decreases, so the
initial futures price must exceed the forward price", Pindyck [Pindyck 2001].
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A.1.4 Options

Option are more flexible than both forwards and futures as they give buyers

the right, not the obligation, to buy or sell underlying asset at strike price in

future date. The price to pay is that options come to be riskier but they offer

diversification in portfolio with limited upside or downside risk.

Commodity options constitute an exception6 on how to value derivatives

with a different, deeper approach because they are not easily transferable

into future like other financial assets. For instance, agricultural products

are perishable and may need additional costs for storage. Moreover, the

no-arbitrage relationship between futures and spot may not hold because

of location specificity of the commodity and the intricacy of storage. Conse-

quently, hedging dynamically an underlying that may not be owned (illiq-

uid) requires some precautions. Particularly, pricing and hedging commod-

ity options should deal with every expiry like a separate underlying secu-

rity and with a specific arbitrage involving the physical delivery. This is

challenging issue, but pricing options on futures contracts represents an al-

ternative.

As futures are more liquid than spot as financial instruments, commod-

ity options are written on futures with the option maturity usually shorter

than futures contract maturity. Option prices can be derived easily with no-

arbitrage condition because a futures contract is a martingale under the risk

neutral measure. Besides, modeling spot prices is difficult as the factors that

contribute to equilibrium are not easy to determine.

Agricultural options are largely exchanged by the CME group (created by

the merging of Chicago Mercantile Exchange (CME) and the Chicago Board

of Trade (CBOT)) in the U.S. and Euronext Liffe outside the U.S. The under-

lying products include dairy products, cocoa, coffee, sugar, soybean prod-

ucts, corn, wheat, live cattle, and lean hogs. There are many others options

6"You can own all the oil you need in Rotterdam; but, if your delivery is in New York tomorrow,
you will have a problem", Nassim Taleb in Foreword of Geman [Geman 2009].
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traded in commodity markets, beside classical call and put options. An in-

teresting one is spread option such as a plain vanilla option written on the

difference between two futures prices (or, on the difference between two

spot prices). It is traded for a diverse range of products used as hedging in-

struments for variety of risks, correlation and lock in revenues. Some exam-

ples include options on inter-commodity spreads (cracks and sparks), intra-

commodity spreads (quality), calendar spreads, and locational spreads. An-

other type of derivatives are swaps. Commodity swaps are similar to an in-

terest rate swaps, but the parties will exchange a fixed price with a floating

or variable price for the commodity.

In commodity markets, trading options allows for hedging, speculation and

diversification. They offer the possibility to hedge market risk but they may

depict high leverage bet on the price direction for speculation. For instance,

producers can use calendar spreads on two futures contracts to hedge in a

market that tends to swing between backwardation and contango.

A.2 Pattern exhibits for commodity futures

A.2.1 Commodity futures prices
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Figure A.1: Corn futures prices
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Figure A.2: Oat futures prices
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Figure A.3: Rough rice futures prices
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Figure A.4: Soybeans futures prices
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Figure A.5: Wheat futures prices
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Figure A.6: Cocoa futures prices
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Figure A.7: Coffee futures prices
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Figure A.8: Cotton futures prices
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A.2.2 Monthly volatilities of commodity futures
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Figure A.9: Corn and Oat monthly volatilities
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Figure A.10: Rough rice and Soybeans monthly volatilities
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Figure A.11: Wheat rice Cocoa Soybeans monthly volatilities
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Figure A.12: Coffee and Cotton monthly volatilities
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A.3 The Hinich portmanteau bicorrelation test

In practice, a certain number of price values, say n ∈ N, are discretely ob-

served for any asset over a given period [0, t]. Let ∆n = t/n be the mesh; if

n → ∞7, then ∆n → 0 and one usually uses data with equidistant observa-

tion times i∆n, i = 0, 1, . . . , n.

Let (Xt)t≥0 denote the log-price process of which increment between two

instants is referred to as returns as follows

∆n
i X := Xi∆n

− X(i−1)∆n
, for i = 1, 2, . . . , n (A.5)

The Hinich portmanteau bicorrelation test (H-test) is used to detect epochs

of transient dependence in a discrete-time pure white noise process and

involves a procedure of dividing the full sample period into equal length

non-overlapping moving time windows on each of which the portmanteau

bicorrelation statistic is computed, to detect nonlinear serial dependence.

Let the sequence (ǫi∆n
)i=1...,n, be the errors terms of the regression (2.10) on

spot and futures returns. If we denote by ℓ the window length, then the kth

window is
{
ǫ(kℓ+1)∆n

, ǫ(kℓ+2)∆n
, . . . , ǫ(k+1)ℓ∆n

}
. The sequence of standardized

errors (ν(kℓ+i)∆n
)i=1...,ℓ is given by

ν(kℓ+i)∆n
=

ǫ(kℓ+i)∆n
− mǫ,ℓ

sǫ,ℓ

(A.6)

where mǫ,ℓ and sǫ,ℓ are the expected value and the standard deviation of

each window process, respectively. The null hypothesis of H-test for each

window is that (ν(kℓ+i)∆n
)i=1...,ℓ are realizations of a stationary pure white

noise process with zero bicorrelation. The bicorrelation is defined by

℘ν(j, q)Â = Â E
[
ν(kℓ+i)∆n

ν(kℓ+j)∆n
ν(kℓ+q)∆n

]
for i < j < q < l, (A.7)

7In reality n < ∞ and assumption of n → ∞ is made for convergence convenience.
Hence, only the observation times that are smaller than or equal to t are considered.
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where l is the number of lags in each window. The alternative hypothesis

is that the process generated in the window is random with some non-zero

bicorrelations, that is, there exists third-order nonlinear dependence in the

data generation process.

The H-statistic, used to detect nonlinear dependence within a window,

HÂ = Â
L∑

q=2

q∑

j=1

(ℓ − q)℘2
ν(j, l)

n − q
, with lÂ := Â ℓ0.4 (A.8)

that follows a Chi-2 distribution χ2
l(l−1)/2. A window will be statistically

significant if the null hypothesis is rejected at the given threshold level.

A.4 Testing for jumps on discretely observed data

A jump in a process X is defined by

∆Xt = Xt − Xt−

where Xt− = limu↑t Xu and t− refers to as immediate instant before time t.

Note that jump differs from an increment of (Xt)t≥0 between two instants.

Testing for discontinuities is to decide whether the price dynamic should

include jump component or not. If the log-price process (Xt)t≥0 is assumed

jump-diffusion, then the jump component will be included depending on

its importance basing on statistical tests.

dXt = µtdt + σtdWt + dJt with Jt =
Nt∑

j=1

ytj
, (A.9)

where µt is the drift term and in equation (2.11), µt = κ(x̄ − Xt) with dLt =

σtdWt + dJt and σt being the diffusion parameter and (Wt)t≥0 a Brownian

motion. (Jt)t≥0 is the jump process with ytj
representing the jump size at

time tj and Nt the random number of jumps up to time t.
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The integrated volatility relates to quadratic variation of process X which is

given as follows

[X]t =
∫ t

0
σ2

sds +
Nt∑

j=1

y2
tj

(A.10)

where
∑Nt

j=1 y2
tj

is the jump component. An estimator of quadratic variation

is the realized variance (RV)

RVt =
n∑

i=1

(∆n
i X)2 P

−−−→
n→∞

[X]t (A.11)

and a consistent estimator of integrated volatility is realized bipower varia-

tion (BV) which is robust to jumps in limit.

BVt =
πn

2(n − 2)

n∑

i=2

|∆n
i X||∆n

(i−1)X|
P

−−−→
n→∞

∫ t

0
σ2

sds. (A.12)

The BNS test consists of comparing realized volatility and realized bipower

variation by using the relative jump

RJt :=
RVt − BVt

RVt

(A.13)

that asymptotically converges towards normal distribution with appropri-

ate variances, [Barndorff-Nielsen 2006]. This leads to two test statistics8 zT P

8The two test statistics depend respectively realized Tri-Power Quarticity and realized
Quad-Power Quarticity

TPt := nµ−3
4/3

n

n − 2

n∑

i=3

|∆n
(i−2)X|4/3|∆n

(i−1)X|4/3|∆n
i X|4/3 P

−−−−→
n→∞

∫ t

0

σ4
sds,

QPt := nµ−4
1

n

n − 3

n∑

i=4

|∆n
(i−3)X||∆n

(i−2)X||∆n
(i−1)X||∆n

i X|
P

−−−−→
n→∞

∫ t

0

σ4
sds.

where µk = 2k/2Γ
(

k+1
2

)
/Γ

(
1
2

)
. Test statistics depend on υ = TPt, QPt and are then given

by

zυ :=
RJt√(

π
2 + π − 5

)
1
n max

(
1, υ

BV 2

t

)
L

−−−−→
n→∞

N (0, 1).
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and zQP that depend on estimator of integrated quarticity
∫ t

0 σ4
sds. The test

statistics are compared with the normal distribution under the null hypoth-

esis there are no jumps.

Furthermore, Barndorff-Nielsen and Shephard [Barndorff-Nielsen 2006]

have generalized the bipower variation concept as realized power varia-

tions which can be generally used to estimate
∫ t

0 σp
sds in the presence of

jumps. It is computed as sums of products of adjacent absolute returns to a

certain power to be fixed. Further, authors have argued that multipower of

absolute variations can separate the continuous part of the quadratic varia-

tion, [Aït-Sahalia 2009].

The realized power variation of order p > 0 of process (Xt)t≥0 is given by

B̂(p, ∆n)t =
⌊t/∆n⌋∑

i=1

|∆n
i X|p , (A.14)

where ⌊x⌋ stands for the integer part of x ∈ R.

AÃ¯t-Sahalia and Jacod [Aït-Sahalia 2009] used result of multipower abso-

lute variations to show that when p > 2 with the process (Xt)t≥0 jumping,

B̂(p, ∆n)t is invariant to sampling scale modifications. However, this does

hold for continuous processes. Thus, the ASJ test compares B̂(p, ∆n)t at two

different time scales 1 and k > 1 by using the test statistic

Ŝ(p, k, ∆n)t =
B̂(p, k∆n)t

B̂(p, ∆n)t

which converges for p > 3 towards normal distribution . In the presence

of jumps, both B̂(p, k∆n)t and B̂(p, ∆n)t should converge towards the same

value, giving Ŝ(p, k, ∆n)t → 1 with ∆n → 0. However, when there are no

jumps Ŝ(p, k, ∆n)t will also converge, but it does depend on the ∆n-scaling

parameter k. This gives the possibility to specify either absence or presence

for null hypothesis both using the same test statistic Ŝ(p, k, ∆n)t with differ-
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ent critical values (respectively cc
n,t and cj

n,t).

Let un be a cutoff sequence that converges towards zero. Define,

b̂(p, ∆n, un)t =
⌊t/∆n⌋∑

i=1

|∆n
i X|p 1{|∆n

i
X|≤un},

and the following test statistics,

Ŝ(p, k, ∆n, un)t =
b̂(p, ∆n, un)t

b̂(p, k∆n, un)t

,

s̃(p, k, ∆n, un)t =
b̂(p, k∆n, un)t

b̂(p, ∆n, un)t

and

s̄t =
b̂(p′, k∆n, un)t b̂(p, ∆n, un)t

b̂(p′, ∆n, un)t b̂(p, k∆n, un)t

.

A.5 Empirical results

A.5.1 Details of ASJ [Aït-Sahalia 2009] jump test

The decision rule of no jump is





Ŝ(p, k, ∆n)t < cc
n,t for absence of jumps

Ŝ(p, k, ∆n)t > cj
n,t for presence of jumps

(A.15)

where cc
n,t and cj

n,t are critical values. We fix p = 4 and k = 3
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Table A.1: Grain commodities

Absence of jumps Presence of jumps

Commodity Nearby Ŝ(p, k, ∆n)t cc
n,t (1%) cc

n,t (2%) pc cj
n,t (1%) cj

n,t (2%) pj

Corn C1 0.737 2.44 2.56 2e-11 3541592 2759354 0.50
C2 0.767 2.43 2.55 7e-11 1548164 1206218 0.50
C3 0.817 2.41 2.54 4e-10 848166 660830 0.52
C4 0.695 2.42 2.55 2e-11 399371 311161 0.57
C5 1.164 2.42 2.55 1e-7 139192 178651 0.51
C6 0.990 2.37 2.51 7e-8 87725 112593 0.59

Oat O1 3.390 2.53 2.63 0.91 227844 177520 0.49
O2 4.475 2.51 2.62 0.95 62618 80369 0.48
O3 3.915 2.48 2.59 0.99 120275 93710 0.49

Rough RR1 1.130 2.34 2.49 7e-4 35399 27581 0.49
rice RR2 1.17 2.40 2.53 2e-4 10085 7858 0.49

RR3 1.120 2.37 2.51 0.001 19773 15406 0.47

Soybeans S1 0.879 2.40 2.53 2e-6 349187 272062 0.51
S2 1.265 2.39 2.52 6e-6 73284 57098 0.53
S3 1.196 2.38 2.52 2e-6 88055 68607 0.50
S4 0.886 2.38 2.52 0.003 89226 69518 0.49
S5 1.232 2.38 2.51 0.005 91314 71145 0.49
S6 1.606 2.36 2.50 1e-4 54716 42631 0.49

Wheat W1 3.781 1.71 1.78 0.81 1344911 1726175 0.53
W2 4.399 1.70 1.77 0.92 332776 259275 0.49
W3 0.836 1.69 1.76 1e-13 3382231 2635191 0.59
W4 0.764 1.67 1.74 2e-10 4649968 3622921 0.52
W5 1.13 2.34 2.48 3e-4 1507133 1174250 0.53
W6 1.02 2.24 2.38 0.002 2382949 3748292 0.39

The probability that the null hypothesis is true is p-value; pc is the p-value of null hypothesis of absence of
jumps and pj is the p-value of null hypothesis of presence of jumps. Significant levels 1% and 2% correspond to
5% and 10% respectively in multiple testing.
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Table A.2: Soft commodities

Absence of jumps Presence of jumps

Commodity Nearby Ŝ(p, k, ∆n)t cc
n,t (1%) cc

n,t (2%) pc cj
n,t (1%) cj

n,t (2%) pj

Cocoa QC1 0.784 2.51 2.62 5e-22 7747 6036 0.57
QC2 0.956 2.52 2.61 2e-12 9421 12091 0.53
QC3 0.892 2.50 2.61 2e-10 11833 9219 0.53
QC4 0.931 2.51 2.61 4e-18 11179 8710 0.53
QC5 0.921 2.50 2.61 1e-17 16664 12984 0.52
QC6 0.997 2.49 2.60 2e-14 23222 18093 0.51

Coffee KC1 3.188 2.54 2.64 0.75 293781 228893 0.50
KC2 3.587 2.56 2.66 0.98 205690 160259 0.49
KC3 4.068 2.56 2.66 0.99 178867 139360 0.49
KC4 4.521 2.57 2.67 0.99 111064 86533 0.49
KC5 6.595 2.56 2.67 1.00 112704 87811 0.49
KC6 4.358 2.55 2.65 1.00 147559 114967 0.49

Cotton CT1 0.916 2.58 2.67 1e-26 299703 233507 0.50
CT2 0.852 2.59 2.68 1e-30 58292 45417 0.51
CT3 0.727 2.59 2.68 8e-34 109524 85333 0.51
CT4 0.739 2.59 2.68 9e-34 151973 118407 0.50
CT5 0.823 2.59 2.68 9e-34 228067 177694 0.50
CT6 0.748 2.58 2.67 7e-31 17899 13946 0.53
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Table A.3: Single futures contract jump test

Descriptive statistics BNS ASJ

N Mean(%) Std.(%) Skew. Kurt. zT P zQP Ŝ(p, k, ∆n)t cc
n,t pc cj

n,t pj

CH2014 565 -7.16 20.84 0.328 6.187 2.880 2.885 0.983 1.934 1.8e-3 66.0 0.150
CK2014 607 -5.18 20.38 0.266 5.956 3.191 2.337 0.979 2.017 2.5e-4 35.5 0.148
CN2014 648 -14.42 19.93 0.207 5.830 2.855 2.785 1.012 2.003 3.7e-4 32.2 0.195
CU2014 671 -16.08 19.23 0.142 5.714 2.904 2.214 0.993 2.081 3.8e-2 46.0 0.181
CZ2014 755 -10.91 18.79 0.191 4.801 2.968 2.622 0.989 1.819 1.4e-2 76.0 0.159
OH2015 500 -17.23 21.72 -0.356 4.621 2.807 2.914 0.998 2.062 7.1e-4 17.06 0.146
OK2015 500 -20.19 22.78 -0.182 4.802 2.451 2.525 0.972 2.091 2.7e-4 42.43 0.165
ON2015 707 -20.32 22.61 -0.185 4.785 2.653 2.710 1.009 2.158 2.2e-5 25.35 0.139
OU2015 750 -20.65 23.29 0.014 5.428 2.731 2.817 1.012 2.133 6.2e-4 92.40 0.123
OZ2015 457 -10.93 23.19 0.276 4.446 2.236 2.290 0.983 1.985 2.2e-3 34.01 0.127
RRF2009 292 6.61 28.34 -0.501 3.387 1.782 1.884 NaN - - - -
RRH2009 290 -21.51 29.66 -0.308 2.617 1.161 1.230 NaN - - - -
RRK2009 293 -29.40 29.96 -0.098 2.581 1.387 1.387 NaN - - - -
RRN2009 292 -36.20 28.32 -0.047 2.646 1.553 1.487 NaN - - - -
RRU2009 293 -28.42 22.97 0.093 3.390 1.122 1.172 NaN - - - -
RRX2009 462 -0.22 23.18 -0.131 5.021 1.347 1.762 NaN - - - -
SF2014 545 5.22 16.70 -0.007 4.070 2.383 3.140 0.979 2.165 1.7e-3 88.49 0.218
SH2014 586 6.88 16.05 -0.184 3.774 2.376 2.803 0.983 2.232 6.4e-4 63.33 0.131
SK2014 628 9.52 15.69 -0.287 3.770 2.060 2.081 1.043 2.241 3.8e-5 75.84 0.192
SN2014 669 2.95 15.55 -0.292 3.661 2.574 2.480 0.991 2.270 6.5e-4 90.84 0.157
SQ2014 692 2.36 15.29 -0.321 3.848 2.316 2.321 1.065 2.277 4.1e-3 85.44 0.189
SU2014 712 -3.90 15.62 -0.621 5.582 2.533 1.977 1.007 2.278 4.1e-3 50.05 0.223
SX2014 757 -4.03 15.41 -0.201 5.355 2.046 1.988 0.991 2.288 1.9e-3 82.42 0.125

For the BNS test, the null hypothesis of no jump is rejected if the test statistic is greater than 1.96 at 5%. For ASJ test, pc is the p-value of null hypothesis
of absence of jumps and pj is the p-value of null hypothesis of presence of jumps. Significant levels 1% and 2% correspond to 5% and 10% respectively in
multiple testing.
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Table A.4: Single futures contract jump test

Descriptive statistics BNS ASJ

N Mean(%) Std.(%) Skew. Kurt. zT P zQP Ŝ(p, k, ∆n)t cc
n,t pc cj

n,t pj

WH2011 419 5.95 31.07 0.061 4.836 1.630 1.854 NaN - - - -
WK2011 462 4.87 31.64 -0.086 4.877 1.177 1.263 NaN - - - -
WN2011 504 3.97 32.30 -0.238 5.229 4.710 4.706 1.003 2.125 8.3e-3 85.81 0.153
WU2011 547 4.21 30.80 -0.188 5.239 5.137 5.171 0.983 2.133 6.1e-4 66 0.213
WZ2011 611 -3.66 30.18 -0.221 5.196 4.764 4.890 0.979 2.185 5.1e-3 31.35 0.179
QCH2012 492 -17.43 27.00 0.318 4.620 1.957 1.950 NaN - - - -
QCK2012 493 -16.81 27.69 0.309 4.198 0.956 0.944 NaN - - - -
QCN2012 493 -20.19 28.06 0.305 3.949 0.658 0.648 NaN - - - -
QCU2012 492 -6.18 28.17 0.267 3.786 0.907 0.907 NaN - - - -
QCZ2012 490 -10.36 27.55 0.215 3.745 0.436 0.436 NaN - - - -
KCH2014 747 -11.40 28.24 0.808 7.324 2.317 2.493 0.967 1.957 1.1e-3 61.82 0.123
KCK2014 748 -12.41 30.25 0.715 6.828 2.768 2.859 0.981 2.023 2.2e-4 99.14 0.151
KCN2014 749 -12.70 30.32 0.653 6.549 2.266 2.387 1.003 2.087 3.2e-4 27.14 0.128
KCU2014 748 -7.31 30.56 0.690 6.456 3.071 2.279 0.996 2.113 1.2e-3 391.38 0.161
KCZ2014 747 -11.20 30.99 0.601 6.036 2.935 3.080 1.012 2.148 3.4e-4 27.87 0.129
CTH2012 740 8.61 27.62 -0.049 4.294 2.174 2.433 1.003 2.109 1.5e-3 602.45 0.150
CTK2012 742 3.47 25.71 -0.028 4.387 3.382 2.634 0.994 2.144 3.9e-4 220.22 0.229
CTN2012 739 -3.38 25.95 -0.161 4.950 2.279 2.716 1.014 2.143 4.1e-4 350.16 0.134
CTV2012 741 -4.30 24.60 -0.146 4.995 3.303 2.907 0.987 2.158 2.2e-3 66.10 0.142
CTZ2012 740 -4.84 23.06 -0.139 5.305 4.806 4.086 0.985 2.072 5.2e-4 640.50 0.119

The null hypothesis of no jump is rejected if the test statistic is greater than 1.96 at 5%.
Month codes: January(F); February(G); March(H); April(J); May(K); June(M); July(N); August(Q); September(U); October(V); November(X); December(Z).
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A.5.2 Details of jump activity test, [Aït-Sahalia 2011]

The decision rule is





s̃(p, k, ∆n)t < cfA
n,t for finite activity

s̄(p′, k, ∆n)t < cinfA
n,t for infinite activity

where ca
n,t is the critical value and p′ > p > 3. The values of test statistic for

p = 4, p′ = 5, k = 3 are computed for cutoff un proportional to estimated

integrated volatility, see [Le Courtois 2014] and [Aït-Sahalia 2010]
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Table A.5: Testing for jump activity

Finite activity Infinite activity

Commodity Nearby s̃(p, k, ∆n)t cfA
n,t (1%) cfA

n,t (2%) pfA s̄(p, k, ∆n, un)t cinfA
n,t (1%) cinfA

n,t (2%) pinfA

Corn C1 2.315 1.86 2.11 0.161 0.114 1.69 1.76 7e-24
C2 2.797 1.92 2.16 0.378 0.122 1.65 1.73 4e-19
C3 2.616 1.80 2.07 0.299 0.118 1.60 1.69 3e-15
C4 2.708 2.13 2.32 0.290 0.131 1.77 1.82 4e-40
C5 2.408 1.91 2.15 0.185 0.120 1.68 1.75 1e-24
C6 2.049 1.52 1.69 0.067 0.116 1.78 1.82 1e-43

Oat O1 1.775 1.54 1.71 0.062 0.341 1.28 1.30 6e-34
O2 2.427 1.58 1.75 0.173 0.405 1.22 1.25 2e-20
O3 2.483 1.63 1.77 0.189 0.421 1.25 1.28 2e-24

Rough RR1 1.967 1.04 1.27 0.111 0.358 1.19 1.22 3e-18
rice RR2 2.535 0.82 1.07 0.310 0.396 0.98 1.04 5e-07

RR3 2.673 0.87 1.12 0.361 0.401 1.05 1.10 8e-09

Soybeans S1 1.800 1.28 1.48 0.052 0.372 1.17 1.21 5e-16
S2 2.245 1.17 1.38 0.169 0.396 1.07 1.12 2e-09
S3 1.973 1.44 1.63 0.062 0.419 1.14 1.18 1e-12
S4 2.014 1.87 2.00 0.021 0.448 1.34 1.36 3e-52
S5 2.176 1.94 2.07 0.035 0.462 1.37 1.39 4e-79
S6 2.017 1.71 1.87 0.037 0.444 1.26 1.29 2e-24

The probability that the null hypothesis is true is p-value; pfA is the p-value of null hypothesis of finite activity and pinfA is the p-value of null hypothesis
of infinite activity. Significant levels 1% and 2% correspond to 5% and 10% respectively in multiple testing
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Table A.6: Testing for jump activity

Finite activity Infinite activity

Commodity Nearby s̃(p, k, ∆n)t cfA
n,t (1%) cfA

n,t (2%) pfA s̄(p, k, ∆n, un)t cinfA
n,t (1%) cinfA

n,t (2%) pinfA

Wheat W1 1.670 1.80 1.94 0.005 0.379 1.31 1.34 1e-45
W2 1.850 1.85 1.99 0.010 0.399 1.32 1.34 9e-48
W3 1.855 1.85 1.88 0.009 0.404 1.36 1.38 2e-78
W4 1.906 1.73 1.88 0.022 0.403 1.29 1.31 2e-35
W5 1.559 1.16 1.38 0.034 0.360 1.15 1.19 2e-14
W5 1.659 1.26 1.34 0.034 0.841 0.85 0.88 8e-04

Cocoa QC1 1.968 1.73 1.73 0.023 0.402 1.25 1.28 1e-25
QC2 1.819 1.73 1.77 0.022 0.152 1.59 1.66 1e-13
QC3 1.929 1.76 1.87 0.021 0.152 1.81 1.86 3e-28
QC4 1.904 1.81 1.85 0.025 0.171 1.76 1.82 1e-13
QC5 2.035 1.80 1.90 0.024 0.167 1.81 1.82 8e-23
QC6 2.001 1.87 1.88 0.031 0.162 1.72 1.78 2e-20
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Table A.7: Testing for jump activity

Finite activity Infinite activity

Commodity Nearby s̃(p, k, ∆n)t cfA
n,t (1%) cfA

n,t (2%) pfA s̄(p, k, ∆n, un)t cinfA
n,t (1%) cinfA

n,t (2%) pinfA

Coffee KC1 1.999 1.86 1.53 0.073 0.001 11.2 11.8 6e-17
KC2 1.951 1.31 1.81 0.043 0.032 2.42 2.54 1e-16
KC3 2.001 1.66 1.87 0.083 0.042 2.32 2.44 8e-14
KC4 1.945 1.53 1.81 0.063 0.038 2.25 2.39 2e-12
KC5 1.913 1.55 1.76 0.123 0.035 2.32 2.44 8e-14
KC6 1.791 1.33 1.63 0.134 0.028 2.18 2.32 8e-11

Cotton CT1 2.151 1.81 2.03 0.093 0.041 2.50 2.61 3e-19
CT2 2.234 2.03 2.13 0.123 0.052 2.40 2.51 1e-15
CT3 2.166 1.57 2.05 0.073 0.039 2.46 2.57 1e-17
CT4 2.236 1.46 2.13 0.193 0.040 2.63 2.72 6e-26
CT5 2.226 1.24 2.12 0.154 0.035 2.71 2.79 1e-31
CT6 2.139 1.01 2.02 0.212 0.026 2.74 2.89 1e-35
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A.5.3 Details of continuity test, [Aït-Sahalia 2010]

Decision rule for null hypothesis of Brownian presence is

Ŝ(p, k, ∆n, un)t < cn,t

where cn,t is critical value. All values of test statistic for p = 1.5, k = 3 are

computed for cutoff un proportional to estimated integrated volatility, see

[Le Courtois 2014] and [Aït-Sahalia 2010]

Table A.8: Grains: Test of continuity

Commodity Nearby Ŝ(p, k, ∆n, un)t cn,t (1%) cn,t(2%) p-value

Corn C1 1.497 1.483 1.491 0.031
C2 1.490 1.482 1.502 0.021
C3 1.506 1.482 1.502 0.063
C4 1.502 1.482 1.503 0.050
C5 1.514 1.483 1.503 0.104
C6 1.541 1.483 1.503 0.352

Oat O1 1.414 1.398 1.504 0.037
O2 1.326 1.336 1.504 0.026
O3 1.330 1.312 1.504 0.035

Rough RR1 1.088 1.074 1.105 0.021
rice RR2 1.102 1.073 1.104 0.045

RR3 1.091 1.069 1.081 0.032

Soybeans S1 1.467 1.399 1.407 0.479
S2 1.453 1.398 1.406 0.301
S3 1.462 1.400 1.408 0.413
S4 1.471 1.400 1.401 0.525
S5 1.472 1.399 1.407 0.535
S6 1.478 1.399 1.407 0.613

Wheat W1 1.415 1.400 1.408 0.035
W2 1.511 1.488 1.496 0.066
W3 1.492 1.487 1.081 0.032
W4 1.424 1.400 1.408 0.063
W5 1.515 1.487 1.494 0.097
W6 1.441 1.400 1.408 0.175

A.5.4 Descriptive statistics of inventory data
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Table A.9: Softs: Test of continuity

Presence of Brownian

Commodity Nearby Ŝ(p, k, ∆n, un)t cc
n,t (1%) cc

n,t(2%) p − value

Cocoa QC1 1.655 1.578 1.587 0.729
QC2 1.659 1.580 1.586 0.773
QC3 1.662 1.579 1.587 0.807
QC4 1.673 1.578 1.586 0.906
QC5 1.680 1.579 1.586 0.943
QC6 1.671 1.580 1.587 0.886

Coffee KC1 1.658 1.579 1.586 0.267
KC2 1.702 1.581 1.588 0.293
KC3 1.684 1.580 1.587 0.259
KC4 1.697 1.581 1.587 0.289
KC5 1.697 1.580 1.588 0.387
KC6 1.723 1.582 1.588 0.499

Cotton CT1 1.652 1.578 1.586 0.291
CT2 1.609 1.409 1.408 0.580
CT3 1.655 1.491 1.498 0.599
CT4 1.671 1.492 1.499 0.609
CT5 1.697 1.493 1.500 0.653
CT6 1.689 1.492 1.499 0.709

Table A.10: Descriptive statistics of inventory level

Commodity N Mean Std dev Min Q1 Median Q3 Max
Corn 100 4743725 2846263 425942 2113724 4315442 6912303 11202714
Oat 100 117944 60818 24744 75742 104349 144094 351709
Soybeans 100 1071825 738412 91960 428649 992264 1672896 2701366
Rough Rice 78 64402 53923 1412 17348 56581 110673 166660
Wheat 100 1337111 570871 305818 873616 1347378 1819065 2449617
Cocoa 308 3173384 1145267 122000 2660242 3325039 3897938 5393598
Coffee 225 2685033 1462312 321 1622432 2712325 3829498 5092735
Cotton 649 133839 90486 1205 60370 106545 213132 350604
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Appendix B

Appendix of Chapter 3

B.1 Estimation of hedge ratios

In practice, the estimation of hedge ratio depends on the methods that is

adopted to compute the hedge ratio. Herein, we describe some estimations

methods for existing approach for hedge ratio with no quantity risk.

The minimum-variance hedge ratio is simply estimated by linear regression

of spot returns on futures returns

rs,t = a + βrf,t + εt, (B.1)

where a the intercept, β an estimate of hMV, ε the error term and t is the ob-

servation time. While the linear regression is easy to implement by ordinary

least square technique, it relies on no exhaustive assumptions which makes

the estimated hedge ratio critical on statistical basis. Error term in equation

(B.1) is often heteroskedastic and ordinary least square approach is based

on unconditional mean and variance instead.

In the expected utility approach, appropriate utility function and distribu-

tion are usually guested to achieve closed form solution. Otherwise, numer-

ical approximation usually allows to derive the hedge ratio.
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The estimation of the mean-extended-Gini hedge ratio, is usually based on

empirical distribution function of Rh

Γ̂h(δ) =
δ

N

{
N∑

i=1

rh,i[1 − Ĝ(rh,i)]
δ−1 −

1

N

(
N∑

i=1

rh,i

) (
N∑

i=1

[1 − Ĝ(rh,i)]
δ−1

)}
(B.2)

where N is the sample size and rh,1, . . . , rh,N , the observations of hedge port-

folio returns. Then mean-extended-Gini coefficient, Γ̂h(δ) is minimized as

risk measure function. Alternatively, Shalit [Shalit 1984] had used another

formula whose estimation is as follows

ĥMEG =
∑N

i=1(rs,i − r̄s)(di − d̄)
∑N

i=1(rf,i − r̄f )(di − d̄)
(B.3)

with di = [1 − Ĝ(rh,i)]δ−1 and d̄ =
∑N

i=1 di/N .

The lower partial moment hedge is approximated either on basis of the em-

pirical distribution or the kernel estimation, Lien and Tse [Lien 2000]. The

empirical distribution approach leads to

ℓ̃n(c, r) =
1
N

∑

rh,i<c

(c − rh,i)
n, (B.4)

and the kernel estimation consists in substituting the probability density

function of the portfolio returns by a kernel density function1,

ℓ̂(n, r̄, G) =
1

N̟

N∑

i=1

∫ r̄

−∞
(r̄ − r)n k

(
r − ri

̟

)
dr, (B.5)

with k is the kernel function and ̟ is the bandwidth. By plugging z =

1The density function of Rh can be estimated by the kernel method

ĝ(Rh) =
1

N̟

N∑

i=1

k

(
Rh − rh,i

̟

)
.
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(r − ri)/̟ into the integral, we have

ℓ̂n(r̄, G) =
1
N

N∑

i=1

ln(c, rh,i), (B.6)

with

ln(c, rh,i) =
∫ (c−rh,i)/̟

−∞
(c − z̟ − rh,i)

n k(z)dz. (B.7)

Setting n = 2 and assuming that the portfolio returns and the futures returns

are independent, then hedge ratio is the same as the of semi-variance will

be the same as the minimum variance hedge ratio, Lien and Tse [Lien 2002].

Traditional way to estimate the hedge ratios from VaR and CVaR is numer-

ical optimization, unless convenient distributions is use to get closed form

solution.
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Modélisation et stratégies de

couverture des matières premières

agricoles

Introduction générale

Les prix des marchandises sont soumis à des variations de niveaux de

production de leurs actifs sous-jacents, ainsi que des facteurs liés à leur

économie tels que les saisons calendaires ou les campagnes agricoles, la

consommation et les politiques de l’offre et l’équilibre de la demande, les

stocks . . . Ainsi, les matières premières encourent-elles les risques à la fois

de marché et de production. Surtout que la majeure partie des revenus des

producteurs est représentée par le rendement de leurs cultures. Toute évo-

lution défavorable des prix aura une incidence sur leurs revenus. D’une

part, la mondialisation des marchés des matières premières pourvoit des

produits dérivés comme les futures, forwards ou des options pour se pro-

téger contre ces risques en les cédant aux investisseurs qui recherchent des

opportunités de spéculation. D’autre part, les matières premières peuvent

également être stockées afin d’éviter les perturbations dues aux pénuries qui

génèreraient des coûts de portage résultant de la détérioration de la qualité

des produits.

Dans la production agricole, un moyen d’éviter de tels coûts de portage

est d’entrer sur les marchés financiers avec des dérivés ayant leurs valeurs

198



déterminées, en quelque sorte, par les prix de ces biens physiques pour

une date future. C’est à dire qu’avoir des stocks de produits, afin de faire

face à des épisodes de pénuries éventuelles à l’avenir, contribue ainsi à la

logique de la relation entre le prix au comptant et le prix à terme. Pour

les matières premières, l’impact de la variabilité des prix sur l’économie

réelle est plus grand. Les variations des prix de matières premières se rap-

portent à chaque entité économique ; des individus aux organisations et

pays. Par conséquent, la gestion des risques dans l’économie des matières

premières s’avère très importante. Les individus ont besoin de gérer ces

risques pour couvrir leurs revenus, les entreprises pour protéger leur base

de fond et leur compétitivité, et les pays pour protéger leur stabilité macroé-

conomique. Particulièrement, les produits agricoles sont concernés, car ce

sont des ressources naturelles consommés dans l’alimentation humaine de

base. Ils sont également utilisés à d’autres fins. Par exemple, le maïs est

utilisé dans tout ; les édulcorants artificiels, les sources de carburant ainsi

que dans le papier et les conteneurs. Les marchés à terme sont, à la fois,

des organisations de gestion des risques et de découverte des prix2. Sur

ces marchés, les anticipations stratégiques des acteurs du marché interagis-

sent pour former le "mécanisme des prix" pour refléter un large éventail

d’informations à venir sur les conditions du marché.

Les contrats à terme sont principalement utilisés comme instruments de

couverture de l’exposition en trésorerie, mais s’ils ne correspondent pas à

l’exposition directe des prix des produits de base; Ils représentent des paris

sur les prix au comptant espérés. Par exemple, un producteur de blé qui

plante une culture fait un pari que le prix du blé ne baissera pas si bas qu’il

aurait été préférable de ne pas avoir planté son blé. Ce pari est inhérent à

l’activité agricole, mais l’agriculteur peut préférer ne pas le faire. Par con-

séquent, il peut couvrir ce pari en vendant un contrat à terme le blé. À part

2Blau [Blau 1944] (p. 1) avait déclaré que "commodity futures exchanges are market orga-
nizations specially developed for facilitating the shifting of risks due to unknown future changes in
commodity prices; i.e., risks which are of such a nature that they cannot be covered by means of
ordinary insurance."
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la gestion du risque de prix, il existe de nombreuses externalités positives

associées à la couverture avec les contrats de futures. Rappelons que les

contrats à terme dans les échanges des matières premières ont lieu avec la

standardisation en volume et en qualités afin d’améliorer l’efficacité de leurs

extractions, leurs distributions et les processus de consommation. Par con-

séquent, les fonctions de couverture et de formation des prix des marchés

à terme améliorent l’efficacité des opérations de production, de stockage

et de commercialisation. La couverture assure également la continuité des

flux de trésorerie car elle permet de mettre à l’abri le producteur des mouve-

ments volatiles des prix et lui garantira des flux de revenus ininterrompus

et stables apportant une certaine certitude dans le processus de production.

Cela se revient à la certitude dans la planification de la production à un prix

minimum garanti en utilisant des contrats à terme.

En outre, les marchés à terme agricoles servent également de couverture ef-

ficace contre l’inflation, puisque les prix des aliments font partie de ceux qui

grimpent souvent en premier. Gorton et Rouwenhorst [Gorton 2006] ont

souligné que les rendements à terme des matières premières et l’inflation

sont positivement corrélés en grande échelle sur le long terme. En effet,

les rendements des matières premières à terme sont volatiles par rapport à

l’inflation, leurs corrélations à long terme permettant de mieux capter les

propriétés inflationnistes d’un investissement en matières premières. Les

futures agricoles peuvent aussi réaliser de bonnes performances lorsque la

population mondiale croît, ou lorsque la croissance de la classe moyenne

entraîne une demande accrue. Enfin, les contrats de futures agricoles fonc-

tionnent parfois comme une couverture contre la volatilité sur les marchés

boursiers: les tensions géopolitiques sur les marchés émergents et frontal-

iers découlent souvent de pénuries alimentaires. Sur les marchés agricoles,

les contrats à terme permettent de se couvrir contre les risques de marché

et de production et leur fonction de formation des prix est intégrée dans les

processus de changement de prix et des imprévus de production. Le risque

de production entraîne des risques supplémentaires qui peuvent réduire da-
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vantage le rendement des cultures et affecter les prix espérés. En effet, les

gains et pertes des futures sont réglés quotidiennement et comme tout ac-

tif financier, les prix des matières premières peuvent changer soudainement

et avec des variations importantes ; généralement, en raison de nouvelles

annonces ou de réformes, de troubles politiques ou des aléas climatiques.

Un exemple frappant est l’instabilité politique en Côte d’Ivoire, où les prix

du cacao avaient atteint un sommet entre 2002 et 2003. Une autre illustration

de ces mouvements de prix provient des aléas climatiques (production de

café pendant les gelées brésiliennes) ou d’une demande d’exportation sup-

plémentaire rapide (dans le cas de la Chine) qui peut avoir un impact sur

la production finale. Par conséquent, l’utilisation de contrats à terme contre

tous ces risques en même temps peut ne pas être aussi efficace et peut même

s’avérer néfaste. La variation soudaine et significative des prix sur une très

courte période de temps est représentée un saut de prix. Par conséquent, la

situation dans laquelle une position unique en contrat à terme est prise pour

couvrir tous ces risques en même temps, conduit à un marché incomplet en

raison de multiples sources de risques. Même s’il existe une stratégie de

couverture optimale pour ces risques, il sera difficile à implémenter.

La littérature financière décrit cette situation de mesure martingale non

unique. En effet, tous les processus de risque devraient être martingales

sous une mesure martingale équivalente. Dans une telle stratégie, la mesure

n’est pas unique puisqu’il existe plus d’une source de risques à couvrir

avec une seule variable d’état. La question primordiale sur le marché des

matières premières agricoles est la couverture contre les variations défavor-

ables de prix avec comme principal avantage une réduction significative

du risque de perte via une stratégie de portefeuille. Dans les théories clas-

siques de stratégies de couverture, celle de l’assurance de prix justifie leur

mérite par leur garantie minimale contre les risques inhérents aux fluctu-

ations des prix. A juste titre, Keynes [Keynes 1930], Hicks [Hicks 1939] et

Kaldor [Kaldor 1940] ont soutenu les stratégies de couverture comme des
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outils d’atténuation de risques. Ensuite, la théorie du portefeuille, initiée

par Markowitz, envisageait les stratégies de couverture comme une garantie

contre les risques tout en intégrant la réduction des risques à la maximisa-

tion de l’utilité espérée. Ce cadre théorique a été utilisé en application par

Johnson [Johnson 1960] et Stein[Stein 1961] pour expliquer les straté- gies

de couverture à des fins de performance de rendements et d’atténuation de

risques. C’est dire donc qu’il n’existe pas de stratégie de couverture efficace

qui éliminerait complètement tout risque. Une stratégie de couverture per-

mettrait, plutôt, de transformer un risque inacceptable en une forme accept-

able : comme la cession de risque investisseurs sur les marchés de matières

premières via les contrats à terme.

Toutefois, si une couverture inefficace entraînerait des pertes pouvant en-

traîner la faillite. Ce fut le cas de Metallgesellschaft AG, le plus gros con-

glomérat allemand qui avait frôlé la faillite après avoir subi des pertes

avoisinant 1,5 milliard de dollars US sur ses transactions de dérivés én-

ergétiques en décembre 1993. À l’époque, le prix du pétrole avait baissé

tandis que le marché à terme est passé de la situation de déport en situation

de report et la combinaison de ces mouvements de marché a conduit à de

sérieuses pertes sur les positions à terme pour Metallgesellschaft AG. Aussi,

une couverture dépend-t-elle fortement de la situation d’application, ainsi

que des coûts associés aux stratégies mises en œuvre.

Sur les marchés à terme, l’incompatibilité des positions entre l’actif sous-

jacent et le contrat à terme rend la stratégie de couverture moins efficace,

puis les risques ne seront pas suffisamment compensés. Toute différence

entre les positions du sous-jacent et de l’instrument de couverture entraîne

un risque de base qui peut entraîner des gains ou des pertes générés par la

position couverte. Particulièrement sur les marchés de matières premières,

un contrat à terme échu n’existe plus. Pour conserver un engagement à long

terme, il faut définir un processus de stratégie de rollover sur les positions

des contrats à terme. Cela consiste à renverser la position dans le contrat
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à terme proche et reprendre une autre position sur un contrat à plus long

terme. L’écart entre ces deux positions constitue un risque supplémentaire

appelé risque de rollover. Il peut provenir de situations de marché ou de

contingences de production.

Par exemple, sur les positions de vente à terme, la situation la plus idéale

serait un marché en report avec une tendance baissière des prix puisqu’il

offre deux occasions de générer des gains. Une tendance baissière de prix

qui générera évidemment des gains pour la position de vente à terme et un

marché en report qui permet à la couverture de vente des contrats à terme

à un prix au comptant plus bas, permettant ainsi plus de gains lorsque le

prix au comptant diminue. La situation inverse générera un risque de base.

En outre, si la production est inférieure aux prévisions, elle sera d’autant

plus importante. Le risque de base et le risque de roulement sont vraiment

inquiétants et sont la conséquence d’une stratégie de couverture inefficace.

Le risque de base a été introduit dans la littérature des marchés à terme par

Paroush et Wolf [Paroush 1989, Paroush 1992] pour montrer leur influence

sur la couverture et la production optimale ainsi que d’autres paramètres

d’allocation. Mais, plus tôt, Holthausen [Holthausen 1979] avait étudié des

modèles de couverture et de production en l’absence de risque de base pour

montrer dans quelles circonstances l’agent en sur ou sous couverture garan-

tit entièrement sa production et l’effet de l’augmentation de l’aversion au

risque sur la couverture. De façon plus générale, la question de la couver-

ture des contrats à terme a fait l’objet de diverses approches. Les stratégies

de couverture dépendent de leur approche d’optimisation utilisée et ceci est

plus marquant dans un cadre statique. Plusieurs papiers dans la littérature

sur les questions de couverture avec contrats à terme se sont concentrés sur

l’aspect de modélisation et cela en tandem avec des mesures d’efficacité.

Les mesures actuelles d’efficacité de couverture ne sont pas cohérentes car

aucune des approches d’optimisation ne permet d’obtenir la stratégie de

couverture la plus performante.
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Dans le cadre statique, les techniques d’optimisation sont basées sur la vari-

ance minimale, la moyenne-variance, la semi-variance, la moyenne-Gini et

la semi-variance généralisée. La variance minimale est l’approche la plus

standard et n’inclut pas les aspects du portefeuille comme les rendements

espérés ou la psychologie du risque. Les autres méthodes sont ensuite

développées pour l’améliorer en tenant compte de ses caractéristiques per-

tinentes. La variance moyenne intègre le rendement espéré et l’aversion

au risque. Par exemple, Rolfo [Rolfo 1980] a utilisé l’approche moyenne-

variance pour obtenir une stratégie optimale de couverture pour le risque

de prix et le risque de production des pays exportateurs de produits agri-

coles. Le concept de semi-variance ne tient compte que du risque à la

baisse, plutôt que des bénéfices et des pertes considérées dans la stratégie

de couverture pour réduire les pertes moyennes. De plus, la semi-variance

généralisée, également appelée approche par moments partiels inférieurs

(LPM), a été appliquée dans la littérature de couverture sur des contrats à

terme (Chen et al. [Chen 2001], par exemple dans Lien et Tse [Lien 2000])

afin d’intégrer la psychologie du risque au concept de dominance stochas-

tique. L’approche de Gini moyenne est également compatible avec la dom-

inance stochastique ainsi que l’utilité espérée ; en particulier cela est utilisé

lorsque la moyenne-variance ne fonctionne pas à cause de non-normalité

des rendements ou d’estimateurs biaisés dans le cadre de moindres car-

rés ordinaires, voir Shalit et Yitzhaki [Shalit 1984]. Les autres contribu-

tions reposent sur l’aspect inconditionnel de la volatilité en tant mesure

de risque à partir des approches de distribution conditionnelle telles que

ARCH (Autoregressive Conditional Heteroskedasticity), le modèle GARCH

(Baillie et Myers [Baillie 1991]) ou modèle multi-période (Cecchetti et al.

[Cecchetti 1988], Chen et al. [Chen 2013] et Lien et Luo [Lien 1993]). Par

ailleurs, Fernandez [Fernandez 2008] et Conlon et Cotter [Conlon 2012] ont

montré les effets de l’horizon sur le ratio de couverture en utilisant les on-
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delettes3. En temps continu, Ho [Ho 1984] et Adler Detemple [Adler 1988a]

sont des pionniers à étudier sur la couverture avec les contrats à terme

sur les marchés de matières premières. Leurs papiers ont établi des straté-

gies optimales de couverture via la méthode de programmation dynamique

telle qu’appliquée par Merton [Merton 1971] dans le contexte de gestion de

portefeuille. Plus précisément, le portefeuille de couverture comprend prin-

cipalement en trésorerie l’actif non cessible, le contrat futures et les autres

actifs tels les options, les actions ou les obligations. Les auteurs ont con-

sidéré une dynamique brownienne pour représenter les sources de risque

dans leurs approches et ont relevé l’inefficacité de la stratégie optimale de

couverture.

Le but de cette thèse est de développer des stratégies de couverture dans

un contexte de portefeuille, pour les matières premières stockables. En par-

ticulier, la question de la couverture sur les marchés financiers est prise en

compte pour les produits agricoles. Les stratégies de couverture visent à

réduire, autant que possible, les pertes ainsi que les dépenses défavorables

en raison des fluctuations des prix du marché et des décisions de produc-

tion. L’objectif fondamental des instruments de couverture est de fournir

une contre-position qui réduirait les pertes en partie ou en totalité selon la

nature de la couverture. Avant la plantation et la récolte, un producteur

doit décider comment garantir ses revenus. Le portefeuille de couverture

est analysé dans des cadres statiques et dynamiques.

En statique, le problème de couverture est exposé et certaines approches

ainsi que leurs applications empiriques sont présentées. Principalement,

nous avons établi des stratégies optimales combinant contrats à terme et

d’assurance pour le risque de marché ainsi que le risque de production dans

le processus de rollover. Puisque, les décisions prises dans un cadre statique

ne tiennent pas compte des modèles de rétroaction le long de la période de

3La méthode des ondelettes est un raffinement de l’analyse de Fourier qui décompose
les séries chronologiques en composantes haute et basse fréquences qui correspondent re-
spectivement aux variation de court et long termes.
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couverture, la même question est étudiée en dynamique.

En effet, la dynamique des prix influe considérablement sur les stratégies de

portefeuille au cours de la période de couverture. En temps continu, nous

analysons les insuffisances de la stratégie de couverture qui proviendrait

soit de l’aspect de modélisation (représentation du risque par le mouvement

brownien seulement), soit des instruments de couverture. D’une part, les

stratégies de couverture dynamique tiennent compte des mouvements de

marché et en particulier ceux liés aux sauts des prix. Cela donne une analyse

plus fine du comportement des prix à terme de matières premières, telle que

soulignée au chapitre 2. Les tests de détection de sauts de Barndorff-Nielsen

et Shephard [Barndorff-Nielsen 2006], AïtSahalia et Jacod [Aït-Sahalia 2009]

sont appliqués sur des données réelles et la composante de saut s’avère per-

tinente pour le prix des contrats à terme utilisés.

Cependant, la couverture avec le contrat à terme seul doit être améliorée.

D’autre part, une stratégie de couverture alternative consiste à inclure une

option écrite sur l’actif non cessible. Le portefeuille de couverture avec op-

tion renforce la stratégie de couverture en réduisant davantage les incerti-

tudes. La thèse est organisée en quatre chapitres. Le premier chapitre ap-

plique les tests statistiques récents sur les prix à terme de produits agricoles.

L’étude empirique suggère que les prix à terme suivent un processus de «

retour à l’équilibre avec saut-diffusion » avec la volatilité et la moyenne à

long terme saisonnières.

Ensuite, le deuxième chapitre traite de l’estimation du modèle avec une

procédure en deux étapes. Premièrement, l’estimation de la vitesse de

retour à l’équilibre et les moyennes périodiques est abordée en utilisant les

moindres carrés ordinaires. Deuxièmement, les résidus de la première étape

permettent d’estimer les paramètres restants avec la méthode de particule

MCMC. Les troisième et quatrième chapitres étudient 204 les stratégies

de couverture, respectivement, statique et dynamique. Principalement, la

couverture statique comprend les risques de marché et de production avec
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les applications, tandis que dans la stratégie de couverture dynamique, on

ajoutera au contrat à terme, une option écrite sur l’actif non cessible.

Résumé Chapitre 1

Les facteurs économiques des matières premières agricoles sont déterminés

par la production, les stocks et le prix au comptant, qui concourent tous en-

semble aux caractéristiques des prix futures. En utilisant la littérature asso-

ciée, nous décrivons le comportement des prix de matières premières agri-

coles et les implications économiques correspondantes, en mettant l’accent

sur leurs faits stylisés. Il s’agit en particulier du retour à l’équilibre, de la

saisonnalité et des sauts observés sur les prix de futures de céréales et de

matières premières dites « douces » à travers divers tests économétriques.

Ces tests sont menés de telle sorte que les caractéristiques soulignées peu-

vent pourront être étudiées ensembles sur les prix de futures.

Enfin, nous avons également montré que la structure par terme des matières

premières étudiées tend plutôt à être en report.

Résumé Chapitre 2

Ce chapitre étudie la modélisation des prix agricoles de futures supposés

suivre le processus de retour à l’équilibre avec saut comme mis en évidence

au chapitre 2. Précisément, comme le terme de la dérive est aussi saison-

nière, l’estimation est faite en utilisant une procédure en deux étapes. La

première étape permet d’estimer certains paramètres du terme de dérive

par la méthode des moindres carrés. Dans la deuxième étape, on applique

une méthode de filtrage récente sur les résidus de la première étape afin

d’estimer les paramètres restants.
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Résumé Chapitre 3

Plusieurs stratégies de couverture peuvent être initiées en statique selon les

différentes approches de ratios de couvertures. Cependant, il est difficile de

choisir parmi ces ratios de couverture, la meilleures selon la préférence de

l’agent et le contexte, et ce, même en se basant sur les mesures d’efficacité

existantes. Nous proposons une alternative en ordonnant les portefeuilles

de couverture selon leur performance avec les L-moments. Dans une sec-

onde partie nous étudions la couverture d’un producteur en présence des

risques de marché et de production dans une stratégie de "rollover". Nous

traitons la stratégie de couverture pour le risque additionnel dû au retourne-

ment de positions en contrat de futures. En pratique ces risques sont, pour

un producteur, celui de marché et surtout le risque de production en inter-

campagne agricole.

Nous montrons comment un contrat d’assurance approprié peut davantage

améliorer la couverture avec le contrat futures en garantissant le revenu du

producteur. L’application sur les données collectées montrent ainsi que la

prise en compte du risque de marché et du risque de production s’avèrent

la meilleure stratégie de couverture à partir de l’approche par L-moments.

Résumé Chapitre 4

L’étude faite ici porte sur la stratégie de couverture optimale en temps

continu avec une position en contrat de futures le long d’une campagne

agricole. À la lumière de l’analyse empirique du 2, nous avons considéré

une dynamique de retour à l’équilibre pour les prix de titres agricoles. La

stratégie de couverture optimale est obtenue en utilisant l’approche de
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l’utilité espérée à maximiser. Il s’avère seul, le contrat future est insuffisant

pour couvrir les risques encourus par un producteur. Ainsi, une option

de vente est-elle écrite pour davantage réduire les risques de perte d’un

producteur.

Conclusion Générale

Partout dans le monde, la production de produits de base repose sur de

nombreux facteurs incertains. Ces facteurs peuvent devenir défavorables

pour un producteur, spécialement en agriculture qui sert principalement

à l’alimentation humaine. Les principaux risques en production agricole

proviennent des variations non anticipées des prix et des récoltes. En effet,

au moment de la récolte, les prix pourraient être défavorables par rapport

aux coûts et le rendement de culture attendu. Le producteur, devrait alors

trouver un moyen de garantir, autant que possible, son revenu contre ces

risques. Le marché financier est une alternative pour transférer ces risques

aux les investisseurs qui sont en mesure de les supporter moyennant une

prime payée par les producteurs. Les marchés des matières premières per-

mettent ainsi aux producteurs, dans le besoin de couvrir leurs revenus de

culture, mais servent aussi de valeurs refuges aux investisseurs.

Sur les marchés financiers, divers instruments peuvent être utilisés pour éla-

borer des stratégies de couverture. Ces stratégies comprennent principale-

ment les dérivés sur le prix au comptant comme les contrats à terme (futures

et forwards) ou les options. Les dérivés permettent de reporter la livraison

à une date future et ce, à un prix prédéterminé. Les producteurs pourraient

bloquer le prix pour une certaine date d’échéance. En outre, parce que les

produits dérivés sont spéculatifs, mais aussi soumis à divers risques qui

peuvent entraîner une perte importante, un producteur, peut néanmoins,

prendre des positions dans les dérivés mentionnés ci-dessus dans l’optique
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de revenus supplémentaires sur le marché.

Un autre instrument de couverture est un contrat d’assurance qui est

comme option, mais il est spécialement utilisé pour traiter les risques de

production en cas de rendement de cultures faible. Le contrat d’assurance

garantit la proportion souscrite de rendement espéré de culture. Dans cette

thèse, nous avons fait l’étude de la modélisation des prix agricoles à terme et

abordé la question des stratégies de couverture dans un contexte de gestion

de portefeuille. L’agent en couverture est un producteur dont la stratégie

portefeuille est composée de l’actif non cessible représenté par le prix au

comptant et de contrat de futures, d’option ou de contrat d’assurance pour

couvrir ses revenus contre les mouvements de prix dé- favorables ou un

déficit de production.

La stratégie de couverture exige une analyse de marché préalable afin

de répondre aux attentes appropriées. Sur les marchés des matières pre-

mières, les faits stylisés permettent de d’expliquer les comportements prix.

L’analyse empirique sur les données passées est usitée pour ressortir les fac-

teurs économiques sous forme de modèle, puis les anticipations se forment

en suivant les prévisions, les préférences et le contexte. Ensuite, la stratégie

de couverture appropriée est établie selon les anticipations des producteurs.

À cette fin, nous avons analysé la stratégie couverture pour un producteur

agricole dans les cadres statique et dynamique.

La thèse a exploré les aspects suivants : Comportement des prix des

matières premières : en appliquant des méthodes économétriques sur les

données de prix de matières premières choisies, nous avons testé les faits

stylisés bien connus dans la littérature : le retour à l’équilibre, la saisonnal-

ité et la présence de sauts.

La thèse a exploré les aspects suivants

⋄ Comportement des prix des matières premières : En appliquant des méth-

odes économétriques sur les données de prix de matières premières

choisies, nous avons testé les faits stylisés bien connus dans la littéra-
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ture : le retour à l’équilibre, la saisonnalité et la présence de sauts.

Les tests sur les prix quotidiens sont effectués de telle sorte que toutes

les caractéristiques seront considérées ensemble dans le modèle de

prix comme les facteurs économiques. Ces tests ont montré que, le

marché de matières premières agricole est plutôt inefficient avec un

phénomène de retour à l’équilibre et de sauts par moment. Le retour

à l’équilibre reflète l’état du prix d’équilibre qui dévie temporaire de

sa valeur fondamentale. Ceci repose sur la façon dont le déséquili-

bre entre l’offre et la demande fluctue pour converger vers le prix

d’équilibre. De plus, il y a le comportement saisonnier à la fois, sur

la moyenne de long terme du retour à l’équilibre et sur les volatilités

mensuelles pour représenter les variations calendaires des prix. Ce qui

veut dire que la saisonnalité provient respectivement des échéances de

contrats à terme et des campagnes agricoles. Quant aux sauts, ils sont

dus aux changements pertinents en raison des nouvelles soudaines

et ce spécialement en inter campagnes. Ils représentent le risque de

marché supplémentaire à gérer en couverture dynamique.

⋄ Modélisation des prix à terme agricoles : À la lumière des faits stylisés

mis en évidence dans le chapitre 2, un processus de retour à l’équilibre

avec saut-diffusion est retenu pour les prix agricoles où la moyenne à

long terme et la volatilité sont saisonnières. Cette même dynamique

sans saut est similaire à celle étudiée plus tôt dans la littérature où

une fonction déterministe est considérée pour la composante saison-

nière dans la tendance (voir Geman et Nguyen geman2005soybean).

Les sauts se produisent de façon aléatoire et irrégulière et leur con-

sidération rend difficile l’estimation du processus avec le maximum

de vraisemblance. Par conséquent, nous avons procédé à une es-

timation en deux étapes. Dans la première étape, la vitesse de re-

tour à l’équilibre, ainsi que les paramètres périodiques de moyenne

à long terme sont estimés par moindres carrés. Dans la deuxième
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étape, nous appliquons la méthode de particules MCMC pour es-

timer les paramètres restants en utilisant les résidus de la première

étape. La méthode de particules MCMC est appliquée au lieu du

filtre de Kalman, parce que le bruit est non gaussien. Le particule

MCMC est avéré être une méthode bayésienne robuste car la fonction

de vraisemblance exacte du processus de mesure conditionnellement

aux paramètres d’intérêt est approchée avec le filtre particulaire qui est

connu pour être plus cohérent. Les paramètres sont alors considérés

comme des variables aléatoires latentes. La mise en œuvre de cette

procédure d’estimation donne des estimations de paramètres qui sont

validés avec le test de Ljung-Box sur les résidus.

⋄ Stratégie statique de couverture optimale : Dans le cadre statique, de nom-

breuses approches selon la préférence de l’agent en couverture ont

été étudiés. Ils conduisent à des ratios de couverture optimales qui

dépendent fortement de leur approche. Ainsi, il est difficile de dis-

tinguer quelle stratégie est la meilleure parmi tous les ratios de cou-

verture en utilisant la mesure de la performance d’Ederington. Pour

surmonter cette limite de la mesure d’efficacité, nous avons proposons

la mesure L-performance pour ordonner les stratégies en fonction de

leur performance. Ensuite, nous avons obtenu la stratégie de couver-

ture optimale en contrat à terme en présence du risque de marché

et du risque de production lorsque pour les maturité courtes. Cette

stratégie est mise en œuvre avec le processus de retournement de po-

sition rollover. Cette couverture consiste à passer du contrat de futures

dont l’échéance est proche pour un contrat de futures d’échéance plus

longue. Ceci permet de maintenir la position en couverture sur tout

l’horizon du portefeuille. Cependant, cette stratégie encourt le risque

supplémentaire, dit de risque de retournement, en raison des écarts de

prix entre le contrat d’échéance proche et le contrat de plus long terme.

La stratégie de couverture optimale en rollover s’avère meilleure que
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les autres stratégies en terme de risque de marché et de risque de pro-

duction en campagne agricole ou inter-saison. En utilisant, la mesure

de L-performances pour ordonner les performances de stratégies, il

ressort que la stratégie de rollover combinant le contrat de futures

et d’assurance est la meilleure stratégie de couverture. Particulière-

ment, le contrat d’assurance garantit une partie des recettes des cul-

tures lorsque le rendement des cultures est plus faible que prévu.

⋄ Stratégie dynamique de couverture optimale : Stratégie dynamique de

couverture optimale : Pour tenir compte des appels de marges quo-

tidiennes et les faits stylisés testés au chapitre 2, nous avons étudié

la stratégie de couverture en temps continu. L’horizon de couver-

ture considéré est similaire à une période de campagne agricole. La

stratégie optimale en temps continu est faite via maximisation de

l’utilité espérée où le producteur recherche la position dynamique en

contrat de futures et le taux de consommation. Dans cette situation

de couverture, puisque le spot et le contrat de futures ne sont pas par-

faitement corrélés et puis la présence de sauts, le marché est incomplet.

Et il en est ainsi lorsque le marché au comptant est un actif non ces-

sible. L’optimisation est réalisée sous la mesure martingale minimale.

Nous montrons que la couverture avec contrat de futures peut être

améliorée une option de vente supplémentaire dans le portefeuille de

couverture.

Extension et orientation de recherche

Nous avons étudié la stratégie de couverture afin de réduire les risques liés

aux évolutions défavorables qui pourraient réduire le revenu d’un produc-

teur sur les marchés agricoles. Cette question est extensible pour inclure la

couverture dans le cadre de multi-production à l’égard de la situation de di-

versification du risque de production. Dans ce cas, le risque de corrélation

est également important et il sera intéressant d’analyser le cas particulier
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du marché incomplet en terme de nombre de contrats de futures à envis-

ager pour la couverture optimale.

D’un autre côté, selon le cadre statique ou dynamique, le problème de cou-

verture peut également être étendu. Dans le cadre statique, une alternative

pour améliorer la stratégie de couverture pourrait être d’inclure, un produit

dérivé dépendant que de la valeur finale du prix au comptant pour la ges-

tion des risques de base de de retournement de positions. Enfin, en temps

continu, l’étude n’a pas d’application sur les données du marché. Une telle

analyse empirique serait certainement un complément pour aborder la poli-

tique de gestion des matières premières. Plus précisément, il aurait permis

de voir comment l’évolution des stratégies dynamiques à la fois en inter et

intra campagne agricole pour les horizons de couverture long. À cette fin,

la notion de redondance du contrat d’assurance et du contrat de l’option

serait soulignée en terme de linéarité et de non-linéarité dans la stratégie de

couverture
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Abstract: In agricultural markets, producers incur price and production risks as well as other risks related 

to production contingencies. These risks impact the producer activity and could decrease his income. The 

globalization of markets, particularly those of agricultural commodities, provides hedging instruments 

including futures contracts which will serve to develop a hedging strategy. However, the situation 

whereby single futures contract-based positions could offset many risks leads to incomplete market. 

Especially, an producer looking for better hedging strategy could also include insurance, option contract or 

mutual funds  to further guarantee his income, especially when crop yields are lower than expected. 

We investigate the hedging strategies in static framework as well as in continuous time framework. Prior, 

we analyze the behavior of agricultural prices using various statistical approaches and suggest appropriate 

price modeling for data at hands. The static hedging strategy also accounts for rollover process which gives 

raise to additional risks due to spread between new futures and nearby futures and inter-crop hedging. We 

particularly address hedging strategy that combines futures and insurance contracts. Since decisions 

making in static framework does not include price changes along the hedging horizon, optimal hedging 

strategy in continuous time framework will take into account jumps and seasonality by combining futures 

and option contracts. 

 

Résumé : Sur les marchés agricoles, les producteurs encourent les risques de prix et de production ainsi 

que d'autres types de risques liés aux aléas de production. Ces risques impactent l'activité du producteur et 

pourraient diminuer ses revenus. La mondialisation des marchés, en particulier ceux des matières 

premières agricoles, permet de développer une stratégie de couverture en utilisant des instruments comme 

les contrats à terme. Cependant, la situation selon laquelle une position basée seulement sur un contrat 

futures devrait couvrir tous les risques entraîne un marché incomplet. Le producteur en recherche de 

meilleure stratégie de couverture pour ajouter un contrat d'assurance ou d'option pour garantir davantage 

ses revenus, surtout lorsque les rendements des cultures prévus diminuent. 

Nous étudions, ici les stratégies de couverture dans le cadre statique, ainsi que dans le cadre de temps 

continu. Avant, nous analysons le comportement des prix des matières premières agricoles en utilisant 

diverses approches statistiques afin de suggérer la modélisation des prix adéquate aux données. La 

stratégie de couverture statique comprend également le processus de retournement de positions qui 

pourrait entraîner d'autres risques supplémentaires en raison de l'écart entre les nouveaux contrats à terme 

et des contrats à terme à proximité ainsi que la couverture inter-culture. Nous proposons une stratégie de 

couverture qui combine des contrats futures et d'assurance. Comme la prise de décisions dans le cadre 

statique ne tient compte des mouvements quotidiens de prix le long de l'horizon de couverture, la stratégie 

de couverture optimale en temps continu combine des positions en contrat à terme et options tout en 

prenant en compte les sauts et la saisonnalité dans la dynamique des prix. 


