

Etude systématique des complexes Znq+Imn (où q = 0, 1, 2; n = 1 – 4)

Karim Boussouf

▶ To cite this version:

Karim Boussouf. Etude systématique des complexes Znq+Imn (où q = 0, 1, 2; n = 1 – 4). Chimie analytique. Université Paris-Est, 2016. Français. NNT: 2016PESC1094. tel-01535604

HAL Id: tel-01535604 https://theses.hal.science/tel-01535604

Submitted on 9 Jun2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thèse présentée pour obtenir le grade de

Docteur de l'Université Paris-Est

Spécialité : Chimie

Ecole doctorale SCIENCES, INGENIERIE ET ENVIRONNEMENT

Docteur de l'Université Mohammed V-Faculté des Sciences de Rabat

Spécialité : Chimie

Centre d'Etudes Doctorales en Sciences et Technologies

Par

BOUSSOUF KARIM

Etude systématique des complexes Zn^{+q}Im_n

(où q = 0, 1, 2; n = 1–4)

Thèse soutenue le 14/12/2016 devant le jury composé de :

Mme. CHAUBAUD GILBERTE Mme. DANIEL CHANTAL Mme. MARAKCHI KHADIJA Mr. HALET JEAN-FRANCOIS Mr. TALEB MUSTAPHA Mr. HOCHLAF MAJDI Mme. KOMIHA NAJIA Mr. FILALI BABA MOHAMMED

Rapporteur Rapporteur Examinateur Co-encadrant Directeur de thèse Directeur de thèse

Présidente de jury

Remerciements

Cette thèse de Doctorat à été réalisée dans le cadre d'une convention de cotutelle entre l'Université Paris-Est Marne-la-Vallée (UPEMLV) et l'Université Mohamed V-Faculté des Sciences de Rabat avec le soutien financière **du projet CAPZEO coordonné par l'université Paris-Est Marne-la-Vallée**, de l'École Doctorale **SIE de l'Université Paris-Est Marne-la-Vallée** et du centre d'Etudes Doctorales en Sciences et Technologies de l'Université Mohamed V-Faculté des Sciences Rabat lors de mes séjours en France. Les recherches qui font l'objet de ce mémoire ont été réalisées sur deux sites: en France, au sein de Laboratoire Modélisation et Simulation Multi Echelle MSME UMR 8208 CNRS de l'Université Paris-Est Marne-la-Vallée et au Maroc, dans le laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux et Environnement LS3ME de l'Université Mohamed V-Faculté des Sciences de Rabat.

Par ces quelques lignes, je tiens à remercier toutes les personnes qui ont participé de prés ou de loin au bon déroulement de cette thèse, en espérant n'avoir oublié personne...

Je tiens à remercier spécialement mon directeur de thèse français **Pr. Majdi Hochlaf**, directeur de l'équipe de Chimie Théorique et Professeur des Universités à l'Université Paris-Est Marne-la-Vallée. Je vous remercie d'avoir avoir dirigé cette thèse. **Majdi**, j'ai pu bénéficier de votre profonde connaissance du domaine, de vos conseils et commentaires toujours constructifs et qui ont permis de faire avancer les résultats plus loin que je ne l'imaginais. Pour tout ce que vous m'avez donné, je vous remercie très sincèrement.

Mes remerciements vont également à mon directeur de thèse marocain **Pr**. **Najia Komiha**, Professeur à l'Université Mohamed V-Faculté des Sciences Rabat d'avoir bien assuré la direction et l'encadrement de mes travaux de thèse. Merci pour votre gentillesse, votre patience et vos précieux conseils. J'ai beaucoup apprécié de travailler à vos côtés tant sur le plan scientifique que sur le plan humain. Je garde toujours beaucoup de plaisir à discuter avec vous et à bénéficier de vos conseils.

Je remercie également **Pr. Gilberte Chambaud**, Professeur à l'université Paris-Est Marne-la-Vallée pour m'avoir accueilli dans son équipe de Chimie Théorique du laboratoire MSME et aussi pour sa participation active à mon jury de thèse, pour avoir accepté de juger ce travail et d'en présider le jury de soutenance. Que vous soyez assuré de mon entière reconnaissance. Un grand merci à **Dr. Prakash Muthuramalingam** pour ses conseils avisés et son soutien lors de la préparation des articles. Il m'a beaucoup appris tant sur le plan scientifique qu'humain. Ce fut un très grand plaisir de travailler avec lui.

Je remercie également **Pr. Jean-François Halet**, Directeur de recherche à l'Université de Rennes 1 pour avoir accepté d'examiner et d'évaluer ce travail.

Mes sincères remerciements vont aussi à **Pr. Khadija Marakchi**, Professeur l'Université Mohamed V-Faculté des Sciences de Rabat et **Pr. Chantal Daniel**, Directrice de recherche au CNRS de l'Institut de Chimie de Strasbourg d'avoir accepté d'être rapporteurs.

Un grand merci au **Pr. Mustapha Taleb**, Professeur à l'Université Sidi Mohamed Ben Abdellah-Faculté des Sciences Dhar El Mahraz-Fès pour ses orientations et ses conseils, mais aussi pour avoir accepté d'examiner et d'évaluer ce travail.

Mes sincères remerciements vont aussi à **Pr. Mohammed Filali Baba**, Professeur à l'Université Sidi Mohamed Ben Abdellah–Fès pour avoir accepté de juger ce travail.

Merci à toute l'équipe de recherche de chimie théorique du Laboratoire Modélisation et Simulation Multi Echelle MSME, de leur accueil, et leur sympathie, et d'avoir facilité mon intégration, et pour leur grande générosité en terme de partage des informations.

Par ailleurs, je tiens à remercier tous les membres du laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux et Environnement LS3ME de l'Université Mohamed V-Faculté des Sciences de Rabat, en particulier je pense aux Professeurs **Oum Keltoum Kabbaj** et **Hassna Abou El Makarim** pour avoir toujours pris le temps de répondre à mes questions. Je pense également à tous les doctorants et doctorantes passés ou encore présents.

Nous remercions le soutien du projet Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant No.IRSES-GA-2012-31754.

Un remerciement spécial au **Professeur Denis Duhamel,** Directeur de l'Ecole Doctorale Sciences, Ingénierie et Environnement SIE de l'université Paris-Est, ainsi qu'a **Madame Cécile Blanchemanche** Responsable administrative de SIE.

Enfin, je remercie l'ensemble du personnel de l'université que j'ai côtoyé pour leur disponibilité et leur gentillesse, notamment **Bertrand Alliot** et **Bastien Pincanon**.

Table des matières

Table des matières	3
Table des figures	6
Liste des tableaux	8
Liste des abréviations	10
Introduction générale	15
Bibliographie	20
Chapitre I : Méthodes et outils théoriques	22
Introduction	23
I Equation de Schrödinger	23
II Approximation adiabatique de Born-Oppenheimer	24
II.1. Approximation de Born-Oppenheimer	24
II.2. Approximation adiabatique	26
II.3. Limites de l'approximation adiabatique et de Born-Oppenheimer	27
III. Méthodes de résolution de l'équation de Schrödinger électronique	27
III.1. Approximation de Hartree	27
III.2. La méthode Hartree-Fock	28
III.3. Limites de la méthode HF	31
III.4.Formulation de la Corrélation Electronique	31
IV. Les Méthodes Post-Hartree-Fock	33

IV.1. Méthode perturbative : Møller-Plesset d'ordre 2 (MP2)	33
IV.2. Méthode des clusters couplés	35
IV.3. La méthode des clusters couplés explicitement corrélée CCSD(T)-F12	38
V. La Théorie de la Fonctionnelle de la Densité (DFT)	39
V.1. Ouelques définitions essentielles.	4(
a. La densité électronique	4(
b. La fonctionnelle	40
V.2. Théorèmes de Hohenberg et Kohn	41
a. Premier théorème	41
b. Second théorème	42
V.3. Théorème de Kohn-Sham	43
V.4.Différents types de fonctionnelles	44
V.4.1.Approximation de la densité locale (LDA)	44
V.4.2.Approximation du gradient généralisée (GGA)	45
V.4. 2.1. La fonctionnelle PBE	46
V.4. 3. Fonctionnelles hybrides (H-GGA)	46
V.4. 3.1. La fonctionnelle B3LYP	46
V.4. 3.2. La fonctionnelle PBE0	47
V.4. 4. Fonctionnelles méta (M-GGA et HM-GGA)	48
V.4. 4.1.La fonctionnelle M05-2X	49
V.5.Performances de la DFT	49
V.6. Méthode DFT dépendante du temps (TD-DFT)	49
V.7. La théorie de la fonctionnelle de la densité-D3	5(
VI. Les bases atomiques.	51
VI.1. Bases explicitement corrélées	53
VI.2. Pseudo-potentiels atomiques	54
VII Ftude théorique de l'interaction d'un complexe moléculaire	56
VII 1 Energie d'interaction	56
VII 2 Erreur de Superposition de Base (BSSE)	56
VIII Étude de la nature de la ligison chimique	57
VIII 1 L'analuse NBO	5
VIII.I. L'analyse NBO	50
X. Methodes d'Analyse de Populations	59
X.1. Charge atomiques	59
VII. Programmes de calculs utilisés	6
VII.1.MOLPRO	6
VII.2.GAUSSIAN	62
VIII. Conclusion	62

Bibliographie Chapitre I	64
CHAPITRE II	
Etude systématique des complexes Zn^{q+} -imidazole (q = 0, 1, 2)	68
I. Introduction	69
II. Détails des calculs	70
III. Résultats et discussion	72
III.1. Géométries d'équilibre optimisées	72
III.2. Energies de liaison	76
III.3. Nature des interactions au sein des complexes Zn ^{q+} Im (q=0, 1,2)	80
III.4. Spectroscopie de vibration	84
IV. Conclusions	88
Bibliographie Chapitre II	89
CHAPITRE III Etude systématique des complexes $Zn^{q+}Im_n$ (où q = 0, 1, 2; n = 1 – 4)	93
I. Introduction	94
II. Détails des calculs	96
III. Structures d'équilibre Optimisées, énergies de liaison, stabilité relative.	98
IV. Nature des interactions au sein des complexes $Zn^{q+}Im_{n}$	116
V. Spectroscopie vibrationnelle	129
VI. Spectroscopie électronique	131
VII Conclusion	133
Bibliographie Chapitre III.	135
Conclusion générale et perspectives	141
Bibliographie	144
Annexes	145

Table des figures

1.1 Diagramme des déterminants de Slater excités à partir de la référence HF.

1.2 Illustration de l'amélioration de l'énergie de corrélation de l'atome Be par l'utilisation des bases explicitement corrélées.

1.3 Interaction stabilisante biélectronique entre une orbitale occupée (donneur) et une orbitale vacante (accepteur).

2.1 Structures d'équilibre optimisées des complexes Zn^{q+} Im (q=0, 1, 2). En rouge, nous donnons aussi les charges atomiques du Zn et de l'azote protoné (N1) de l'imidazole calculées au niveau (R) MP2/6-311++G(d,p).

2.2 Orbitales moléculaires frontières (iso surface de densité tracée pour 0,02 u.a) des complexes Zn^{q+} Im (q=0, 1, 2) calculés au niveau M05-2X/6-311++G(d,p).

3.1 La structure de la thermolysine.

3.2 La structure de l'anhydrase carbonique.

3.3 Géométries d'équilibre optimisées des complexes Im_n (n=2, 3, 4). En rouge, nous donnons les distances (en Å) des liaisons hydrogènes.

3.4 Géométries d'équilibre optimisées des complexes $Zn^{q+}Im_2$ (q=0, 1, 2) et la définition des paramètres donnés dans le tableau 3.2. Les chiffres en rouge correspondent aux charges sur le Zn et les atomes d'azote N.

3.5 Géométries d'équilibre optimisées des complexes $Zn^{q+}Im_3$ (q=0, 1, 2) et la définition des paramètres donnés dans le tableau 3.4. Les chiffres en rouge correspondent aux charges sur le Zn et les atomes d'azote N.

3.6 Géométries d'équilibre optimisées des complexes $Zn^{q+}Im_4$ (q=0, 1, 2) et la définition des paramètres donnés dans le tableau 3.7. Les chiffres en rouge correspondent aux charges sur le Zn et les atomes d'azote N.

3.7 Densité électroniques des orbitales moléculaire frontières des complexes $Zn^{q+}Im_2$ (q=0, 1, 2) (iso surface de densité tracée pour 0,02 u.a) calculées au niveau M05-2X/6-311++G(d,p).

3.8 Densité électroniques des orbitales moléculaires frontières des complexes $Zn^{q+}Im_3$ (q=0, 1, 2) (iso surface de densité tracée pour 0,02 u.a) calculées au niveau M05-2X/6-311++G(d,p).

3.9 Densité électroniques des orbitales moléculaires frontières des complexes $Zn^{q+}Im_4$ (q=0, 1, 2) (iso surface de densité tracée pour 0,02 u.a) calculées au niveau M05-2X/6-311++G(d,p).

Table des Tableaux

2.1 Paramètres géométriques principaux (distance en Å) des complexes $Zn^{q+}Im$ (q=0, 1, 2) calculés à différents de la théorie. Ces paramètres sont corrigés de la BSSE.

2.2 Energies de liaison (BEs, kcal.mol⁻¹) pour les complexes Zn^{q+} Im (q=0, 1, 2) calculées en prenant en compte de la correction de dispersion de Grimme (D3) dans les méthodes DFT.

2.3 Energies de liaison (BEs, kcal.mol⁻¹) pour les complexes ZnX (X=He, Ne, Ar) calculées en prenant en compte la correction de dispersion de Grimme (D3) dans les méthodes DFT.

2.4 Principale délocalisation de charge des interactions dominantes (donneur-accepteur) dans les complexes Zn^{q+} Im (q=0, 1, 2) calculé au niveau M05-2X/6-311++G(d,p)^{a)}.

2.5 Attribution et nombre d'onde harmonique (ω_i , en cm⁻¹) des modes van der Waals intermonomer pour les complexes Zn^{q+}Im (q=0, 1, 2). Nous donnons leurs intensités IR (en, km/mol). Ces valeurs ont été calculées aux niveaux M05-2X/6-311++G(d,p).

2.6 Fréquence de vibration d'élongation calculées (scaled, Scale factor is 0,9417) et la complexation induite des shifts pour les complexes Zn^{q+} Im calculée au niveau M05-2X/6-311+G(d,p). Nous donnons également les intensités IR des bandes (I, km/mol).

3.1 Energies de liaison (BEs, kcal.mol⁻¹) des complexes Im_n (n=2, 3, 4) calculées en utilisant differentes fonctionnelles de la DFT ^a. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) pour ces calculs.

3.2 Paramètres géometrique principaux des complexes $Zn^{q+}Im_n$ (q=0, 1, 2 ; n= 1-2) calculés avec les fonctionnelles PBE0/6-311+G(d,p) et M05-2X/6-311+G(d,p). Les distances sont en Å.

3.3 Energies de liaison (BEs, kcal.mol⁻¹) des complexes $Zn^{q+}Im_n$ (q=0, 1, 2 ; n= 1-2) calculées en utilisant différentes fonctionnelles. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) dans ces calculs.

3.4 Paramètres géométriques principaux des complexes $Zn^{q+}Im_3$ (q=0, 1, 2) calculés avec les fonctionnelles PBE0/6-311+G(d,p) et M05-2X/6-311+G(d,p). Les distances sont en Å.

3.5 Energies de liaison (BEs, kcal.mol⁻¹) des complexes $Zn^{q+}Im_3$ (q=0,1,2) calculées en utilisant différentes fonctionnelles. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) dans ces calculs.

3.6 Energies totales (E, Hartrée) et énergies relatives (E_R , kcal.mol⁻¹) des complexes $Zn^{+2}Im_3$ et de leurs limites de dissociation les plus basses calculées au niveau M05-2X+D3/6-311++G(d,p).

3.7 Paramètres géométriques principaux des complexes $Zn^{q+}Im_4$ (q=0,1,2) calculées avec les fonctionnelles PBE0/6-311+G(d,p) et M05-2X/6-311+G(d,p). Les distances sont en Å.

3.8 Energies de liaison (BEs, kcal.mol⁻¹) des complexes $Zn^{q+}Im_4$ (q=0,1,2) calculées en utilisant différentes fonctionnelles. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) dans ces calculs.

3.9 Energies totales (E, Hartrée) et énergies relatives (E_R , kcal.mol⁻¹) des complexes Zn²⁺Im₄ et de leurs limites de dissociation les plus basses calculées au niveau M05-2X+D3/6-311++G(d,p).

3.10 Analyse perturbative au second-ordre des interactions (donneur-accepteur) d'électrons calculée avec la fonctionnelle M05-2X/6-311+ $G(d,p)^{a}$.

3.11 Energies d'excitation verticales (E, eV) pour les transitions S1 \leftarrow S0 des complexes Zn⁰Im_n et Zn²⁺Im_n et pour les transitions D1 \leftarrow D0 des complexes Zn⁺Im_n. Ils correspondent à la promotion d'électrons de la HOMO vers la LUMO.

Liste des abréviations

vdW : van der Waals

CCSD(**T**) : Méthodes clusters couplés standards avec simple, double et un traitement perturbatif des excitations triples.

CCSD(**T**)-**F12** : Méthodes clusters couplés explicitement corrélées avec simple, double et un traitement perturbatif des excitations triples.

DFT : Théorie de la fonctionnelle de la densité.

CBS : extrapolation dans l'ensemble des bases complètes.

SAPT : Théorie de perturbation à symétrie adaptée.

3D : Tridimensionnelle.

BO : Born-Oppenheimer.

BEs : Energies de liaison.

OM : Orbitale moléculaire.

OA : Orbitale atomique.

Im : Imidazole.

Zn : Zinc.

NBO : Natural Bond Orbital.

ZIFs : Zeolitic imidazolate frameworks.

LCAO : Combinaison linéaire d'orbitales atomiques.

STO : Orbitale de type Slaterienne.

GTO : Orbitale de type Gaussienne.

HF : Hartree-Fock.

MP2 : Møller Plesset d'ordre 2.

HOMO : orbitale occupée de plus haute énergie.

LUMO : orbitale la plus basse vacante.

D3 : Correction de dispersion de Grimme.

BSSE : Erreur de superposition de bases.

CP : Correction contrepoids

Résumé

Le but de ce travail est d'examiner la capacité des fonctionnelles M05-2X, M05-2X+D3, PBE0, PBE0+D3, PBE, PBE+D3 et M11 avec ou sans inclusion de la correction de dispersion de Grimme (D3) pour la description précise et simultanée des complexes organométalliques de taille moyenne et leur utilisation dans l'étude de la structure d'équilibre, la stabilité, la spectroscopie et la liaison chimique (covalente, transfert de charge et van der Waals (vdWs)). Ceci a été fait par une comparaison directe des résultats obtenus par ces fonctionnelles avec ou sans inclusion de la correction de dispersion de Grimme (D3) et ceux issus des méthodes explicitement corrélées (R)CCSD(T)-F12 et (R)MP2-F12. Nous avons démontré que les fonctionnelles M05-2X+D3 et PBE0+D3 en connection avec la base 6-311++G(d,p) sont les fonctionnelles de choix. Ceci a été illustré à travers une étude systématique des complexes Zn^{q+}Im (q=0, 1,2) qui jouent un rôle important en chimie, en biologie, en environnement et en industrie. Pour les complexes Zn^{q+}Im (q=0, 1, 2), nous avons comparé les résultats obtenus aux niveaux M05-2X, M05-2X+D3, PBE0, PBE0+D3, PBE, PBE+D3, M11 et ceux issus des méthodes explicitement corrélées (R)CCSD(T)-F12 et (R)MP2-F12. A travers ces comparaisons, nous avons établi la capacité et la fiabilité de la fonctionnelle M05-2X+D3 pour décrire précisément les interactions covalentes et non-covalentes entre Zn^{q+} et Im car elle donne des résultats en excellent accord avec ceux issus des méthodes ab initio hautement corrélées. Les fonctionnelles PBE0 et M11 peuvent être aussi utilisées pour les applications.

Par la suite, nous allons profiter de la haute performance des fonctionnelles M05-2X et PBE0 avec ou sans inclusion de la correction de dispersion de Grimme (D3) en connection avec la base 6-311++G(d,p) pour étudier la structure d'équilibre, la stabilité, la spectroscopie et la liaison chimique (covalente, transfert de charge et van der Waals (vdWs) des complexes $Zn^{q+}Im_n$ (q = 0, 1, 2; n = 1–4). Ce travail à l'échelle microscopique, est utile pour comprendre la structure et la liaison se produisant dans les sites actifs contenant du zinc dans des systèmes biologiques (e.g. protéines). De plus, nos résultats peuvent être utilisés pour la détermination des champs de force précis pour les métalloprotéines ou les ZIFs.

Les structures de type zéolite-imidazole (Zeolitic-Imidazolate Frameworks ou ZIFs) sont composées de molécules organiques (e.g. molécules imidazoles) liées entre elles par des ions métalliques bivalents M^{2+} (e.g. $M^{2+} = Zn^{2+}/Co^{2+}$). Ces composés présentent une structure

topologique bien stabilisée avec une large diversité de structure. Ils présentent ainsi une forte porosité qui est potentiellement utilisée dans la capture et le stockage du CO_2 et dans son piégeage sélectif.

Ces quantités au niveau microscopique sont nécessaires pour déduire les propriétés macroscopiques et thermochimiques de ces composés avec une bonne précision après incorporation dans des simulations dynamiques.

Abstract

The main goal of this work is to examine the capabilities of M05-2X, M05-2X+D3, PBE0, PBE0+D3, PBE, PBE+D3 and M11 functionals with and without inclusion of D3 dispersion correction for the accurate description of medium sized organometallic compounds and therefore their use for the determination of study of the equilibrium structure, the stability, the spectroscopy and the chemical bonding (covalent, charge transfer and van der Waals) of Zn^{q+}Im (q = 0,1,2) complexes. This is done through close comparisons of the results obtained by the M05-2X, M05-2X+D3, PBE0, PBE0+D3, PBE, PBE+D3, M11 functionals with and without inclusion of D3 dispersion correction and those from the standard ((R)MP2 and (R)CCSD(T)) and explicitly correlated ab initio methods (R)CCSD(T)-F12 and (R)MP2-F12. Therefore, we definitely establish that M05-2X+D3 and PBE0+D3 in connection with the 6-311++G(d,p) basis set are the methods of choice for the accurate description of medium sized organometallic compounds. This is illustrated through a systematic study of $Zn^{q+}Im$ of (q=0, 1, 2) complexes which play crucial roles in chemical, biological and industrial domains. Through these comparisons, we show that the results obtained at the M05-2X, M05-2X+D3, PBE0, PBE0+D3, PBE, PBE+D3, M11 levels are in good agreement with those explicitly correlated (R) MP2-F12 and (R)CCSD(T)-F12 methods. Through these comparisons, our study establishes the ability and reliability of M05-2X+D3 functional for the accurate description of covalent and noncovalent interactions between Zn^{q+} and Im since it leads to close agreement with the large ab initio techniques. PBE0 and M11 may be used also for that purposes. Then, we used high performance M05-2X and PBE0 functionals with and without inclusion of D3 dispersion correction in connection along with the 6-311++G(d,p) basis set to study the equilibrium structure, the stability, the spectroscopy and the chemical bonding (covalent, charge transfer and van der Waals) of $Zn^{q+}Im_n$ (q = 0, 1, 2, n = 1-4) complexes. This work, at the microscopic level, is useful for understanding the structural and bonding occurring in naturally zinc-binding sites and to figure out the behavior of much more complex biological systems. This should help for designing new zinc-binding proteins and more generally new metal sites in known proteins or ZIFs. The structural backbone of ZIFs is constructed from tetrahedral units formed by one bivalent metal ion ($M^{2+} = Zn^{2+}/Co^{2+}$) and four imidazolate anions. Such compounds present a well-established structural topology with a large structural diversity. They exhibit a high porosity which is potentially used for gas storage and separation techniques.

Such quantities at the microscopic level are needed to deduce the macroscopic and thermochemical properties of these compounds with good accuracy after incorporation into dynamical simulations.

Introduction générale

Les complexes entre imidazole et dérivés des métaux de transition jouent un rôle important en chimie, en biologie, en environnement et industrie [1-4]. En raison de la forte liaison entre les ions métalliques et les atomes d'azote des molécules imidazoles, ces complexes présentent une structure topologique bien stabilisée avec une large diversité de structure. Ils présentent ainsi une forte porosité qui est potentiellement utilisable dans la capture et le stockage du CO₂ et dans son piégeage sélectif [5-7]. Les structures de type métal–organique (Metal-Organic Frameworks ou MOFs) se composent de métaux de transition (M = Zn, Co, Fe,...) reliés entre eux par des ligands imidazoles (Im). Ces structures sont principalement utilisées dans le stockage et la séquestration des gaz (e.g : CO₂, CH₄,...). En effet, les parties organiques constituant les MOFs interagissent avec les molécules de gaz pour les piéger.

L'une des sous-unités des MOFs est la zéolite – imidazole (Zeolitic-Imidazolate Framework ou ZIF). Par exemple, le motif $Zn^{2+}Im_4$ est présent dans les structures de type zéolites. La structure de la ZIF est basée sur une zéolite dans laquelle les atomes d'oxygène sont remplacés par des molécules d'imidazole et les atomes de silicium sont remplacés par des atomes de zinc (cf. figure 1).

Figure 1 : La structure de la ZIF et de la zéolite ayant servi de modèle

Les molécules d'imidazole interagissent avec le CO_2 , et les atomes de zinc servent à lier et à maintenir la structure pour garder les caractéristiques de la zéolithe. Ainsi, la ZIF possède une cavité laissant le passage pour de petites molécules, qui peuvent se trouver piégées dans ces « cages » grâce à des interactions avec la partie organique de la molécule. En effet, la structure complète d'une cage de la ZIF est composée de trop d'atomes pour pouvoir être optimisée directement avec une bonne précision. Nous avons donc procédé par étapes, en commençant par optimiser la molécule d'imidazole seule.

Figure 2 : Une molécule d'imidazole

Cette molécule est composée d'un cycle avec deux atomes d'azote, trois atomes de carbone et quatre atomes d'hydrogène. Les doubles liaisons et les doublets électroniques libres des atomes d'azote font de cette molécule un choix idéal pour composer la structure de la ZIF et pour interagir avec CO_2 .

Le zinc est le deuxième élément chimique le plus abondant après le fer dans les organismes vivants. Dans les milieux biologiques, la molécule d'imidazole agit comme ligand naturel du cation Zn^{2+} . Ces complexes interviennent dans des processus biologiques très important: ils constituent la partie principale des sites actifs de certains métalloenzymes telles que l'anhydrase carbonique et la thermolysine [8-11]. Par conséquent, la coordination de l'ion Zn^{2+} est principalement contrôlée par le type de ligand, la taille et l'énergie d'interaction. La quasi-totalité des Zn-enzymes possèdent des interactions entre les ions Zn^{2+} et l'atome d'azote déprotoné de la molécule d'imidazole.

La caractérisation des interactions des ions Zn^{2+} avec des ligands d'imidazole est importante pour la compréhension de l'activité d'une grande variété des métalloenzyme à zinc au niveau moléculaire.

Le point crucial dans ce type de problématique est la description correcte de l'interaction entre les deux entités : molécule/atome-molécule. Ces systèmes sont faiblement liés, leurs interactions mutuelles sont de nature van der Waals. De façon générale, la description précise des interactions à longue portée représente encore un challenge en chimie quantique. Néanmoins, les développements méthodologiques récents en chimie quantique et la forte montée en puissance des performances des ressources informatiques permettent d'y apporter des réponses satisfaisantes. Les études présentées dans cette thèse se concentrent donc sur l'application et la validation de ces nouvelles méthodologies pour étudier la structure, la liaison chimique, la stabilité des complexes organométallique, et pour tester l'importance de la corrélation électronique sur les paramètres macroscopiques (e.g. énergie de liaison...)

Plan de la thèse

Le présent manuscrit comporte trois parties :

Dans le premier chapitre, nous avons présenté les méthodes et les outils théoriques permettant de résoudre l'équation de Schrödinger indépendante du temps. Après la présentation des approximations employées, nous détaillons les méthodes Hartree-Fock et post-Hartree-Fock nécessaires pour la résolution du problème électronique. Nous introduisons, également, une présentation détaillée des méthodes explicitement corrélées assurant une prise en compte d'une grande partie de l'énergie de corrélation électronique. Ensuite, nous abordons une autre famille de méthodes de calculs quantiques, les méthodes de la fonctionnelle de la densité, DFT. Avec ce large éventail de méthodes de calcul, il nous est possible d'étudier la structure électronique des systèmes moléculaires choisis et de valider l'utilisation des méthodes de la fonctionnelle de la densité, DFT.

Dans le deuxième chapitre, nous allons tester et valider l'utilisation des méthodes de la fonctionnelle de la densité (DFT) pour traiter les structures d'équilibre, la stabilité la spectroscopie, la liaison chimique (covalente, transfert de charge et van der Waals) et le rôle de la dispersion dans la stabilité des complexes $Zn^{q+}Im$ (q=0, 1, 2). La validation est basée sur une stratégie de comparaison directe des résultats obtenus par les fonctionnelles (PBE0, PBE0+D3, PBE, PBE+D3, M05-2X, M05-2X+D3 et M11), avec ou sans inclusion de la correction de dispersion de Grimme (D3) implémentée dans le programme GAUSSIAN09 et (G09-D.01) [12], associées à la base 6-311++G(d,p) et ceux générés à partir de l'utilisation des méthodes post-Hartree-Fock standards (R)CCSD(T) et (R)MP2 et les nouvelles techniques explicitement

corrélées (R)MP2-F12 et (R)CCSD(T)-F12, qui tiennent également compte de la corrélation électronique en connection avec les bases à valence augmentée, polarisée, corrélée et consistante de type Double et Triple Zéta (en anglais augmented correlated consistent polarised Valence Double and Triple Zéta "aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVTZ(-PP)). Ces méthodes donnent des résultats suffisamment précis avec un coût de calcul réduit. Pour les espèces neutres Zn⁰Im, nous avons trouvé deux formes stables faiblement liées. Elles sont notées Zn⁰Im I et $Zn^{0}Im$ II. Le premier complexe $Zn^{0}Im$ I présente une structure plane avec une liaison de type σ entre l'atome de zinc et l'atome d'azote non protoné de la molécule d'imidazole et le deuxième complexe Zn⁰Im II correspond à la structure du ferrocène. Les isomères les plus stables des espèces ioniques se composent d'une liaison relativement forte entre l'atome de zinc et l'atome d'azote non protoné de la molécule d'imidazole. Les rôles des différents types d'interactions covalentes et non-covalentes au sein de ces complexes sont discutés après l'analyse de leurs spectres vibrationnels, des orbitales naturelles (NBO, Natural Bond Orbital), des charges et l'analyse des orbitales moléculaires frontières. Pour les espèces neutres, les interactions de van der Waals et le transfert de charge à travers des interactions covalentes ainsi que non-covalentes sont présentes, alors que la liaison au sein des espèces ioniques est dominée par le transfert de charge depuis l'atome de zinc vers la molécule d'imidazole. Ces résultats sont importants pour comprendre, au niveau microscopique, la structure et la liaison dans les ZIFs et les Zn-enzymes. Notre étude établit la capacité et la fiabilité des fonctionnelles M05-2X et PBE0 pour la description correcte et simultanée des interactions covalentes et non-covalentes car elles donnent des résultats en excellent accord avec ceux issus des méthodes post-Hartree-Fock. Par conséquent, les fonctionnelles M05-2X et PBE0 sont recommandées pour l'étude des complexes organométalliques de grande taille ayant des applications en biologie et en industrie.

Dans le dernier chapitre, nous allons profiter de la bonne performance des fonctionnelles M05-2X et PBE0 de la théorie de la fonctionnelle de la densité (DFT) avec l'inclusion de la correction de dispersion de Grimme (D3) pour traiter la liaison, la structure, la stabilité et la spectroscopie des complexes entre Zn^{q+} et l'imidazole (Im), Zn^{q+}Im_n (où q = 0, 1, 2; n = 1–4). Ces entités sont des sous-unités des ZIFs (Zeolitic Imidazolate framework) et des Zn-enzymes, qui jouent des rôles très importants dans les domaines industriels et biologiques. D'un point de vue industriel et environnemental, la molécule d'imidazole est le principal liant organique dans les ZIFs (Zeolitic Iimidazolate frameworks). Pour chaque espèce, nous avons déterminé plusieurs nouvelles structures non identifiées précédemment. Nos calculs montrent une compétition entre la solvatation de l'atome métallique, soit par des interactions de type σ ou des interactions de type π -stacking, et le transfert de proton à travers la liaison hydrogène dans les espèces chargés. Ceux-ci sont liés à des propriétés structurelles du cation zinc au sein des ZIFs et des Znenzymes. En outre, nous avons montré que les sous-unités Zn²⁺Im_n n'absorbent pas dans le domaine visible, ce qui peut être expliqué par la photostabilité des ZIFs. Nos résultats sont importants pour le développement de nouvelles applications des ZIFs et des métalloenzymes.

Bibliographie :

[1] Edsall, J. T.; Felsenfeld, G.; Goodman, D. W. S.; Gurd, F. R. N. The association of imidazole with the ions of zinc and cupric copper. J. Am. Chem. Soc.76, 3054 (**1954**).

[2] Bauman Jr, J. E.; Wang, J. C. Imidazole complexes of Nickel(II), Copper(II), Zinc(II), and Silver(I). Inorg. Chem. **3**, 368 (**1964**).

[3] Tabushi, I.; Kuroda. Y. Bis(histamino)cyclodextrin-zinc-imidazole complex as an artificial carbonic anhydrase. J. Am. Chem. Soc.106, 4580 (**1984**).

[4] Török, I.; Surdy, P.; Rockenbauer, A.; Korecz Jr, K.; Anthony, G. A.; Koolhaas, A.; Gajda, T. Nickel(II)-, copper(II)- and zinc(II)-complexes of some substituted imidazole ligands. J. Inorg. Biochem. 71, 7-14 (1998).

[5] Wang, B.; Cote, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reserviors. Nature, 453, 207 (**2008**).

[6] Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, O.; Yaghi. O. M. high-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂ capture. Science, **319**, 939 (**2008**).

[7] Prakash, M.; Sakhavand, N.; Shahsavari, R. H2, N2, and CH4 gas adsorption in zeolitic imidazolate framework-95 and -100: ab initio based grand canonical monte carlo simulations. J. Phys. Chem. C. **117**, 24407-24416 (**2013**).

[8] Appleton, D. W.; Sarkar, B. Studies of Zn(II) and Co(II) complexes of imidazole and nmethylimidazole with regard to the activity related ionization in carbonic anhydrase. Bioinorg Chem. **7**, 211-224 (**1977**).

[9] Vallee, B. L.; Auld, D. S. Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Matrix Metalloproteinase Conf. 5 (**1992**).

[10] Parkin, G. Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. 104, 699-767 (**2004**).

[11] Dołęga, A.; Farmas, A.; Baranowska, K.; Herman, A. Novel zinc complexes with acetyloacetonate, imidazoleand thiolate ligands. Crystal structure of a zinc complex of relevance to farnesyl transferase. Inorg. Chem. Comm. **12**, 823 (**2009**).

[12] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.

Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J.

B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

Chapitre I

Méthodes et outils théoriques

Introduction

Dans ce chapitre nous allons présenter les principes fondamentaux, les approximations et les outils nécessaires à la résolution de l'équation du problème électronique que nous avons utilisé dans notre étude. Après avoir introduit l'approximation de Born-Oppenheimer, une première partie sera consacrée à la méthode Hartree-Fock et aux méthodes post-Hartree-Fock. Ensuite, nous abordons une autre famille de méthodes de calculs quantiques, les méthodes de la fonctionnelle de la densité, DFT.

I. Equation de Schrödinger

En chimie quantique, un système moléculaire est décrit par la fonction d'onde totale Ψ (R, r) donnée par l'équation de Schrödinger [13] stationnaire :

$$H \Psi (\mathbf{R}, \mathbf{r}) = \mathbf{E}_{\mathrm{T}} \Psi(\mathbf{R}, \mathbf{r}) \tag{1.1}$$

Où H est l'hamiltonien total non-relativiste indépendant du temps du système, Ψ (R, r) est la fonction d'onde indépendante du temps, r et R sont les coordonnées des électrons et des noyaux respectivement et E_T est l'énergie du système.

Une fois connue la fonction d'onde, on peut déduire de nombreuses propriétés attachées au système (géométrie moléculaire, moment dipolaire, spectre électronique, spectre vibrationnel, spectre rotationnel,...) ainsi que des descripteurs de réactivité (indices de charge, charge atomiques, duretés, mollesses, fonctions de Fukui ...).

En unité atomique ($\hbar = e = m_e = 4\pi\epsilon_0 = 1$), l'hamiltonien d'un système de N noyaux et n électrons peut être présenté sous la forme suivante:

$$H(R,r) = T_{N}(R) + T_{e}(R) + V_{NN}(R) + V_{Ne}(R,r) + V_{ee}(r)$$
(1.2)

avec :

• T_N est l'opérateur énergie cinétique des noyaux :

$$T_{N}(R) = -\sum_{k=1}^{N} \frac{1}{2M_{k}} \nabla_{k}^{2}$$

• T_e est l'opérateur énergie cinétique des électrons :

$$T_{e}(\mathbf{r}) = -\sum_{i=1}^{n} \frac{1}{2} \nabla_{i}^{2}$$

• V_{n-n} est l'opérateur énergie potentielle de répulsion électronique :

$$V_{n-n}(r) = \sum_{i}^{n} \sum_{j < i}^{n} \frac{1}{r_{ij}}$$

• V_{n-N} est l'opérateur énergie potentielle d'attraction des électrons par les noyaux :

$$\mathbf{V}_{n-N}(\mathbf{R},\mathbf{r}) = -\sum_{i}^{n} \sum_{k}^{N} \frac{\mathbf{Z}_{k}}{\mathbf{r}_{ik}}$$

• V_{N-N} est l'opérateur énergie potentielle de répulsion des noyaux :

$$\mathbf{V}_{N-N}(\mathbf{R}) = \sum_{k}^{N} \sum_{1 \leq k}^{N} \frac{\mathbf{Z}_{k} \mathbf{Z}_{k}}{\mathbf{R}_{1k}}$$

où les indices i, j sont associés aux électrons et k, l aux noyaux dont Z_k et Z_l sont leurs charges relatives. r_{ij} est la distance entre les électrons i et j. De même R_{lk} est la distance entre les noyaux l et k.

La résolution de l'équation (1.1) pour des systèmes à plusieurs électrons nécessite l'introduction d'une succession d'approximations, portant à la fois sur la fonction d'onde et l'opérateur H, telles que l'approximation de Born-Oppenheimer et l'approximation Orbitalaire.

II. Approximation adiabatique de Born-Oppenheimer

II.1. Approximation de Born-Oppenheimer

L'approximation de Born-Oppenheimer (BO) [14] a été avancée en 1927 par Max Born et Robert Oppenheimer. Elle consiste à séparer les mouvements des noyaux et ceux des électrons. Cette approximation est basée sur le fait que les électrons, beaucoup moins lourds que les noyaux, peuvent s'adapter quasi instantanément aux déplacements nucléaires. L'approximation de Born-Oppenheimer permet de résoudre les problèmes nucléaires et électroniques de façon indépendante. L'hamiltonien total du système peut alors être décomposé comme la somme d'un hamiltonien électronique He et un hamiltonien nucléaire H_N :

$$\mathbf{H} = \mathbf{H}_{e} + \mathbf{H}_{N} \tag{1.3}$$

avec

$$\mathbf{H}_{e} = \mathbf{T}_{e} + \mathbf{V}_{ee} + \mathbf{V}_{Ne} + \mathbf{V}_{NN} \quad \text{et} \quad \mathbf{H}_{N} = \mathbf{T}_{N} \tag{1.4}$$

Le terme V_{NN} ne dépend que de la position des noyaux et joue donc le rôle de paramètre dans cette équation électronique.

La fonction d'onde Ψ (R, r) s'écrit donc comme le produit d'une fonction d'onde électronique Ψ_e (R, r) par une fonction d'onde nucléaire électronique Ψ_N (R) :

$$\psi(\mathbf{R},\mathbf{r}) = \psi_{e}(\mathbf{R},\mathbf{r})\psi_{N}(\mathbf{R})$$
(1.5)

Telle que la fonction propre Ψ_e (R, r) de l'hamiltonien électronique H_e, appelée fonction d'onde électronique, dépend explicitement des coordonnées électroniques et paramétriquement des coordonnées des noyaux. La valeur propre de H_e s'interprète comme l'énergie potentielle du mouvement nucléaire caractérisé par la fonction d'onde Ψ_N (R).

Dans le cadre de cette approximation, la fonction d'onde Ψ (R, r) du système s'écrit comme une combinaison linéaire infinie des fonctions d'onde électroniques Ψ_e (R, r) dont les coefficients sont des fonctions d'onde nucléaires Ψ_N (R).

$$\Psi(\mathbf{R},\mathbf{r}) = \sum_{i=1}^{n} \Psi_{Ni}(\mathbf{R}) \Psi_{ei}(\mathbf{R},\mathbf{r})$$
(1.6)

avec i l'indice désignant l'état électronique Ψ_{ei} (R,r).

Cette écriture stipule que les noyaux se déplacent dans un champ électronique moyen créé par les électrons.

Notons que l'approximation de BO est une très bonne approximation. Seulement, elle cesse d'être valable lorsque la molécule est dans des états électroniques, vibrationnels et rotationnels très excités car les noyaux sont rapides et leurs vitesses ne sont pas négligeables devant celles des électrons.

II.2. Approximation adiabatique

L'approximation adiabatique, consiste à négliger les interactions entre les différents états électroniques. En remplaçant dans l'équation (1.1) la fonction d'onde Ψ par son expression (1.6), en utilisant l'orthogonalité des fonctions d'onde et en multipliant à gauche par $\langle \Psi_{ej} |$, on obtient un système d'équations couplées pour les fonctions d'onde nucléaires.

$$\nabla_{N}^{2} \Psi_{Nj}(R) E_{ej}(R) + \sum_{i=j}^{\infty} \left\{ 2 \left\langle \Psi_{ej} \middle| \nabla_{N} \middle| \Psi_{ei} \right\rangle \left(\nabla_{N} \Psi_{Ni}(R) \right) + \left\langle \Psi_{ej} \middle| \nabla_{N}^{2} \middle| \Psi_{ei} \right\rangle \Psi_{Ni}(R) \right\} = E_{T} \Psi_{Nj}(R)$$
(1.7)

On a un couplage entre les différents états électroniques par l'opérateur énergie cinétique des noyaux. Les termes $\langle \psi_{ej} | \nabla_N | \Psi_{ei} \rangle$ et $\langle \psi_{ej} | \nabla_N^2 | \Psi_{ei} \rangle$ sont des éléments de matrice non diagonaux. Négliger ces couplages, constitue une approximation dite approximation adiabatique et suppose que la fonction d'onde électronique Ψ_{ei} varie peu avec R.

L'équation (1.7) s'écrit alors :

$$\left[\left\langle \Psi_{ej} \middle| \nabla_{N}^{2} \middle| \Psi_{ei} \right\rangle + \nabla_{N}^{2} + E_{ej} \right] \Psi_{Ni}(R) = E_{T} \Psi_{Ni}(R)$$
(1.8)

Le terme, $\langle \psi_{ej} | \nabla_N^2 | \psi_{ei} \rangle$ est appelé correction diagonale. Il est négligé dans le cadre de l'approximation de Born-Oppenheimer (BO) à cause de sa faible valeur et la faible variation de la fonction d'onde électronique Ψ_{ej} en fonction de R.

L'équation de Schrödinger se met alors sous la forme suivante :

$$\left[\nabla_{N}^{2}+E_{ej}\right]\Psi_{Ni}=E_{T}\Psi_{Ni}$$
(1.9)

Soit $[T_N^2 + V_i(R)]\psi_{Ni} = E_T \psi_{Ni}$. Cette équation décrit les états moléculaires dans une énergie électronique $E_{ej}(R)$ donnée, que l'on note en général $V_j(R)$ et que l'on appelle énergie potentielle.

Donc une fois l'approximation adiabatique et de Born-Oppenheimer justifiées, le calcul procède donc en deux étapes:

• Une première partie qui consiste à résoudre le problème électronique à noyaux supposés fixes, afin de trouver l'énergie E_{ei} (R) pour chaque état électronique et pour différentes configurations nucléaires.

$$\mathbf{H}_{e}(\mathbf{r},\mathbf{R})\boldsymbol{\Psi}_{e}(\mathbf{r},\mathbf{R}) = \mathbf{E}_{e}(\mathbf{R})\boldsymbol{\Psi}_{e}(\mathbf{r},\mathbf{R})$$
(1.10)

• Une deuxième partie qui consiste à traiter le problème du mouvement des noyaux (1.11) dans la surface d'énergie potentielle

$$[T_{N}(R)E_{e}(R)]\Psi_{N}(R) = E(R)\Psi_{N}(R)$$
(1.11)

II.3. Limites de l'approximation adiabatique et de Born-Oppenheimer

L'approximation adiabatique n'est valable que si les fonctions d'onde électroniques varient lentement avec la configuration des noyaux. Elle peut s'avérer insuffisante pour des systèmes à évolution rapide tels que les zones de collisions ou les régions des croisements évités de surface d'énergie potentielle, autrement dit quand il existe un couplage assez fort entre les états électroniques.

L'approximation de Born-Oppenheimer cesse d'être valable quand la molécule est dans des états électroniques, vibrationnels et rotationnels très excités car les mouvements des noyaux sont rapides et leurs vitesses ne sont pas négligeables devant le temps de réarrangement des électrons et dans les états électroniques dégénérés (pour les systèmes polyatomiques).

III. Méthodes de résolution de l'équation de Schrödinger électronique III.1. Approximation de Hartree

L'équation de Schrödinger électronique (1.10) ne peut être résolue de façon exacte que pour des systèmes moléculaires à un électron (comme l'ion moléculaire H_2^+). Pour des systèmes à plusieurs électrons, cette résolution analytique est impossible à cause des termes biélectroniques

en $1/r_{ij}$ qui empêchent la séparation des variables électroniques. On ne sait pas résoudre analytiquement le problème électronique à n corps sous sa forme la plus générale. On fait donc l'approximation orbitale introduite par Hartree [15] qui consiste à considérer que chaque électron se meut dans le champ moyen crée par les autres électrons. La fonction d'onde électronique Ψ_e (R, r) écrite alors sous la forme d'un produit de fonctions monoélectroniques Φ_n dépendant chacune des coordonnées d'un seul électron :

$$\Psi_{e}(\mathbf{R},\mathbf{r}) = \Phi_{1}\Phi_{2}....\Phi_{n} = \Psi(1,2,3...n)$$
 (1.12)

Le spin électronique est pris en compte en introduisant une fonction de spin qui est développée sur la base des deux fonctions α et β caractérisées par un nombre quantique de spin m_s. Le produit d'une orbitale et d'une fonction de spin constitue une spin-orbitale.

III.2. La méthode Hartree-Fock

L'approximation proposée par Hartree (1.12) a été corrigée par Fock [16], qui a expliqué que la fonction d'onde de Hartree ne satisfait pas le principe d'exclusion de Pauli qui stipule que la fonction d'onde multiélectronique doit changer de signe lors de la permutation des coordonnées de deux électrons quelconques. Pour tenir-compte de ce principe, Fock [16] a proposé d'écrire la fonction d'onde électronique Ψ_e sous forme d'un déterminant, appelé déterminant de Slater [17].

$$\psi_{e}(\mathbf{X}_{1}, \mathbf{X}_{2}, ..., \mathbf{X}_{n}) = \frac{1}{\sqrt{n!}} \begin{bmatrix} \Phi_{1}(X_{1}) & \cdots & \Phi_{n}(X_{1}) \\ \vdots & \ddots & \vdots \\ \Phi_{1}(X_{n}) & \cdots & \Phi_{n}(X_{n}) \end{bmatrix}$$
(1.13)

où le facteur $1/\sqrt{n!}$ est un facteur de normalisation et n! est le nombre de permutations possibles des électrons deux à deux.

La fonction d'onde décrite sous cette forme assure l'antisymétrie, conséquence directe du principe d'exclusion de Pauli.

L'énergie électronique Ee associée au déterminant de Slater est donnée par :

$$\mathbf{E}_{e} = \frac{\left\langle \Psi_{e} \middle| \mathbf{H}_{e} \middle| \Psi_{e} \right\rangle}{\left\langle \Psi_{e} \middle| \Psi_{e} \right\rangle}$$
(1.14)

L'hamiltonien électronique He est donné par :

$$H_{e} = \sum_{i=1}^{n} h(i) + \sum_{i=1}^{n} \sum_{i>j}^{n} \frac{1}{r_{ij}}$$
(1.15)

avec h (i) un opérateur mono-électronique défini par :

$$h(i) = \frac{1}{2} \nabla_{i}^{2} - \sum_{k=1}^{N} \frac{Z_{k}}{d_{ik}}$$
(1.16)

où d_{ik} représente la distance entre l'électron i et le noyau k.

Il faut maintenant introduire les intégrales coulombiennes J_{ij} et d'échanges biélectroniques K_{ij} déterminées par l'action des opérateurs de Coulomb J_j et d'échange K_j sur une orbitale moléculaire :

$$\mathbf{j}_{i}|\Phi_{i}(2)\rangle = \langle \Phi_{j}(1)|\frac{1}{\mathbf{r}_{12}}|\Phi_{j}(1)\rangle \Phi_{i}(2) \qquad (1.17)$$

$$K_{j}|\Phi_{i}(2)\rangle = \langle \Phi_{j}(1)|\frac{1}{r_{12}}|\Phi_{i}(1)\rangle\Phi_{j}(2)$$
(1.18)

Les intégrales de Coulomb et d'échange s'écrivent alors :

$$\mathbf{J}_{ij} = \langle \Phi_{i}(1) \Phi_{j}(2) | \frac{1}{r_{12}} | \Phi_{i}(1) \Phi_{j}(2) \rangle$$
(1.19)

$$\mathbf{K}_{ij} = \langle \Phi_i(1) \Phi_j(2) | \frac{1}{\mathbf{r}_{12}} | \Phi_i(2) \Phi_j(1) \rangle$$
(1.20)

Les intégrales coulombiennes J_{ij} représentent l'énergie moyenne de répulsion des électrons occupant les orbitales moléculaires Φ_i et Φ_j . Les intégrales d'échanges K_{ij} n'ont pas de signification physique au sens classique, mais elles sont présentes pour rendre la fonction d'onde antisymétrique.

Finalement, l'expression générale de l'énergie associée à un déterminant de Slater pour un système comportant n électrons s'écrit :

$$E_{e} = \sum_{i=1}^{n} h(i) + \sum_{i}^{n} \sum_{j>i}^{n} (J_{ij} - K_{ij})$$
(1.21)

L'énergie calculée est toujours supérieure à l'énergie exacte d'après le principe variationnel. Ce qui signifie que le signe de l'erreur est toujours connu, donc pour obtenir l'énergie Hartree-Fock, il faut minimiser l'énergie calculée en modifiant les spin-orbitales et en leur imposant une contrainte d'orthonormalisation :

$$\delta E_{e} - \sum_{i,j}^{n} \varepsilon_{ij} \delta \langle \Phi_{i} | \Phi_{j} \rangle = 0 \qquad (1.22)$$

avec ϵ_{ij} qui sont des multiplicateurs de Lagrange.

On peut introduire l'opérateur de Fock :

$$F(i) = h(i) + \sum_{j}^{n} (j_{j} - K_{j})$$
(1.23)

qui permet d'exprimer δE_e en fonction de l'opérateur de Fock :

$$\delta \mathbf{E}_{e} = \sum_{i}^{n} \left(\left\langle \delta \mathbf{\Phi}_{i} \middle| \mathbf{F}(i) \middle| \mathbf{\Phi}_{i} \right\rangle + \left\langle \mathbf{\Phi}_{i} \middle| \mathbf{F}(i) \middle| \delta \mathbf{\Phi}_{i} \right\rangle \right)$$
(1.24)

Ceci permettant d'obtenir les équations de Hartree-Fock suivantes :

$$F(i)\Phi_{i} = \sum_{i}^{n} \delta_{ij}\Phi_{i}$$
(1.25)

Les coefficients de Lagrange étant hermitique, on peut modifier l'équation (1.21)

$$\sum_{i}^{n} \langle \delta \Phi_{i} | F(i) | \Phi_{i} \rangle - \sum_{i,j}^{n} \varepsilon_{ij} \delta \langle \Phi_{i} | \Phi_{j} \rangle = 0$$
(1.26)

Ces équations peuvent aussi s'exprimer dans le jeu des orbitales d'espace doublement occupées ϕ_i appelées « orbitales canoniques » associées aux valeurs propres ϵ_i telles que :

$$F(i)\Phi_{i} = \varepsilon_{ij}\Phi_{i}$$
(1.27)

où l'opérateur de Fock est exprimé à partir des solutions Φ à travers les opérateurs de Coulomb et d'échange :

$$\mathbf{F} = \mathbf{h} + \sum_{j}^{\text{occ}} \left(2\mathbf{J}_{i} - \mathbf{K}_{j} \right)$$
(1.28)

Les équations Hartree-Fock forment un système d'équations couplées qui doivent être résolues simultanément. Pour ce faire, la méthode la plus utilisée est la méthode du champ auto-cohérent ou SCF (pour Self Consistent Field [18]). C'est une méthode itérative dont la résolution suit ce processus :

$$F^{(0)} \Phi^{(1)} = \epsilon^{(1)} \Phi^{(1)}$$

$$F^{(1)} \Phi^{(2)} = \epsilon^{2} \Phi^{(2)}$$

$$F^{(n-1)} \Phi^{(n)} = \epsilon^{n} \Phi^{(n)}$$

(1.29)

Pour la première itération, l'opérateur de Fock $F^{(0)}$ est construit à partir d'un jeu d'orbitales d'essai. La résolution de l'équation Hartree-Fock fournit un nouveau jeu d'orbitales $\Phi^{(1)}$ qui sera ensuite utilisé pour construire un nouvel opérateur de Fock et ainsi de suite. Le calcul est arrêté lorsqu'une convergence satisfaisante sur l'énergie et la fonction d'onde est obtenue. La convergence est estimée entre chaque itération par les relations : $\phi^{(n)} = \phi^{(n+1)} + \delta(\phi)$ et $\epsilon(n) = \epsilon(n+1) + \delta(\epsilon)$

III.3. Limites de la méthode Hartree-Fock

L'inconvénient de la méthode hartree-Fock est qu'elle sous-estime l'énergie d'interaction entre les électrons puisqu'elle néglige toutes les interactions instantanées entre les électrons et ainsi toute corrélation entre les mouvements des électrons au sein d'un système moléculaire. L'énergie Hartee-Fock (E_{HF}) ne représente qu'environ 99% de l'énergie exacte. La différence c'est-à-dire environ 1% restant, porte le nom de l'énergie de corrélation électronique. La contribution de l'énergie de corrélation est faible par rapport à l'énergie exacte, mais elle reste très importante pour décrire les propriétés physico-chimiques des systèmes considérés telles que la rupture et la formation des liaisons, la structure 3D des molécules, etc.

III.4. Formulation de la Corrélation Electronique

Une fonction d'onde représentée par un seul déterminant de Slater ne sera jamais égale à la fonction d'onde exacte. Cela signifie donc que l'énergie obtenue par la méthode Hartree-Fock

 (E_{HF}) est toujours supérieure à l'énergie exacte de l'état fondamental (E_0) . En effet, la méthode Hartree-Fock ne tient pas compte des effets de corrélation électronique au sein d'un système moléculaire. Il existe deux types de corrélations, la corrélation statique et la corrélation dynamique.

La différence entre l'énergie Hartree-Fock (E_{HF}) et l'énergie exacte (E_0) est appelée énergie de corrélation électronique (E_{corr}) , définie par :

$$\mathbf{E}_{\rm corr} = \mathbf{E}_{\rm 0} - \mathbf{E}_{\rm HF} < \mathbf{0}$$

 E_{corr} est d'une grande importance. Il est nécessaire de pouvoir la prendre en compte pour les calculs des propriétés d'un système moléculaire et de pouvoir l'intégrer au sein d'un calcul de structure électronique. Avant de présenter les différentes approches permettant de tenir compte de ces effets de corrélation électronique, il est utile d'introduire les concepts de corrélation dynamique et de corrélation statique.

Corrélation statique : c'est la corrélation relative à la nature multiconfigurationnelle de la fonction d'onde. Elle existe dans un système lorsqu'au moins deux des déterminants sur lesquels s'exprime la fonction d'onde interagissent. La récupération de cette forme de corrélation requière l'utilisation des méthodes multiconfigurationnelles pour obtenir une description qualitativement correcte de la structure électronique. De tels cas se présentent lorsque les orbitales sont dégénérées. Les situations de quasi-dégénérescence se rencontrent notamment dans des états excités ou à la limite de dissociation. Cette forme de corrélation est récupérable à longue portée et elle se corrige facilement car les états quasi-dégénérés sont très peu nombreux. De tels cas se présentent lorsque l'état considéré est un état à couches ouvertes de bas spin ou lorsque plusieurs orbitales sont dégénérées.

La corrélation dynamique résulte de la répulsion coulombienne entre deux électrons à relativement courte distance l'un de l'autre. Pour la décrire, il faut inclure dans la fonction d'onde un grand nombre de déterminants de Slater obtenus en excitant les électrons vers des orbitales virtuelles de hautes énergies (au-delà de l'espace des orbitales de valence). Cependant, contrairement au cas de la corrélation statique, chacun de ces déterminants à un coefficient

relativement faible par rapport au coefficient du déterminant Hartree-Fock, ce qui permet de concevoir des approches partant du déterminant Hartree-Fock et ajoutant de façon assez systématique un ensemble de déterminants excités. Nous allons décrire trois familles de méthodes de fonction d'onde couramment utilisées pour inclure la corrélation dynamique : la méthode des perturbations, la méthode des clusters couplés et les méthodes de la fonctionnelle de la densité, DFT.

IV. Les Méthodes post-Hartree-Fock

Les méthodes post-Hartree-Fock permettent de traiter les effets de corrélation électronique qui ne sont pas pris en compte dans l'approche Hartree-Fock. Ces méthodes font appel à une fonction d'onde multiconfigurationnelle solution du problème à n électrons, qui est décrite sous la forme d'une combinaison linéaire de déterminants de Slater et utilisent la fonction d'onde HF comme point de départ :

$$\Psi = a_0 \Psi_{\rm HF} + \sum_{i \neq 0} a_i \Psi_i \tag{1.30}$$

où a₀ est en général proche de 1 est déterminé par les conditions de normalisation.

Ces méthodes de corrélation diffèrent dans la manière de calculer les coefficients a_i . Les déterminants additionnels sont obtenus par excitations des électrons des orbitales occupées de la fonction d'onde HF vers les orbitales initialement vacantes suivant le diagramme (Figure 1.1). Les Ψ_i s'appellent déterminants excités de Slater.

Figure 1.1 : Diagramme des déterminants de Slater excités à partir de la référence HF

IV.1. Méthode perturbative : Møller-Plesset d'ordre 2 (MP2)

La méthode de Møller-Plesset (MP) [19] est une méthode post-Hartree-Fock. Elle améliore la méthode de Hartree-Fock en y apportant les effets de corrélation électronique au moyen de la

théorie de la perturbation de Rayleigh-Schrödinger [20-21]. Le principe de cette méthode consiste à écrire la fonction d'onde, l'hamiltonien et l'énergie du système moléculaire sous la forme d'une somme d'un terme d'ordre zéro et de termes de perturbation de différents ordres. L'opérateur hamiltonien d'ordre zéro considéré est la somme des opérateurs monoélectroniques de Fock, soit :

$$H_0 = \sum_{i=1}^{N} F_i$$
 (1.31)

Avec F_i sont les opérateurs de Fock. H étant l'hamiltonien du système à N électrons, l'opérateur de perturbation H s'écrit :

$$\mathbf{H} = \mathbf{H} - \mathbf{H}^0 \tag{1.32}$$

H' peut alors être utilisé afin de corriger les états propres de $H_{0.}$

A l'ordre 0, l'énergie sera donc égale à :

$$\mathbf{E}_{0} = \langle \mathbf{\Phi}_{0} | \mathbf{H}^{\dagger} | \mathbf{\Phi}_{0} \rangle = \sum_{i} \boldsymbol{\varepsilon}_{i}$$
(1.33)

La solution MP d'ordre 0 est la somme des énergies orbitalaires.

L'énergie au 1^{er} ordre sera donc égale à :

$$\mathbf{E}_{i} = \left\langle \mathbf{\Phi}_{0} \middle| \mathbf{H}^{\dagger} \middle| \mathbf{\Phi}_{0} \right\rangle = -\sum_{i} \sum_{j \succ i} \left(\mathbf{J}_{ij} - \mathbf{K}_{ij} \right)$$
(1.34)

Ce qui nous donne :

$$\mathbf{E}_0 + \mathbf{E}_1 = \mathbf{E}_{\rm HF} \tag{1.35}$$

La somme des corrections d'ordre 0 et d'ordre 1 donne l'énergie Hartree-Fock. Il faut donc commencer les calculs à partir de l'ordre 2 pour avoir une correction par rapport à la méthode Hartree - Fock. Pour cette correction, et d'après le théorème de Brillouin, les seuls déterminants pouvant agir sur la fonction d'onde Hartree - Fock sont les di-excitations. L'énergie d'ordre 2 sera calculée par :

$$E_{2} = \sum_{a}^{\text{virt occ}} \sum_{b}^{\text{virt occ}} \sum_{b>aj>i}^{\text{virt occ}} \frac{\left\langle \Phi_{0} \middle| \mathbf{H}' \middle| \Phi_{ab}^{ij} \right\rangle - \left\langle \Phi_{ab}^{ij} \middle| \mathbf{H}' \middle| \Phi_{0} \right\rangle}{E_{0} - E_{ab}^{ij}}$$
(1.36)
avec i et j des spin-orbitales occupées, a et b des spin-orbitales virtuelles. Les éléments de matrice entre le déterminant Hartree-Fock et un déterminant doublement excité sont des intégrales à deux électrons.

La différence d'énergie entre deux déterminants de Slater étant la différence d'énergie orbitalaire, la formule explicite de l'énergie MP2 sera :

$$E_{2} = \sum_{a}^{\text{virt occ}} \sum_{b>a}^{\text{virt occ}} \sum_{b>a}^{\text{virt occ}} \frac{\left[\left\langle \Phi_{i} \Phi_{i} \middle| g \middle| \Phi_{a} \Phi_{b} \right\rangle - \left\langle \Phi_{ab}^{ij} \middle| H^{'} \middle| \Phi_{0} \right\rangle\right]^{2}}{\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b}}$$
(1.37)

Avec g un opérateur bi-électronique. E₂ est donc l'énergie de corrélation à l'ordre 2.

L'énergie totale donnée sera donc la somme de l'énergie Hartree - Fock et de l'énergie E_2 :

$$\mathbf{E}_{\mathrm{MP2}} = \mathbf{E}_2 + \mathbf{E}_{\mathrm{HF}} \tag{1.38}$$

Cette énergie de corrélation reste une énergie approchée. Cette méthode perturbative étant relativement peu coûteuse en temps de calcul, elle est souvent utilisée en complément d'un calcul Hartree-Fock. Cette méthode n'est pas limitée à l'ordre 2, mais les calculs d'ordre plus élevé (MP3, MP4...) sont rarement utilisés en raison de leurs coûts computationnels.

IV.2. Méthode des clusters couplés

La méthode des Clusters Couplés [22] est une méthode variationnelle monoconfigurationnelle qui tient compte de la corrélation électronique par une correction perturbative d'ordre infini par rapport au calcul Hartree-Fock. Elle consiste à écrire la fonction d'onde exacte à l'aide d'un opérateur exponentiel appliqué à la fonction d'onde HF. La fonction d'onde correspondante est exprimée comme suit :

$$\Psi_{cc}^{e} = e^{T} \Psi^{HF}$$
(1.39)

- Ψ^{HF} est la fonction de référence issue d'un calcul Hartree-Fock.
- e^T est défini par son développement de Taylor :

$$e^{T} = \sum_{k=0}^{\infty} \frac{T^{k}}{k!}$$
 (1.40)

avec T est un opérateur cluster (ou d'excitation) qui peut s'écrire :

$$\mathbf{T} = \mathbf{T}_{1} + \mathbf{T}_{2} + \dots + \mathbf{T}_{N} = \sum_{i=1}^{N} \mathbf{T}_{i}$$
(1.41)

N étant le nombre d'électrons excités par l'opérateur T. L'opérateur T_i agit sur la fonction d'onde de référence Ψ^{HF} et génère tous les déterminants de Slater excités *i* fois. L'action des opérateurs d'excitation simple et double sur la fonction d'onde HF est donnée par :

$$\mathbf{T}_{1} \boldsymbol{\Psi}^{\mathrm{HF}} = \sum_{i}^{\mathrm{occ}} \sum_{a}^{\mathrm{vir}} \mathbf{t}_{i}^{a} \boldsymbol{\Psi}_{i}^{a}$$
(1.42)

$$\mathbf{T}_{2} \boldsymbol{\Psi}^{\mathrm{HF}} = \sum_{i}^{\mathrm{occ}} \sum_{j \succ i}^{\mathrm{occ}} \sum_{a}^{\mathrm{vir}} \sum_{b \succ a}^{\mathrm{vir}} \mathbf{t}_{ij}^{ab} \boldsymbol{\Psi}_{ij}^{ab}$$
(1.43)

 T_1 et T_2 donnent respectivement les excitations simples et doubles. t_i^a et t_{ij}^{ab} sont les coefficients des développements associés respectivement aux déterminants de Slater Ψ_i^a et Ψ_{ij}^{ab} . E_{ai} est l'opérateur d'excitation d'un électron d'une spin-orbitale i occupée vers une spin-orbitale a virtuelle.

En remplaçant l'opérateur des clusters dans l'opérateur e^{T} de l'équation (1.40), on obtient :

$$\mathbf{e}^{\mathrm{T}} = 1 + \mathbf{T}_{2} + \left(\frac{\mathbf{T}_{1}^{2}}{2} + 2\right) + \left(\frac{\mathbf{T}_{1}^{3}}{6} + \mathbf{T}_{1}\mathbf{T}_{2}\right) + \dots$$
(1.44)

En faisant agir cet opérateur sur la fonction d'onde de référence Ψ^{HF} , on obtient la fonction d'onde "clusters couplés" Ψ^{CC} donnée par :

$$\Psi_{cc}^{e} = \Psi^{HF} + \sum_{a}^{occ} \sum_{i}^{vr} t_{i}^{a} \Psi^{HF} + \sum_{i}^{occ} \sum_{j>i}^{occ} \sum_{a}^{vir} \sum_{b>a}^{vir} \left(t_{ij}^{ab} t_{i}^{a} t_{j}^{b} \right) \Psi^{HF} + \left[\sum_{i}^{occ} \sum_{j>i}^{occ} \sum_{a}^{vir} \sum_{b}^{vir} \sum_{c>b>a}^{vir} \left(\left(\frac{t_{i}^{a} t_{j}^{b} t_{k}^{c}}{6} \right) + t_{i}^{a} \frac{t_{i}^{a} b}{t_{i}^{a} t_{j}^{b}} \right) \right] \Psi^{HF}$$

$$(1.45)$$

 $t_i^a \Psi^{HF}$, $t_i^a t_{ij}^{ab} \Psi^{HF}$ et $t_i^a t_{ij}^{ab} t_{ijk}^{abc} \Psi^{HF}$, etc., sont les déterminants de Slater obtenus à partir de la fonction de référence respectivement par simple, double, triple, etc., excitations. L'équation de Schrödinger relative à la fonction d'onde "clusters couplés" est donnée par :

$$\mathbf{H}_{\mathrm{e}} \mathbf{e}^{\mathrm{T}} \boldsymbol{\Psi}^{\mathrm{HF}} = \mathbf{E}_{\mathrm{CC}} \boldsymbol{\Psi}^{\mathrm{HF}}$$
(1.46)

En projetant l'équation de Schrödinger sur les fonctions $| \Psi^{HF} >$, on obtient :

$$\left\langle \Psi^{\rm HF} \middle| \mathbf{H}_{\rm e} \, \mathbf{e}^{\rm T} \middle| \Psi^{\rm HF} \right\rangle = \mathbf{E}_{\rm CC} \left\langle \Psi^{\rm HF} \middle| \mathbf{e}^{\rm T} \middle| \Psi^{\rm HF} \right\rangle = \mathbf{E}_{\rm CC} \tag{1.47}$$

avec :

$$\mathbf{E}_{\rm CC} = \frac{\left\langle \Psi^{\rm HF} \middle| \mathbf{H}_{\rm e} \, \mathbf{e}^{\rm T} \middle| \Psi^{\rm HF} \right\rangle}{\left\langle \Psi^{\rm HF} \middle| \mathbf{e}^{\rm T} \middle| \Psi^{\rm HF} \right\rangle} = \frac{\left\langle \Psi^{\rm HF} \middle| \mathbf{H}_{\rm e} \, \mathbf{e}^{\rm T} \middle| \Psi^{\rm HF} \right\rangle}{\left\langle \Psi^{\rm HF} \middle| \mathbf{T}_{\rm 1} + \mathbf{T}_{\rm 2} + \mathbf{T}_{\rm 3} + \dots \mathbf{T}_{\rm N} \middle| \Psi^{\rm HF} \right\rangle}$$
(1.48)

Si nous tenons compte que des opérateurs à un et deux électrons, l'énergie E_{CC} s'écrit

$$E_{CC} = \left\langle \Psi^{HF} \right| H_{e} \left(1 + T_{1} + \frac{T_{1}^{2}}{2} + T_{2} \right) \left| \Psi^{HF} \right\rangle$$
$$= E_{0} + \sum_{i} \sum_{a} t_{a}^{i} \left\langle \Psi^{HF} \right| H_{e} \left| \Psi_{i}^{a} \right\rangle + \sum_{j>i} \sum_{b>a} \left(t_{i}^{a} t_{j}^{b} + t_{ij}^{ab} - t_{i}^{b} t_{i}^{a} \left\langle \Psi^{HF} \right| H_{e} \left| \Psi_{ij}^{ab} \right\rangle$$
(1.49)

Les amplitudes $t_i^a t_j^b$ correspondent aux termes non liés relatifs à la corrélation entre deux électrons distincts, alors que les amplitudes t_{ij}^{ab} correspondent aux termes liés relatifs à la corrélation simultanée de deux électrons.

D'après le théorème de Brillouin, les éléments de matrice de H_e correspondants aux monoexcitations sont nuls, l'expression de l'énergie "clusters couplés" E_{CC} devient :

$$\mathbf{E}_{\rm CC} = \mathbf{E}^{\rm HF} + \sum_{i}^{\rm occ} \sum_{j \succ i}^{\rm occ} \sum_{a}^{\rm virt} \sum_{b \succ a}^{\rm virt} (\mathbf{t}_{ij}^{ab} + \mathbf{t}_{i}^{a} \mathbf{t}_{j}^{b} - \mathbf{t}_{i}^{b} \mathbf{t}_{j}^{a}) = \left\langle \Psi^{\rm HF} \right| \mathbf{H}_{\rm e} \left| \Psi^{ab}_{ij} \right\rangle$$
(1.50)

Les équations des Clusters Couplés sont résolues de façon itérative en utilisant $E_{CC} = E_0$ comme point de départ. Si tous les opérateurs T_i sont introduits dans l'équation de cluster T, tous les déterminants possibles seront générés et la fonction d'onde Ψ_{cc} est équivalente à une fonction d'interaction de configuration complète. Pour limiter le développement (1.41), on utilise dans la méthode des Clusters Couplés, comme dans la méthode d'interaction de configuration (IC), une base des OM tronquée. Si l'on fait les restrictions $T = T_1$ et $T = T_1+T_2$, on obtient respectivement les méthodes CCS (Coupled Cluster Simple), CCSD (Coupled Cluster Simple et Double) et ainsi de suite. En ajoutant à la méthode CCSD une correction du troisième ordre T_3 traitée comme perturbation, on obtient la méthode CCSD(T).

La méthode des Clusters Couplés est cohérente en taille, elle tient compte de la quasi totalité de la corrélation électronique ce qui permet de donner des résultats très précis. Elles s'appliquent seulement aux systèmes monoconfigurationnels. Elles sont couramment utilisées pour l'étude des systèmes de van der Waals (vdW).

IV. 3. La méthode des « clusters couplés » explicitement corrélés

La nécessité d'utiliser une base atomique de très grande taille constitue le problème majeur de toutes les méthodes de corrélation dynamique. En fait, la fonction d'onde exacte est linéaire en r_{12} si la distance entre deux électrons r_{12} tend vers zéro :

$$\Psi \cong \left(1 + \frac{1}{2}r_{12}\right)\Psi(r_{12} = 0) + \dots$$
 (1.51)

Avec $\Psi(\mathbf{r}_{12}=0)$ est la valeur de la fonction d'onde à distance nulle.

La fonction d'onde exacte s'écrit sous forme de déterminants de Slater construits avec des orbitales développées sur des fonctions de base atomique ne dépendant que de la distance électron-noyau. Alors pour faire tendre la dépendance linéaire en r_{12} vers zéro, on est amené à utiliser des fonctions de base très oscillantes. Pour éviter ce problème, on introduit explicitement la dépendance en r_{12} dans l'expression de la fonction d'onde. C'est le principe sur lequel sont basées les méthodes explicitement corrélées telles que «la méthode des Clusters Couplés explicitement corrélés» [23-29]. Dans la méthode CCSD explicitement corrélée, les doubles excitations dans les produits d'orbitales virtuelles T₂ définis dans l'équation (2.43) sont augmentées par des excitations doubles dans les fonctions explicitement corrélées.

Alors, l'opérateur Cluster s'écrit :

$$\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + \mathbf{T}_2 \tag{1.52}$$

Avec

$$\mathbf{T}_{2}^{'} = \sum_{\alpha} \sum_{i} \sum_{\beta > \alpha} \sum_{j > i} \chi_{\alpha\beta}^{ij} \mathbf{E}_{\alpha i} \mathbf{E}_{\beta j}$$
(1.53)

$$\chi_{\alpha\beta}^{ij} = t_{mn}^{ij} \xi_{\alpha\beta}^{mn}$$
(1.54)

$$\xi_{\alpha\beta}^{mn} = \left\langle \Psi_m \Psi_n \middle| F_{12} Q_{12} \middle| \Psi_\alpha \Psi_\beta \right\rangle$$
(1.55)

 F_{12} ou $F_{12}(r_{12})$ est un facteur correspondant à la corrélation de courte distance donné par :

$$F(\mathbf{r}_{12}) = \sum_{i=1}^{k} c_i e^{\left(-\alpha_i r_{12}^2\right)}$$
(1.56)

Q₁₂ est l'opérateur de projection qui assure l'orthogonalité avec les fonctions d'onde Hartree-Fock.

La méthode CCSD(T)-F12 est basée sur les travaux de Kutzelnigg et Klopper [30] et implémentée dans le code de calcul MOLPRO [31]. Elle est largement utilisée vu qu'elle n'est pas coûteuse en temps de calcul et qu'elle est très performante. Un calcul CCSD(T)-F12 avec une petite base (triple zêta) est comparable à un calcul CCSD(T) avec une base de taille plus grande (quintuple zêta).

V. La Théorie de la Fonctionnelle de la Densité (DFT)

Toutes les méthodes à fonction d'onde explicite, vues plus haut, ne sont applicables qu'aux petits systèmes avec une dizaine d'atomes, et sont très couteuses. Pour contourner cette difficulté et étudier des systèmes de plus grande taille, on peut faire appel aux méthodes de la fonctionnelle de la densité DFT, qui introduisent la corrélation par l'intermédiaire d'une fonctionnelle de la densité électronique. La démarche de la DFT semble particulièrement avantageuse car la densité électronique ρ (x, y, z) ne dépend que de 3 variables (4, avec spin) et peut être considérée comme une observable. Par contre, le nombre de variables d'espace entrant dans la fonction d'onde, qui n'est pas une observable, est de 3N (N étant le nombre d'électrons du système). De plus, la précision des résultats obtenus ainsi que les performances des calculs de toutes les méthodes DFT permettent d'avoir un outil très efficace pour le calcul des propriétés moléculaires.

L'idée d'exprimer l'énergie totale d'un système multi-électronique par une fonctionnelle de la densité électronique totale a été introduite par Thomas et Fermi. Mais, ce n'est qu'en 1964 que Hohenberg et Kohn [32] proposèrent la formulation exacte de ce modèle, appelé théorie de la fonctionnelle de la densité. Elle est fondée sur deux théorèmes.

Le but de ces méthodes est de produire des fonctionnelles mettant en relation la densité avec l'énergie de l'état électronique fondamental.

V.1.Quelques définitions essentielles

a. La densité électronique

Pour un système à N électrons se trouvant dans un état représenté par la fonction d'onde Ψ , la probabilité de trouver n'importe lequel de ces N électrons dans l'élément de volume $d\vec{r}_1$ quelque soit son spin et quelques soient les positions et les spins des N-1 autres électrons est donné par :

$$\rho(\vec{r}) = N... \int \left| \phi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_n) \right|^2$$
(1.57)

où $\rho(\vec{r})$ est la densité de probabilité ou en terme plus courant la « densité électronique ». Dans cette équation, l'intégrale multiple représente la probabilité qu'un seul électron se trouve dans $d\vec{r}_1$. Mais comme les électrons sont indiscernables, la probabilité de trouver n'importe lequel des électrons à cette position est tout simplement N fois la probabilité d'un seul électron.

La densité électronique possède deux propriétés fondamentales : elle s'annule à l'infini et son intégral donne le nombre total des électrons :

$$\rho(\vec{r} \to \infty) = 0 \tag{1.58}$$

$$\int \rho(\vec{r}) d\vec{r}_1 = \mathbf{N} \tag{1.59}$$

Reste à mentionner que contrairement à la fonction d'onde, la densité électronique est une grandeur observable et peut être mesurée expérimentalement par diffraction de rayon X.

b. La fonctionnelle

Le concept mathématique principal de la théorie de la fonctionnelle de la densité est, comme le nom l'indique bien, la notion de la fonctionnelle. Ainsi contrairement au concept familier de

fonction qui associe un nombre à un autre nombre, la fonctionnelle associe une fonction à un nombre. En d'autre terme, on peut dire qu'une fonctionnelle est une fonction dont l'argument est lui-même une fonction. Par convention on note entre crochets l'argument de la fonctionnelle. Le schéma suivant illustre plus clairement ce que l'on vient de dire :

$$\begin{array}{c} x \xrightarrow{f(x)} y \\ x \xrightarrow{F[f(x)]} y \end{array}$$

où f(x) est la fonction qui associe x à y et F [f(x)] est la fonctionnelle qui associe la fonction f(x) au scalaire y.

Dans la théorie de la fonctionnelle de la densité, la fonction principale est la densité électronique. L'idée principale étant d'exprimer l'énergie du système en fonction de la seule densité électronique rendant de cette façon l'énergie une fonctionnelle de la densité électronique : E $[\rho(\vec{r})]$

V.2. Théorèmes de Hohenberg et Kohn

Une fois les différentes quantités définies, il est maintenant nécessaire de poser les fondements de la DFT. Ils ont été exprimés pour la première fois en 1964 par Hohenberg et Kohn [32] et se déclinent en deux théorèmes.

a. Premier théorème

Le premier théorème de Hohenberg et Kohn [32] montre très simplement que la densité $\rho(r)$ est la seule fonction nécessaire pour obtenir toutes les propriétés électroniques d'un système dans son état fondamental. La densité électronique fixe également le nombre d'électrons n du système via la condition :

$$\mathbf{n} = \int \boldsymbol{\rho}(\mathbf{r}) d\mathbf{r} \tag{1.60}$$

où ρ (r) est la densité électronique et **r** les coordonnées des électrons. Elle est définie par :

$$\rho(\mathbf{r}) = \int |\Psi(\mathbf{r})|^2 \tag{1.61}$$

avec Ψ la fonction d'onde électronique solution de l'équation de Schrödinger électronique (en s'affranchissant du terme de répulsion entre les noyaux V_{NN}) :

$$H\Psi = \left[T + V_{Ne} + V_{ee}\right]\Psi = E\Psi$$
(1.62)

Dans la pratique, le terme d'attraction électron-noyau V_{Ne} est souvent remplacé par un potentiel extérieur V_{ext} regroupant, en plus de V_{Ne} , les différentes perturbations externes (champs électriques, etc...).

La densité électronique totale peut être donnée en fonction des densités de spin ρ_{α} et ρ_{β} :

$$\rho(\mathbf{r}) = \rho_{\alpha}(\mathbf{r}) + \rho_{\beta}(\mathbf{r}) \tag{1.63}$$

L'énergie électronique est donc une fonctionnelle de la densité et sera notée $E[\alpha]$ où $\rho = (\rho_{\alpha}, \rho_{\beta})$.

Les calculs effectués seront donc similaires pour les systèmes à couches ouvertes et les systèmes à couches fermées.

Cette énergie, exprimée en terme de fonctionnelle de la densité, se décompose en trois parties :

$$\mathbf{E}[\rho] = \mathbf{T}[\rho] + \mathbf{E}_{\mathrm{Ne}}[\rho] + \mathbf{E}_{\mathrm{ee}}[\rho]$$
(1.64)

où

- $T[\rho]$ est l'énergie cinétique.
- $E_{Ne}[\rho]$ est l'énergie provenant de l'interaction électron-noyau.
- $E_{ee}[\rho]$ est celle provenant de l'interaction électron.

b. Second théorème

Le second théorème de Hohenberg et Kohn [32] démontre que seule la densité électronique vraie permet de calculer l'énergie exacte. N'importe quelle autre densité différente de la densité exacte conduit à une énergie plus grande. L'énergie d'interaction électron-électron s'écrit comme la somme d'un terme coulombien J et d'un terme d'échange K. L'expression de l'énergie devient :

$$\mathbf{E}[\rho] = \mathbf{T}[\rho] + \mathbf{E}_{\mathrm{Ne}}[\rho] + \mathbf{J}[\rho] + \mathbf{K}[\rho]$$
(1.65)

Les expressions analytiques de E_{Ne} et J sont connues, en revanche les termes cinétique T et d'échange K ne peuvent être exprimés analytiquement.

V.3. Théorème de Kohn-Sham

En 1965, Kohn et Sham [33] ont développé un formalisme fondamental pour l'application actuelle de la DFT dans le domaine de la chimie. Ce formalisme constitue un moyen pratique pour appliquer le théorème de Hohenberg-Kohn pour un ensemble d'électrons en interaction, à partir d'un système virtuel d'électrons non interagissant ayant une densité à l'état fondamental identique à la densité véritable du système chimique réel. L'idée fondamentale consiste à décrire l'énergie cinétique T en deux termes. Le premier est exactement calculable pour le système fictif de n électrons indépendants (résolution de l'équation de Schrödinger sur la base d'un déterminant de Slater). Le deuxième terme est un terme correctif traduisant l'interaction électron-électron. Avec l'approche de Kohn-Sham, l'énergie électronique de l'état fondamental d'un système comprenant n électrons et N noyaux s'écrit :

$$E[\rho] = -\frac{1}{2} \sum_{i=1}^{n} \int \psi_{i}(r_{1}) \nabla_{i}^{2} \psi_{i}(r_{1}) dr_{1} - \sum_{A=1}^{N} \int \frac{Z_{A}}{r_{Ai}} \rho(r_{1}) dr_{1} \frac{1}{2} \iint \frac{\rho(r_{1})\rho(r_{2})}{r_{12}} dr_{1} dr_{2} + E^{XC}[\rho]$$
(1.66)

Dans cette équation Ψ_i sont les orbitales de Kohn-Sham, le premier terme représente l'énergie cinétique des électrons non interagissant, le deuxième terme correspond aux interactions noyauélectrons et le troisième terme correspond à la répulsion coulombienne entre les distributions de charge totale en r_1 et r_2 . Enfin, le quatrième terme est appelé terme d'échange-corrélation. Il représente la correction à l'énergie cinétique de l'interaction électrostatique classique des électrons et toutes les corrections non-classiques de l'énergie de répulsion électron-électron. La formulation de ce terme constitue le défi capital de la DFT.

La densité électronique à la position r de l'espace est déterminée à partir des orbitales Kohn-Sham :

$$\rho(\mathbf{r}) = \sum_{i=1}^{n} \left| \psi_i(\mathbf{r}) \right|^2 \tag{1.67}$$

Les orbitales sont issues de la résolution des équations Kohn-Sham (application du principe variationnel à l'énergie électronique) :

$$\hat{\mathbf{h}}_{i} \boldsymbol{\psi}_{i} \left(\mathbf{r}_{i} \right) = \boldsymbol{\varepsilon}_{i} \boldsymbol{\psi}_{i} \left(\mathbf{r}_{i} \right)$$
(1.68)

Dans cette équation \hat{h}_i , représente l'opérateur Kohn-Sham et ε_i sa valeur propre (énergie associée à ψ_i). L'opérateur Kohn-Sham est défini par :

$$\hat{\mathbf{h}}_{i} = -\frac{1}{2} \nabla_{1}^{2} - \sum_{x=1}^{M} \int \frac{Z_{xi}}{r_{xi}} + \int \frac{\rho(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{2} + V_{xc}(\mathbf{r}_{1})$$
(1.69)

V_{xc} est un potentiel dérivé de l'énergie d'échange-corrélation :

$$\mathbf{V}_{\mathrm{xc}}[\boldsymbol{\rho}] = \frac{\partial \mathbf{V}_{\mathrm{xc}}[\boldsymbol{\rho}]}{\partial \boldsymbol{\rho}} \tag{1.70}$$

Un traitement itératif auto-cohérent (SCF) des équations Kohn-Sham permet de déterminer l'énergie du système. A chaque itération, les orbitales Kohn-Sham sont utilisées pour construire la densité électronique et par suite l'expression de l'opérateur Kohn-Sham. Ce processus se répète jusqu'à convergence de la densité électronique et de l'énergie du système.

Dans tout le processus, une forme approximative de la fonctionnelle décrivant la dépendance de $E_{xc}[\rho]$ à la densité des électrons est alors utilisée pour calculer V_{xc} . L'énergie d'échangecorrélation est généralement divisée en deux termes distincts, un terme d'échange $E_x[\rho]$ et un autre de corrélation $E_c[\rho]$. Le terme d'échange est normalement associé aux interactions entre les électrons de même spin, tandis que le terme de corrélation est lié essentiellement à celles entre électrons de spins opposés. Les performances des différentes méthodes DFT résident dans les différentes formulations utilisées pour ces termes.

V.4. Différents types de fonctionnelles

V.4.1. Approximation de la densité locale (LDA)

Les premières mises en œuvre de la méthode Kohn-Sham utilisaient des approximations locales de l'énergie d'échange-corrélation. Ces fonctionnelles sont issues de l'analyse du gaz homogène d'électrons :

$$\mathbf{E}_{\rm xc} = \int \rho(\mathbf{r}) \mathbf{V}_{\rm xc} \left[\rho(\mathbf{r}) \right] d\mathbf{r} \tag{1.71}$$

Il existe deux approches de cette méthode: la version Local Density Approximation (LDA) et la version polarisée de spin Local Spin Density Approximation (LSDA) où les densités

électroniques $\rho_{\alpha}(\mathbf{r})$ et $\rho_{\beta}(\mathbf{r})$ remplacent la densité totale. Les fonctionnelles locales dérivées du gaz d'électrons donnent des résultats corrects car elles sous-estiment l'énergie d'échange et surestiment l'énergie de corrélation. Les fonctionnelles LDA et LSDA sont connues de calculer des longueurs de liaison trop courtes, de surestimer les énergies de liaison et de produire des liaisons hydrogène trop faibles. Cependant, si l'hypothèse du gaz homogène d'électrons peut se justifier dans certains cas, ce n'est pas la méthode de choix pour traiter les systèmes moléculaires.

V.4.2. Approximation du gradient généralisée (GGA)

Les fonctionnelles de ce type sont conseillées pour l'étude des systèmes moléculaires généralement caractérisés par une densité électronique fortement inhomogène selon les 3 dimensions de l'espace. Dans ce cas, les énergies d'échange et de corrélation apparaissent comme des fonctionnelles de la densité $\rho(\mathbf{r})$ mais aussi du gradient de la densité $\nabla \rho(\mathbf{r})$ (équation (1.72)).

$$\mathbf{E}_{\mathrm{XC}}^{\mathrm{GGA}} = \int \varepsilon_{\mathrm{XC}}^{\mathrm{GGA}}(\rho, \nabla \rho) \mathrm{d}\mathbf{r}$$
(1.72)

où ε_{XC}^{GGA} est la densité d'énergie d'échange-corrélation. Le développement des fonctionnelles GGA s'est organisé autour de deux idées motrices :

- la première due à Becke [34-35] repose sur l'introduction de formalismes empiriques dans lesquels certains paramètres sont ajustés sur la base d'un ensemble de valeurs expérimentales déterminées pour des molécules modèles
- la seconde défendue par Perdew [36-37] est de s'assurer du respect de principes et résultats fondamentaux issus de la mécanique quantique (limites correctes pour les densités élevées ou faibles, recouvrer le comportement LSDA quand la densité varie lentement...).

En général, les méthodes GGA [38] représentent une amélioration significative par rapport aux méthodes LSDA: elles ont tendance à mieux décrire les énergies totales, les énergies d'atomisation et les barrières énergétiques de réaction. Toutefois, la précision des méthodes GGA n'est pas toujours suffisante pour obtenir une description correcte de nombreuses propriétés des molécules. Par exemple, bien que donnant usuellement des résultats fiables pour la

description des liaisons hydrogène, covalentes, ioniques, métalliques, elles échouent généralement lors de la description des interactions de van der Waals [39-40]. En outre, les différences observées lors de l'utilisation de différentes fonctionnelles GGA sont souvent aussi grandes que celles observées entre une fonctionnelle GGA et une fonctionnelle LSDA. Pour nos études, nous avons notamment retenu la fonctionnelle PBE.

V.4. 2.1. La fonctionnelle PBE

La fonctionnelle PBE a été développée par Perdew, Burke et Ernzerhof [41]. Elle appartient à la famille des fonctionnelles GGA. Elle a été construite pour satisfaire à des contraintes physiques, à la fois pour la partie échange et pour la partie corrélation afin de limiter le caractère empirique qu'ont certaines fonctionnelles. La partie corrélation est obtenue à partir d'une version simplifiée de la fonctionnelle de corrélation PW91. La fonctionnelle d'échange est :

$$F_{X}^{PBE} = \frac{bx_{\sigma}^{2}}{1+ax_{\sigma}^{2}}$$
 Avec b = 0,00336, a = 0,00449 et $x_{\sigma}^{2} = \frac{|\nabla \rho_{\sigma}|}{\rho_{\sigma}}$

Cette fonctionnelle fournit, pour un grand nombre de systèmes chimiques et pour une large gamme de propriétés, des résultats en moyenne meilleurs que ceux obtenus par des fonctionnelles plus empiriques.

V.4. 3. Fonctionnelles hybrides (H-GGA)

Les fonctionnelles hybrides sont des méthodes qui combinent, à l'énergie d'échange corrélation issue d'une méthode GGA conventionnelle, un certain pourcentage d'échange (parfois appelé exact) de Hartree-Fock. Un certain degré d'empirisme est utilisé pour optimiser le facteur de pondération pour chacune des composantes et dans ce cas les fonctionnelles sont mixtes. Une façon de procéder est d'ajuster ces coefficients à partir de valeurs d'énergies d'atomisation, de potentiels d'ionisation, d'affinités protoniques, et d'autres paramètres expérimentaux d'un ensemble représentatif de molécules [42]. En général les méthodes hybrides représentent une amélioration significative par rapport aux méthodes antérieures pour l'étude de nombreuses propriétés moléculaires. On peut citer comme exemple de fonctionnelle H-GGA (hybrid-GGA functional), La fonctionnelle d'échange corrélation hybride B3LYP.

V.4. 3.1. La fonctionnelle B3LYP

La fonctionnelle B3LYP signifie Becke- 3 paramètres – Lee Yang Parr. Elle a été introduite par l'équipe de Becke en 1993 [43-44]. Elle appartient à la famille des fonctionnelles GGA hybrides

(H-GGA). La particularité de cette fonctionnelle est de présenter une combinaison linéaire entre des fonctionnelles d'échange-corrélation GGA et de l'échange Hartree-Fock. Cette fonctionnelle utilise 20 % d'échange Hartree-Fock et 80% de corrélation. L'énergie d'échange-corrélation de la fonctionnelle B3LYP s'écrit donc sous la forme :

$$E_{\rm XC}^{\rm B3LYP} = E_{\rm XC}^{\rm LDA} + a_0 \left(E_{\rm X}^{\rm HF} - E_{\rm X}^{\rm LDA} \right) + a_{\rm X} \left(E_{\rm X}^{\rm GGA} - E_{\rm X}^{\rm LDA} \right) + a_{\rm C} \left(E_{\rm C}^{\rm GGA} - E_{\rm C}^{\rm LDA} \right)$$
(1.73)

- Les indices X et C désignent l'énergie d'échange et de corrélation respectivement.
- LDA et GGA désignent les termes énergétiques calculées par la DFT.
- HF désigne la contribution calculée par la théorie HF.

avec les valeurs optimisées suivantes pour les coefficients : $a_0 = 0,2$; $a_x=0,72$ et $a_c=0,81$ [45] [46].

Cette fonctionnelle s'est révélée jusqu'à présent relativement efficace pour traiter la « plupart » des systèmes moléculaires, cette robustesse expliquant la très grande popularité de la méthode (plus de 80 % des calculs de DFT de par le monde utilisent B3LYP).

Néanmoins, cette méthode présente quelques limitations telle que :

- la sous-estimation des hauteurs de barrières énergétiques [47].
- L'absence de prise en compte des interactions non-covalentes : la fonctionnelle B3LYP est incapable de décrire des liaisons de van der Waals pour des composés liés par des interactions de portée moyenne.

Malgré ces problèmes, cette fonctionnelle reste la base de calculs pour la plupart des composés chimiques et l'outil le plus utilisé en modélisation moléculaire.

V.4. 3.2. La fonctionnelle PBE0

La fonctionnelle PBE0 [48] a été proposé par Adamo et Baronne. Elle appartient à la famille des fonctionnelles dites GGA hybrides et construite à partir des fonctionnelles d'échange et de corrélation GGA de Perdew, Burke et Ernzerhof [41] qui ne contient aucun paramètre ajustable et a été testée sur un jeu de molécules de référence ainsi que pour des molécules faisant intervenir des métaux. Elle respecte un grand nombre de contraintes physiques et fournit ainsi de bons résultats au niveau des structures moléculaires et au niveau des propriétés spectroscopiques. Dans la fonctionnelle PBE0, l'échange et la corrélation DFT sont traités avec les fonctionnelles

GGA PBE. La fonctionnelle PBE0 comprend 25% d'échange Hartree-Fock et 75% de corrélation. L'énergie d'échange-corrélation de la fonctionnelle PBE0 s'écrit donc sous la forme :

$$E_{\rm XC}^{\rm PBE0} = \frac{1}{4} E_{\rm X}^{\rm HF} + \frac{3}{4} E_{\rm X}^{\rm PBE} + E_{\rm C}^{\rm PBE}$$
(1.74)

- E_X^{HF} est la partie échange Hartree-Fock.
- E_X^{PBE} est la partie échange de la fonctionnelle PBE développée par Perdrew, Burke et Ernzerhof.
- E^{PBE}_C est la partie corrélation de la fonctionnelle PBE développée par Perdrew, Burke et Ernzerhof.

$$E_{x}^{PBE} = \frac{bx^{2}}{1+ax^{2}}$$
(1.75)

avec a=0,00449 et b=0,00336

$$\mathbf{x} = \frac{|\nabla \rho|}{\rho^{\frac{4}{3}}} \tag{1.76}$$

V.4. 4. Fonctionnelles méta (M-GGA et HM-GGA)

Il existe encore différentes propriétés pour lesquelles les fonctionnelles DFT précédentes, même les plus sophistiquées, sont incapables de donner des résultats vraiment fiables. Ce sont notamment (i) les interactions gouvernées par les forces de dispersion (ii) les transferts de charge au sein des complexes (iii) les hauteurs de barrière d'énergie de réaction. Afin de corriger, en partie du moins, certaines déficiences, une quantité de fonctionnelles DFT basées sur l'approche GGA ont été développées en incluant des informations semi locales au-delà du gradient de premier ordre de la densité. Ces fonctionnelles, appelées méta- GGA (M-GGA), dépendent de manière explicite de gradients d'ordre élevé de la densité et/ou de la densité de l'énergie cinétique, ce qui implique la dérivation des orbitales Kohn-Sham occupées. Ce traitement mathématique entraîne en particulier différentes difficultés en termes de stabilité numérique. Sont également activement développées des fonctionnelles hybrides méta-GGA (HM-GGA) en se basant sur un concept similaire à celui des M-GGA. Ces nouvelles fonctionnelles constituent

une amélioration importante dans la détermination des énergies. En particulier, la fonctionnelle que nous avons également retenue pour nos études, M05-2X [49].

IV.4. 4.1. La fonctionnelle M05-2X

La fonctionnelle M05-2X a été récemment développée par Truhlar et ces collaborateurs [49]. Elle appartient à la famille des fonctionnelle meta-GGA hybrides. Elle contient 54% d'échange Hartree-Fock et 56% de corrélation. Cette fonctionnelle est bien adaptée pour la description des interactions non-covalentes (en particulier les interactions faibles et liaisons hydrogènes). Elle est également bien adaptée à l'étude de la cinétique et de la thermochimie des réactions. Toutefois, l'application de ce type de méthode paramétrée doit toujours être validée a posteriori.

V.5. Performances de la DFT

Théorie de la fonctionnelle de la densité ne permet pas d'étudier des états multiréférentiels. Cependant, elle peut être utilisée pour étudier la structure géométrique des systèmes qui sont généralement de grande taille et où le calcul ab initio est difficilement réalisable vu le nombre d'orbitales à prendre en compte.

V.6. Méthode DFT dépendante du temps (TD-DFT)

A l'origine, la DFT a été développée dans le cadre de la théorie quantique non-relativiste (équation de Schrödinger indépendante du temps) et dans le cadre de l'approximation de Born-Oppenheimer. La théorie fut par la suite étendue au domaine de la mécanique quantique dépendante du temps (TD-DFT pour time- Dependent Densité Fonctional Theory).

La TD-DFT [50-51] est une théorie de la mécanique quantique appliquée en physique et en chimie pour étudier les propriétés et la dynamique des systèmes à plusieurs corps dans la présence des potentiels dépendant du temps, tels que les champs électriques ou magnétiques. Les calculs basés sur la méthode TD-DFT permettent d'avoir accès aux spectres UV–Visible et à différentes paramètres optiques (longueur d'onde maximale λ_{max} d'adsorption, valeur approximative du gap entre les orbitales HOMO et LUMO (ΔE_{H-L}).

V.6. La théorie de la fonctionnelle de la densité-D3

L'idée qui consiste à traiter séparément les parties courte et longue portée de l'interaction électronique dans la théorie de la fonctionnelle de la densité, par la variable densité d'une part, et par fonction d'onde d'autre part conduit naturellement à la construction d'une fonction hybride d'un nouveau type. Ce dernière est la combinaison d'une énergie d'échange de longue portée et d'une fonctionnelle d'échange-corrélation de courte portée appropriée. L'ajout, dans une approche perturbative, d'un terme tenant compte des corrélations dynamiques de longue portée, se présente comme une solution alternative au problème fondamental de l'incorporation des forces de dispersion dans la méthode de la fonctionnelle de la densité, DFT.

En raison de la contribution énergétique que représentent les forces de dispersion de London, des méthodes ont été développées récemment par Stefan Grimme et ses collaborateurs [52-54] pour incorporer les forces de dispersions dans la DFT classique : DFT-D, DFT-D2 et DFT-D3. Ces méthodes n'exploitent pas de nouvelles fonctionnelles mais elles constituent un mélange de fonctionnelles classiques et d'un terme d'énergie apportée par les forces de London. Par exemple les fonctionnelles M05-2X-D3 représente un calcul de la fonctionnelle habituelle M05-2X ajouté d'un terme de correction D3 d'énergie de dispersion. Le terme de correction d'énergie de dispersion (D3) est une fonction relativement simple de distances interatomiques. Ce terme contient des paramètres ajustables montés sur les énergies d'interaction et conformationnelles calculées en utilisant la méthode CCSD(T) [coupled cluster singles doubles with perturbative triples]. Le montage est fait pour une fonctionnelle donnée. Dans DFT-D et DFT-D2, les corrections énergétiques ne considèrent que des paires d'atomes et dans DFT-D3, elles considèrent les triplets d'atomes pour tenir compte des effets à trois corps.

Puisque la correction de dispersion est un terme additionnel, elle ne modifie pas directement la fonction d'onde ou toute propriété moléculaire. Toutefois, les optimisations de géométrie avec correction de dispersion mèneront à une géométrie différente de celle optimisée sans correction.

Les corrections de dispersion peuvent ainsi conduire à des améliorations significatives dans la précision et le coût de calcul associé à ces corrections est négligeable.

L'énergie ainsi calculée dans la DFT-D3 est donnée par :

$$\mathbf{E}_{\text{DFT-D3}} = \mathbf{E}_{\text{KS-DFT}} - \mathbf{E}_{\text{disp}} \tag{1.77}$$

 E_{KS-DFT} est l'énergie Kohn-Sham usuelle obtenue par le calcul de la fonctionnelle et E_{disp} est la correction de la dispersion représentée par :

$$E_{disp} = -S_6 \sum_{i=1}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_6^{ij}}{R_6^{ij}} f_{dmp}(R_{ij})$$
(1.78)

Avec N_{at} est le nombre d'atomes présents dans le système, C_6^{ij} est le coefficient de dispersion pour les paires d'atomes ij, S_6 est le facteur global qui ne dépend que de la fonctionnelle choisie et R_{ij} est la distance interatomique.

Afin d'approcher les singularités pour les petites valeurs de R, une fonction atténuée f_{dmp} doit être utilisée. Elle se décline sous la forme :

$$f_{dmp}(R_{ij}) = \frac{1}{1 + e^{-d(R_{ij}/R_r - 1)}}$$
(1.79)

Où R_r est la somme des rayons atomiques de Van der Waals. Les différentes tables ainsi que les coefficients optimisés pour plusieurs systèmes ont été publiés par Stefan Grimme [55].

Il existe d'autres fonctionnelles plus récentes telles que vdW-DF développée par Langreth et al. [56] ou VV10 décrite par Oleg Vydrov et Troy Van Voorhis [57]. Cette dernière équipe a effectué des tests comparatifs [58] de ces fonctionnelles afin de déterminer les plus adaptées aux différents systèmes incluant des liaisons de type Van der Waals.

En chimie organométallique, il a été montré que la prise en compte de la correction de dispersion de Grimme D3 pouvait être nécessaire afin d'estimer correctement les énergies d'association ou de dissociation de ligands sur un métal [59].

VI. Bases d'orbitales atomiques

Dans un système moléculaire, l'orbitale moléculaire (permettant de décrire un électron) est représentée par une combinaison linéaire d'orbitales atomiques (approximation LCAO pour Linear Combination of Atomic Orbital) [60]. Le choix d'une base d'orbitales atomiques est très important pour les calculs électroniques.

Il doit prendre en compte à la fois la nature et l'étendue des fonctions analytiques utilisées pour représenter les orbitales atomiques. Il y a deux types de fonctions pour exprimer les orbitales atomiques : les fonctions de base de type Salter (STO) (en anglais Slater Type Orbitals) [61] et les fonctions gaussiennes (GTO) (en anglais Gaussian Type Orbitals) [62].

Une fonction de Slater est représentée par l'expression générale suivante :

$$\chi_{n,l,m,\zeta}(\mathbf{r},\theta,\phi) = \mathbf{N}\mathbf{Y}_{l,m}(\theta,\phi)\mathbf{r}^{n-1}\mathbf{e}^{-\zeta\mathbf{r}}$$
(1.80)

avec n, l, m sont respectivement les nombres quantiques principal, orbitalaire et magnétique, N est un facteur de normalisation, r est la distance de l'électron au noyau, $Y_{l,m}$ est une harmonique sphérique et ζ est l'exposant de la fonction Slater.

Les fonctions de Slater (STO) représentent bien la structure atomique, mais leur inconvénient est que le calcul des recouvrements (intégrales à deux centres) et des intégrales d'interaction électronique (intégrales à plusieurs centres) entre ces fonctions est très complexe. D'où on introduit les fonctions Gaussiennes (GTO) qui sont plus simples à utiliser pour le calcul électronique. La forme générale de ce type de fonction est :

$$g_{n,l,m,\zeta}(\mathbf{r},\theta,\phi) = \mathbf{N}\mathbf{Y}_{l,m}(\theta,\phi)\mathbf{r}^{n-1}\mathbf{e}^{-\alpha r^2}$$
(1.81)

où N est un facteur de normalisation, $Y_{l,m}(\theta, \phi)$ une harmonique sphérique et α est l'exposant de GTO.

Quant aux fonctions GTO, elles ont l'avantage de rendre les intégrales biélectroniques plus simples à calculer analytiquement grâce à la dépendance de leur exponentiel en r^2 . Elles ont par contre le désavantage d'être moins bien adaptées à la description de la forme d'une orbitale atomique. Il faut donc plusieurs fonctions gaussiennes pour obtenir la même précision qu'avec une seule fonction de Slater, on construit alors des combinaisons linéaires ou contractions de plusieurs fonctions gaussiennes (appelées également primitives):

$$\varphi_{i} = \sum_{j=1}^{m} c_{ij} \chi_{j}$$
(1.82)

Avec ϕ_i fonction contractée, C_{ij} sont les coefficients de contraction, χ_j représentent les fonctions gaussiennes de base et m le nombre de gaussiennes primitives utilisées. Le choix le plus simple consiste à prendre une contraction pour décrire chaque orbitale atomique, on construit alors des «bases minimales» ou «simple zêta». Cependant, ces bases ont beaucoup de

défauts comme leur incapacité à décrire convenablement l'anisotropie des distributions de charges. On leur préférera les bases dites double ou triple zêta : on utilise respectivement deux ou trois contractions pour chaque orbitale atomique. Cela permet à la fonction ϕ_i de s'adapter au mieux en se contractant ou en se gonflant du fait de la meilleure flexibilité de la partie radiale de la base. Le groupe de Pople [63] a développé à partir de 1980 une série de bases dite « split valence » notée symboliquement n-ijG (ou n-ijkG). Ces bases donnent naturellement plus de poids aux orbitales de valence qu'aux orbitales de coeur dans les calculs des propriétés électroniques. Selon la notation n-ijG (ou n-ijkG), chaque orbitale de coeur est représentée par une contraction de *n* primitives et chaque orbitale de valence par deux (ou trois) contractions de i et j (et k) primitives.

Pour une plus grande flexibilité, ces bases peuvent être complétées avec des fonctions de polarisation (grandes valeurs de l) ou des fonctions diffuses (exposant α particulièrement petit). Les fonctions de polarisation conduisent à une meilleure répartition des charges et sont en particulier nécessaires pour le traitement de la corrélation. Quant aux fonctions diffuses, elles permettent de mieux décrire les parties d'espaces des orbitales éloignées des noyaux sont nécessaires pour l'étude des liaisons faibles, liaison hydrogène, liaison Van der Waals (interactions à longue portée), des espèces anioniques, des états excités (densité charge étendue) et des propriétés liées aux charges comme le moment dipolaire et la polarisabilité (densité charge étendue). L'ajout de fonctions de polarisation peut se faire uniquement sur les atomes lourds (notation n-ijG* ou nijkG*), ou sur tous les atomes (n-ijG** ou n-ijkG**). Des fonctions diffuses peuvent être également ajoutées uniquement sur les atomes lourds, la base est notée n-ij+G (ou n-ijk++G), ou sur tous les atomes, la base s'écrit alors n-ij++G (ou n-ijk++G).

Les bases « correlation consistent » introduites par Dunning [64] sont également des bases « split valence » qui ont pour atout d'avoir été optimisées par des calculs faisant intervenir la corrélation électronique. Ces bases sont notées cc-pVXZ où le X indique si la base est de valence double (D), triple (T), quadruple (Q) zêta Le caractère p indique que ces bases de fonctions sont par nature polarisées. Ainsi, à la base considérée, nous rajoutons le préfixe "aug" pour indiquer l'ajout de ces orbitales diffuses.

VI.1. Bases explicitement corrélées

Des progrès significatifs ont été réalisés au cours des dernières années annonçant le développement de nouveaux ensembles de bases allant du double au quadruple zêta pour

utilisation avec les méthodes explicitement corrélées (voir ci-après). Ces bases sont notées ccpVXZ-F12 (X=D, T, Q) [65]. Elles ont été élaborées en utilisant une méthodologie de corrélation consistante qui présente une convergence régulière vers la limite CBS dans les calculs MP2-F12 pour plusieurs petites molécules contenant des éléments de la première et la deuxième colonne du tableau périodique. Par rapport aux bases standard aug-cc-pVXZ et aug-cc-pV(X+d)Z, qui sont de mêmes taille et composition, les nouveaux ensembles de bases F12 permettent d'améliorer considérablement l'énergie de corrélation (voir figure 1.2). Ces ensembles de bases de corrélation ont été optimisés pour décrire avec précision les effets de corrélation des orbitales "coeur-valence" en se basant sur les méthodes explicitement corrélées F12.

Figure 1.2 : Illustration de l'amélioration de l'énergie de corrélation de l'atome Be par l'utilisation des bases explicitement corrélées [66].

Il existe bien entendu dans cette catégorie des bases de fonctions prévues pour être utilisées conjointement avec des ECP (Effective core potential or Pseudo-potential). Pour le zinc, nous avons notamment sélectionné les bases aug-cc-pVTZ-PP [67], générées avec le pseudo-potentiel ECP10, et qui permettent de décrire les 20 électrons externes traités explicitement dans le calcul quantique.

VI.3. Pseudo-potentiels atomiques

Les électrons de valence déterminent la plupart des propriétés chimiques des systèmes moléculaires. En effet, les électrons du coeur ne participent ni à la formation de la liaison

moléculaire, ni aux processus d'interactions à basse énergie, ils constituent un « coeur gelé » [68]. Donc pour réduire le nombre d'intégrales à calculer, il est possible de réaliser une « séparation » des électrons de valence (actifs) des électrons de coeur (spectateurs) : ces derniers sont remplacés par un opérateur « pseudo- potentiel» (Effective core potential or Pseudopotential) ajouté à l'hamiltonien. Il est généralement optimisé pour reproduire au mieux un calcul « tous électrons » et permet également de prendre en compte certains effets, relativistes ou d'environnement.

L'idée essentielle du pseudo-potentiel est de remplacer le vrai potentiel électrostatique du noyau qui est écranté par les électrons situés au voisinage des noyaux par un potentiel effectif appelé pseudo-potentiel.

Les électrons du cœur et les électrons de valence ne sont pas traités de la même façon dans cette théorie. Les orbitales de cœur ne participent pas à la formation de liaisons chimiques et à cause de leurs fortes oscillations à proximité de noyaux, elles sont difficiles à représenter avec une base d'onde plane. Par contre, les orbitales de valence sont peu localisées et s'étendent loin du noyaux, elles déterminent les propriétés physico-chimiques du système.

Dans la méthode des pseudo-potentiels, l'interaction électrons de valence-coeur est représentée par un potentiel effectif V_{PP} (i). L'hamiltonien des électrons de valence est donné par :

$$\mathbf{H}_{val} = -\sum_{i} \frac{\Delta_{i}}{2} + \frac{1}{2} \sum_{ij} \frac{1}{\mathbf{r}_{ij}} + \sum_{i} \mathbf{V}_{PP}(i)$$
(1.83)

avec i et j représentent les électrons de valence.

L'un des avantages indéniables des pseudo-potentiel est la réduction du nombre de fonctions de base ou, à nombre de fonctions fixé, la possibilité d'étendre les bases de valence. En plus, le nombre d'intégrales biélectroniques est considérablement réduit par la diminution du nombre de fonctions de base. Ainsi, le nombre d'électrons à traiter explicitement est plus faible que le nombre réel d'électrons et le traitement des gros systèmes coûteux en temps de calcul devient accessible.

VII. Etude théorique de l'interaction d'un complexe moléculaire

VII.1. Energie d'interaction

L'énergie d'interaction entre deux fragments A et B peut être calculée en se basant sur l'approche supermoléculaire. Elle est exprimée par la différence entre l'énergie de la supermolécule correspondant au complexe formé par l'assemblage des deux fragments du système A-B et de celle des fragments A et B pris séparément et isolés.

$$\mathbf{E} = \mathbf{E}_{\mathbf{A}-\mathbf{B}} - \mathbf{E}_{\mathbf{A}} - \mathbf{E}_{\mathbf{B}} \tag{1.84}$$

avec E_{A-B} est l'énergie totale du système AB, E_A est l'énergie du fragment A et E_B est l'énergie du fragment B.

VII.2. Erreur de Superposition de Base (BSSE)

Dans les calculs de structure électronique moléculaire, dans lesquels une base de taille finie est utilisée, on rencontre souvent un problème provoquant un raccourcissement artificiel des distances intermoléculaires et un abaissement artificiel de l'interaction moléculaire. De tels problèmes sont attribués à l'erreur de superposition de base (BSSE) [69-71]. Cette erreur surgit quand deux fragments chimiques A et B (qui peuvent être des atomes ou des molécules polyatomiques) se rapprochent pour former la molécule AB. Le cortège électronique du fragment A présent dans le système AB va donc être décrit non seulement par les fonctions de base de A mais aussi par les fonctions de base de B. Les systèmes isolés seront quant à eux uniquement tributaires de leurs propres bases.

Par conséquent, l'énergie de formation de la molécule AB à partir des fragments A et B diminue pour deux raisons : la stabilisation du système due à l'interaction des deux fragments et l'amélioration de la description atomique individuelle. Ce qui provoque une surestimation de l'énergie d'interaction. L'effet peut être significatif dans des systèmes où l'énergie d'interaction est faible, telles que les interactions de Van der Waals. Cette erreur a été plus récemment discutée dans les études des interactions intramoléculaires [72-73]. Pour remédier à ce problème, on se base sur la correction de Boys et Bernardi dite de contrepoids [74], où on doit calculer les énergies des fragments et du complexe dans la même base (base totale du complexe).

Pour deux fragments A et B l'énergie d'interaction non corrigée est calculée comme suit :

$$\Delta \mathbf{E} = \mathbf{E}_{AB} (\mathbf{AB}) - \mathbf{E}_{A} (\mathbf{A}) - \mathbf{E}_{B} (\mathbf{B})$$
(1.85)

avec :

- E_{AB} est l'énergie totale du système calculée dans la base totale AB.
- E_A est l'énergie totale du fragment A calculée dans sa propre base A
- E_B est l'énergie totale du fragment B calculée dans sa propre base B

L'énergie d'interaction corrigée est définie par :

$$\Delta E_{\rm CP} = E_{\rm AB} (AB) - E_{\rm A} (AB) - E_{\rm B} (AB)$$
(1.86)

Où :

- E_A (AB) est l'énergie totale du fragment A calculée dans la base totale du système AB.
- E_B (AB) est l'énergie totale du fragment B calculée dans la base totale du système AB.

En se basant sur les équations 1.85 et 1.86, on peut définir l'erreur de superposition de base comme la différence suivante :

$$BSSE = \Delta E - \Delta E_{CP} = E_{AB}(AB) - E_A(A) + E_A(AB) + E_B(AB) - E_B(B)$$
(1.87)

Cette erreur est d'autant moins importante que les fragments A et B sont éloignés l'un de l'autre. Dans le cas de très grandes bases, on peut avoir des problèmes de stabilité numérique.

En utilisant l'équation 1.87, l'énergie potentielle corrigée du complexe AB est :

$$E_{CP} = E_{AB}(AB) - BSSE = E_{AB}(AB) - E_{A}(A) - E_{B}(AB) - E_{B}(AB) + E_{B}(B)$$
(1.88)

VIII. Étude de la nature de la liaison chimique

L'interaction entre un métal de transition et un ligand reste encore mal connue car la connaissance de la liaison se heurte souvent à l'insuffisance des modèles théoriques de la liaison chimique. La difficulté de modéliser la liaison métal-ligand est intrinsèquement liée à la forte polarisabilité des métaux de transition qui possèdent une structure électronique à couche d ouverte. La détermination de la nature de cette dernière est nécessaire pour avoir une étude complète du système. Dans le cadre de ma thèse, nous avons utilisé une technique pour décrire et étudier la nature de la liaison chimique : l'analyse orbitalaire (NBO : pour Natural Bond Orbital) [75-76].

VIII.1. L'analyse NBO

L'objectif de la méthode NBO est de proposer un découpage de la densité électronique d'un système moléculaire pour décrire la structure électronique de la molécule à l'aide du formalisme simple proposé par Lewis [77]. Ainsi la densité est décrite sur et entre les atomes avec des doublets d'électrons de cœur (CR), des doublets non-liants de la couche de valence (LP), des doublets de liaison (BD) résultants de la mise en commun par deux atomes de deux électrons dans des orbitales hybrides. En effet, la diagonalisation de la matrice densité d'ordre un conduit à l'obtention des orbitales naturelles qui sont les fonctions propres de cette matrice. Les valeurs propres représentent alors les occupations fractionnaires des orbitales naturelles. Cette approche permet de calculer correctement les diverses propriétés monoélectroniques.

L'analyse NBO a été proposée par Weinhold et al. [77] dont la procédure se déroule en trois étapes. La première étape consiste à diagonaliser la matrice densité d'ordre un en blocs monocentriques atomiques sans diagonaliser la matrice entièrement (orbitales atomiques naturelles NAO). La seconde étape du processus NBO (Natural Bond Orbitals) consiste à orthogonaliser les orbitales NAO. La dernière étape est une recherche d'orbitales naturelles hybrides, processus qui diagonalise des blocs bicentriques ou tricentriques d'orbitales naturelles orthogonalisees. Cette analyse est cohérente en général avec les structures de Lewis, car la troisième étape commence par sélectionner les blocs monocentriques avec une occupation ≥ 90 . Ce qui correspond aux orbitales monocentriques de cœur ou de valence (paires libres et liaisons). Les autres orbitales sont ensuite orthogonalisées par blocs bicentriques.

Dans l'espace NBO, chaque orbitale naturelle de liaison (doublement occupée: la structure naturelle de Lewis) est associée à une orbitale "antibonding" (non- Lewis) :

$$\sigma_{AB} = c_A h_A + c_B h_B \tag{1.89}$$

$$\sigma_{AB} = c_A h_A - c_B h_B \tag{1.90}$$

Où h_A et h_B sont les orbitales naturelles hybrides (NHO), combinaisons linéaires des orbitales atomiques naturelles (NAO). C_A et C_B sont des coefficients de polarisation.

Figure 1.3 : L'interaction stabilisante biélectronique entre une orbitale occupée (donneur) et une orbitale vacante (accepteur).

où E_2 est l'énergie de stabilisation associée à la délocalisation i \rightarrow j, ε_i est l'énergie de l'orbitale occupée i et ε_i est l'énergie de l'orbitale vacante j.

Une analyse perturbative des interactions "donneur-accepteur", appelée "analyse perturbative au second-ordre" est effectuée entre les orbitales occupées et vacantes. Elle mesure le transfert d'énergie engendré par la combinaison d'une orbitale occupée i d'énergie ε_i et d'une orbitale vacante j d'énergie ε_j en prenant en compte l'élément hors-diagonal de la matrice de Fock F (i; j) ainsi que l'occupation q_i de l'orbitale spatiale ϕ_i :

$$\mathbf{E}_{2} = \Delta \mathbf{E}_{ij} = \mathbf{q}_{i} \frac{\left\langle \mathbf{\phi}_{i} \left| \hat{\mathbf{F}} \right| \mathbf{\phi}_{j} \right\rangle^{2}}{\boldsymbol{\varepsilon}_{i} - \boldsymbol{\varepsilon}_{j}}$$
(1.91)

où E_2 est l'énergie de stabilisation donneur-accepteur, ε_i est l'énergie de l'orbitale occupée i, ε_j est l'énergie de l'orbitale vacante j et q_i est le nombre d'électrons occupant l'orbitale spatiale ϕ_i .

X .Analyse de Population de Mulliken

X.1. Charge atomiques

La première méthode proposée pour évaluer la charge atomique est l'approche Mulliken [78] c'est la plus simple et elle reste très fréquemment utilisée. L'analyse de population de Mulliken, est un moyen de décrire la distribution électronique dans une molécule.

La charge de Mulliken portée par l'atome A est définie comme la différence entre la population électronique de l'atome isolé (N_A) et celle de l'atome au sein de la molécule (P_A).

Pour construire un modèle simple pour calculer les charges que nous voulons attribuer à chaque atome de la molécule, prenons le cas d'une orbitale moléculaire ϕ formée à partir de deux orbitales atomiques appartenant à des centres atomiques différents $\chi_p \in A$ et $\chi_q \in B$:

$$\varphi = c_p \chi_p + c_q \chi_q \tag{1.92}$$

La densité électronique $\int \phi^* \phi \ d\tau$ correspondant à cette orbitale moléculaire est constituée de 3 termes :

$$c_p^2 + c_q^2 + 2c_p c_q S_{pq} = 1$$
(1.93)

Le terme c_p^2 représente la probabilité de trouver un électron sur l'atome A, c_q^2 de le trouver localisé sur l'atome B. Le terme de recouvrement $2c_pc_qs_{pq}$ représente la probabilité de délocalisation entre l'atome A et B.

Mulliken propose de partager la population $2c_pc_qS_{pq}$ de façon équitable entre les deux centres. Dans ce cas, la fraction d'électrons porté par chaque orbitale atomique est donnée par :

$$P_{p} = c_{p}^{2} + 2c_{p}c_{q}S_{pq}$$
(1.94)

$$\mathbf{P}_{\mathbf{q}} = \mathbf{c}_{\mathbf{q}}^2 + 2\mathbf{c}_{\mathbf{p}}\mathbf{c}_{\mathbf{q}}\mathbf{S}_{\mathbf{p}\mathbf{q}} \tag{1.95}$$

où P_p et P_q sont appelées populations brutes des orbitales χ_p et $\chi_{q.}$

Dans le cas des orbitales moléculaires combinaisons linéaires de plusieurs orbitales atomiques, $\phi_i = \sum_{p}^{m} c_{iA} S_{AB}, \text{ la généralisation donne :}$

$$\mathbf{P}_{ip} = \sum_{i}^{occ} n_i \left(c_{ip}^2 + \sum_{q(\neq p)} c_{ip} c_{iq} S_{pq} \right)$$
(1.96)

avec n_i étant le taux de l'orbitale moléculaire ϕ_i . En terme des éléments de matrice densité, cette population s'écrit :

$$\mathbf{P}_{p} = \mathbf{D}_{pp} + \sum_{q(\neq p)} \mathbf{D}_{pq} \mathbf{S}_{pq}$$
(1.97)

avec D_{pq} est la population électronique nette porté par l'orbitale atomique et le terme $D_{pq}S_{pq}$ représente la population électronique partagé entre χ_p et χ_q .

La somme de toutes les populations brutes doit satisfaire la condition de conservation du nombre d'électron total N de la molécule :

$$\sum_{p}^{m} P_{p} = N \tag{1.98}$$

La somme de toutes les populations orbitalaires brutes centrées sur un atome A donne la population atomique brute.

$$\mathbf{P}_{\mathbf{A}} = \sum_{\mathbf{p} \in \mathbf{A}} \mathbf{P}_{\mathbf{p}} \tag{1.99}$$

La population P_A définit la proportion d'électrons portée par le centre atomique A. Par exemple la charge atomique partielle (ou charge nette) portée par un centre atomique A est donnée par :

$$\mathbf{Q}_{\mathbf{A}} = \mathbf{N}_{\mathbf{A}} - \mathbf{P}_{\mathbf{A}} \tag{1.100}$$

où N_A est le nombre d'électrons avec lequel participe l'atome A.

Par définition, les charges de Mulliken dépendent naturellement de la base d'orbitale atomique utilisée, les bases les plus étendues donnant parfois les valeurs les plus irréalistes. Pourtant elle reste très utilisée du fait de la simplicité de l'analyse qui la rend disponible dans tous les logiciels (e.g. Gaussian 09)

VII. Programmes de calculs utilisés

VII.1. MOLPRO

MOLPRO est un ensemble de programmes ab initio effectuant des calculs de structure électronique, conçus et mis en ligne par H.-J. Werner et P. J. Knowles [31].

L'accent est mis sur des calculs de grande précision: que ce soit pour des systèmes multiconfigurationels, ou pour le traitement de la corrélation électronique à l'aide de méthodes telles que les clusters couplés (ou CCSD). Récemment développées, les méthodes explicitement corrélées (CCSD – F12) rapportent des résultats de meilleure précision avec des ensembles de base de petite taille, réduisant ainsi l'effort computationnel pour les calculs de cette qualité par deux ordres de grandeur.

Grâce à l'utilisation de méthodes de corrélation électroniques locales, qui réduisent significativement l'augmentation du coût avec la taille moléculaire, des calculs ab initio peuvent être exécutés pour des molécules beaucoup plus grandes qu'avec la plupart des autres programmes. Ces méthodes ont récemment été augmentées par des termes explicitement corrélés, qui réduisent fortement d'une part les erreurs de troncature d'ensemble de base, et d'autre part, les erreurs des approximations locales.

VII.2.GAUSSIAN

GAUSSIAN [79] est un logiciel de chimie quantique, créé à l'origine par John Pople et sorti en 1970 (Gaussian 70). Il a été depuis plusieurs fois mis à jour. Le nom provient de l'utilisation par Pople d'orbitales gaussiennes pour accélérer le calcul par rapport aux logiciels utilisant des orbitales de Slater. Ceci a facilité le développement de la chimie quantique.

Gaussian 09 est la dernière version de la série. Il fournit des capacités de pointe pour la modélisation de structure électronique.

Ce programme peut effectuer des calculs selon plusieurs méthodes, comme Hartree-Fock, les méthodes post-Hartree-Fock (Møller-Plesset, coupled-clusters...), ou les fonctionnelles de la densité DFT (les fonctionnelles d'échange comme PBE, PBE0, celles de corrélation comme LYP ou les fonctionnelles hybrides comme B3LYP).

Gaussian est devenu rapidement un programme de structure électronique très populaire et largement utilisé.

VIII. Conclusion

Ce chapitre a permis de présenter les méthodes de calculs électroniques utilisées ainsi que les approximations théoriques sur lesquelles elles reposent. Ces méthodes sont implémentées dans les codes de calcul utilisés, MOLPRO [31] et GAUSSIAN [79].Chaque système peut être étudié par plusieurs méthodes, il faut donc choisir laquelle est la plus adaptée au problème traité. Ce choix dépendra de la nature du système (mono-configurationnel ou multiconfigurationnel), du type de calcul (optimisation de la géométrie...) ou de la limitation des programmes (temps de calcul trop long, limitation des machines...).

Pour les calculs d'optimisation de la géométrie d'un système, les méthodes post-Hartree-Fock et les nouvelles méthodes explicitement corrélées (en particulier les méthodes (R) MP2-F12 et (R)

CCSD(T)-F12) avec une base suffisamment diffuse ont été privilégiées, ces méthodes alliant une bonne précision avec un temps de calcul raisonnable. Le choix d'une base diffuse permet de mieux décrire les interactions de type van der Waals, qui sont au cœur de cette étude.

Bibliographie Chapitre I :

- [13] E. Schrödinger, Ann. Phys. 79, 361 (1926).
- [14] M. Born et R. Oppenheimer, Ann. Phys. 84, 489 (1927).
- [15] D. R. Hartree, Z; Physik. 61, 126 (1928).
- [16] V. A. Fock, Z. Phys. 15, 126 (1930).
- [17] J. C. Slater, Phys. Rev. 35, 210 (1930).
- [18] F. Jensen, Introduction to Computationel Chemistry, Wiley, England (1999).
- [19] C. Moller et M. S. Plesset, Phys. Rev. 46, 618 (1934).
- [20] J. W. S. Rayleigh, Theory of Sound, 2nd édition Vol. I, Macmillan, Londres (1894).
- [21] E. Schrödinger, Annalen der Physik, Vierte Folge, Band. 80, 437 (1926).
- [22] J. CĭžeK, J.Chem. Phy. 45, 4256 (1966).
- [23] Knowles, P. J ; Werner, H. J, Chem. Phys. Lett. 145, 514 (1980).
- [24] Knowles, P. J; Werner, H. J, J. Chem. Phys. 89, 5803 (1980).
- [25] Davidson, E. R; Silver, D. W, Chem. Phys. Lett. 52, 403 (1977).
- [26] Hampel,C; Peterson, K. A; Werner, H. J, Chem. Phys. Lett. 41, 190, (1992).
- [27] Jensen, F;"Introduction to computational chemistry "Wiley, England. (1999).
- [28] Adler, T. B; Kinizia, G; Werner, H. J, J. Chem. Phys. 127, 221106 (2007).
- [29] Kinizia, G; Adler, T. B; Werner, H. J, J. Chem. Phys. 130, 054104 (2009).
- [30] W.Klopper, Mol.Phys. 99, 481 (2001).

[31] MOLPRO, version 2012.1, un ensemble de programmes ab initio, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, voir http://www.molpro.net.

- [32] P. Hohenberg et W. Kohn, Phys. Rev. 136, B864 (1964).
- [33] W. Kohn et L.J. Sham, Phys. Rev. 140, A1133 (1965).
- [34] A. D. Becke, J. Chem. Phys. 84, 4524 (1986).

- [35] A. D. Becke, J. Chem. Phys. 107, 8554 (1997).
- [36] J. P. Perdew and W. Yue, Phys. Rev. B. 33, 8800 (1986).
- [37] S. Kurth, J. P. Perdew and P. Blaha, Int. J. Quantum Chem. 75, 889 (1999).
- [38] Clementi, E.; Chakravorty, S. J. J. Chem. Phys. 93, 2591 (1990).
- [39] D. C. Patton and M. R. Pederson, Phys. Rev. A. 56, R2495.
- [40] J. M. Tao and J. P. Perdew, J. Chem. Phys. 122, 1141021 (2005).
- [41] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 77, 3865-3868 (1996).
- [42] A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
- [43] A. D. Becke, Phys. Rev. A. 38, 3098 (1988).
- [44] A. D. Becke, J. Chem. Phys. 104, 1040 (1996).
- [45] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [46] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- [47] Y Zhao, N.González-García, D.G Truhlar, J. Phys. Chem. A .2005, 109 (2012).
- [48] Adamo, C.; Barone, V. J. Chem. Phys. 110, 6158 (1999).
- [49] Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2, 364 (2006).

[50] (a) Runge, Erich; Gross, E.K.U.Phys.Rev.Lett. **52**, 997 (**1984**).(b) Casdia ,M.E. Jamorski ,C.;Bohr, F;Guan ,J.;Salahub,D.R.Washington,D.C:ACS Press. **145** (**1996**).

[51] (a) Gross , E. K. U. ; Kohn, W. Phys. Rev .Lett .55 ,2850 (1985). (b) Runge , E. K. U.
.Phys. Rev. Lett .52, 997 (1984). (c) Gross, E. K. U. Adv. Quant .Chem. 21, 255 (1990). (d) Bauernschmitt, R.; Ahlrichs , R.Chem.Phys. Lett . 256 , 454 (1996).

[52]J Antony, S.Grimme, D.G Liakos, F. Neese, Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods. J Phys Chem A. **115**, 11210 (**2011**).

[53] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J.Phys.Chem A.115,11210-20 (2011).

[54] S. Grimme, Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory, Chem. Eur. J. **18**,9955 (**2012**).

[55] S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[56] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

[57] O. A. Vydrov, T. J. Van Voorhis, Chem. Phys. 133, 244103 (2010).

- [58] O. A. Vydrov, T. J. Van Voorhis, J. Chem. Theory Comput. 8, 1929 (2012).
- [59] Voir par exemple : Fey, N.; Ridgway, B. M.; Jover, J.; McMullin, C. L.; Harvey, J. N.
- Dalton Trans. 40, 11184 (2011).
- [60] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
- [61] Slater, C. J, Phys. Rev. 36, 57 (1930).
- [62] Boys, S. F, Proc. Roy. Soc. A. 200, 542 (1950).
- [63] J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc. 102,939 (1980).
- [64] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
- [65] K. A. Peterson, T. B. Adler & H.-J.Werner, J. Chem. Phys. 128, 084102 (2008).
- [66] J. Grant Hill & Kirk A. Peterson, Phys. Chem. Chem. Phys. 12, 10460 (2010).
- [67] K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J.Chem. Phys. 119, 11113 (2003).
- [68] Grotendorst, J, "Effective core potentials by M. Dolg in Modern methods and algorithms of
- quantum chemistry", John von Neumann Institute for Computing ; NIC series. (2000).
- [69] Kestner, N. R, J. Chem. Phys. 48, 252 (1968).
- [70] Jansen, H. B; Ros, P, Chem. Phys. Lett. 3, 140 (1969).
- [71] Liu, B; Malean, A. D, J. Chem. Phys. 59, 4557 (1973).
- [72] Jensen, F, Chem. Phys. Lett. 261, 633 (1996).
- [73] Senent, M. L; Wilson, S. Int. J. Quant. Chem. 82, 282 (2001).
- [74] S. F. Boys, Proc. R. Soc. A 200, 542 (1950).
- [75] J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980).
- [76] The program NB0 6.0 was developed by E. D. Glendening, J. K. Badenhoop, A. E. Reed, J.

E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold, Theoretical Chemistry Institute,

University of Wisconsin, Madison (2001); F. Weinhold, NBO 6.0 Program Manual: Natural Bond Orbital Analysis Programs, Madison, WI, Theoretical Chemistry Institute, (2001).

[77] F.Weinhold and J. E.Carpenter In The Structure of Small Molecules and Ions ; R.Naaman and Z.Vager, Eds. ; Springer US, page **227**, (**1989**).

- [78] Mulliken, R. S. J. Chem. Phys. 23, 1833 (1955).
- [79] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,

M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.

Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.

Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,

A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.

E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

CHAPITRE II

Etude systématique de l'interaction de la molécule d'imidazole (Im) avec un atome de Zn^{q+} (q = 0, 1, 2)

I. Introduction

Les complexes entre l'imidazole et ses dérivés avec les métaux de transition jouent un rôle très important en chimie, en biologie et en industrie [80-83]. Dans les milieux biologiques, l'imidazole et l'imidazolate agissent comme ligands naturels du cation Zn^{2+} . Ces complexes interviennent dans des processus biologiques très importants : ils constituent la partie principale des sites actifs de certains métalloenzymes (e.g. l'enzyme de conversion, la thermolysine, hydrolases, lyases, ligases et l'anhydrase carbonique [84-87]) où la molécule d'imidazole est un cofacteur essentiel et l'ion Zn^{2+} est directement impliqué dans les mécanismes catalytiques [88-89]. Spécifiquement, l'anhydrase carbonique, qui hydrolyse le CO₂, est impliquée dans de nombreux processus physiologiques fondamentaux comme la respiration, la photosynthèse ou l'équilibre acido-basique dans tous les organismes vivants [90-91].

D'un point de vue industriel et environnemental, l'imidazole (Im) est le principal liant organique dans les ZIFs (Zeolitic Imidazolate Frameworks) où il est relié à l'ion Zn^{2+} . La charge totale du système est neutre en phase condensée. Les complexes Zn-Im représentent des sous – entités des ZIFs. La structure backbone des ZIFs est construite des unités tétraédriques formées par un ion métallique bivalent ($M^{2+} = Zn^{2+}/Co^{2+}$) et quatre ions imidazoles. Ces composés présentent une structure topologique bien stabilisée avec une large diversité de structure. Ils présentent ainsi une forte porosité qui est potentiellement utilisée dans la capture et le stockage du CO₂ et dans son piégeage sélectif [92-94]. Plusieurs études ont traité les propriétés macroscopiques des matériaux ZIFs avec des molécules de gaz comme H₂, N₂, CH₄, CO₂ et des mélanges de ces molécules [95-102]. Ces travaux ont suggéré que les molécules de gaz sont adsorbées sur la partie organique des ZIFs, tandis que les informations sur le rôle d'ions de métaux de transition et de leurs interactions avec la partie organique, sont rares. Les propriétés microscopiques de ce type de complexes ne sont pas encore claires. Ainsi, la caractérisation de l'interaction au sein des complexes ZnIm est cruciale pour contrôler et moduler la capacité potentielle des ZIFs dans la capture et la séquestration des gaz et l'activité des métalloenzymes.

Des études de modélisation moléculaire représentent un outil précieux et ont un rôle majeur à jouer dans les développements, la compréhension à l'échelle microscopique et l'amélioration des propriétés de ces matériaux. En effet, la théorie de la fonctionnelle de la densité (DFT) et les méthodes ab initio (e.g. la théorie de la perturbation de Møller-Plesset du second ordre (MP2) [103]) se complètent mutuellement pour l'étude des complexes organométalliques de moyenne et de grande taille. Dans ce contexte, les études théoriques précédentes ont montré que les

fonctionnelles de la théorie de la fonctionnelle de la densité (DFTs) sont adaptées pour la description précise et simultanée des interactions fortes [104-107]. Par exemple, Piquemal et al [105] ont utilisé différentes méthodes ab initio (R)(MP2) et fonctionnelles de la DFT (PW91, B3PW91, BLYP et B3LYP) en connections avec la base DZVP2 pour prévoir l'énergie d'interaction intermoléculaire pour une série des dimères incluant la forme la plus stable du complexe Zn²⁺Im, qui est confirmé par des études les plus récentes de calculs ab initio de haut niveau de Rayan et al [106]. Ces auteurs ont également déterminé l'erreur moyenne et la déviation standard des énergies de liaison (BEs) des complexes Zn (II) à l'aide de la DFT-B3LYP et DFT-TPSS associées à la base aug-cc-pVTZ (aVTZ). Par ailleurs, Piquemal et al. et Rayon et al. ont utilisé la méthodologie SAPT (théorie de perturbations à symétrie adaptée) donnant donc un aperçu des contributions d'induction d'électrostatique, d'échange et de dispersion sur les énergies de liaison ionique du complexe Zn⁺²Im. Pour les complexes faiblement liés contenant des métaux de transition 3d, ces fonctionnelles échouent dans la prédiction de leurs propriétés thermochimiques [107]. Les difficultés résident dans la description précise et simultanée des liaisons covalentes et non-covalentes dans la partie organique et de la liaison N-Zn (Im) organométallique. La nature de cette liaison organométallique n'est pas encore claire. Récemment, Wilson et ses collègues [108] ont établi les performances de l'approximation du gradient généralisée (GGA), meta-GGA et la fonctionnelle hybride avec les bases ccp-VTZ et cc-pVQZ pour de telles études.

Dans ce travail, nous avons effectué des études systématiques des complexes Zn^{q+}Im (q=0, 1, 2) en utilisant différentes fonctionnelles pour la théorie de la fonctionnelle de la densité (DFT) (avec ou sans inclusion de dispersion D3) et les méthodes ab initio pour déduire les formes stables et caractériser la nature de la liaison entre l'atome de zinc et la molécule d'imidazole. En outre, nous avons également effectué des calculs en utilisant la méthode Møller-Plesset explicitement corrélées (R)MP2-F12 et les approches clusters couplés (R)CCSD(T)–F12, récemment implémentés dans le code Molpro qui tiennent compte de la corrélation électronique avec un coût de calcul réduit. Nous discutons la fiabilité des différentes fonctionnelles de la DFT et corrections (e.g. BSSE, D3) pour la description précise de ce type de composés organométalliques. Une généralisation pour les composés organométalliques est proposée.
II. Détails des calculs

Les groupes fonctionnels contenant des atomes d'azote liés directement à un cation divalent Zn ont été étudiés en utilisant différentes fonctionnelles de la DFT [109-111]. En utilisant ces travaux et ceux des références [112-113], nous avons sélectionné l'ensemble des fonctionnelles d'échange corrélation GGA et hybrides meta-GGA (e.g. M052X et M11) [114] en connection avec la base 6-311++G(d,p) pour déterminer les structures d'équilibre, les énergies, la spectroscopie, la liaison chimique (covalente, transfert de charge et van der Waals (vdWs)) et le rôle de dispersion dans la stabilité des complexes Zn^{q+}Im (q=0, 1, 2). Nos calculs ont été effectués à l'aide de la DFT, en utilisant les fonctionnelles PBE [115], PBE0 [116] et M05-2X avec ou sans inclusion de la correction de dispersion de Grimme (DFT-D3) [117] implémentée dans le programme GAUSSIAN09 et (G09-D.01) [118]. En outre, les structures d'équilibre ont été aussi calculées à l'aide de la fonctionnelle M11. Les optimisations de structures moléculaires ont été réalisées avec ou sans tenir compte de l'erreur de Superposition de Base (BSSE) et de la correction contrepoids (CP). Le mot clé SCF=XQC a été utilisé dans la convergence SCF. Plusieurs configurations initiales ont été utilisées comme point de départ pour ces optimisations.

Afin d'évaluer la nature (minimum ou état de transition) des points stationnaires calculés, les calculs des fréquences ont été effectués aux niveaux PBE, PBE0 et M05-2X en connection avec la base 6-311++G(d,p) en utilisant les options standards implémentées dans le programme GAUSSIAN09.

Les formes stables trouvées au niveau DFT ont été étudiées en utilisant les techniques (R)MP2 [119], Spin Component Scaled MP2 (SCS-MP2) [120] et l'approche clusters couplés avec un traitement perturbatif des excitations triple ((R)CCSD(T)) [121]. Nous avons également utilisé des calculs de fréquences au niveau (R) MP2/6-311++G(d,p) et (R)MP2/aug-cc-pVDZ. Ces résultats de calculs sont utilisés pour valider les approches DFT de ce travail. Nous avons également utilisé les nouvelles techniques explicitement corrélées MP2, c'est-à-dire (R) MP2-F12 [122] et des clusters couplés, c'est-à-dire (R)CCSD(T)-F12 [123] pour déduire les énergies de liaison avec précision et ainsi établir la fiabilité de différentes fonctionnelles de la DFT pour la description précise de la liaison au sein de ces complexes organométalliques. Pour ces calculs (R) MP2, (R) CCSD(T) et explicitement corrélés, les atomes C, N et H ont été décrits par les bases aug-cc-pVXZ avec X = D, T de Dunning [124]. Pour l'atome de Zinc, nous avons utilisé soit la base de Dunnig ou la base aVTZ(-PP) [125] et la base pseudo-potentiel auxiliaire polarisée à corrélation consistante (OptRI) [126] et la base auxiliaire polarisée à corrélation

consistante MP2FIT [127]. Pour ces calculs, nous avons utilisé le programme MOLPRO (version 2012.1) [128] et suivant la méthodologie établie dans la référence [129].

III. Résultats et discussion

III.1. Géométries d'équilibre optimisées

Les géométries optimisées des complexes Zn^{q+} Im (q=0,1,2), ainsi que les principaux paramètres géométriques calculés en utilisant les méthodes PBE, PBE+D3, PBE0, PBE0+D3, M05-2X, M052X+D3, (R)MP2, (R)CCSD(T), M11, (R)MP2, (R)CCSD(T), (R)MP2-F12 et (R)CCSD(T)-F12 sont données dans la Figure 2.1 et le Tableau 2.1. Nous donnons la totalité des fréquences harmoniques en annexe [1]. Ce tableau montre que toutes les méthodes de calcul utilisées sont d'accord sur la nature des points stationnaires de ces complexes, sauf la fonctionnelle PBE de la DFT, qui a fourni un état de transition pour le complexe Zn^0 Im I au lieu d'une structure minimale. Cela rend douteuse l'utilisation de PBE pour décrire les complexes organométalliques neutres faiblement liés.

Figure 2.1 : Structures d'équilibre optimisées des complexes Zn^{q+} Im (q= 0, 1,2). En rouge, nous donnons aussi les charges atomiques de l'atome de zinc (Zn) et de l'azote protoné (N1) de la molécule d'imidazole (Im) calculées au niveau (R)MP2/6-311++G(d,p).

Base	es				6-3	11++G(d,p)	3	VDZ	aVTZ(-PP)		aVTZ			
Métho	odes	PBE	PBE+D3	PBE0	PBE0+D3	M05-2X	M05-2X+D3	M11	(R)MP2	(R)MP2	(R)CCSD(T)	(R)MP2-F12	(R)MP2	(R)MP2
	R _{NH}	1,016	1,015	1,006	1,006	1,004	1,004	1,009	1,010	1,013	1,013	1,005	1,006	1,006
Zn ⁰ Im I	R _{CH}	1,087	1,087	1,081	1,081	1,078	1,077	1,084	1,081	1,088	1,091	1,076	1,077	1,077
	R _{ZnN}	3,041	2,915	3,091	2,935	3,211	3,198	3,107	3,094	2,962	3,058	3,024	3,061	3,022
	$R_{\rm NH}$	1,016	1,015	1,006	1,006	1,004	1,004	1,009	1,010	1,014	1,013	1,006	1,007	1,007
Zn ⁰ Im II	R _{CH}	1,087	1,087	1,080	1,081	1,077	1,077	1,084	1,081	1,087	1,090	1,077	1,077	1,077
	R _{Zn-π}	2,938	3,337	2,896	3,284	2,755	3,215	2,711	2,704	2,587	2,718	2,727	2,618	2,618
	R _{NH}	1,019	1,019	1,011	1,011	1,009	1,009	1,031	1,014	1,017	1,017	1,010	1,010	1,010
Zn ¹⁺ Im	R _{CH}	1,086	1,086	1,080	1,079	1,077	1,076	1,082	1,080	1,086	1,089	1,076	1,076	1,076
	R _{ZnN}	2,023	2,035	2,009	2,019	2,022	2,028	2,039	1,995	1,985	1,99	1,959	1,962	1,979
	$R_{\rm NH}$	1,026	1,027	1,017	1,017	1,016	1,015	1,021	1,021	1,024	1,023	1,017	1,017	1,017
Zn ²⁺ Im	R _{CH}	1,088	1,088	1,081	1,081	1,078	1,078	1,084	1,082	1,088	1,091	1,077	1,078	1,078
	R _{ZnN}	1,884	1,923	1,869	1,872	1,882	1,886	1,881	1,836	1,858	1,870	1,830	1,836	1,854

Tableau 2.1: Paramètres géométriques principaux (distances en Å) des complexes Zn^{q+} Im (q = 0, 1, 2) calculés à différents niveaux de la théorie.

Nos calculs montrent que la molécule d'imidazole (Im) isolée possède une structure d'équilibre proche de celle de la molécule d'imidazole dans les complexes Zn^{q+} Im (q=0, 1, 2) et ce quelle que soit la méthode théorique utilisée pour l'optimisation. Cela était récemment aussi remarqué pour la molécule d'imidazole (Im) isolée ou adsorbée sur une surface d'or ou sur d'agrégat d'or [130]. Par contre la liaison Zn-Im change fortement lors de l'ionisation et elle montre des écarts en fonction de la méthode théorique utilisée pour les calculs.

Pour les complexes neutres entre l'atome de zinc et la molécule d'imidazole, deux formes stables ont été trouvées. Elles sont notées Zn⁰Im I et Zn⁰Im II (Cf. figure 2.1). Par contre, une structure uniquement plane a été trouvée pour les formes ioniques (Zn¹⁺Im et Zn²⁺Im), respectivement. Les structures Zn⁰Im I, Zn¹⁺Im et Zn²⁺Im ont une configuration analogue à l'environnement des ZIFs. Le cluster Zn⁰Im II a la structure du ferrocène. Le complexe Zn²⁺Im a été déjà identifié dans le travail de Piquemal et al [105] et de Rayon et al [106]. Pour Zn²⁺--- Benzène, Rayon et al ont trouvé une structure du ferrocène comme celle que nous avons pour Zn⁰Im II, qui est le premier composé Zn-organique neutre pour une telle structure.

Le complexe Zn^{0} Im I est plan où le Zn est lié à l'atome d'azote non protoné de l'imidazole (Im). La liaison Zn-N au sein de ce complexe est dominée par l'interaction partiellement covalente entre Zn et N (voir ci-dessus). En utilisant toutes les méthodes, la distance Zn-N (notée R_{N-Zn}) est calculée dans la gamme de 2,9 à 3,2 Å. Les distances d'équilibre calculées aux niveaux PBE0 et M11, sont en excellent accord avec celles calculées par les méthodes post-Hartree–Fock standard et explicitement corrélées.

En outre, le tableau 2.1 montre que l'augmentation de la taille de la base (effet de base) ou la prise en compte de la corrélation électronique ont tendance à allonger cette distance. Par exemple, la distance (R_{N-Zn}) est calculée à 2,962 Å et 3,022 Å en utilisant (R)MP2/aVDZ et (R)MP2/aVTZ, respectivement.

On voit que la distance d'équilibre (R_{N-Zn}) calculée au niveau (R)MP2-F12/aVTZ(-PP) est proche de celle obtenue par la méthode (R)MP2/aVTZ. Cette distance devient 3,058 Å au niveau CCSD(T)/aVDZ c'est-à-dire assez proche de celle obtenue par la méthode (R)MP2/aVTZ-PP. Ces résultats confirment la bonne qualité de la base aVTZ-(PP) qui est récemment publiée par Peterson et ses collègues. Pour cet isomère, le tableau 2.1 montre également que l'inclusion de la correction de dispersion de Grimme (D3) et la correction de l'erreur due à la superposition des bases (BSSE) aux niveaux PBE0, PBE et M05-2X conduit à des valeurs sensiblement similaires à celles obtenues sans tenir compte de ces corrections, surtout pour le monomère Im.

Le complexe Zn^{0} Im II correspond à une structure de type ferrocène. L'interaction entre l'atome de Zn et la molécule d'imidazole (Im) est de type van der Waals (VDWS), où l'orbitale moléculaire vacante (MO) π^* de la molécule d'imidazole interagit avec l'orbitale atomique (AO) vacante 4s de l'atome de Zn (Cf. figure 2.2). A cause de la nature des liaisons faibles, la distance Zn-Im (notée $R_{Zn-\pi}$) représente un test crucial pour les fonctionnelles de la DFT, les méthodes ab initio et les bases utilisées pour les calculs des composés organométalliques de grande taille.

D'après le tableau 2.1 on voit que la longueur de liaison ($R_{Zn-\pi}$) diminue de 3,337 (2,938) Å à 3,284 (2,896) Å à 3,215 (2,755) Å lors de l'utilisation des fonctionnelles PBE, PBE0 et M05-2X avec ou sans inclusion de la correction de dispersion de Grimme (D3). Par contre dans le complexe Zn⁰Im II, seules les valeurs obtenues aux niveaux M05-2X et M11 sont très proches de celles obtenues avec la méthode (R)MP2 (2,704 Å) calculée avec la même base. Une surestimation est observée avec les autres fonctionnelles contrairement aux résultats obtenus en utilisant les méthodes post–Hartree-Fock (Tableau 2.1). Par exemple, en utilisant les méthodes (R)MP2, (R)MP2-F12 ou (R)CCSD(T) et les bases aVXZ et aVXZ(-PP), nous calculons la distance ($R_{Zn-\pi}$) de 2,6 à 2,7 Å qui sont en accord avec les valeurs obtenues aux niveaux M05-2X et M11. Ces résultats concordent avec les principales conclusions des études récentes sur l'interaction de CO₂ avec une molécule d'imidazole (Im) isolée ou avec une molécule d'imidazole adsorbée sur une surface d'or ou des agrégats d'or, où il a été établi la capacité et la fiabilité de la fonctionnelle M05-2X pour la description précise de la liaison hydrogène de type σ et des interactions π stacking en phase gaz ou au niveau des interfaces gaz-surface métallique [113].

Les ions métalliques Zn^{1+} et Zn^{2+} interagissent avec une molécule d'imidazole (Im), formant une structure plane avec une liaison relativement forte entre l'atome de Zn et l'atome d'azote (N) déprotoné de la molécule d'imidazole (Im). La distance Zn-Im (notée R_{Zn-N}) se raccourcit lors de l'ionisation. En effet, elle est de ~2 Å dans Zn^{1+} Im et de ~ 1,85 Å dans Zn^{2+} Im. Cette distance dans Zn^{2+} Im est en bon accord avec les travaux antérieurs [106]. Lorsqu'on compare les valeurs calculées en utilisant les différentes bases et méthodes (tableau 2.1), des tendances similaires comme discutées ci-dessus pour Zn^{0} Im I et Zn^{0} Im II sont à noter. L'incorporation de la correction de dispersion (D3) améliore légèrement cette distance en raison du caractère dispersif de la liaison entre Zn et l'atome d'azote N.

Pour les espèces neutres, on trouve à partir de nos calculs que les distances intermonomère prédites en utilisant la théorie de la fonctionnelle de la densité avec inclusion de la correction de dispersion de Grimme (DFT-D3) sont significativement plus grandes que leurs valeurs obtenues uniquement avec la DFT sans inclusion de cette correction. En particulier, le caractère hautement dispersif de la structure Zn⁰Im II est affecté par la correction D3. Alors que la nature de la liaison entre le Zn et l'atome d'azote (N) dans tous les autres complexes prédits par les fonctionnelles de la DFT sont en très bon accord avec les méthodes de calculs ab initio de haut niveau. Cela a été récemment souligné par Schluns et al[131]. Ce qui indique clairement que l'énergie d'interaction calculée pour les systèmes faiblement liés à partir de la méthode Subsystem-DFT (Subsystem density-functional theory) est supérieure aux résultats obtenus dans le cadre de la DFT-KS sans correction de dispersion. Encore une fois, nous pouvons conclure que les fonctionnelles hybrides sont bien adaptées pour la description des complexes organométalliques de grande taille.

III.2. Energies de liaison

En plus des structures d'équilibre, les énergies de liaison (BEs) des complexes sont très importantes pour valider les fonctionnelles adaptées à la description précise et simultanée des interactions covalentes et non covalentes, Dans le travail présent, les énergies de liaison (BEs) ont été calculées en utilisant l'approche supermolécule. L'erreur due à la superposition des bases (basis set superposition error ou BSSE) a été corrigée en utilisant la méthode de contrpoids (CP) de Boys et Bernardi [132]:

$$BE = (E_{AB} - (E_A + E_B))$$

où E_{AB} est l'énergie totale des complexes Zn^{q+} Im (q=0, 1, 2) à l'équilibre, E_A est l'énergie de l'ion Zn^{q+} et E_B est l'énergie de la molécule d'imidazole (Im) à l'équilibre.

Le Tableau 2.2 présente les énergies de liaison (BEs) des complexes Zn^{q+}Im (q=0, 1,2) calculés en utilisant les méthodes PBE (+D3), PBE0 (+D3), M05-2X (+D3), M11, (R)MP2, SCS-MP2, (R)CCSD, (R)CCSD(T), (R)MP2-F12, (R)CCSD-F12 et (R)CCSD(T)-F12. Ces BES sont corrigées de la BSSE.

Bases			6-	311+	+G(d,p)				a	VDZ			aV	VTZ				aV	TZ(-P	P)	
Méthodes	PBE	PBE +D3	PBE0	PBE0 +D3	M05-2X	M05- 2X+D3	M11	MP2	MP2	SCS- MP2	CCSD	CCSD(T)	MP2	SCS- MP2	CCSD	CCSD(T)	MP2	MP2-F12	CCSD	CCSD(T)	CCSD -F12	CCSD(T) -F12
Zn ⁰ Im I	-1,28	-2,52	-1,10	-2,32	-1,28	-1,48	-2,51	-1,25	-1,60	-0,93	-0,64	-1,12	-1,76	-1,07	-1,06	-1,63	-1,69	-1,96	-1,07	-1,63	-1,90	-3,64
Zn ⁰ Im II	-0,9	-2,80	-1,10	-2,90	-2,19	-2,45	-2,42	-2,16	-3,07	-1,76	-0,79	-1,81	-3,36	-1,99	-1,51	-2,49	-3,38	-3,78	-1,37	-2,45	-2,21	-4,39
Zn ¹⁺ Im	-67,0	-68,70	-62,8	-66,30	-66,00	-66,12	-59,74	-70,28	-62,78	-	-62,09	-62,93	-64,11	-	-64,26	-65,33	-65,61	-67,01	- 65,85	-67,49	-74,55	-75,8
Zn ²⁺ Im	-192,9	-194,6	-162,5	-184,04	-177,9	-177,97	-171,3	-170,7	-174,0	-171,5	-172,4	-173,7	-176,2	-173,4	-175,14	-176,81	-182,4	-184,2	-180,6	-182,6	-181,1	-183,1

Tableau 2.2 : Energies de liaison (BEs, kcal.mol⁻¹) pour les complexes Zn^{q+} Im (q = 0, 1, 2) calculées en prenant en compte la correction de dispersion de Grimme (D3) dans les méthodes DFT.

Tableau 2.3: Energies de liaison (BEs, kcal.mol⁻¹) pour les complexes ZnX (X = He, Ne, Ar) calculées en prenant en compte la correction de dispersion de Grimme (D3) dans les méthodes DFT.

Bases		6-311++G(d,p)					aug-cc- aug-cc- pVDZ pVTZ		aug-cc-pVDZ		aug-cc-j	aug-cc-pVTZ		aug-cc-pVTZ(-PP)							
Méthodes	PBE	PBE +D3	PBE0	PBE0 +D3	M05- 2X	M05- 2X+D3	(R)MP2	(R)MP2	SCS-MP2	(R)MP2	SCS- MP2	(R)CCSD(T)	(R)CCSD	(R)CCSD(T)	(R)CCSD	(R)MP2- F12	(R)CCSD(T) -F12	(R)CCSD- F12	(R)MP2	(R)CCSD(T)	(R)CCSD
ZnHe	-0.055	-0.118	-0.027	-0.084	-0.006	-0.0705	0.018	-0.043	-0.002	-0.029	-0.100	-0.0351	-0.028	-0.020	-0.016	-0.022	-0.013	-0.009	-0.030	-0.025	-0.020
ZnNe	-0.164	-0.335	-0.073	-0.225	-0.006	-0.162	0.074	-0.117	-0.008	-0.090	-0.024	-0.073	-0.088	-0.097	-0.055	-0.064	-0.098	-0.039	-0.080	-0.112	-0,061
ZnAr	-0.152	-0.458	-0.090	-0.358	-0.158	-0.466	0.149	-0.360	-0.097	-0.359	-0.161	-0.249	-0.197	-0.216	-0.153	-0.457	-0.276	-0.201	-0.372	-0.230	-0.164

D'après le tableau 2.2, on voit que, pour les espèces neutres, toutes les méthodes établissent que le complexe Zn⁰Im II est la forme la plus stable, sauf les fonctionnelles PBE et M11. L'inclusion de la correction de dispersion de Grimme (PBE+D3) corrige cette divergence. Au niveau M05-2X+D3/6-311++G(d,p), nous avons calculé une énergie de liaison d'environ -2,45 kcal.mol⁻¹ pour le complexe Zn⁰Im II et -1,48 kcal.mol⁻¹ pour le complexe Zn⁰Im I, alors qu'au niveau de calcul SCS-MP2/aVTZ, l'énergie de liaison est de -1,99 kcal.mol⁻¹ pour le complexe Zn⁰Im II et -1,07 kcal.mol⁻¹ pour le complexe Zn⁰Im I. Nos valeurs calculées par la méthode explicitement corrélée (R) MP2-F12 sont proches de celles de la méthode (R) MP2.

En utilisant la méthode des clusters couplés CCSD(T), nous avons obtenu une BE $(Zn^{0}Im II) = -$ 2,49 kcal.mol⁻¹ et BE($Zn^{0}Im I$) = -1,63 kcal.mol⁻¹, proches de celles de la méthode (R)CCSD(T)-F12, alors ces calculs ont permis de réduire jusqu'à deux ordres de grandeur le temps de calcul CPU et l'espace disque lors de l'utilisation de la méthode (R) CCSD(T)-F12 au lieu de la méthode (R)CCSD(T) « classique », pour une même précision. Des tendances similaires peuvent être données pour les résultats sur les espèces ioniques. Pour Zn¹⁺Im l'énergie de liaison (BE) est environ dix fois plus importante que celle mesurée par two-color resonant photoionization d'un état métastable de Zn-Ar où seules les forces de van der Waals sont en action [133]. Cela confirme la formation d'une liaison covalente dans notre cas entre Zn¹⁺ et la molécule d'imidazole. Pour le complexe Zn²⁺Im, nous avons calculé une BE d'environ -180 kcal/mol. Cette valeur est en excellent accord avec celles calculées aux niveaux B3LYP/aVDZ (& ccpVTZ) BE (de ~ -182 (& -183) kcal/mol) par Dopfer et ses collaborateurs [134]. Cet accord n'est pas surprenant pour l'espèce Zn²⁺Im en raison de la nature 'relativement forte' de la liaison Zn-N, qui est correctement représentée par B3LYP. Rayon et al [106] ont utilisé l'approche SAPT pour prédire une BE de ~ -179,5 kcal.mol⁻¹ pour le complexe Zn^{2+} Im, qui est en excellent accord avec nos résultats.

Généralement, l'examen du tableau 2.2 montre que la base aVDZ n'est pas suffisamment diffuse pour conduire à des énergies de liaison (BEs) précises, tandis que les bases aVTZ et aVTZ(-PP) corrigent cette déficience. En outre, les bases aVTZ et aVTZ(-PP) fournissent des résultats proches, alors que le coût de ces calculs est réduit avec la base aVTZ(-PP). Par conséquent, la base aVTZ(-PP) est suffisamment fiable pour la description précise des complexes organométalliques. En outre, il convient de noter que les méthodes explicitement corrélées produisent des énergies de liaison (BEs) assez proches de celles obtenues en utilisant

les méthodes standard ab initio, alors que le coût de ces calculs est fortement réduit. Finalement, nous pensons que la contribution triple dans les calculs clusters couplés peut surestimer ces énergies de liaisons (BEs), en particulier pour les espèces neutres. Les origines de cet effet ne sont pas claires, ceci peut être lié à la nature dispersive de la liaison au sein de ces complexes.

Nos calculs montrent que les fonctionnelles PBE et PBE0 fournissent des énergies de liaison (BEs) assez proche de celles obtenues avec les méthodes post-Hartree-Fock, alors que l'inclusion de la correction de la dispersion de Grimme (D3) (e.g. PBE+D3 ou PBE0+D3) conduit à une surestimation des énergies de liaison (BEs), en particulier pour les complexes neutres Zn⁰Im faiblement liés. Par contre, toutes les valeurs M05-2X et M05-2X+D3 sont en bon accord avec celles calculées par des méthodes plus couteuse. La fonctionnelle M11 nouvellement développée sous–estime par contre, les énergies de liaison (BEs) Zn-Im. Une étude systématique sur le système Zn-Rg (Rg :gaz rare) [135] confirme ces résultats (Tableau 2.3).

Cela rejoint la performance bien établie et l'aptitude de la DFT M05-2X pour la description précise des interactions faibles de type σ et π [113-136]. En général, notre étude systématique montre que les BEs des composés organométalliques doivent être évaluées en utilisant la DFT M05-2X+D3 ou les approches (R)MP2-F12 ou (R)CCSD(T)-F12 pour une meilleure précision. Ceci est important pour la déduction de données thermochimiques précise de ces espèces. Ces données sont également nécessaires pour être incorporées dans les calculs de dynamique des propriétés macromoléculaires des ZIFs et Zn-enzymes.

III. Nature des interactions au sein des complexes Zn^{q+}Im (q=0, 1,2)

L'ordre des énergies de liaison est $Zn^{2+}Im > Zn^{1+}Im > Zn^{0}Im$. Pour quantifier la nature des interactions intermoléculaires, le transfert de charge entre le groupe Imidazole (Im) et le zinc, l'analyse NBO (Natural Bond Orbital) [137] et des OM frontières, ont été réalisées en se basant sur la théorie de la fonctionnelle de la densité (DFT) au niveau M05-2X/6-311++G (d,p). Les différents types d'interaction donneur–accepteur stabilisent ces complexes.

Figure 2.2 : Orbitales moléculaires frontières (iso surface de densité tracée pour 0,02 u.a)) des complexes Zn^{q+} Im (q=0, 1,2) calculés au niveau M05-2X/6-311++G(d,p).

Complexes	Structure	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2
Zn ⁰ Im I	L.	•				
Zn ⁰ Im II						
Zn ¹⁺ Im		•				
Zn ²⁺ Im						

Pour les complexe $Zn^0Im I$ et $Zn^{1+}Im$, la figure 2.2 montre que les orbitales HOMO résultent du recouvrement de l'orbitale atomique (OA) 4s de Zn et la paire libre de l'atome d'azote déprotoné de l'imidazole. La liaison dans le complexe Zn^0Im II est due à l'interaction de l'orbitale atomique (OA) 4s de Zn avec l'orbitale moléculaire (OM) π^* de la molécule d'imidazole (Im). Pour les orbitales LUMO-LUMO+2, elles sont dues aux interactions soit entre la paire libre ou l'orbitale moléculaire (OM) π^* de la couche externe de la molécule d'imidazole et les orbitales atomiques (OA) 4p de Zn. Les orbitales atomiques (OA) 4s et 4p sont de nature Rydberg. Elles sont donc diffuses. Par conséquent, seules les bases étendues et les méthodes, qui prennent en compte ses effets, sont valables. Cela concorde bien avec les meilleurs résultats obtenus à l'aide de la base étendue aVTZ par rapport à ceux obtenus avec aVDZ.

La force de l'interaction donneur-accepteur entre l'orbitale occupée du donneur (ϕ_i) et l'orbitale inoccupée de l'accepteur (ϕ_j) peut être approchée par la théorie des perturbations au second ordre :

$$E_{2} = \Delta E_{ij}^{(2)} = 2 \frac{\left\langle \phi_{i} \middle| \hat{F} \middle| \phi_{j} \right\rangle^{2}}{\varepsilon_{j} - \varepsilon_{i}}$$

où E₂ est l'énergie de stabilisation associée à la délocalisation $i \rightarrow j$, \mathcal{E}_i est l'énergie de l'orbitale occupée i, \mathcal{E}_j est l'énergie de l'orbitale vacante j, 2 est le nombre d'électrons occupant l'orbitale spatiale ϕ_i et $F_{ij} = \langle \phi_i | \hat{F} | \phi_j \rangle$ est l'élément hors-diagonal de la matrice de Fock. L'existence des interactions donneur-accepteur dans ces complexes peut être estimée à partir des valeurs de l'énergie perturbative au second-ordre (E_{ij}^2).

L'analyse NBO de tous les complexes est donnée dans le Tableau 2.4. Ce tableau montre que les interactions donneur–accepteur au sein de ces complexes incluent principalement les paires libres de l'azote non protoné (LP (1) N1) du groupe imidazole (Im) et le métal Zn avec un transfert de charge intramoléculaire vers le cycle aromatique du groupe imidazole (Im). Ces interactions sont traduites par les grandes valeurs de l'énergie de stabilisation ou de délocalisation (E_2) dans les deux complexes Zn^0Im I et Zn^0Im II de l'ordre de 2,26 et 0,35 kcal.mol⁻¹, respectivement). Cela révèle clairement que le transfert de charge dans le complexe Zn^0Im I est plus favorable que dans le complexe Zn^0Im II. Ceci est dû au recouvrement orbitalaire parfait entre la paire libre de l'azote (N1) non protoné du groupe imidazole (Im) et

l'atome de zinc dans le complexe Zn⁰Im I. Par contre dans le complexe Zn⁰Im II, les interactions sont dues principalement à la dispersion (voir les Figures 2.1 pour la numérotation des atomes).

Complexes			E ₂ kcal/mol	ΔE _{ij} u.a	F _{ij} u.a	Description de transfer de Charge
	LP(1) N1	LP*(7) Zn 1	2,26	0,59	0,033	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP(1) N5	BD*(2) C3 - C4	41,65	0,39	0,117	
Zn°lm I	LP(1) N5	BD*(2) C2 - N1	64,65	0,37	0,139	Im →Im
	LP(1) N5	RY*(2) C4	3,99	1,12	0,067	Im →Im
	LP (1) N1	LP*(9) Zn 1	0,35	0,83	0,015	
	LP (1) N5	BD*(2) C2 -N10	63,27	0,37	0,138	$Im \rightarrow Zn$
Zn ⁰ Im II	LP (1) N5	BD*(2) C3 - C4	42.50	0.38	0.1	lm →lm
			2.00	1.12	0.067	Im →Im
	LP (1) N5	RY*(2) C4	3,98	1,13	0,067	
	LP (1)N1	LP*(6) Zn 1	1,41	0,37	0,034	
	LP (1)N1	BD*(2) C2 - N5	68,78	0,25	0,167	$Im \rightarrow Zn$
Zn ⁺¹ Im			20.04	0.25	0.110	Im →Im
	LP(1)N1	$BD^{*}(2) C3 - C4$	20,94	0,55	0,118	Im →Im
	LP (1) N1	RY*(4) C2	2,63	1,34	0,088	
	LP (1)N1	LP*(6) Zn 1	4,89	0,45	0,047	
	LP (1)N1	BD*(2) C2 - N5	87,70	0,33	0,152	$Im \rightarrow Zn$
Zn ⁺² Im			20.67	0.42	0.109	Im →Im
	LP (1)N1	вD*(2) С3 - С4	30,67	0,42	0,108	Im →Im
	LP (1) N1	RY*(4) C2	5,32	1,28	0,083	
				1		

Tableau 2.4 : Principale délocalisation de charge des interactions dominantes (donneuraccepteur) dans les complexes $Zn^{q+}Im$ (q=0, 1,2) calculé au niveau M05-2X/6-311++G(d,p)^{a)}.

^{a)}l'énergie perturbative au second-ordre calculée, F_{ij} est l'élément hors-diagonal de la matrice de Fock (en u.a), BD* sont les orbitales de valence anti liantes, BD sont les orbitales de liaison bicentriques, LP sont les orbitales des paires électroniques de valence et RY* sont les orbitales de couches de valence lointaine de Rydberg (voir la Figure 2.1, pour la numérotation des atomes). En outre, le transfert de charge intramoléculaire au sein du groupe imidazole (Im) stabilise ces

complexes. Par exemple, la paire libre de l'atome d'azote protonée (LP (1) N5) interagit avec les

liaisons C-C et C-N de l'imidazole (Im) où le transfert de charge à travers la liaison C-N est plus prédominant que à travers la liaison C-C. Les valeurs de l'énergie de stabilisation (E_2) de Zn⁰Im I et Zn⁰Im II sont 65 (63) et 42 (43) kcal.mol⁻¹, respectivement. On observe aussi un transfert de charge plus important entre la paire libre de l'azote protoné (LP (1) N5) vers l'atome de carbone RY*(2) C₂. Pour les complexes neutres, les valeurs de E₂ sont de l'ordre de 4 kcal.mol⁻¹, respectivement.

Pour le complexe $Zn^{1+}Im$, le transfert de charge se produit entre la paire libre de l'azote LP(1) N1 vers LP*(6) Zn1 où l'énergie de stabilisation (E₂) est 1,41 kcal.mol⁻¹ et entre LP(1) N1 vers RY*(C2) avec une énergie de 2,63 kcal.mol⁻¹. La délocalisation dans la structure $Zn^{2+}Im$ se traduit par donation de LP(1) N1 vers LP*(6) Zn1 et de LP(1) N1 vers RY*(C2) avec des énergies de stabilisation de l'ordre 4,89 kcal.mol⁻¹ et 5,64 kcal.mol⁻¹, respectivement.

Pour tous les complexes, un atome de carbone acide (C₂) est impliqué dans le transfert de charge considérant que la contribution dominante provient du carbone C₄ pour les espèces neutres. Cela révèle clairement que les voies de transfert de charge pour les systèmes neutres et chargés sont très différentes et qu'ils contribuent significativement de différentes façons pour la stabilisation des complexes. Ces valeurs sont en excellent accord avec les distances d'équilibre calculées et les énergies de liaison (BEs) discutées ci-dessus. Ces résultats sont aussi en excellent accord avec ceux déduits par Dopfer et ses collaborateurs [134] pour le complexe Zn²⁺Im. Ces auteurs ont montré en effet que les interactions ligand-métal sont dominées par donation de type σ , tandis que les contributions de la donation de type π devraient être mineures.

III.4. Spectroscopie de vibration

Pour les modes de basse fréquence des complexes Zn^{q+} Im (q = 0, 1, 2), le tableau 2.5 décrit leurs nombres d'ondes harmoniques, leurs attributions basées sur une analyse des modes normaux, et leurs intensités IR. Ces modes sont liés aux vibrations van der Waals au sein de ces complexes. Nous avons considéré donc trois modes intermonomer: l'élongation, la déformation et les oscillations hors du plan. Ces valeurs une fois mesurées représentent un test critique des méthodes théoriques utilisées et consacrées à la description des complexes organométalliques faiblement liés.

déformation mode d'oscillation élongation attribution Complexes Ι Ι Ι $\nu_{\rm calc}$ $v_{\rm calc}$ v_{calc} Zn⁰Im I 5 4,5 5,3 ν_{ZnN} 41 14 47 Zn⁰Im II 1 11 3,0 $\nu_{Zn-\pi}$ 85 63 73 $\nu_{N-Zn}{}^{1+}$ Zn⁺¹Im 24 3,7 0,5 251 141 120 $\nu_{N-Zn}{}^{2+}$ Zn⁺²Im 11 17,6 8,5 347 197 127

Tableau 2.5 : Attribution et nombre d'onde harmonique (ω_i , en cm⁻¹) des modes van der Waals intermonomer pour les complexes Zn^{q+}Im (q = 0, 1, 2). Nous donnons leur intensités IR (en, km / mol). Ces valeurs ont été calculées aux niveaux M05-2X/6-311++G(d,p).

	attribution	\mathbf{V}_{calc} (cm ⁻¹)	Ι	Shift (cm ⁻¹)		attribution	V_{calc} (cm ⁻¹)	Ι	Shift (cm ⁻¹)
Im	${f V}_{ m NH}$	3518	99	3518 $v_{exp}^{(a)}$	Im	V С2H	3103	2	3110 V _{exp}
	${f V}_{ZnN}$	38	5			${f v}_{ZnN}$	59	1	
ZnºIm I	$V_{ m NH}$	3516	97	-2	Zn ⁰ Im II	$V_{\rm NH}$	3518	91	0
	V_{C2H}	3093	0,5	-10		V_{C2H}	3098	0,5	-5
	${f v}_{ZnN}$	236	24			${f v}_{ZnN}$	327	10	
Zn ¹⁺ Im	${f V}_{ m NH}$	3465	213	-53	Zn ²⁺ Im	${f V}_{ m NH}$	3391	365	-127
	V с2н	3112	22	9		V С2Н	3104	58	1

Tableau 2.6: Fréquences de vibration d'élongation calculées (scaled ,Scale factor is 0.9417) et la complexation induite des shifts pour lescomplexes Zn^{q+} Im (q = 0, 1, 2) calculée au niveau M05-2X/6-311++G(d,p), Nous donnons également les intensités IR des bandes (I, km/mol).

^a^M, Y, Choi and R, E, Miller, J, Phys, Chem, A 2006, **110**, 9344. Ref. [138].

Le calcul des fréquences de la vibration d'élongation, les intensités et les déplacements respectifs de l'imidazole (Im) et des complexes $Zn^{q+}Im$ sont donnée dans le tableau 6.2. Les fréquences V_{NH} et V_{C2H} calculées pour la molécule d'imidazole sont 3518 et 3103 cm⁻¹ respectivement. Ces valeurs sont proches des valeurs expérimentales correspondantes données. Les déplacements induits par complexation ont été calculés pour les fréquences de vibration d'élongation asymétrique (V_{as}) et symétrique (V_{ss}) de la liaison N-H et C-H de la molécule d'imidazole (Im) isolée. Lors de la complexation, les fréquences (V_{C2H}) de Zn^0Im I et Zn^0Im II sont décalés vers le rouge ainsi que (V_{NH}) dans le complexe Zn^0Im I. Par contre, (V_{NH}) reste presque inchangée dans le complexe Zn^0Im II. Pour les espèces ioniques, les valeurs calculées décalées vers le rouge sont relativement importantes. Pour les formes ioniques $Zn^{1+}Im$ et $Zn^{2+}Im$, les V_{NH} sont abaissées par 53 et 127 cm⁻¹, respectivement. En général, les fréquences (V_{C2H}) calculées sont décalées vers le bleu dans la plupart des complexes $Zn^{q+}Im$. Les effets sur les intensités des bandes d'élongations C-H sont moins prononcés.

IV. Conclusions

La structure, la stabilité et la spectroscopie des complexes Zn^{q+} Im (q=0, 1, 2) ont été traitées en utilisant différentes fonctionnelles avec ou sans inclusion de la correction de dispersion de Grimme (D3). D'autres calculs ont été effectués aux niveaux Möller Plesset (R)MP2, SCS-MP2, (R)CCSD(T), (R)MP2–F12 et la nouvelle technique explicitement corrélée clusters couplés CCSD(T)-F12, pour évaluer les performances de la théorie de la fonctionnelle de la densité (DFT) pour le traitement des composés organométalliques de grande taille. Notre étude établit la capacité et la fiabilité de la fonctionnelle M05-2X(+D3) pour la description précise des interactions covalentes et non-covalentes entre Zn^{q+} et Im car elle donne des résultats en excellent accord avec ceux issus des méthodes ab initio hautement corrélées. Les fonctionnelles PBE0 et M11 peuvent être utilisées aussi pour les applications.

Ce travail fournit des informations précieuses sur le rôle de transfert de charge et les interactions van der Waals dans les complexes Zn^{q+}Im. Ceci est important pour la compréhension des activités biologiques, environnementales et chimiques où ces entités interviennent. Nous montrons que ces effets peuvent être mesurés en utilisant les spectroscopies infrarouges lointain.

En perspective, notre travail donne quelques aperçus pour prévoir de nouveaux complexes de transfert de charge. Cela peut être utile pour la compréhension de diverses applications comme celles récemment soulignés par Terenzi et al [139]. De plus, nos résultats peuvent être utilisés pour la détermination des champs de force précis pour les métalloprotéines [140] ou les ZIFs.

Bibliographie Chapitre II :

[80] J. T. Edsall, G. Felsenfeld, D. W. S. Goodman and F. R. N. Gurd. J. Am. Chem. Soc. 76, 3054 (1954).

- [81] J. E. Bauman Jr. and J. C. Wang, Inorg. Chem. 3, 368 (1964).
- [82] I. Tabushi and Y. Kuroda. J. Am. Chem. Soc. 106, 4580 (1984).
- [83] I. Török, P. Surdy, A. Rockenbauer, L. Korecz Jr, G. J. Anthony, A. Koolhaas and T. Gajda,
- J. Inorg. Biochem. 7, 71 (1998).
- [84] D. W. Appleton and B. Sarkar, Bioinorg Chem. 7, 211 (1977).
- [85] B. L. Vallee and D. S. Auld, Proc. Matrix Metalloproteinase Conf. 7, 5-19 (1992).
- [86] G. Parkin, Chem. Rev. 104, 699 (2004).
- [87] A. Dołęga, A. Farmas, K. Baranowska and A. Herman, Inorg. Chem. Comm. 12, 823 (2009).
- [88] K. A. McCall, C. Huang and C. A. Fierke, J. Nutr. 130, 1437S (2000).
- [89] R. J. Sundberg and B. Martin. Chem. Rev. 74, 471 (1974).
- [90] A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt, Metalloproteins; John Wiley and Sons, New York (**2001**).
- [91] V. Hakkim and V. Subramanian, J. Phys. Chem. A, 114, 7952 (2010).
- [92] K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A., 103, 10186 (2006).
- [93] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi, Science, **319**, 939 (**2008**).
- [94] B. Wang, A. P. Cote, H.Furukawa, M. O'Keeffe and O. M. Yaghi, Nature, 207, 453 (2007).
- [95] B. Liu and B. Smit, J. Phys. Chem. C, 114, 8515 (2010).
- [96] H-C. Guo, F. Shi, Z. Ma and X. Liu, J. Phys. Chem. C, 114, 12158 (2010).
- [97] A. Sirjoosingh, S. Alavi and T. K. Woo, J. Phys. Chem. C , 114, 2171 (2010).
- [98] J. Liu, S. Keskin, D. S. Sholl and K. K. Jhonson, J. Phys. Chem. C , 115, 12560 (2011).
- [99] B. Zheng, M. Sant, P. Demontis and G. B. Suffritti, J. Phys. Chem. C, 116, 933 (2012).
- [100] Y. Houndonougbo, C. Signer, N. He, M. Morris, H. Furukawa, K. G. Ray, D. L. Olmsted,
- M. Asta, B. B. Laird and O. M. Yaghi, O. M. J. Phys. Chem. C, 117, 10326 (2013).
- [101] M. Prakash, N. Sakhavand and R. Shahsavari, J. Phys. Chem. C, 117, 24407 (2013).
- [102] (a) E. Pantatosaki, G. Megariotis, A.-K. Pusch, C. Chmelik, F. Stallmach and G. K.
- Papadopoulos, J. Phys. Chem. C, 116, 201 (2012); (b) E. Pantatosaki, H. Jobic, D. I. Kolokolov,
- S. Karmakar, R. Biniwale and G. K. Papadopoulos, J. Chem. Phys., 138, 034706 (2013).

[103] (a) C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934); (b) L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov and J. A. Pople, J Chem Phys. 110, 4703 (1999); (c P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy, J. A. Pople, Chem. Phys. Lett. 130, 186 (1991).

[104] M. Prakash, V. Subramanian and S. R. Gadre, J. Phys. Chem. A, **113**, 12260 (**2009**); M. Prakash and V. Subramanian, Phys. Chem. Chem. Phys. **13**, 21479 (**2011**).

[105] J.-P. Piquemal, A. Marquez, O. Parisel and C. Giessner-Prettre, J. Comput. Chem. 26, 1052 (2005).

[106] V. M. Rayon, H. Valdes, N. Diaz and D. Suarez, J. Chem. Theory Comput. 4, 243 (2008).

[107] W. Y. Jiang, N. J. DeYonker, J. J. Determan and A. K. Wilson, J. Phys. Chem. A, **116**, 870 (**2012**).

[108] S. M. Tekarli, M. L. Drummond, T. G. Williams, T. R. Cundari and A. K. Wilson, J. Phys. Chem. A, **113**, 8607 (**2009**).

[109] R. Cini, J. Biomol. Struct. Dyn. 16, 1225 (1999); J. E. Yazal and Y. P. Pang, J. Phys. Chem. B, 103, 8773 (1999); M. Smieško and M. Remko, J. Biomol. Struct. Dyn. 20, 759 (2003).
[110] J. E. Yazal, R. R. Roe and Y. P. Pang, J. Phys. Chem. B, 104, 6662 (2000).

[111] M. Smiesko and M. Remko, Chem. Pap. 59, 310 (2005).

[112] (a) J. Sponer, K. E. Riley and P. Hobza, Phys. Chem. Chem. Phys. 10, 2595 (2008); (b)
M. Prakash, K. Gopalsamy and V. Subramanian, J. Phys. Chem. A, 113, 13845 (2009); (c) S.
Kumar, P. Biswas, I. Kaul and A. Das, J. Phys. Chem. A, 115, 7461 (2011).

[113] (a) M. Prakash, K. Gopalsamy and V. Subramanian, J. Chem. Phys. 135, 214308 (2011);
(b) M. Prakash, K. Mathivon, D. M. Benoit, G. Chambaud and M. Hochlaf. Phys. Chem. Chem. Phys. 16, 12503 (2014).

[114] (a) Y. Zhao and D. G. Truhlar, Phys. Chem. Chem. Phys.7, 2701 (2005); (b) Y. Zhao, N.

E. Schultz and D. G. Truhlar, J. Chem. Theory Comput.2, 364 (2006); (c) Y. Zhao and D. G.

Truhlar, Theor. Chem. Acc. **120**, 215 (**2008**). (d) R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. **2**, 2810 (**2011**).

[115] J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys. 105, 9982 (1996).

[116] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

[117] (a) S. Grimme, J. Chem. Phys. 124, 034108 (2006); (b) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 132, 154104 (2010); (c) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

[118] M. J. Frisch, et al., Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford, CT, (2013).

[119] (a) M. H. Gordon, J. A. Pople and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988); (b) M.
H. Gordon and T. H. Gordon, Chem. Phys. Lett. 220,122 (1994); (c) G. Knizia and H-j Wener J.
Chem. Phys. 128, 154103 (2008).

[120] S. Grimme, J. Chem. Phys. 118, 9095 (2003).

[121] (a) C. Hampel, K. Peterson and H.-J. Werner, Chem. Phys. Lett. **190**, 1 (**1992**) and references therein; (b) M. J. O. Deegan and P. J. Knowles, Chem. Phys. Lett.**227**, 321 (**1994**); (c)

P. J. Knowles, C. Hampel and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993); (d) Erratum: J. Chem. Phys. 112, 3106 (2000); (e) J. D. Watts, J. Gauss and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993).

[122] H. -J. Werner, T. B. Adler and G. Knizia, J. Chem. Phys. 126, 164102 (2007).

[123] (a) T. B. Adler, F. R. Manby and H. -J. Werner, J. Chem. Phys. 130, 054106 (2009); (b) T.
B. Adler and H. -J. Werner, J. Chem. Phys.130, 241101 (2009); (c) G. Knizia, T. B. Adler and H.-J. Werner, J. Chem. Phys.130, 054104 (2009); (d) T. B. Adler, G. Knizia and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007); (e) G. Knizia and H.-J. Werner, J. Chem. Phys.128, 154103 (2008).

[124] (a) T. H. Dunning. J. Chem. Phys. 90, 1007 (1989); (b) R. A. Kendall, T. H. Dunning and R. J. Harrison. J. Chem. Phys. 96, 6796 (1992); (c) A. K. Wilson, D. E. Woon, K. A. Peterson and T. H. Dunning, Jr. J. Chem. Phys.110, 7667 (1999).

[125] K. A. Peterson and C. Puzzarini, Theor. Chem. Acc. 114, 283 (2005).

[126] J. G. Hill and K. A. Peterson, J. Chem. Theory Comput. 8, 581 (2012).

[127] D. H. Bross, J. G. Hill, H.-J. Werner and K. A. Peterson, J. Chem. Phys., 2013, 139, 094302.

[128] H. J. Werner, et al Molpro 2012.1 a package of ab initio programs (2012).

[129] (a) G. Knizia.T. B. Adler and H. Werner. J. Chem. Phys.130, 054104 (2009); (b) F. Lique, J. Kłos and M. Hochlaf, Phys. Chem. Chem. Phys.12, 15672 (2010); (c) P. Halvick, T. Stoecklin, F. Lique and M. Hochlaf, J. Chem. Phys.135, 044312 (2011); (d) Y. Ajili, K. Hammami, N. E. Jaidane, M. Lanza, Y. N. Kalugina, F. Lique and M. Hochlaf, Phys. Chem. Chem. Phys.15, 10062 (2013); (a) O. Yazidi and M. Hochlaf. Phys. Chem. Chem. Phys.15, 10158 (2013); (f) K. Mathivon, R. Linguerri and M. Hochlaf. J. Chem. Phys. 139, 164306 (2013).

[130] M. Prakash, G. Chambaud, M. Mogren Al-Mogren and M. Hochlaf, J. Mol. Mod., 20, 2534 (2014).

[131] D. Schluns, K. Klahr, C.Muck-Lichtenfeld, L. Visscherb and J. Neugebauer, Phys. Chem. Chem. Phys., 10, 1039 (2015).

[132] S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

[133] W. K. Allen, D. Leung, B. Ryan, R. Julian and W. H. Breckenridge, J. Chem. Phys.**110**, 6298 (**1999**).

[134] A.Lagutschenkov, U. J. Lorenz and O. Dopfer, Int. J. Mass Spectrometry, 308, 316 (2011).

[135] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A ,110, 5121 (2006).

[136] (a) S. Kumar, V. Pande and A. Das, J. Phys. Chem. A, 116, 1368 (2012); (b) S. K. Singh,

S. Kumar and A. Das, Phys. Chem. Chem. Phys. 16, 8819 (2014).

[137] E. D. Glendening, A. E. Reed, J. A. Carpenter and F. Weinhold, NBO Version 3.1.

[138] M. Y. Choi and R. E. Miller, J. Phys. Chem. A, 110, 9344 (2006).

[139] A.Terenzi, A.Lauria, A. M. Almerico and G. Barone. Dalton transactions, 44, 3527 (2014).

[140] R. M.-Adasme, K. Sadeghian, D. Sundholm and C. Ochsenfeld. J. Phys. Chem. B, **118**, 13106 (**2014**).

CHAPITRE III

Etude systématique des complexes $Zn^{q+}Im_n$ (où q = 0, 1, 2; n = 1 – 4)

I. Introduction

Les complexes entre l'atome de zinc et la molécule d'imidazole, $Zn^{q+}Im_n$ (q = 0, 1, 2; n = 1 - 4) jouent un rôle très important en chimie, en biologie, en environnement et en industrie [141-144]. Par exemple les structures de type zéolite-imidazole (Zeolitic-Imidazolate Frameworks ou ZIFs) sont composées de molécules organiques liées entre elles par des ions métalliques bivalents M^{2+} (e.g. $M^{2+}=Zn^{2+}/Co^{2+}$). Les ZIFs sont généralement des structures cristallines poreuses formées par la répétition de ces unités structurelles tétraédriques [145-147]. Ceci permet de laisser entrer les molécules de gaz dans la structure. Les caractéristiques de ces matériaux sont utiles pour des applications dans les domaines du stockage, la séparation et la séquestration du CO₂ [145-147], principalement en raison de leurs stabilités chimiques et thermiques exceptionnelles. Plusieurs études expérimentales [212] et théoriques ont démontrés la capacité des structures de type zéolites (zeolitic-imidazolate-frameworks ou ZIFs) à capture le CO₂.

Les techniques de modélisation moléculaire ont joué un rôle important pour prédire de manière fiable la structure, la stabilité et les diverses propriétés d'adsorption et de séparation de matériaux ZIFs.

Dans les milieux biologiques, les complexes entre Zn et la molécule d'imidazole constituent la partie principale des sites actifs de certains métalloenzymes. En effet, les complexes entre les ions Zn et des entités imidazole (Im) sont impliqués dans de nombreux processus physiologiques fondamentaux comme la respiration, la photosynthèse, ou encoure le contrôle de l'équilibre acido-basique chez les organismes vivants [148-149]. Dans l'enzyme de conversion, la thermolysine (figure 3.1), les hydrolases et l'anhydrase carbonique (figure 3.2) [150-153], le cation Zn^{2+} et la molécule d'imidazole sont fortement impliqués dans l'activité catalytique de ces enzymes [154-155].

Figure 3.1 : La thermolysine [213]

Figure 3.2 : L'anhydrase carbonique [214]

En générale, les propriétés des complexes Zn^{q+}Im_n ne sont pas bien connues. L'étude de la structure et de la liaison au sein des complexes Zn^{q+}Im_n est importante pour bien comprendre leurs rôles au niveau microscopique dans les enzymes et au sein des ZIFs. Par ailleurs, la caractérisation de l'interaction au sein des complexes ZnIm est cruciale pour contrôler et moduler la capacité potentielle des ZIFs dans la capture et la séquestration des gaz et l'activité des métalloenzymes. De telles études sont rares. Nous pouvons citer, par exemple, la combinaison de l'étude théorique par la méthode DFT et l'étude de la dissociation induite par collision avec un gaz inerte Xe au moyen d'un nouveau spectromètre de masse en tandem à faisceaux d'ions guidés des complexes $Cu^{+}Im_n$ (n = 1, 2, 3) par Rannulu and Rodgers [156]. En 2000, Peschke et al.[157] ont calculé les énergies de liaison (BEs) des complexes $Zn^{2+}Im_n$ (n = 1, 2, 3) avec la fonctionnelle B3LYP/6-311++G(d,p). Les structures optimisées et les énergies ont été utilisées pour comprendre la structure native de l'anhydrase carbonique du complexe Znhistidine. En 2011, Dopfer et ses collaborateurs [158] ont effectué une analyse structurelle et vibrationnelle des clusters $Zn^{2+}Im_n$ avec n=1–4 au niveau B3LYP en utilisant les base suivantes : cc-pVDZ et aug-cc-pVTZ. Leurs résultats de chimie quantique ont été utilisés pour attribuer le spectre IR des complexe Zn²⁺Im_n en phase gazeuse. Fait intéressant, ils ont montré que le cation Zn^{2+} est coordonné avec quatre ligands imidazoles (Im) dans les deux phases liquide et gazeuse. Ils ont également montré que la liaison au sein du complexe Zn²⁺Im₄ est due au transfert de charge de type σ alors que les interactions de type π ont des contributions mineures. Pour le complexe Zn²⁺Im, Piquemal et al.[159] ont déterminé une énergie d'interaction intermoléculaire en utilisant la base DZVP2, la méthode MP2 et les fonctionnelles PW91, B3PW91, BLYP, et B3LYP de la DFT. Leurs résultats ont été confirmés ensuite par Rayon et coll.[160] en utilisant des méthodes de calculs ab initio. Dans le chapitre précédent, nous avons traité la structure des complexes $Zn^{q+}Im$ (q = 0, 1, 2) et leur liaison en utilisant les différentes méthodes ab initio (MP2, SCSMP2 [161], (R)CCSD(T) [162-166], (R)MP2-F12 [167], (R)CCSD(T)-F12 [168-172]) et les fonctionnelles (PBE) [173], PBE0 [174], M05-2X [175-177], et M11 [178]). Nous avons élucidé le rôle du transfert de charge et des interactions de van der Waals (vdWs) au sein de ces complexes $Zn^{0}Im_{n}$ (n> 1) ou les clusters $Zn^{+}Im_{n}$ (n> 1). Dans cette partie, nous procédons à une étude systématique des clusters $Zn^{q+}Im_{n}$ (q = 0, 1, 2; n= 1 – 4) où l'atome de zinc est lié avec deux, trois, ou quatre molécules d'imidazole. Cela devrait donner un aperçu sur le rôle de la charge métallique lors du remplissage séquentiel de la première couche de coordination par les ligands imidazoles (Im) et sur les contributions d'induction, électrostatique, d'échange et de dispersion au sein des clusters $Zn^{q+}Im_{n}$. Ces résultats sont transposables sur les ZIFs et les Zn-enzymes.

II. Détails des calculs

Les ligands organiques contenant de l'azote lié directement au cation Zn²⁺ ont été traités en utilisant différentes fonctionnelles de la DFT [180-183]. Selon ces travaux, plusieurs fonctionnelles de la DFT échouent dans la prédiction précise des propriétés thermochimiques et structurelles des complexes contenant des métaux de transition 3d [184]. Cela est dû à la difficulté de la description simultanée et précise des liaisons covalentes [185] et non-covalentes [186-187] au sein de ces espèces organométalliques. Dans nos études récentes présentées dans le chapitre précédent des complexes Zn^{q+} Im (q = 0, 1, 2) utilisant les différentes bases, méthodes post-Hartree-Fock et les fonctionnelles de la DFT [179], nous avons établi la capacité et la fiabilité des fonctionnelles PBE0 et M05-2X, associées à la base 6-311++G(d,p) [188] pour la description précise et simultanée des propriétés des complexes organométalliques. En effet, nous avons montré que ces deux fonctionnelles conduisent à des résultats proches de ceux issus des méthodes ab initio hautement corrélées, alors que le coût des calculs est fortement réduit. Elles peuvent donc être appliquées pour prédire avec une bonne précision la structure et le spectre de composés organométalliques avec une grande réduction du coût de calcul. Dans cette partie, nous avons utilisé les fonctionnelles PBE0 et M05-2X pour déterminer les structures d'équilibre optimisées des clusters $Zn^{q+}Im_n$ (q = 0, 1, 2; n=1-4) et Im_n (n =2-4). Nous avons examiné aussi la nature de la liaison chimique (covalente, transfert de charge et van der Waals (vdWs). Nous avons déduit les énergies de liaison avec et sans inclusion de la correction de dispersion de Grimme [189-190] (DFT-D3) pour mettre en évidence le rôle de la dispersion dans la stabilité des clusters $Zn^{q+}Im_n$ (q = 0, 1, 2; n=1–4) et Im_n (n=2-4). Tous les calculs électroniques ont été réalisés avec les programmes GAUSSIAN09 et (G09-D, 01) [191].

En plus des structures d'équilibres, les énergies de liaison (BEs) des complexes ont été calculées en utilisant l'approche supermolécule corrigée de l'erreur due à la superposition des bases (basis set superposition error ou BSSE) en utilisant la méthode de contrepoids (CP) de Boys et Bernardi [192]:

$$\mathbf{BE} = \left(\mathbf{E}_{\text{Complex}} - \sum_{i=1}^{n} \mathbf{E}_{i}\right)$$

où $E_{complex}$ est l'énergie totale du complexe, E_i est l'énergie du monomère et n est le nombre total des monomères dans le cluster.

Lorsque le proton (H⁺) est transféré du $ZnIm_{n-1}$ vers la molécule d'imidazole (Im) adjacente, nous considérons l'équation suivante pour prédire les énergies de liaison (BEs) :

$$BE = \left(E_{Complex} - \left[E(Zn^{q+}) + E(Im) + E(ImH^{+}) + E(Im^{d})\right]\right)$$

où $E_{Complex}$ est l'énergie totale du complexe, E (Zn^{q+}) est l'énergie du cation Zn^{q+}, E(Im), E (ImH⁺) et E(Im^d) sont les énergies des monomères Im, Imidazole protoné (ImH⁺) et Imidazole déprotoné (Im^d), respectivement.

Nous avons considéré différents états de charges et de multiplicités de spin pour les complexes $Zn^{q+}Im_n$. Ils correspondent à un état singulet pour les complexes neutres et dicationiques et un état doublet pour les simplement chargés. Pour l'imidazole (Im) protoné et déprotoné, nous les avons pris dans leurs états singlet. Finalement, nous avons effectué une analyse orbitalaire (NBO : Natural Bond Orbital) en utilisant le code NBO6 [193] pour quantifier la nature des interactions intermoléculaires et le transfert de charge entre l'atome de zinc et la molécule d'imidazole.

III. Structures d'équilibre optimisées, énergies de liaison, stabilité relative

Les structures d'équilibre optimisées des complexes Im_n (n =2, 3, 4) et $Zn^{q+}Im_n$ (q =0, 1, 2; n=2, 3, 4) aux niveaux M05-2X/6-311++G(d,p) et PBE0/6-311++G(d,p) sont représentées dans les Figures 3.3-3.6 et les Tableaux 3.2, 3.4 et 3.7. Nous donnons la totalité des énergies totales et des paramètres géométriques en coordonnées cartésiennes au niveau M05-2X/6-311++G(d,p) en annexe [2]. Nos calculs montrent que la molécule d'imidazole isolée possède une structure d'équilibre proche de celle de l'imidazole dans les complexes Zn^{q+}Im (q=0, 1, 2). Par conséquent, nous nous sommes concentrés sur la discussion des paramètres géométriques entre l'atome de zinc et la molécule d'imidazole (Im). Pour les complexes Zn^{+q+}Im, nous nous référons à nos travaux récents traitant ces espèces [179] et présentés dans le chapitre précédent. Les énergies de liaison (BEs) corrigées de la BSSE des complexes Im_n (n =2, 3, 4) et $Zn^{q+}Im_n$ (q =0, 1, 2; n=2, 3, 4) sont données dans les tableaux 3.1, 3.3, 3.5 et 3.8. Ces énergies de liaison ont été calculées avec les fonctionnelles M05-2X/6-311++G(d,p) et PBE0/6-311++G(d,p) avec ou sans inclusion de la correction de dispersion (DFT+D3). Nous avons également inclus la correction de l'énergie du point zéro (ZPE) pour les énergies de liaison (BEs) obtenues par la fonctionnelles M05-2X+D3. Comme remarqué dans le chapitre précédent, la fonctionnelle PBE0+D3 conduit à des énergies de liaison (BEs) plus grandes de 2-4 kcal.mol⁻¹ que celles issues de la fonctionnelle PBE0. Alors que l'effet de la correction D3 sur les énergies de liaison obtenues avec la fonctionnelle M05-2X est moindre parce que les énergies de liaison issues de la fonctionnelle M05-2X+D3 diffèrent de moins de 1 kcal.mol⁻¹ de celles de la fonctionnelle M05-2X.

Pour les espèces neutres [179], on trouve que les distances intermonomères et les énergies de liaison prédites en utilisant la théorie de la fonctionnelle de la densité avec inclusion de la correction de dispersion de Grimme (DFT-D3) sont significativement plus grandes que les valeurs respectives obtenues uniquement avec la DFT sans inclusion de cette correction. Ceci est dû à la forte contribution des interactions van der Waals (VDWS) au sein de ces espèces. En particulier, le caractère hautement dispersif de la structure Zn⁰Im II est affecté par la correction D3. Par ailleurs, l'incorporation de la correction ZPE ne change pas l'ordre relatif des énergies de liaison des isomères. Dans la suite, nous allons citer les énergies de liaison obtenues par la fonctionnelle M05-2X+D3 (avec ZPE).

Figure 3.3 : Géométries d'équilibre optimisées des complexes Im_n (n = 2, 3, 4). En rouge nous donnons les distances (en Å) des liaisons hydrogène.

Tableau 3.1 : Energies de liaison (BEs, kcal.mol⁻¹) des complexes Im_n (n = 2, 3, 4) calculées en utilisant différentes fonctionnelles de la DFT^a. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) pour ces calculs.

T	DDE0		MOS ON	MOS ON DO	M052X+D3	anciens
Im _n	PBE0	PBE0+D3	M05-2X	M05-2X+D3	(avec ZPE)	travaux
			In	n _n		
Im _{2a}	-9,62	-10,87	-9,38	-9,84	-8,94	-9,98 ^{b)}
Im _{2b}	-	-	-6,93	-7,64	-6,62	-8,10 ^{b)}
Im _{3a}	-20,46	-23,61	-20,23	-21,13	-19,34	
Im _{3b}	-15,63	-18,61	-17,66	-18,14	-15,99	
Im _{3c}	-11,92	-13,29	-11,39	-11,88	-10,15	
Im _{4a}	-23,23	-27,08	-23,56	-24,77	-21,50	
Im _{4b}	-12,78	-14,16	-12,13	-12,62	-9,78	

^{a)} D3 est la correction de dispersion de Grimme inclue avec les méthodes DFT. ^{b)}CCSD(T)/CBS. Ref. [195].

Pour les dimères Im₂, nous avons trouvé deux formes stables (notées Im_{2a} et Im_{2b}). Le tableau 3.1 montre que le dimère Im_{2a} est plus stable que le dimère Im_{2b} . Dans l'isomère Im_{2a} la liaison est due à une liaison hydrogène entre la liaison N-H d'une entité et l'atome de l'azote non protoné de l'autre cycle imidazole. Le dimère Im_{2b} a la structure du ferrocène. Les structures Im_{2a} et Im_{2b} ont été déjà identifiées précédemment par Choi et Miller [194] qui ont combiné des études théoriques et des études par spectroscopie infrarouge IR. Les calculs CCSD(T)/CBS et SAPT par Karthikeyan et Nagase [195] ont confirmé leur existence aussi.

Pour les dimères Im_{2a} et Im_{2b}, les énergies de liaison (BEs) calculées avec la fonctionnelle M05-2X+D3/6-311++G(d,p) sont proches de celles obtenues par la méthode CCSD(T)/CBS. Comme discuté précédemment, ceci valide l'utilisation de la fonctionnelle M05-2X+D3/6-311++G(d,p) pour décrire les complexes faiblement liés.

Pour le trimère Im₃, trois structures ont été identifiées: Im_{3a}, Im_{3b} et Im_{3c}. Elles sont des clusters de type chaine où les molécules d'imidazole sont reliées par des liaisons hydrogène comme celles pour les dimères. Le dimère Im_{3a} correspond à la forme la plus stable avec une énergie de liaison (BE) d'environ -19,3 kcal. mol⁻¹ suivie par Im_{3b} à ~ -16,0 kcal.mol⁻¹ et Im_{3c} à ~ -10,1 kcal.mol⁻¹. Les trimères Im_{3a} et Im_{3c} ont déjà été caractérisés au niveau B3LYP/6-311+G* par Yan et al.[196]. Les deux liaisons hydrogène au sein des espèces Im₃, la réduction des effets stériques, les interactions dipôle–dipôle et la maximisation de recouvrements des orbitales moléculaires dans le trimère Im_{3a} sont en faveur de sa stabilisation. Par contre le dimère Im_{3c} est stabilisé uniquement par des liaisons hydrogène.

Pour le tétramère Im₄, nous avons caractérisé deux isomères : l'un cyclique plan (Im_{4a}) et l'autre de type chaine (Im_{4b}). Le tétramère Im_{4a} est le plus stable par ce qu'il présente quatre liaisons hydrogène et une grande délocalisation électronique sur tous les hétérocycles tandis que le tétramère Im_{4b} possède seulement trois liaisons hydrogènes.

Les structures d'équilibre optimisées des molécules d'imidazole isolées Im_n (n= 2, 3, 4) ont été liées à un atome de zinc afin de former une configuration analogue à l'environnement des ZIFs. Le but était de construire la structure dans son ensemble en optimisant des parties de plus en plus importantes, en utilisant des résultats précédents pour simplifier la résolution et réduire les temps de calcul. Nous avons calculé les fréquences des complexes $Zn^{q+}Im_n$ (q =0, 1, 2; n=2, 3, 4) (voir Annexe [2]) afin de vérifier leur nature (minimum où état de transition). Ces fréquences n'étant pas imaginaires, ces structures sont donc des minima. Par la suite on a décidé de se concentrer sur leurs études. Ce type de structure présente des avantages pour piéger le CO₂, mais ne peut pas être utilisé tel quel, car il serait difficile de la produire et de la stabiliser sans un support. Ensuite, nous étudierons l'importance des différentes interactions covalentes et non-covalentes entre les clusters $Zn^{q+}Im_n$ (où q=0, 1, 2; n=1-4). Enfin, nous déterminerons les transferts de charge à travers ces interactions pour mieux comprendre la formation de ces complexes. Les figures 3.3-3.6 montrent les géométries possibles pour l'atome de zinc associé à deux, trois et quatre molécules d'imidazole.

Figure 3.4 : Géométries d'équilibre optimisées des complexes $Zn^{q+}Im_2$ (q = 0, 1, 2) et la définition des paramètres donnés dans le Tableau 3.2. Les chiffres en rouge correspondent aux charges sur l'atome de zinc et les atomes d'azote N.

Tableau 3.2: Paramètres géométriques principaux des complexes $Zn^{q+}Im_n$ (q = 0, 1, 2; n = 1-2) calculés avec les fonctionnelles PBE0/6-311++G(d,p) et M05-2X / 6-311++G(d,p). Les distances sont en Å.

		PBE0 / 6-311++G(d,p)	M05-2X / 6-311++G(d,p)
		Zn ^{q+} Im	
Zn ⁰ Im I ^{a)}	R _{Zn-N}	3,091	3,198
Zn ⁰ Im II ^{a)}	R _{Zn-π}	2,896	2,755
Zn ⁺ Im	R _{Zn-N}	2,009	2,022
Zn ²⁺ Im	R _{Zn-N}	1,869	1,882
	<u> </u>	Zn ^{q+} Im ₂	
Zn ⁰ Im _{2a}	R _{Zn-N}	1,886	1,968
Zn ⁰ Im _{2b}	R _{Zn-π}	2,731	2,657
Zn ⁰ Im _{2c}	R _{Zn-π}	2,663	2,755
Zn ⁰ Im _{2d}	R _{Zn-π}	_ b)	2,718
Zn ⁺ Im _{2a}	R _{ZnN}	2,072	2,080
Zn ⁺ Im _{2b}	R _{ZnN}	2,076	2,082
Zn ²⁺ Im ₂	R _{ZnN}	1,871 1,876 ^{c)}	1,892

^{a)} Ref. [179].

 $^{b)}$ se transforme en $Zn^{0}Im_{2b}$ pendant les optimisations.

^{c)} B3LYP/cc-pVTZ. Ref. [157].

Tableau 3.3 : Energies de liaison (BEs, kcal.mol⁻¹) des complexes $Zn^{+q}Im_n$ (n = 1-2) calculées en utilisant différentes fonctionnelles. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) pour ces calculs.

					M05-2X+D3	anciens
$Zn^{q+}Im_n$	PBE0	PBE0+D3	M05-2X	M052X+D3		
					(avec ZPE)	travaux
			Zn ^{q+} Im			
0 a)	1		1			1
Zn ^o Im I ^c	-1,10	-2,32	-1,28	-1,48	-1,08	
	1.10	2.00	0.10	2.45		
	-1,10	-2,90	-2,19	-2,45	-2,25	
77 (†1 (c)	(2.9	((20	((00	((12		
Zn Im "	-62,8	66,30	-66,00	-66,12	-64,81	
						192 2 ^d
						-165,2
$7n^{2+}$ Im ^{b)}	-162.5	-184.04	-177.0	-177 07	176.62	-170.0^{e}
2/11 1111	-102,5	-104,04	-177,9	-177,97	-1/0,03	-170,0
						-181.8 ^{f)}
						101,0
			Zn ^{q+} Im ₂			
Zn ⁰ Im ₂	-11 65	-14 39	-11 28	-11 97	11.20	
2311 11112a	11,00	1,55	11,20	11,57	-11,20	
Zn ⁰ Im.	_11.20	-15.21	-12.66	-13.40	12.20	
	-11,20	-13,21	-12,00	-13,40	-12,29	
7.0 1	6 70	7 05	6.07	7.62	6 7 0	
	-0,78	-7,83	-0,97	-7,02	-6,70	
	10.05	14.66	0.01	0.04		
Zn°Im _{2d}	-10,95	-14,66	-8,81	-9,84	-8,90	
	107.00		100.01	100.40		
Zn'Im _{2a}	-107,99	-110,24	-108,01	-108,40	-106,96	
77 +1	106.06	100.00	106.60	100.00		
$Ln^{1}Im_{2b}$	-106,86	-108,98	-106,62	-106,96	-105,60	
						210.2 ^d
$7n^{2+}Im$	-300 72	_311 17	_312 51	_312.61	210.94	-510,2
	-309,12	-311,17	-312,31	-312,01	-310,86	-310 0 ^{f)}
						510,0
	1	1	1	1	1	1

^{a)}D3 est la correction de dispersion de Grimme incluse avec les méthodes DFT, ^{b)}CCSD(T)/CBS.Ref.[195]; ^{c)}Ref.[179]; ^{d)}B3LYP/cc-pVTZ.Ref.[157]; ^{e)}MP2/cc-pVTZ.Ref.[157]; ^{f)}B3LYP/6-311++G(d,p).Ref.[157]. Pour les complexes neutres entre l'atome de zinc et le dimère Im₂, nous avons trouvé quatre formes stables: Zn^0Im_{2a} , Zn^0Im_{2b} , Zn^0Im_{2c} et Zn^0Im_{2d} . Le tableau 3.3 montre que le cluster Zn^0Im_{2b} est le plus stable avec une énergie de liaison (BE) d'environ -12,3 kcal.mol⁻¹, suivi par le complexe Zn^0Im_{2b} à -11,20 kcal/mol. Les clusters Zn^0Im_{2c} et Zn^0Im_{2d} sont situés, respectivement, à ~ -6,7 kcal/mol et ~ -8,9 kcal/mol. Le complexe $Zn0Im_{2a}$ peut être considéré comme un complexe Zn^0Im I [179] lié a une molécule imidazole (Im) par une liaison hydrogène. Par conséquent, toutes les liaisons intermonomères au sein de ce cluster sont de type σ . Zn^0Im_{2b} correspond à un complexe entre Zn^0Im II et Im via une liaison hydrogène. Cette liaison hydrogène qui est entre les deux imidazoles alors que l'atome de Zn est lié à la molécule d'imidazole (Im) par une liaison de type π -stacking. Le complexe Zn^0Im_{2c} est formé par un atome de zinc coordiné à deux molécules imidazoles par des interactions de type π -stacking. Le complexe Zn^0Im_{2d} correspond à une molécule imidazole interagissant par une liaison de type π stacking avec le complexe Zn^0Im II ou à un atome de Zn relié avec le dimère Im_{2b} par une liaison de type π -stacking.

Il est intéressant de noter que la distance d'équilibre (R_{Zn-N}) au sein du complexe Zn^0Im_{2a} (~1,9 Å) est distinctement plus courte que celle dans le complexe Zn^0Im I (~3,2 Å, Tableau 2.1), alors que les distances d'équilibre ($R_{Zn-\pi}$) des complexes Zn^0Im_{2b} , Zn^0Im_{2c} et Zn^0Im_{2d} sont peu changées par rapport à celle du complexe Zn^0Im II isolé. En effet, cette distance est réduite de ~ 0,1 Å lors de l'interaction du complexe Zn^0Im II avec le regroupement imidazole (Im). Ceci est la signature des perturbations des interactions entre la molécule d'imidazole et le Zn après la formation de tels clusters.

Pour les espèces ioniques Zn^+Im_2 , deux formes stables ont été trouvées, Elles sont notées Zn^+Im_{2a} et Zn^+Im_{2b} . Ces deux formes présentent une liaison Zn-N de type σ (en raison du transfert de charge entre le cation Zn^+ et la molécule d'imidazole) et une interaction $C-H\cdots\pi$ entre deux molécules imidazoles liées à l'atome de zinc. Ces isomères présentent des énergies de liaison (BEs) (~ -106,0 kcal.mol⁻¹) proches. Le complexe Zn^+Im_{2a} est légèrement plus stable en raison de la stabilisation dipôle-dipôle favorable au sein de ce cluster.

Pour le complexe $Zn^{2+}Im_{2}$, une forme stable uniquement a été trouvée, où chaque molécule imidazole liée à un cation Zn^{2+} par une liaison N-Zn de type σ et où les deux imidazoles sont orthogonales entre eux. Cette forme particulière peut être expliquée par l'orbitale HOMO de ce dication. En effet, l'analyse des orbitales moléculaires (figure 3.7) révèle qu'un recouvrement favorable entre les orbitales atomiques (AO) 3d de Zn et l'orbitale moléculaires (OM) π^* de l'imidazole exige que les deux molécules imidazoles appartiennent à des plans orthogonaux. Une grande BE (de ~-310,9 kcal.mol⁻¹) est calculée, qui se compare bien avec la valeur obtenue aux niveaux B3LYP/cc-pVTZ BE (de -310,2 kcal.mol⁻¹) [157] et B3LYP/6-311 ++ G (d, p) BE (de - 310,0 kcal.mol⁻¹) [158] déterminées précédemment.

Figure 3.5: Géométries d'équilibre optimisées des complexes $Zn^{q+}Im_3$ (q=0, 1, 2) et la définition des paramètres donnés dans le Tableau 3.4. Les chiffres rouges correspondent aux charges sur le Zn et les atomes d'azote N.

Tableau 3.4: Paramètres géométriques principaux (en Å) des complexes $Zn^{q+}Im_3$ (q = 0, 1, 2) calculés avec les fonctionnelles PBE0/6-311++G(d,p) et M05-2X/6-311++G(d,p).

		PBE0/6311++G(d,p)	M05-2X / 6-311++G(d,p)
Zn ⁰ Im _{3a}	R _{Zn-π}	2,917	2,750
Zn ⁰ Im _{3b}	R _{Zn-π}	2,994	2,772
Zn ⁰ Im _{3c}	R _{Zn-N}	2,739	2,876
Zn ⁰ Im _{3d}	R _{Zn-π}	2,701	2,565
Zn ⁺ Im _{3a}	R _{Zn-N}	2,125	2,129
7 n ⁺ Im	R _{Zn-N1}	2,083	2,091
	R _{Zn-N2}	2,039	2,051
$\mathbf{Zn}^{+2}\mathbf{Im}_{3a}$	R _{Zn-N}	1,957 1,968 ^{c)}	1,967
$7n^{2+}Im$	R _{Zn-N1}	1,834	1,853
	R _{Zn-N2}	1,882	1,903

^{c)} B3LYP/cc-pVTZ. Ref. [157].

Tableau 3.5 : Energies de liaison (BEs, kcal.mol⁻¹) des complexes $Zn^{q+}Im_3$ (q=0, 1, 2) calculées en utilisant différentes fonctionnelles. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) dans ces calculs.

Zn ^{q+} Im ₃	PBE0	PBE0+D3	M05-2X	M052X+D3	M05-2X+D3	anciens
					(avec ZPE)	travaux
			Zn ^{q+} Im	3		
Zn ⁰ Im _{3a}	-21,72	-26,13	-22,24	-23,45	-21,52	
Zn ⁰ Im _{3b}	-15,31	-18,94	-17,50	-18,26	-16,11	
Zn ⁰ Im _{3c}	-14,39	-17,28	-13,61	-14,33	-12,60	
Zn ⁰ Im _{3d}	-22,06	-25,33	-21,34	-22,30	-20,52	
Zn ⁺ Im _{3a}	-139,14	-142,37	-141,65	-142,48	-139,92	
Zn ⁺ Im _{3b}	-129,55	-133,19	-128,58	-129,39	-127,37	
Zn ²⁺ Im _{3a}	-391,30	-395,02	-401,16	-401,75	-398,30	-374,2 ^{d)} -374,9 ^{f)}
Zn ⁺² Im _{3b} ^{g)}	-478,75	-482,90	472,0	-473,52	-470,96	

^{d)} B3LYP /cc-pVTZ. Ref.[157]; ^{f)} B3LYP/6-311++G(d,p).Ref.[158] ^{g)} complexe de transfert de protons. Ref. [158].

Les interactions d'un atome de Zn avec le trimère Im_3 conduisent à la formation de quatre formes stables: Zn^0Im_{3a} , Zn^0Im_{3b} , Zn^0Im_{3c} et Zn^0Im_{3d} . Dans les clusters Zn^0Im_{3a} , Zn^0Im_{3b} et Zn^0Im_{3d} , ces interactions sont de type van der Waals (vdWs) en plus des liaisons hydrogène entre les ligands imidazoles. Ces trois structures correspondent à une structure du ferrocène, où l'imidazole central se lie aux autres molécules imidazoles par des liaisons hydrogène. Dans le cas de Zn^0Im_{3a} , nous avons deux liaisons hydrogène, tandis qu'une liaison hydrogène unique stabilise la structure Zn^0Im_{3b} . Pour le complexe Zn^0Im_{3d} , trois liaisons hydrogène, en plus de l'interaction π stabilise une telle structure. Leurs énergies de liaison (BEs) respectives (Tableau 3.5) sont compatibles avec cette analyse. La structure Zn^0Im_{3c} peut être considérée comme un Zn se reliant à l'azote non protoné du trimère Im_{3c} . Cette structure est la moins stable avec une BE d'environ ~ -12,6 kcal.mol⁻¹.

Pour les clusters ioniques Zn^+Im_3 et $Zn^{2+}Im_3$, deux formes sont trouvées pour chacune où le métal est lié soit à deux ou trois molécules imidazoles via des liaisons de type covalentes entre l'atome d'azote N non protoné des molécules imidazoles et le cation Zn (Figure 3.5). Au sein des clusters Zn^+Im_{3a} et $Zn^{2+}Im_{3a}$, l'atome de Zn est tricoordonné, par contre, il est bicoordonné dans les clusters Zn^+Im_{3b} et $Zn^{2+}Im_{3b}$. Par conséquent, la géométrie autour du centre métallique est presque plane. Les déviations de la planéité sont dues à des effets stériques entre les ligands imidazoles. De toute façon, cette forme favorise la délocalisation électronique sur les trois molécules d'imidazole à travers le Zn et participe, donc, à la stabilisation de ces clusters. Pour les clusters simplement chargés, la forme la plus stable est le complexe Zn^+Im_{3a} (tableau 3.5).

Strictement parlant, le complexe $Zn^{2+}Im_{3b}$ devrait être dénoté comme $ImZn^{2+}Im^{d}$ - ImH^{+} , où Im^{d} est un imidazole déprotoné (i.e anion imidazolate) et ImH^{+} est un imidazole protoné. En effet, nous observons un transfert de proton d'un imidazole (Im) à un autre induit par complexation. C'est pour la première fois qu'un processus de transfert de proton à travers une liaison hydrogène ($N\cdots H^{\delta^{+}}\cdots N$) est mis en évidence pour les clusters $Zn^{2+}Im_{n}$. Cela a déjà été remarqué pour les clusters $Cu^{+}Im_{3}$ par Rannulu et Rodgers [156]. Le Tableau 3.6 présente les énergies totales et les énergies relatives des espèces dicationiques $Zn^{2+}Im_{n}$ et de leurs limites de dissociation les plus basses.

Tableau 3.6: Energies totales (E, Hartree) et énergies relatives (E_R , kcal.mol⁻¹) des complexes $Zn^{2+}Im_3$ et de leurs limites de dissociation les plus basses calculées au niveau M05-2X+D3/6-311++ G (d, p).

	E	E _R
Zn ²⁺ Im _{3a}	-2457,58898	0,00
$Zn^{2+}Im_{3b}$	-2457,536570	32,89
$[ImZnIm^d]^+ + ImH^+$	-2457,553070	22,54
$Zn^{2+}Im_2 + Im$	-2457,469704	74,85

Ce tableau montre que la forme la plus stable est $Zn^{+2}Im_{3a}$. Il est intéressant de noter que, la limite de dissociation la plus basse ne correspond pas à la coupure simple de la liaison Zn-N dans le cluster $Zn^{2+}Im_{3a}$ (c'est-à-dire $Zn^{2+}Im_2 + Im$) mais aux fragments $[ImZnIm^d]^+ + ImH^+$. La limite de dissociation correspondante est située à 22,5 kcal.mol⁻¹ au dessus de la première. Par conséquent, le complexe $Zn^{2+}Im_{3b}$ est une espèce métastable et nous prévoyons qu'un transfert de proton peut se produire lors de la décomposition unimoléculaire des isomères les plus stables. Cela devrait être intéressant de le confirmer expérimentalement en utilisant, par exemple, des techniques de coïncidence couplées aux rayonnements de synchrotron VUV. Notez que nous observons une amélioration sur l'énergie de liaison (BE) lorsque le transfert de protons se produit (Tableau 3.6). Cet effet a déjà été remarqué au cours de l'hydratation de l'acide carbonique protoné et des clusters acide carborane-eau [197-198].

Figure 3.6 : Géométries d'équilibre optimisées des complexes $Zn^{q+}Im_4$ (q = 0, 1, 2) et définition des paramètres donnés dans le Tableau 3.7. Les chiffres en rouge correspondent aux charges sur le Zn et les atomes d'azote N

		PBE0 /6-	M05-2X / 6-					
		311++G(d,p)	311++G(d,p)					
	Zn ^{q+} Im ₄							
Zn ⁰ Im _{4a}	R _{Zn-π}	2,938	2,889					
Zn ⁰ Im _{4b}	R _{Zn-N}	2,721	2,849					
Zn ⁰ Im _{4c}	R _{Zn-π}	2,452	2,863					
		2,145	2,158					
7n ⁺ Im	R _{Zn-N} ^{d)}	2,156	2,168					
Zn m _{4a}		2,307	2,281					
		2,408	2,332					
Zn ⁺ Im _{4b}	R _{Zn-N}	2,048	2,060					
7n ⁺ Im	R _{Zn-N1}	2,133	2,137					
2.11 1111 _{4c}	R _{Zn-N2}	2,098	2,111					
7n ²⁺ Im	D	2,022	2 030					
Z 11 11114 _a	K _{Zn-N}	2,040 ^{c)}	2,030					
Zn ²⁺ Im _{4b}	R _{Zn-N}	1,845	1,866					
7n ²⁺ Im	R _{Zn-N1}	1,966	1,978					
2 311 11114 _C	R _{Zn-N2}	1,927	1,942					

Tableau 3.7: Paramètres géométriques principaux (en Å) des complexes $Zn^{q+}Im_4$ (q = 0, 1, 2) obtenus par les méthodes PBE0/6-311++G(d,p) et M05-2X/6-311++G(d,p).

^{c)} B3LYP/cc-pVTZ. Ref.[157]

d) Les quatre distances Zn-N ne sont pas équivalentes en raison de l'encombrement stérique. Les deux ligands axiaux sont fortement liés au métal, tandis que les deux autres le sont moins.

Tableau 3.8 : Energies de liaison (BEs, kcal.mol⁻¹) des complexes $Zn^{q+}Im_4$ (q = 0, 1, 2) calculées en utilisant différentes fonctionnelles. Ces BEs sont corrigées de la BSSE. Nous avons utilisé la base 6-311++G(d,p) pour ces calculs.

7n ^{q+} Im	PREO	PRF∩⊥D3	M05-2X	M052X⊥D3	M05-2X+D3	anciens
Zii iii _n	I DLU	I BEOTDS	WI03-2A		(avec ZPE)	travaux
			Zn ^{q+} Im ₂	1		
Zn ⁰ Im _{4a}	-22,77	-27,22	-23,49	-24,90	-21,39	
Zn ⁰ Im _{4b}	-15,45	-18,42	-14,48	-15,21	-12,73	
Zn ⁰ Im _{4c}	-16,76	-20,80	-14,37	-15,58	-13,00	
Zn ⁺ Im _{4a}	-157,09	-162,78	-165,07	-166,55	-163,27	
Zn ⁺ Im _{4b}	-138,41	-142,13	-137,02	-137,95	-135,20	
Zn ⁺ Im _{4c}	-145,72	-148,90	-147,02	-148,03	-146,38	
Zn ²⁺ Im _{4a}	-438,60	-442,91	-453,49	-453,79	-451,21	-418,9 ^{d)}
$Zn^{2+}Im_{4b}$ ^{g)}	-642,80	-648,56	-633,90	-635,33	-635,16	
Zn ²⁺ Im _{4c}	-411,65	-414,67	-418,07	-418,89	-416,08	

^{d)} B3LYP/cc-pVTZ. Ref. [157]; ^{g)} complexe de transfert de protons. Ref. [158].

Considérons maintenant les clusters entre le tétramère Im_4 et l'atome de Zinc neutre et ionique $(Zn/Zn^+/Zn^{2+})$.

Pour les complexes Zn^0Im_4 , nous avons trouvé trois formes stables. Elles sont notées Zn^0Im_{4a} , Zn^0Im_{4b} et Zn^0Im_{4c} . La forme Zn^0Im_{4a} est obtenue en attachant un atome de Zn à une molécule d'imidazole (Im) du tétramère Im_{4a} par une interaction de type π , conduisant à une structure du type ferrocène dans cette molécule imidazole. Ceci est accompagné par certains arrangements structuraux lors de la complexation.

Le cluster $Zn^{0}Im_{4c}$ correspond également à une structure de type ferrocène, tandis que dans le cluster $Zn^{0}Im_{4b}$, l'atome de Zn est lié au tétramère Im_{4b} par un atome d'azote déprotoné. En effet, le cluster $Zn^{0}Im_{4a}$ a une BE de ~ -21,4 kcal.mol⁻¹. La liaison au sein de ce complexe est principalement due à des liaisons hydrogène au sein du tétramère Im_{4a} . La différence d'énergie de liaison (BE) (de ~ 2,9 kcal.mol⁻¹) entre le cluster $Zn^{0}Im_{4b}$ et le tétramère Im_{4b} est cohérente

avec la présence d'une interaction van der waals (vdWs) de type σ où l'atome de Zn se lie avec le tétramère Im_{4b}.

Une structure plane autour de l'atome de zinc a été trouvée pour les formes ioniques Zn^+Im_{4a} , Zn^+Im_{4b} , Zn^+Im_{4c} , $Zn^{2+}Im_{4b}$ et Zn^+Im_{4c} . Par contre une structure tétraédrique autour du cation Zn^{2+} a été trouvée pour le cluster $Zn^{2+}Im_{4a}$. Seule la structure $Zn^{2+}Im_{4a}$ a été décrite précédemment. Toutes ces structures correspondent aux imidazoles clusterisés à l'atome de zinc ou à la molécule d'imidazole, alors qu'un transfert de proton est observé pour le cluster $Zn^{2+}Im_{4b}$, qui correspond au complexe ImH^+ - Im^dZnIm^d - ImH^+ plutôt qu'au Zn^{2+} interagissant avec quatre imidazoles. Comparés aux complexes Cu^+Im , trois formes Cu^+Im_4 , ces auteurs ont déjà été déterminées par Rannulu et Rodgers [156]. Pour les clusters $Cu^{2+}Im_4$, ces auteurs ont constaté que le cluster type $Zn^{2+}Im_{4b}$ est la forme la plus stable.

Pour les espèces dicationiques, le tableau 3.9 donne leurs énergies totales et leurs énergies relatives et celles de leurs limites de dissociation les plus basses.

Tableau 3.9: Energies totales (E, Hartree) et énergies relatives (E_R , Kcal.mol⁻¹) des complexes $Zn^{2+}Im_4$ et de leurs limites de dissociation les plus basses calculées au niveau M05-2X+D3/6-311++ G (d, p).

a 1		
Complexes	E E	E_{R}
1		IX IX
$7n^{2+}$ Im.	-2683 930638	0.00
Σ_{11} 111_{4a}	-2003,750050	0,00
7 ²⁺ 1	2692 944072	54.22
$Zn Im_{4b}$	-2083,844072	54,52
2		
$Zn^{2+}Im_{4c}$	-2683.889008	26,12
40	,	,
$[ImHIm^{d}7nIm^{d}]^{+} + ImH^{+}$	-2683 846871	52 56
	-2003,0+0071	52,50
$7n^{2+}$ Im \downarrow Im	2683 841620	55.96
$\Sigma \Pi \Pi \Pi_{3a} + \Pi \Pi$	-2003,041020	55,80
	0.600.000000	00.47
$Zn^{-1}Im_{2}^{-}+2ImH^{+}$	-2683,802390	80,47

Comme prévu, la structure tétraèdrique $Zn^{2+}Im_{4a}$ est la structure la plus stable, suivie par la structure $Zn^{2+}Im_{4c}$. Les deux sont situées au-dessous de la limite de dissociation la plus basse ($[ImHIm^dZnIm^d]^+ + ImH^+$), tandis que la structure $Zn^{+2}Im_{4b}$ est calculée pour être légèrement au-dessus. Comme pour les complexes $Zn^{2+}Im_3$, la fragmentation des complexes $Zn^{+2}Im_{4a}$ et

 $Zn^{+2}Im_{4c}$ devrait être accompagné par des processus de transfert de proton intramoléculaires avant d'atteindre la limite $[ImHIm^{d}ZnIm^{d}]^{+} + ImH^{+}$. Encore une fois, il serait intéressant de confirmer ceci à l'aide de la spectroscopie moderne.

Pour tous les complexes étudiés, la longueur des liaisons hydrogène est d'environ ~1,55-1,97 Å tandis que la liaison intermonomère Zn-Im dépend de la structure des clusters $Zn^{q+}Im_n$ et de la liaison au sein de ces complexes. Les complexes neutres ont la liaison hydrogène la plus longue alors que les systèmes chargés ont la liaison hydrogène la plus courte et des interactions plus fortes. Un examen attentif des paramètres géométriques révèle que le proton saute d'un atome d'azote vers l'autre atome d'azote. Ceci est favorisé lorsque la distance N...N est réduite. Par exemple la distance entre les deux atomes d'azote impliqués N...N (dans Zn^0Im_n), est d'environ 3,0 Å, d'environ 2,8-2,9 Å dans Zn^+Im_n et au-dessous de 2,8 Å dans les complexes $Zn^{2+}Im_n$. Lorsque la distance N...N est inférieure à 2,8 Å, un proton peut être transféré facilement à l'atome d'azote le plus proche.

IV. Nature des interactions au sein des complexes Zn^{q+}Im_n

Pour étudier la nature de la liaison au sein des complexes $Zn^{q+}Im_n$, nous avons effectué une analyse NBO (Natural Bond Orbital) et un examen des orbitales moléculaires frontières. Les résultats sont donnés dans le Tableau 3.10 et dans les Figures 3.7-3.9. Dans notre analyse, nous allons nous concentrer sur les différents types d'interactions donneur-accepteur qui participent à la stabilisation de ces complexes.

Dans le formalisme NBO, la force de l'interaction donneur-accepteur entre l'orbitale occupée du donneur (ϕ_i) et l'orbitale non occupée de l'accepteur (ϕ_j) peut être estimée par l'analyse perturbative au second-ordre à travers l'énergie (E_{ii}^2) :

$$E_{2} = \Delta E_{ij}^{(2)} = 2 \frac{\left\langle \phi_{i} \middle| \hat{F} \middle| \phi_{j} \right\rangle^{2}}{\varepsilon_{j} - \varepsilon_{i}}$$

où E₂ est l'énergie de stabilisation donneur-accepteur, ε_i est l'énergie de l'orbitale occupée i, ε_j est l'énergie de l'orbitale vacante j, 2 est le nombre d'électrons occupant l'orbitale spatiale ϕ_i et $F_{ij} = \langle \phi_i | \hat{F} | \phi_j \rangle$ est l'élément hors-diagonal de la matrice de Fock. Les figures 3.7-3.9 représentent les densités électronique des orbitales moléculaires frontières des complexes $Zn^{q+}Im_n$ (q=0, 1, 2; n = 2, 3, 4) à leur géométries d'équilibre. Ces densités électroniques ont été calculées au niveau M05-2X /6-311++G(d,p).

Ces figures révèlent principalement deux types de recouvrements: l'interaction de type σ due au recouvrement entre l'orbitale atomique (OA) 4s de Zn et la paire libre de l'atome d'azote non protoné de l'imidazole pour les clusters Zn⁰Im_{2a}, Zn⁰Im_{3c}, Zn⁰Im_{4b} et les complexes ioniques. Alternativement, l'interaction de l'orbitale atomique (OA) 4s de l'atome de Zn avec l'orbitale moléculaire anti-liante (OM) π^* la plus éloignée de l'imidazole (Im) entraine des interactions de type π -stacking pour tous les autres.

Pour les complexe Zn^{q+} Im (q = 0, 1 et 2) [179] l'analyse des orbitales moléculaires frontières (Cf. Tableau 2.4) montre que les orbitales HOMO pour les complexes Zn^{0} Im I et Zn^{+} Im résultent du recouvrement de l'orbitale atomique (OA) 4s de Zn et la paire libre de l'atome d'azote déprotoné de l'imidazole. La liaison dans le complexe Zn^{0} Im II est due à l'interaction de l'orbitale atomique (OA) 4s de Zn avec l'orbitale moléculaire (OM) π^* de la molécule d'imidazole (Im). Pour les orbitales LUMO-LUMO+2, elles sont due aux interactions soit entre la paire libre ou l'orbitale moléculaire (OM) π^* de la couche externe de l'imidazole et les orbitales atomiques (OA) 4p de Zn. Les orbitales atomiques (OA) 4s et 4p sont de nature Rydberg. Elles sont donc diffuses.

Pour les orbitales moléculaires inoccupées les plus basses (LUMO), elles correspondent au recouvrement soit entre la paire libre ou avec l'orbitale moléculaire anti-liante (OM) π^* la plus la plus éloignée de l'imidazole (Im) et les orbitales atomiques (OAs) 4p du Zinc. Pour certaines orbitales moléculaires frontières (e.g. LUMO+1 du Zn⁰Im_{3c}), nous observons la contribution d'orbitales atomiques (OAs) plus diffuses du Zn, qui sont de nature Rydberg. Ceci devrait avoir des conséquences sur la nature de leurs états excités électroniques.

Figure 3.7: Densités électroniques des orbitales moléculaires frontières des complexes $Zn^{q+}Im_2$ (q=0,1,2) (iso surface de densité tracée pour 0,02 u.a) calculées au niveau M05-2X/6-311++G(d,p).

Espèces moléculaires	Structure	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2
Zn ⁰ Im _{2a}	್ ್ರತ್ಯಾಹ ಸ್ಕ್ರಾಹ್ಮಿ	338 P		***	8 7	
$Zn^{0}Im_{2b}$, je , je , je , jejso, , je , jejso,					
Zn ⁰ Im _{2c}	૾ૺ૱ૢઙૹ૾ૺ૾	&				
Zn ⁰ Im _{2d}			د ورو ورو دروه ورو	-		
Zn^+Im_{2a}	and					** *

Figure 3.8 : Densités électroniques des orbitales moléculaires frontières des complexes $Zn^{q+}Im_3$ (q=0, 1, 2) (iso surface de densité tracée pour 0,02 u.a) calculées au niveau M05-2X/6-311++G(d,p).

Espèces moléculaires	Structure	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2
Zn ⁰ Im _{3a}	စ စုရှိ စိုးရှိ ဖိုးရ ၂၆၅	E	ر میں اور			
Zn ⁰ Im _{3b}	general contraction					

Zn ⁰ Im _{3c}	, a , a , a , a , a , a , a , a , a , a	in 19 19 19 19 19 19 19 19 19 19 19 19 19	منيني. نويند. مرينيو. موينيو.	1.25 Sec. 55	2 5 288 99	
Zn ⁰ Im _{3d}	A Contraction			یکی کرد. انتقاد کرد.		
Zn ⁺ Im _{3a}		*	, , , , , , , , , , , , , , , , , , , 			
Zn ⁺ Im _{3b}	故学教			in 1	& (* * * * * * * * * * * * * * * * * * *	
Zn ²⁺ Im _{3a}	تو وت رو وق رو قو رو قر رو قر رو قر		<u>پې</u>		1	
Zn ²⁺ Im _{3b}	Gradie A.		X		1	

Figure 3.9 : Densités électroniques des orbitales moléculaires frontières des complexes $Zn^{q+}Im_4$ (q=0,1,2) (iso surface de densité tracée pour 0,02 u.a) calculées avec au nivaeu M05-2X/6-311++G(d,p).

Espèces moléculaires	Structure	HOMO-1	НОМО	LUMO	LUMO+1	LUMO+2
Zn ⁰ Im _{4a}				:		
Zn ⁰ Im _{4b}						
Zn ⁰ Im _{4c}	A. A. A.			6		and the second s
$\mathbf{Zn}^{+}\mathbf{Im}_{4\mathbf{a}}$	్రంత సంత్రి సరిచింది సరిచింది శ్రీ శ్రీ	S	يعد الم		35	335 3
Zn ⁺ Im _{4b}	***	1989	1889	1949 - 194 0 - 1940	*** \$1,11 \$1	200 - 100 (100

Zn ⁺ Im _{4c}	to the second			** **	A set of the	
$\mathbf{Zn}^{2+}\mathbf{Im}_{4\mathbf{a}}$		A A A A A A A A A A A A A A A A A A A			.	
Zn ²⁺ Im _{4b}	A Arta			i standing and a stan		
Zn ²⁺ Im _{4c}	фар Д		and a second a second Angles	*** ***		an in

Complayor			Б	٨E	Б	description de
		\mathcal{O}_{i} - \mathcal{O}_{i}	L_2	ΔE_{ij}	Tij	transfert Charge
$Zn^{+}Im_{n}$		5	Kcal.mol	a.u	a.u	_
	LP(1) N4	RY (1) Zn 10	0.95	0.67	0.024	$Im \rightarrow Zn$
0	LP(1) N9	$BD^{*}(2)C^{2} - C^{3}$	44 31	0.38	0 1 1 7	Im → Im
Zn ^o Im I	I P(1) N9	$BD^{*}(2) C1 - N9$	66.17	0.37	0 1 3 9	
	I P(1) NQ	$\mathbf{BV}(2) \mathbf{C}^2$	4 86	0,97	0,157	Im →Im
	LI(1)IV	RT(2) C2 PV(2) Tn 10	4,00	0,55	0,002	$\operatorname{Im} \rightarrow 7n$
	LF(1) N9 LD(1) N0	\mathbf{K} I (5) ZII IU \mathbf{DD} *(2) C1 NO	0,24	0,00	0,011	
Zn ⁰ Im II	LP(1)N9	$BD^{*}(2) C1 - N9$	04,90	0,37	0,138	т Хт
	LP (1) N9	$BD^{*}(2)C2 - C3$	45,18	0,38	0,117	
	LP (1) N9	RY (2) C2	4,74	0,96	0,060	lm →lm
1	LP (1)N9	$BD^{*}(2)C2 - N10$	49,10	0,31	0,156	lm →lm
Zn⁺¹Im	LP (1)N9	BD*(2) C3 - C4	22,17	0,39	0,117	_
	LP (1)N9	RY (4) C2	2,13	1,15	0,063	Im →Im
	LP (1)N1	BD*(2) C2 – N9	89,51	0,32	0,152	Im →Im
Zn ²⁺ Im	LP (1)N1	$BD^{*}(2)C2 - C3$	34,62	0,42	0.108	
	LP(1)N1	RY (2) C2	6.66	1.05	0.075	Im →Im
			70.64	0.00	0,140	
	LP(1) N14	BD*(2)C11-N19	/0,64	0,36	0,142	
7791	LP(1) N 14	BD*(2)C12-C13	44,11	0,39	0,116	Liaison hydrogène
$Ln Im_{2a}$	LP(1) N 19	BD*(1) H6-N 9	16,58	1,00	0,115	Im →Im
	LP(1) N 9	BD*(2) C1- N4	73,75	0,35	0,143	
	LP(1) N 9	BD*(2) C2- C3	48,28	0,37	0,119	$Im \rightarrow Zn$
	LP(1) N 4	RY(1)Zn 10	1,85	0,80	0,034	
	LP (1)N(14)	BD*(2)C(11)N(19)	70,78	0,36	0,142	Im Mm
	LP (1)N(14)	BD*(2)C(12)C(13)	44,17	0,38	0,116	Im 7Im
7.01m	LP(1) N 19	BD*(1)H 6- N 9	16,99	1.00	0.116	T NT
	LP (1) N(9)	$BD^{*}(2)C(1) - N(4)$	70,61	0.35	0,140	Im →Im
	LP (1) N(9)	$BD^{*}(2)C(2) - C(3)$	49.24	0.36	0.119	·) ¬
	LP(1) N 9	RY (3)Zn 10	0.41	0.65	0.015	Im → Zn
	LP(6)Zn10	BD*(1) C11-H 16	1.32	0.73	0.028	
	IP(1) N(14)	$BD^{*}(2)C(11)N(19)$	67.30	0.37	0 140	
	I P(1) N(14)	$BD^{*}(2)C(12)C(13)$	44 94	0.38	0,140	Im →Im
Zn ⁰ Im ₂	BD(2)C1 N4	PV(2)7n 10	0.27	0,30	0.013	
2	DD(2)CI-IN4 I D(1) N A	RT(2)ZIT10 RD*(1) C11 U16	0,27	0,74	0,013	$\text{Im} \rightarrow \text{Zn}$
	LI(1) N 4 I D(1) N 10	$BD^{*}(1) C1 H5$	1,40	0,97	0,034	
	LI(1) I I I J LD(6) 7n 10	$DD^{*}(1) C1^{-} HJ$	0.21	0,97	0,034	Im →Im
	LF(0)ZIII0	$BD^{*}(2)C11-N19$	0,51	0,50	0,009	
	LP(1)N4	BD*(2) C 1- N 9	08,45	0,30	0,140	
7n ⁰ Im	LP(1)N4	$BD^{*}(2) C 2 - C 3$	46,81	0,37	0,118	Im →Im
	LP (1) N 13	BD*(2) C 10- N 18	68,23	0,36	0,140	
	LP (1) N 13	BD*(2) C 11- C 12	46,12	0,38	0,117	Im →Im
	LP(1)N 4	BD*(2) C 10- N 18	0,43	0,36	0,011	
				0.0-	0.155	
	LP(1)N14	BD*(2)C(11)N(19)	44,79	0,33	0,153	Im →Im
ra +=	LP(1)N14	BD*(2)C(12)C(13)	22,39	0,38	0,117	
Zn'Im _{2a}	LP(1)N 4	LV(1)Zn10	26,38	0,43	0,134	$Im \rightarrow 7n$
	LP(1)N 19	LV(1)Zn 10	26,39	0,43	0,134	
	LP (1) N (2)	$BD^{*}(2)C(1) - N(4)$	44,79	0,33	0,117	Im JIm
	LP (1) N (2)	BD*(2)C (2)–C(3)	22,39	0,38	0,060	

Tableau 3.10: Analyse perturbative au second-ordre des interactions (donneur -accepteur)d'électrons calculée avec la fonctionnelle M05-2X/6-311++ $G(d,p)^{a}$.

-						
	LP (1) N (1)	LV (1)Zn 1	26,00	0,43	0,134	
77 + 1	LP (1) N (2)	LP*(6)Zn (1)	25,88	0,43	0,133	$\text{Im} \rightarrow \text{Zn}$
Zn ⁻ Im _{2b}	LP (1) N(9)	$BD^{*}(2)C(1) - N(4)$	44,85	0,32	0,152	
	LP(1) N(9)	$BD^{*}(2)C(2) - C(3)$	21,84	0,39	0,116	lm →lm
	LP(1) N(14) L $D(1) N(14)$	$BD^{*}(2)C(11)N(19)$	44,62	0,33	0,152	Les Mari
	LP(1) N(14)	$BD^{*}(2)C(12)C(13)$	22,55	0,38	0,117	
$Zn^{2+}Im_2$	LP(1) N 19 L $P(1) N 10$	$BD^{*}(2) C 11 - N 14$ $PD^{*}(2) C 12 C 12$	100,00	0,29	0,158	$\lim \rightarrow \ln$ $\lim \rightarrow \lim$
	LF(1) N 19 L P(1) N 4	$BD^{*}(2) C 12 - C 13$ $BD^{*}(1) Zn 10 - N 19$	40,10	0,39	0,112	$\lim \overline{\rightarrow} \lim$
	$LP(1)(\mathbf{N}^{1})$	$DU (1)ZH 10^{-1}(1)$	0.21	0,37	0,104	
	LP(1)(NI)	$\mathbf{K} \mathbf{I} (3) \mathbf{Z} \mathbf{\Pi} \mathbf{I}$	0,31	0,72	0,013	$Im \rightarrow Zn$
	LP (1) N (9)	$BD^{*}(2)C(1) - N(4)$	/5,96	0,34	0,143	
Zn ⁰ Im _{3a}	LP (1) N (9)	$BD^{*}(2)C(2) - C(3)$	47,95	0,37	0,118	
54	LP (1) N (14)	$BD^{*}(2)C(1)N(19)$	71,65	0,36	0,142	
	LP (1) N (14)	BD*(2)C(12)-C(13)	44,06	0,39	0,116	
Zn ⁺ Im _{2b} Zn ²⁺ Im ₂ Zn ⁰ Im _{3a} Zn ⁰ Im _{3b} Zn ⁰ Im _{3c}	LP (1) N (28)	$BD^{*}(2) C(20) - C(21)$	48,93	0,36	0,119	Im →Im
	LP (1) N(28)	BD*(2) C (22) – N(23)	71,50	0,35	0,134 $0,133$ $Im =$ $0,152$ $0,116$ $Im =$ $0,152$ $0,117$ $Im =$ $0,152$ $0,117$ $Im =$ $0,152$ $Im =$ $0,152$ $0,117$ $Im =$ $0,112$ $Im =$ $0,112$ $Im =$ $0,113$ $Im =$ $0,143$ $Im =$ $0,143$ $Im =$ $0,141$ $Im =$ $0,009$ $Im =$ $0,141$ $Im =$ $0,009$ $Im =$ $0,141$ $Im =$ $0,0062$ $Im =$ $0,141$ $Im =$ $0,062$ $Im =$ $0,143$ $Im =$ $0,062$ $Im =$ $0,143$ $Im =$ $0,062$ $Im =$ $0,143$ $Im =$ $0,047$ $Im =$ $0,145$ $Im =$ $0,141$ $Im =$ $0,142$ $Im =$ $0,116$	
	LP(1)(N1)	RY (3)Zn 1	0,15	0,73	0,009	_
	LP (1) N (9)	BD*(2) C (1) – N(4)	75,07	0,36	0,143	$Im \rightarrow Zn$
	LP (1) N (9)	$BD^{*}(2) C(2) - C(3)$	49,39	0,81	0,120	
Zn ⁰ Im _{3b}	LP (1) N (14)	BD*(2) C(11) – N(19)	70,65	0,35	0,141	Im →Im
	LP(1) N (14)	BD*(2) C (12) –C(13)	43,98	0,39	0,117	
	LP(1)N(28)	BD*(2) C(20) – C(21)	47,97	0,37	0,119	
	LP (1) N(28)	BD*(2) C (22) – N(23)	70,39	0,35	0,141	Im →Im
	LP (1) N(28)	RY (2) C(21)	4,49	1,09	0,062	
	LP(1) N 28	BD*(2) C 20- N 23	72,57	0,35	0,143	
	LP(1) N 28	BD*(2) C 21- C 22	44,58	0,39	0,117	Im →Im
ZnºIm _{3c}	LP(1) N 23	BD*(1) N14- H15	24,72	0,99	0,140	
	LP(1) N 14	BD*(2) C 11- N 19	80,50	0.33	0,146	
	LP(1) N 14	BD*(2) C 12- C 13	49,11	0.36	0.119	Im →Im
	LP(1) N 19	BD*(1) H 6- N 9	27,00	0,98	0,145	Liaison hydrogène
	LP(1) N 9	BD*(2) C 1- N 4	78,37	0,34	0,145	Liuison ny ur ogene
	LP(1) N 9	BD*(2) C 2- C 3	50,00	0.36	0,120	
	LP(1) N 4	RY(1)Zn 10	3,25	0,86	0,047	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP(1)N9	BD*(2) C 1-N 4	72,21	0,35	0,141	Im →Im
	LP(1)N9	BD*(2) C 2- C 3	48,35	0,37	0,119	
	LP (1) N 14	BD*(2) C 11- N 19	65,56	0,37	0,138	
7n ⁰ Im	LP (1) N 14	BD*(2) C 12- C 13	43,64	0,39	0,116	lm →lm
Z11 1113d	LP (1) N 23	BD*(1) H 6- N 9	15,60	1,00	0,111	Liaison hydrogène
	LP(1)N28	BD*(2) C 20- N 23	70,29	0,36	0,142	
	LP(1)N28	BD*(2) C 21- C 22	44,20	0,38	0,116	
	LP(1)N9	RY (3)Zn 10	0,17	0,76	0,010	$\operatorname{Im} \rightarrow \operatorname{Zn}$

	LP (1) N (9)	BD*(2) C (1) -N(4)	41,30	0,34	0,149	
	LP (1) N (9)	BD*(2) C(2)-C(3)	22,53	0,38	0,117	Im →Im
	LP(1)N(1)	LV (1)Zn 1	20,36	0,44	0,120	
	LP(1)N(14)	BD*(2) C(11) –N(19)	41,28	0,34	0,149	$Im \rightarrow Zn$
Zn ⁺ Im _{3a}	LP(1)N(14)	BD*(2) C(12) –C(13)	22,52	0,38	0,117	
	LP(1) N 19	LV(1)Zn 10	20,39	0,44	0,120	
	$\mathbf{LP}(1) N (9)$ $\mathbf{LP}(1) N (9)$ $\mathbf{LP}(1) N (1)$ $\mathbf{LP}(1) N (1)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 23$ $\mathbf{LP}(1) N 23$ $\mathbf{LP}(1) N 23$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 23$ $\mathbf{LP}(1) N 9$ $\mathbf{LP}(1) N 9$ $\mathbf{LP}(1) N 9$ $\mathbf{LP}(1) N 9$ $\mathbf{LP}(1) N (9)$ $\mathbf{LP}(1) N (9)$ $\mathbf{LP}(1) N (9)$ $\mathbf{LP}(1) N (9)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N (14)$ $\mathbf{LP}(1) N (28)$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 28$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 37$ $\mathbf{LP}(1) N 28$	BD*(2) C 20- C 21	22,51	0,38	0,117	Im →Im
	LP(1) N 28	BD*(2) C 22- N 23	41,29	0,34	0,149	
	LP(1) N 23	LV(1)Zn 10	20,36	0,44	0,120	
	LP(1)N4	BD*(2) C 1- N 9	67,87	0,25	0,165	Im →Im
	LP(1)N4	BD*(2) C 2- C 3	27,46	0,33	0,120	
	LP(1)N19	RY (1)Zn 10	13,45	0,75	0,127	Im \rightarrow Zn
Zn ⁺ Im _{3b}	LP (1) N 23	BD*(1) H 6- N 9	19,91 0,93		0,172	Liaison hydrogène
	LP (1) N 28	BD*(2) C 20- N 23	38,67	0,34	0,145	
	LP (1) N 28	BD*(2) C 21- C 22	22,44	0,38	0,117	Im →Im
_ 2+_	LP(1)N 28	$BD^{*}(2)C(20) - C(21)$	45,07	0,39	0,118	Im →Im
Zn ⁴⁺ Im _{3a}	LP(1)N 28	BD*(2)C(22) - N(23)	104,25	0,30	0,158	Im →Im
	LP(1) N 23	LV(1)Zn 10	66,19	0,57	0,173	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP(2)N4	BD*(2) C 1-N 9	69,98	0,35	0,140	Im →Im
	LP(2)N4	BD*(2) C 2- C 3	40,49	0,39	0,113	(117) Im \rightarrow Im (117) Im \rightarrow Zn (117) Im \rightarrow Zn (117) Im \rightarrow Im (117) Im \rightarrow Im (117) Im \rightarrow Im (117) Im \rightarrow Im (149) Im \rightarrow Zn (140) Im \rightarrow Im (141) Im \rightarrow Im (142) Im \rightarrow Im (143) Im \rightarrow Im (140) Im \rightarrow Im (140) Im \rightarrow Im (140) Im \rightarrow Im (140) Im \rightarrow Im (141) Im \rightarrow Im (142) Im \rightarrow Im (145) Im \rightarrow Im (145) Im \rightarrow Im (145) Im \rightarrow Im (145) Im \rightarrow Im (147) Im \rightarrow Im (147) Im \rightarrow Im (147) Im \rightarrow Im (142) Im \rightarrow Im (143) Im \rightarrow Im (144) Im \rightarrow Im (145) Im \rightarrow Im (145) Im \rightarrow Im $(14$
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$Zn^{2+}Im_{3b}$	LP (1) N 23	BD*(2) C 20- N 28	126,37	0,27	0,166	Im →Im
	LP (1) N 23	BD*(2) C 21- C 22	46,88	0,37	0,117	
	LP(1)N9	BD*(1) H 6- N 23	39,57	0,92	0,170	$Im \rightarrow 7n$
	LP (1) N 19	LV (1)Zn 10	93,21	0,53	0,198	
	LP(1)N(9)	$BD^{*}(2) C(1) - N(4)$	79,45	0,33	0,145	_
	LP(1)N(9)	BD*(2)C(2)-C(3)	49,10	0,36	0,119	Im →Im
ZnºIm4a	LP(1)N(9)	RY (2) C (2)	4,71	1,09	0,064	
	LP (1) N (14)	BD*(2) C (11) –N(19)	80,49	0,33	0,145	
	LP(1)N(14)	BD*(2) C(12) –C(13)	50,65	0,36	0,121	T N T
	LP (1) N (14)	RY (2) C(13)	4,66	1,08	0,063	Im → Im
	LP (1) N (28)	BD*(2) C(20) –C(21)	49,21	0,36	0,119	
	$\mathbf{Zn^{2+Im_{3a}} \begin{array}{c} LP(1) N 28 \\ LP(1) N 28 \\ BD*(\\ BD*(\\ BD*(\\ BD*(\\ BD*(\\ BD*(\\ LP(1)N 28 \\ LP(1)N 28 \\ BD*(\\ LP(1)N 28 \\ BD*(\\ LP(1)N 23 \\ LV(1)\\ \\ LP(1) N 23 \\ LV(1)\\ LP(2) N 4 \\ BD*(\\ LP(2) N 4 \\ BD*(\\ LP(1) N 4 \\ LV(\\ LP(1) N 23 \\ BD*(\\ LP(1) N 23 \\ BD*(\\ LP(1) N 9 \\ BD*(\\ LP(1) N (9) \\ BD*(\\ LP(1) N (14) \\ BD*(\\ LP(1) N (14) \\ BD*(\\ LP(1) N (14) \\ BD*(\\ LP(1) N (28) \\ BD*(\\ LP(1) N 37 \\ BD*(\\ LP(1) N 37 \\ BD*(\\ LP(1) N 32 \\ BD*(\\ $	BD*(2) C(22) –N(23)	81,12	0,33	0,146	
	LP (1) N (28)	RY (2) C (21)	4,90	1,06	0,064	Im J Im
3.5 En LH LH LH LH LH LH LH LH LH LH	LP (2) N(32)	BD*(2) C(29)- N (37)	206,94	0,19	0,175	
	$\mathbf{Zn^+ Im_{3b}}$ $\begin{array}{c} LP(1) N 4 \\ LP(1) N 19 \\ LP(1) N 23 \\ LP(1) N 28 \\ LP(1) N 23 \\ LP(1) N 23 \\ LP(1) N 4 \\ LP(2) N 4 \\ LP(2) N 4 \\ LP(1) N 23 \\ LP(1) N 9 \\ LP(1) N (9) \\ LP(1) N (9) \\ LP(1) N (9) \\ LP(1) N (9) \\ LP(1) N (14) \\ LP(1) N (14) \\ LP(1) N (28) \\ LP(1) N 37 \\ LP(1) N 37 \\ LP(1) N 37 \\ LP(1) N 32 \\ LP(1) N 23 \\ LP(1) N 37 \\ LP(1) N 32 \\ LP(1) N 23 \\ LP(1) N 14 \\ LP(1) N $	BD*(2) C(30)- C (31)	73,53	0,27	0,126	
	LP (2) N(32)	RY (3) C(31)	5,78	1,12	0,072	
	LP(1) N 37 BD*(2) C 29- N 32		72,93	0,35	0,143	Im →Im
	LP(1) N 37	BD*(2) C 30- C 31	44,64	0,39	0,117	Im →Im
	LP(1) N 32	BD*(1) H 25- N 28	25,73	0,99	0,142	
0	LP(1) N 28	BD*(2) C 20- N 23	81,73	0,33	0,147	
Zn ^o Im _{4b}	LP(1) N 28	BD*(2) C 21- C 22	49,33	0,36	0,120	Liaison hydrogène
	LP(1) N 23	BD*(1) N 14- H 15	30,70	0,97	0,154	
	LP(1) N 14	BD*(2) C 11- N 19	82,81	0,33	0,147	
	LP(1) N 14	BD*(2) C 12- C 13	50,29	0,36	0,120	
	LP(1) N 19	BD*(1) H 6- N 9	28,89	0,97	0,150	
	LP(1) N 9	BD*(2) C 1- N 4	79,22	0,33	0,145	

	LP(1) N 9	BD*(2) C 2- C 3	50,39	0,36	0,120	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP(1) N 4	RY(1)Zn 10	3,50	0,87	0,049	
	LP(6)Zn10	RY (1)N 4	3,87	0,80	0,050	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP(1) N 9	BD*(2)C 1-N 4	77,55	0,34	0,145	
	LP(1) N 9	BD*(2)C 2-C 3	45,95	0,37	0,117	TAT
	LP(1) N19	BD*(1)C 3-H 8	2,15	1,00	0,041	Im → Im
	LP(1) N23	BD*(1)H 6- N 9	17,27	1,01	0,118	Liaison hydrogène
	LP(1) N32	BD*(2)C 29- C 30	44,55	0,38	0,116	
	LP(1) N32	BD*(2)C 31- N 37	70,71	0,36	0,143	
	14,82	0,99	0,108	Liaison hydrogene		
	LP (1) N(1)	LV (1)Zn 1	15,62	0,45	0,106	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	0,146	Im →Im				
	LP(1)N(9)	BD*(2) C(2) – C(3)	22,76	0,38	0,118	
	LP(1)N(9)	RY (2) C(2)	2,19	1,17	0,064	
	LP (1) N (14)	BD*(2) C(11)- N(19)	40,11	0,34	0,148	
	LP (1) N(14)	BD*(2) C(12)-C(13)	22,08	0,39	0,117	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP(1)N 19	LV(1)Zn 10	16,98	0,45	0,111	
	LP (1) N(28)	BD*(2) C(20)- C(21)	22,71	0,38	0,118	
	LP (1) N(28)	BD*(2) C(22) – N(23)	37,94	0,35	0,145	
	LP(1) N23	LV(1)Zn 10	16,98	0,42	0,107	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP (1) N(37)	BD*(2) C(29) – N(32)	38,27	0,42	0,146	
	LP (1) N(37)	BD*(2) C(30) – C(31)	22,67	0,38	0,118	Lee Mari
	LP(1) N 32	LV(1)Zn 10)	18,56	0,42	0,112	$Im \rightarrow Im$ $Im \rightarrow Im$ $Liaison hydrogène$ $Im \rightarrow Zn$ $Im \rightarrow Zn$ $Im \rightarrow Zn$ $Im \rightarrow Zn$ $Im \rightarrow Im$
	LP(1)N4	LV (1)Zn 10	27,61	0,42	0,137	$\operatorname{Im} \rightarrow \operatorname{Zn}$
Zn^+Im_{4b} $Zn^{2+}Im_{4a}$	LP (1) N 23	BD*(1) H 6- N 9	18,14	0,94	0,165	Im →Im
	LP (1) N 37	BD*(1) N 14- H 15	18,28	0,94	0,165	Im →Zn
	LP (1) N 19	LV (1)Zn 10	27,53	0,42	0,136	
	LP (2) N 19	BD*(2) C 11- N 14	69,87	0,25	0,166	
	LP (2) N 19	BD*(2) C 12- C 13	27,98	0,32	0,120	Im →Im
7 m ²⁺ 1 m	LP(1) N 37	BD*(2) C 29- N 32	94,50	0,31	0,154	$Im \rightarrow Im$ $Im \rightarrow Im$ $Im \rightarrow Zn$
	45,17	0,39	0,118	$Im \rightarrow Zn$		
	LP(1) N 32	LV(1)Zn 10	53,67	0,64	0,166	0,050Im \rightarrow Zn0,145Im \rightarrow Im0,117Im \rightarrow Im0,118Liaison hydrogène0,116Im \rightarrow Zn0,106Im \rightarrow Zn0,106Im \rightarrow Zn0,106Im \rightarrow Zn0,106Im \rightarrow Zn0,118Im \rightarrow Zn0,064Im \rightarrow Zn0,118Im \rightarrow Zn0,117Im \rightarrow Zn0,118Im \rightarrow Zn0,112Im \rightarrow Im0,137Im \rightarrow Zn0,165Im \rightarrow Zn0,166Im \rightarrow Zn0,167Im \rightarrow Zn0,168Im \rightarrow Zn0,164Im \rightarrow Im0,174Im \rightarrow Im0,175Im \rightarrow Zn0,166Im \rightarrow Zn0,176Im \rightarrow Zn
	LP(1)N4	BD*(2) C 1-N 9	76,72	0,33	0,143	Im→Im
	43,08	0,38	0,114	Liaison hvdrogène		
	LP (1) N 9	BD*(1) H 6- N 23	55,69	0,88	0,198	
	LP (1) N 28	BD*(2) C 20- N 23	101,49	0,31	0,158	$\operatorname{Im} \operatorname{\overline{-}} \operatorname{Zn}$
	LP (1) N 28	BD*(2) C 21- C 22	43,55	0,39	0,116	Im →Im
	LP (1) N 19	BD*(1) N 4-Zn 10	83,37	0,57	0,194	Liaison hydrogène
	LP (1) N 14	BD*(1) H 15- N 37	55,77	0,88	0,198	
	LP (2) N 4	BD*(2) C 1- N 9	132,03	0,26	0,165	Im JIm
	LP (2) N 4	BD*(2) C 2- C 3	47,95	0,35	0,116	
2+-	LP(1)N 4	LV (1)Zn 10	67,05	0,58	0,176	
Zn ⁺⁺ Im _{4c}	LP(1)N19	LV(1)Zn 10	74,25	0,56	0,182	$\operatorname{Im} \rightarrow \operatorname{Zn}$
	LP (2) N 19	BD*(2) C 11- N 14	105,60	0,29	0,156	$Im \rightarrow Zn$
	LP (2) N 19	BD*(2) C 12- C 13	46,41	0,36	0,116	
	LP (1) N 23	LV (1)Zn 10	63,89	0,57	0,171	Im →Im
	LP (1) N 32	BD*(1) N 14- H 15	89,62	0,80	0,238	

Pour les complexes Zn^{q+} Im [179], il a été constaté que tous les complexes neutres possèdent des interactions de transfert de charge dominantes depuis LP(1) de N9 vers RY(2) C2 avec une énergie de stabilisation (E₂) (~5,0 kcal.mol⁻¹) et un faible transfert de charge de l'orbitale LP(1) de N4 vers RY (1) Zn10. Pour le complexe Zn^{+1} Im, le transfert de charge se produit entre la paire libre de l'azote LP(1) N1 vers LP*(6) Zn1 ou l'énergie de stabilisation (E₂) est 1,41 kcal.mol⁻¹ et entre LP(1) N1 vers RY*(C2) avec une énergie de 2.63 kcal.mol⁻¹. La délocalisation dans la structure Zn^{2+} Im se traduit par la donation de LP(1) N1 vers LP*(6) Zn1 et de LP(1) N1 vers RY*(C2) avec des énergies de stabilisation de l'ordre 4,89 kcal/mol et 5,64 kcal.mol⁻¹ respectivement.

L'addition d'une molécule d'imidazole (Im) à Zn⁰Im conduit à la formation de quatre isomères différents (Zn⁰Im_{2a}, Zn⁰Im_{2b}, Zn⁰Im_{2c} et Zn⁰Im_{2d}). Deux types de transfert de charge sont trouvés dans les complexes Zn^0Im_n : (i) le premier est correspond à un transfert de l'orbitale LP(1) de N14 vers BD*(2) C11-N19 et le second, depuis l'orbitale LP(1) de N14 vers BD*(2) C12-C13 avec des énergies de stabilisations (E₂) qui vont de ~70,0 à 82,0 et ~44,0 à 50,0 kcal.mol⁻¹ respectivement. Il est intéressant de noter que le transfert de charge à travers la liaison C-N est dominant par rapport à celui à travers les liaisons C-C. En effet, le processus de transfert de charge est initié à partir de l'azote protoné (c'est-à-dire par une interaction intramoléculaire au sein du fragment Imidazole (Im)) lors de la formation des complexes séquentielles suivie d'une liaison hydrogène et un transfert d'état de Rydberg. L'addition séquentielle des molécules imidazoles forme un réseau de type chaîne à travers des interactions de liaisons hydrogène (N-H ··· N) entre deux imidazoles. Dans les complexes Zn⁰Im_{2a} et Zn⁰Im_{2b}, la délocalisation de la charge produite sur la paire libre de l'azote LP(1) N19 s'oriente essentiellement vers BD*(12) H6-N9 avec une énergie de stabilisation (E₂) de ~17,0 kcal.mol⁻¹, alors que les complexes $Zn^{0}Im_{2c}$ et $Zn^{0}Im_{2d}$ sont dominés par des interactions de transfert de charge intramoléculaires. Comme indiqué précédemment, le complexe $Zn^{0}Im_{2b}$ est le plus stable, probablement en raison de l'interaction supplémentaire $Zn^0 \cdots \pi$ Im.

Nous avons trouvé le même type de liaison hydrogène dans les grands clusters (tels que $Zn^{0}Im_{3c}$ et $Zn^{0}Im_{4b}$). Les valeurs de E_2 respectives sont : 24,7 kcal.mol⁻¹ pour $Zn^{0}Im_{3c}$ et 30,7 kcal.mol⁻¹ pour $Zn^{0}Im_{4b}$. Nos calculs montrent que, lorsque la chaîne de liaison hydrogène augmente, la valeur de E_2 est améliorée et varie de 17,0 à 31,0 kcal.mol⁻¹. L'interaction liée à la liaison hydrogène, favorise le transfert de charge et donc augmente la stabilité des clusters. En outre, nous avons caractérisé les interactions de type Rydberg valence entre le métal et le ligand. La

valeur de l'énergie de stabilisation (E₂) pour la délocalisation de la charge produite sur la paire libre de l'azote LP(1) N4 vers RY (1) Zn10 dans les complexes $Zn^{0}Im_{n}$ (n=1-4) est de ~1,0 à 3,5 kcal.mol⁻¹. Lorsque la longueur de chaîne augmente, la valeur de (E₂) respective augmente par la suite. De plus, nous avons trouvé que le transfert de charge à travers des liaisons hydrogène est plus efficace qu'à travers les autres types d'interactions non- covalentes.

Pour les espèces ioniques Zn^+Im_n , le tableau 3.10 révèle que le transfert de charge intramoléculaire est réduit de moitié par rapport aux complexes neutres, alors que le transfert supplémentaire LP(1) N4 vers LV (1) Zn10 est observé pour les grands clusters Zn⁺Im₂₋₄. La valeur E₂ correspondante est variée de 17,0 à 26,0 kcal.mol⁻¹. Ainsi, l'augmentation du nombre de liaisons de l'imidazole avec l'ion Zn est associé à une diminution du transfert de charge de LP (1) N4 vers LV(1) Zn10. Pour les clusters dicationiques $Zn^{2+}Im_n$, nous pouvons faire des observations similaires. En effet, nous avons caractérisé un transfert de charge depuis la paire libre de l'azote LP(1) N4 vers LV(1) Zn10. La valeur de (E₂) correspondante varie de 26,0 à 111,0 kcal.mol⁻¹. Les valeurs de (E_2) des transferts de charge respectives dans les clusters $Zn^{2+}Im_{2-4}$ sont significativement plus élevées que celles des clusters $Zn^{0/+}Im_{2-4}$. En effet, les valeurs E₂ calculées pour les clusters Zn²⁺Im₂, Zn²⁺Im₃ et Zn²⁺Im₄ sont ~26,66-111, et 53-75 kcal.mol⁻¹. Ces valeurs plus élevées proviennent des liaisons hydrogène et de la liaison Zn-N entre l'atome de zinc et l'atome d'azote de l'imidazole (Im) (En raison de la charge protonique localisée par le fragment ImH+). Par conséquent, l'ordre des complexe est la suivant: Zn⁺²Im_n $(\sim 100 \text{ kcal/mol}) > Zn^0 Im_n \text{ }(\sim 75 \text{ kcal/mol}) > Zn^+ Im_n \text{ }(\sim 40 \text{ kcal/mol}). \text{ Par conséquent, } Zn^0 \text{ et } Zn^{2+1} \text{ and } Zn^{2+1}$ favorisent le processus de transfert de charge à travers la molécule d'imidazole vers la liaison hydrogène.

En général, nos calculs montrent que la structure de ces complexes est due à la compétition entre les liaisons hydrogène type σ et les interactions de van der Waals type π -stacking. Le transfert de charge à travers des liaisons covalentes et non-covalentes conduit à la poursuite de la stabilisation d'une forme sur les autres. En effet, les complexes neutres sont le plus souvent stabilisés par les liaisons hydrogène type N-H···N, tandis que les complexes chargés sont dominés par la délocalisation de charge sur la paire libre de l'azote LP(1) N4 vers LV (1) Zn. La force d'une telle contribution dépend du nombre d'imidazoles entourant le cation Zn. Ces résultats sont en accord avec les déductions de Dopfer et ses collaborateurs [157] et ils les étendent aux clusters ioniques plus grands. En effet, la comparaison des structures et des spectres vibrationnels du cation imidazole et du Zn²⁺Im ont démontré que la contribution donneuse π devrait dominer par rapport aux contributions donneuses σ .

Enfin, les figures 3.3-3.6 présentent les charges partielles sur l'atome de zinc et l'atome d'azote N. Comme prévu, la charge sur l'atome de Zn dépend de la structure et de la liaison. Pour les espèces neutres, nous avons calculé une charge partielle de Zn qui est proche de zéro ou des valeurs légèrement négatives en raison de la rétrodonation sur les orbitales atomiques 4s et 4p de Zn, comme on peut le voir à partir de l'analyse NBO. Pour les espèces simplement chargés le Zn possède une charge de ~ +0,7. Elle atteint une valeur de +1 pour Zn⁺Im_{4a}. Pour Zn²⁺, il présente une charge de ~ +1,4-1,5 pour tous les complexes dicationiques calculés.

V. Spectroscopie vibrationnelle

Nous donnons dans l'annexe [2] la totalité des fréquences harmoniques de tous les complexes étudiés. La Figure 3.10 illustre leurs spectres IR simulés et leur évolution lors de la fixation du ligand d'imidazole à l'atome de Zn ou aux ions métalliques Zn^+ et Zn^{2+} . Pour la comparaison, nous avons également donné les spectres de la molécule imidazole (Im) neutre et ionique.

Figure 3.10: Les spectres IR simulés de la molécule d'imidazole neutre et ionique et des complexes $Zn^{q+}Im_n$ (q = 0, 1, 2; n = 2 - 4).

La figure 3.10 montre que la forme des spectres IR change radicalement lors de la fixation de deux, trois ou quatre molécules imidazoles à $Zn/Zn^+/Zn^{2+}$. Notamment, la région > 2000 cm⁻¹ devrait permettre l'identification de ces complexes dans les spectres IR respectifs pour chaque complexe dans cette région. Dans la région spectrale < 2000 cm⁻¹, une forte densité de bandes est prédite due à la population des modes de basses fréquences. Ces basses fréquences sont dues aux mouvements de grandes amplitudes intermonomères (e.g. l'oscillation du proton entre deux atomes d'azote (N····H^{δ+}····N). Pour les clusters neutres, certains de ces modes sont liés à la nature faible de la liaison entre la molécule d'imidazole et l'atome de Zn. Ils correspondent aux vibrations d'élongation et de déformation au sein de ces complexes.

Pour les clusters $Zn^{2+}Im_n$, nos spectres sont en excellent accord avec ceux déduits par Dopfer et ses collaborateurs [157] en utilisant B3LYP/cc-pVTZ. Pour l'analyse des modes de ces complexes, nous nous référerons aux travaux de Dopfer et ses collaborateurs [157]. En général, nos spectres représentent des prédictions et peuvent aider pour l'attribution et l'analyse des spectres IR correspondants une fois mesurées.

VI. Spectroscopie électronique

Nous	listons	dans l	e Tableau	3.11,	les	énergies	d'excitation	verticales	pour	les	transitions	S1←
S0 du	Zn ⁰ Im _r	et du	Zn ²⁺ Im _n e	t pour	les	s transitio	ns D1 ← D0	du Zn ⁺ Im	n•			

Complexes	E(eV)	Complexes	E(eV)	-	
Zn ^{q+} Im		Zn ^{+q} Im ₃			
Zn ⁰ Im I	5,16	Zn ⁰ Im _{3a}	5,36		
Zn ⁰ Im II	5,31	Zn ⁰ Im _{3b}	5,29		
Zn ⁺ Im	3,15	Zn ⁰ Im _{3c}	4,76		
Zn ²⁺ Im	1,31	Zn ⁰ Im _{3d}	4,88		
Zn	^{q+} Im ₂	Zn ⁺ Im _{3a}	3,31	-	
$Zn^{0}Im_{2a}$	4,93	Zn ⁺ Im _{3b}	2,96	-	
Zn^0Im_{2b}	5,13	Zn ²⁺ Im _{3a}	6,34		
Zn^0Im_{2c}	5,16	Zn ²⁺ Im _{3b}	4,39		
Zn^0Im_{2d}	5,40	Zn ^{q+}	Im ₄		
$Zn^{+}Im_{2a}$	2,98	Zn ⁰ Im _{4a}	5,27		
$Zn^{+}Im_{2b}$	2,98	Zn ⁰ Im _{4b}	4,70	-	
$Zn^{2+}Im_2$	5,35	Zn ⁰ Im _{4c}	4,15	-	
		Zn ⁺ Im _{4a}	2,66		
		Zn ⁺ Im _{4b}	2,96		
		Zn^+Im_{4c}	3,15		
		Zn ²⁺ Im _{4a}	6,59	-	
		$Zn^{2+}Im_{4b}$	5,05	-	
		Zn ²⁺ Im _{4c}	5,97		

Tableau 3.11: Energies d'excitation verticales (E, eV) pour les transitions S1 \leftarrow S0 des complexes Zn⁰Im_n et Zn²⁺Im_n et pour les transitions D1 \leftarrow D0 des complexes Zn⁺Im_n. Ils correspondent à la promotion d'électrons de la HOMO vers la LUMO.

Nous donnons dans l'annexe [2], les six états excités singulets et doublets les plus bas des complexes $Zn^{q+}Im_n$ (q = 0, 1, 2; n = 2 - 4). Il est intéressant de noter que, les clusters Zn^+Im_n ont leurs plus bas états électroniques excités à moins de 3 eV. Ils sont donc sensibles à la lumière.

Par contre, les premiers états S1 des clusters neutres sont situés à plus de ~ 5 eV et même audessus de 6 eV pour les clusters dicationiques. Par conséquent, ils présentent une photostabilité qui augmente en augmentant le nombre de molécules imidazoles attachées à l'ion Zn^{+2} . Vu que les clusters Zn^{2+} Ims sont des sous-unités de ZIFs, nous nous attendons à ce que les ZIFs n'absorbent pas dans le domaine visible. Le spectre UV-visible du ZIF-8 mesuré par Zahmakiran [199] est en bon accord avec ces conclusions. Par conséquent, cela peut expliquer la stabilité des ZIFs contre la dégradation de la lumière visible.

Finalement, le Tableau 3.11 montre que l'isomère $ZnIm_{3c}$ présente une transition S0 \leftarrow S1 ~0,5 eV au-dessous de celle des autres isomères. Cela peut être sondé, par exemple, par spectroscopie UV. Les spectres correspondants une fois mesurée représentent des tests cruciaux des méthodes utilisées actuellement.

VII. Conclusion

A travers une étude systématique, nous avons traité la structure, la stabilité et les spectres des complexes $Zn^{q+}Im_n$ (q = 0, 1, 2, n = 1 – 4) et Im_n (n = 2 – 4) en utilisant les fonctionnelles M05-2X/6-311++(d,p) et PBE0/6-311++(d,p) avec ou sans inclusion de la correction de dispersion de Grimme (D3). Pour les espèces neutres, nous avons trouvé trois classes d'interactions : les interactions de type σ (Zn–Im_n), les interactions de type liaison hydrogène entre les imidazoles et enfin un modèle d'interaction de type π -stacking entre les clusters Zn–Im_n ou au sein des clusters Im_n. Les formes les plus stables sont dues à la compétition entre tous les trois. Ceci a été noté également pour les complexes Cu⁺Im_n [156].

Pour les espèces ioniques, nous avons constaté que les ions Zn préfèrent être liés à l'azote non protoné de la molécule d'imidazole (Im) au lieu du nuage π du cycle aromatique. Par ailleurs, l'interaction de type σ avec la paire libre de l'atome d'azote est beaucoup plus favorable que celle avec le nuage π (π -stacking). Par conséquent, la liaison dominante de type σ entre Zn/Zn²⁺ et Im_n , pour lesquels les premier et second ligands se lient plus fortement que les troisième et quatrième ligands. Ceci est également le cas pour de nombreux ions des métaux de transition [200-207]. Tous ces effets favorisent la présence de processus de transfert de protons au sein des complexes $Zn^{2+}Im_n$ lorsque les molécules imidazoles forment une chaîne de liaisons hydrogène. Il est intéressant de noter qu'un proton peut sauter de la première couche de solvatation de l'imidazole à la deuxième couche et ainsi de suite. Notre travail représente la première mise évidence de cet effet pour les complexes Zn²⁺Im_n. Il est intéressant de noter que, parmi tous les clusters étudiés, neutres et ioniques, seulement le complexe Zn²⁺Im₄ présente une structure 3D autour du centre métallique, qui est pertinente pour les ZIFs. Une telle géométrie 3D est nécessaire pour constituer la cage poreuse des ZIFs, qui est cruciale pour la séparation et la séquestration des gaz. Par ailleurs, nos travaux montrent que ces sous-entités des ZIFs n'absorbent pas dans le domaine visible. Il s'agit d'une limitation pour le développement des nouvelles applications des ZIFs. Pour surmonter cela, Lu et al.[208] ont récemment utilisé un procédé d'encapsulation de nanoparticules d'or dans les ZIFs. Les composés Au_n@ZIFs résultants absorbent à ~518 nm (2,39 eV). Cela remédie à la non sensibilité des ZIFs dans le domaine visible. Ici, nous pouvons proposer alternativement de transformer une partie du Zn²⁺ en Zn. Le composé mixte résultant devrait absorber à ~2,7 eV comme Zn⁺Im₄.

Nous avons caractérisé plusieurs complexes stables de Zn avec Im où le Zn a différents degrés d'oxydation, qui pourraient correspondre à des espèces stables et au moins transitoires pendant les activités des Zn-enzymes (voir, par exemple, Réf 209). Notre travail peut aider à leur identification. En outre, nos calculs et leur comparaison aux travaux sur les complexes Cu⁺Im_n [196] montrent que les complexes Cu^+Im_n et $Zn^{2+}Im_n$ présentent des propriétés structurelles similaires. Il est intéressant de noter que, ces deux complexes sont des sous-unités des métalloenzymes Zn et Cu. La structure native de ces enzymes et donc leurs activités biologiques peuvent être liées à cet environnement unique autour de l'ion métallique. Ceci est intéressant d'examiner au moyen des techniques théoriques et expérimentales modernes. Par ailleurs, il est bien établi que le Zn est lié à trois ou quatre ligands imidazole comme dans Zn-enzymes, où les positions de coordination restantes sont occupées par des molécules d'eau. C'est le cas, par exemple, pour l'anhydrase carbonique où l'ion zinc est coordonné par trois résidus histidine [198]. En tout cas, cela conduit à des contraintes géométriques qui sont obligatoires pour que le Zn peut être présent pour l'enzyme dans la conformation biologiquement active. Dans ce travail, nous montrons que les clusters Zn⁺Im₃ et Zn⁺Im₄ possèdent une structure plane autour de l'ion Zn, même après le remplissage de sa première couche de coordination. Ce fait doit être lié à la complexation/décomplexation de l'imidazole/ mécanismes de ligands dans les Zn-enzymes. En effet, nos calculs révèlent qu'une telle étape importante sur l'activité catalytique de ces enzymes n'a pas été associée à des changements structurels forts autour du centre métallique qui peuvent altérer la structure de site actif de l'enzyme et par conséquent pourrait détériorer leur activité et leur efficacité. Ce travail, à l'échelle microscopique, est utile pour comprendre la structure et la liaison se produisant dans les sites de liaison naturelle du zinc dans des systèmes biologiques beaucoup plus complexe.

Finalement, notre travail a caractérisé de nouveaux complexes de transfert de charge. Cela peut être utile pour la compréhension de diverses applications comme celles récemment soulignées par Terenzi et al [210]. De plus, nos résultats peuvent être utilisés pour la détermination des champs de force précis pour les métalloprotéines [211] ou les ZIFs. Ces quantités au niveau microscopique sont nécessaires pour déduire les propriétés macroscopiques et thermochimiques de ces composés avec une bonne précision après incorporation dans des simulations dynamiques.

Bibliographie Chapitre III :

[141] Edsall, J. T.; Felsenfeld, G.; Goodman, D. W. S.; Gurd, F. R. N. The association of imidazole with the ions of zinc and cupric copper. J. Am. Chem. Soc., **76**, 3054 (**1954**).

[142] Bauman Jr, J. E.; Wang, J. C. Imidazole complexes of Nickel(II), Copper(II), Zinc(II), and Silver(I). Inorg. Chem. **3**, 368 (**1964**).

[143] Tabushi, I.; Kuroda. Y. Bis(histamino)cyclodextrin-zinc-imidazole complex as an artificial carbonic anhydrase. J. Am. Chem. Soc., **106**, 4580 (**1984**).

[144] Török, I.; Surdy, P.; Rockenbauer, A.; Korecz Jr, K.; Anthony, G. A.; Koolhaas, A.; Gajda, T.Nickel(II)-, copper(II)- and zinc(II)-complexes of some substituted imidazole ligands. J. Inorg. Biochem., 71, 7 (1998).

[145] Wang, B.; Cote, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reserviors. Nature, 453, 207 (**2008**).

[146] Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, O.; Yaghi. O. M. high-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂ capture. Science, **319**, 939 (**2008**).

[147] Prakash, M.; Sakhavand, N.; Shahsavari, R. H_2 , N_2 , and CH_4 gas adsorption in zeolitic imidazolate framework-95 and -100: ab initio based grand canonical monte carlo simulations. J. Phys. Chem. C, **117**, 24407(**2013**).

[148] Messerschmidt, A.; Huber, R.; Poulos, T.; Wieghardt, K. Metalloproteins; John Wiley and Sons, New York (**2001**).

[149] Hakkim, V.; Subramanian, V. Role of second coordination sphere amino acid residues on the proton transfer mechanism of human carbonic anhydrase II (HCA II). J. Phys. Chem. A, **114**, 7952 (**2010**).

[150] Appleton, D. W.; Sarkar, B. Studies of Zn(II) and Co(II) complexes of imidazole and nmethylimidazole with regard to the activity related ionization in carbonic anhydrase. Bioinorg Chem. **7**, 211 (**1977**).

[151] Vallee, B. L.; Auld, D. S. Active-site zinc ligands and activated H₂O of zinc enzymes.Proc. Matrix Metalloproteinase Conf. 5 (1992).

[152] Parkin, G. Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. **104**, 699 (**2004**). [153] Dołęga, A.; Farmas, A.; Baranowska, K.; Herman, A. Novel zinc complexes with acetyloacetonate, imidazoleand thiolate ligands. Crystal structure of a zinc complex of relevance to farnesyl transferase. Inorg. Chem. Comm., **12**, 823 (**2009**).

[154] Mc Call, K. A.; Huang, C.; Fierke, C. A. Function and mechanism of zinc metalloenzymes. J. Nutr., **130**, 1437S (**2000**).

[155] Sundberg, R. J.; Martin. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev.**74**, 471 (**1974**).

[156] Rannulu, N. S.; Rodgers. M. T. Solvation of copper ions by imidazole: structures and sequential binding energies of $Cu^+(imidazole)_x$, x = 1-4. competition between ion solvation and hydrogen bonding. Phys. Chem. Chem. Phys., **7**, 1014 (**2005**).

[157] Peschke, M.; Blades, A. T.; Kebarle. P. Metalloion-ligand binding energies and biological function of metalloenzymes such as carbonic anhydrase. a study based on ab initio calculations and experimental ion-ligand equilibria in the gas phase. J. Am. Chem. Soc. **122**, 1492 (**2000**).

[158] Lagutschenkov, A.; Lorenz, U. J.; Dopfer, O. IR spectroscopy of isolated metal–organic complexes of biocatalytic interest: Evidence for coordination number four for Zn²⁺(imidazole)₄.
 Int. J. Mass Spectrometry, **308**, 316 (**2011**).

[159] Piquemal, J.-P.; Marquez, A.; Parisel, A.; Giessner-Prettre, C. A CSOV study of the difference between hf and dft intermolecular interaction energy values: the importance of the charge transfer contribution. J. Comput. Chem., **26**, 1052 (**2005**).

[160] Rayon, V. M.; Valdes, H.; Dıaz, N.; Suarez, D. Monoligand Zn(II) Complexes: Ab initio benchmark calculations and comparison with density functional theory methodologies. J. Chem. Theory Comput., **4**, 243 (**2008**).

[161] Grimme, S. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies J. Chem. Phys., 118, 9095 (**2003**).

[162] Hampel, C. Peterson, K.; Werner, H. -J. A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods. Chem. Phys. Lett., **190**, 1 (**1992**). and references therein

[163] Deegan, M. J. O.; Knowles, P. J. Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories. Chem. Phys. Lett. **227**, 321(**1994**).

[164] Knowles, P. J.; Hampel C.; Werner, H.-J. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys.**99**, 5219 (**1993**).

[165] Knowles, P. J.; Hampel C.; Werner, H.-J. Coupled cluster theory for high spin, open shell reference wave functions J. Chem. Phys., **112**, 3106 (**2000**).

[166] Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. J. Chem. Phys. **98**, 8718 (**1993**).

[167] Werner, H. -J.; AdleR, T. B.; Knizia, G. General orbital invariant MP2-F12 theory J. Chem. Phys. **126**, 164102 (**2007**).

[168] Adler, T. B.; Manby, F. R.; Werner, H. -J. Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules J. Chem. Phys. **130**, 054106 (2009).

[169] T. B. Adler and H. -J. Werner, Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. J. Chem. Phys. **130**, 241101 (2009).

[170] G. Knizia, T. B. Adler and H.-J. Werner, Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. **130**, 054104 (**2009**).

[171] T. B. Adler, G. Knizia and H.-J. Werner, A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. **127**, 221106 (**2007**).

[172] Knizia, G.; Werner, H.-J. Explicitly correlated RMP2 for high-spin open-shell reference states. J. Chem. Phys. **128**, 154103 (**2008**).

[173] J. P. Perdew, M. Ernzerhof and K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. **105**, 9982 (**1996**).

[174] Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys., **110**, 6158 (**1999**).

[175] Zhao, Y.; Truhlar, D. G. How well can new-generation density functional methods describe stacking interactions in biological systems. Phys. Chem. Chem. Phys. **7**, 2701 (**2005**).

[176] Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput.**2**, 364 (**2006**).

[177] Zhao, Y.; Truhlar, D.G. he M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. **120**, 215 (**2008**).

[178] Peverati, R.; Truhlar, D. G. Improving the accuracy of hybrid meta-GGA density functionals by range separation. J. Phys. Chem. Lett. **2**, 2810 (**2011**)

[179] Boussouf, K.; Boulmene, R.; Prakash, M.; Komiha, N.; Taleb, M.; Al-Mogren, M. M.; Hochlaf, M. Characterization of Zn^{q+} -imidazole (q = 0, 1, 2) organometallic complexes: DFT methods vs. standard and explicitly correlated post-Hartree–Fock methods. Phys. Chem. Chem. Phys. **17**, 14417(**2015**).

[180] Yazal, J. E.; Pang, Y. P. Ab initio calculations of proton dissociation energies of zinc ligands: hypothesis of imidazolate as zinc ligand in proteins. J. Phys. Chem. B 103, 8773 (1999).
[181] Yazal, J. E.; Roe, R. R.; Pang, Y. Zinc's affect on proton transfer between imidazole and acetate predicted by ab initio calculations. J. Phys. Chem. B, 104, 6662 (2000).

[182] Smieško, M.; Remko, M. Coordination and thermodynamics of stable Zn(II) complexes in the gas phase. J. Biomol. Struct. Dyn. **20**, 759 (**2003**).

[183] M. Smiesko, M.; Remko, M. structure and gas-phase stability of Zn(II)-molecule complexes. Chem. Pap. **59**, 310-315 (**2005**).

[184] Jiang, W. Y.; DeYonker, N. J.; Determan, J. J.; Wilson, A. K. Toward accurate theoretical thermochemistry of first row transition metal complexes. J. Phys. Chem. A, **116**, 870 (**2012**).

[185] Prakash, M.; Mathivon, K.; Benoit, D. M.; Chambaud, G.; Hochlaf. M. Carbon dioxide interaction with isolated imidazole or attached on gold clusters and surface: competition between σ H-bond and π stacking interaction. Phys. Chem. Chem. Phys. **16**, 12503 (**2014**).

[186] Prakash, M.; Gopalsamy, K.; Subramanian, V. Benzene–water (BZWn (n = 1 - 10)) clusters. J. Phys. Chem. A, **113**, 13845 (**2009**).

[187] Prakash, M.; Gopalsamy, K.; Subramanian, V. Studies on the structure, stability, and spectral signatures of hydride ion-water clusters. J. Chem. Phys. **135**, 214308 (**2011**).

[188] Raghavachari, K.; Trucks, G. W. Highly correlated systems: Excitation energies of first row transition metals Sc-Cu. J. Chem. Phys. **91**, 1062, (**1989**).

[189] Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys., **124**, 034108 (**2006**).

[190] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

[191] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et. Al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, (2013).

[192] Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. **19**, 553(**1970**).

[193] Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, (**2013**); NBO Version 6.0. (http://nbo6.chem.wisc.edu/).

[194] Choi, M. Y.; Miller, R. E. Chem. Phys. Lett. 477, 276 (2009).

[195] Karthikeyan, S.;Nagase, S.Origins of the stability of imidazole–imidazole, benzene–imidazole, and benzene–indole dimers: CCSD(T)/CBS and SAPT calculations. J. Phys. Chem. A , **116**, 1694 (**2012**).

[196] S. Yan, S.; Bu, Y.; Li. P. Electronic effect on protonated hydrogen-bonded imidazole trimer and corresponding derivatives cationized by alkali metals Li⁺, Na⁺, and K⁺. J. Chem. Phys. **122**, 054311 (**2005**).

[197] Prakash, M.; Subramanian, V.; Gadre, S. R. Stepwise hydration of protonated carbonic acid: a theoretical study. J. Phys. Chem. A **113**, 12260 (**2009**).

[198] Prakash, M.; Subramanian, V. Structure, stability and spectral signatures of monoprotic carborane acid–water clusters (CBW_n, where n = 1-6). Phys. Chem.Chem.Phys. 13, 21479 (2011).

[199] Zahmakiran, M. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance. Dalton Trans. **41**, 12690 (**2012**).

[200] Marinelli, P. J.; Squires, R. R. Sequential solvation of atomic transition-metal ions. The second solvent molecule can bind more strongly than the first. J. Am. Chem. Soc. **111**, 4101 (**1989**).

[101] Langhoff, S. R.; Bauschlicher, C. W.; Partridge, H. Theoretical study of one and two ammonia molecules bound to the first-row transition metal ions. J. Phys. Chem. **95**, 10677 (**1991**).

[202] Bauschlicher, C. W.; Langhoff, S. R.; Patridge, H. Theoretical study of transition-metal ions bound to benzene J. Phys. Chem. **96**, 3273 (**1992**).

[103] Dalleska, N. F.; Honma, K.; Sunderlin, L. S. Armentrout, P. B. Solvation of transition metal ions by water. sequential binding energies of $M^+(H2O)_x$ (x = 1-4) for M = Ti to Cu determined by collision-induced dissociation. J. Am. Chem. Soc. **116**, 3519, (**1994**).

[204] Walter, D.; Armentrout, P. B. Sequential bond dissociation energies of $M^+(NH3)_x$ (x = 1–4) for M = Ti–Cu. J. Am. Chem. Soc. **120**, 3176, (**1998**).

[205] Koizumi H.; Zhang, X. G.; Armentrout, P. B. Collision-Induced dissociation and theoretical studies of Cu^+ dimethyl ether complexes. J. Phys. Chem. A, **105**, 2444 (**2001**).

[206] Vitale, G.; Valina, A. B.; Huang, H.; Amunugama, R.; Rodgers, M. T. Solvation of copper ions by acetonitrile. Structures and sequential binding energies of $Cu^+(CH3CN)_x$, x = 1-5, from collision-induced dissociation and theoretical studies. J. Phys. Chem. A, **105**, 11351 (**2001**).

[207] Chu, Y.; Yang, Z.; Rodgers, M. T. Solvation of copper ions by acetone. Structures and sequential binding energies of $Cu^+(acetone)x$, x = 1-4 from collision-induced dissociation and theoretical studies. J. Am. Soc. Mass Spectrom.**13**, 453 (**2002**).

[208] Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, **4**, 310 (**2012**).

[209] Kropidłowska, A.; Chojnacki, J.; Becker, B. Manganese(II) tri-tert-butoxysilanethiolate complexes with imidazole-based coligands: A neutral complex with four independent ligands and MNOS2 core (M = Mn) related to the liver alcohol dehydrogenase catalytic center (M = Zn). J. Inorganic Biochem.**101** 578 (**2007**).

[210] Terenzi, A.; Lauria, A.; Almerico, A. M.; Barone. G. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element. Dalton transactions, 44, 3527 (2014).

[211] Adasme, R. M.; Sadeghian, K.; Sundholm, D.; Ochsenfeld. C. Effect of including torsional parameters for histidine–metal interactions in classical force fields for metalloproteins. J. Phys. Chem. B, **118**, 13106 (**2014**).

[212] Wang, B. Cote, A. P. Furukawa, H. O'Keeffe et M. Yaghi, O. M. Nature, **453**, 207 (2008)

 $[213] \ http://www.vetopsy.fr/biologie-cellulaire/biochimie/enzymes/protease-peptidases-mecanismes.php$

[214] https://fr.wikipedia.org/wiki/Anhydrase_carbonique

Conclusion générale et perspectives

Les travaux effectués dans cette thèse consistent à valider l'utilisation des approches DFT pour traiter la liaison, la structure, la stabilité et la spectroscopie des complexes entre Zn^{q+} et l'imidazole (Im), $Zn^{q+}Im_n$ (où q = 0, 1, 2; n = 1 –4). La validation consiste à une comparaison directe entre les résultats issus des approches DFT et ceux issus des méthodes ab initio standards (R)CCSD(T) et (R)MP2 et explicitement corrélées (R)CCSD(T)-F12 et (R)MP2-F12 en connection avec des bases atomiques diffuses.

Dans un premier temps, nous avons étudié les structures d'équilibre, la stabilité, la spectroscopie, la liaison chimique (covalente, transfert de charge et van der Waals) et le rôle de la dispersion dans la stabilité des complexes Zn^{q+}Im (q=0, 1,2), qui sont des sous-unités des ZIFs et des Znenzymes. Ces entités jouent un rôle très important en chimie, en biologie et en industrie. Ces études ont été réalisées avec les fonctionnelles PBE, PBE+D3, PBE0, PBE0+D3, M05-2X, M05-2X+D3 et M11 de la théorie de la fonctionnelle de densité (DFT) avec ou sans inclusion de la correction de dispersion de Grimme (D3), associées à la base 6-311++G(d,p). Nous avons également utilisé les méthodes ab initio standards(R)MP2/6-311++G(d,p)/aug-cc-pVXZ(X=D,T) et (R)CCSD(T)/aug-cc-pVXZ (X=D,T) et les nouvelles techniques explicitement corrélées (R)MP2-F12/aug-cc-pVTZ(-PP) et (R)CCSD(T)-F12/aug-cc-pVTZ(-PP), qui tiennent compte de la corrélation électronique récemment implémentées dans le code Molpro. Ceci a permis d'évaluer les performances de la théorie de la fonctionnelle de la densité (DFT) pour le traitement des composés organométalliques de grande taille. Notre étude établit la capacité et la fiabilité de la fonctionnelle M05-2X(+D3) pour la description précise des interactions covalentes et non-covalentes entre la molécule d'imidazole et l'atome de Zinc neutre et ionique, car elle donne des résultats en excellent accord avec ceux issus des méthodes ab initio hautement corrélées. La fonctionnelle M11 est également adaptée pour la description des interactions noncovalentes.

Dans la dernière partie de ce travail, nous avons étudié la structure, la stabilité et le spectre des complexes $Zn^{q+}Im_n$ (q = 0, 1, 2, n = 1–4) et Im_n (n = 2–4) en utilisant les fonctionnelles M05-2X et PBE0 avec ou sans inclusion de la correction de dispersion de Grimme (D3). En outre, nous

avons effectué une analyse du rôle de transfert de charge et diverses interactions van der Waals (vdWS) sur leur stabilité et leur structure.

Pour les espèces neutres, nous avons trouvé trois types d'interactions : (i) les interactions de type σ au sein des complexes Zn–Im_n, où la liaison Zn-N est dominée par l'interaction partiellement covalente entre l'atome de zinc et l'atome d'azote non protoné de la molécule imidazole, (ii) les interactions de type liaison hydrogène entre les molécules imidazoles, enfin, les interactions de type π -stacking dans les complexes Zn–Im_n et Im_n, où l'atome de zinc interagit avec le nuage π du cycle aromatique.

Pour les espèces ioniques, nous avons constaté que les ions Zn préfèrent interagir avec l'atome d'azote non protoné de la molécule d'imidazole au lieu d'interagir avec le nuage π du cycle aromatique. En effet on a trouvé que, l'interaction de type σ avec la paire libre de l'azote est beaucoup plus favorable que celle avec le nuage π du cycle aromatique. Par conséquent, la liaison dominante est de type σ entre les ions Zn^+/Zn^{+2} et les molécules imidazoles (Im_n) pour lesquels les premiers et seconds ligands se lient plus fortement que les troisième et quatrième ligands. Tous ces effets favorisent la présence de processus de transfert de protons au sein des complexes $Zn^{2+}Im_n$ lorsque les molécules imidazoles forment une chaîne de liaisons hydrogène. Nous avons également constaté que, parmi tous les clusters neutres et ioniques étudiés, seulement le complexe Zn²⁺Im₄ présente une structure 3D autour du centre métallique analogue à l'environnement des ZIFs. Une telle géométrie 3D est nécessaire pour constituer la cage poreuse des ZIFs, qui est cruciale pour la séparation et la séquestration des gaz. Par ailleurs, nos travaux montrent que ces sous-entités des ZIFs n'absorbent pas dans le domaine visible. Ceci est une limitation pour le développement de nouvelles applications des ZIFs. En outre, nos calculs et leur comparaison aux travaux sur les complexes Cu⁺Im_n [215] montrent que les complexes Cu^+Im_n et $Zn^{2+}Im_n$ présentent des propriétés structurelles similaires.

En conclusion, notre travail a caractérisé de nouveaux complexes de transfert de charge. Cela peut être utile pour la compréhension de diverses applications comme celles récemment soulignées par Terenzi et al [216] sur l'adsorption des gaz. De plus, nos résultats peuvent être utilisés pour la détermination des champs de force précis pour les métalloprotéines [217] ou les ZIFs. Ces résultats au niveau microscopique sont nécessaires pour déduire les propriétés
macroscopiques et thermochimiques de ces composés avec une bonne précision après incorporation dans des simulations dynamiques. La compréhension de la nature des interactions entre la molécule de CO₂ et les matériaux Zn-organiques est importante pour la capture du CO₂ et des applications enzymatiques. Pour cela nous avons étudié les mécanismes d'adsorption et les sites d'interaction du CO₂ autour les complexes $Zn^{q+}Im$ (q=0, 1,2) [218] à travers les interactions de type σ et π -stacking dans la phase gazeuse. Ensuite, nous allons étudier l'importance des différentes interactions covalentes et non /covalentes entre la molécule de CO₂ et les complexes $Zn^{q+}Im$ (q=0, 1,2), ce qui nous permettra de déterminer les sites préférentiels d'adsorption. Enfin, nous déterminerons les transferts de charge dans ces interactions pour mieux comprendre le fonctionnement de ce complexe. D'autre part, nous avons commencé à étudier la structure d'équilibre, la stabilité, la liaison chimique et la spectroscopie des complexes Co^{q+} - Cobalt, Co^{q+}Im (q=0, 1, 2, 3, 4), qui jouent un rôle très important en chimie, en biologie, en environnement et en industrie.

Bibliographie:

[215] Rannulu, N. S.; Rodgers. M. T. Solvation of copper ions by imidazole: structures and sequential binding energies of Cu+(imidazole)x, x = 1-4. competition between ion solvation and hydrogen bonding. Phys. Chem. Chem. Phys. **7**, 1014-1025 (**2005**).

[216] Terenzi, A.; Lauria, A.; Almerico, A. M.; Barone. G. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element. Dalton transactions, **44**, 3527-3535 (**2014**).

[217] Adasme, R. M.; Sadeghian, K.; Sundholm, D.; Ochsenfeld. C. Effect of including torsional parameters for histidine–metal interactions in classical force fields for metalloproteins. J. Phys. Chem. B, **118**, 13106-13111 (**2014**).

[218] Boussouf, K.; Boulmene, R.; Prakash, M.; Komiha, N.; Taleb, M.; Al-Mogren, M. M.; Hochlaf, M. Characterization of Znq+-imidazole (q = 0, 1, 2) organometallic complexes: DFT 134 methods vs. standard and explicitly correlated post-Hartree–Fock methods. Phys. Chem. Chem. Phys. **17**, 14417-14426 (**2015**).

Annexes

Annexe 1 :

base		6-3		aug-cc-pVDZ	
méthodes	PBE	PBE0	M05-2X	(R)MP2	(R)MP2
	- 11,4663	18,8118	14,0349	1,26	16,96
	- 6,8682	25,8151	40,5874	13,73	29,45
	38,5878	38,7095	47,532	38,35	47,86
	514,1728	544,5766	552,0092	416,68	560,77
	622,4882	646,9748	652,6995	597,7521	641,73
	658,5848	683,4151	690,6685	656,3161	675,07
	693,9789	739,6538	760,3668	673.8231	717,75
	760,6469	822,2029	856,0938	734,1157	781,82
	821,8328	874,0163	905,2724	776,0605	838,68
	877,7419	912,8522	928,2574	900,7871	890,41
	914,7733	948,9053	960,606	935,1276	926,74
77 97 7	1048,529	1088,0578	1094,3841	1086,765	1073,34
Zn°Im I	1068,4052	1110,4308	1112,9699	1105,827	1095,28
	1114,9415	1158,9874	1162,6031	1155.555	1141,29
	1147,4388	1194,2726	1192,8762	1186,615	1176,79
	1235,4781	1285,5264	1301,8249	1279,928	1258,57
	1331,5792	1392,9844	1400,5212	1373,732	1362,46
	1395,303	1463,1135	1469,8821	1468,346	1461,7
	1457.3787	1525,903	1539.0873	1508.917	1492,67
	1507,4693	1579,1258	1599,0545	1538,755	1524,71
	3176.531	3264.616	3291.3925	3284.409	3288.47
	3181.8793	3266.716	3300.7227	3287.321	3290.68
	3207,2501	3296,7416	3328,5978	3311,545	3314,2
	3562,2267	3695,185	3731,9685	3677,366	3658,67
	32,3936	38,5903	63,1728	57,4513	68,4
	41,0987	48,1598	73,1078	73,9008	80,87
	49,8285	57,9776	85,3542	83,7195	88,09
	515,1714	545,2387	565,9782	478,4243	555,77
	621,1065	645,8377	652,4585	621,5976	634,06
	658,8458	683,0429	688,5247	662,1847	667,63
	699,9191	745,039	765,9596	704,4613	718,24
	766,1941	826,3974	857,2556	773,9568	778,33
	830,9135	882,9311	905,1257	828,1525	839,02
	874,0388	909,3869	925,9267	896,5722	885,58
77.01.11	913,8179	948,1617	960,4227	933,7507	925,26
Zn Im II	1047,3071	1086,9105	1094,5918	1085,2185	1071,38
	1068,2109	1109,198	1110,7834	1105,2888	1094,23
	1112,9442	1156,6818	1161,3614	1152,295	1137,33
	1148,4011	1195,6156	1194,2851	1189,5542	1180,02
	1235,2201	1284,1698	1300,5192	1278,3576	1256,86
	1328,7786	1391,3699	1398,4001	1371,6207	1359,94
	1391,5992	1459,3994	1466,9104	1464,5361	1457,57
	1452,4874	1520,6441	1535,584	1503,109	1484,59
	1503,1255	1575,4883	1596,2601	1534,5138	1519,36
	3175,9789	3264,0418	3290,365	3282,5427	3286,88
	3182,0064	3268,2282	3292,9979	3290,8367	3296,51

	3207,471	3296,9175	3326,1862	3310,1059	3313,12
	3563,9255	3695,5	3736,3238	3673,3381	3654,75
	109,3218	115,2421	111,9697	104,1672	171,84
	147,2355	150,4366	141,4261	148,1188	199,28
	242,9724	256,7299	251,3139	258,0019	239,06
	602,7606	628,8742	635,9972	578,5787	639,55
	628,6994	657,5082	664,0099	616,3143	659,4
	673,617	706,488	714,6921	685,5693	740,45
	728,1497	772,5844	789,2046	731,6078	830,41
	785,6269	851,0377	884,5063	779,458	868,81
	840,4271	893,0732	918,9782	803,3392	921,78
	902,2778	936,7161	945,7404	927,7139	935,2
	929,9663	967,7553	978,4468	958,1113	970,34
	1061,762	1103,0333	1104,6843	1107,0112	1123,93
	1096,1566	1134,8975	1145,5764	1129,0842	1163,38
	1127,5093	1167,9968	1160,8265	1171,7515	1193,51
	1174,8324	1221,7855	1225,8735	1216,5948	1232,67
	1249,1958	1300,7289	1314,4136	1290,1553	1311,99
	1322,5098	1381,5321	1388,531	1377,1385	1392,82
Zn ⁺ Im	1421,4547	1484,6303	1491,2168	1479,1072	1478,55
	1488,2796	1561,2324	1574,4053	1553,5967	1543,67
	1537,0017	1603,9934	1621,2845	1575,7984	1566,89
	3204,4619	3287,3616	3305,0792	3301,4586	3314,79
	3207,9375	3288,795	3310,9722	3305,9235	3327,65
	3225,1549	3310,6217	3340,254	3324,1007	3345,24
	3537,1001	3654,3355	3680,7093	3632,2637	3636,34
	137,4516	113,0222	126,7848	116,5451	122,6
	202,6901	205,7757	196,4812	202,5933	199,33
	324,4337	343,4863	347,1748	347,8672	350,08
	574,9537	581,4278	623,8626	573,0083	600,92
	609,0926	626,3846	635,8827	601,7992	623,83
	706,022	722,8258	765,0427	715,016	735
	765,7556	751,7094	770,9729	738,882	759,67
	800,8158	862,9458	898,8832	797,2633	816,34
	872,8644	894,9447	925,5143	824,7684	853,01
	877,7578	915,329	928,7759	911,5714	903,78
	921,1932	963,5334	978,2126	955,4194	949,09
7n ²⁺ Im	1051,9544	1099,6723	1104,5681	1106,1816	1095,19
	1100,6148	1138,2196	1132,0633	1138,162	1128,72
	1106,0537	1151,3794	1159,7917	1153,4907	1145,12
	1189,8322	1237,9412	1245,6903	1232,9364	1220,74
	1242,888	1298,778	1309,665	1282,0925	1268,74
	1282,4408	1342,9628	1353,4492	1351,9604	1342,17
	1419,7155	1486,1408	1495,4853	1465,1248	1456,39
	1465,981	1543,405	1564,4095	1537,0598	1521,29
	1551,7253	1626,2583	1646,0858	1597,4214	1585,29
	3181,3742	3273,9714	3294,6259	3290,0531	3291,53
	3196,9727	3276,9916	3296,3089	3293,2178	3294,94
	3208,4918	3294,3254	3315,1817	3308,2234	3310,36
	3460,4084	3576,9557	3600,9424	3555,5947	3538,42

Tableau 1 : Fréquences des complexes $Zn^{q+}Im (q = 0, 1, 2)$ 147

Annexe 2 :

		Zn ^{+q}	Im ₂		
	Zn ⁰ Im _{2a}			Zn ⁰ Im _{2b}	
E = -2231,74467	907		E = -2231,74722	204	
$\begin{array}{cccc} & -0,7173480\\ \text{C} & -0,1375580\\ \text{C} & -1,5001550\\ \text{N} & -1,8509680\\ \text{H} & -0,6190330\\ \text{H} & 1,3334720\\ \text{H} & 0,5073640\\ \text{H} & 0,5073640\\ \text{H} & -2,2409860\\ \text{N} & 0,3508270\\ \text{C} & 3,8725340\\ \text{C} & 3,8725340\\ \text{C} & 3,8725340\\ \text{C} & 3,8725340\\ \text{C} & 5,2561880\\ \text{N} & 5,1299950\\ \text{H} & 5,8395880\\ \text{H} & 3,5081070\\ \text{H} & 3,7400840\\ \text{H} & 6,1649640\\ \text{N} & 3,1920370\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,08465900 - $0,14164400$ - $0,12854800$ 0,01352800 0,20078900 0,01922200 - $0,23238000$ - $0,21228100$ - $0,00386500$ 0,03172500 - $1,00993600$ 1,09408300 0,69875100 - $0,65012600$ - $1,26044800$ - $2,01959500$ 2,07975700 1,23574900 0,01949900	C 1,36853100 C 1,40937300 C 2,68067000 N 2,64343400 H 0,96501300 H -0,43968000 H 1,03727800 H 3,61037000 N 0,57845400 Zn 1,88502700 C -2,29852700 C -2,29852700 C -3,56484900 C -4,40167800 N -3,57644400 H -3,86503200 H -1,44334600 H -3,82430400 H -5,47262700 N -2,25681600	-1,40919700 -1,51730300 -1,55213400 -1,48451100 -1,34534800 -1,34166300 -1,55173100 -1,62561800 -1,43164000 1,70559400 0,65530600 -1,07463800 0,00296200 1,10274600 2,06472400 1,31164300 -2,11837700 0,08507100 -0,65466800	-1,08905200 1,09801300 0,58477000 -0,78345100 -2,08554800 0,02829400 2,10562900 1,12188900 0,01294300 0,01575900 0,00661400 0,01299200 -0,00661400 0,01299200 -0,00625800 -0,01726300 0,00687700 0,02005100 -0,01033200 0,01849000
	$Zn^{0}Im_{2c}$			$Zn^{0}Im_{2d}$	
E = -2231,74114	435		E = -2231,74139	316	
C 1,5746000 C 3,4030040 C 2,8449850 N 1,7073590 H 0,7630490 H 2,6808320 H 4,2794670 H 3,1978790 N 2,5811050 C -1,5698160 C -2,8431440 C -3,4018640 N -2,5780100 H -2,6779410 H -0,7563120 H -3,1971670 H -4,2798800 N -1,7032220	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,52388500 0,08719300 -1,06273300 -0,77957500 1,09213400 2,07592600 0,27238000 -2,07125200 1,09598400 -0,00136700 -0,51954500 1,06281300 -0,09000700 -1,09596100 -2,07700800 -1,08462600 2,07043000 -0,27888800 0,78416200	$ \begin{array}{rcrr} C & 0,09481700 \\ C & 0,64917700 \\ C & 0,28244600 \\ N & -0,06662600 \\ H & -0,48907800 \\ H & -0,12640100 \\ H & 1,00358900 \\ H & 0,24403900 \\ N & 0,52549800 \\ C & -3,00877700 \\ C & -3,36512700 \\ C & -3,17063800 \\ N & -2,94892500 \\ H & -2,67780300 \\ H & -2,85305600 \\ H & -3,58750100 \\ H & -3,17639800 \\ N & -3,25954600 \\ Zn & 3,43394700 \\ \end{array} $	$\begin{array}{c} -0,13075500\\ 1,72568700\\ 0,90594300\\ -0,28176000\\ -1,07110900\\ -0,91979400\\ 2,74033100\\ 1,05465700\\ 1,06903500\\ 0,56523600\\ -1,37779000\\ -0,55609100\\ 0,68878800\\ 1,51391100\\ 1,40025300\\ -2,43084000\\ -0,73595400\\ -0,66713100\\ -0,46691200\\ \end{array}$	0,85803200 -0,03713700 -1,07015400 -0,48077200 -0,94091300 1,55588100 -0,09194600 -2,13365200 1,16263900 -0,78720800 0,02102100 1,09671300 0,56265000 1,06934500 -1,44861400 0,02436800 2,15604100 -1,15080200 -0,04447100
E 2221 E4000	Zn^+Im_{2a}			Zn^+Im_{2b}	
C 2,80691400 C 2,95100400 C 1,68192500 N 1,60356000 H 3,09329400 H 4,61703700 H 3,41083300 H 0,83546000 N 3,64335300 Zn -0,00007600 C -2,80733100 C -1,68155200 C -2,95047300 N -3,64334300 H -4,61709500 H -3.09415400	-0,37819000 1,60950100 1,13792400 -0,10466000 -1,27769400 0,66989900 2,52329100 1,59470100 0,63565300 -1,42954000 -0,37780600 1,13736400 1,60948400 0,63616800 0,67090900 -1,27692500	-0,46617400 0,47627100 0,60303200 0,00493100 -0,98331300 -0,46038800 0,80420000 1,08340000 -0,20390400 -0,00010900 0,46670600 -0,60302100 -0,47671900 0,20365800 0,45988600 0,98426200	C -1,69041400 C -3,68436300 C -2,84492400 N -1,60011200 H -0,89805900 H -3,26167900 H -4,71994600 H -3,04755900 N -2,93411700 Zn -0,00351600 C 2,79653200 C 1,68081400 C 2,94593000 N 3,63243400 H 4,60280400 H 3.07992500	1,05556000 0,65448700 -0,36994200 -0,10530100 1,55008200 2,41164700 0,82368500 -1,26756000 1,54324500 -1,44130900 -0,35182600 1,11857900 1,60116200 0,65624600 0,70352000 -1,23119100	-0,61123300 0,24003400 0,54735300 0,01375900 -1,14656500 -0,88449900 0,47006700 1,10333600 -0,49303600 -0,00448400 -0,00448400 -0,49980500 0,63931900 0,51181100 -0,21304100 -0,47996100 -1,05236600

H -0,83479600 H -3,40991300 N -1,60375700	1,59359500 2,52329400 -0,10495300	-1,08339300 -0,80514000 -0,00422900	H H N	0,84140200 3,40720400 1,59892800	1,54979000 2,50338300 -0,10164900	1,15450000 0,86861600 -0,00246300
$Zn^{2+}Im_2$						
E = -2231,217064	186					
C 2,72769800 C 3,97824800 C 2,67840400 N 1,89204300 H 2,45437000 H 4,79930200 H 4,88410700 H 2,26380400 N 3,97636700 Zn -0,00000900 C -2,72777800 C -2,67834200 C -3,97819500 N -3,97639100 H -4,79934600 H -2,45438500 H -2,26359000 H -4,88398700 N -1,89205000	-0,78477900 0,53659400 0,83019600 -0,00601700 -1,54670400 -0,91767700 0,95083800 1,56348200 -0,47398400 -0,00024200 0,78480600 -0,82987000 -0,53588100 0,47417100 0,91785700 1,54636100 -1,56310600 -0,94971200 0,00576200	-0,71920200 0,53412300 0,77353500 -0,01992100 -1,42971700 -0,78788400 0,94035700 1,44254300 -0,39978200 -0,05043100 -0,71952800 0,77356800 0,73463800 -0,39980100 -0,78786200 -1,43040600 1,44253100 0,94144100 -0,02062300	Trace			
	Zn ⁰ Im	Zn	<u>1111</u> 3		Zn ⁰ Im ₂₁	
	E 111 11113a				•111 11113b	

E =	-2458,0165123	8		E = -2458,016653	22	
С С С N H H H H N N C C C N H H H H Z C C C N H H H H H Z C C C N H H H H Z C C C N H H H H Z	0,02876700 -0,64797800 0,71982700 1,13197800 -0,01949500 -2,04169100 -1,33154700 1,42117900 -1,07331000 0,01572700 -4,74926800 -4,74926800 -4,74926800 -5,33620800 -5,73081500 -6,59081300 -4,80579500 -3,46791600 -5,94192600 -3,75740900 5,80817200 4,77455200 4,32251600 5,51526600 6,73926400 4,63509100 2,91602000 3,77349500 3,8720300	-1,04390100 -0,29298600 -0,31785400 -0,79130900 -1,42899200 -0,85126600 0,00925300 -0,02670600 -0,76529900 2,38962300 -1,66609000 0,28494100 0,09048400 -1,16132400 -1,62140200 -2,64103900 1,14376600 0,70821000 -1,20789700 -1,20789700 -1,74619400 0,31244600 0,08151100 -1,67368000 -2,71196500 -0,81360700 1,23478000 -0,7889500	0,33828200 2,28077600 2,22984300 1,01016900 -0,66613200 0,74168400 3,05254300 2,99194700 1,06721000 0,06885000 -0,20543800 -0,82852900 -1,39710100 -0,98904800 -1,22903500 0,24738200 -0,90631800 -2,03386200 -0,08769200 -1,00283200 -0,28350900 -0,283200 -0,29	C $-1,46015300$ C $-2,69462500$ C $-3,47073600$ N $-2,68725000$ H $-0,57450400$ H $-0,55359200$ H $-2,93523700$ H $-4,53906400$ N $-1,41181000$ Zn $2,47951700$ C $2,36382200$ C $0,67633300$ C $1,73809900$ N $2,80844700$ H $3,75624400$ H $3,75624400$ H $3,00737900$ H $-0,34577500$ H $1,80828300$ N $1,07761300$ C $-1,58917400$ C $-2,48192500$ C $-0,86693000$ N $-0,58174200$ H $-1,61733600$ H $-3,37930600$ H $-2,39194800$ H $-0,28655000$ N $-2,00845500$	$\begin{array}{c} -1,88252000\\ -1,82130100\\ -1,67503700\\ -1,70872600\\ -1,94361200\\ -1,95725500\\ -1,84287500\\ -1,95725500\\ -1,84287500\\ -1,55631700\\ -1,96098500\\ -0,58852400\\ -0,78179000\\ 0,37385100\\ 1,23160300\\ 0,47941900\\ 0,79745300\\ -1,57588400\\ 0,59126500\\ 2,26790600\\ -0,87801100\\ 2,97239300\\ 1,96283800\\ 1,94967700\\ 2,95294100\\ 3,70558700\\ 1,65088800\\ 0,47574100\\ 1,63644100\\ 1,31937800\\ \end{array}$	-0, 64555300 1, 16273000 0, 04409500 -1, 08470400 -1, 25620300 1, 25230500 2, 20984500 -0, 01308800 0, 70289600 -1, 55286400 1, 32554100 1, 32087900 1, 74256200 1, 32087900 1, 74256200 1, 36832500 1, 06684000 1, 04523900 1, 73102700 0, 45989500 0, 21843400 -1, 26778800 0, 47189900 1, 24706300 0, 71977000 -1, 30334400 -2, 11924500 -0, 89596900
	5,02720500	Zn ⁰ Im ₂₀	0,20030000		Zn ⁰ Im ₂₄	
E =	-2458,01582430	2		E =-2458,0065198	39	
с	-2,95133500	0,40751800	0,09079600	C 0,46869200	-1,93388200	-1,07935900
C C N H H H H N Z C C C N H H H H N C C C N H H H H N Z	-2,83064900 -4,06190200 -4,12615000 -2,65123100 -1,16276400 -2,40497100 -4,89647100 -2,13083400 -5,77493500 1,59453900 1,28364700 2,60346600 2,78619900 3,65473800 1,45348200 0,75126500 3,40359100 0,66134900 5,46464800 7,07171000 6,19066600 5,19333600 4,88591100 7,00383500 7,96514800 6,21490100 6,59351000	2,03004600 1,43395000 0,41875100 -0,26927900 1,53429600 2,84611000 1,67532300 1,36251000 -1,78236100 0,85945800 2,39392200 2,04628800 1,06478900 0,56322500 0,13433900 3,13024000 2,40125200 1,64405500 -1,67081800 -1,33379600 -0,29209100 -0,51412100 -2,15582400 -3,08638400 -1,52636100 0,59625800 -2,20730300 Zn⁺Im .	-1,37128100 -1,41722500 -0,49703600 0,87379100 -0,10562100 -1,92597500 -2,05239600 -0,40011800 0,34484300 -0,06881100 1,39149300 1,46974700 0,52965000 0,32171300 -0,85262500 1,96735500 2,09261600 0,42437100 0,47564700 -0,99129200 -0,99727200 -0,97785600 1,24319400 0,21622600 -1,55537700 -1,60329300 -0,04411100	C 0,42383000 C -0,81988500 N -0,77909100 H 0,86533500 H 2,22510500 H 0,78573000 H -1,73656300 N 1,24039700 Zn-0,81036000 C -4,24549500 C -3,71873600 C -4,13891700 N -4,47721100 H -4,80882600 H -4,42871700 H -4,42871700 H -3,33440500 H -4,21780500 N -3,79313600 C 3,52471600 C 5,72522600 C 5,22088400 N 3,84893400 H 2,52141500 H 4,63587500 H 6,73039100 H 5,76003700 N 4,62744100	-1,81690300 -2,11352200 -2,18637500 -1,90785900 -1,44168000 -1,67749000 -2,24876800 -1,71056300 1,12231400 0,79177800 -0,60069000 0,52741900 1,41274200 2,35179500 1,26958300 -1,50778900 0,77301000 -0,42337000 0,92015300 0,88080300 -0,38738400 -0,34899400 1,31246300 2,71043400 1,25804300 -1,31693400 1,70643600 Zn⁺Im	1,10/14500 0,61376800 -0,75624400 -2,08023300 0,01370100 2,10932900 1,16161900 0,01168900 -0,09921400 1,09085600 -0,44307400 -1,09138000 -0,09610100 -0,22047800 2,03838500 -0,87660000 -2,13411600 0,91759100 -0,01434000 0,07165800 0,08027700 0,02618800 -0,06135000 -0,01116100 0,10269700 0,12184800 0,01108900
F -	-2457 8498197	$\frac{\mathbb{Z}n^{+}Im_{3a}}{8}$		F =-2457 8337820	Zn^+Im_{3b}	
	-2,64672400 -2,39053400 -1,23964900 -1,41607300 -3,10211500	1,40117300 2,46974800 1,81699800 1,15072400 1,03959800	-0,60179100 1,30887100 0,98601400 -0,20732300 -1,50767600	C -0,79780800 C -0,97657400 C 0,33085500 N 0,43374700	0,60256600 -1,11795100 -0,74185800 0,34031500	0,23491400 -1,10462000 -1,03738600 -0,18633100

	4 21401200	2 52205100	0 01070000		1 07112200	1 20007000	0.00022000
н	-4,21401300	2,53295100	0,21079000	н	-1,0/112300	1,39807000	0,90632000
Н	-2,65253000	3,09176400	2,14454100	н	-2,70859900	-0,26102300	-0,12369800
Н	-0.30540500	1.78837200	1.51795000	н	-1.46130500	-1.90392600	-1.65417400
N	$-3^{2}7010600$	2 19261000	0 28974100	н	1 18583700	$-1^{1}5806900$	-1 53919000
Zn	0,00030800	0,00151500	-1 30606200	N	-1,67010800	_0 25768000	_0 29274000
211	0,00039800	0,00131300	-1,30000200		-1,07010000	-0,25708000	-0,29274000
C	0,10699500	-2,99189400	-0,60355100	∠n	2,10293900	1,46863000	0,196/2/00
С	-0,95434100	-1,97912400	0,98470800	C	4,85988500	0,21406900	-0,16713800
С	-0.94787600	-3.30250600	1.30668000	С	3.47389800	-1.33339600	0.45418300
Ň	-0,26936100	-3,92704200	0,28736200	Ċ	4 69875000	-1 91815700	0 36816300
	0,20550100	3,52707200	0,20750200		-,05075000	0,0010000	0,00010000
н	-0,09569500	-4,91521800	0,20752800	IN	5,55949600	-0,92108800	-0,02794000
н	0,64/02100	-3,20610/00	-1,50980500	н	6,54932900	-1,0208/400	-0,18456600
н	-1,39587100	-1,15483400	1,51603500	н	5,29097800	1,15529800	-0,46143700
н	-1.35810900	-3.84025000	2,14132800	н	2,53358700	-1.76965100	0.73915700
N	_0,28807600	-1 80007700	_0,20830000		5 02598800	-2,92471400	0 55126100
	2,20007000	1,00007700	0,20030000		3,02330000	2,52+71+00	0, 33120100
C	2,20099300	0,15451700	0,97836600	N	3,38813300	-0,00072400	0,11281100
C	3,34171500	0,82462500	1,30248200	C	-5,20110400	-0,86059300	0,93738400
C	2,53321300	1,59747300	-0,59690300	C	-6,56708400	0,33550700	-0,30870000
N	1 70549900	0 65081700	$-0^{\prime}20766500$	Ċ	$-5^{2}7607000$	0 53357300	-0 69834600
	1 71340000	-0,64718200	1 50277400		-4, 43220500	-0,21862000	0,09704800
	1,71349900	-0,04710200	1,30377400		-4,43220300	-0,21002900	1,00704000
н	4,01599100	0,73374600	2,13383400	н	-4,87063000	-1,54230500	1,70191000
н	4,29892000	2,38546200	0,21490300	н	-7,27927200	-0,91830500	1,25609000
н	2,44120900	2.18173500	-1.49626400	н	-7.49686300	0.73524300	-0.66867100
N	3 53417300	1,73560500	0,29128000	н	-4 90874400	1 16427500	-1,48815000
	5,55417500	1,75500500	0,25120000		6,40001000	0 55522400	0,72466800
				IN	-0,49991900	-0,33323400	0,73400800
		$Zn^{2+}Im_{3a}$				$Zn^{2+}Im_{3h}$	
E =-	2457,58630342	2		E =	E =-2457,534	465939	
	,				,		
C	-2.44533100	-1.73847000	-0.62670000	C	-0.83757400	-0.23743800	-0.07917100
č	-4,09839800	-0,72907600	0 42959800	č	-1 62500500	1 74955500	0 14099700
	2,04616200	0,72307000	0, 72555000		0, 27227200	1 96921200	0, 17407900
C	-2,94010200	-0,04923200	0,03994000		-0,27227200	1,00031200	0,17497800
N	-1,91130/00	-0,69024100	-0,00685500	N	0,24/34900	0,58497900	0,03250500
н	-1,92384300	-2,44918400	-1,24463500	н	-0,75658900	-1,30527900	-0,20356100
н	-4,39100200	-2,48191200	-0,74109200	н	-3,63687600	-0,06196700	-0,06211600
н	-5.10485900	-0.56132600	0,76793600	н	-2.36449500	2,52720000	0,22224700
L L L	-2 79017300	0,83010700	1 25920500	 Ц	0,34717100	2 7/112900	0 28428100
	-2,79017300	1,7000000000000000000000000000000000000	1,23520300		1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	2,74112,900	0,20420100
N	-3,75546100	-1,78355600	-0,381/2000	N	-1,96692800	0,42415500	-0,01921000
Zn	-0,04162300	-0,07686400	-0,00890400	Zn	2,04928000	0,15443400	0,02194300
C	1,69205400	-2,43460800	0,60266500	C	4,71398400	-0,46883800	1,03793500
C	2,72742400	-0,96897500	-0.63825300	C	4,69311100	-0.33980000	-1,15185300
ĉ	3 60212800	_1 97988200	-0,40310500	č	5 96465300	-0,61821000	-0,77566000
	2,00212000	2,995700200	0,7001000		5,50+05500	0,01021000	0,77300000
IN	2,92070500	-2,88570600	0,37894700	IN	5,94714200	-0,69309100	0,59769200
н	3,30219500	-3,/5393300	0,73369600	н	6,74525000	-0,88/53000	1,18/50900
н	0,95980400	-2,95463300	1,19615000	н	4,43121200	-0,47001300	2,07711000
н	2.87078700	-0.07286600	-1.21544600	н	4.29538800	-0.20235100	-2.14156200
н	4,61842000	$-2^{1}_{13086000}$	-0,71911400	н	6.85950900	-0.76581900	-1,35295300
N	1 52844800	-1,26250900	-0,00370000	N	3,00060600	-0,24762500	-0,00470300
	1 46015500	2 44702800	0,00070000	C	5,50505000	0,27541600	1,00770000
C	1,40913300	2,44703800	0,32313800		-3,47338000	-0,27341000	-1,09223100
C	1,38063300	3,78988300	0,34216500	C	-6,68340400	-0,78904700	0,68834400
C	-0,4216/900	2,84045500	-0,49156200	C	-5,39926600	-0,59540500	1,08311600
N	0 22868500	1 057/3000	-0.00296300	N	-4 67052200	-0 27896100	-0.04126000
	0,52808500	1,03/42000	-,		+,0/052200	0,27050100	-,
Н	2,24850200	1,87656600	0,99619400	н	-5,19417000	-0,06053000	-2,10787500
H	2,24850200	1,87656600	0,99619400 0,60980700	H H	-5,19417000 -7.51467800	-0,06053000 -0.65090200	-2,10787500 -1,26762900
H	2,24850200 2,05538200 -0,16964000	1,83742800 1,87656600 4,58779800 4,90903500	0,99619400 0,60980700 -0,58229100	H H H	-5,19417000 -7,51467800 -7,56515300	-0,06053000 -0,65090200 -1,04831900	-2,10787500 -1,26762900 1,24494700
H H H	2,24850200 2,05538200 -0,16964000	1,83742800 1,87656600 4,58779800 4,90903500	0,99619400 0,60980700 -0,58229100	H H H	-5,19417000 -7,51467800 -7,56515300	-0,06053000 -0,65090200 -1,04831900	-2,10787500 -1,26762900 1,24494700
H H H	2,24850200 2,05538200 -0,16964000 -1,37570800	1,8742800 1,87656600 4,58779800 4,90903500 2,73228600	0,99619400 0,60980700 -0,58229100 -0,97900400	H H H	-5,19417000 -7,51467800 -7,56515300 -4,95378800	-0,06053000 -0,65090200 -1,04831900 -0,65487900	-2,10787500 -1,26762900 1,24494700 2,05864800
H H H N	0,3288300 2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900	1,8742800 1,87656600 4,58779800 4,90903500 2,73228600 4,00916000	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200	H H H N	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	-0,06053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
H H H N	0,3280300 2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900	1,87656600 4,58779800 4,90903500 2,73228600 4,00916000	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	н н н N Im ₄	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	-0,06053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
H H H N	2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900	1,8742800 1,87656600 4,58779800 4,90903500 2,73228600 4,00916000 Zn⁰Im .	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	н н н N Im ₄	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	-0,26053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
	2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900		0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	н н н N Im ₄	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	-0,26053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800 Zn ⁰ Im _{4b}	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
H H H N E =-	2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900	$\frac{1,8742800}{1,87656600}$ $\frac{4,58779800}{4,90903500}$ $\frac{2,73228600}{4,00916000}$ $\mathbf{Zn}^{0}\mathbf{Im}_{4a}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	H H H N Im ₄	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	-0,26053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800 Zn⁰Im_{4b}	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
$\begin{array}{c} H \\ H \\ H \\ H \\ N \\ \end{array}$	-2684,30551709 2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900	$ \frac{1,8742800}{1,87656600} \\ 4,58779800 \\ 4,90903500 \\ 2,73228600 \\ 4,00916000 $ $ \overline{Zn^{0}Im_{4a}} \\ 9 $	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	Im_4	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	$\frac{-0,26053000}{-0,65090200} \\ -1,04831900 \\ -0,65487900 \\ -0,58317800 \\ \hline \mathbf{Zn}^{0}\mathbf{Im}_{4b} \\ 36 \\ 0,05342200 \\ \hline$	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
H H H H E =- C 1	-2684,30551709 -31264600	$ \begin{array}{r} 1,8742800 \\ 1,87656600 \\ 4,58779800 \\ 4,90903500 \\ 2,73228600 \\ 4,00916000 \\ \hline \mathbf{Zn}^{0}\mathbf{Im}_{4a} \\ 9 \\ 2,12024900 \\ 3,66431700 \\ 0 \\ \hline 0 \end{array} $	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	Im_4	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800	-0, 56053000 -0, 65090200 -1, 04831900 -0, 65487900 -0, 58317800 -0, 58342200 -0, 58342200 -1, 58372500 -0, 583725000 -0, 583725000 -0, 583725000 -0, 583725000000000000000000000000000000000000	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900
H H H N E =- C 1 C 2 C 2	-2684,30551709 -328538200 -0,16964000 -1,37570800 0,19054900	$ \begin{array}{r} 1,8742800 \\ 1,87656600 \\ 4,58779800 \\ 4,90903500 \\ 2,73228600 \\ 4,00916000 \\ \hline \mathbf{Zn}^{0}\mathbf{Im}_{4a} \\ 9 \\ 2,12024900 \\ 0,66431700 \\ 0,8842500 \\ 0 \\ 2,80842500 \\ 0 \\ 0 \\ 2,80842500 \\ 1,80842500 \\ $	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+}	Im_4	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -2684,2877588 4,85303400 5,24322400 6,25245600	$\frac{-0,26053000}{-0,65090200}$ $-1,04831900$ $-0,65487900$ $-0,58317800$ $\overline{\mathbf{Zn}^{0}\mathbf{Im}_{4b}}$ 36 $0,05342200$ $-1,61372600$ $-0,69261700$	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 0,10186100 -1,25894200
H H H N E =- C 1 C 2 C 3	-2684,30551709 -0,16964000 -1,37570800 0,19054900 -2684,30551709 -2684,30551700 -2684,30551700 -2684,305500 -2684,30500 -2684,305500 -2684,305500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30500 -2684,30000 -2684,3000000000000000000000000000000000000	$\frac{1,87656600}{4,58779800}$ $\frac{4,90903500}{2,73228600}$ $\frac{2,73228600}{4,00916000}$ $\frac{2,12024900}{3,66431700}$ 0 $\frac{2,89842500}{0}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+} ,62154700 ,84640200 ,56837600	H H H N Im ₄ E =	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 2684,2877588 4,85303400 5,24322400 6,25345600	-0,6053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800 Zn⁰Im _{4b} 36 0,05342200 -1,61372600 -0,69261700	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 0,10186100 -1,25894200 -1,32833700
H H H N E =- C 1 C 2 C 3 N 3	2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900 -2684,30551709 -2684,305900 -2694,305900 -2694,30500 -2694,30500 -2694,30500 -2694,30500 -2694,30500 -2694,30500 -2694,30500 -2694,30000 -2694,30000 -2694,3000000000000000000000000000000000000	$\frac{1,87656600}{4,58779800}$ $\frac{4,90903500}{2,73228600}$ $\frac{2,73228600}{4,00916000}$ $\frac{2,12024900}{3,66431700}$ $\frac{2,12024900}{2,89842500}$ $\frac{1,93134000}{0}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+2} ,62154700 ,84640200 ,56837600 ,35183800	H H H N E = C C C N	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -2684,2877588 4,85303400 5,24322400 6,25345600 5,99840600	-0,26053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800 Zn⁰Im_{4b} 36 0,05342200 -1,61372600 -0,69261700 0,34761500	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 -1,25894200 -1,32833700 -0,47153900
H H H N E =- C 1 C 2 C 3 N 3 H 1	-2684,30551709 -,31264600 -1,37570800 0,19054900 -2684,30551709 -2684,305517000 -2684,305517000 -2684,3055170000000000000000000000000000000000	$\begin{array}{r} 1,8742800\\ 1,87656600\\ 4,58779800\\ 4,90903500\\ 2,73228600\\ 4,00916000\\ \hline \\ \hline \\ 2,12024900\\ 3,66431700\\ 2,89842500\\ 1,93134000\\ 0\\ 1,54155900\\ 1\end{array}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+2} ,62154700 ,84640200 ,56837600 ,35183800 ,30984600	H H H N E = C C C N H	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -6,70162800 -6,20162800 -6,20162800 -6,20162800 -6,20162800 -6,25345600 5,99840600 4,34931100	-0,26053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800 Zn⁰Im_{4b} 36 0,05342200 -1,61372600 -0,69261700 0,34761500 0,65704400	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 -0,67321900 -1,25894200 -1,32833700 -0,47153900 0,83858600
H H H N E =- C 1 C 2 C 3 N 3 H 1 H 0	-2684,30551709 -0,16964000 -1,37570800 0,19054900 -2684,30551709 -2684,30551700 -2684,30551700 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,305500 -2684,3000 -2684,30000 -2684,300000000000000000000000000000	$\begin{array}{r} 1,8742800\\ 1,87656600\\ 4,58779800\\ 4,90903500\\ 2,73228600\\ 4,00916000\\ \hline \\ \hline \\ 2,12024900\\ 0\\ 3,66431700\\ 0\\ 3,66431700\\ 0\\ 2,89842500\\ 0\\ 1,93134000\\ 0\\ 1,54155900\\ 1\\ 3,39717900\\ 0\\ \hline \end{array}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+} ,62154700 ,84640200 ,56837600 ,35183800 ,30984600 ,09096200	H H H N E = C C C N H H	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -6,70162800 -6,70162800 -6,25345600 5,24322400 6,25345600 5,99840600 4,34931100 3,46919800	-0,26053000 -0,65090200 -1,04831900 -0,65487900 -0,58317800 2n ⁰ Im _{4b} 36 0,05342200 -1,61372600 -0,69261700 0,34761500 0,65704400 -1,55194400	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 -0,67321900 -1,25894200 -1,32833700 -0,47153900 0,83858600 -0,04083100
H H H N E =- C 1 C 2 C 3 N 3 H 1 C 2 C 3 H 1 C 2 C 3 H 1 C 2 C 3 H 1 C 2 C 1 C 1 C 2 C 1 C 1 C 2 C 1 C 1 C 2 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	-2684,30551709 -0,16964000 -1,37570800 0,19054900 -2684,30551709 -2684,30551700 -2684,30551700 -2684,30551700 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2684,305900 -2784,200 -2784,	$\begin{array}{r} 1,83742800\\ 1,87656600\\ 4,58779800\\ 4,90903500\\ 2,73228600\\ 4,00916000\\ \hline \\ \hline \\ \hline \\ \hline \\ 2,12024900\\ 0\\ 3,66431700\\ 0\\ 3,66431700\\ 0\\ 2,89842500\\ 0\\ 1,93134000\\ 0\\ 1,54155900\\ 1\\ 3,39717900\\ 0\\ 4,50010700\\ 1\end{array}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+2} ,62154700 ,84640200 ,56837600 ,35183800 ,30984600 ,09096200 ,50575200	H H H N E = C C C C N H H H	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -4,95378800 -6,70162800 -4,95378800 -6,70162800 -4,85303400 5,24322400 6,25345600 5,99840600 4,34931100 3,46919800 5,08428800	$\frac{0,06053000}{-0,65090200} \\ -1,04831900 \\ -0,65487900 \\ -0,58317800 \\ \hline \mathbf{Zn}^{0}\mathbf{Im}_{4b} \\ \hline 36 \\ 0,05342200 \\ -1,61372600 \\ -0,69261700 \\ 0,34761500 \\ 0,65704400 \\ -1,55194400 \\ -2,54730400 \\ \hline \ -2,54730400 \\ \hline \ -0,60000000 \\ \hline \ -0,600000000000 \\ \hline \ -0,600000000000000000000000000000000000$	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 -0,67321900 -1,25894200 -1,32833700 -0,47153900 0,83858600 -0,04083100 -1,76689600
H H H N E =- C 1 C 2 C 3 N 3 H 1 H 0 H 2 H 4	-2684,30551709 -0,16964000 -1,37570800 0,19054900 -2684,30551709 -2684,30551700 -2684,30551700 -2684,30000	$\begin{array}{r} 1,8742800\\ 1,87656600\\ 4,58779800\\ 4,90903500\\ 2,73228600\\ 4,00916000\\ \hline \\ \hline \\ \hline \\ \hline \\ 2,12024900\\ 0\\ 3,66431700\\ 0\\ 3,66431700\\ 0\\ 1,93134000\\ 0\\ 1,54155900\\ 1\\ 3,39717900\\ 0\\ 4,50010700\\ 1\\ 2,98757900\\ 0\\ \hline \\ \hline$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+2} ,62154700 ,84640200 ,56837600 ,35183800 ,30984600 ,09096200 ,50575200 .97217200	H H H N E = C C C C N H H H H	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -6,70162800 -6,70162800 -6,70162800 -6,70162800 5,24322400 6,25345600 5,99840600 4,34931100 3,46919800 5,08428800 7,14015100	$\frac{-0,26053000}{-0,65090200} \\ -1,04831900 \\ -0,65487900 \\ -0,58317800 \\ \hline \mathbf{Zn}^{0}\mathbf{Im}_{4b} \\ \hline 36 \\ 0,05342200 \\ -1,61372600 \\ -0,69261700 \\ 0,34761500 \\ 0,65704400 \\ -1,55194400 \\ -2,54730400 \\ -0,71851300 \\ \hline 300 \\ 500 \\ $	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 -0,67321900 -1,25894200 -1,32833700 -0,47153900 0,83858600 -0,04083100 -1,76689600 -1,93804100
H H H N E =- C 1 C 2 C 3 H 1 H 0 H 2 H 4 N 1	2,24850200 2,05538200 -0,16964000 -1,37570800 0,19054900 -2684,30551709 -2684,30551709 -2684,30551709 -2684,30551709 -2684,30551709 -2684,30551709 -2684,30551709 -2684,30551709 -21816700 -30546300 -21816700 -30546300 -21816700 -30546300 -21816700 -30546300 -21816700 -30546300 -21816700 -30546300 -21816700 -30546300 -218167000 -218167000 -21816700000000000000000000000000000000000	$\begin{array}{r} 1,8742800\\ 1,87656600\\ 4,58779800\\ 4,90903500\\ 2,73228600\\ 4,00916000\\ \hline \\ \hline \\ \hline \\ \hline \\ 2,12024900\\ 0\\ 3,66431700\\ 0\\ 3,66431700\\ 0\\ 3,66431700\\ 0\\ 1,93134000\\ 0\\ 1,93134000\\ 0\\ 1,54155900\\ 1\\ 3,39717900\\ 0\\ 4,50010700\\ 1\\ 2,98757900\\ 0\\ 3,15535300\\ 0\\ \hline \end{array}$	0,99619400 0,60980700 -0,58229100 -0,97900400 -0,29822200 Zn ^{q+2} ,62154700 ,84640200 ,56837600 ,35183800 ,30984600 ,09096200 ,50575200 ,97217200 ,07537600	H H H N E = C C C C N H H H N	-5,19417000 -7,51467800 -7,56515300 -4,95378800 -6,70162800 -4,95378800 -6,70162800 -4,95378800 -6,70162800 5,24322400 6,25345600 5,99840600 4,34931100 3,46919800 5,08428800 7,14015100 4,35438900	$\frac{-0,26053000}{-0,65090200} \\ -1,04831900 \\ -0,65487900 \\ -0,58317800 \\ \hline \mathbf{Zn}^{0}\mathbf{Im}_{4b} \\ \hline 36 \\ 0,05342200 \\ -1,61372600 \\ -0,69261700 \\ 0,34761500 \\ 0,65704400 \\ -1,55194400 \\ -2,54730400 \\ -0,71851300 \\ -1,12220400 \\ \hline 300$	-2,10787500 -1,26762900 1,24494700 2,05864800 -0,67321900 -0,67321900 -1,25894200 -1,32833700 -0,47153900 0,83858600 -0,04083100 -1,76689600 -1,93804100 -0,33893700

Zn	-1,54400400	-0,32844900	1,79843300	zn 7,26041400	2,78507600	0,29047500
С	-1.05385300	-1.92977800	1,53691700	C 0.64240800	-1.86366700	-0.07005300
Ċ	-2.83813100	-2.68141100	0.63076700	C 1.43537200	-2.97833300	1,57666400
č	-1,80279000	-3,42498000	0,12909300	C 0,07549000	-3,10868100	1,63644100
N	-0 67195000	-2,93501600	0,72263100	N = 0.41578200	-2 39138800	0 57719300
	0,07155000	-3 17515000	0,52040000	$\mu = 1,40486100$	-2,2500000	0,37715500
	-0.24865200	-1, 27608600	2 12520000	$\mu = 0.53074000$	-2,23330100 -1,24880400	-0.94822000
	-0,34003300	-1,37090000	2,13320000	H = 0,33974000	-1,24009400	-0,94622000
н	-3,88/62900	-2,76965500	0,41089100	H 2,17707300	-3,39581900	2,23485400
н	-1,77804300	-4,23432500	0,57691700	H -0,56545500	-3,63448/00	2,31972700
Ν	-2,35834100	-1,74524000	1,51299200	N 1,78018900	-2,19550600	0,50277800
С	3,43217800	-3,10642400	0,09419200	C -3,82443800	-0,79087100	0,13427600
С	4,23490400	-2,03003000	0,16925100	C -5,19027200	-1,93053500	-1,14150500
С	2,14811000	-1,39844000	0,00804300	C -4,01297600	-2,60732100	-0,98521200
Ν	2.12450500	-2,69966500	0.19279500	N -3.16441200	-1.88369600	-0.18393200
н	3,71702800	-4,13621300	0,21692400	H = 3,45530400	0,00510800	0,75845600
H	5 29601200	-1 94620200	0 31423400	H = 574612200	-0,02360500	-0,31839000
н	3 61612200	0,04070600	0 38346100	H = 6 08641800	-2,16562900	-1 68548500
L L	1 28832700	-0 74874500	0,01004200	$\mu = 3,72963600$	-3 55986200	-1 39695900
	2,20052700	0,74074300	0,01004200	N = 05240500	0,77270600	0,42016400
	1 40622200	-0,94771100 1 72722000	1 02445500	C = 6,05340300	-0,77279000	-0,42010400
	-1,49023200	1,72733000	1,02443300	C = 0,90328900	2,30908000	-0,74944800
C	-3,35/18800	1,87088400	0,30578500	C = 8,50512300	2,75724700	0,75175500
C	-2,824/0300	2,94077200	0,13332700	C -7,94754400	1,54464700	0,85695900
Ν	-1,53511/00	2,84158900	0,32357900	N -6,95177500	1,43925800	-0,08486300
Н	-0,62560700	1,33527700	1,52367600	н -6,31012600	2,83051700	-1,56438100
Н	-2,84887500	0,17207000	1,42492500	н -8,12624000	4,32184200	-0,62484000
н	-4,58469000	1,59582600	0,15571900	н -9,37144200	3,20559600	1,29883800
н	-3.14890100	3,76530200	0,74324900	н -8,15966200	0,74883700	1,54861800
Ν	-2.69644400	1,11358800	1.05559900	N -7.92260600	3.40054800	0.28008300
	,	7 n0 I m	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7n+Im	.,
		Zn°1m _{4c}			Zn Im _{4a}	
E	=-2684,274340	75		E = -2684, 124304	96	
С	2,33043700	0,61229300	0,01861200	C -0,16740100	2,78131300	0,28768400
С	2,85993300	-1,33090300	0,88001800	C -0,05249700	2,63254600	2,48387400
С	1,50055100	-1,18915900	0,84131700	C 0,02861000	1,39099200	1,92492800
Ν	1,18453400	0.03290700	0.29707200	N -0.04388900	1,50199700	0.55548100
н	2 44847800	1 58988300	-0,41855500	H = 0.25108800	3 21112400	0,69605400
н	4 36618200	0 04778400	0 22604100	H = 0.26108300	4 50349500	1 48864500
н	3 48812900	-2 12988100	1 22882000	H = 0.03274600	2 96439300	3 50555700
ü	0 72818600	_1 87152000	1 15500000		0 13568700	2 40818200
	2 27604700	-0 17205200	0 25184800	N = 0.17712200	2 50282700	1 42774400
70	1 1/05//00	-0, 17303300	0,16610000	$7n = 0, 177 \pm 3500$	0,07224100	0,02245000
20	-1,14054400	1,09554000	0,16619900		-0,07224100	0,95545000
C	-2,81413500	-2,0/131900	0,88799800	C = -0,96708700	-2,421/5600	0,84710600
C	-1,47054400	-2,29350800	-0,75422500	C 1,16105400	-2,21462200	1,14051000
С	-2,66402400	-1,88/16900	-1,28872000	C 0,77910300	-3,30650400	1,85975000
Ν	-3,51792400	-1,75874800	-0,22557200	N -0,57610100	-3,42226500	1,66070700
Н	-4,47542300	-1,40719800	-0,25582200	Н -1,17366800	-4,13559300	2,04219500
Н	-3,24935400	-2,04007800	1,87228500	н -1,98007400	-2,27379700	0,51729800
Н	-0,54673900	-2,49605100	-1,26824900	н 2,14230900	-1,79231600	1,02204900
Н	-2,96907600	-1,68063400	-2,29802100	н 1,33369700	-3,99273600	2,47231500
Ν	-1,57589600	-2,40858000	0,60867500	N 0,06078900	-1,67016500	0,51594300
С	6.92116400	0.02733600	-1.16434800	C -3.16989600	0.38574400	0.19813400
Ċ	8,43299300	0.88914200	0,18485900	C -4,43985600	0.41378500	-0.29901800
č	7,19939000	0,91177400	0,76787100	C = 3,03135900	-0,28112900	-1,84530400
Ň	6 26595000	0 37185300	-0,08381200	N = 2,30275900	-0,05469300	-0,77659800
н	6 49671700	-0 43028700	-2 04157800	H = 2 82611900	0 65852100	1 18061100
н	8 94406000	0 14945400	-1,74600700	H = 5,37939700	0,69539500	0 13954300
	9 30826200	1 21/50000	0 52525200	$\mu = 5 08503200$	_0 10215500	_2 26212800
	6 02020200	1 20000700	1 7/1/0/00	11 = 3,00303200	-0, 10213300	2,20212000
	0,33021300	1,20000/00	1,74140400 1 05154700	$\Pi = 2,03200000$	-0,01924000 _0 01551600	-2,73311/00 -1 60050100
	0,230/0200	0,32032200	-1,03134/00		-0,01331000	-1,00039100
C	-1,3384/600	1,03/33000	-0,13180000		-0,33/30000	-1,/9004800
C	-7,22698000	0,28451200	-0,2/3/0400	C 4,42609600	0,62904100	-0,3/902300
C	-5,23480400	1,05525900	-0,0/614800	C 3,14614300	0,70937600	0,08432900
Ν	-6,07506500	2,11530900	-0,02657200	N 2,29473700	0,09776000	-0,80815000
Н	-5,79775700	3,07418000	0,08414200	н 2,68060800	-0,85009500	-2,67092700
н	-8,21875600	2,28084600	-0,14306700	н 5,10594800	-0,26000900	-2,19058400
	-				0 00120000	0 01040000
н	-8,00337400	-0,45044700	-0,39254100	H 5,359/6500	0,98129900	0,01949600
H H	-8,00337400 -4,16115100	-0,45044700 1,15071300	-0,39254100 -0,00082300	H 5,35976500 H 2,78541500	1,16628100	0,98894800

Zn^+Im_{4b}			Zn ⁺ Im _{4c}		
E =-2683,92549994	1		E =-2684,128948	58	
C 2,84675000 C 2,80171000 C 1,53082100 N 1,57020100 H 3,22539700 H 4,65825800 H 3,18660300 H 0,60987100 N 3,61580100 Zn 0,01294300 C -2,84174900 C -1,59683900	0,66220000 -1,42347700 -0,93257600 0,38048400 1,61322200 -0,43306400 -2,39002700 -1,41818500 -0,40064700 1,72651600 0,70051700 -0,68158300	-0,08806700 0,57279100 0,56021100 0,13772000 -0,42078900 0,06354400 0,84054300 0,82816000 0,15784000 0,05422300 0,05641900 -1,05474200	C 1,86194900 C 3,58832400 C 3,47122400 N 2,39319000 H 0,99247100 H 2,34783800 H 4,28430100 H 4,06821600 N 2,55816500 Zn 1,57357500 C -1,39268200 C -0,28743700	2,26483900 3,49153400 2,41071600 1,65218400 1,93693500 4,02876200 4,30957100 2,13921900 3,38124600 -0,04796600 0,07789300 -0,70021200	-0,77146300 -0,15657200 0,66420300 0,26535300 -1,31541300 -1,80095700 -0,17045900 1,51699600 -1,06018100 1,28445900 0,50436700 -1,18118300
C -2,87689000 N -3,64580700 H -4,68139400 H -3,18172600 H -0,70141700 H -3,29585900 N -1,58562700 C 7,23091500 C 7,21980800 N 6,41765800 H 6,94068200 H 9,32530400 H 9,44139800	-1,14334900 -0,25660600 -0,30967800 1,53486000 -1,08876800 -2,00676400 0,47759300 -0,75956300 -0,17440600 -0,06691600 -0,43451700 -1,09681700 -0,80404500 0,01804700	-1,12153700 -0,41206600 -0,26331200 0,64530700 -1,48911200 -1,60433200 -0,30640800 -0,99171300 0,68653900 1,04324200 -0,01285900 -1,97170600 -1,18482100 1,22298000	C -1,60511300 N -2,28739100 H -3,31939100 H -1,65077900 H 0,56670200 H -2,10327300 N -0,16658700 C 2,47800400 C 3,49309900 C 3,83641000 N 2,70361200 H 1,61336000 H 3,68164500 H 5,20860000	-0,68709600 -0,19015400 -0,06910800 0,47001000 -1,03604800 -0,99063900 -0,21275100 -2,83299200 -3,44603200 -1,26927800 -1,47508400 -3,27057600 -4,47889800 -2,55017400	-1,53573000 -0,45558200 -0,37565400 1,47305600 -1,74224000 -2,43811800 0,10160900 0,14279400 -0,52565300 -0,47185500 0,16550800 0,60880900 -0,75263600 -1,41248900
H 6,81069900 N 8,51909000 C -8,36218800 C -7,00692600 C -7,39793700 N -8,59347400 H -9,49249000 H -9,15650000 H -6,42896100 H -7,29577600 N -6,41550000	0,24893800 -0,61703600 -0,87926100 -0,99135800 0,08213200 -0,19255500 0,06197900 -1,21556200 -1,46612900 0,61572400 -0,38719300	1,98642900 -0,61381900 1,02108200 1,11153900 -0,70937000 -0,14574900 -0,51690100 1,66102300 1,88430400 -1,63857000 0,02565500	H 4,30436400 N 4,34592500 C -5,80557400 C -7,12675500 C -5,97024400 N -5,09326200 H -5,33043800 H -7,98449800 H -8,05298900 H -5,75899500 N -7,21388400	-0,31263000 -2,43748700 -0,97018600 -0,63807500 0,95027800 0,02921500 -1,85932600 -1,14717400 1,12606500 1,87703700 0,58963200	-0,62834300 -0,90751300 0,46672900 0,51178100 -0,48244600 -0,15608000 0,84137400 0,90986700 -0,23526400 -0,98722200 -0,09810100
E 268/ 1289/858	Zn ⁻ Im _{4a}		E 2683 8/1181	$Zn^{-1}Im_{4b}$	
C $-0,65523400$ C $-2,62826000$ C $-2,24442000$ N $-1,00595800$ H $0,25436600$ H $-1,58260700$ H $-3,51232700$ H $-2,77021200$ N $-1,60997300$ Zn $0,03389700$ C $1,29389400$ C $2,61395800$ C $1,29389400$ C $2,61395800$ C $3,23939100$ N $2,38714800$ H $2,55494700$ H $0,46607800$ H $2,95387500$ H $4,18874000$ N $1,39525300$ C $-2,47170000$ C $-3,22196400$ C $-1,48506200$ N $-1,38446100$ H $-2,64291500$ H $-4,13246800$ H $-2,88182400$	0,35833000 1,34171900 1,11196100 0,49625400 -0,08859800 0,87189800 1,79215100 1,33592900 0,85757200 -0,02365600 -2,77060000 -1,29619000 -2,49919500 -3,41276600 -3,41276600 -3,41276600 -3,25436100 -0,32838700 -2,77681900 -1,47799000 -1,44492400 -1,65857100 -0,40148600 -0,65751600 -1,78913600 -2,20798200 -0,94424400	2,90493100 2,91680400 1,63252200 1,6360200 3,26762700 4,70876300 3,32951500 0,72134700 3,70047100 0,02769800 0,10142400 0,99421800 1,10279800 0,53288400 0,53288400 0,53288400 0,44873500 0,38839700 1,31834500 1,52311000 0,36557500 1,00055800 2,11471800 2,62927400 1,33487300 0,00397300 2,26987200 4,08965800	C 2,85311100 C 3,71259400 C 2,37345100 N 1,81221900 H 2,73494300 H 5,54245400 H 4,47479800 H 1,78934400 N 4,00225200 C -2,83259200 C -2,83259200 C -2,41204600 C -3,74558600 N -3,99771400 H -5,53009000 H -2,68534400 C -3,74558600 N -3,99771400 H -2,68534400 H -1,85272800 H -4,52817300 N -1,81673200 C 7,47846400 C 8,47132000 C 7,16676600 N 6,57273400 H 7,31359200 H 9,50161900 H 9,27543100	0,01853700 -0,97511900 -1,20527100 -0,56528800 0,59502100 0,26344000 -1,30962800 -1,76207900 -0,20563600 -0,56123500 0,13320500 -1,44532700 -1,44532700 -1,17990500 -0,18606000 0,31916500 0,88608300 -2,15330600 -1,63648000 -0,59886500 -0,18528100 1,65654500 1,69618100 0,54229900 -1,14182000 0,14064800 2,35179100	-0,22160400 1,47993600 1,52775000 0,43094500 -1,12462900 0,03582800 2,16186800 2,23907100 0,37529200 -0,00926400 0,09275800 -1,36289100 -1,34364200 -0,42451700 -0,42451700 -0,10531800 0,85021400 -1,94860300 -1,92412100 -0,43719500 -0,74158200 -0,02652100 0,34719900 -0,10991200 -1,20485900 -1,11145400 0,12848000

НИСССИННН	-0,80400300 -2,57923200 2,19833900 1,60852200 0,67906300 1,05692300 2,77196900 3,38797500 1,67756300 -0,21746000	0,19314800 -0,99058300 1,59873100 3,70596200 2,89851500 1,58056400 0,73843300 3,14673800 4,77577700 3,17180900	3,21332100 3,12841000 1,40268200 1,13268600 0,55535500 0,73173100 1,70309200 2,15560300 1,20988000 0,02821400	НИСССИННН	6,62296000 8,63895300 -8,60413400 -7,38333000 -7,25205100 -8,49384200 -9,23314600 -9,51970700 -7,03973800 -6,88132700	2,44243900 0,47012700 0,56661100 -0,01792700 1,48681400 1,50354100 2,10808200 0,40046600 -0,79719400 2,11107100	0,89599300 -0,70521200 0,89994500 1,00567100 -0,58838900 -0,10327700 -0,42842900 1,43661700 1,66019900 -1,38160600
N	2,55633400	2,86330100	1,66008800	<u>N</u>	-6,56246200	0,57202000	0,07200000
E =	-2683,88532333	3	LII	11114	c		
СОСХНННХХООСХНННЯХООСХНННЯХООСХНННЯ СССХНННХХОССХНННЯХООСХННИХОССХННИХ	1,93016500 3,63447000 3,38814200 2,31617700 1,12408700 2,61990600 4,36710300 3,88668600 2,70531100 1,56253800 -1,41880500 -0,69409200 -2,05371600 -2,48635000 -2,48635000 -2,48635000 -3,56220500 -1,46387100 0,00812000 -2,73630000 -2,73630000 -2,73630000 -2,44869600 3,54425600 4,12244100 2,82107200 1,43822300 3,67348600 5,53806700 4,73141000 4,58225700 -5,65016100 -6,97377400 -5,95721500 -5,02540200 -5,11787600 -7,78286800 -8,01603400 -5,81550300 -7,14686000	2,97235000 3,56058300 2,23651500 1,87539600 3,04470000 4,94164500 4,21301600 1,53621200 3,99820700 0,05690500 0,19588500 -1,53571200 -1,57517800 -0,47899500 -0,22625900 1,10013000 -2,21174200 -2,28388700 -0,40813000 -2,71083400 -3,51252600 -1,50791700 -1,50791700 -1,45350600 -2,94202400 -4,54170400 -3,03462600 -0,70376500 -2,73242500 -0,39724400 -0,8569800 0,56828500 0,01754800 -0,88963200 -0,24161100 0,87793300 0,99519600 0,52593800	$\begin{array}{c} -0,60590200\\ 0,66514800\\ 0,83743900\\ 0,03564000\\ -1,31583400\\ -0,59711800\\ 1,10454000\\ 1,48349800\\ -0,24786300\\ -0,24786300\\ -0,24786300\\ -0,10350000\\ -1,13706000\\ -1,13706000\\ -1,13706000\\ -1,13185000\\ -0,22436200\\ 0,55338000\\ -1,59249300\\ -1,56547200\\ -0,43609800\\ 0,56331600\\ 0,57011000\\ -0,14593400\\ 0,56331600\\ 0,57011000\\ 0,56331600\\ 0,57011000\\ 0,56331600\\ 0,57011000\\ 0,11343000\\ 0,85038800\\ 0,85129000\\ 0,11946200\\ 1,23685200\\ 1,17098100\\ -0,67109100\\ 0,08076200\\ 2,03100000\\ 1,86020400\\ -0,41369200\\ -1,64885200\\ -0,04642100\\ \end{array}$				

Tableau 2: Totalité des énergies totales (E, en Hartree) et des paramètres géométriques en coordonnées cartésiennes (en Å) calculées au niveau M05-2X/6-311++G(d,p).

complexes Zn ^{q+} Im	PBE0/6-311 ⁺⁺ G(d,p)	M052X/6-311 ⁺⁺ G(d,p)
	14,8434	9,5171
	20,264	15,5538
	26.0511	22,7923
	34.0102	28,792
	42.3448	34.4799
	47.5788	48,7985
	100.2076	84.8269
	116 6701	111 6993
	121 7633	113 3247
	565 5767	584 2711
	633 5472	639 6051
	649 7249	658 2193
	679 327	685 5055
	684 0038	692 6126
	746 027	767 2063
	740,937	767,2003
	229 7260	708,0873 952 6414
	820,7309	632,0414 862,601
	850,0422	805,091
	802,9411	880,0090
	877,2040	907,1341
	922,7705	935,1424
	927,7273	940,9017
	943,2016	942,6205
	952,1112	956,9634
$Zn^{0}Im_{2a}$	966,841	966,574
24	1091,1947	1096,7433
	1094,6253	1101,2216
	1115,848	1121,9321
	1123,653	1129,7617
	1164,5082	1167,275
	1198,2862	1197,6632
	1204,3128	1200,2752
	1208,2521	1207,0009
	1288,9875	1305,1017
	1294,1437	1308,2733
	1389,5907	1395,4203
	1394,3796	1404,1061
	1468,5975	1475,8933
	1500,2766	1508,0892
	1533,0246	1546,5663
	1536,045	1550,0531
	1585,8902	1606,2799
	1595,0334	1609,0114
	3259,3558	3275,4398
	3262,0042	3292,6496
	3264,7227	3300,5937
	3272,9157	3309,8792
	3276,9865	3322,134
	3290,3471	3337,3249
	3302,6022	3390,9585

	3694,7139	3736,1459
	8,7494	17,7407
	25,867	31,0003
	33,853	32,0501
	39,3459	43,7768
	46,9347	67,7039
	63,3964	80.0963
	95,7662	82.8471
	115,1819	114.9554
	129.9433	134,9545
	565.2524	584,1303
	628.7295	635.8174
	650.0477	658.2702
	679.0101	687.0178
	684 4442	691,7011
	746 2432	771 4538
	757 4956	775 1003
	833 2038	864 3017
	836 5884	867 7805
	870 7913	891 9456
	875 7801	901 6046
	918 8089	925 6392
	920 8458	935 5566
	937 5758	946 5871
	949 5964	959 7984
0	960 8607	966 0482
$Zn^{o}Im_{2b}$	1089 021	1095 701
	1093 1573	1100 8664
	1114 9501	1117 2199
	1124 7203	1133 5401
	1164 5897	1166 3767
	1196 9163	1197 6437
	1201.065	1199 6848
	1201,000	1205 3276
	1288 9984	1305 0806
	1289 388	1305 631
	1385 8256	1396 1148
	1303,0230	1400 5722
	1468 5534	1476 1569
	1492 3003	1499 1951
	1526 3784	1542 4321
	1533 4183	1547 4841
	1584 4408	1601 7137
	1588 966	1602 2972
	3257 8393	3288 0841
	3262 1266	3292 324
	3264 0817	3294 9743
	3267,5017	3300 3789
	32774 839	3326 9871
	3277,037	3323,70/1
	3302 2971	3373 0494
	5552,2771	5575,0171

	3695,4196	3723,7782
	30,4239	16,7502
	42,6996	29,2298
	52,7398	38,7015
	58,2583	52,6463
	65,3263	62,0114
	66,355	62,8812
	82,7493	82,3846
	88,0805	93,4919
	121,0548	125,1241
	544,1529	550,8574
	550,4864	556,4109
	644,3864	650,7261
	646,1244	652,1247
	683,5485	690,7274
	683,6882	692,0726
	739,2708	756,1059
	745,3557	757.0503
	842,4278	889,4939
	852,774	892,9549
	871,4799	910,784
	880,4022	911,5945
	915,0259	929.8262
	917,1872	932,4199
	949,471	959,6522
	949,9673	960,1963
$Zn^{\circ}Im_{2c}$	1089,192	1097,0059
	1093,1453	1100,258
	1108,5081	1111,985
	1109,2305	1114,1743
	1163,7075	1168,0592
	1167,8931	1171,6524
	1196,6524	1195,4149
	1196,7576	1196,781
	1300,3889	1319,6467
	1301,526	1322,6857
	1388,2383	1397,4656
	1388,7084	1397,9137
	1460,3232	1467,958
	1460,6404	1468,3397
	1524,1762	1540,2959
	1526,5727	1542,4133
	1574,621	1596,1371
	1575,7387	1597,3681
	3257,4121	3265,2858
	3258,4703	3265,5726
	3262,9492	3300,2117
	3263,3317	3300,3065
	3296,7057	3325,7892
	3297,0125	3326,4046
	3697,4029	3742,6787

	3697,7418	3743,0318
	15,0852	22,3982
	21,9484	29,1777
	32,8378	32,297
	41,971	44,7259
	49,5066	64,5421
	61,6861	66,9116
	96,2828	82,0938
	113.2592	111.918
	129.5528	142.7546
	562,7765	581,1941
	629,7828	590.0648
	649.0323	653,5886
	679.4375	656,3551
	683.37	686.6023
	745.5549	694.6102
	756.1753	778.895
	827,2974	781,778
	832.4085	857,5593
	871.0885	872.0346
	879,3666	910,515
	920.8612	912.9848
	922,5683	928,646
	941,9381	929,3676
	953.0668	960,4624
$\mathbf{Zn}^{0}\mathbf{Im}_{2d}$	977,266	961,687
24	1089.1348	1097.2356
	1093.317	1100.2959
	1116,0366	1116,4073
	1124,6328	1117,5895
	1164,1156	1162,2271
	1197.0643	1167.7527
	1200.326	1192,9028
	1208.6517	1197.4834
	1288,6111	1300,0476
	1289,4571	1303,1866
	1386,194	1396,9926
	1394,7138	1398.6355
	1468.029	1467.6097
	1493,5346	1472,4224
	1527,0581	1538,9912
	1533,518	1543,4397
	1586,225	1592,7579
	1590.49	1596.994
	3256.9791	3290.5944
	3263.4359	3295.9636
	3269.3354	3297.0847
	3272.3245	3299.4143
	3279.4721	3329.0694
	3290,5061	3334,027

	3301,7344	3702,8915
	3695,3234	3715,7771
	35,4839	35,0659
	54,938	35,5307
	110,8962	71,6904
	117,2469	102,7042
	133.013	118,7508
	172,5183	126,2339
	226,1283	172,773
	228,4345	229,8618
	622,2547	232,6233
	623,1495	633.0404
	659,1948	634,4698
	662,2802	667,7965
	695,1367	673,0129
	696,0851	707.0409
	765,2621	708,1698
	772,1145	788,2793
	853,0021	796,2196
	854,1199	890,2368
	880,7976	891,1873
	889,8211	917,3311
	938,0155	928,3675
	938,4361	948,0414
	962,6276	948,1162
	964,0121	977,0223
$Zn^{+}Im_{2a}$	1098,1338	977,7298
	1100.9641	1102,9649
	1126,319	1106,0945
	1129,187	1136,4971
	1168,12	1142,6647
	1171,0628	1162,1171
	1212,0681	1166,0411
	1213,1086	1217,7788
	1294,5563	1218,6521
	1296,2451	1312,7637
	1386,8763	1315,3081
	1388,1109	1396,0226
	1482,3977	1397,8915
	1482,5341	1488,9486
	1555,6939	1489,1125
	1558,3511	1572,4176
	1597,02	1575,3022
	1598,4644	1612,1742
	3284,7045	1613,7249
	3285,4579	3303,7498
	3287,2138	3303,9175
	3287,3183	3310,3252
	3309,085	3312,1558
	3309,2044	3329,4281
	3668,335	3330,4458

	3668,93	3687,9709
		3688,6656
	18,8733	27,5726
	34,71	31,3271
	47,4808	65,1251
	108,3341	102.0306
	113,7048	114.663
	134,5055	118.0732
	171.0302	171.5997
	223,4495	226.652
	226.6019	232,1816
	620.3543	632.6851
	623,528	634,9929
	659.2881	667.3056
	661.8117	671.4306
	691,7409	704,1638
	696,3363	707.1232
	768.9231	785,9185
	772,1489	796,3489
	841,5991	884,2158
	855.0517	891.6174
	885,8225	914,3101
	892,0995	924,3977
	937,681	947.952
	938,4181	948,8327
	962,205	976,0973
$Zn^{+}Im_{2b}$	963,743	977,6035
20	1098.29	1101.3625
	1100,7986	1105.043
	1126,8254	1135,0321
	1128,9275	1137,96
	1168,0565	1162,8761
	1170,6149	1166,5672
	1212,0226	1217,502
	1212,7833	1218,6833
	1294,2514	1310,2558
	1294,8203	1311,9709
	1387,138	1393,3831
	1388,3186	1394,9181
	1480,4309	1487,6616
	1482,2237	1488,1285
	1553,5692	1567,6907
	1556,7554	1572,7126
	1597,0763	1610,9793
	1598,4139	1613,5643
	3285,0653	3306,6719
	3285,7697	3312,2958
	3286,9238	3313,171
	3287,4849	3313,8927
	3308,8197	3329,4001
	3310,5965	3335,7082

	3667,6596	3688,4821
	3668,1766	3691,6337
	26,3452	14,711
	43,7662	37,1131
	43,9538	37,2732
	148,1523	138,4051
	148,5307	140,4495
	230,9996	216,1076
	232,0486	219,3333
	236,6353	236,7755
	418,0318	416,94
	629,919	635,7129
	630,543	636,3026
	654,2982	660,5708
	654,3442	660,7983
	741.3752	752.6823
	741,4314	752,7349
	772.95	791.0469
	773,4862	791,6241
	859.2616	892.8022
	859,3038	892,8891
	900,1748	927.8202
	900,3488	928,0026
	932,5611	942,8316
	933,056	943,2878
	981,0213	992,7605
$Zn^{2+}Im_2$	989,4931	1000,2555
_	1110,0669	1111,5611
	1111,6887	1112,8868
	1140,2191	1145,7507
	1142,0275	1148,7191
	1164,7199	1161,0575
	1164,8771	1162,2674
	1236,7791	1242,0042
	1240,5722	1245,2579
	1304,8893	1318,4948
	1306,0233	1319,4403
	1364,1851	1370,9652
	1364,3581	1371,0441
	1488,4316	1494,1718
	1488,4538	1494,2018
	1564,3706	1577,8655
	1566,6652	1580,8566
	1620,8015	1634,9238
	1620,8561	1634,9843
	3284,4579	3282,2702
	3284,5021	3282,2869
	3285,55	3308,8415
	3285,6148	3308,8997
	3304,359	3327,0323
	3304,4148	3327,0867

	3615,2818	3628,4023
	3616,2045	3629,3739
	10,925	4,2735
	12,9886	10,7727
	15,0748	16,485
	16,8651	20,8042
	18,7792	23,3256
	35,6316	27,6596
	38,0886	44,21
	48,0057	51,9661
	58,6642	65,3704
	85,5953	77,4852
	92,6846	91,4532
	98,6219	93,108
	124.0784	113,7936
	140,3656	133.5955
	141.8648	136.8787
	569,1158	584,9839
	634.4549	638.0458
	634,766	640.8285
	650,125	657.1795
	678.9845	684.3467
	682,6037	689,3122
	683,8548	691,2887
	746,2408	763,7371
	748,9241	768.0795
$Zn^{0}Im_{3a}$	763.6454	783.925
Su	825,4386	857.6643
	828,046	859,2915
	839,2217	874,1877
	859,6105	885,0081
	873,8203	897,4299
	878,9222	901,393
	921,9771	933,8239
	923,7662	937,1318
	931,1797	938,0939
	940,8419	945,9233
	949,135	950,9096
	954,6218	960,2798
	976,762	967,7752
	1002,0406	970,0068
	1089,9009	1097,2383
	1094,03	1099,2732
	1098,6386	1105,3451
	1116.9902	1123,7708
	1124,9768	1132,2158
	1125,4306	1132,7104
	1165,2478	1167,5748
	1198,6807	1199,9546
	1200,1494	1201,8395
	1209,0397	1201,9268

	1209,7997	1204,7482
	1215,7562	1214,3989
	1289,4103	1305,183
	1290,7286	1306,794
	1297,2823	1307,6391
	1386.5497	1394,7631
	1388.9773	1396.4319
	1394,7816	1404.7445
	1469 4385	1478 1035
	1498 2741	1505.6439
	1503.3571	1506.706
	1530,4267	1544 4789
	1535 686	1548 1609
	1540 6465	1551 6373
	1587 1361	1606 1782
	1507,1501	1607 2794
	1600 4703	1609 4921
	3180 7603	3285 5554
	3738 3604	3288 0855
	3253,5094	3280,0855
	2259,2077	3289,908
	5250,5525	3292,0290
	5200,4532	5292,017 2207 8511
	5271,7875	3297,6311
	3272,084	3300,4125
	3276,7048	3321,7929
	3287,1344	3325,7461
	3296,4169	3331,3707
	3303,1398	3355,7065
	3693,8127	3/40,923
	10,1152	21,3061
	13,88	29,1531
	23,5723	33,1022
	31,9383	47,9766
	32,7435	48,5383
	43,315	56,828
	47,6543	61,4586
	55,601	70,6576
	59,2034	83,5953
	73,3555	86,095
$7n^0$ Im ₂₁	78,0572	96,6329
	105,4526	109,9096
	110,9142	135,5214
	121,5182	142,7868
	140,454	161,3967
	562,9258	580,5688
	619,6464	633,6241
	638,8609	644,4133
	649,1278	655,4844
	677,1396	686,0231
	683,0904	691,2961
	686,6315	695,5409

719,2643	762,1991
748,9051	772,8754
756,3643	777,9819
764,1822	787,4171
830,0932	847,0318
831,4858	859,0366
842.431	860.6893
872.5141	876.5246
874,7775	903.1361
916.2673	906.8011
919.1225	921.4215
923.3584	933,1235
925.0064	933.4884
933 0511	937.6481
948 9967	961 2203
954 4087	964 0692
990 7416	968 7946
1090 0292	1082 9284
1090,0292	1097 0771
1093 8801	1101 3285
1116.46	1125 3909
1123 1073	1125,5505
1123,1775	1120,2170
1162 0528	1167 7724
1168 0520	1107,7724
1103,3523	1100 8505
1193,209	1102 8825
1201 8051	1195,0055
1201,8031	1205 2614
1209,9570	1205,2014
1204,5050	1202 2720
1290,4900	1302,2729
1293,3193	1202 8208
1305,444	1392,0200
1307,9022	1395,5207
1394,3448	1399,4403
1400,9084	1470,8594
1409,5509	1480,1536
1496,005	1498,3393
1529,7718	1530,5559
1531,0313	1539,2769
1533,962	1549,283
15/4,660/	1594,0871
1585,595	1600,8792
1593,8956	1605,1301
3205,6981	3284,4/16
3247,944	3285,0464
3256,407	3287,3594
3260,2034	3292,7586
3260,7078	3297,4688
3266,0259	3300,4063
3275,4335	3323,3823

	3291,8338	3323,7044
	3297,5262	3327,6877
	3300.9085	3469,1648
	3590.2138	3589 5638
	3695 6967	3739 5414
	7 6677	9 2536
	13 8321	20 3526
	16,2514	23,1849
	24 8308	35 2597
	32,0748	40,9867
	38 844	50 1738
	44 1496	54 1797
	44 6019	59 564
	54 9116	63 6775
	57 8501	71 9736
	71 6185	82 7679
	77,2782	93 8088
	102 9975	10/ 3971
	102,5575	120 5693
	137 597	139 2691
	515 4883	556 6934
	560 8807	562 7268
	629 351 <i>/</i>	634 8076
	644 7336	652 6278
	6/9 2917	653 4821
	678 8504	685 3466
	684 1528	689 6783
	685 0024	690 6317
Zn ^o Im _{3c}	734 3672	761 0884
	744 1545	767 1923
	760 7049	779 7126
	810 5165	860 3455
	832 1899	860,5433
	830 2785	871 6411
	875 2081	895 0903
	906 3139	901 9122
	907 4581	922 8455
	917 9192	924,9102
	919 5118	930 5087
	922 5024	938 671
	939 953/	945 0067
	950 1877	960 8526
	950,1077	961 3531
	968 1162	966 9098
	1086 3512	1097 1196
	1088 8518	1096 9454
	1092 856	1101 0674
	1114 1937	1118 3777
	1117,1737	1110,5777
	11/1 0303	11/7 156
	1164 5491	1168 1847
	1101,0171	1100,1017

	1166,3798	1170,1382
	1185,6571	1188,0259
	1196,02	1196,8064
	1201,2227	1198,8038
	1202.2817	1202.4381
	1289.3353	1308.58
	1293.6756	1311.3993
	1294 7034	1311,7032
	1387 2299	1398 4598
	1394 0554	1401 2695
	1395 4454	1404 1945
	1460 2776	1466 4969
	1467 8358	1474 1518
	1494 3678	1504 109
	1521 8153	1534 4985
	1527,0135	15/2 5082
	1532 8285	15/18 7591
	1552,6265	1500 7312
	1583 6328	1601 7024
	1505,0520	1607 4308
	2726 1181	2270 125
	3242 7122	3270,125
	3243,7122	3203,7729
	3262 7401	3292,0331
	5202,7401	3290,0423
	5205,5008	3299,1387
	5272,5559 2009 0075	3307,1747
	5288,8075	3327,3307
	5292,575 2202 1728	3328,4728
	3293,1738	3335,1396
	3302,1815	3415,9183
	3095,9202	3740,3016
	3/00,541/	3/48,1439
	27,9685	25,3468
	30,1507	27,724
	31,9072	34,8493
	32,7176	35,465
	40,8465	42,7691
	45,1943	52,4721
	112,6595	107,886
	114,9799	114,8213
	116,2042	119,677
$Zn Im_{3a}$	155,8822	159,0048
	157,0559	160,2472
	164,9164	178,3894
	201,3898	214,4982
	201,6467	214,7385
	219,9331	232,402
	609,9875	619,0207
	610,441	621,5077
	610,6497	623,8286
	658,0748	662,8109

658,5243	664,0399
659,0255	666,3421
688,4915	694,1013
688,7878	694,493
689,3179	696,5243
763,8202	781,7741
764,3864	783,8691
767,4175	787,9605
852,8943	885,9265
853,1787	886,8343
853,2742	892,8656
882,9792	910,659
883,6688	913,2946
889,065	919,3435
937,2239	948,8284
937,6048	949,4421
937,7174	950,5602
957,8468	973,6089
958,8235	974,7621
959,397	975,436
1095,4255	1099,5866
1096,1855	1100,6109
1098,8834	1103,4808
1119,847	1125,4206
1121,5077	1127,2895
1123,6203	1131,2879
1168,1158	1163,8681
1168,4345	1164,3305
1171,3921	1168,239
1206,4345	1211,2818
1207,287	1211,9269
1207,4227	1214,8322
1290,5552	1304,5687
1291,0037	1305,2895
1291,5648	1308,0917
1390,5091	1396,8564
1391,0071	1397,8677
1391,2805	1401,5716
1478,7757	1484,3343
1479,2866	1484,6799
1479,3084	1486,0416
1549,7627	1563,6352
1549,9336	1565,1444
1552,6663	1567,7208
1592,4258	1609,0475
1593,1327	1609,8223
1594,2598	1611,4567
3282,1215	3296,1595
3282,3059	3298,8587
3282,407	3301,5171
3284,3963	3306,9191

	3284,7023	3310,1497
	3284,9109	3314,3058
	3306,1985	3323,3118
	3306,2606	3333,9902
	3306,6362	3338,523
	3676,9741	3710,4991
	3677,2509	3712,3603
	3677,7775	3712,947
	13,1714	5,8821
	19,1584	18,4199
	22,1401	27,8481
	34,1166	34,622
	41,2251	38,6646
	60,395	67,138
	89,2307	84,1518
	92,0128	85,1286
	111,5954	106,1902
	124,1688	114,034
	145,6358	134,1675
	160,1812	159,3041
	187,6625	186,253
	224,4908	227,9934
	255,2938	250,1132
	598,496	614,1488
	619,1223	629,5766
	643,9878	650,3171
	655,1253	664,7793
	658,7121	665,0627
	673,2688	681,644
$Zn^{+}Im_{3b}$	687,0111	696,2983
	691,5138	697,9449
	760,4087	780,3912
	765,9134	782,565
	776,622	798,7122
	833,8587	869,3382
	852,1906	884,4342
	854,7245	890,875
	874,4354	906,776
	880,7418	910,6432
	888,9401	918,5673
	916,2415	929,5107
	937,8049	948,6449
	938,3167	949,1495
	958,1737	969,5749
	961,9772	975,6122
	972,903	985,0332
	1095,1317	1097,6449
	1098,3587	1100,7349
	1107,9462	1112,6603
	1120,1796	1116,2902
	1125,0871	1133,4046

	1128,4167	1133,5694
	1153,9847	1143,6567
	1169,1063	1162,2029
	1177.568	1171.4599
	1201.1499	1194,7005
	1209.6882	1207.5712
	1211 1056	1215.261
	1245 0137	1249 0446
	1293 8727	1309 641
	1294 1838	1309 7284
	1320 1962	1330.0267
	1382 3774	1390 6531
	1388 8065	1394 6531
	1306,0005	1403 6307
	1474 2634	1/81 3367
	1481 6746	1/87 7230
	1525 2256	1530 4402
	1523,2230	1550 1224
	1545,4005	1570 1999
	1555,5075	1577 0178
	1501,249	1510,0068
	1591,4507	1612 0286
	1390,9113	1626 1247
	1051,5462	2810 7020
	2704,7330	2819,7929
	3270,9089	3291,7057
	3280,1939	3299,8010
	3280,5212	3301,5083
	3283,7248	3302,1897
	3285,5123	3305,9342
	3287,145	3307,8455
	3303,4093	3327,8395
	3306,2641	3329,8153
	3308,8561	3333,6229
	3672,3741	3699,5765
	3684,4546	3/18,4
	26,0523	24,4298
	27,6494	25,6854
	31,8222	33,14/1
	35,2238	41,7362
	44,6945	44,8988
	51,0347	68,77
	131,558	126,3067
$Zn^{2+}Im_{3a}$	132,/429	128,44
	143,0245	132,4981
	197,5601	189,3195
	202,6952	198,4324
	214,5824	203,1895
	214,8237	220,6129
	312,3124	319,2428
	318,0597	331,1263
	631,4789	638,839

631,7818	639,0485
633,6272	641,2663
664,7928	672,419
665,0406	673,0804
665,7439	673,5234
723,6443	732,6492
723,8087	738,8386
724,1804	745.1828
775.0931	790.2759
778.4115	796.0041
781.7395	804.4688
852.2314	887,7957
853.889	890.8391
855.3941	892.6292
893 4748	917.965
895 8351	921 6507
898 0303	927,5058
937 8427	947 4813
937,9127	948 2993
938 1697	948 6453
976 9784	991 7704
980 4179	995 0934
980,4179	995 336
1106 900/	1110 0174
1100,9004	1111 3357
1100,5020	1113 07/0
1109,5981	11/2 /22
1134,0507	1142,422 11/3,5/72
1136,0394	1143,5472
1150,9749	1140,4009
1168 2063	1163 0088
1172 2782	1167.0542
1172,2765	1107,9343
1225,9000	1231,0052
1220,3342	1224 4502
1227,7845	1216 2508
1299,0382	1310,2308
1301,1020	1317,0131
1302,4729	1320,3003
1377,1814	1382,0192
1377,8879	1380,4174
13/8,53/5	1387,5812
1484,8567	1492,2906
1484,9655	1492,5214
1485,1091	1493,2597
1565,8037	15/9,0/54
1565,0201	1581,9452
1569,8302	1587,8813
1607,9278	1621,7306
1608,1158	1622,6516
1609,0358	1624,433
3285,7436	3290,2557

	3285,8743	3293,9071
	3287,2608	3295,3199
	3288,1126	3297,473
	3288,7116	3305,117
	3288,9954	3307.2619
	3307.7322	3318,5665
	3308.0415	3318.6282
	3308,7001	3327.2676
	3639.4573	3657.9815
	3639.8988	3661.5034
	3640.9313	3662.6677
	19.4988	9.6621
	22,9225	18,2463
	23,5569	23.0437
	37.2198	29,2979
	48.3234	41.5031
	52.1888	47.0851
	105.0778	94.0337
	106.2967	94,8447
	135,5688	128.0227
	148.2532	134,7198
	157.807	149.6286
	229.1904	216.3941
	234,564	221.0347
	252.1653	249.3513
	431,2098	427.6569
	630.4375	637.0949
	631,3198	638.9855
	638.2811	645.3349
	644,5115	650.0179
7 2+ 1	658,3748	664.8316
$Zn^{-1}Im_{3b}$	672,7367	678,9112
	713,0241	722,7097
	730,5704	743,1306
	760,8986	773,2532
	771,3496	790,2956
	774,4245	790,3762
	833,4105	860,5972
	851,4576	883.0395
	857,5072	891,5902
	890,888	914,224
	892,1079	918.056
	897,1816	919,2053
	906,2997	921,1503
	935.6802	945.6809
	939,8821	950,7626
	945,7961	956.467
	984.6575	996,7542
	1006.238	1016.0035
	1084.8118	1087,4119
	1111,0002	1111,9327

	1112,403	1112,6702
	1126,2102	1134,8801
	1140,1624	1137,2554
	1145,5143	1146.6693
	1165,9823	1150,2059
	1167.6962	1158,0872
	1170.8225	1163.3533
	1208.2008	1207.176
	1220.2124	1214 8321
	1236 9372	1241.8418
	1262,2426	1267,9805
	1269 7438	1273 4543
	1306 212	1321 2274
	1315 7476	1324 9675
	1369 0532	1372 0489
	1309,0552	1377 8093
	1396 891/	1401 466
	1/88 2508	1401,400
	1480 3231	1407 7358
	1521 1781	1520 7183
	1521,1761	1545 0580
	1545,0542	1584 2760
	1576 0201	1500 6332
	1570,0291	1508 0250
	1382,4983	1598,9559
	1010,/84/	1672 2045
	1003,0847	10/2,3945
	2045,0439	2759,8131
	3260,4379	3270,1549
	3269,126	3288,5322
	3287,0378	3303,1897
	3288,145	3304,2193
	3289,8318	3309,5814
	3300,0774	3315,1152
	3304,2416	3322,875
	3308,2486	3324,1313
	3318,4267	3344,298
	3630,1978	3644,8386
	3651,6474	3667,5297
	7,7235	16,5942
	17,151	26,478
	24,9441	33,1749
	30,1559	37,1077
	31,4773	42,4782
— 0-	37,8594	45,4586
Zn ^o Im _{4a}	44,0552	50,2704
	48,6608	53,7155
	57,1426	71,1876
	64,415	73,6623
	76,1797	85,7302
	101,7065	96,9997
	105,8825	100,0882

118,6664	116,3712
122,0823	120,2332
127,7905	126,8908
135,7114	131,2836
138,9235	135,3703
147,1577	147,1782
148,931	149,1181
165,7875	162,2692
634,5075	641.6721
636,4464	642.921
639,7592	644.9158
639,9659	646,2117
679,8329	687,592
682,3422	690,9352
689,2499	695,7801
689.9307	696,9061
758.155	779.1452
760.3783	781.8851
760.9878	782.1415
765.3756	791.0579
830.974	844 1556
837 8318	860 3665
843.0281	867.1847
844.7241	875.4371
864 327	880.56
866.5294	889 4344
867 0775	892.011
869.2063	897.0509
900 7358	908 0234
902 8226	917 8457
911.2235	925,0972
918 3728	927 2417
935 887	944 3698
936.0511	948 4353
940 4419	952 5378
942 7542	955 7663
951 1417	958 5717
955 285	967 078
985 5648	977 8788
993 027	978 6086
1093 9407	1100 4624
1098 4838	1105,8089
1101 1727	1107 6276
1102 6982	1109,8011
112,07634	1107,0011
1120,7034	1127,2020
1121,5500	1131,2157
1123,0033	1133,8560
1124,0001	1188 8/85
1200 2597	1107 1157
1200,2397	1200 4655
1202,2727	1200,7033

	1207,0539	1205,1078
	1215,2838	1215,3444
	1216,4624	1220,0289
	1218,8029	1221,4158
	1221.0538	1224.8348
	1290.3165	1305.034
	1292.4891	1307.0785
	1297 4624	1311.2653
	1300 1803	1313 2318
	1384 4121	1391 3393
	1384 8716	1393,1041
	1386 6939	1393 8707
	1387 4708	1396 1134
	1497 0319	1502 6169
	1/97 5085	1504 7712
	1499 5444	1506 6185
	1501 0204	1508 5716
	15/0 9722	1553 2818
	1540,9722	1553 7056
	1542 1615	1556 2700
	1545,1015	1557 7117
	1545,5017	1557,7117
	1588 0725	1604 3505
	1501 2974	1607 2040
	1591,2874	1607,3949
	1392,9444	1007,7342
	3107,2793	3271,8185
	3206,7225	3273,9597
	3233,3777	3280,2001
	3250,7831	3283,0973
	3258,8326	3295,1925
	3262,7297	3297,9209
	3266,0883	3300,1199
	3266,2229	3302,3862
	3267,334	3303,16
	3268,4031	3324,9594
	3269,269	3328,5372
	3271,4345	3328,6256
	3297,25	3329,0822
	3297,3488	3340,9738
	3297,6544	3358,9601
	3298,1889	3377,629
	3,4299	4,3266
	6,6356	9,4091
	8,7762	12,4202
	13,5445	13,2897
Zn^0Im_{4b}	17,8767	19,969
	21,7399	21,9627
	24,0867	30,4431
	28,9133	32,8759
	33,0654	38,6997
	35,7257	42,988

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38,4416	47,645
$\begin{array}{cccccc} 74,4764 & 80,9903 \\ 75,5692 & 87,9108 \\ 82,2727 & 92,709 \\ 89,857 & 104,3535 \\ 116,5581 & 124,577 \\ 119,3255 & 127,542 \\ 127,1236 & 138,6756 \\ 130,3166 & 140,9104 \\ 147,2429 & 160,707 \\ 588,6351 & 572,019 \\ 643,4031 & 637,2889 \\ 644,305 & 637,4704 \\ 644,4727 & 639,2703 \\ 658,0216 & 650,2244 \\ 687,7197 & 679,9564 \\ 687,9126 & 680,1946 \\ 688,8038 & 681,187 \\ 691,6916 & 684,2966 \\ 766,5588 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6583 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6583 & 757,488 \\ 878,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 86,6326 & 835,2552 \\ 86,6326 & 835,2552 \\ 86,6326 & 835,2552 \\ 86,6326 & 835,2552 \\ 86,6326 & 835,2552 \\ 86,6326 & 835,4433 \\ 890,001 & 861,3516 \\ 889,7032 & 863,4884 \\ 890,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,815 \\ 95,3282 & 940,2303 \\ 961,0825 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,5282 & 956,006 \\ 970,3018 & 1007,2043 \\ 986,3936 & 1032,6612 \\ 993,3591 & 1044,5575 \\ 109,7379 & 1092,878 \\ 1101,168 & 1094,4322 \\ 1104,3812 & 1099,243 \\ 1107,3604 & 1102,2491 \\ 1124,1039 & 1117,7214 \\ 1131,132 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1132,571 & $	48,0401	52,4509
$\begin{array}{ccccc} 75,5692 & 87,9108 \\ 82,2727 & 92,709 \\ 89,887 & 104,3535 \\ 116,5581 & 124,577 \\ 119,3255 & 127,542 \\ 127,1236 & 138,6756 \\ 130,3166 & 140,9104 \\ 147,2429 & 160,707 \\ 588,6351 & 572,019 \\ 643,4031 & 637,288 \\ 644,3805 & 637,4704 \\ 644,4727 & 639,2703 \\ 658,0216 & 650,224 \\ 687,9126 & 680,1946 \\ 688,8038 & 681,187 \\ 691,6016 & 684,2966 \\ 766,5688 & 749,8095 \\ 774,5286 & 754,4576 \\ 775,5683 & 757,4888 \\ 782,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 862,8236 & 835,2552 \\ 866,6326 & 836,433 \\ 889,0001 & 861,551 \\ 889,7032 & 863,484 \\ 890,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9256 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,815 \\ 953,528 & 949,2457 \\ 962,7877 & 953,1744 \\ 940,8436 & 927,9256 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,815 \\ 953,528 & 940,2457 \\ 962,7877 & 953,1744 \\ 961,0825 & 949,2457 \\ 962,7877 & 953,1744 \\ 940,8436 & 927,9256 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,815 \\ 953,558 & 949,2457 \\ 962,7877 & 953,1744 \\ 1131,1332 & 1102,2491 \\ 1104,3812 & 1009,243 \\ 1107,3604 & 1102,2491 \\ 1124,703 & 1117,214 \\ 1131,1332 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1132,571 &$	74,4764	80,9903
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	75,5692	87,9108
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	82,2727	92,709
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	89,857	104,3535
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	116,5581	124,577
$\begin{array}{c ccccc} 127,1236 & 138,6756 \\ 130,3166 & 140,9104 \\ 147,2429 & 160,707 \\ 588,6351 & 572,019 \\ 643,4031 & 637,2889 \\ 644,3805 & 637,4704 \\ 644,4727 & 639,2703 \\ 658,0216 & 650,2244 \\ 687,7197 & 679,9564 \\ 687,9126 & 680,1946 \\ 688,8038 & 681,187 \\ 691,6916 & 684,2966 \\ 766,5688 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6588 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6588 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6528 & 373,4888 \\ 782,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 862,8236 & 835,2552 \\ 862,6326 & 836,4633 \\ 889,0001 & 861,3516 \\ 889,7032 & 863,4884 \\ 880,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,4815 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,4815 \\ 953,528 & 940,2303 \\ 961,0825 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,528 & 956,006 \\ 970,3018 & 1007,2043 \\ 986,63936 & 1032,6612 \\ 993,3591 & 1044,5575 \\ 1099,7379 & 1092,8878 \\ 1101,168 & 1094,4322 \\ 1104,3812 & 1099,243 \\ 1107,3604 & 1102,2491 \\ 1131,1332 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1133,633 & 1125,0109 \\ \end{array}$	119,3255	127,542
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	127,1236	138,6756
$\begin{array}{c ccccc} 147,2429 & 160,707 \\ 588,6351 & 577,2019 \\ 643,4031 & 637,2889 \\ 644,3805 & 657,4704 \\ 644,4727 & 639,2703 \\ 658,0216 & 650,2244 \\ 687,7197 & 679,9564 \\ 687,9126 & 680,1946 \\ 688,8038 & 681,187 \\ 691,6916 & 684,2966 \\ 766,5688 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6583 & 757,4888 \\ 782,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,2552 \\ 862,8236 & 836,4633 \\ 889,0901 & 861,3516 \\ 889,7032 & 863,4884 \\ 890,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,4815 \\ 953,5282 & 940,2303 \\ 961,825 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,5282 & 956,006 \\ 970,3018 & 1007,2043 \\ 986,3936 & 1032,6612 \\ 993,3951 & 1044,5575 \\ 1099,7379 & 1092,8878 \\ 1101,168 & 1094,4322 \\ 1104,3812 & 1099,243 \\ 1107,3604 & 1102,2491 \\ 1124,1039 & 1117,7214 \\ 1131,1332 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1133,513 & 1124,7261 \\ \end{array}$	130,3166	140,9104
$\begin{array}{c ccccc} 588,6351 & 572,019 \\ 643,4031 & 637,2889 \\ 644,3805 & 637,2889 \\ 644,3805 & 637,2103 \\ 644,4727 & 639,2703 \\ 658,0216 & 650,2244 \\ 687,7197 & 679,9564 \\ 687,9126 & 680,1946 \\ 688,8038 & 681,187 \\ 691,6916 & 684,2966 \\ 766,5688 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6583 & 757,4888 \\ 782,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,2552 \\ 862,8236 & 835,4633 \\ 889,0901 & 861,3516 \\ 889,7032 & 863,4884 \\ 890,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,4815 \\ 953,528 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,528 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,528 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,528 & 949,2457 \\ 962,7877 & 953,0746 \\ 1032,6612 \\ 993,3591 & 1044,5575 \\ 1099,7379 & 1092,8878 \\ 1101,168 & 1094,4322 \\ 1104,3812 & 1099,243 \\ 1107,3604 & 1102,2491 \\ 1124,1039 & 1117,7214 \\ 1131,1332 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1133,673 & 1126,726 \\ \end{array}$	147,2429	160,707
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	588,6351	572,019
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	643,4031	637,2889
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	644,3805	637,4704
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	644,4727	639.2703
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	658.0216	650.2244
$ \begin{array}{c ccccc} 687,9126 & 680,1946 \\ 688,8038 & 681,187 \\ 691,6916 & 684,2966 \\ 766,5688 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6583 & 757,4888 \\ 782,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 862,8236 & 835,2552 \\ 866,6326 & 836,4633 \\ 889,0901 & 861,3516 \\ 889,7032 & 863,4884 \\ 890,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,4815 \\ 953,5282 & 940,2303 \\ 961,0825 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,5282 & 956,006 \\ 970,3018 & 1007,2043 \\ 986,3936 & 1032,6612 \\ 993,3591 & 1044,5575 \\ 1099,7379 & 1092,8878 \\ 1101,168 & 1094,4322 \\ 1104,3812 & 1099,243 \\ 1107,3604 & 1102,2491 \\ 1124,1039 & 1117,7214 \\ 1131,1332 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1133,571 & 1124,7261 \\ 1134,512 & 512,552 \\ 105,552 & 512,552 \\ 105,552 & 512,552 \\ 105,552 & 512,552 \\ 105,575 & 512,575 \\ 105,575$	687,7197	679.9564
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	687.9126	680,1946
$\begin{array}{c ccccc} 691.6916 & 684,2966 \\ 766,5688 & 749,8095 \\ 774,3286 & 754,4576 \\ 775,6583 & 757,4888 \\ 782,1763 & 758,2342 \\ 858,9164 & 830,3561 \\ 861,552 & 831,3925 \\ 862,8236 & 835,2552 \\ 866,6326 & 836,4633 \\ 889,0901 & 861,3516 \\ 889,7032 & 863,4884 \\ 890,2648 & 865,4969 \\ 903,9917 & 877,4707 \\ 938,0507 & 924,1543 \\ 940,8436 & 927,9266 \\ 943,1174 & 929,8262 \\ 948,4124 & 934,4815 \\ 953,5282 & 940,2303 \\ 961,0825 & 949,2457 \\ 962,7877 & 953,1746 \\ 966,5282 & 956,006 \\ 970,3018 & 1007,2043 \\ 986,3936 & 1032,6612 \\ 993,3591 & 1044,5575 \\ 1099,7379 & 1092,8878 \\ 1101,168 & 1094,4322 \\ 1104,3812 & 1099,243 \\ 1107,3604 & 1102,2491 \\ 1124,1039 & 1117,7214 \\ 1131,1332 & 1123,0547 \\ 1132,571 & 1124,7261 \\ 1133,571 & 1124,7261 \\ 1133,571 & 1124,7261 \\ 1133,571 & 1124,7261 \\ 1133,571 & 1124,7261 \\ 1134,$	688.8038	681.187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	691,6916	684.2966
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	766.5688	749,8095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	774.3286	754 4576
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	775.6583	757.4888
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	782,1763	758 2342
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	858 9164	830 3561
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	861 552	831 3925
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	862 8236	835 2552
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	866,6326	836 4633
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	889,0901	861.3516
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	889 7032	863 4884
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	890.2648	865 4969
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	903 9917	877 4707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	938 0507	924 1543
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	940.8436	927,9266
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	943,1174	929.8262
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	948 4124	934 4815
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	953.5282	940,2303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	961 0825	949 2457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	962.7877	953 1746
970,3018 1007,2043 986,3936 1032,6612 993,3591 1044,5575 1099,7379 1092,8878 1101,168 1094,4322 1104,3812 1099,243 1107,3604 1102,2491 1124,1039 1117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	966.5282	956.006
986,3936 1032,6612 993,3591 1044,5575 1099,7379 1092,8878 1101,168 1094,4322 1104,3812 1099,243 1107,3604 1102,2491 1124,1039 1117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	970,3018	1007.2043
993,3591 1044,5575 1099,7379 1092,8878 1101,168 1094,4322 1104,3812 1099,243 1107,3604 1102,2491 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	986,3936	1032.6612
1099,7379 1092,8878 1101,168 1094,4322 1104,3812 1099,243 1107,3604 1102,2491 1124,1039 1117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	993 3591	1044 5575
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1099 7379	1092 8878
1101,100 1094,4522 1104,3812 1099,243 1107,3604 1102,2491 1124,1039 1117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	1101 168	1094,4322
1101,3012 1000,245 1107,3604 1102,2491 1124,1039 1117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	1104 3812	1099 243
1107,5004 1102,2491 1124,1039 1117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	1107,3604	1102 2491
1124,1037 11117,7214 1131,1332 1123,0547 1132,571 1124,7261 1133,623 1126,2199	1124 1039	1117 7214
1132,571 1132,571 1132,573 1124,7261 1126,2199	1127,1032	1173 0547
1132,571 1124,7201	1132,571	1123,0347
	1133.623	1126,2199

	1167,2778	1165,9982
	1199,044	1199,4353
	1201,7928	1204,2767
	1202,7825	1207,162
	1204,5428	1209,7952
	1213,8533	1216,4807
	1219,8685	1219,2443
	1221,5128	1222,1237
	1307,281	1289,5553
	1308,4315	1295,663
	1311,227	1299,9303
	1311,5238	1301,2978
	1395,7669	1387,6787
	1397,1699	1389,2436
	1398,2057	1390,0272
	1403,3772	1394,5755
	1478,9366	1470,0898
	1512,2973	1505,3237
	1513,8458	1507,3371
	1514,5359	1509,4548
	1549,5049	1536,4291
	1552,5886	1537,3635
	1556,8486	1543,8619
	1559,6555	1546,8984
	1606,3764	1587,3402
	1612,1169	1602,3875
	1614,0881	1603,8479
	1616,5741	1607,3532
	3181,893	3059,0122
	3240,7843	3108,7016
	3279,6116	3181,3543
	3282,1841	3257,1529
	3292,357	3263,0978
	3295,2669	3264,7876
	3296,5116	3267,3429
	3299,175	3270,3943
	3301,688	3271,38
	3302,3961	3273,9953
	3316,3494	3276,7095
	3323,5162	3289,7513
	3328,3362	3294,9587
	3329,0598	3296,5775
	3333,6002	3303,4766
	3735,2714	3693,2135
	5,9671	5,542
	7,2224	8,2018
^	14,2592	15,8956
Zn^0Im_{4c}	18,4982	24,0188
	21,9169	29,6616
	24,1817	32,9578
	29,4059	37,2824

36,923	40,4519
41,0793	45,8386
46,3328	49,085
52,5562	52,1329
54,9483	56,021
60,6329	63,8064
65,9617	68,2378
83.462	74,1741
101.3523	83.9221
111.6514	98.0823
116.2153	114.5474
126,1735	122.0363
132.0843	129.2944
134.887	142.0958
564.2686	572.8257
571 4505	576,6363
634.3809	635.6863
635 334	640 3829
649 4884	655 3721
652 7249	658 4198
680 2087	685 8049
683 6337	686 638
684 1602	690 6583
686 2564	693 5241
740 8631	761 965
746 2883	764 9718
746 6081	773 7788
763 2977	781 9665
825 8301	858 8889
828 8221	859 841
829,0354	865 5133
860 4354	881 4111
863 6302	893 6867
876 6393	908 1525
882 7313	911 5146
918 2244	912 3899
922 3176	913 0423
923 703	935 8891
929,763	937 5278
933.012	942,3685
937 5244	943 0713
947 2581	958 8819
948 2974	959,6565
953 934	962 5015
961 9083	965 4856
978 1907	967 4562
1091 2435	1096 702
1091,2435	1098 /125
1094 0577	1100 7225
1095 9961	1102 373
1111 2567	1117 2304
1111,4001	111/,2007

	1115,9977	1121,0675
	1123,6216	1134,2711
	1140,9306	1142,9028
	1164,6071	1166,9175
	1167.2609	1171,1258
	1191.9019	1187.8487
	1198.7464	1196.0305
	1199.5856	1199.6068
	1204.8417	1200.4027
	1210.0778	1204,0672
	1215,0745	1211.4476
	1288.9281	1304.3918
	1292.0734	1307,7872
	1294 6974	1310.3618
	1302 293	1315 7628
	1386 3613	1394 7407
	1389 7021	1395 843
	1303,7021	1399 6889
	1394 5603	1402 7719
	1468 529	1476 0006
	1468 8126	1476 3962
	1/08/01/20	1500 3382
	1503 627	1509,3382
	1503,027	1544 0915
	1534 2011	1548 6051
	1536 2124	1550 4881
	1550,2124	1551 8756
	1583 0/30	1603 2384
	1586 2366	1604 2006
	1503 2188	1606 2087
	1595,2188	1610 2391
	3210 7422	3238 5547
	3230,7422	3276 308
	3255 1850	3270,508
	3255 7708	3204,0058
	3250,7798	3294,0038
	2200,2 4 30 2262 1155	3234,4333
	3203,4433	2204 1844
	3204,1525	3307 0803
	3277,2940	3307,9803
	3272,0902	3322,5389
	3270,471	3324,0407
	5290,2957 2001 6500	3337,0039
	3291,0300 2200 1 <i>646</i>	3337,1713 2274 2651
	3300,1040 2200 0022	33/4,3031 3207 6219
	3302,7233 2602 6262	3371,0210
	3072,0303 2604 9124	5720,2305 2741 4006
	<u> </u>	3/41,4220
	19,1028	10,002
$Zn^{+}Im_{4a}$	20,7201	21,3929
	28,0844	28,0699
	31,5716	32,8171
39,8105	39,7895	
-----------	-----------	
41,0275	43,6246	
43,0801	46,5055	
48,6771	48,8295	
55,6259	62,6438	
67,6444	95,0858	
94,7725	110,3672	
103,3589	111,5286	
115.4411	119.4033	
116.8766	126,1013	
123.1437	137.92	
133.2381	140.3657	
157.0554	170.8969	
165.6904	178.315	
184.4663	193.7246	
188 6592	199 7794	
211.5411	223.234	
593.9312	604.7051	
595,7989	612.4911	
598 3161	613 4002	
600 8525	615 1251	
653 2371	658 6982	
654 1812	662,865	
656 2417	664 4647	
658,5308	667,1562	
685.9014	693.576	
686.8751	694.5368	
687.6705	696.0171	
688.386	696,5449	
758,4291	777,5718	
759,2658	780,0161	
762,8049	781,0086	
765,2491	785,9734	
852,4715	885,3447	
852,7039	886,705	
853,4722	888,0618	
854,9372	888,212	
879,6368	909,8202	
880,8437	911,227	
888,7873	916,3239	
893,2725	924,8855	
924,1509	940,4735	
928,5059	942,2269	
935,7949	949,1899	
936,898	949,7756	
949,4616	963,0809	
951,1066	964,7426	
955,7116	971,5023	
957,3353	972,416	
1087,5069	1093,2737	
1090,1313	1095,5212	

	1093,3887	1099,2298
	1095,6544	1102,2073
	1114,7806	1120.9391
	1116.8397	1125.7409
	1117,9815	1128 1429
	1120 3912	1132.5774
	1161 9058	1160 5328
	1164,0782	1162 3576
	1166,7014	1164 7776
	1169 1602	1169 3849
	1192 871	1197 6629
	1196 3363	1199 1716
	1203 3002	1208 9912
	1205,5002	1200,9912
	1200,0792	1209,0001
	1201,1000	1296,1752
	1283,4303	1301,4925
	1284,0094	1206 4196
	1288,0730	1306,4186
	1389,8567	1397,4871
	1390,2039	1400,2344
	1391,5459	1401,2088
	1393,2549	1402,2208
	1472,1166	1477,6942
	1474,3741	1479,6434
	1476,2981	1480,1338
	1478,0568	1483,6772
	1535,2555	1551,5425
	1539,3456	1553,1964
	1543,5525	1557,35
	1546,9367	1559,1067
	1582,9757	1602,5882
	1586,0467	1603,7604
	1591,4611	1608,2263
	1592,617	1610,5639
	3269,0514	3284,7716
	3272,3767	3298,5811
	3272,9751	3300,2792
	3275,5086	3302,0153
	3278,9823	3302,5059
	3282,0188	3304,9601
	3287,3839	3305,7823
	3293,6533	3315,7056
	3297,9033	3320,9736
	3299,2702	3327,8565
	3303,9764	3329,717
	3308,2628	3333,7915
	3680,46	3705,9898
	3681,0977	3718,3432
	3681,8426	3719,0037
	3682,8347	3719,8701
$Zn^{+}Im_{4b}$	7,9361	8,4691
-		

10,2502	10,1122
18,9106	22,8311
21,2281	24,5638
25,4815	26,8565
28,5993	32,6346
38,7455	37,087
43,0236	41,9805
62,6347	70,4666
84,3402	81.6551
87,6155	83,141
88,5497	85,9285
92,47	87,5711
125,3466	113,463
126,3768	114,2823
152,0807	133,8006
156,4571	148,0273
162,3145	160,3155
203,6987	195,7847
242.8294	242,4739
252,2393	244,9449
594,9494	607.5892
595.8771	610.9553
642,6742	649,1768
644,08	651,4965
654,586	660,6956
654.8012	663.0861
672.4491	678,7639
675,5588	683.7845
686,6109	694,1799
686,7646	695.1887
758.549	782.5466
759.4011	782.8915
770,7067	789.5378
779,5998	804,6767
833,1868	871.7591
833.6436	873.771
853.0538	885.3265
853.9017	887.3039
872,5772	902.413
879.824	908.6049
880.0704	909.0854
883.0228	917.1417
918.6573	932.2768
918,7541	933.1313
937,897	948,1424
938,1157	948.3303
957.045	969.0122
957,1459	969.2657
970,3989	980.9908
971,6263	982,6055
1093,956	1093,4464

1094,4614	1093,7978
1105,3	1105,9932
1107,9137	1107,5153
1118,4153	1110,572
1118,5151	1113,3941
1125,4027	1131,0497
1129,3562	1131,6452
1140.9683	1132.4345
1141.3082	1137.7042
1172.4036	1169.581
1173.0416	1170.3173
1199.8489	1194.3914
1201.2457	1196.668
1206.8276	1206.1918
1207.5011	1206.3757
1241,9237	1247.0031
1242.3225	1248.5714
1292,8941	1308 6977
1293 0421	1309 6403
1317 2753	1326 8716
1319 753	1330 6674
1383 0046	1387 7304
1384 3026	1391 9577
1395 2812	1403 1005
1395 4946	1403 1874
1473 7192	1481 4312
1473 8584	1/182 6925
1523 7553	1527 1023
1523,7555	1528 4229
1542 1924	1557 8165
1542 6251	1558 4365
1559 1118	1573 9018
1561 7264	1578 055
1590 6212	1609 6192
1590,7305	1611 0019
1627 7871	1632 0419
1628 5574	1633 9365
2776 8903	2892 2113
2790,9405	2904 407
3276 0839	3300 3615
3276,5588	3300,9931
3279 6448	3301 6932
3279,8775	3303 6436
3280 8404	3305 8709
3281 7861	3306 3043
3283 636	3308 9652
3285,050	3309,0032
3204,0004	3307,6732
330/ 0050	3321,0745
3306 0168	3336 739
3306 6122	3337 8511
5500,0122	5557,0511

	3685,8532	3716,2143
	3686,1203	3722,8392
	24,6935	20,498
	26,3667	24,1574
	28.6131	30.0267
	30.4129	31,2559
	33,9997	35,4025
	37.4839	37.7739
	39.0263	41,1656
	40.4843	47,8817
	54.2427	61,6888
	122.5636	115,1606
	126.8639	118,1598
	128.0511	120.2752
	158.2191	153,6192
	179.8738	175.5697
	186.0109	179.3032
	188,1299	183,1678
	195.9992	193.0701
	198.4343	198.2025
	265,172	263,4458
	267,8798	266,5297
	274,6815	275,5826
	628,291	637,4339
	628,5188	637,972
	628,8242	638,8029
$Zn^{-1}Im_{4a}$	630,9463	640,7556
	666,801	672,7902
	667,2486	675,0857
	667,8659	675,3837
	669,9531	677,583
	706,4689	711,3714
	707,5259	714,6628
	707,9474	716,9963
	708,4078	717,3253
	775,2141	789,5498
	776,3643	798,1293
	778,744	799,2921
	780,529	804,8352
	847,987	885,6829
	849,4912	887,3912
	850,0761	889,7804
	855,0862	893,5727
	890,5496	915,9967
	891,8337	922,226
	892,5156	922,7669
	894,1408	925,9311
	939,5041	949,5971
	939,7397	950,1603
	939,8882	950,3944

940,0404	950,4825
970,873	983,81
972,3464	984,6967
972,6004	985,3793
972,8894	985,601
1102,5894	1106,058
1103,6643	1107,0198
1103,945	1108,503
1107.2116	1110,9512
1129.2025	1135.5118
1130.0269	1138,0077
1130.4337	1140.2655
1132.2203	1140.9246
1169,1781	1162.8865
1170.2959	1164.5161
1171,2232	1166.8863
1174 5098	1170,9494
1217 0943	1220 9409
1217,7468	1222,6161
1218 4717	1222,0101
1218,9401	1223,3217
1295 1761	1311 8431
1295,8797	1312 6932
1297 1633	1312,0552
1297,1035	1315 0965
1297,9554	1301 1777
1385 1047	1302 0708
1385 4612	1395 2134
1386 5019	1396 1562
1/81 5896	1/188 3772
1/81 9295	1488 5067
1/82 1858	1400.0044
1482 5123	1492 4841
1550 0351	1575 9092
1550,9551	1577 7548
1561 0601	1578 0547
1566 2220	1583 2204
1500,5229	1505,2294
1600,4095	1617 6877
1601 1609	1617.0768
1602 5615	1610 5053
3281 0665	2200 4525
3281,0005	2201 2058
5205,2535 2794 0402	2202 0590
3204,0473 2386 2306	2205,2207 2205,2240
3200,3230 2007 0022	2207 5005
3207,0233 2000 4001	3307,3783
3288,4871 2280,7520	5510,5595 2211 <i>5444</i>
3287,/337 2200,9665	JJ11,J444 2212,0021
3290,8003 2206 6777	3312,9931
33U0,0/// 2207-2116	5525,8052 2205,050
3307,3116	3323,952

	3308,2476	3326,7952
	3308,828	3331,8704
	3653,3895	3674,4575
	3654,0688	3675,6145
	3654.6918	3676.8171
	3655,5384	3680.0266
	10.7359	9.4265
	16,5672	14,6861
	19,8045	18,831
	28.6438	26.912
	29.8268	29,7281
	41.4928	36,5491
	44,0086	38,9523
	53,9101	48,7875
	55,9664	49,8968
	97,8407	88,9711
	107,0164	97,2749
	113.6626	104.2923
	127.081	113,5393
	142,458	134,6397
	146,8919	137,5795
	158,4429	149,8373
	162,2412	153,4169
	231,0012	217,8924
	240,4541	226,4177
	274,505	265,2082
	439,7977	432,363
	630,2971	638,921
$Zn^{2+}Im_{4b}$	630,6497	639,6151
	645,1926	652,1899
	645,8565	652,3636
	646,4868	652,8434
	646,7259	652,969
	675,523	682,7073
	676,1052	684,1515
	706,9876	709,4968
	707,5008	719,1348
	766,0366	783,9096
	766,7122	786,4498
	770,9216	787,5496
	771,3253	793,7553
	836,403	870,2608
	837,0508	872,4155
	851,2432	886,6789
	851,4411	887,001
	886,5704	901,6726
	886,8951	903,7601
	890,8793	909,9886
	891,2471	916,1045
	892,7074	917,1904
	894,6514	921,3323

942,0436	952,7163
942,3621	952,7844
953,5805	963,8634
953,6768	963,9379
1003,1914	1014,1761
1013,2939	1022,8423
1084,9377	1088,7426
1085,042	1088,899
1115,0191	1120,9585
1118,302	1124,6544
1125,2922	1136,2498
1125,3657	1137,1059
1143,5229	1149
1144.8837	1149,5083
1167.5968	1159,0429
1167.7109	1159.6217
1198.4456	1187,258
1199.9027	1188.8008
1206.376	1211.453
1207.6875	1213.1323
1257.9176	1237.2286
1259.9502	1240.5833
1265.5128	1275.5861
1265.8575	1275.8779
1276.3234	1281.6988
1276.7594	1283.7373
1326.0019	1333.1971
1326.8922	1335,3607
1372,7492	1376,7778
1372,809	1377,6395
1397.0343	1402,465
1399.0661	1405,6047
1488,3843	1497,3071
1488,6637	1499,3272
1524.0376	1535,1819
1528.8949	1540,9279
1552,5525	1554,6664
1553.2612	1556.147
1571,9253	1585,4657
1572,8798	1588,4945
1579.9562	1597,811
1580.2133	1599,2146
1667,129	1676,325
1667.4477	1676,8648
2347.0383	2376,1739
2364.9859	2393.0673
3260.8392	3270.768
3261.5695	3289,4904
3269.4513	3293,5023
3269,9048	3294,793
3289,5992	3310,4454

	3291,046	3312,6124
	3299,9934	3313,2072
	3300,0301	3323,0406
	3303,5726	3323,0944
	3303,9402	3325,2083
	3318,3548	3340,4307
	3318,4396	3341,5511
	3656,7582	3673.5775
	3656,8965	3680,9821
	14,6734	10,3527
	18,7985	14,1439
	21,016	21,5104
	28,0276	24,8761
	31,5972	31,2757
	37,8086	34,5719
	45,7985	43,0681
	49,8109	46,1338
	57,0459	56,7217
	103,9566	99,1987
	111,8202	105,2387
	130,7852	123,3225
	134,1303	134,6938
	148,9004	139,3917
	167,8614	160,0628
	199,2357	191,3629
	207,7449	198,8257
	217,1933	206,862
	228,4317	232,7762
	304,1903	312,6791
7 - 2+ 1	340,5297	351,8385
$\Sigma \Pi \Pi \Pi_{4c}$	618,7666	630,7223
	630,7699	638,1307
	632,2694	639,7981
	648,7985	654,5011
	661,0353	669,7431
	665,2301	671,7973
	665,7728	673,0028
	670,4042	677,3587
	692,5174	702,2939
	716,6645	725,5724
	718,1849	732,0952
	768,8831	785,4018
	773,7019	789,6078
	777,7994	793,6396
	781,3282	797,5903
	828,2387	857,8821
	839,5231	873,1508
	846,6584	882,1327
	852,4314	887,6261
	855,3982	893,8705
	883,1019	910,0588

885,3745	911,9601
894,4447	919,1542
895,6841	920,4798
938,5362	948,407
938,9306	948,7699
940,4679	951,1816
970,6354	983,4564
977,1322	990,999
979,3086	993,0797
991,4985	1006,2536
1098,881	1103,9709
1106,5383	1108,0485
1108,383	1111,015
1114.2644	1122,2184
1124,989	1133.8063
1131.6951	1139.1623
1134.6452	1140,896
1135.2651	1141.749
1165.995	1162.1385
1168.4703	1162.3228
1171.0665	1166.3482
1189.5866	1189.8199
1209.9741	1213.4415
1225.2037	1230.3647
1225.5623	1231.8993
1260.2011	1271.4001
1280.0888	1290.364
1300.3872	1314,9964
1301.4316	1317.2201
1319.3973	1331.6831
1352.7262	1345.5563
1377.3007	1379.9347
1380.0187	1385.497
1380.3679	1387,4695
1427.6979	1419.9276
1479.1554	1488.999
1484.4172	1490.5867
1484,6955	1491.9466
1521.3185	1530.4067
1546.592	1564.6288
1554,9603	1572.2872
1564.4067	1579,3984
1568.0479	1584.2188
1596.3831	1613.3918
1606.4818	1619,9079
1607.3171	1621.8787
1651.224	1651.6901
1777.4901	1863.8999
3278.1938	3294,1098
3279,507	3298,8449
3281,6598	3299,3463

3285,5287	3302,3233
3286,4269	3303,2054
3286,8493	3303,7303
3288,8003	3310,9358
3289,8307	3313,135
3301,3049	3322,8273
3308,7976	3325,5397
3308,8756	3325,5982
3309,063	3336,7869
3646,1987	3668,7301
3646,9937	3672,7909
3671,6591	3697,6685

Tableau 3 : Fréquences harmoniques des complexes $Zn^{q+}Im_n$ (q =0, 1, 2; n=2, 3, 4)

Zn ^{q+} Im _n	State	Е	Electron promotion
	1	7	^d n ^{+q} Im
	X ¹ A	0	
	$2^{1}A$	5,16	HOMO \rightarrow LUMO & HOMO \rightarrow LUMO+1
	3 ¹ A	5,39	HOMO → LUMO
Zn ⁰ Im I	41.4	5 50	HOMO → LUMO
	4'A	5,58	& HOMO → LUMO+1
	5 ¹ A 5,66	5.66	HOMO → LUMO
		5,66	& HOMO \rightarrow LUMO+1
	6 ¹ A	5,82	** a)
	X ¹ A	0	
	$2^{1}A$	5,31	HOMO → LUMO
7n ⁰ Im II	$3^{1}A$	5,51	HOMO \rightarrow LUMO+1
	$4^{1}A$	5,70	** ^{a)}
	$5^{1}A$	5,87	** a)
	6 ¹ A	6,07	** a)
	X^2A	0	
	2^2 A	3,15	HOMO-1 → HOMO
	3^2 A	3,94	HOMO → LUMO
Zn⁺Im	4 ² A 4,1	41	HOMO \rightarrow LUMO+1
		& HOMO → LUMO+1	
	5^2 A	4,72	HOMO-2 → HOMO
	$6^{2}A$ 478	HOMO-2 \rightarrow LUMO+1	
		1,70	HOMO-2 \rightarrow LUMO+1
	X'A	0	
	2'A	1,31	HOMO → LUMO
Zn ²⁺ Im	<u>3'A</u>	3,35	HOMO-1 → LUMO
	4'A	5,31	$HOMO \rightarrow LUMO+1$
	5'A	5,55	$HOMO \rightarrow LUMO+2$
	6'A	5,96	$HOMO-2 \rightarrow LUMO$
	NZ A	Z	n ⁻⁴ lm ₂
		0	
	2 A	4,93	
Zn ⁰ Im _{2a}	3 A	5,15	** */ ** a)
	4 A	5,31	** a)
	$\int A$	5,55	*** a)
	0 A	3,05	
	$\frac{\Lambda}{2^{1}\Lambda}$	5 12	
	2^{1}	5.24	
Zn ⁰ Im _{2b}	A^{1}	5 10	
	4 A	3,48	
	$5^{1}A$	5,91	$\begin{array}{c} \text{HOMO-1} \rightarrow \text{LUMO} \\ \text{& HOMO-1} \rightarrow \text{LUMO+2} \end{array}$

Tableau 4: Plus bas états électroniques des clusters $Zn^{q+}Im_n$ et leurs énergies d'excitation verticales (E, eV). Ces énergies sont données par rapport à l'énergie de l'état fondamental respectif. Nous donnons également la promotion d'électrons pour la transition correspondante.

	6 ¹ A	5,93	HOMO \rightarrow LUMO+3
Zn ⁰ Im _{2c}	X ¹ A	0	
	$2^{1}A$	5,16	HOMO → LUMO
	3 ¹ A	5,44	HOMO \rightarrow LUMO+2
	$4^{1}A$	5,53	HOMO \rightarrow LUMO+1
	5 ¹ A	5,74	HOMO \rightarrow LUMO+3
	6 ¹ A	6.01	HOMO-1 → LUMO
	X ¹ A	0	НОМО
Zn ⁰ Im _{2d}	$2^{1}A$	5.40	HOMO → LUMO
	3 ¹ A	5.51	HOMO→ LUMO+1
	4 ¹ A	5,68	$HOMO \rightarrow LUMO+2$
			$HOMO \rightarrow LUMO+3$
	-1.	5,93	HOMO \rightarrow LUMO+2
	5'A		HOMO \rightarrow LUMO+4
		5 99	
	6^1 A		HOMO \rightarrow LUMO+2
			HOMO→ LUMO+6
	X ² A	0	
	2^2 A	2,98	HOMO → LUMO
F7 + 7	3^2A	4,14	HOMO-1 → HOMO
$Zn^{T}Im_{2a}$	4^2 A	4.17	HOMO-2 → HOMO
	5^2 A	4.25	HOMO \rightarrow LUMO+1
	6^2 A	4.32	HOMO \rightarrow LUMO+2
	X^2A	0	
	$2^2 A$	2.98	HOMO → LUMO
_ +_	3^2A	4.12	HOMO-1 → HOMO
$\mathbf{Zn}^{+}\mathbf{Im}_{2b}$	4^2 A	4.17	HOMO \rightarrow LUMO+1
	5^2A	4.25	HOMO-2 → HOMO
	6^2 A	4.26	HOMO \rightarrow LUMO+2
	X ² A	0	
	2^2 A	5.35	HOMO → LUMO
2+-	3^2 A	5.36	HOMO-1 → LUMO
	$4^{2}A$	6,04	HOMO-1 \rightarrow LUMO+1
	5^2 A	6.04	HOMO-1 \rightarrow LUMO+1
	6^2 A	6.19	HOMO \rightarrow LUMO+2
	_	Z	n ^{+q} Im ₃
	X ¹ A	0	
	$2^{1}A$	5.36	HOMO → LUMO
	3 ¹ A	5.52	HOMO \rightarrow LUMO+1
Zn ⁰ Im _{3a}	4 ¹ A	5.71	HOMO \rightarrow LUMO+2
<i></i>	5 ¹ A	5.82	HOMO-1 → LUMO
	6 ¹ A	6,02	HOMO-1 \rightarrow LUMO+1
			HOMO-1 \rightarrow LUMO+2
	X ¹ A		
Zn ⁰ Im _{3b}	$2^{1}A$	5.29	HOMO → LUMO
	$3^{1}A$	5.49	$HOMO \rightarrow LUMO+1$
	$4^{1}A$	5.68	$HOMO \rightarrow LUMO+2$
	5 ¹ A	5.95	HOMO-1 \rightarrow LUMO
	$6^{1}A$	5.96	$HOMO-1 \rightarrow LUMO$
	011	5,70	

2^{1} 476 $4000 \rightarrow 1000$	
$\frac{2}{10} \frac{1}{10} \frac$	
3 A $3,00$ $HOMO 7 LUMO+1$	
$Zn^{-}Im_{3c}$ 4 A 5,09 HOMO \rightarrow LUMO	
$3^{\circ}A$ 5.17 $3^{\circ}A$	
6'A 5,36 *** "	
X1A 0 HOMO	
$21A \qquad 4,88 \qquad \text{HOMO} \rightarrow \text{LUMO}$	
$31A 4,98 HOMO \rightarrow LUMO+1$	
Zn ^o Im _{3d} 41A 5,06 HOMO \rightarrow LUMO+2	
51A 5,72 HOMO \rightarrow LUMO+3	
61A 5,73 HOMO \rightarrow LUMO+3 HOMO \rightarrow LUMO+5	
$X^2A = 0$ HOMO	
2^2 A 3,31 HOMO \rightarrow LUMO	
$3^2 A$ 3.31 HOMO \rightarrow LUMO+1	
$Zn^{-}Im_{3a} \qquad 4^{2}A \qquad 3.39 \qquad HOMO \rightarrow LUMO+2$	
$5^{2}A$ 375 *** ^{a)}	
$6^{2}A$ 3.75 *** a)	
$X^2A = 0$ HOMO	
$HOMO \rightarrow LUMO$	
$2^2 A$ $2,96$ HOMO \rightarrow LUMO+1	
$3^2 A$ 3.73 HOMO-2 \rightarrow HOMO	
Zn^+Im_{2h} 2 HOMO \rightarrow LUMO	
$4^{2}A \qquad 4,16 \qquad HOMO \rightarrow LUMO+2$	
5^2 A 4 24 HOMO-2 \rightarrow HOMO	
6^2A 4 34 HOMO-1 \rightarrow HOMO	
X^2A	
$X^{1}A = 0$ HOMO	
$2^{1}A$ 6 34 HOMO \rightarrow LUMO	
$\frac{2 \text{ M}}{100000000000000000000000000000000000$	
$3^{1}A$ 6,37 ψ HOMO-2 \rightarrow LUMO	
$HOMO-2 \rightarrow LUMO$	
$\mathbf{Zn}^{2+}\mathbf{Im}_{3a}$ 4 ¹ A 6,41 ψ HOMO-1 \rightarrow LUMO	
$HOMO \rightarrow UIMO+1$	
$5^{1}A$ 6,75 $& HOMO-2 \rightarrow LUMO$	
$5^{1}A \qquad 6,75 \qquad HOMO-2 \rightarrow LUMO \\ HOMO-1 \rightarrow LUMO$	
$5^{1}A$ $6,75$ HOMO 7 LOMO 1 $6^{1}A$ $6,75$ & HOMO 2 \rightarrow LUMO $6^{1}A$ $6,75$ & HOMO 2 \rightarrow LUMO	
$5^{1}A$ $6,75$ $10MO \neq 10MO + 1$ $6^{1}A$ $6,75$ $& HOMO-2 \rightarrow LUMO$ $& HOMO-1 \rightarrow LUMO$ $& HOMO-2 \rightarrow LUMO$ $X^{1}A$ $X^{1}A$	
$5^{1}A$ $6,75$ HOMO 7 LOMO 1 $6^{1}A$ $6,75$ & HOMO-2 \rightarrow LUMO $X^{1}A$ $X^{1}A$ $X^{1}A$ $2^{1}A$ 4.39 HOMO \rightarrow LUMO	
$5^{1}A$ $6,75$ $10MO \neq 10MO + 1$ $6^{1}A$ $6,75$ & HOMO-2 \rightarrow LUMO $6^{1}A$ $6,75$ & HOMO-2 \rightarrow LUMO $X^{1}A$ $2^{1}A$ 4,39 $10MO \Rightarrow LUMO$ $3^{1}A$ 5.02	
$5^{1}A$ $6,75$ $10MO \neq 10MO + 1$ $6^{1}A$ $6,75$ & HOMO-2 \rightarrow LUMO $6^{1}A$ $6,75$ & HOMO-2 \rightarrow LUMO $X^{1}A$ $2^{1}A$ $4,39$ $2^{1}A$ $4,39$ HOMO \rightarrow LUMO $3^{1}A$ $5,02$ HOMO \rightarrow LUMO+1 $4^{1}A$ $5,19$ HOMO \rightarrow LUMO+2	
$5^{1}A$ $6,75$ HOMO 7 LOMO 1 $6^{1}A$ $6,75$ & HOMO-2 \rightarrow LUMO $6^{1}A$ $6,75$ HOMO-1 \rightarrow LUMO $X^{1}A$ $X^{1}A$ $X^{1}A$ $2^{1}A$ $4,39$ HOMO \rightarrow LUMO $3^{1}A$ $5,02$ HOMO \rightarrow LUMO+1 $4^{1}A$ $5,19$ HOMO \rightarrow LUMO+2 $5^{1}A$ 5.87 HOMO-3 \rightarrow HOMO	
$5^{1}A$ $6,75$ $HOMO \neq LOMO + 1$ $6^{1}A$ $6,75$ $&HOMO - 2 \neq LUMO$ $6^{1}A$ $6,75$ $HOMO - 1 \neq LUMO$ $K^{1}A$ $K^{1}A$ $K^{1}A$ $2^{1}A$ $4,39$ $HOMO \neq LUMO$ $3^{1}A$ $5,02$ $HOMO \neq LUMO + 1$ $4^{1}A$ $5,19$ $HOMO \neq LUMO + 2$ $5^{1}A$ $5,87$ $HOMO - 3 \neq HOMO$ $6^{1}A$ $6,03$ $HOMO - 2 \rightarrow HOMO$	
$5^{1}A$ $6,75$ $HOMO \rightarrow LOMO \rightarrow LOMO$ $6^{1}A$ $6,75$ $HOMO - 2 \rightarrow LUMO$ $6^{1}A$ $6,75$ $HOMO - 1 \rightarrow LUMO$ $X^{1}A$ $2^{1}A$ $4,39$ $2^{1}A$ $4,39$ $HOMO \rightarrow LUMO$ $3^{1}A$ $5,02$ $HOMO \rightarrow LUMO + 1$ $4^{1}A$ $5,19$ $HOMO \rightarrow LUMO + 2$ $5^{1}A$ $5,87$ $HOMO - 3 \rightarrow HOMO$ $6^{1}A$ $6,03$ $HOMO - 2 \rightarrow HOMO$	
$5^{1}A$ $6,75$ $HOMO \rightarrow LOMO \rightarrow I$ $6^{1}A$ $6,75$ $HOMO - 2 \rightarrow LUMO$ $6^{1}A$ $6,75$ $HOMO - 1 \rightarrow LUMO$ $X^{1}A$ $Z^{1}A$ $4,39$ $2^{1}A$ $4,39$ $HOMO \rightarrow LUMO$ $3^{1}A$ $5,02$ $HOMO \rightarrow LUMO$ $3^{1}A$ $5,02$ $HOMO \rightarrow LUMO + 1$ $5^{1}A$ $5,19$ $HOMO \rightarrow LUMO + 2$ $5^{1}A$ $5,87$ $HOMO - 3 \rightarrow HOMO$ $6^{1}A$ $6,03$ $HOMO - 2 \rightarrow HOMO$ $X^{1}A$ $Zn^{+q}Im_4$ $Zn^{+q}Im_4$	
$5^{1}A$ $6,75$ $HOMO \rightarrow LOMO \rightarrow I$ $6^{1}A$ $6,75$ $HOMO - 1 \rightarrow LUMO$ $6^{1}A$ $6,75$ $HOMO - 1 \rightarrow LUMO$ $X^{1}A$ $2^{1}A$ $4,39$ $2^{1}A$ $4,39$ $HOMO \rightarrow LUMO$ $3^{1}A$ $5,02$ $HOMO \rightarrow LUMO + 1$ $3^{1}A$ $5,02$ $HOMO \rightarrow LUMO + 1$ $5^{1}A$ $5,19$ $HOMO \rightarrow LUMO + 2$ $5^{1}A$ $5,87$ $HOMO - 3 \rightarrow HOMO$ $6^{1}A$ $6,03$ $HOMO - 2 \rightarrow HOMO$ $X^{1}A$ $Zn^{+q}Im_4$ $Zn^{+q}Im_4$	

	$3^{1}A$	5,43	HOMO \rightarrow LUMO+1
	$4^{1}A$	5,56	HOMO \rightarrow LUMO+2
	$5^{1}A$	5,89	** ^{a)}
	$6^{1}A$	6,17	** ^{a)}
	$X^{1}A$	0	
	$2^{1}A$	4,70	HOMO → LUMO
Zn ⁰ Im _{4b}	3 ¹ A	4,95	** a)
	$4^{1}A$	5,01	** ^{a)}
	$5^{1}A$	5,10	** a)
	6 ¹ A	5,29	** ^{a)}
Zn ⁰ Im _{4c}	X ¹ A	0	НОМО
	$2^{1}A$	4,15	HOMO \rightarrow LUMO+1
	$3^{1}A$	4,18	HOMO \rightarrow LUMO+1
	$4^{1}A$	4,35	HOMO \rightarrow LUMO+5
	5 ¹ A	4,63	HOMO → LUMO
	6 ¹ A	4,88	HOMO \rightarrow LUMO+6
	X ² A	0	НОМО
	$2^{2}A$	2,66	HOMO → LUMO
77 . †1	3^2 A	2,74	HOMO \rightarrow LUMO+1
Zn Im _{4a}	$4^{2}A$	2,78	** ^{a)}
	$5^{2}A$	2,84	** a)
	6 ² A	2,98	** a)
	X ² A	0	НОМО
Zn⁺Im _{4b}	$2^{2}A$	2,96	HOMO → LUMO
	3^2 A	3,80	HOMO -3→ LUMO
	$4^{2}A$	3,84	HOMO -4→ LUMO
	$5^{2}A$	4,47	HOMO \rightarrow LUMO+2
	6 ² A	4,48	HOMO \rightarrow LUMO+2
	X ² A	0	НОМО
	$2^{2}A$	3,15	HOMO → LUMO
	3^2A	3,25	HOMO \rightarrow LUMO+2
$Zn^{+}Im_{4c}$	$4^{2}A$	3,57	HOMO \rightarrow LUMO+5
	$5^{2}A$	3.65	HOMO \rightarrow LUMO+2
	6 ² A	3,75	HOMO \rightarrow LUMO+1
			HOMO \rightarrow LUMO+2
_	X ¹ A	0	НОМО
	$2^{1}A$	6,59	HOMO → LUMO
	3 ¹ A	6,61	HOMO-1 → LUMO
77 ²⁺ T	4 ¹ A	6,68	HOMO-2 \rightarrow LUMO+2
Zn Im _{4a}			HOMO-3 \rightarrow LUMO+1
	5 ¹ A	(()	HOMO-3 \rightarrow LUMO+1
	JA	0,09	HOMO-2 \rightarrow LUMO+1
	6 ¹ A	7,28	HOMO-1 \rightarrow LUMO+4
Zn ²⁺ Im _{4b}	X ¹ A	0	НОМО
	$2^{1}A$	5,05	HOMO → LUMO
	$3^{1}A$	5,06	HOMO-1 → LUMO
	$4^{1}A$	5,61	HOMO \rightarrow LUMO+1
	<u>~1</u> ,	F c 1	
	5'A	5,61	HOMO \rightarrow LUMO+1

			HOMO -1 \rightarrow LUMO+1
	6 ¹ A	5,71	HOMO \rightarrow LUMO+2
			HOMO-1 \rightarrow LUMO+1
Zn ⁺² Im _{4c}	X ¹ A	0	НОМО
	$2^{1}A$	5,97	HOMO → LUMO
			HOMO-1 \rightarrow LUMO
	3 ¹ A	6,01	HOMO → LUMO
			HOMO-1 → LUMO
	$4^{1}A$	6,23	HOMO-1 \rightarrow LUMO+1
	5 ¹ A	6,42	HOMO-2 → LUMO
			HOMO-2 \rightarrow LUMO+2
	$6^{1}A$	6,43	HOMO \rightarrow LUMO+1

a) Too many electron configurations mixing.