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Abstract

Link Prediction in Large-scale Complex Networks

(Application to Bibliographical Networks)

In this work, we are interested to tackle the problem of link prediction in complex net-

works. In particular, we explore topological dyadic approaches for link prediction. Dif-

ferent topological proximity measures have been studied in the scientific literature for

finding the probability of appearance of new links in a complex network. Supervised

learning methods have also been used to combine the predictions made or information

provided by different topological measures. They create predictive models using various

topological measures. The problem of supervised learning for link prediction is a difficult

problem especially due to the presence of heavy class imbalance.

In this thesis, we search different alternative approaches to improve the performance of

different dyadic approaches for link prediction. We propose here, a new approach of link

prediction based on supervised rank aggregation that uses concepts from computational

social choice theory. Our approach is founded on supervised techniques of aggregating

sorted lists (or preference aggregation). We also explore different ways of improving

supervised link prediction approaches. One approach is to extend the set of attributes

describing an example (pair of nodes) by attributes calculated in a multiplex network

that includes the target network. Multiplex networks have a layered structure, each

layer having different kinds of links between same sets of nodes. The second way is to

use community information for sampling of examples to deal with the problem of class

imbalance. Experiments conducted on real networks extracted from well known DBLP

bibliographic database.

Keywords: Complex networks, Link prediction, Supervised rank aggregation, Multi-

plex network analysis.





Résumé

Prévision de Liens dans les Grands Graphes de Terrain

(Application aux réseaux bibliographiques)

Nous nous intéressons dans ce travail au problème de prévision de nouveaux liens dans

des grands graphes de terrain. Nous explorons en particulier les approches topologiques

dyadiques pour la prévision de liens. Différentes mesures de proximité topologique ont été

étudiées dans la littérature pour prédire l’apparition de nouveaux liens. Des techniques

d’apprentissage supervisé ont été aussi utilisées afin de combiner ces différentes mesures

pour construire des modèles prédictifs. Le problème d’apprentissage supervisé est ici un

problème difficile à cause notamment du fort déséquilibre de classes.

Dans cette thèse, nous explorons différentes approches alternatives pour améliorer les per-

formances des approches dyadiques pour la prévision de liens. Nous proposons d’abord,

une approche originale de combinaison des prévisions fondée sur des techniques d’agré-

gation supervisée de listes triées (ou agrégation de préférences). Nous explorons aussi

différentes approches pour améliorer les performances des approches supervisées pour

la prévision de liens. Une première approche consiste à étendre l’ensemble des attri-

buts décrivant un exemple (paires de noeuds) par des attributs calculés dans un réseau

multiplexe qui englobe le réseau cible. Un deuxième axe consiste à évaluer l’apport des

techniques de détection de communautés pour l’échantillonnage des exemples. Des ex-

périmentations menées sur des réseaux réels extraits de la base bibliographique DBLP

montrent l’intérêt des approaches proposées.

Mots-clès : Réseaux complexes, Prévision de liens, Agrégation supervisée de préfé-

rences, Analyse de réseaux multiplexes.





Dedicated to my mother Dr. Kamalini Pujari





Acknowledgements

Acknowledgement is something very special for me where I can show my gratitude to-

wards all who have directly or indirectly affected my life and helped me to sail through

the tides.

I must start with my supervisor Dr. Rushed Kanawati who has been a perfect guide

during this research work. He has been a great mentor for me starting from the days of

my internship in 2010. I still remember the early time when I was not very confident

about my ability to do a thesis, and it was Rushed who used to tell me stories from his

life to build up my confidence. And indeed, I will be going out to the professional world

as a much more confident person than before. His liveliness and enthusiasm towards his

work is very inspiring. His advice on both research as well as on my career have been

invaluable. I thank him for believing in me and giving me an opportunity to work with

him.

I would like to express my thanks to my thesis director, Prof. Céline Rouveirol for

being very kind and supportive throughout these years of research. In spite of her busy

schedules, she always took time for guiding and helping me whenever I needed. She was

always ready to answer my questions on anything regarding teaching or research. Her

encouragement and guidance during the final preparations of this thesis and presentation

is overwhelming. She is a highly knowledgeable and experienced person. I feel myself

very fortunate to have got a chance know her and to work with her.

I also thank all members of the jury for accepting to be a part of final judgement day of my

work. In particular, I would like to thank Prof. Céline Robardet and Prof. Bénédicte Le

Grand for being the reviewers. Their comments and advices helped me a lot to improve

this manuscript.

A good support system is important for surviving and staying sane during Ph.D. For

making this journey fun and being there with me, many thanks to all my friends: Yue

Ma, Zied Yakoubi, Abdoulaye Guissé, Nasserine Benchettara, Pegah Alizadeh, Hanene

Ochi, Ines Chebil, Amine Chaibi, Sarra Ben Abbes, Nouha Omrane. They will always

remain in my mind and heart. I also thanks all other friends and colleagues at LIPN.

My list will remain incomplete without thanking Brigitte Guéveneux, Nathalie Tavares,

Marie Fontanillas and Antonia Wilk who were very kind and helpful for all types of

administrative works throughout these years.

In the end I would like to thank my entire family for being with me through thick and

thin. My husband Samarendra Tripathy is my greatest strength. He is my best friend,

my guide and my critic too. It was his dream that I do a Ph.D. and it was never possible



for me to complete this work without his constant support. I feel so lucky to have him in

my life. I think of my parents today. I thank my mother Kamalini Pujari for being the

greatest inspiration of my life. May it be work or home, she is just perfect. I thank her

for teaching me how to lead a happy life, not just by words but by example. I thank my

father Byomokesh Pujari for his unconditional love and trust in me at every step of life.

He has been a friend in moments when I badly needed one. I also thank my little brother

Manas Ranjan Pujari for being a wonderful sibling in spite of all tantrums I throw. I

greatly thank my parent-in-laws, Binod Chandra Tripathy and Snehalata Tripathy for

their constant blessings and prayers which helped me to never lose hope and keep going.

I thank the entire family of my husband for their fun-filled and sweet encouraging words

that helped me discharging all the stress. Thank you.

Manisha Pujari

March, 2015



Contents

Abstract v

Résumé vii

Acknowledgements xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Complex Networks Analysis 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Complex networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Formal definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Characteristics of complex networks . . . . . . . . . . . . . . . . . . . . . 12
2.4 Network modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Tasks in network analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Bibliographical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Link Prediction in Complex Networks: Topological Approaches 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Problem description, notations and evaluation . . . . . . . . . . . . . . . . 31

3.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Link prediction approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Unsupervised approaches . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1.1 Neighborhood based features . . . . . . . . . . . . . . . . 36
3.3.1.2 Path based features . . . . . . . . . . . . . . . . . . . . . 38
3.3.1.3 Aggregation of node topological features . . . . . . . . . . 40

3.3.2 Supervised approaches . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2.1 Supervised machine learning based approaches . . . . . . 41

xiii



Contents xiv

3.3.2.2 Matrix based approaches . . . . . . . . . . . . . . . . . . 44
3.3.2.3 Probabilistic approaches . . . . . . . . . . . . . . . . . . . 45

3.3.3 Semi-supervised approaches . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Challenges in link prediction task . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Applying Rank Aggregation to Link Prediction 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Rank aggregation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Rank aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Weighted rank aggregation . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Rank aggregation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Supervised rank aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Applying supervised rank aggregation to link prediction . . . . . . . . . . 63

4.6.1 Weight computation . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Link Prediction in Multiplex Networks 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Link prediction in heterogeneous network . . . . . . . . . . . . . . 77
5.2.2 Work on multiplex networks . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Link prediction in multiplex network . . . . . . . . . . . . . . . . . . . . . 81
Direct and indirect attributes . . . . . . . . . . . . . . . . . 81
Multiplex attributes . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Communities and Link Prediction 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Community detection approaches . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Link prediction using community information . . . . . . . . . . . . . . . . 95
6.4 Data sampling using community detection algorithms . . . . . . . . . . . . 97

6.4.1 Community based under-sampling . . . . . . . . . . . . . . . . . . 98
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Large network coarsening using communities: A perspective . . . . . . . . 104
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusion 109

7.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A LiPTaR : Link Predicton based Tag Recommendation for Folksonomy 113

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Contents xv

A.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.3 LiPTaR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Path Betweenness Centrality 119

B.0.1 Path betweenness centrality . . . . . . . . . . . . . . . . . . . . . . 119
B.0.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C Performance of Topological Measures 127

D Publications 137

E DBLP Network Visualization 139

E.1 Co-authorship networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
E.2 Multiplex networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 147





List of Figures

2.1 Complex networks from different data sources . . . . . . . . . . . . . . . . 7
2.2 A folksonomy with hyperlinks . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 A bipartite graph with its projections. . . . . . . . . . . . . . . . . . . . . 9
2.4 Different types of edge orientations . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Different types of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Bipartite graphs from Bibsonomy dataset for year 1995. . . . . . . . . . . 11
2.7 Power law distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Community structures in complex networks . . . . . . . . . . . . . . . . . 15
2.9 Random graphs with n = 30 and p = 0, p = 0.02, p = 0.10 respectively . . 16
2.10 Bibliographical network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 DBLP Co-authorship network for year a) 1970-1975 and b) 1980-1985 . . 24
2.12 Degree distribution of Arxiv datasets . . . . . . . . . . . . . . . . . . . . . 26
2.13 Degree distribution of DBLP datasets . . . . . . . . . . . . . . . . . . . . 26

3.1 Link prediction types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Samples of ROC and Precision-Recall curves [Davis and Goadrich, 2006] . 33
3.3 Prediction of links based on numbers of common neighors (CN) . . . . . . 36
3.4 Creation of examples for supervised machine learning . . . . . . . . . . . . 43
3.5 Generation of examples on a sample graph . . . . . . . . . . . . . . . . . . 44
3.6 Hierarchical structure of a random network [Clauset et al., 2008]. . . . . . 46

4.1 An example to show Borda and Kemeny optimal aggregation . . . . . . . 58
4.2 An example showing computation of supervised Borda and supervised

local Kemeny aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Co-authorship network for year 1970-1973 . . . . . . . . . . . . . . . . . . 67
4.4 Co-authorship network for year 1972-1975 . . . . . . . . . . . . . . . . . . 68
4.5 Co-authorship network for year 1974-1977 . . . . . . . . . . . . . . . . . . 68
4.6 Results on the two datasets compared with Supervised machine learning . 70
4.7 Results on the two datasets compared with Ensemble learning . . . . . . . 71
4.8 Precision-Recall curves for the two datasets compared with Supervised

machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Precision-Recall curves for the two datasets compared with Ensemble

learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Heterogeneous networks and branches . . . . . . . . . . . . . . . . . . . . 75
5.2 Multiplex structure in a scientific collaboration network for authors . . . . 76
5.3 An example of computing direct, indirect and multiplex attributes based

on number of common neighbors (CN(u, v)). . . . . . . . . . . . . . . . . 82
5.4 Multiplex network visualization for year 1970-1973 of DBLP . . . . . . . . 84

xvii



Contents xviii

5.5 Results on the two datasets for Decision tree algorithm . . . . . . . . . . . 85
5.6 Results for supervised rank aggregation based models . . . . . . . . . . . . 87

6.1 Communities in a network . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 An example for Infomap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Seed centric local communities in a network . . . . . . . . . . . . . . . . . 94
6.4 An example to find modified versions of common neighbors . . . . . . . . 97
6.5 Distribution of links inside and outside communities. . . . . . . . . . . . . 99
6.6 Results on the two datasets for Decision tree algorithm . . . . . . . . . . . 103
6.7 Coarsening and uncoarsening of graphs . . . . . . . . . . . . . . . . . . . . 104

A.1 LiPTaR work cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1 An example to find the betweenness centrality of a shortest path between
a pair of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.2 Positive probability of path betweenness centrality . . . . . . . . . . . . . 122

C.1 Positive probability of number of common neighbors . . . . . . . . . . . . 128
C.2 Positive probability of path Jaccard’s coefficient . . . . . . . . . . . . . . . 129
C.3 Positive probability of path Adamic Adar coefficient . . . . . . . . . . . . 130
C.4 Positive probability of resource allocation . . . . . . . . . . . . . . . . . . 131
C.5 Positive probability of neighbor’s clustering coefficient . . . . . . . . . . . 132
C.6 Positive probability of preferential attachment . . . . . . . . . . . . . . . . 133
C.7 Positive probability of truncated Katz centrality . . . . . . . . . . . . . . . 134
C.8 Positive probability of shortest path length . . . . . . . . . . . . . . . . . 135
C.9 Positive probability of weighted shortest path length . . . . . . . . . . . . 136

E.1 Co-authorship network for year 1970-1973 . . . . . . . . . . . . . . . . . . 139
E.2 Co-authorship network for year 1972-1975 . . . . . . . . . . . . . . . . . . 140
E.3 Co-authorship network for year 1974-1977 . . . . . . . . . . . . . . . . . . 140
E.4 Co-authorship network for year 1980-1983 . . . . . . . . . . . . . . . . . . 141
E.5 Co-authorship network for year 1982-1985 . . . . . . . . . . . . . . . . . . 141
E.6 Co-authorship network for year 1984-1987 . . . . . . . . . . . . . . . . . . 142
E.7 LCC of co-authorship network for year 1980-1983 . . . . . . . . . . . . . 142
E.8 LCC of co-authorship network for year 1982-1985 . . . . . . . . . . . . . 143
E.9 LCC of co-authorship network for year 1984-1987 . . . . . . . . . . . . . 143
E.10 LCC of network for year 1972-1975 . . . . . . . . . . . . . . . . . . . . . . 144
E.11 LCC of network for year 1974-1977 . . . . . . . . . . . . . . . . . . . . . . 144
E.12 LCC of network for year 1980-1983 . . . . . . . . . . . . . . . . . . . . . . 145
E.13 LCC of network for year 1982-1985 . . . . . . . . . . . . . . . . . . . . . . 145
E.14 LCC of network for year 1984-1987 . . . . . . . . . . . . . . . . . . . . . . 146



List of Tables

2.1 Network terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Notations and terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Different bibliographic networks . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Scientific collaboration networks: Coauthorship graphs for Arxiv Datasets 25
2.5 Scientific collaboration networks: Power law coefficient for coauthorship

graphs for Arxiv and DBLP datasets . . . . . . . . . . . . . . . . . . . . . 27

3.1 Confusion matrix for link prediction . . . . . . . . . . . . . . . . . . . . . 31
3.2 Summary of categorization of link prediction approaches that we have

studied, based on two different dimensions . . . . . . . . . . . . . . . . . . 49

4.1 DBLP Co-authorship graph . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Examples from co-authorship graph . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Datasets for experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Examples generated from co-authorship graph . . . . . . . . . . . . . . . . 83
5.3 Datasets for experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Distribution of positive examples inside and outside communities . . . . . 100
6.2 Number of communities found in DPLP co-authorship graphs . . . . . . . 101
6.3 Original and sampled examples found on co-authorship graphs . . . . . . . 101
6.4 Datasets for experiment with supervised machine learning algorithms . . . 102
6.5 Coarsening of graphs in different layers of a multiplex network . . . . . . . 107

B.1 Co-authorship graphs used for generation of examples . . . . . . . . . . . 121
B.2 Examples from largest connected component of co-authorship graphs . . . 121
B.3 Results of prediction on Dataset 1 (k = 16) . . . . . . . . . . . . . . . . . 124
B.4 Results of prediction on Dataset 2 (k = 49) . . . . . . . . . . . . . . . . . 124
B.5 Results of prediction on Dataset 3 (k = 93) . . . . . . . . . . . . . . . . . 124
B.6 Results of prediction on Dataset 4 (k = 39) . . . . . . . . . . . . . . . . . 125
B.7 Results of prediction on Dataset 5 (k = 67) . . . . . . . . . . . . . . . . . 125
B.8 Results of prediction on Dataset 6 (k = 37) . . . . . . . . . . . . . . . . . 125

C.1 Examples from largest connected component of co-authorship graphs . . . 127

xix





Chapter 1

Introduction

1.1 Context

Complex networks and their characteristics have gained considerable attention of re-
searchers in various domains. A complex network can be any real world network which
has an abstract form without a predefined structure or pattern of evolution. They can
be highly dynamic in nature, evolving or changing constantly. Also, starting with a tiny
form, in this era of big data, there is a spectacular increase in the size of the network.
Analyzing these dynamic large-scale networks is a major challenge for network scientists.

Many real-world systems can be modeled as evolving networks of interacting actors
(e.g. users, authors, documents or scientific papers, items, proteins etc.). They can be
on-line social networks depicting social relationships between people like friendship; col-
laboration networks showing some kind of professional relationships (such as academic
co-authorship/co-publishing networks, product co-purchasing etc.); biological systems
(such as protein interaction networks) or computer science networks (e.g. the Internet
and peer-to-peer networks) etc. These systems can be represented as graphs with ac-
tors as nodes and edges representing any kind of interaction, collaboration or influence
between actors. Almost all types of complex networks have some common topological
properties like sparseness or low density, small diameter or average distance, a degree
distribution following power-law, high clustering coefficient, presence of community struc-
tures etc. The basic network structures and properties are explained in Chapter 2. The
real-world networks can be heterogeneous in nature having different kinds of nodes and
links. One such representation of heterogeneity is in the form of multiplex networks.
These networks have a layered structure with same types of nodes but different types of
links in each layer. This concept is discussed in detail in Chapter 5.

Bibliographical networks especially scientific collaboration networks are very rich in a
variety of information that can be exploited for network analysis. Since a long time, they
have attracted attention of many researchers. They can be used for multiple network
analysis tasks like link prediction, community detection, identification of influential nodes
etc. Also due to the presence of different kinds of link information, these networks have
been used for the study of heterogeneous properties of complex networks.

Link prediction, which is the central topic in this research, refers to the task of predicting
the existence or occurrence of associations (edges) in the network at a given point of time

1
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t when provided with the information about the network’s history before time t. The
problem has a wide variety of applications such as: recommender systems, identification
of probable professional or academic associations in scientific collaboration networks,
identification of structures of criminal networks and structural analysis in the field of
microbiology or biomedicine, etc. A variety of approaches has been proposed in the
scientific literature. Recent surveys on the topic can be found in [Al Hasan and Zaki,
2010; Lü and Zhou, 2011]. A detailed state of art of link prediction approaches is provided
in Chapter 3.

1.2 Contributions

The major contributions of this research work, that are presented in this report are:

1. Supervised rank aggregation based link prediction: Many link prediction
approaches use topological characteristics of a pair of unconnected nodes for making
prediction of appearance or existence of a probable link between them. We come up
with a new approach where the effect of topological attributes is combined by using
supervised rank aggregation (stemming from computational social choice theory)
and this combined effect is used to predict the possible new links in a co-authorship
network. The approach has been compared with the baseline supervised machine
learning methods. Rank aggregation methods have been very much used in meta-
search engines, but not much seemed to have been explored in the context of link
prediction.

• Manisha Pujari, Rushed Kanawati. Link prediction in complex networks by
supervised rank Aggregation. ICTAI 2012: 24th IEEE International Confer-
ence on Tools with Artificial Intelligence, pages.782-789, 7-9 November, 2012,
Athens, Greece.

• Manisha Pujari, Rushed Kanawati. Supervised rank aggregation approach for
link prediction in complex networks. In Proceedings of the 21st international
conference companion on World Wide Web (WWW ’12 Companion). ACM,
New York, NY, USA, pages 1189-1196.

2. Link prediction in multiplex networks: While working on homogeneous net-
works our attention went to the widely existing heterogeneity in complex networks.
Heterogeneous link information can be very well used to improve the prediction re-
sults. We were particularly interested to work on multiplex networks. Multiplex
networks are a category of heterogeneous complex networks, which essentially have
different kinds of links between same nodes. They can be represented as a set (or
layers) of simple networks, each having the same set of nodes but different types
of links (dimensions). Our approach includes computations of simple topological
scores (attributes) for unconnected node pairs from different dimension graphs.
These scores can then be used either directly or in a combined way for the purpose
of link prediction. Combinations of scores can be done using any standard functions
like min, max or average. We also propose an entropy based version of the score,
which gives importance to the presence of a non-zero value in each dimension.

• Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks.
Special Issue of Networks and Heterogeneous Media entitled New trends, mod-
els and applications in Complex and Multiplex Networks, 2014.(Accepted)



Chapter 1. Introduction 3

• Manisha Pujari, Rushed Kanawati. Link prediction in multiplex bibliographical
networks. International Journal of Complex Systems in Science proceedings
of NET-WORKS 2013, El Escorial, 11-13 December, 2013.

3. Community detection and link prediction: Another research direction that
we are interested in, is the use of communities in link prediction. Our goal is to
study how the presence of an unconnected node pair in same or different com-
munities can affect the probability of having a new link between them. We have
used communities to filter out irrelevant candidate node pairs to build a better
prediction model. Another use of community detection methods can be to produce
compressed graphs that can help in dealing with the large sizes of real networks.
We are on our way to explore it more and find how to use it for link prediction.

New topological measure: As an additional work in the course of our research, we have
developed a new path based topological measure which can be used for unsupervised and
supervised methods of link prediction. It tries to quantify the importance of a shortest
path between two nodes in a network. We experimented to see its utility in the task of
link prediction in a scientific collaboration network. It can also be used for other analysis
tasks in complex networks but in this work we could only explore its applicability in the
context of link prediction. Details about this measure can be found in appendix B.

• Manisha Pujari. Path betweenness centrality: A new topological measure for link
prediction. Journée de fouille de grandes graphes (JFGG), MARAMI2013, 16-18
October 2013, à Saint-Etienne, France.

At the same time we have also done some work on the application of link prediction:

Link prediction based tag recommendation: We have also applied link predic-
tion for the purpose of tag recommendation in folksonomy. Folksonomies are websites
where users can save and share online resources (documents, bookmarks, images, songs
etc.) with other users and they have complete freedom to choose tags to annotate their
resources. Such systems are prone to the problem of tag ambiguity. We developed a
framework called LiPTaR to cope up with the problem of tag recommendation. The
original idea of LiPTaR is to mine the dynamic of the tagging activity in order to com-
pute the most suitable tag for a given user and a given resource. The tagging history
of each user is modelled by a temporal sequence of bipartite graphs linking tags to re-
sources. Given a target user and a target resource, we first compute a set of similar users.
The tagging history of the identified set of users is merged in one temporal sequence of
bipartite graphs. The obtained sequence is used to learn a model of link prediction in
bipartite graphs. The learned model is then applied to predict tags to be linked to the
target resource and a list of most similar resources. (Appendix A)

• Manisha Pujari, Rushed Kanawati. Tag recommendation by link prediction based
on supervised machine learning. Sixth International AAAI Conference on Weblogs
and Social Media (ICWSM 2012), 4-7 June 2012, Dublin. (Poster session) (selection
rate 26%)

• Manisha Pujari, Rushed Kanawati. Supervised machine learning link prediction
approach for tag recommandation. 4th International Conference on Online Com-
munities and Social Computing @ HCI International, pages.336-344, 9-14 July
2011, Hilton Orlando Bonnet Creek, Orlando, Florida, USA, LNCS Springer.
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1.3 Outline

This report is organized as follows.

• Chapter 2 presents the context of our research work. It provides a detailed descrip-
tion about complex networks, their structures and properties. It also presents the
different tasks involved in complex network analysis.

• Chapter 3, provides basic definition of the link prediction problem. We provide a
quick survey on existing approaches, mostly based on network structure. It also
includes details about a new type of path based topological feature that can be
used for link prediction.

• Chapter 4 describes our proposed approach for link prediction based on supervised
rank aggregation and gives a detail of experimentation done so far. We provide
information about standard rank aggregation methods, our proposed approximate
version of one of the well known methods Kemeny optimal aggregation, and its
application to a supervised link prediction task.

• Chapter 5, presents expansion our sphere of research by including heterogeneity in
the network in the form of multiplex networks. We present our versions of multiplex
topological attributes, extending a few of know features to fit into the scenario of
multiplex networks. We then apply them for predicting co-authorship links.

• Chapter 6 provides details about community detection and different existing al-
gorithms. It also present our proposed method of filtering of potential candidates
using community information. This is mainly done to reduce the large size of a
dataset to a manageable level and deal with the problem of class imbalance which
is very common in especially supervised link prediction approaches.

Last but not the least, the report is concluded in Chapter 7 where we summarize the
whole work, ending with the perspectives.

Some additional information is provided in the appendices. Appendix A presents our
work on application of link prediction for tag recommendation in folksonomies. Appendix
B provides details about our work on path betweenness centrality . Appendix C provides
information about the predictive performances of some of the topological metrics in co-
authorship link prediction in authors networks created from DBLP database. Appendix
D presents a list of our publications done during this research work. Lastly, appendix
E provides visualizations of some other co-authorship networks and multiplex networks
generated from DBLP data.



Chapter 2

Complex Networks Analysis

2.1 Introduction

Analysis of complex networks, traditionally known as Social Network Analysis (SNA),
has its theoretical roots in the work of early sociologists such as George Simmel and
Émile Durkheim, who wrote about the importance of studying patterns of relationships
that connect social actors. A complex network consists of several independent units
interacting in a non-linear way. The brain is a network of nerve cells connected by axons;
cells themselves are networks of molecules connected by biochemical reactions. Societies
are networks of people, connected by friendship, familial and professional relationships.
On large scale, food webs and ecosystems can be represented as networks of predator-prey
relations. Networks are present also in technology: the Internet as web pages connected
by hyperlinks, the routers network, power grids, and transportation systems are some
of the examples. Graph theory emerged as a key tool for analyzing complex networks.
Having its roots basically in sociology and mathematics, it gained rapid importance in
network analysis in the field of biology, physics, telecommunication, computer science
and others. It has various divisions like structural analysis of network, temporal analysis
that studies the evolution of networks, content-based analysis etc.

In this chapter we throw light on some basic concepts related to representation and
analysis of complex networks using graph theory. Section 2.2 gives a general description
about complex networks, different types of graphs that can be used to represent complex
networks and formal definition of a complex network. Section 2.3 summarizes the basic
characteristics of networks which are common to almost all types of complex networks.
Section 2.4 present different classical ways of modeling networks and their relevance in
real network modeling. Section 2.5 lists different tasks in complex networks analysis
describing a few of them. Section 2.6 presents specific description of Bibliographical
networks focusing mainly on scientific collaboration networks.

2.2 Complex networks

In [Estrada, 2011], author defines a network as a diagrammatic representation of a system
consisting of nodes and links or edges. Nodes represent the units/entities of the system.
Nodes are joined by links or edges, which represent a particular type of interconnection

5
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or relationship between those entities. We use the term network or graph to represent
the graphical representation of a real complex network. Network or graphs are used in
various disciplines and each have their own terms for entities and relationships. Table
2.1 lists some graph terminologies used in different domains of research. In this report,
we shall use nodes to represent entities and edges or links to represent relationships or
interactions in a graph.

There are a number of real world systems that can be represented in the form of graphs,
the most known in computer science being the Internet and the World Wide Web. Then
there are many biological networks like food webs, protein interactions, connections of
nervous systems or blood vessels. Infrastructural systems such as networks of transporta-
tion connecting roads or places [Barthélemy, 2011; Roth et al., 2012] and also those of
power-grids can also be studied using graphs. Most popular networks are that of social
systems showing relationships such as friendship, trust, academic, professional or com-
mercial collaboration. There are also graphs showing review or rating or opinion of people
on movies, actors, on various purchased products etc. Figure 2.1 shows two examples of
complex networks: one is protein interaction network where the nodes are proteins and
the other one shows a graph from social interaction website Twitter1 where the nodes
represent people or users and links represents who follows who or who is followed by
whom.

Discipline Units/Entities Relationships/Interactions

Physics sites bonds
Sociology actors ties, relations
Mathematics vertices edges, arcs
Computer science nodes, vertices edges, links
Biology nodes, vertices edges

Table 2.1: Network terminology

There are different ways of categorizing graphs based on their edge type, orientation,
presence of weights, number of edges etc.

1. Simple graphs have only undirected edges without any weights. That means
the edges do not have any orientation and are symmetric. They represent binary
relationships between nodes.

2. Directed graphs or digraphs have directed edges between nodes. Each edge has
an orientation.

3. Pseudographs [Harary, 1969] are the graphs where we have the possibilities of
having multiple links between nodes (multi-graphs). They can also contain self-
loops (link from a node to itself). They have links that can be directed as well
as un-directed. Multi-graphs with multiple edges having different labels or types,
can be represented as layers of graphs, each having same nodes but only one type
of edges. These are called Multiplex graphs which is more deeply explained in
Chapter 5.

4. Weighted graphs [Barrat et al., 2004; Newman, 2004a] have weights assigned to
edges. These weights are generally real numbers. Multi-graphs, in many occasions,

1http://www.twitter.com
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(a) The protein-protein interaction network of yeast showing a scale-free topology: a few

proteins interact with a large number of other proteins, while most proteins have only one or

two links. (source. http://plaza.ufl.edu/rkirch05/cis6930/) [Barabási and Oltvai,
2004]

(b) Twitter social interaction network constructed using NodeXL (source.

www.flickr.com/photos/marc_smith)

Figure 2.1: Complex networks from different data sources
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are transformed into weighted graphs in such a way that the number of edges
connecting two nodes is reflected in the edge weight of the new graph.

5. Hypergraphs are graphs where an edge connects more than two nodes. The edges
are referred to as hyperlinks or hyperedges. A popular example of hypergraphs can
be a folksonomy. Folksonomies are networks having users, resources and tags as
nodes. Users are people who participate in the network. Resources are any online
resources like online documents, images music files, web links (urls) and so on.
Tags are words or terms selected by users to annotate the resources they use on
the network. An edge in the network is composed of a user node, a resource node
and a tag node. It represents an association involving three entities. Figure 2.2
shows a small example of such a network.

Figure 2.2: A folksonomy with hyperlinks

A more detail description about structures of complex networks and their applications
can be found in the work of E. Estrada [Estrada, 2011]. Figure 2.4 shows few examples
of graphs with different types of edges. A common example of use of a simple graph is
co-authorship network where nodes represent authors and edges are added if two authors
have written at least one article together. In some cases weighted graphs are used for
the same purpose and the weights on each edge is simply the total number of articles
written and published by two authors. In another case the same can also be presented as
multi-graph where there will be many links between two author nodes corresponding to
the numbers of articles published together. Each edge can have an attribute showing the
time or venue of publication. Figure 2.4 shows different types of graphs. It also shows a
complete graph (fig 2.4(f)) that has all nodes linked directly to each other. That means
every two nodes in the network have an edge between them. Real complex networks
which are not completely connected most of the time, can have many smaller subgraphs
which are completely connected.

Another kind of categorization of networks can be done based on type of node’s connec-
tivity. It creates sets of nodes in which a node is never connected to a node in its own
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Figure 2.3: A bipartite graph with its projections.

Gbipartite is the bipartite graph that has two projected graphs GTOP and GDOWN

set but can be connected to any node in other sets. This concepts allows us to categorize
graphs as:

1. Unipartite graphs: A unipartite graph does not have any node partition. It has
only one sets of nodes and each node has a possibility of being connected with any
other node. A common example is scientific collaboration network or co-authorship
network.

2. Bipartite graphs: A bipartite graph has two sets of nodes and a node from one
set can only be linked with nodes from other sets. There is no connection within
the same set of nodes. One example of bipartite graphs can be author-publication
graph where there are two sets of nodes, one representing articles or scientific
papers and other will represent authors. There will be links only between authors
and papers representing the fact that an author has written a particular paper.
Another example is a user-item network, used for market analysis in e-commerce.
Here nodes are user (customers) and items (a certain kind of product). A user is
linked to an item if it was bought by the user. Network analysis is used here for the
purpose of recommending users the items of his/her choice, thereby increasing the
chances of selling the products. It is possible to have unipartite projections of the
bipartite graph and the links in projected graphs are decided based on the bipartite
links. For example author-publication bipartite graph can have two projections.
One with only author nodes and the other with only publication nodes. In the
projected graphs for authors, two authors are linked if they have a common link
to at least one paper in the bipartite graph. Similarly, in the projected graphs for
publications, two papers are linked only if they are connected to at least one author
in the bipartite graph. This is illustrated with an example in figure 2.3. Figure 2.6
shows some bipartite graphs generated from real network data from Bibsonomy2.

3. Tripartite graphs: Similarly, tripartite graphs have three sets of nodes. Hyper-
graphs of folksonomy are usually represented as tripartite graphs. They consist
of users, resources and user-defined and system-generated tags. Some evident ex-
amples of folksonomies are Flicker3 where resources are images; Youtube4 where

2 http://www.bibsonomy.org
3http://www.flickr.com
4http://www.youtube.com
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resources are videos; Bibsonomy5 and CiteULike6 with references and online doc-
uments as resources; and De.li.ci.ous for sharing bookmarks etc.

Graphs having more than three sets of nodes are called multipartite which is a generalized
term used for graphs having one or more partitions, creating more than one sets of nodes.
Also the term k-partite can be used for the same, k being the number of sets of nodes in
the graph. Figure 2.5 shows examples of such graphs. Figure 2.6 shows bipartite graphs
created from real data of Bibsonomy.

Figure 2.4: Different types of edge orientations

2.2.1 Formal definitions

Formally a simple graph is represented as G =< V,E > where V = v1, v2, ..., vn, |V | = N
is a finite set of nodes and E ⊆ V × V , E = (vi, vj), i 6= j, |E| = M represents the set
of edges in the graph. A graph G can also be represented by a N ×N adjacency matrix
A with entries 0 or 1 based on absence or existence of link between two nodes.

Aij =

{

0 if (i, j) /∈ E
1 if (i, j) ∈ E

Weighted networks can be represented as G =< V,E,W > with an additional parameter
W = w : E → R where w represents a function that assigns real values as weights to the
edges.

In undirected graphs, edge (vi, vj) ⇔ (vj , vi) and adjacency matrix A is symmetric (with
respect to its diagonal, that consists of all zeros if self loops are not allowed in simple
graphs). Conversely, in directed graphs, or digraphs, each edge has an orientation.

5http://www.bibsonomy.org
6http://www.citeulike.org/
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Figure 2.5: Different types of graphs

Figure 2.6: Bipartite graphs from Bibsonomy dataset for year 1995.

Users are represented by green nodes, resources (articles) by red nodes and tags are blue nodes.

The three graphs represent user-resource, resource-tag and user-tag respectively.
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Neighbors of a node in a graph are the set of nodes directly connected to it. Set of
neighbors of node vi is given by:

Γ(vi) = {vj : (vi, vj) ∈ E} (2.1)

Degree of a node vi is given by:

ki =

{

|Γ(vi)| if G is a simple graph
∑

vj∈Γ(vi)
wij if G is weighted graph (2.2)

In a directed graph the degree is split into inbound degree and outbound degree computed
based on edge directions. In weighted graphs, the term strength is used instead of degree.

A path between two nodes v0 and vk in a simple graph is a non-empty graph P =
(Vp, Ep) with a set of distinct nodes Vp = v0, v1, v2, ..., vk−1, vk and a set of edges Ep =
(v0, v1), (v1, v2), ..., (vk−1, vk) where Vp ⊆ V and Ep ⊆ E. Here Vp is in fact an ordered
set of nodes where a node vi is directly connected to the preceding and succeeding nodes
in the list and so on. Same is with the list of edges Ep. Length of a path is the number
of edges in Ep i.e. |Ep|. paths(vi, vj) represents a set of all paths and spaths(vi, vj) is
the set of all shortest paths between two nodes vi and vj . Shortest paths are the paths
having minimum length. It is sometimes possible to have more than one shortest path
between any two nodes. Distance between two nodes (dist(vi, vj)) is the length of the
shortest path between the two nodes (also known as geodesic distance).

A graph G is connected if for any two nodes vi, vj ∈ V , there exists a path from vi to
vj . Real networks are not always connected but they are composed of smaller connected
subgraphs where each node has at least one path to other nodes. These are known as
the connected components of a network.

Symbols Meanings

G Graph
V Set of nodes
E Set of edges
N or n Number of nodes in the graph
M or m Number of edges in the graph
paths(vi, vj) Set of paths between two nodes vi and vj
spaths(vi, vj) Set of shortest paths between two nodes vi and vj
Vp Set of nodes in a path p
Ep Set of edges in a path p
ki or deg(vi) Degree of a node vi
dist(vi, vj) Length of the shortest path between two nodes vi and vj (Distance)
Γ(vi) Set of neighbors of node vi

Table 2.2: Notations and terms

2.3 Characteristics of complex networks

Almost all types of complex networks share some common topological characteristics.
Some most important ones are listed below.
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Figure 2.7: Power law distribution

Connectedness: Nodes in a complex networks have a tendency to cluster into a number
of connected components. Connected components are subgraphs present in the
network where there is a path between all pairs of nodes. That means all nodes are
directly or indirectly connected to each other. One or two out of these components
are extremely large as compared to others. There are many small components in
the network.

Degree distribution: Degree distribution is the probability of a node to have k neigh-
bors (degree) in the network. Complex networks have a degree distribution that
follows a power law. In statistics, a power law is a functional relationship between
two quantities, where one quantity varies as a power of another. So it has small
high head and a long tail like structure. Figure 2.7 shows a general shape of power
law curve. Such networks are also known as scale-free networks, a term coined
by Barabasi et al. [Barabási, 2009]. In any network, a degree distribution that
corresponds to power law indicates that there are many nodes with very small de-
gree and there are very few of the nodes which have a high value of degree. The
coefficient of power law indicates the rate of decrease in degree curve. The higher
is the value of power law coefficient, the lesser is the probability of finding a node
with high degree.

Clustering coefficient or transitivity: In many real networks, it is often seen that
two nodes which are connected to a same node have a tendency of getting con-
nected themselves. In the context of social acquaintance networks, it is equivalent
to saying that a friend of my friend is likely to be my friend as well. This prop-
erty is referred to as transitivity or clustering and is measured by local clustering
coefficient. Clustering coefficient measures the probability of the neighbors of a
node to be connected to each other. Or in other words it quantifies the presence
of triangles in a network. According to the definition proposed by D. J. Watts et
al. [Watts and Strogatz, 1998], the local clustering coefficient or local transitivity
of a node vi ∈ V in a graph G =< V,E >, is given as,

Cc(vi) =
Ntriangles(vi)

Ntriples(vi)
(2.3)

where Ntriangles(vi) is the number of triangle having node vi as one of the nodes
and Ntriples(vi) is the number of triples formed at node vi. The local clustering
coefficient is actually the proportion of links between the nodes within its neigh-
borhood divided by the number of links that could possibly exist between them.
Hence for a undirected graph, Ntriples(vi) =

ki(ki−1)
2 and Ntriangles(vi) =| {(vj , vk) :

vj , vk ∈ Γ(vi), (vj , vk) ∈ E} |.
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The clustering coefficient of a graph is the average of all local clustering coefficients
over the total number of nodes i.e.

Cc(G) =
1

|V |

∑

vi∈V

Cc(vi) (2.4)

Complex networks tend to have a very high average clustering coefficient.

Average distance: Distance between two nodes is the length of the shortest paths
between the two nodes in a graph. Average distance is the average of all shortest
paths in the graph. In real complex networks, this value is often very small. For
an unweighted graph G with N nodes, the average distance can be computed as
below:

Distanceavg(G) =
2

N.(N − 1)

∑

vi,vj∈V

dist(vi, vj) (2.5)

Diameter: Diameter of a graph is the maximum possible length of a shortest path
between any two nodes of a graph. Formally it can be presented as:

Diameter(G) = max({dist(vi, vj) ∀ vi, vj ∈ V }) (2.6)

Computation of diameter has a computational complexity O(N2). For complex
networks, diameters are often very small as compared to the size of the network.
Computationally, it is possible to calculate the diameter if the network is connected.
If not connected, either maximum value of a shortest path between the nodes
(avoiding those pairs which are not connected at all) is taken or the average of
the diameters of connected components can be taken into consideration. They also
show small world phenomenon, a concept proposed by Milgram et al. [Travers
and Milgram, 1969]. A small world is characterized by very small average distance
and a high clustering coefficient. Most of the complex networks have been found
to share similar characteristics of high average clustering coefficients and small
diameters and average distance. Tables 2.3 and 2.4 illustrate this on a few scientific
collaboration networks.

Density: Density of a network is defined as the proportion of links actually present to
that of maximum possible potential links. In a graph G =< V,E >, the density is
given by

Density(G) =
2|E|

|V | × (|V | − 1)
(2.7)

Most of the complex networks have a very less density or in other words they are
very sparse.

Community structure: Complex networks always show a tendency to have clusters of
nodes in the form of components and communities. Communities are sub-graphs
in the network where the nodes share some kind of common interest within them.
Roughly speaking, the nodes within a community have more links with each other
than with nodes outside the communities. A simple community structure has been
illustrated in figure 2.8. These communities can be overlapping or not. Newman
and Girvan provide a quantitative measure for such a structure, called modularity
in their work [Newman and M. Girvan, 2004].
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Figure 2.8: Community structures in complex networks

In addition to this, the real networks may also have a tendency to change with time. That
means there may be appearance and disappearance of nodes and edges with time. This
may lead to the change in graph characteristics like average degree, density, average clus-
tering coefficients etc. with time. In [McGlohon et al., 2011] a more detailed description
of various statistical properties of different kinds of networks has been provided.

2.4 Network modeling

Network modeling examines hypotheses that explain formation of complex networks.
Modeling is mainly done to formalize networks in order to be able to use mathematical
and analytical tools to describe the properties of the network in a precise way. Fur-
thermore, this is widely used for prediction of different properties of network. Network
generation models allow one to generate graphs from a core or seed graph, that have a
structure matching real data properties such as degree distribution, clustering coefficient,
diameter etc. Below are three well known and widely used models:

Random graphs: Random graphs are graphs which have a disordered nature of links
between nodes. That means a random graph can be created by randomly adding
edges to connect nodes. The first probabilistic models for generation of random
graphs were proposed by P. Erdős and A. Rényi [Bollobás, 2001; Erdős and Rényi,
1959]. They primarily propose two models. In the first model they generate a
network with n nodes and m edges. Starting with n disconnected nodes, the model
randomly selects pairs of nodes to connect them, until the number of edges equals
to m. The resulting graph is one of the possible outcomes. The second model
proposes to generate a random graph by connecting each pair of nodes with a
probability 0 < p < 1. This process may generate an ensemble of graphs, each of
which may contain different number of edges. A graph with m edges is found with

a probability of pm(1−p)C−m, where C =
n(n− 1)

2
is the total number of possible

links. Although the first model seems to be practically more implementable in
applications, the second model is mostly used for analytical calculations. Many
properties of random graphs proposed by P. Erdős and A. Rényi (ER graphs),
have been discovered [Bollobás, 2001], few of which are:
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1. If p >
1

n
the corresponding average degree kavg = 1 and when p >=

ln(n)

n
almost any random graph created is totally connected.

2. When n is very large, kavg ≃ p.n and the degree distribution P (k) is approx-
imated by Poisson distribution given by

P (k) =
kavg

k

k!
.e−kavg (2.8)

For this reason, these graphs are sometimes called Poisson random graphs.

3. The diameter of a random graph varies in a small range of values around
ln(n)

ln(p.n)
≈

ln(n)

ln(kavg)
for (p.n) → inf [Chung and Lu, 2001].

4. The clustering coefficient in random graphs are simply equal to p or equivalent

to
kavg
n

[Newman, 2005; Watts and Strogatz, 1998]. This is due the fact that,
in a random graph the probabilities of node pairs being connected are by
definition independent. So there is no higher probability of two nodes being
connected if they have some common neighbors.

Figure 2.9: Random graphs with n = 30 and p = 0, p = 0.02, p = 0.10 respectively

Small world graphs: Small world network model was proposed by D. J. Watts and S.
H. Strogatz [Watts and Strogatz, 1998] motivated by the feature of local clustering.
They measured that many real-world networks not only have a small average dis-
tance, but also a clustering coefficient significantly higher than expected by random
chance. A small world network is a graph where many nodes may not be neighbors
but most of the nodes can be reached by any other node by a small number of
hops or steps. These graphs have a small average shortest path length and a high
clustering coefficient. Also, the distance d between any two randomly chosen nodes
grows proportionally to the logarithm of the number of nodes n in the network,
i.e. d ∝ ln(n). The generation of graph starts with n nodes and l edges per node.
Each edge can then be rewired by randomly choosing a node with a probability
p. This allows to tune the graph between a regular graph at p = 0 and a com-
pletely random graph at p = 1 with a constraint that each node has a minimum
of l connections. For intermediate values of p the procedure generates graphs with
low average distance between nodes and high local clustering coefficient. There are
also alternative methods to rewire the edges.

Even though small-world model is considerably more relevant to real networks
than random graphs, it has many limitations. Firstly, small-world models do not
follow the dynamics with which a real network evolves and secondly, the degree
distribution of many real networks is not bell shaped, instead it is a power law
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indicating the presence of hubs in the networks. However, small world property
have been widely found in food web, the World Wide Web [Adamic et al., 2003],
power grid networks [Watts and Strogatz, 1998], transportation networks, biolog-
ical networks [Barabási and Oltvai, 2004], and also in social interaction networks,
scientific collaboration networks to name a few.

Scale-free graphs: The models that account for networks with degree distribution de-
viating from Poisson are called a scale-free models. In many real world networks
the degree distribution does not follow a bell curve, but instead does follow a power
law.

P (k) ∼ c∆k−γ (2.9)

where k is node’s degree, c is a constant and γ is a positive exponent that mostly
varies between two and three. The reason why the exponent fits in that range is
still unknown to network scientists and it remains an open question. Having a
P (k) that has a decaying tail in the power law (Figure 2.7) means that the vast
majority of nodes have low degree and that there exist few nodes, the so-called
hubs, that have an extremely high connectivity. Hubs play a fundamental role in
the evolution, robustness and connectivity of the entire networks. The networks
following power law are scale-free, because power-laws have the property of having
the same functional form at all scales.

There are two types of scale-free models available in the literature: the first one
that creates static scale-free networks and the second that creates evolving scale-free
networks. The former is simply generated as a special case of random graphs with
a given degree distribution. A model that belongs to this category is for instance
the fitness model [Caldarelli et al., 2002]. It starts from n isolated nodes, and
associates at every node i a fitness ηi, which is a real number taken from a fitness
distribution ρ(η). For each pair of nodes, i and j, a link is drawn with a probability
f(ηi, ηj), with f being a symmetric function of its arguments. The model generates
power-law P (k) for various fitness distributions and attaching rules, while it gives
ER random graph if f(ηi, ηj) = p for each i, j.

In the evolving scale-free model, the growth process that determines the structural
properties of the network is taken into account. A. Barabasi proposed a network
growth model [Barabási, 2009] that was inspired from the formation of the World
Wide Web and it is based on two basic factors: growth and preferential attachment.
The basic idea is that in any network, the nodes with high degree have a higher
chance of getting a new link as compared to nodes with lower degree. This is
similar to the fact that in a world wide web, the websites with high popularity
have a higher probability of acquiring a new hyperlink as compared to websites
with low popularity. So an undirected graph is constructed as follows: starting
with n0 nodes, at each time step a new node j is added with h ≤ n0 edges added
to the network. The probability that a link will connect j to an existing node i is
linearly proportional to the actual degree of i. As every new node has h links, the
network at time t will have n = n0 + t nodes and m = h∆t edges, corresponding
to an average degree kavg = 2m for large times.

2.5 Tasks in network analysis

In [Aggarwal, 2011], the analysis of networks has been divided into two main categories:
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1. Structural analysis: This type of analysis uses only information about the struc-
ture of the network. It is mainly based on linkage information in the network.
There is no extra knowledge about the features of nodes and links. This includes
statistical analysis of networks, community detection, node classification or label-
ing, evolution analysis, link prediction and visualization etc. They provide a good
overview of the global evolution behavior of the network [Aggarwal, 2011]. A few
of purely structure based analysis has been done in [Ahn et al., 2007; Benchettara
et al., 2010a; Huang, 2006; Li et al., 2009; Liben-Nowell and Kleinberg, 2007; Liu
et al., 2013; Newman, 2012; Yakoubi and Kanawati, 2014].

2. Content based analysis: On the contrary content-based analysis exploits other
features and content information of the network. This analysis deals with content
based mining issues using several different kinds of contents. This largely includes
problems of general data mining, text mining, multimedia mining etc. in real
networks. Much of the work have been done using structural information. However,
some recent research has shown that the inclusion of content information can yield
valuable insights about the underlying social network [Hasan et al., 2006; Popescul
and Ungar, 2004; Wang et al., 2007].

Complex network analysis involves many different tasks which can require structural
information, content information or both. Further, network analysis can exist in different
levels namely Micro, Meso or Macro levels which are not necessarily exclusive. Micro
level starts from a node, and can extend till small groups of nodes. Thus it includes
tasks involving actors (individual nodes), dyads, triads and subgraphs. Meso levels start
with a group of nodes and can serve to find relationship between micro and macro level
analysis. Macro levels deal with the whole network at the same time.

The different tasks can further exist in various levels as described by S. Wasserman and
K. Faust in [Wasserman and Faust, 1994]:

• Actor level tasks : This level includes tasks of finding certain kind of importance of
a node with respect to other nodes in a network. Common examples are different
centralities and prestige of nodes.

• Dyadic level tasks: Tasks in this level always involve two nodes. Some of the
tasks are finding distance and proximity between two nodes, structural, semantic
or other kinds of equivalence between nodes, and finding their tendencies towards
reciprocity, probabilities of getting linked (link prediction).

• Triadic level tasks : At triadic level, all tasks concern three nodes. Common tasks
at this level are finding balance and transitivity or local clustering coefficients.

• Subset level tasks: At subset level the tasks involve groups of nodes and often re-
quire graph partitioning. The major tasks are finding, characterizing and analysing
cliques, cohesive subgroups, components, communities etc.

• Network level tasks : Network level tasks take into consideration the whole network
to find different properties like connectedness, diameter, centralization, density etc.
Visualization and evolution of network can also be put at this level.

We will discuss some of the important tasks below:



Chapter 2. Complex Networks Analysis 19

Centrality: One of the primary tasks in network analysis is to find important nodes in a
network which can have significant roles in diffusion of information or in influencing
other nodes in some way. This importance can be based on many different criteria
and is often measured as centrality. Centrality of a node is the relative importance
of the node within a network [Faust and Wasserman, 1992]. There are different
types of centralities namely degree centrality, closeness centrality, betweenness cen-
trality, and eigenvector centrality etc.

Degree centrality is the most simple centrality measure that is very often used in
network analysis. Degree centrality of a node measures the number of nodes to
which it is connected or number of links incident at the node. In case of directed
network, we have in-degree and out-degree to represent number of incoming and
outgoing links respectively. Often this value is normalized by dividing it by the
maximum number of possible links or the maximum possible value of a node’s de-
gree in a network. Hence, formally, for a network having N nodes, degree centrality
of a node vi is given by:

CD(vi) =
deg(vi)

N − 1
(2.10)

Degree centrality has the computational complexity O(N) which makes it very
suitable to be used in large scale graphs.

A second view of centrality is closeness centrality [Faust and Wasserman, 1992]
which takes into account the closeness or distance of a node from all other nodes
in a network. A node is central if it is close to all others and can interact quickly
with other nodes. This measure is computed as the inverse of sum of distances of
a node from all other nodes. Closeness centrality in a connected graph, for i 6= j,
is given by:

CC(vi) =





N
∑

j=1

dist(vi, vj)





−1

(2.11)

Maximum possible value of closeness centrality for a node can be (N − 1)−1 when
all other nodes are connected to this node and the minimum value can be 0 when
none of the nodes are connected to the node. Hence, a standardized version having
value between 0 and 1 is:

CC(vi) =
N − 1

∑N
j=1 dist(vi, vj)

(2.12)

It has a computational complexity of O(N log(N) +M).

The next important centrality measure is betweenness centrality [Faust and Wasser-
man, 1992; Freeman, 1977] that computes the number of times a node lies on a
shortest path between any two nodes of the network other than itself. In any kind
of social networks, interactions between two nodes may depend on other nodes
especially those which lie on the path between the two nodes. So, a node is cen-
tral if it is present in maximum possible number of shortest paths in a network.
Betweenness centrality of a node is given by:

CB(vi) =
∑

i 6=j 6=k

|spaths(vj , vk|vi)|

|spaths(vj , vk)|
(2.13)
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Maximum value of this centrality measure is
(N − 1)(N − 2)

2
. So, a standardized

version of this centrality is:

CB(vi) =
2

(N − 1)(N − 2)

∑

i 6=j 6=k

|spaths(vj , vk|vi)|

|spaths(vj , vk)|
(2.14)

where spaths(vj , vk|vi) is the set of shortest paths between nodes vj and vk having
node vi within. Computational complexity of this centrality is O(N.M+N2 log(N))
which makes it very difficult to be used in large graphs.

The fourth navigation of centrality is eigenvector centrality, which measures the
influence of a node in a network. It assigns relative scores to all nodes in a network
based on a concept that links to high-scoring nodes contribute more to the score
of the node under observation than equal links to low-scoring nodes. Eigenvector
centrality of a node v is given by:

CE(v) =
1

λ

∑

u∈Γ(v)

CE(u) (2.15)

Computation of this centrality has a complexity of O(N2).

Another concept similar to centrality and used for quantifying the importance
of nodes is Prestige. This concept is applicable to directed networks. A node
is prestigious if it is the destination of many incoming links, that means, it has a
higher number of incoming links [Faust and Wasserman, 1992]. Google’s PageRank
is a good example of this and is used to rank web pages (which are nodes in the
network) in a webgraph. PageRank is a link analysis algorithm that assigns weights
to hyperlinked web page based on the importance of the other web pages linking to
that particular web page under observation. It can also be considered as a variant
of eigenvector centrality.

Community detection: Communities are groups of nodes that probably share some
common properties or play similar roles in a network [Fortunato, 2010]. Community
structures can be seen in many real networks such as protein-protein interaction
networks [Guimera and Nunes Amaral, 2005; Palla et al., 2005], social communities
in social networks [Freeman, 2004], world wide web network [Dourisboure et al.,
2007], air transportation networks [Guimerà et al., 2005] etc. Community detection
methods try to find dense areas in a network where the nodes share some common
interest or characteristics or linkage behavior. This concept is very closely related
to that of clustering. It has useful applicability in recommender systems, data
structure development, world wide web analysis, classifications of nodes, metabolic
network analysis etc. The basic aim of community detection methods is to identify
modules and possible hierarchical structures using information from graph topol-
ogy. In some cases, it is also possible to integrate the content knowledge into
community detection process which may leverage the outcome of the approach.
We provide more details about community detection algorithms and their use in
link prediction in Chapter 6.

Link prediction: Much of the research in complex networks is based on finding linking
patterns between nodes. Hence, link prediction emerges as an important topic in
network analysis. Links represent any kind of association between two nodes of a
network. They can be friendship in a social network, co-authorship in academic
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collaboration networks, criminal association in a criminal networks, or chemical or
bio-chemical interaction in metabolic networks etc. Observing the network until
time t, most of the link prediction approaches aim at finding missing links (links at
time t) or new links (links at a future time t+k). Identification of missing or hidden
links helps us to have complete and real structural information of a network, where
as finding new links can help us to predict a probable structure of the network at a
future point of time. They may also play an important role in many other analysis
tasks like detection of communities [Liu et al., 2013; Yan and Gregory, 2009], study
of evolution of networks, identification of influential or important nodes [Subbian
and Melville, 2011] to name a few. For example, prediction of much likely but non-
existent links can be very useful while studying the growth of dynamic networks
where new links and nodes continue to get added with time. In the work presented
in [Yan and Gregory, 2009], authors have presented their community detection
approach using a few vertex similarity measures that are mainly used for link
prediction and are closely related to the concept of community structure. They
show that the use of these simple measures improves existing community detection
algorithms. Another application of link prediction in community detection can
be as a task for task-based evaluation of community detection approaches. Link
prediction is the main topic of our research presented in this report. Further
description and details about different applications of link prediction and various
approaches can be found in chapter 3.

Cliques and Hubs: A clique in a network, is a group of nodes which form a complete
subgraph. That means any two nodes in this subgraph are directly linked to each
other. The task of finding whether there is a clique in a network is NP-hard
[Wasserman and Faust, 1994]. A maximum clique is the largest possible size of
a clique in a network. Common tasks in network analysis can involve finding
the existence of cliques, finding a maximum clique or finding the total number of
cliques of size k. In addition, cliques have also been used for performing other
tasks in complex network analysis like community detection and link prediction
[Liu et al., 2013]. In this work authors have found that links tend to establish
cliques in the network. They study the formation of links in the context of missing
link prediction. They make three principal observations. First, links are very likely
to be established to form a clique in the network. Second links prefer to create
larger cliques than smaller ones. And third, links tend to form as many cliques as
possible in the networks. Using these observations authors explore link formations
in communities. All these also has relevance in studying community and network
evolution.

Evolution of networks: Owing to the continuous growth of information, evolution of
complex networks has come up as another important issue. In real networks, there
can be disappearance and appearance of nodes as well as links with time. This
change in structure can affect other characteristics of the network such as commu-
nities, link pattern, density etc. They also lead us to deal with enormous amount
of data in the form of large-scale networks, which is another topic of research in
complex network analysis. One big step in dealing with temporal changes, is in-
troduction of streams or a sequence of network snapshots, each corresponding to a
different time stamp, rather than using a static network. A large part of the work
in this field are on discovering communities and capturing their changes with time.
Other tasks requiring temporal data analysis can be link prediction and informa-
tion retrieval. There are two major categories of works proposed [Spiliopoulou,
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2011]: a) In the first kind of approaches, a single model is generated that captures
dynamics of the network by exploiting information of changes in it from one point
of time to another. Temporal data is observed as time series that has a beginning
and a end. These models provide insights on how the network has evolved and
can be used to predict how it will change in future. Such models deliver laws on
evolution of network given the past data. b) The second way is where a model
is learned at one time point and then it adapts to the data arriving at next time
points. These methods observe the temporal data as an endless stream and they
deliver insights on how each community evolves. More details about the study of
evolution can be found in [Aggarwal, 2011; Spiliopoulou, 2011].

Visualization of networks: Visualization provides an easier and much natural way
to summarize the information of a network. It provides a clear and easy way to
understand the structure of a network. With growing complexity and sizes of real
networks, visualization is becoming an important tool to have insight on the struc-
ture and dynamics of complex networks. Many of the present day tools are designed
for graph drawing as well as graph analysis and can be used in an interactive way
by users. They often combine node-link diagrams with standard statistic visual-
izations, such as scatterplots and histograms. Many of these tools introduce an
iterative approach now. An analyst can have a clear image on the network struc-
ture while interacting with these visualizations, clustering and altering the data in
the search of more appropriate analytic tools, whose results are fed back into the
visualization process. Interesting works in this regard can be found in [Brandes and
Wagner, 2004; Correa and Ma, 2011; Freeman, 2000]. A few of graph visualization
tools are Gephi7 [Bastian et al., 2009], UbiGraph8, GraphViz9, MuxViz10, Tulip11

and Mathematica12.

2.6 Bibliographical networks

Bibliographical networks contain huge amount of data related to scientific publications in
various research domains. They are mostly composed of researchers (or authors), papers
or articles, venue of publications, and time (date, year) of publications. They also contain
information about organizations or institutes where the researchers are working. They
may also contain content-related information for various articles in the form of abstract,
tags or key-words. One largely studied network extracted from bibliographical data for
scientific collaboration analysis, is co-authorship network where nodes are authors and
edges represent the fact that they have written one or more articles together, publication
or bibliographical networks where the nodes are documents or articles and edges represent
the fact that they have been written by same authors or they have cited each other. Then
there are author-publication networks which are represented by bipartite graphs. In these
types of networks, there are two sets of nodes i.e. authors and articles and edges exist
between an author node and an article node if the author has written that particular
article etc. Links can also exist if an author has cited an article in any of his/her work.

7http://gephi.github.io/
8http://ubietylab.net/ubigraph/
9http://www.graphviz.org/

10http://muxviz.net/
11http://tulip.labri.fr/TulipDrupal/
12http://www.wolfram.com/mathematica/
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Figure 2.10: Bibliographical network

Resource sharing websites also come under these kinds of networks where researchers
can share their articles or those which they have read with other researchers. In these
networks, the users can also provide keywords for each of the saved article or online link to
the article. These kind of networks also come under the category of folksonomies. Figure
2.10 shows some of the main components in a bibliographical network and different kinds
of possible links in these networks.

Like any other complex networks, the different kinds of networks formed from scientific
collaboration data also have the general characteristics of complex networks. Table 2.3,
2.4 and 2.5 show the graph characteristics of some very well known datasets. Below is
the description of a few network data that we have studied.

1. CiteULike13 is a bibliographic reference sharing website. The data corresponds to
years 2005 to 2009. The graph contains three types of nodes users, references and
tags which are assigned by users. After pre-processing we get a tripartite graph
with 62, 513 users, 2, 117, 337 references and 428, 537 tags. While computing the
graph features we are considering all nodes to be the same.

2. DBLP14 is a computer science bibliography website hosted at Universität Trier, in
Germany. It contains millions of articles on computer science written by authors
from all over the world. The graph we present in the table 2.3, is a co-authorship
graph corresponding to year 1970 to 2010. The nodes are authors and the edges
represent the fact that two authors have written an article together within a time
period taken into consideration. A visualization of a network corresponding to
a specific time period is provided in figure 2.11. Other visualization for DBLP
co-authorship networks can be found in appendix E.

13http://www.citeulike.org/
14http://www.dblp.org/
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a)

b)

Figure 2.11: DBLP Co-authorship network for year a) 1970-1975 and b) 1980-1985



Chapter 2. Complex Networks Analysis 25

3. Bibsonomy15 is a social bookmarking and publication sharing system which stores
and organizes the bookmarks and publication entries of users and also allows them
to assign tags to their entries (we refer them as resources). The dataset corresponds
to year 1995 to 2008 and contains 1185 users, 22389 resources and 13276 tags. Like
for CiteULike, here also we consider all types of nodes together while computing
the graph features.

4. Mendeley16 is a desktop and web program for managing and sharing research pa-
pers. It also provides a collaborative platform for researchers who want to collab-
orate on some projects and discover new knowledge. The dataset used here has
50000 users and 3652285 papers. The graph is a bipartite graph with links between
users and papers or references to articles that they have saved and shared.

5. The last data that we are presenting here are obtained from ArXiv17, which is an
archive for electronic pre-prints of scientific papers in the fields of mathematics,
physics, astronomy, computer science, quantitative biology, statistics, and quanti-
tative finance etc. and can be accessed online. The graphs that are analyzed here
belong to five fields of research Astro-Physics (Astro-Ph), Condense Matter Physics
(Cond-Mat), General Relativity and Quantum Cosmology (Gr-Qc), High Energy
Physics - Phenomenology (Hep-Ph) and High Energy Physics - Theory (Hep-Th)
and are available at Stanford Network Analysis Platform (SNAP18). The data cor-
responds to the time period between January 1993 to April 2003. These graphs
were used in the research work of Jure Leskovec et al. [Leskovec et al., 2007]. These
are simple co-authorship graphs where nodes represent authors and edges appear
only if two authors have written at least one paper together.

CiteULike DBLP Bibsonomy Mendeley

Nodes 2608387 32849 36850 3702285
Edges 11519879 236897 313475 4848725
Ncc 11171 492 1 142
Density 3.386× 10−6 4.391× 10−3 4.617× 10−4 7.075× 10−7

Table 2.3: Different bibliographic networks

Astro-Ph Cond-Mat Gr-Qc Hep-Ph Hep-Th

Nodes 18772 23133 5242 12008 9877
Edges 198110 93497 14496 118521 25998
Ncc 290 567 355 278 429
Density 1.124× 10−3 0.349× 10−3 1.055× 10−3 1.644× 10−3 0.533× 10−3

Avg(Cc) 0.6306 0.6334 0.5296 0.6115 0.4714
Avg(degree) 21 8 5 19 5
Diameter 14 15 17 13 18
Distanceavg 4.194 5.352 6.048 4.673 5.945

Table 2.4: Scientific collaboration networks: Coauthorship graphs for Arxiv Datasets

15http://www.bibsonomy.org/
16http://www.mendeley.com/
17http://arxiv.org/
18http://snap.stanford.edu
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Figure 2.12: Degree distribution of Arxiv datasets

Figure 2.13: Degree distribution of DBLP datasets
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DBLP Arxiv
1970 - 1975 1980 - 1985 Gr-Qc Hep-Ph Hep-Th

Nodes 1767 6856 5242 12008 9877
Edges 768 6475 14496 118521 25998
γ 4.376 3.068 2.113 2.080 2.750

Table 2.5: Scientific collaboration networks: Power law coefficient for coauthorship
graphs for Arxiv and DBLP datasets

Not all of the above presented network datasets were suitable for experimentation in
of our research work as some of them lacked time information, a primary requirement
for us. In our work we have mainly used DBLP data for link prediction. We have
extracted different datasets from the DBLP data corresponding to different periods of
time and used it for experimentation and validation of our proposed approaches. For
link prediction based tag recommendation (see Appendix A), we have used CiteULike
data.

2.7 Conclusion

This chapter summarizes different aspects of complex network analysis. Complex net-
works are mathematical models of real world networks on which various existing methods
and algorithms for analysis can be applied. In the form of graphs, enormous work has
been done by using graph theory to extract network information and later apply various
kinds of mathematical and statistical algorithm for drawing conclusions on any type of
network tasks. In this chapter we summarize the basic structure and characteristics of
complex networks. We detail the important characteristics of complex networks with
their formal definitions. We present a brief description about the standard methods of
network modeling. Then we describe various tasks in complex network analysis. We have
provided different levels of these tasks, which primarily classify these tasks into different
categories, based on a well known work of S. Wasserman and K. Faust [Wasserman and
Faust, 1994]. We describe in detail a few of the important tasks. In our work we focus
on the task of Link Predction. Lastly we describe, in detail the bibliographical networks.
Giving a few examples of such networks, we present some of the properties of the net-
works which are created from real data. In the next chapter, we present the problem
of link prediction in complex networks and the state-of-art of various link prediction
approaches.





Chapter 3

Link Prediction in Complex

Networks: Topological Approaches

3.1 Introduction

Link prediction has attracted the attention of many researchers from different research
fields. It consists of estimating the likelihood of existence or appearance of an edge
between two unlinked nodes, based on observed links and attributes that contain infor-
mation about the nodes, edges or the entire graph. It has important applications in
many fields including social, biological and information systems etc. Link prediction has
been widely used in biological networks like protein interaction network [Airoldi et al.,
2006; Eronen and Toivonen, 2012], metabolic networks, food web. It is used for finding
missing links and thereby helps in reducing the experimental cost if the predictions are
accurate. In social interaction and academic or commercial collaboration networks they
can play an important role to predict new associations (new edges) [Fu et al., 2007;
Hasan et al., 2006; Liben-Nowell, 2005]. This further has utility in recommendation
task: a service provided by almost all social networks and majorly used in e-commerce
sites [Huang et al., 2005]. Link prediction can also be helpful in finding hidden links in
criminal networks [Clauset et al., 2008; Fire et al., 2013] which is another critical field of
research.

Link prediction can be basically of two types: structural and temporal. Figure 3.1 illus-
trates the two types of link prediction.

Structural link prediction refers to the problem of finding missing or hidden links
which probably exist in a network [Liben-Nowell and Kleinberg, 2007; Menon and
Eklan, 2011; Taskar et al., 2003; Yin et al., 2011]. It mainly focuses on inferring
the existence of links that are not directly visible, by using observable data of the
network. It has direct application to find unobserved patterns of genes, protein
interactions for the medical studies on various diseases like cancer, HIV, Alzheimer
etc. [Airoldi et al., 2006; Eronen and Toivonen, 2012]. It can also help to find
existing criminal links which often remain hidden in a network [Clauset et al.,
2008; Fire et al., 2013].

Temporal link prediction refers to the problem of finding new links by studying the
temporal history of a network [Benchettara et al., 2010a,b; Berlingerio et al., 2009;

29
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Hasan et al., 2006; Huang and Lin, 2008; Liben-Nowell and Kleinberg, 2007]. So
here we have information about the network till time t and the goal will be to
predict a new link that may appear at some point of time in future say t+k. It has
its application primarily in recommendation systems that are being used widely in
e-commerce websites for product recommendations, in any search engines to help
users with probably relevant terms they might be searching, for recommendation
of tags in social resources sharing websites like Flickr1, YouTube2, De.li.ci.ous3 etc.
and very commonly used for recommendation of friends in many social networks
like Facebook4 and Twitter5. It has another significant use in predicting future col-
laborations between researchers for academic purposes [Benchettara et al., 2010a,b;
Kunegis et al., 2010].

Figure 3.1: Link prediction types

Rest of this chapter continues as follows. In section 3.2, we describe the problem of link
prediction in a formal way providing a description of notations used, which will be the
same in rest of the report. We also provide details about different evaluation methods for
link prediction. In section 3.3, we provide detailed description of various link prediction
approaches focusing mainly on topological and temporal link prediction methods. We
present our way of categorization of various methods that we have studied. Section
3.4 presents a few important challenges in link prediction especially faced by supervised
classification based models. Section 3.5 presents our motivation for doing this research
work.

1http://www.flickr.com
2http://www.youtube.com
3http://www.delicious.com/
4http://www.facebook.com
5http://www.twitter.com
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3.2 Problem description, notations and evaluation

The problem of prediction of new links (or simply called link prediction problem) refers
to a question of inferring the formation of links at a future time, by studying the history
of appearance or disappearance of links in a network over a period of time.

In topology-based link prediction approaches, only structural properties of the underlying
graph are used to implement learning methods and to find a model that will be used to
predict links. Suppose we have a complex network graph G =< V,E >. The goal of
a link prediction approach is to find the likelihood of existence of an edge between two
nodes u and v in the form of either a score or rank with conditions that u, v ∈ V and
(u, v) /∈ E.

For prediction of new links at a certain point of time tn+1 having network information
till time tn, the network can be presented as a sequence of graphs representing different
snapshots of the network at different points of time < t0, t1, ..., tn >. Suppose the
temporal sequence of graphs is G =< G0, G1, ..., Gn > each having their own sets of nodes
and edges. In other words the network can also be represented as a graph G =< V,E >
such that V =

⋃n
i=0 Vi and E =

⋃n
i=0Ei. The goal of a link prediction approach is to

find the likelihood of appearance of an edge between any two nodes u and v at a point of
time tn+1 or tn+k, k being any integer to decide the duration of time for prediction, with
conditions that u, v ∈ V and (u, v) /∈ E. This is equivalent to finding linking structure of
graph Gn+1 or Gn+k assuming that they contain same nodes that have already appeared
in any of the graphs during the observation time period i.e. between t0 and tn.

Most of traditional link prediction approaches formulate the problem either as label
propagation problem where existent and nonexistent links are labeled as positive and
negative respectively or as a problem of existence probability estimation, where links
predicted to be existent can have higher existence probabilities [Zhang and Philip, 2014].
Conventionally, if represented in terms of machine learning, a true positive case will be
one where a link is classified or predicted as positive and it is actually positive. Same is
for false positive case and so on. Table 3.1 presents this better.

Predicted Positive Predicted Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 3.1: Confusion matrix for link prediction

A link prediction approach can provide either an ordered list of all unobserved and
possible links (node pairs) or a score/probability of appearance for each unobserved and
possible links. This output is finally used to evaluate the performance of the approach.
Different ways for evaluation of link prediction approach is provided next.

3.2.1 Evaluation

As mentioned above, most of the topological link prediction approaches provide as output
either ranks of or scores for unlinked pairs of nodes (possible new links) in the concerned
network. Out of this, pairs with top-k ranks or top-k highest scores will be considered as
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predicted new links. Alternatively, a binary classification like way can be used to label
each pair as positive or negative. Many evaluation metrics can be applied on the outputs
to measure the performance of the approach. Below is the list of metrics that can be
used for such a purpose.

Accuracy: Accuracy can be defined as the number of correctly predicted labels in the
test network out of total numbers of possible instances of unobserved links.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision: Precision is defined as the proportion of correctly predicted links out of total
number predictions made.

Precision =
TP

TP + FP
(3.2)

Alternatively where top-k ranks or scores are used as predicted links, the formula
becomes

Precisionk =
TP

k
(3.3)

Recall: Recall is defined as the proportion of correctly predicted links out of total num-
ber of actual new links.

Recall =
TP

TP + FN
(3.4)

F1-measure: F1-measure is defined by the harmonic mean of both precision and recall.
Formally it is given by

F =
2 ∗ Precision ∗Recall

Precision+Recall
(3.5)

All these above mentioned methods use a fixed threshold (k) to calculate the performance
which may not be necessarily available or be the most optimal one. It may be domain
dependent and can show a wrongly quantified low or high performance if not selected
correctly. To deal with such cases threshold curve based metrics can be used. They have
mostly been used in binary classification task to show results. They are especially useful
when class distribution is highly imbalanced. Below is the list of such metrics:

ROC curves: ROC curves are generated by plotting the true positive rate (TPR)
against the false positive rate (FPR). It depicts the level of separation between two
distributions, one corresponding to the true negatives, and the other corresponding
to the true positives, given the scores from a classifier. Formally, TPR = TP

TP+FN

and FPR = TP
TN+FP

.

Area under ROC curve (AUC) is equivalent to the probability of a randomly
selected positive instance appearing above a randomly selected negative instance
(in terms of scores or ranks). Having a ranked list of all unobserved links (unlinked
node pairs), if n independent comparisons are made, of which nhigh times a true
positive has higher score (or rank) and nsame times it has the same score (or rank)
as the corresponding false positive one, then the AUC can also be computed as
suggested in [Lü and Zhou, 2011]

AUC =
nhigh + 0.5 ∗ nsame

n
(3.6)
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Larger AUC corresponds to better classification results. A value of 0.5 represents
pure chance for an identical and independent distribution in a balanced dataset and
hence the degree to which the value exceeds 0.5 shows how better a link prediction
algorithm is.

Precision-Recall curves: In precision-recall (PR) curves, each point corresponds to
a precision and recall value at different score (or rank) threshold. The x-axis is
recall and y-axis is precision. Area under PR curve can also be used for the same
purpose as AUC i.e. for evaluating a link prediction algorithm. A higher value
shows better performance of a model. These curves can give a more discriminative
view of performance of different models in presence of extreme class imbalance.
Link prediction is such a case as we can have very few number of positive instances
as compared to negative instances, hence they have a great utility in evaluating
different link prediction algorithms.

a) ROC curve b) Precision-Recall curve

Figure 3.2: Samples of ROC and Precision-Recall curves [Davis and Goadrich, 2006]

The major difference between the two curves is that, a PR curve does not account for true
negatives and thus is not very much affected by the relative imbalance in class, where as
ROC ’s measure of TPR and FPR will reflect the influence of heavy class imbalance since
the number of negative examples dwarfs the number of positive examples. So in such
scenarios, PR curves are much better in illustrating the difference between performances
of algorithms especially for predicting true positive instances (minority class in context
of link prediction). ROC and AUC will show a very small difference between algorithms.
If a model needs to perform equally well on positive and negative classes then ROC is
more preferable [Davis and Goadrich, 2006]. A very good analysis on efficient methods
to be used for evaluating link prediction approaches is provided in [Lichtenwalter and
Chawla, 2012].

3.3 Link prediction approaches

Many link prediction approaches have been proposed in recent years. Some of them
use node features or node attributes and some use only the structural information of the
graph. The former are known as node-features based approaches while the later are known
as topological approaches. A few of the approaches may use both node-feature information
and structural information. Such approaches may be termed as hybrid approaches.
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In node-features based approaches, one has extra content information regarding the prop-
erties or characteristics of nodes. For example in protein interaction graphs, sometimes
the features describing the biological properties of proteins are also available. Another
example can be a co-citation network where nodes are articles or publications that are
linked if they refer each other and we also have the contents of the articles to charac-
terize them with terms in title or abstract and theme. These extra information can be
helpful in predicting links between nodes by finding similarities between unlinked nodes
and assuming that more is the similarity, the more are the chances of getting connected.

Topological approaches, on the other hand, refer to those works which involve only
exploitation of graph structure. They are based on computing the linking probability for
pairs of unlinked nodes based on only the graphical features of the network and without
any extra information about the individual properties of nodes. They observe how the
connections have been established between nodes and how they change over time. Based
on former they try to predict a missing link or based on the later they predict a new
link. In the work of Zan Huang [Huang, 2006], the authors believe that well-studied
topological measures like clustering coefficients and average path length can have direct
implications on link prediction. They explore the connection between link prediction
and graph topology focusing mainly on the predictive value of the clustering coefficient
which is a monadic (involving a single node) measure. They generalize the standard
clustering coefficient to capture high order clustering tendencies and they propose a link
probability model. In this model, probability of occurrence of a link is determined by
the number of cycles (of different lengths) that will be formed by adding this link. The
proposed framework consists of a cycle formation model, a method for estimating model’s
parameters based on observed generalized clustering coefficients, and model-based link
prediction. Experimentally, using dataset extracted from Enron email6 and Facebook7,
they demonstrate that their proposed cycle formation model corresponds closely with
the actual link probabilities.

Additional node features are more useful when the network graph is very sparsely con-
nected and not much can be learned from graph topology. But content-based approaches
necessarily need the presence of content descriptions of the data. Whereas, topological
approaches are very efficient in the absence of content or feature information and are
more generic in nature. Both have their own utility and at times a combination of both
can come out to give a very good predictor. These kind of approaches can be termed
as hybrid approaches. For our work, we are more interested in studying and developing
topological link prediction approaches due to their generic nature.

There can be various ways of categorizing topological approaches. They can be catego-
rized as temporal or non-temporal/static based on the fact that whether they take into
consideration the dynamic aspect of the network or not. Another way to categorize them
can be as dyadic, community/subgraph based, or global approaches based on level at which
scores or probabilities are computed. The ones in which scores are locally computed for
a pair of unlinked nodes are dyadic approaches. When the same is done in a community
or subgraph, the approach can be a community/subgraph based approach. And when
the entire graph is taken into account for computing the scores it is a global approach.
They can also be classified as unsupervised, supervised and semi-supervised, based on
the kind of model learning method used. Unsupervised approaches involve ranking of

6http://www.enronemail.com/
7www.facebook.com
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unlinked node pairs based on some topological attribute scores. They do not necessar-
ily need learning of a model to do prediction and hence do not really need labeled data.
However, in link prediction ground truth about the network structure is available most of
the time and so supervised methods can be easily implemented. Supervised approaches
generate a model using many topological scores for unlinked node pairs and the available
ground truth about structure of a network, to predict new links. Also there exist few
approaches which use semi-supervised methods of learning where a model is generated
by using partially labeled training data.

In the sections below, we describe some of the prominent unsupervised, supervised and
semi-supervised approaches.

3.3.1 Unsupervised approaches

There are many unsupervised dyadic methods for predicting links where link scores are
computed for unlinked pairs of nodes based on the network structure. These scores
represent some kind of similarities between two nodes which can indicate the possibility
of having a link between them.

A seminal work on link prediction is the work of D. Liben-Nowell et al. [Liben-Nowell
and Kleinberg, 2007]. They specifically analyze academic co-authorship networks. In
this work authors have shown that simple topological features representing relationships
between pairs of unlinked nodes in a complex network, can be used for predicting for-
mation of new links. They have experimented with many different types of topological
features or attributes to characterize pairs of unlinked nodes, mostly concentrating on
proximity based attributes. They rank pairs of unlinked nodes by different attribute
values and compute their individual performance in link prediction task by considering
the top-k ranked node pairs as the predicted links.

Let’s consider the case of applying numbers of common neighbors as a topological at-
tribute. Common neighbors counts the numbers of nodes (i.e. neighbors) that are directly
connected to both the nodes under observation. Newman used this quantity for study-
ing collaboration networks [Newman, 2004a], while Kossinets used it while analyzing
large-scale social networks [Kossinets, 2006]. Formally it is given by:

CN(x, y) =| Γ(x) ∩ Γ(y) | (3.7)

Now let L be the list of pairs of unlinked nodes. We have L = {(x, y)}, where x, y ∈
V and (x, y) /∈ E, for a graph G =< V,E >. Common neighbor score for x and y
can be represented by CN(x, y) and is computed as defined earlier. The list L is then
sorted according to the values obtained by applying the common neighbors function to
pairs of unlinked nodes. The top k pairs of nodes are then returned as the output of the
prediction task. The assumption here is that, the more a pair of unlinked nodes share
common neighbors, the more they are likely to have a link in the future. In [Liben-Nowell
and Kleinberg, 2007], k is equal to the number of really appearing new links. Other types
of topological measures can be applied for the same purpose. Figure 3.3 illustrates the
same with the help of a sample graph.

This proximity or similarity between two unlinked nodes can be computed using various
other types of topological features. These features can be based on neighbors of nodes
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(a) Prediction of links taking k = 3

(b) Actual new links

Figure 3.3: Prediction of links based on numbers of common neighors (CN)

(Common neighbors is the most simple example of this type) or paths connecting the
nodes. They can also be found by aggregating the topological features of nodes in some
way (sum, product, average etc.). In the following subsections, we describe some of the
topological similarity metrics of each type.

3.3.1.1 Neighborhood based features

Many of the link prediction approaches are based on the idea that two nodes are similar
and more likely to form a link in the future if they are connected to same or similar
neighbors. That means their sets of neighbors have large overlap. For example friendship
formation through common acquaintances has often been used to justify this concept in
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many researches. Apart from common neighbors, there are many other measures based
on local neighborhood of the nodes. These are listed below.

Jaccard coefficient: Jaccard coefficient calculates the ratio of number of common neigh-
bors to that of the total number of neighbors of the two nodes [Jaccard, 1901]. Here
they normalize the similarity score computed by common neighbors by dividing it
with total number of neighbors of the two concerned nodes. Conceptually, it is
equivalent to finding the probability that a common neighbor is selected when a
random selection of node is done on the combined neighbors set of the two nodes
in question. This coefficient is defined as below:

JC(x, y) =
| Γ(x) ∩ Γ(y) |

| Γ(x) ∪ Γ(y) |
(3.8)

Adamic Adar coefficient: This coefficient was proposed by L. Adamic and E. Adar
to find similarity between two web pages [Adamic and Adar, 2003]. For two web
pages x and y, sharing a set of features z, this coefficient is computed as:

∑

z:feature shared by x and y

1

log(frequency(z))
(3.9)

In a general sense it is a meta-measure that can be calculated for any two nodes
(actors) in a network and for a variety of topological features. In the context of link
prediction it was used by Liben-Nowell using common neighbors as the topological
feature [Liben-Nowell and Kleinberg, 2007]. This metric proposes to weight the
common neighbors based on their connectivity while computing the score. It gives
more weight to less connected neighbors increasing their contribution in the score.
Formally it can be presented as:

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log | Γ(z) |
(3.10)

Resource allocation: This metric is based on resource allocation dynamics on complex
networks [Ou et al., 2007]. Like Adamic Adar coefficient, this index also depresses
the contribution of high-degree common neighbors. It is formally given as:

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

| Γ(z) |
(3.11)

Neighbor’s clustering coefficient: This neighborhood based measure is based on the
clustering coefficients of common neighbors. This metric computes the clustering
coefficient for the common neighbors of any two nodes, which can then be aggre-
gated using any functions like average, maximum, minimum etc. and the value
thus found can be used for prediction of links. The assumption here is that, if the
common neighbors of two unlinked nodes have a high clustering coefficient, it can
imply a greater linking probability between the two nodes. A way of computing
the coefficient is

NCF (x, y) =

∑

z∈Γ(x)∩Γ(y)Cc(z)

| Γ(x) ∩ Γ(y) |
(3.12)
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Cc(z) is the local transitivity or clustering coefficient of the node z (See equation
2.5 in chapter 2). Such a measure has been used in a Naive Bayes based link
prediction models as the conditional probability of having a pair of node linked
[Liu et al., 2011; Tan et al., 2014].

3.3.1.2 Path based features

Path based features rely on the paths (see chapter 2, section 2.2) between unlinked node
pairs. They may use the lengths of path or the time required to cover those paths to
reach from one node to another. The basic idea is that two nodes can be similar if they
have less distance between them. There are two major categories in this: distance based
features and random walk based features. Below is the description of various methods
falling in the two categories.

Distance based

These features are mostly based on shortest paths or paths of specific lengths. They
make use of either number or lengths of shortest paths to find the proximity of between
two nodes.

Shortest path length: It is equal to the number of edges in the shortest path between
x and y in G. It is also known as the geodesic distance between nodes. More is the
distance, lesser is the similarity between the nodes and also the chance of having a
link between them. This metric captures the fact that the path between two nodes
in a social network can affect the formation of a link between them following the
fact that friend of a friend can be a friend in a social network.

Katz’s index: One of the well known scoring index, commonly known as Katz index,
has been proposed by L. Katz [Katz, 1953]. It is based on paths between nodes in
a graph. It sums over a collection of paths and is exponentially damped by length
to give shorter paths more weights. Mathematically it is defined as,

Katz(x, y) =

∞
∑

l=1

βℓ× | path(ℓ)x,y | (3.13)

where path(ℓ)x,y is the number of paths between x and y of length ℓ and β is a positive
parameter (i.e. damping factor) having value between [0, 1], which favors shortest
paths. The same can be presented using adjacency matrix as:

Katz(x, y) = βAxy + β2(A2)xy + β3(A3)xy + . . . (3.14)

Axy is the adjacency matrix where the values are either 1 or 0 based on whether
x and y are directly connected. (A2)xy is the matrix showing numbers of paths
of length 2 between x and y and so on. A very small β leads to a score close to
number of common neighbors because long paths contribute very little. So the
matrix showing Katz score between all pairs of nodes can be found as:

K = (I − βA)−1 − I (3.15)

β must be lower than the reciprocal of the largest eigenvalue of matrix A to ensure
the convergence of above given equations demonstrated in [Lü and Zhou, 2011]. The
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computational complexity of this measure in O(N3). Due to high computational
complexity, sometimes it becomes difficult to use Katz coefficient especially in large
networks. In such cases one can chose to stop after a certain length lmax. This is
known as truncated Katz coefficient [Lü and Zhou, 2011] and is computed as:

TKatz(x, y) =

lmax
∑

l=1

βℓ× | path(ℓ)x,y | (3.16)

In terms of matrix, it is:

TKatz(x, y) = βAxy + β2(A2)xy + β3(A3)xy + . . .+ βlmax(Almax)xy (3.17)

When lmax is extremely large or nearer to infinity, this measure is equivalent to
Katz coefficient.

Path betweenness centrality: We propose a new path based measure to be used for
link prediction. The idea is to capture the importance of the shortest paths between
two unlinked nodes. The importance of a path is computed in terms of centrality
which can be defined as the fraction of shortest paths in a graph that contain this
observed path within them.

Let G =< V,E > be a network, with V is the set of nodes and E is the set of
edges. Let paths(u, v) be the set of shortest paths between nodes u and v. We
say that nsp(u, v) = |paths(u, v)| is the number of shortest paths and dist(u, v) is
the shortest path length. The betweenness centrality for a path p ∈ paths(u, v) is
defined as :

cB(p) =
∑

s,t∈V and (s,t) 6=(u,v)

nsp(s, t | p)

nsp(s, t)
(3.18)

nsp(s, t | p) is the number of shortest paths between s and t passing through path
p. If the number of shortest paths between two nodes is more than one, then the
path betweenness centrality of a pair of nodes is the maximum of the centralities
found for all the shortest paths between them. Another way is to apply the average,
sum, min (minimum), max (maximum) or any other suitable function to aggregate
these multiple centrality. But for the time being we will apply max function. More
details about this measure and its use for link prediction is provided in appendix
B. Experimental details about its performance for co-authorship prediction is also
reported in the same appendix.

Random walk based

These methods use paths of any length randomly chosen while traveling from one node
to another.

Matrix forest index: Matrix forest index computes the similarity between two nodes
as the ratio of number of spanning rooted forests such that the two nodes belong
to the same tree rooted at one of the nodes of all the spanning rooted forests of the
network. It can be computed as M = (I − L)−1, I being the identity matrix and
L = D − A is the Laplacian matrix of the network where D is the degree matrix
and A is the adjacency matrix [Chebotarev and Shamis, 1997]. This index was
used for collaborative recommendation task in the work of F. Fouss et al. [Fouss
et al., 2006].
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Hitting time and commute time: Hitting time is a random walks based feature that
counts the time required by a random walker to go from node x to node y in a
graph. It is defined as the expected number of steps required for a random walker
to walk from one node to the other. Shorter hitting time may denote the nodes
are similar and can have higher chance of linking in future. As this metric is not
symmetrical, often for undirected graphs, average commute time is used instead.
If HT (x, y) is the hitting time to reach node y from node x, average commute time
is given by

CT (x, y) = HT (x, y) +HT (y, x) (3.19)

A negated value of hitting or commute time can be used as a score for predicting
links. A major disadvantage of using these measures is their sensitive dependence
on parts of graph far away from nodes x and y even when x and y are connected
by very short paths.

Rooted Pagerank: Pagerank denotes the importance of a node x by summing up the
importance of all other nodes linked to x. This importance can also be repre-
sented by stationary distribution weight of a node. This feature can be altered
to find a similarity score between two nodes and is termed as rooted pagerank in
[Liben-Nowell and Kleinberg, 2007]. The similarity between two nodes x and y is
measured as the stationary probability of y in a random walk that returns to x
with probability 1−α in each step, moving to a random neighbor with probability
α. Rooted pagerank for all node pairs can be computed as follows.

RPR = (1− α)(I − αN)−1 (3.20)

where N = DA−1 is adjacency matrix with row sums normalized to 1 and D is the
diagonal degree matrix.

PropFlow: PropFlow captures the probability that a restricted random walk starting
from one node x ends at another node y in l or less steps using link weights as the
transition probabilities. The restriction is that a walk terminates on reaching y or
on revisiting any node including x. The walk selects links based on their weights
which produces a score to estimate likelihood of new links. This measure is a more
localized measure of propagation and is insensitive to topological noise far from the
source node [Lichtenwalter et al., 2010].

3.3.1.3 Aggregation of node topological features

These category advocates the idea that two nodes can be similar if they have similar
topological features. The individual node features can thus be aggregated to use them
suitably to characterize pairs of nodes and use it for link prediction. Various ways of
aggregation can be used starting from simple min, max, sum and product to more
complex ones.

Preferential attachment is a very well known metric which combines the degrees of the
two nodes and was proposed by A. L. Barabasi in the context of analyzing scaling in
random networks [Barabasi and Albert, 1999]. The work proposes that the probability
of appearance of a new link is directly proportional to the degree of the observed nodes.
So, it can be used as a score for predicting links and is computed as below:

PA(x, y) =| kx × ky | (3.21)
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For a simple un-directed and un-weighted graph the degree of a node is equal to the
number of neighbors i.e. kx = Γ(x).

Similarly many other aggregation based measures that can be used for link prediction
have been listed next.

Sum of neighbors: In the work of [Hasan et al., 2006], the authors have used sum
of neighbors as a topological feature for characterizing an unlinked node pairs.
Formally, it can be defined as

SumCN (x, y) = Γ(x) + Γ(y) (3.22)

It represents the social connectivity of the nodes. It advocates the fact that the
more connected two nodes are, the more will be their likelihood of forming new
links.

Aggregation of clustering coefficients: As described in chapter 2, clustering coef-
ficients of a node quantifies the probability of the neighbors of the node to get
connected to each other.

cf(x) =
3×#Triangles adjacent to x

#Possible triples adjacent to x
(3.23)

This property can also be used for link prediction by taking an aggregation (sum
or product) of the clustering coefficients of two unlinked nodes. So the similarity
score for any two nodes x and y will be

PCF (x, y) = cf(x)× cf(y) or PCF (x, y) = cf(x) + cf(y) (3.24)

It presents the idea that two actors in the network that have a high tendency of having
links between their respective neighbors must be very active in forming links themselves
and may end up forming a link with each other too in the future.

3.3.2 Supervised approaches

The ground truth about the existence or absence of links is almost always available from
the history of the network which makes it suitable to be used with supervised algorithms.
Moreover a classifier trained with only one topological attribute can outperform rankings
generated by sorting the node pairs based on scores of the attribute if there are multiple
differentiating boundaries in the domain topological attribute value. Also supervised
algorithms are able to capture important inter-dependency relationships between topo-
logical properties [Lichtenwalter et al., 2010].

3.3.2.1 Supervised machine learning based approaches

Following the work of Liben-Nowell et al. [Liben-Nowell and Kleinberg, 2007] many
attempts were made to combine the effects of individual topological metrics in order to
enhance the overall prediction performance of the approach. Most of these works involve
the application of Machine Learning algorithms.
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In machine learning language, the unlinked pairs of nodes are called examples or in-
stances. If the time aspect of the network are to be considered, then the examples can
be generated as follows. Let G =< G1, . . . , Gn > be a temporal sequence of an evolving
network. The whole sequence is divided into two parts: training and testing. Each part
is then again divided into two sub-sequences one for generation of examples and another
for labeling those examples. Thus, in training we shall have a learning and labeling
phases resulting in graphs namely Glearn and Glabel generated by making union of the
temporal sequences of the graphs for the corresponding time slots. The training data
is constructed as follows. An example for learning is a couple of nodes (x, y) that are
not linked in Glearn but both belonging to the same connected component. The class is
obtained by checking whether the couple of nodes is indeed connected in Glabel. If such
a connection exists then it will be a positive example in the supervised learning task and
if no connection exists, it will be a negative example [Benchettara et al., 2010b]. Thus,
examples are generated from these graphs for both training and testing. These examples
are also characterized by a given number of topological attributes computed on learning
(or test) graphs. Figure 3.4 illustrates the process diagrammatically.

The first approach we studied is the one proposed by Mohammad Al Hasan et al. in
[Hasan et al., 2006]. They convert the problem of link prediction in graphs into a binary
classification problem where examples are unlinked node pairs and are characterized by
a vector of topological attribute values. Having a graph for generation of examples and
computation of topological attributes and one for labeling as described before, one can
construct set of instances to be fed to any classification algorithm to generate a model
which can further be used to classify test instances with same vectors of attributes. An
example of this is given in figure 3.5. The network has 6 nodes and 7 edges during
learning period and one new edge during labeling. So we get here one positive example
and 7 negative examples. They are characterized by two topological attributes namely
the common neighbors (CN) and Jaccard coefficient (JC). The authors also make a
comparative analysis on the suitability of many learning algorithms to be used in link
prediction based on their prediction performance. Another interesting study that they
made was to use ranks of the attributes based on various factors in order to compare
and judge their relative strength in a prediction task.

The work done by N. Benchettara et al. [Benchettara et al., 2010b] is a temporal approach
for link prediction based on supervised machine learning where link prediction is done
by using Decision tree algorithm with boosting. This is a dynamic approach where the
evolution of the network is taken into account. The authors have very well proved the
enhancement in the prediction result by considering the dynamic aspects of the network.
Their work is mostly based on bipartite graphs and they introduce the concept of indirect
topological measures computed using the projected graphs. For a bipartite graph G =<
V1, V2, Ebip >, the projected graphs will be G1 =< V1, E1 > and G2 =< V2, E2 >. For
any topological attribute X(i, j), if it is directly computed on G1 for any two nodes
i, j ∈ V1, it becomes a direct attribute for projected graph G1 and we represent it as
XG1

(i, j). The associated indirect attribute is computed on other projected graph G2

as:
Xindirect(i, j) = fx∈ΓG(i),y∈ΓG(j)(XG2

(x, y)) (3.25)

f is some aggregate function like min,max, average, .... etc. and x, y ∈ V2. Authors
show how the use of indirect attribute greatly affects the final prediction result in a
positive way.
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(a) Division of time for learning, labeling and test

(b) Construction of learning and labeling graphs
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(c) Generation of examples from graphs

Figure 3.4: Creation of examples for supervised machine learning

Another work that uses supervised machine learning for classifying unlinked node pairs
to predict missing links is the work proposed by M. Fire et al. [Fire et al., 2011]. In
this paper the authors propose a set of simple and computationally efficient topological
features to be used for link prediction in various social networks. They use various
neighborhood based features and their variants, edge subgraph features and shortest
path length in both directed and undirected graphs. They also propose a variant of
Katz measure namely friends measure. This feature estimates how well friends of two
users know each other. Here they assume that two nodes have higher chances of getting
connected if they have higher number of connections within their neighborhoods. Clearly,
friends measure is a specific case of Katz measure where β = 1 and l = 2. The authors
applied various supervised machine learning algorithms to generate a model from two
types of training sets: easy set generated by randomly choosing 25000 positive and 25000
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Figure 3.5: Generation of examples on a sample graph

negative edges and hard set that contains the same number of randomly chosen positive
and negative edges but now the negative edges have a distance of two hops. By positive
edge we mean that the edges exist in the observed graph and negative are those that do
not exist in the graph. They evaluate their model using 10-fold cross validation.

3.3.2.2 Matrix based approaches

Matrix based approaches represent a network in the form of an adjacency matrix repre-
senting link relationships between nodes. It is a n×n matrix represented by say A for a
graph G =< V,E > and n = |V |. The values of the matrix are either 0 or 1 showing ab-
sence or presence or they are numbers of edges between two nodes. Matrix factorization
models map the nodes to a joint latent factor space such that the interaction between
nodes are modeled as inner products in that space.

In the work presented by A.K. Menon et al. [Menon and Eklan, 2011], the authors use
supervised matrix factorization approach for link prediction. The model learns latent
features from the structure of a graph. The authors show that combining these latent
features with explicit node features and also with outputs of other models can be used
to make better predictions. They propose a new approach to deal with class imbalance
problem by directly optimizing a ranking loss function. The model is optimized with
stochastic gradient descent and also scales to large graphs.

Another work on temporal link prediction given in [Gao et al., 2011] is a model based
on matrix factorization. Authors exploit multiple information sources in the network to
predict link occurrence probabilities as a function of time. They propose a unique model
combining global network structure, content information of nodes and local proximity
information. For combining the temporal information of the network, they use a weighted
exponentially decaying model to build an aggregate weighted link matrix over a set of T
time slices.
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3.3.2.3 Probabilistic approaches

Probabilistic models are supervised models that primarily use the Bayesian concept, to
obtain a co-occurrence probability of un-connected node pairs. These models aim at
abstracting a structure from observed data of the network and then predict links by
using the learned model. Given a target network, a probablistic model will optimize a
target function, to establish a model composed of a group of parameters, which can best
fit the observed data of the target network. The probability of existence of a link between
two nodes x and y is then estimated by the conditional probability P (Ax,y = 1|Θ) where
A is the adjacency matrix representing the network and Θ is the set of parameters.

C. Wang et al. [Wang et al., 2007] have presented a local probabilistic graphical model
to estimate joint co-occurrence probability of link formations. The method explores
probabilistic models to enhance the result of topological and semantic models. The first
step of the approach is to identify a central neighborhood set for a pair of nodes (say x
and y) for which the linking probability is to be estimated. There can be many ways
of finding this neighborhood set. A straightforward option is to consider shortest paths.
All nodes in a shortest path between candidate nodes can be a part of their central
neighborhood set. So there is possibility of having more than one central neighborhood
sets. The second step is to learn a maximum entropy Markov’s random field (MRF)
model that estimates the joint probability of the nodes inside the central neighborhood
set. These models are local MRF models constrained on non-derivable frequent itemsets
from the local neighborhood. The co-occurrence probability, thus found can be used as
a feature and can be used in any supervised learning algorithm along with topological
and semantic features.

A hierarchical probabilistic model has been proposed by A. Clauset et al. [Clauset et al.,
2008]. This model involves a hierarchical organization of nodes in the network, in which
nodes are divided into groups that further subdivide into groups of groups and so on.
The learning task uses observed network data to fit the most likely hierarchical structure
through statistical inference, to find missing links. In this work, statistical inference is
obtained by using Maximum likelihood approach and Monte Carlo sampling algorithm.
A Markov’s chain Monte Carlo method is used to sample possible dendrograms and then,
one of these sampled dendrogram that is most likely to explain the network structure, is
selected for link prediction. Using the dendrogram thus obtained, for any two nodes, the
number of links between the two is calculated, normalized by the total possible number
of links. This value decides the probability of having a link between the two concerned
nodes in the network. However there is no guarantee of accuracy in such approaches and
also such methods are unsuitable for large networks due to the computational complexity
of obtaining the hierarchical structures.

Another interesting approach is the stochastic block model [Lü and Zhou, 2011] based
approach. It is one of the most general network model in which the nodes are partitioned
into groups and the probability that two nodes are connected depends solely on the groups
to which they belong. Let us consider a partition M where each node belongs to only
one group. Say, for two groups α and β, the probabilities of two nodes within a group
being connected is Pαα and probabilities of two nodes in different groups is Pαβ . Also,
eαβ is the number of edges between nodes in group α and β and nαβ is the number of
pairs of nodes such that one node is in α and another is in β. Then the likelihood of
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Figure 3.6: Hierarchical structure of a random network [Clauset et al., 2008].

Each internal node the dendrogram is associated with a probability that a pair of vertices in

the left and right subtrees of that node are connected.

observed network structure will be:

L(A|M) =
∏

α≤β

P
eαβ

αβ (1− Pαβ)
nαβ−eαβ (3.26)

Another important approach is that of probabilistic relational models which provide a way
to incorporate both node and edge attributes to model a joint probability distribution
of a set of nodes and the links that associate them. These kind of approaches are mostly
based on either Bayesian networks considering relational links to be directed [Getoor
et al., 2003] or Markov’s networks that consider the links to be undirected [Taskar et al.,
2003]. These models represent a joint probability distribution over the attributes of
a relational dataset. They allow the property of an object (node/link) to depend, in a
probabilistic manner, both on other properties of that object and on properties of related
objects. A typical probabilistic relational model use three graphs: a data graph (GD), a
model graph (GM ) and an inference graph (GI):

• A data graph is a graph that represents the original target network. The data
objects are represented as nodes and the relationships are edges. Each node and
edge are associated with a set of attributes corresponding to their type.
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• A model graph represents the dependencies among the attributes at the level of ob-
ject (node/edge) type. As mentioned earlier, an attribute of an object (node/edge)
can depend probabilistically on other attributes of same object as well as attributes
of other related (or similar) objects in the data graph. A data graph can be de-
composed into multiple parts corresponding to each type. Using this, a joint model
of dependencies among type attributes can be built. Hence a model graph has two
parts: A dependent structure of all type attributes and the conditional probability
distribution associated with each node in the model graph.

• An inference graph represents probabilistic dependencies among all variables in a
single test set. It can be instantiated by a roll-out process of data graph and model
graph. Each object-attribute pair in data graph gets a separate copy of corre-
sponding conditional probability distribution from the model graph. The relations
in model graphs determine the way data graph is rolled out to form the inference
graph.

This probabilistic relational models are originally designed for attribute prediction prob-
lem for relational data. In case of link prediction, the existence or absence of links
needs to be considered (assuming only the binary case for simplicity). B. Taskar et al.
[Taskar et al., 2003] have proposed to consider a set of potential links between nodes.
Each potential link is associated with a tuple of node attributes, but it may or may not
actually exist. They denote this event of existence or absence of a link, using a binary
attribute Exists, which is true if the link between the associated nodes exists and false
otherwise. Then the link prediction task is reduced to the problem of predicting the
existence attributes of these link objects.

3.3.3 Semi-supervised approaches

Semi-supervised learning is a type of learning that makes use of unlabeled instances
along with a small amount of labeled instances. Traditional supervised learning meth-
ods require labeled data to train a model (especially in tasks of classification). Labeled
instances however are often difficult, expensive, or time consuming to obtain, as they re-
quire the efforts of experienced human annotators. At the same time, unlabeled data may
be relatively easy to collect, but there has been few ways to use them. Semi-supervised
learning addresses this problem by using large amount of unlabeled data, together with
the labeled data, to build better classifiers. Because semi-supervised learning requires
less human effort and gives high accuracy, it is of great interest both in theory and in
practice. We suggest readers to refer to the work of X. Zhu [Zhu, 2005] for a detailed
survey on semi-supervised learning.

This type of learning has not been very well explored in the context of link prediction. To
our knowledge only a few work exist, of which a prominent one is the work of H. Kashima
et al. [Kashima et al., 2009]. Authors have dealt with the problem of predicting the
unknown (or future) parts of a network structure from the known part of the structure.
It can also be seen as the problem of completing an adjacency matrix representing the
network. The proposed method is a node-information based approach and uses the
concept of label propagation (which was originally developed for node classification) to
predict links between pairs of nodes. Authors extend the principle of label propagation
to fit it for a pair of nodes. The principle is that if two pairs of nodes are similar to
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each other, they can share link pattern (absence or presence of a link) and link type.
Kronecker sum and product similarity has been applied in this work to find similarities
between any two triplets of the form (node1, node2, linktype). In the later part, authors
have also proposed a conjugate gradient based method to deal with scalability problem.

Another interesting work in this field is the work proposed by C. Brouard et al. [Brouard
et al., 2011] which is based on Output Kernel Regression. In this work, the link prediction
task which has been previously represented as a binary classification task, is converted
to an output kernel learning task. A target output kernel is assumed to encode similarity
between nodes in a graph. The function to find these similarities is to be approximated
using appropriate input features. Once the output kernel is learned using kernel tricks, a
threshold can be put on the kernel values of pairs of input nodes, to predict the presence
or absence of links.

Although semi-supervised methods provide an interesting alternative for link prediction,
their applicability is limited to prediction of missing links. Whether these kind of ap-
proaches are equally useful for predicting new links, is an open issue. Moreover, both the
above mentioned approaches use node feature information for finding similarity between
nodes. This does not assure their performance in a purely topology based scenario.

3.4 Challenges in link prediction task

Link prediction in complex networks comes with some important challenges especially
when the problem is dealt as a supervised classification problem. These challenges are
mostly due to the large size and sparsity of data available in real world networks. We
describe a few important issues here based on the list presented in the work of M. Hasan
et al. [Al Hasan and Zaki, 2010] and Z. Bao et al. [Bao et al., 2013].

1. Class skewness: Class skewness is the problem of having imbalance in the ratio
of instances belonging to different classes or class distribution in any dataset. In a
typical case of supervised machine learning based classification task, normally the
class ratio is balanced. It is expected to have the same probability of randomly
choosing a positive or negative example. But, when it comes to link prediction,
there is an extreme class imbalance owing to the fact that the number of actual
new links is very small as compared to the number of possible links. In [Al Hasan
and Zaki, 2010], it is stated that the number of possible links is quadratic times
of the number of nodes in the network while the number of actual new links is
only a very small fraction of that. Also, with the evolution of the network, the
number of negative links grows quadratically while the number of positive links
grows linearly [Rattigan and Jensen, 2005]. Thus, in any supervised approach for
link prediction, during learning of models and its validation, number of negative
examples are many times more than the number of positive examples. This makes it
more difficult for an algorithm to generate a good model with a good performance
on the test data. Also in presence of large class skew, the information carried
by the positive examples gets diluted in the vast negative class. Moreover unlike
classical classification problem in machine learning context where overall prediction
accuracy is important, in link prediction, correct classifications of positive examples
are more important. Another aspect is that the performance of a learning algorithm
greatly depends on the variance in the model estimates. Even a low proportion
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Unsupervised

1) [Liben-Nowell and Kleinberg, 2007]
2) Neighborhood based metrics [Adamic and Adar, 2003;
Jaccard, 1901; Liu et al., 2011; Ou et al., 2007; Tan et al.,
2014]
3) Path based metrics [Chebotarev and Shamis, 1997; Fouss
et al., 2006; Katz, 1953; Lichtenwalter et al., 2010; Lü and
Zhou, 2011]
4) Path betweenness centrality
5) Node features based metrics [Barabasi and Albert, 1999]

Supervised

1) Supervised classification based approaches [Benchettara
et al., 2010b; Fire et al., 2011; Hasan et al., 2006]
2) Local probabilistic model [Wang et al., 2007]
3) Matrix based [Gao et al., 2011; Menon and Eklan, 2011]
4) Stochastic block model [Lü and Zhou, 2011]
5) Hierarchical probabilistic model [Clauset et al., 2008]
6) Probabilistic relational model [Getoor et al., 2003; Taskar
et al., 2003]

Semi-supervised
1) Link propagation [Kashima et al., 2009]
2) Output kernel regression model [Brouard et al., 2011]

Dyadic

1)[Liben-Nowell and Kleinberg, 2007]
2) Neighborhood based metrics [Adamic and Adar, 2003;
Jaccard, 1901; Liu et al., 2011; Ou et al., 2007; Tan et al.,
2014]
3) Node features based metrics [Barabasi and Albert, 1999]
4) Supervised classification based approaches [Benchettara
et al., 2010b; Fire et al., 2011; Hasan et al., 2006]

Subgraph
1) Local probabilistic model [Wang et al., 2007]
2) Stochastic block model [Lü and Zhou, 2011]

Global

1) Path based metrics [Chebotarev and Shamis, 1997; Fouss
et al., 2006; Katz, 1953; Lichtenwalter et al., 2010; Lü and
Zhou, 2011]
2) Path betweenness centrality
3) Matrix based [Gao et al., 2011; Menon and Eklan, 2011]
4) Hierarchical probabilistic model [Clauset et al., 2008]
5) Probabilistic relational model [Getoor et al., 2003; Taskar
et al., 2003]
6) Link propagation [Kashima et al., 2009]
7) Output kernel regression model [Brouard et al., 2011]

Table 3.2: Summary of categorization of link prediction approaches that we have
studied, based on two different dimensions



Chapter 3. Link Prediction in Complex Networks 50

of negative instances that are similar to positive instances can cause the model
to end up with a large number of false positives. A straight forward solution to
the problem of class imbalance is under-sampling or down sampling of negative
instances. Under sampling of the majority class is a good way to improve the
sensitivity of the classifier towards minority class. M. Kubat et al. [Kubat et al.,
1997] have proposed to selectively under-sample majority class while keeping all
instances of majority class. N. Chawla et al. [Chawla et al., 2002] propose to use
over-sampling of minority class along with under-sampling of majority class. They
use the product of number of positive examples and the length of attribute vector
for increasing the number of positive examples for learning. However, oversampling
approaches can increase the size of dataset and also the training time.

Other approaches include making the learning process active and cost sensitive
[Al Hasan and Zaki, 2010]. However, under-sampling comes with the risk of los-
ing valuable information and so, careful selection should be made on the criteria
deciding which examples are to be discarded. More details about class imbalance
problem can be found in [Al Hasan and Zaki, 2010; Lichtenwalter and Chawla,
2012]. In [Lichtenwalter and Chawla, 2012], there is a detailed description about
how the predictor performance changes with sampling of test data. They also
provide valuable information about which performance measure is to be used for
evaluating different link prediction techniques.

2. Model calibration: Sometimes calibrating a model is more crucial than finding
right algorithm to build a classification model [Al Hasan and Zaki, 2010]. Model
calibration is a process to find a function that transforms the output score of a
model to label. By varying or biasing this function the ratio of false positive
error and false negative errors can be controlled. This will also depend on the
requirements of the network on which a link prediction model is being developed.
For example in a terrorist network missing a positive link is more serious than in
online social networks where recommending a negative link can be a bigger mistake.

3. Selection of attributes or features: In network topology based approaches,
appropriate selection of attributes is very essential. They affect link prediction in
two ways. First the performance of the prediction depends highly on the predic-
tion capabilities of the attributes. And second the computational efficiency of the
attributes will decide the overall computational complexity of the link prediction
approach. If we have prior knowledge about the performance of the different topo-
logical predictors, then it is easy to select the best performing ones as attributes
to have a good prediction result. But this is not the case in reality as the perfor-
mance of different topological predictors vary with the kind of networks on which
they are being used. So some methods to find the importance of these as attributes
is needed. One way of dealing with this issue is to use principal component anal-
ysis (PCA) as in the work of Z. Bao et al. [Bao et al., 2013]. Authors propose a
framework of three steps. First principal component analysis is done to determine
principal components (PCs) out of all attributes. These components are statis-
tically independent and are ranked in the decreasing order of their contribution
to the variance of result. Then out of them only those m predictor variables are
selected which have the highest eigenvalues and which are grouped into h clusters.
From each cluster the attribute closest to the mean of the cluster is selected. In
the third and final step, considering only the attributes selected in the previous
step, multiple linear regression method is applied to find weights for the selected h
components. Using these weights and selected features the link prediction is done.
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4. Dynamic update of models: Complex networks are dynamic in nature. Espe-
cially social networks continuously evolve with time. Hence for any link prediction
approach one of the important challenge is to deal with the temporal aspects of the
network. In such networks, with time more informations may be added in the form
of introduction of new nodes and links or disappearance of a few nodes and links.
This information can play a crucial role to affect the prediction results. Hence in
many works on link prediction this time aspect have been included [Acar et al.,
2009; Benchettara et al., 2010b; Cooke, 2006; Dunlavy et al., 2011; Gao et al., 2011;
Huang et al., 2008; Huang and Lin, 2008; Lahiri and Berger-Wolf, 2007; Ouzienko
et al., 2010]. Dynamic update of models is needed in order to adapt the model with
changes that arrive with time. This aspect is more essential when a link prediction
approach is to be implemented in a real evolving network like in applications such
as recommender systems in various social networks. In such cases the trade-off
between complete rebuilding and updating the model should be taken into con-
sideration [Al Hasan and Zaki, 2010]. A few work that propose such temporally
adaptive models for online social networks are given in [Aggarwal et al., 2012; Song
et al., 2009].

5. Heterogeneity: In general many of the link prediction approaches have dealt
with only homogeneous networks that have same kind of nodes and links. But
the real networks are in fact very diverse in nature. So in many of complex net-
works, link prediction task may include prediction of links between different types
of nodes and also prediction of different kinds of links between same type of nodes.
Considering heterogeneity in a complex network can also be helpful to improve the
performance of a link prediction approach, owing to the fact that complex networks
are very sparse and much more information can be added by using the linking pat-
terns in different dimensions [Aggarwal et al., 2012; Davis et al., 2011, 2013; Eronen
and Toivonen, 2012; Pujari and Kanawati, 2013; Wang and Sukthankar, 2013; Yu
et al., 2012].

3.5 Motivation

In our research, we were very much interested in discovering topological approaches for
link prediction because of its generic nature. While studying all these different topologi-
cal approaches, we realized that none of the works try to combine the effects of different
topological features using rank aggregation method. These are methods that combine
rankings provided by different experts on a set of candidates and conceptually come
from social choice theory. We already had an in-hand experience of working with rank
aggregation methods, applying it in the context of tag recommendation on folksonomy
(see appendix A). So we were quite hopeful about its applicability in the context of
link prediction. Hence we developed a supervised rank aggregation based link prediction
approach which is detailed in Chapter 4. For experimentation we used scientific collab-
oration networks which are a part of bibliographical networks. Bibliographical networks
come with a diverse kind of information. We saw that two authors in scientific collabo-
ration network can be linked in many different ways. For example they can be linked if
they publish papers in same conferences/journals or attend same conferences. Another
way of linking them is based on the references they have used in their works. All this
made us think that if we can exploit this heterogeneous link information, the prediction
of co-authorship links may be improved. Thus we were inspired to work on multiplex
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networks. Multiplex networks are a form of heterogeneous networks where the network
is represented as layers for graphs, each having same nodes but different kinds of edges.
They have a simple structure with a possibility of applying existing topological measures
without much difficulty. Moreover, there is not much work done in the field of link pre-
diction in multiplex networks. So we developed a link prediction approach for multiplex
network using simple topological attributes and their extended versions for a multiplex
scenario. This approach has been described in Chapter 5. At the same time, another
concept which caught our attention was that of existence of communities in social net-
works. We were highly interested to explore the utility of communities in the context
of link prediction. So after studying few works on community detection approaches, we
came up with our approach of using them for filtering of examples in link prediction.
This sampling may provide a solution to deal with the problem of creating a better pre-
diction model in presence of huge class imbalance in the data. This has been reported
in Chapter 6.

3.6 Conclusion

In this chapter, we have presented the detailed description the analysis task of link pre-
diction. We define the problem with a formal presentation. We also highlight different
applications of link prediction. We then present a brief state of art of different link pre-
diction approaches concentrating mainly on topological approaches. We discuss different
ways of categorizing link prediction approaches based on various criteria. We present our
two dimensional categorization of approaches. An approach can be unsupervised, semi-
supervised or supervised in one axis, while it can be dyadic, community/sub-graph based
or global in another. After that, we highlight some major challenges of link prediction
task in real world networks especially when they involve supervised learning. We discuss
in brief the existing solutions to these problems. In the category of unsupervised dyadic
link prediction methods, we introduce a new concept of topological measure namely path
betweenness centrality, that can be used for finding linking probability between two un-
linked nodes in a complex network. There is detailed account of this new path based
topological feature in Appendix B. This concept is a very naive attempt to use shortest
path in a different way for link prediction and has not been explored enough presently.
We present our motivation for the research work on new algorithms for topological link
prediction. Focusing only on the topology of a network, we are also interested to make
use of heterogeneous link information and community information to enhance the pre-
diction results of a supervised model. All these are presented in detail in subsequent
chapters.



Chapter 4

Applying Rank Aggregation to Link

Prediction

4.1 Introduction

After having an overview of the work done to solve the problem of link prediction, we
came to a conclusion that none of the previous work attempt to combine the prediction
power of individual topological measures by applying computational social choice algo-
rithms or simple voting rules. These methods are a part of social choice theory and were
mostly applied to political and election related problems [Black et al., 1998; de Borda,
1781; Young and Levenglick, 1978]. A detailed description about voting methods and
their history can be found in the work of C. Dwork et al. [Dwork et al., 2001], D. Black
et al. [Black et al., 1998], and H.P. Young et al. [Young and Levenglick, 1978].

In computer science these methods have been studied mostly in the context of infor-
mation meta-search in web [Aslam and Montague, 2001; Dwork et al., 2001], multiple
search, similarity search [Fagin et al., 2003] etc. and are popularly termed as preference
aggregation or rank aggregation methods [Chevaleyre et al., 2007; Dwork et al., 2001].
Rank aggregation can be defined as a process of combining a set of ranked lists of can-
didates to get a single aggregated list that has least possible disagreements with all the
voters or experts who provide these lists.

These techniques were designed to ensure fairness among voters while combining their
rankings and hence all voters are given equal weights. Expressing the link prediction
problem in terms of a vote is straightforward: candidates are examples (pairs of unlinked
nodes), while voters or experts are topological measures computed for these pairs of
unlinked nodes. Then we have a voting problem with quite huge set of candidates and
rather a reduced set of voters (contrary to the social choice set up where number of
voters is huge and number of candidates is small). These settings are also similar to
those encountered when considering the problem of ranking documents in a meta-search
engines where voting schemes has also been applied with success [Aslam and Montague,
2001; Dwork et al., 2001; Montague and Aslam, 2002].

This chapter starts with problem description in section 4.2. Section 4.3 lists the classical
rank aggregation methods. This section mostly summarizes concepts from social choice
theory. Section 4.4 describes few of the works that apply weighted or supervised rank
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aggregation for diverse purposes. Section 4.5 presents our proposed method for super-
vised rank aggregation and and in section 4.6 we describe how we use supervised rank
aggregation for link prediction. The experimental details have been provided in section
4.7.

4.2 Rank aggregation problem

In this section, we provide a brief description of ranked list aggregation/rank aggregation
process and the existing methods.

4.2.1 Rank aggregation

Rank aggregation refers to a process of combining a number of ranked lists of candidates
to get a single list and with least possible disagreement with all the voters who pro-
vided these lists. The lists may have same or different elements. The process of rank
aggregation differs from the process of simple list aggregation by the fact that in rank
aggregation methods, the order or ranks of candidates in the input lists are also taken
into consideration. Formally if we have a set of ranked lists L = [L1, L2, L3, ..., Lm]
provided by m experts or voters and each containing n candidates, the goal is to find a
ranked list Laggegate of same n candidates, which has least possible disagreement with
the rankings of candidates provided in the lists in L. The rank of a candidate x in a list
Li is given by rank(x, Li)

Depending on the candidates, the input lists can be categorized as Full lists, Partial lists
or Disjoint lists. Full lists are those which contain exactly the same candidates but with
a different ordering, partial lists may have some of the candidates in common but not all
and disjoint lists have completely different elements. For example we consider four lists:

L1 = [A,B,C,D] L2 = [B,D,A,C]

L3 = [A,B,C,D,E] L4 = [E,F,G,H]

In this example, L1 and L2 are full lists, L1 and L3 are partial lists, and L1 and L4 are
disjoint lists. The aggregation of full lists, partial lists and disjoint lists are three different
challenges which call for three different streams of research in the field of computational
social choice theory. In this work we deal only with the aggregation of full lists.

In rank aggregation, distance metrics are used to find the disagreement between two
ranked lists. Two well-known distance measures are Spearman Footrule distance and
Kendall Tau distance. For two ranked lists L1 and L2 of n candidates, the two metrics
are defined as

• Spearman Footrule distance: This computes the distance between two ranked lists
by computing the sum of differences in ranks of each candidate. Formally, it is
given by

F (L1, L2) =
∑

i∈n

| rank(xi, L1)− rank(xi, L2) | (4.1)
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• Kendall Tau distance: This counts the number of pairs of elements that have
opposite rankings in the two input lists i.e. it calculates the pairwise disagreements.

K(L1, L2) =| (xi, xj) s.t. rank(xi, L1) < rank(xj , L1) and rank(xi, L2) > rank(xj , L2) |
(4.2)

where xi and xj are any two candidates present in both input lists L1 and L2, but
not necessarily in the same order.

Spearman footrule distance has a computational complexity of O(n) where as Kendall
Tau distance has a computational complexity of O(n log n). In the example given before,
if we select lists L1 = [A,B,C,D] and L2 = [B,D,A,C], the Spearman footrule distance
will be F (L1, L2) = 6 and Kendall Tau distance will be K(L1, L2) = 3.

A normalized value of any of the two distances can be obtained by dividing it by number
of voters( or experts) or number of input lists.

4.2.2 Weighted rank aggregation

Before describing the approaches that use supervised rank aggregation, we give a defini-
tion for weighted and supervised rank aggregation.

Weighted rank aggregation refers to the same process of combining ranked lists but
giving different importance to the experts. So here, each expert has a weight asso-
ciated with it. In case, these weights are learned during a training process in a su-
pervised manner the method is called supervised rank aggregation. Formally for a set
of ranked lists L = [L1, L2, L3, ..., Lm] containing n candidates and associated weights
W = [w1, w2, w¯3, ..., wm], the goal of weighted rank aggregation is to find a ranked list
Laggegate containing same n candidates, which has least possible disagreement with the
rankings of candidates provided in the lists in L. In supervised rank aggregation these
weights in W can be learned.

4.3 Rank aggregation methods

Rank aggregation methods can be broadly categorized into two types: score-based and
order-based. Score-based aggregation methods use score information from voters while
order-based methods use only the rank information [Liu et al., 2007]. Score based meth-
ods use a scheme of weighting or giving scores to the candidates in order to determine
their overall order of preference. Order-based methods on the other hand use binary com-
parison to ascertain whether there is a candidate that can defeat all other candidates by
a simple majority.

Another important concept that we need to discuss before moving towards various classi-
cal rank aggregation methods is the Condorcet principle. Condorcet principle as proposed
by Marquis de Condorcet [Condorcet, 1785], says that if there exists some candidate that
defeats every other candidate in a pairwise simple majority voting, then that candidate
should be selected as a winner. Such a winner is known as Condorcet winner. In some
circumstances it is possible to have no Condorcet winner because there is no candidate
who is preferred by voters to all other candidates. Such a situation is known as Con-
dorcet paradox. Each rank aggregation methods complying with Condorcet principle can
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have their own ways of dealing with such situations but in any case they assure to rank
a Condorcet winner on the top whenever it exists. For example in the work of Duncan
Black [Black et al., 1998], the method proposed chooses a Condorcet winner if it exists
otherwise uses Borda’s count method (described below). There are also possibilities of
having an ordinary tie when two or more candidates have tie with each other but defeat
all other candidates. Ties can be broken by random choice or some other concepts like
which of the winners has the most first choice vote etc. The way Condorcet paradox
is handled can be an important point of difference between different rank aggregation
methods complying with Condorcet principle (also called Condorcet methods sometimes).
Condorcet methods fit within two categories:

• Two-method systems, which use a separate method to handle cases in which there
is no Condorcet winner.

• One-method systems, which use a single method that, without any special handling,
always identifies a winner to be the Condorcet winner.

An extended Condorcet criterion as proposed by M. Truchon says that if there is a
partition {T, U} of the set of n candidates {1, 2, ...., n} such that for any x ∈ T and any
y ∈ U the majority prefers x to y, then x must be ranked above y in the final aggregation
[Truchon, 1998].

We now describe a few of the standard methods for rank aggregation.

Borda’s rank aggregation: Borda’s method is a truly positional method as it is based
on the absolute positioning of the ranked candidates rather than their relative rankings.
A Borda score is calculated for each candidate in the lists and based on this score, the
elements are ranked in a aggregated list. For a set of full lists L = [L1, L2, L3, ...., Lm],
the Borda’s score for a candidate x in a list Li is given by:

BLi
(x) = {count(y) | rank(y, Li) < rank(x, Li) & y ∈ Li} (4.3)

The total Borda’s score for a candidate is given as:

B(x) =

m
∑

i=1

BLi
(x) (4.4)

Borda’s method is mostly applicable to full lists and is not very suitable for partial lists
and it does not comply with the Condorcet principle. Its main advantage is its linear
computational complexity of O(nm).

Kemeny’s optimal aggregation: Kemeny optimal aggregation [?] uses Kendall Tau
distance to find the optimal aggregation. The first step is to find an initial aggregation
of input lists using any standard method. The second step is to find all possible permu-
tations of candidates in the initial aggregation. For each permutation, a score is then
computed which is equal to the sum of distances between this permutation and the input
lists. The permutation having the lowest score is considered as optimal solution. For
example, for a collection of input ranked lists τ1, τ2, τ3, ....., τm and an aggregation π ,
the score is given by:

SK(π, τ1, τ2, τ3, ....., τm) =

m
∑

i=1

K(π, τi) (4.5)
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where K(π, τi) is the Kendall Tau distance between a permutation π and an input list
τi.

The specialty of Kemeny optimal aggregation is that it complies with Condorcet principle
which is not the case with positional methods like Borda’s algorithm.

In spite of all advantages, the major limitation of Kemeny optimal aggregation is that it
is computationally hard to implement. It is a NP-hard problem even for four ranked lists
[Dwork et al., 2001]. So while looking for an alternative solution that gives similar kind of
aggregation but is computationally feasible, we are led to another approach named local
Kemenization [Dwork et al., 2001]. A full list π is locally Kemeny optimal aggregation
of partial lists τ1, τ2, τ3, ....., τm, if there is no full list π′ that can be obtained from π by
performing transposition of a single pair of adjacent elements and for which

SK(π′, τ1, τ2, τ3, ....., τm) < SK(π, τ1, τ2, τ3, ....., τm)

In other words, it is impossible to reduce the total distance of an aggregation by flipping
any adjacent pair of elements in the aggregation (which is not equivalent to saying that
no flipping of any two elements can decrease the distance). Every Kemeny optimal aggre-
gation is locally Kemeny optimal but the converse may not be true. Local Kemenization
in fact allows us to have an approximate optimal aggregation.

A simple example illustrating the difference between Borda’s count method and Kemeny
optimal method is given in figure 4.1. There are five lists L1, L2, L3, L4, L5 containing
four color dots. Each one presenting a ranking based on preference of some experts or
some criteria. For Borda’s method a score is computed for each color dot based on its
absolute position in each of the five lists. Final aggregation is found by ordering the
dots from low to high Borda’s score. Where as, in Kemeny optimal aggregation pairwise
comparison of ranks is made. Taking two color dots at a time, the number of times first
dot is ranked above the second in the lists is counted and the final aggregation is found
based on this comparison. We can see that the final ranking found by the two methods
are different.

Median rank aggregation: The third method is Median rank aggregation (MedRank)
[Fagin et al., 2003] which is based on a ranking heuristic that sorts all candidates based on
the median of their ranks in the lists provided by a certain number of voters. That means
it aggregates a set of complete ranked lists by using median rank for each candidate. This
method can produce footrule optimal aggregations which are within a constant bound
of Kemeny optimal aggregation. They satisfy extended Condorcet criterion and may be
computationally more efficient than Kemeny optimal aggregations. If we have m ranked
lists [L1, L2, L3, ...., Lm] with n candidates in each, a score for any candidate x to have
a rank r is computed as the number of lists in which x has a rank r.

score(x, r) = count(Li) where rank(x, Li) = r

The MedRank score for a candidate x is

M(x) =
∑

r∈(1,n)

score(x, r)

The first candidate with a score greater than some threshold θ gets rank 1, the second
such item gets rank 2 and so on. The ties are randomly broken. A standard value of
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a) Aggregation found by Borda’s method

b) Aggregation found by Kemeny optimal method

Figure 4.1: An example to show Borda and Kemeny optimal aggregation
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θ = m
2 . So a candidate must appear in at least half the lists to get a rank in aggregate

list, in case of partial or top-k list aggregation.

Markov’s chain based rank aggregation: Markov’s chain methods represent the
candidates of ranked lists as states (nodes of graph) and the transitional probabilities
from one state to other is defined by the relative rankings of the candidates in different
input ranked lists. The stationary distribution of the Markov Chain is utilized to rank
the candidates. C. Dwork et al [Dwork et al., 2001] proposed four methods (denoted
as MC1, MC2, MC3, and MC4) to construct the transition probability matrix of the
Markov Chain. This method is suitable for aggregation of full as well as partial lists but
does not guarantee a most optimized solution [Dwork et al., 2001; Sculley, 2007].

Other work: Another work, proposed in [Besson and Robardet, 2007] is based on the
Condorcet voting count principle. Authors try to preserve most of the individual pairwise
preferences while minimizing the removal of a set of pairwise preferences to erase all
cycles, when the individual rankings are represented as weighted directed graphs. This
turns the rankings into partial orders but as close as possible to the total order.

In [Sculley, 2007] an attempt has been made to address the problem of aggregating ranked
list of candidates with defined similarity. Author makes use of candidate similarity in
order to enhance the performance of the standard methods for rank aggregation. They
re-define the distance measures and the well known rank aggregation methods adding a
factor that quantifies the similarity between the candidates in various ranked lists. They
show that introducing similarity between candidates greatly enhances the performance
of rank aggregation methods especially in presence of noisy, incomplete or even disjoint
data.

After studying all these rank aggregation methods, we come to a conclusion that may be
Kemeny optimal aggregation will best serve our purpose of having an efficient method for
link prediction due to its capability of considering both positive and negative preference
on candidates by the majority. Positive preference means the choice of an expert to give
a candidate a higher rank. On the other hand if the expert does not want a candidate to
be ranked at higher position rather prefers to give it a lower rank then it will be a negative
preference. We opt to use the concept of local Kemenization in order to avoid the issues
of having very high computational complexity and to develop an approximately optimal
aggregation to be used for link prediction. We are also interested to see the utility of a
positional method, i.e. Borda’s count method for the same, knowing that it comes with
an advantage of low computational complexity. That can be an advantage if it performs
well in our context.

4.4 Related work

Looking into the work based on rank aggregation techniques, we can say that not much
have been explored when it comes to application of rank aggregation to link predic-
tion. Moreover, most of the other related works apply unsupervised rank aggregation
algorithms, giving equal weight to all voters or experts.

One work is weighted majority algorithm proposed in [Littlestone and Warmuth, 1989]
where the authors have proposed to use weights for predictors (voters), all having equal
weights in the beginning. There is a master predictor which makes the final prediction
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based on the class which corresponds to maximum total weights of predictors. If the
final prediction is wrong then weights of all predictors who disagreed with that label, is
increased by a factor β such that 0 ≤ β < 1 and thus reducing the effect of unworthy
predictors at each iteration. This approach has a limitation that the performance of the
master predictor can be at most equal to the best performing predictor. On the contrary,
the use of rank aggregation can provide even better prediction at times. This may be
due the fact that, in these algorithms, the “likes” of majority of the predictors is given
higher preference. At the same time, the “dislikes” are given least preference. So these
algorithms are much more spam/noise resistant.

Another work on weighted rank aggregation is Borda Fuse proposed by J.A. Aslam et
al. [Aslam and Montague, 2001] which can be viewed as weighted Borda count for meta-
search. Specifically, different experts who provide rankings on candidates are assigned
different weights, while the weights are trained separately by using labeled training data.
For example, the weights can be calculated based on the MAP (Mean Average Precision)
scores of the experts. Experimental results show that Borda Fuse indeed improves upon
normal Borda Count. The problem with Borda Fuse is that the weights of the ranked
lists are calculated independently and by using heuristics. It is also not clear whether
the same idea can be applied to other methods [Liu et al., 2007].

A significant work on supervised rank aggregation has been done in [Liu et al., 2007]
where authors propose supervised aggregation by Markov chain to enhance the ranking
result on meta-searches. Authors argue that to have an improved accuracy of rank
aggregation it is better to use a supervised learning approach in which an order based
aggregation function is trained within the optimization framework of labeled data. Hence
they propose supervised learning to perform task with improved accuracy. Learning is
formalized as an optimization task which minimizes the disagreement between ranking
result and the labeled data. They further transform optimization of Markov chain into
that of a semi-definite programming to improve computational efficiency. However, it
has been shown that local Kemenization improves on Markov chain-based approaches
[Dwork et al., 2001].

A very recent work by K. Subbian et al. [Subbian and Melville, 2011] proposes use
of supervised rank aggregation to find influential nodes by posing the problem as a
predictive task. Authors compare different measures of influence like degree centrality,
PageRank etc. on their ability to accurately predict which users in Twitter network
will be virally re-tweeted in near future. Authors have proposed their own supervised
Kemeny aggregation method based on quick sort which represents a variation of local
Kemeny aggregation [Dwork et al., 2001] with approximation. In the algorithm quick
sort is done on the candidates by using majority based comparisons.

This work is very close to what we have done in terms of supervised Kemeny aggregation,
however their domain of application is finding influential nodes where as ours is finding
potential node pairs which may have a link in the future. The work is concentrated
around individual nodes whereas in our work, we study the topological features of a
node pair or a potential link. For the part of supervised rank aggregation we propose
our method based on Merge sort algorithm. The reason why we use merge sort is that
it is seemingly more stable than quick sort. Stability of a sorting algorithm is important
when two candidates have equal importance. A stable sorting algorithm is the one which
never affects the relative order of two candidates who are equal in ranks. This feature
may be important when we have ties. Thus as said in [Dwork et al., 2001], the advantage
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of using merge sort is that the issue of inconsistent answers never arises and thereby
simplifies the execution of algorithms. Further one may say that a natural option for
combining the influences of different topological measures for link prediction can be the
use of supervised machine learning classifiers which can be trained to predict the target
links. But if the individual measures produce an ordering of potential candidates (which
is also our case) and not just a point-wise score then rank aggregation methods seem to
be a better choice. Moreover a method that complies with extended Condorcet criterion
is highly preferred in our context because it can eliminate the possibility of inferior
candidates being included in the final ranking thereby affecting greatly the result of
prediction task in a positive way.

Another aspect is to look at the problem of learning to rank. In this kind of works, the
goal is to find a suitable way to learn a ranking on the potential candidate node pairs,
by using various topological and content based features. In a work presented recently
in [Tabourier et al., 2014] a new method for link prediction based on rank learning has
been proposed. Authors propose a method named “RankMerging” based on a sliding
window concept, to aggregate the ranks provided on unconnected node pairs, by differ-
ent topological classifiers. They use this rank learning method to predict links between
users in a telephone calls network. They compare their method with well known Borda’s
rank aggregation method and a few machine learning algorithms like decision tree, Ad-
aBoost, nearest neighbours. Another work proposed in [Freno et al., 2011] formalizes link
prediction problem from the flexible perspective of preference learning. The goal is to
learn a preference score between any two nodes. The model uses neural network and an
objective function that can be optimized by stochastic gradient descent. The limitation
of this work is the need for node content.

These works on learning to rank are conceptually interesting but are a bit away from
our point of interest which is not to develop a new way of ranking, but rather is to find
a better and robust ranking by aggregating various ordered lists provided by different
methods (in this case those are topological measures). It can also be interesting to
consider the outcome of these rank learning methods and aggregate them using our
proposed framework. But for the moment we are not going to deal with these issues. It
can be left as one of the perspectives.

4.5 Supervised rank aggregation

The existing methods for rank aggregation described in the previous section, usually give
equal weights to all experts who provide the input rankings. But sometimes, there is
possibility that these experts have different importance in identifying the correct order
of elements. These facts motivate us to think that assigning a weight to each expert
may enhance the aggregation results significantly. We thus propose to use weighted
Borda’s method (proposed as Borda’s Fuse in [Aslam and Montague, 2001]) and a new
approach for weighted local Kemeny optimal method. We call them supervised Borda
and supervised local Kemeny as we learn the weights that are to be used. Generation of
weights is described in next section.

Supervised Borda: Weights can be introduced into Borda’s method in the follow-
ing way. While computing the Borda score for each element, the rank of the element
will be multiplied with the weight of the expert who provides this rank. Suppose,
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(w1, w2, ....., wn) are the weights for n experts (and thus for the ranked lists provided
by them) , the Borda score for individual element can be obtained as follows:

B(x) =
n
∑

t=1

wi ∗BLi
(x) (4.6)

The main advantage of such an method is its simple linear time computational complexity
of O(n.m), n being the number of ranked lists and m is the number of candidates. But the
disadvantage of this method is that it doesn’t not comply with the extended Condorcet
criterion.

Supervised local Kemeny aggregation: Our supervised local Kemeny aggregation
makes use of a comparison matrix M to compare the pairwise preference between all
ranked items. For each pair of items (x, y) in the ranked lists, we compute a score
using the fact whether x is preferred over y in the individual rankings and weights
corresponding to experts providing those rankings. Formally, for n experts providing
rankings [τ1, τ2, . . . , τn] for m items

score(x, y) =
n
∑

i=1

(wi ∗ Prefi(x, y)) (4.7)

where Prefi(x, y) =

{

0 if τi(x) > τi(y)

1 if τi(x) < τi(y)
.

Same score is also calculated for (y, x). If this score of (x, y) is more than 50% of the
sum of all the expert weights wT =

∑n
i=1wi, then we consider that x is preferred over y

by most of the experts and this ranking should be preserved in the final aggregation also.
Hence we insert M(x, y) = true and M(y, x) = false. The final aggregation is found
starting from selecting any of the input ranked lists as initial ranking and using merge sort
algorithm, swapping the items only when their reverse preference is true in comparison
matrix M . Algorithm 1 describes our proposed approach for finding supervised local
Kemeny aggregation.

The computational complexity of merge sort algorithm is O(m. logm). But the com-
putation of the matrix using n ranked lists of m candidates has a complexity O(n.m2),
which is a bit space and time consuming when the number of candidates in ranked lists
is more bigger. So we came up with another way to avoid creation of the m × m ma-
trix and make the computation more easier. Instead of having a comparison matrix,
we compute a score and decide on weighted preference on the spot during the sorting
process. So in the modified algorithm, we apply merge sort on an initial aggregation.
Each time a comparison is to be made between two candidates x and y, a score for (x, y)
is computed using equation 4.7. As explained earlier, if the score is more than 50% of
wT , x has a higher weighted preference over y and thus, no swapping is done. Otherwise
the candidates are to be swapped. All this is presented formally in algorithm 2. In this
way we avoid unnecessary computation of scores for candidate node pairs which are not
dealt with during the sorting process. So, the use of merge sort allows this algorithm to
have a reduced computational complexity of O(n.m logm).

We illustrate the concepts by means of the same example of color dots in figure 4.2. There
are four colors: Red (R), Green (G), Blue (B) and Purple (P). Supervised Borda score for
R is : B(R) = 3∗0+3∗1+1∗2+2∗3+1∗4 = 15. Similarly weighted Borda’s score were
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Algorithm 1 Supervised local Kemeny aggregation

Input: T = [τ1, τ2, . . . , τn] where τi = [e1, e2, . . . , em] for n experts and m elements
W = [w1, w2, . . . , wr] where wi is the weight for expert i and wT =

∑r
i=1wi

µ = τ1 where µ can be considered as initial aggregation
Output: An aggregate ranked list

Initialize an empty matrix M
for element x = e1 to em−1 do

for element y = e1 to em do
score = 0
for τi ∈ T do

Prefi(x, y) =

{

0 if rank(x, τi) < rank(y, τi)

1 if rank(x, τi) > rank(y, τi)

score = score+ (wi ∗ Prefi(x, y))
end for
if score > 0.5 ∗ wT then

Mxy ⇐ true
Myx ⇐ false

else
Mxy ⇐ false
Myx ⇐ true

end if
end for

end for
Merge sort µ using M .
Return µ

computed for all other color dots. For supervised local Kemeny aggregation, the first
ranked list of color dots is taken as the initial aggregation. Matrix M is computed for
all candidates as shown in the algorithm ??. The values in M are either True or False
based on a score computed for two candidates. For example, lets consider red and green
dots. Now, score(R,G) = 1∗0+1∗1+0∗2+1∗3+0∗4 = 4 and total weight wT = 10. As
score(R,G) < 0.5 ∗ wT , MRG = False and the same time MGR = True. Take another
example of green and blue dots for which score(GB) = 1∗0+1∗1+0∗2+1∗3+1∗4 = 8. As
score(GB) > 0.5∗wT , MGB = True and the same time MBG = False. After completing
M for all pairs of candidates, merge sort is applied on the initial ranking, making a swap
only if Mx,y = False.

4.6 Applying supervised rank aggregation to link prediction

The first step of our link prediction approach is to generate training and test examples as
described in section 3.2. The examples have a set of topological attributes associated to
them. Each attribute of an example, when considered individually, provides some unique
information about it. The training examples are ranked based on the attribute values.
So, for each attribute we will get a ranked list of all examples. The second step is to
compute a weight for each topological attribute. Here an assumption is made that when
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a) Aggregation found by supervised Borda’s method

b) Aggregation found by supervised local Kemeny method

Figure 4.2: An example showing computation of supervised Borda and supervised
local Kemeny aggregation
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Algorithm 2 Supervised local Kemeny aggregation (Without using Matrix)

Input: T = [τ1, τ2, . . . , τn] where τi = [e1, e2, . . . , em] for n experts and m elements
W = [w1, w2, . . . , wr] where wi is the weight for expert i and wT =

∑r
i=1wi

µ = τ1 where µ can be considered as initial aggregation
Output: An aggregate ranked list

Merge sort µ
for each Comparison (x, y) do
score = 0
for τi ∈ T do

Prefi(x, y) =

{

0 if rank(x, τi) < rank(y, τi)

1 if rank(x, τi) > rank(y, τi)

score = score+ (wi ∗ Prefi(x, y))
end for
if score > 0.5 ∗ wT then
x ≻ y = true

else
x ≻ y = false

end if
if x ≻ y == false then

swap(x,y)
end if

end for
Return µ

we rank the examples according to their attribute values, the positive examples should
be ranked on the top. So, considering only the top k ranked examples, we compute
the performance of each attribute. This performance is based on either maximization of
identification of positive examples (measured in terms of precision) in top k positions or
minimization of identification of negative examples (measured in terms of false positive
rate) in top k positions. A combination of both can also be used but for the time being we
consider the two separately. Based on the individual performances, a weight is assigned
to each attribute. The weight computation is detailed in next sub-section.

For validation, we use examples obtained from the validation graph characterized by
same attributes and rank all examples based on their attribute values. So for n different
attributes, we have n different ranked lists of the test examples. These ranked lists are
then merged using a supervised rank aggregation method and the weights of the attributes
obtained during learning process. The top k ranked examples in the aggregation are
taken to be the predicted positive examples. Using this predicted list, we calculate the
performance of our approach. k in this case is equal to the number of positive examples
in the validation graph.

4.6.1 Weight computation

We propose to compute expert’s (topological measures) weights based on their capability
to identify positive elements in top k positions of their rankings. Weights associated to



Chapter 4. Applying Rank Aggregation to Link Prediction 66

applied topological measures are computed based on the following criteria :

• Maximization of positive precision: Based on maximization of identification
of positive examples in top k positions of the ranked list provided by a topological
attribute, the weight is calculated as

wi = n ∗ Precisioni (4.8)

where n is the total number of attributes and Precisioni is the precision of at-
tribute ai based on identification of positive examples. To remind, precision is
defined as the fraction of retrieved instances that are positive.

• Minimization of false positive rate: By minimizing the identification of nega-
tive examples in top k positions we get a weight as below

wi = n ∗ (1− FPRi) (4.9)

where n is the total number of attributes and FPRi is the false positive rate
of attribute ai based on identification of negative examples. False positive rate is
defined as the fraction of negative instances that are predicted as positive.

In both cases, we are multiplying it with a constant value n (which is totally optional) in
order to enhance the numeric value of weight which at times can be very less and close
to zero. Also the weights are normalized by dividing them by the total weights of all
topological attributes. Other criteria for weight computation can also be applied. For
example in [Subbian and Melville, 2011], weights are computed based on AUC of node
features on training data.

4.7 Experiment

We evaluate our approach using data obtained from DBLP 1 databases. Our network
consists of authors as nodes and they are linked if they have co-published at least one
paper during the observed period of time. The data corresponds to year between 1970-
1979. We create three graphs out of that. In order to do a justified comparison within
the set of unlinked node pairs, that will be considered for prediction, we prefer to use
only the largest connected component of the graphs for this experiment. The problem
when we consider the whole graph is that, if we have two node pairs (x, y) and (u, v)
belonging to a connected component of large size and small size respectively. Suppose
the attribute we are considering is common neighbors (CN). There are much chances
that CN(x, y) > CN(u, v) and during ranking by value (x, y) will be ranked higher
than (u, v). Thus, (x, y) has a greater chance of being selected as a predicted link as
compared to (u, v) even if (u, v) comes out to be the real new link. Hence, to avoid
all these complications and to have a fair comparison between candidate node pairs, we
use the largest connected components as graphs in this experiment and we use the term
“graph" or “network" for the same.

Following the procedure described previously in Chapter 3, we generate examples from
each of the graphs. Table 4.1 provides information about the training or test graphs while

1http://www.dblp.org
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table 4.2 summarizes information about the examples generated. Figures 4.3, 4.4 and
4.5 show the visualization of the three concerned co-authorship graphs corresponding to
three different points of time. These visualizations are done by using Gelphi 2 [Bastian
et al., 2009], which is a reasonably simple and interesting tool. (See appendix E for more
visualizations of other co-authorship graphs).

Years |V | |E| Density Avg(degree) Avg(Cc) Diameter Avg(Pathlength)

1970-1973 91 116 0.028 2.549 0.333 14 6.114
1972-1975 221 319 0.013 2.887 0.462 16 7.203
1974-1977 323 451 0.009 2.793 0.404 18 7.504

Table 4.1: DBLP Co-authorship graph

Learn/Test Label # Positive # Negative

1970-1973 1974-1975 16 1810
1972-1975 1976-1977 49 12141
1974-1977 1978-1979 93 26223

Table 4.2: Examples from co-authorship graph

Dataset Learning year Test year K

Dataset 1 1970-1973 1972-1975 49
Dataset 2 1972-1975 1974-1977 93

Table 4.3: Datasets for experiment

Figure 4.3: Co-authorship network for year 1970-1973

We have applied our approach to the datasets as described in table 4.3. K is a parameter
used in rank aggregation to decide the top k predictions and is equal to the number of

2http://gephi.github.io/
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Figure 4.4: Co-authorship network for year 1972-1975

Figure 4.5: Co-authorship network for year 1974-1977
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actual positive links in the test data. For rank aggregation, we have used supervised
Borda and supervised Kemeny methods. We wanted to experiment with a score based
rank aggregation method as well as an order based one. For score based method Borda
was a obvious choice as it very well represents an absolute position based rank aggrega-
tion approach. Our second choice was Kemeny aggregation approach as it produces an
optimal final aggregation, keeping in tact the preferences of all experts as much as pos-
sible. It has also been successfully applied in aggregating search results in a meta-search
engine [Dwork et al., 2001] in which its ability to deal with spams has also been shown.
So, we chose to use an approximate version of Kemeny optimal aggregation.

We compare our approach with link prediction approaches using supervised machine
learning algorithms like Decision tree, Naive Bayes and k-Nearest neighbors algorithm.
These methods are simple to implement and represent three different concepts of classi-
fication. We name our approaches as Supervised Borda 1 and Supervised Borda 2 based
on how the attribute weights are computed. 1 represents weights computed based on
maximization of positive precision and 2 represents weights being computed based on
minimization of false positive rates. We will follow the same convention to represent
supervised Kemeny. The supervised machine learning algorithms are implemented using
Orange 3 which is a Python based data analysis and visualization software. We selected
the following topological attributes to characterize examples (i.e node pairs): Number of
common neighbors (CN), Jaccard coefficient (JC ), Preferential attachment (PA) [Huang
et al., 2005], Adamic Adar coefficient (AA) [Adamic et al., 2003], Resource allocation
(RA) [Zhou et al., 2009], Shortest path length (SPL), Path betweenness centrality (PBC),
Truncated Katz (TKatz) and Neighbor’s clustering coefficient (NCF).

We compute the performance of our rank aggregation based link prediction methods
and link prediction based on supervised machine learning algorithms. We use the three
algorithms for supervised machine learning. We also compute the same using ensemble
learning with decision tree. We have restricted the number of predictions made by
machine learning algorithm to K, the parameter that is selected for rank aggregation
based methods too. This is done in order to have a justified comparison between the
two kinds of approaches. Figure 4.6 and 4.7 present the results we obtained in terms of
precision and AUC for all methods. AUC is computed using the formula given in section
3.2.1 as proposed in [Lü and Zhou, 2011], but the difference is that instead of exact score
we compare the ranks of negative and positive examples. So actually, we compute the
probability of finding a positive example ranked above a negative example in the list
of prediction which is the top-K ranked lists provided by all link prediction algorithms.
Also we are unable to take into account the equal ranks between negative and positive
examples, as we are not treating ties for the moment. Ties are broken randomly whenever
they appear in the score and dealing with ties during ranking can be added to future
updates of our work.

While our method based on Borda and supervised Borda failed to provide any substantial
results (due to which we have not listed them here), our approximate Kemeny and
supervised Kemeny based methods outperform all the supervised machine learning and
ensemble methods for both datasets in terms of precision. This shows the validity of our
approach. Although in terms of AUC the result is slightly different, with decision tree
giving the best AUC for dataset 1. But still the precision for the same is not very high.
Both the type of ensemble learning based on decision tree perform badly as compared
to rank aggregation and supervised rank aggregation based methods. The low values

3http://orange.biolab.si/
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Figure 4.6: Results on the two datasets compared with Supervised machine learning

of AUC can be attributed to the fact that we have used raw data without any sort of
pre-treatment or refining. To ease the process of supervised Kemeny aggregation further,
we make a selection of best performing attributes. In fact we discard all attributes that
have a zero weight during learning. That means these attributes failed to identify any of
the positive examples in the top k positions during learning. So, the rankings provided
by such topological attributes do not seem to be very useful for being used further during
prediction of links in the test set. This step can be significant to select the best serving
attributes for the prediction task and they also help the execution process.

Precision-recall curves are more indicative of the difference between the performance of
algorithms in presence of a class imbalance, having a large number of negative examples
as compared to positive examples. So we decided to use them, in order to compare
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Figure 4.7: Results on the two datasets compared with Ensemble learning

different algorithms. Looking at the precision-recall curves in figures 4.8 and 4.9 created
by varying the value of K, we can clearly see the difference between various algorithms.
For dataset 1, K varies between 5 and 49 (the actual number of positive links in the test
set) with an epoch of 5. For dataset 2, K varies from 10 to 93 with an epoch 10. The two
figures show that, for both datasets, rank aggregation based methods perform better than
the supervised machine learning based methods as their corresponding curves lie above
covering greater area than those representing supervised machine learning methods. Also
it is evident that our method based on supervised Kemeny aggregation, where weights
are computed based on precision outperform all other methods.

Although it is still early to say that rank aggregation based methods are better perform-
ing than the other approaches of link prediction, the preliminary results do show that
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a) Dataset 1, K varies between 5 and 45 with an epoch of 5. The last point
corresponds to K = 49, the actual number of positive links in the test set.

b) Dataset 2, K varies from 10 to 90 with an epoch 10. The last point corresponds to
K = 93, the actual number of positive links in the test set.

Figure 4.8: Precision-Recall curves for the two datasets compared with Supervised
machine learning
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a) Dataset 1,K varies between 5 and 49 with an epoch of 5. The last point corresponds
to K = 49, the actual number of positive links in the test set.

b) Dataset 2, K varies from 10 to 90 with an epoch 10. The last point corresponds to
K = 93, the actual number of positive links in the test set.

Figure 4.9: Precision-Recall curves for the two datasets compared with Ensemble
learning
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rank aggregation especially with Kemeny method indeed adds some useful information
which can enhance the result of prediction task. This is quite encouraging for us to con-
tinue this work further. Still, the fact remains that rank aggregation methods especially
Kemeny based methods have a high computational complexity but some relaxation can
be provided by using approximation of optimality.

4.8 Conclusion

In this chapter we have described our proposed link prediction approach based on super-
vised rank aggregation method. Starting with a detailed description of rank aggregation
methods, we present the aggregation task in the context of link prediction. There is a
brief account of important related work involving rank aggregation and link prediction.
We first define our own algorithm for a weighted rank aggregation based on local Kemeny
optimal approach [Dwork et al., 2001]. Then we describe our proposed approach of using
it for link prediction. In this, we first learn weights associated with a set of topologi-
cal features that characterize unlinked node pairs, and then use these weights with our
supervised rank aggregation method to predict links in a co-authorship network.

We compared our method with baseline supervised machine learning approaches by ex-
perimenting on DBLP data. We found that the use of rank aggregation algorithms
improves the performance of link prediction in terms of precision as compared to that of
Decision Tree, Naive Bayes and Knn model. We applied two standard rank aggregation
methods namely Borda’s method and our version of Kemeny based method. While Borda
failed to give any concrete result, we observed that Kemeny based methods outperform
all others in terms of precision and have a comparative result in terms of AUC. The
failure of Borda method for the prediction task can be explained based on the fact that
while ranking the candidates, it surely considers the positive preferences of experts but
it fails to take into account their negative preferences on the candidates. But this is bet-
ter captured by the Kemeny based aggregation methods which comply with Condorcet
principle. We think this is the reason why approximate Kemeny and supervised Kemeny
methods give a better result. Other ways of weight computation and choice of initial
rankings for supervised Kemeny approach can also be experimented to see if they are able
to give better results. Also, more experiments can be done applying weighted forms of
other rank aggregation methods especially median rank method to find its applicability
in context of link prediction.



Chapter 5

Link Prediction in Multiplex

Networks

5.1 Introduction

Complex networks are often heterogeneous in nature. That means real networks may
have different types of nodes and also different types of links. They can be broadly
divided into two categories: Multi-mode networks and Multiplex/Multi-layer networks
(Figure. 5.1). Multi-mode networks are distinguished by the presence of different types of
nodes that may have homogeneous or heterogeneous links. On the other hand, multiplex
networks essentially have different kinds of links between same types of nodes. They can
be represented as a set of simple networks (layers), each having same type of nodes but
different types of links. Multi-layer networks are more general forms of networks where
each layer can share some common nodes but not necessarily all. Nodes in all layers
belong to the same type but the links in different layers have different types. Multi-
dimensional networks also have only one type of nodes and different types of links but

Figure 5.1: Heterogeneous networks and branches

75
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Figure 5.2: Multiplex structure in a scientific collaboration network for authors

they do not have a layered structure. This term has been used mostly for networks
having multiple links (each having a different type) between same types of nodes.

A common example of multiplex network can be derived from scientific collaboration
networks (see figure 2.10) in the form of author-author network. These networks are
composed of nodes representing researchers or authors of scientific papers who can be
linked if:

• they have co-published/co-authored some articles or

• they have published their articles in the same conferences or

• their domain of research are the same or

• the titles/abstract/content of their articles share some common terms etc.

In figure 5.2, it is shown how an author network can be represented by multiple layers,
each having same nodes but different types of links or edges.

All the work that we saw in previous chapters, address the problem of link prediction
in only simple networks having homogeneous links. Our main interest here is to extract
more information from the heterogeneous properties of the network and to use them to
enhance the result of link prediction.

In this chapter we explain how prediction of links can be done in a multiplex setting
and how prediction performances can be enhanced using multiplex information. To our
knowledge, not much have been explored to add multiplex information for the task of
link prediction. Although there are a few recent work proposing methods for prediction
of links in heterogeneous networks, networks which have different types of nodes as well
as edges [Davis et al., 2013; Wang and Sukthankar, 2013; Yizhou Sun et al., 2011]. There
have also been few work on extending simple structural features like degree, path etc. to
the context of multiplex networks [Battiston et al., 2013; Berlingerio et al., 2011a] but
none have attempted to use them for link prediction. The related work on heterogeneous
and multiplex networks is presented in section 5.2. We propose a new approach for
exploring the multiplex relations to predict links in one of the layers using metrics based
on observation of links on other layers. We apply this to predict future collaboration
(co-authorship links) among authors. The applied approach is a supervised-machine
learning approach where we attempt to learn a model for link formation based on a set
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of topological attributes describing both positive and negative examples. While such a
concept has been successfully applied in the context on simple networks [Benchettara
et al., 2010a; Hasan et al., 2006], different options can be applied to extend it to the
multiplex network context. One option is to compute topological attributes in each layer
of the multiplex. Another one is to compute directly new multiplex-based attributes
quantifying the multiplex nature of dyads (potential links). Both approaches will be
discussed in the section 5.3. Section 5.4 presents the experimental details on multiplex
networks derived from DBLP data in the context of co-authorship link prediction.

5.2 Related work

There is not much work done in the field of link prediction in multiplex networks. Al-
though, there has been quite a few recent work on link prediction in heterogeneous
networks and on finding new ways to extend the traditional topological properties like
degree, distance, centrality etc.

5.2.1 Link prediction in heterogeneous network

In the work of Yizhou Sun and al. [Yizhou Sun et al., 2011], authors propose a method
called PathPredict, for co-authorship prediction in heterogeneous bibliographical net-
work. Heterogeneous bibliographical network used in the work contains different types
of objects as node such as authors, venues, papers and topics with different types of
relationships between them like “write" or “written by" (write−1) between authors and
papers and “cite" or “cited by" (cite−1) between papers etc. So the network is a directed
graph with a type information on nodes and links. PathPredict is a meta path-based
relationship prediction model. A meta path is a path defined on the network schema,
where nodes are object types and edges are relations between object types. So a meta-
path is composed of different types of links available in the network. For example, a
co-authorship link between two authors can be represented by a meta path consisting
of two links between the authors and the paper written together by the authors. That
means, if A represents author nodes and P is the paper or article nodes, then the meta

path for co-authorship link is [A
write
−→ P

write−1

−→ A]. Similarly, a co-citation relation be-

tween two authors has the meta path [A
write
−→ P

cite
−→ P

write−1

−→ A]. PathPredict has two
components: a meta path based topological feature definition and a logistic regression
based supervised prediction model. In first step, the topological measures like common
neighbors, Jaccard’s coefficient, Katz’s measure are extended to use meta-paths instead
of simple paths. In the second step a supervised prediction model is created using logistic
regression. For a given of pair of authors and for a particular kind of relation (i), a set
of meta-path based topological measures (xi) are computed and then a prediction model
is built to learn coefficients associated with each of these measures. Hence, the training
set consists of < xi, yi >, where yi (positive /negative or 1/0) is the label corresponding
to a vector of meta-path based feature xi characterizing a node pair. The probability of
getting two nodes linked is modeled as follows:

pi =
exiβ

exiβ + 1
(5.1)
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where β is coefficients associated with each feature in xi including a constant 1. Maximum
likelihood estimation is used to find the coefficient weights associated with the constant
and each topological measure used. The goal is to maximize the likelihood of observing
all relations in the training data. This is done by using the following equation

L =
∏

i

pyii (1− pi)
(1−yi) (5.2)

The authors show that the meta path based topological measures can improve the co-
authorship prediction accuracy compared with the baselines that use only homogeneous
links. The results are presented in terms of overall accuracy and AUC using cross vali-
dation and test set. Although the results of PathPredict are good in numbers, there are
some reservations on its performance in real scenario especially because it increases the
number of paths available between two un-linked nodes. Also the authors have no expla-
nations about its performance in the presence of huge class imbalance (which happens
in real networks) as the only result they present is on a test or training set where the
number of positive examples are equal to the number of negative examples.

In the work of D. Davis and al. [Davis et al., 2013], the authors propose a probabil-
ity based weighted extension of Adamic/Adar measure for heterogeneous information
network showing the benefits of using diverse link information especially when the ho-
mogeneous links are very sparse. Their method requires an appropriate weighting scheme
for different edge type combinations. The weights are found based on counting of oc-
currence of each unique 3-node substructure in the network. They have presented both
unsupervised and supervised prediction schemes for various types of links present in the
network, concluding that supervised models are a better choice.

A different kind of approach is the one proposed by Xi Wang and al. [Wang and Suk-
thankar, 2013] where the authors have explored heterogeneity within co-authorship links.
For example, co-authorship links can be distinguished with “affiliation" that represents
the type of conferences where two authors have published a paper together. Inside a co-
authorship network, they try to find classes of links in terms of communities. The nodes
can simultaneously belong to multiple overlapping communities. So a node is supposed
to have different kind of links based on the different communities to which the connected
links belong to. The proposed approach, Link Prediction using Social Features (LPSF),
is a link prediction framework which weights the network using a similarity function
based on features extracted from patterns of interactions of nodes in various communi-
ties found in the network. First edge clustering is done to find clusters or communities.
Then a social feature set is constructed for each node based on how many links they
have in each community. That means if n communities are found, a social feature set of
a node v is a vector of size n with values equal to number of links x connecting v to the
corresponding communities. These feature sets are then used to find similarity between
nodes which is further used as link weight in the same network. After having a weighted
network, weighted versions of traditional topological measures can be computed and then
unsupervised and supervised machine learning based prediction tests can be performed
on unconnected node pairs of the network.

Other such work on heterogeneous networks includes Biomine [Eronen and Toivonen,
2012], a system proposed to integrate several biological databases into a graph with
different types of edges which are weighted based on their type, reliability and informa-
tiveness. The predictions are based on a proximity measure computed on the integrated
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graph. Considering different proximity measures, a parameter optimization procedure is
done, weighting different types of edges in order to optimize the prediction accuracy.The
method is tested on disease-gene networks. Work of [Yu et al., 2012] deals with predic-
tion of citation relationship between papers. They propose a citation probability learning
model based on a meta-path based prediction model (as in [Yizhou Sun et al., 2011]) on
a topic discriminative search space. The difference here is that the links to be predicted
are directed.

5.2.2 Work on multiplex networks

In case of multiplex networks where the heterogeneity of links in a network are repre-
sented as multiple layers, to our knowledge, not much work has been done to deal with
the problem of link prediction. However there have been few important works in recent
times on how to extend the standard topological measures in a multiplex scenario. One
such work is proposed by F. Battiston and al. [Battiston et al., 2013], where the authors
propose a general framework to describe the multi-layer networks with either weighted or
unweighted links. They propose a set of measures to characterize the multiplexity of the
networks. These include extension of a number of structural properties like degree dis-
tribution, node clustering, shortest paths, betweenness and closeness centralities. They
also focus on the quantification

• participation of nodes to the structure of network in each layer

• importance of each node for overall efficiency of the network in terms of node
reachability and triadic closure.

The most important aspect of their studies is that they have given much importance to
the percentage of edge overlap and interdependence between the layers of network. They
also introduce the concept of Entropy in the context of multiplex networks which takes
into account the distribution of a topological feature in various layers of the network.
For example, they present entropy of multiplex degree for a node which is a suitable,
quantity to describe the distribution of degree within the layers of a network. Entropy
for node degree is zero if all links of the node are in a single layer and is maximum when
the links are uniformly distributed over the layers. They also present another similar
quantity called multiplex participation coefficient, which quantifies the participation of a
node in different multiplex layers. This quantity has been previously used to quantify
the participation of a node in different communities [Guimera and Nunes Amaral, 2005;
Guimerà et al., 2005].

In another work proposed by M. Berlingero and al. [Berlingerio et al., 2011a], the authors
present the heterogeneity of the network in the form of multi-dimensional network which
is similar to multiplex networks. The sole difference is that the authors present all types
of links between nodes in the same graph but with edge labels to represent the various
types. So we have here a multi-graph with more than one links between nodes, each
with a label to show it’s type (dimension). Referring to fig 5.2, we can say that such
a multi-dimensional network can be split into various layers of multiplex network or in
other words layers of a multiplex network can be combined to form a multi-dimensional
network. In this work on multi-dimensional network, the authors propose a way to extend
definition of degree of a node. They also propose some new multi-dimensional measures
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namely number of neighbors ; dimension relevance that tries to capture the importance of
one dimension over others for the connectivity of a node; dimension connectivity which
studies the percentage of nodes or edges contained in a specific dimension with respect
to the total number of nodes and edges present; and lastly d-correlation that gives an
idea about how redundant the different dimensions are for the existence of nodes and
edges.

The work of G. Bianconi points towards a statistical mechanics formulation of multiplex
networks in terms of Entropy andOverlap, the concepts also used in [Battiston et al.,
2013]. They introduce the concept of correlated multiplex ensembles where the existence
of a link in one layer is correlated to the existence of the link in other layers. A network
ensemble can be defined as a set of networks that satisfy a given number of structural
constraints, i.e., degree sequence, community structure etc. They also give a clear dis-
tinction between uncorrelated and correlated multiplex ensembles. In an uncorrelated
multiplex network the probability of existence of a link in one layer does not depend on
the presence of links in other layers where as in a correlated one this dependence exists.

A similar work of V. Nicosia and al. [Nicosia et al., 2013] presents a framework for
modeling evolution of multiplex networks. The work of A. Halu and al. [Halu et al.,
2013] presents a biased random walk based method to compute multiplex PageRank.
They define four different versions of multiplex PageRank and show how the importance
of a node in one layer can affect the importance the node can get in other layers. Another
work presented by E. Cozzo and al. [Cozzo et al., 2013] proposes to generalize the
concept of clustering coefficients for multiplex networks. In the work of M. Magnani and
al. [Magnani and Rossi, 2013] we can find a new definition of geodesic distance that
includes the different types of connections. They use the concept of Pareto efficiency
to define a new distance called Pareto distance and they say tha geodesic distance is a
special case of Pareto distance in case of a single layered network. In another work by
M. Magnani and al. [Magnani et al., 2013], the authors attempt to find hidden motifs
traversing and correlating different layers. They propose to extend betweenness centrality
for multiplex networks taking into consideration paths crossing several different layers.
In work of M. De Dominico et al. [De Domenico et al., 2013b], authors present ways
of extending various existing centrality measures to be used in interconnected multiplex
networks. They also show how the ranking of nodes done by computing centralities on
multiplex networks is different from the ranking obtained by applying them on a weighted
monoplex network obtained by aggregating the multiplex layers of the network. Another
work by same authors [De Domenico et al., 2013a], presents the concept of random
walks in multiplex networks where they present a new type of walk that can exist only
in multiplex networks.

Another axis of research where multiplex networks have been used very recently is that
of community detection. Some of the approaches transform the multiplex networks into
simple networks and apply the existing methods of community detection [Berlingerio
et al., 2011b; Suthers et al., 2013]. This is done by aggregating the layers to form a simple
weighted network where different types of links strengthen an actor’s (node) connection.
The weights on edges can be computed based on different criteria to add the multiplex
information on one graph. The different criteria can be binary weights, frequency-based
weights, node similarity-based weights and a linear combination. A different proposal of
transforming a multiplex network into a uniform hypergraph and then apply community
detection algorithms have been made in the work of [Kivelä et al., 2013]. In another
category of work, researchers try to extend the existing community detection algorithms
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to deal directly with multiplex networks [Lambiotte, 2010]. Such approaches address the
problem of simultaneous exploration of all layers of multiplex networks for detection of
communities.

No doubt that the use of heterogeneous networks can allow us to apply traditional topo-
logical measures very efficiently (with or without edge weights), but the fact that they
contain different types of nodes and links in the same platform can make the analytical
jobs very complex at times. Where as multiplex networks are easier and simpler to use
and it is easy to implement existing algorithms of simple networks on them. However,
there also exists the question of how to include the correlation or interdependence of the
layers during various computations of topological measures. Our work differs from all the
works described before in a sense that we are trying to explore the heterogeneity in the
form of multiplex networks and we use the concept of multiplex topological measures for
the purpose of link prediction in bibliographical networks. The use of multiplex structure
keeps our model simple and easy to implement it for practical application. The networks
used in our work are assumed to be correlated which means that the linking probability
in one layer can depend on the linking pattern in other layers. The multiplex topologi-
cal measures include new definitions of simple topological measures in the context of a
multiplex network which also attempts to include the correlations of layers in a naive
way.

5.3 Link prediction in multiplex network

Our approach includes computing simple topological scores for unconnected node pairs
in a graph. Then we extend these attributes to include information from other dimension
graphs or layers. This can be done in three ways: First we compute the simple topological
measures in all layers; second is to take the aggregation of the scores; and third we
propose an entropy based version of each topological measures which gives importance
to the presence of a non-zero score in each layer. In the end all these attributes can be
combined in various ways to form different sets of attribute values (vectors) characterizing
each example or unconnected node pair.

Direct and indirect attributes Formally, if we have a multiplex graph G =<
V,E1, . . . , Em > which in fact is a set of graphs < G1, G2, . . . , Gm > and a topological
attribute X. For any two unconnected nodes u and v in graph Gi (where we want
to make a prediction), X(u, v) computed on Gi will be direct attribute and the same
computed on all other dimension graphs will be indirect attributes.

Multiplex attributes The first category of multiplex attribute computes an aggre-

gation of the attribute values over all layers. This aggregation can be done any of
the existing functions like min, max, sum, average etc. For example, we choose to use
average, so our new attribute is given by

Xaverage =

∑m
α=1X(u, v)[α]

m
∀ u, v ∈ V and (u, v) /∈ Ei (5.3)

where m is the number of types of relations in the network (dimension or layer).
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Figure 5.3: An example of computing direct, indirect and multiplex attributes based
on number of common neighbors (CN(u, v)).

In the second category we propose a new attribute called product of node degree entropy
(PNE) which is based on degree entropy, a multiplex property proposed by F. Battistion
et al. [Battiston et al., 2013]. If degree of node u is k(u), the degree entropy is given by:

E(u) = −

m
∑

α=1

k(u)[α]

ktotal
log(

k(u)[α]

ktotal
) (5.4)

where ktotal =
∑m

α=1 k(u)
[α] and we define product of node degree entropy as

PNE(u, v) = E(u) ∗ E(v) (5.5)

We also extend the same concept to define entropy of a simple topological attribute, and
call them entropy-based attributes Xent

Xent(u, v) = −
m
∑

α=1

X(u, v)[α]

Xtotal

log(
X(u, v)[α]

Xtotal

) (5.6)

where Xtotal =
∑m

α=1X(u, v)[α]. The entropy based attributes are more suitable to cap-
ture the distribution of the attribute value over all dimensions. A higher value indicates
uniform distribution attribute value across the multiplex layers. We address average and
entropy based attributes as multiplex attributes.

Figure 5.3 illustrates our concepts using a simple example. We have three layers of graphs
and we need to make prediction on the first layer which we call target layer or target
graph. We compute different versions of common neighbors topological metrics for the
selected nodes u and v, excluding and including the multiplex information.
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5.4 Experiment

We evaluated our approach using data obtained from DBLP1 databases corresponding
to year between 1970-1979 like before. We create two datasets from three graphs, each
corresponding to a different period of time. Each dataset has four years for learning or
training and next two years are used to label the examples generated from the learning
graphs. The examples are generated on the target layer on which we want to make the
prediction. In this case it is the co-authorship layer and we predict the co-authorship
links.

Table. 5.1, 5.2 and 5.3 summarize the information about the graphs, examples generated
and datasets used for validating the approach. Figure 5.4 shows the visualization of the
three graphs.

Years Properties Co-Author Co-Venue Co-Citation

1970-1973
Nodes 91 91 91
Edges 116 1256 171

Density 0.028327 0.306715 0.041758

1972-1975
Nodes 221 221 221
Edges 319 5098 706

Density 0.013122 0.209708 0.029041

1974-1977
Nodes 323 323 323
Edges 451 9831 993

Density 0.008673 0.189047 0.019095

Table 5.1: Graphs

Years
# Positive # Negatives

Train/Test Labeling

1970-1973 1974-1975 16 1810
1972-1975 1976-1977 49 12141
1974-1977 1978-1979 93 26223

Table 5.2: Examples generated from co-authorship graph

Dataset Learning year Test year K

Dataset 1 1970-1973 1972-1975 49
Dataset 2 1972-1975 1974-1977 93

Table 5.3: Datasets for experiment

(K is the parameter used for supervised rank aggregation based link prediction and is equal to

the number of positive examples in the test sets.)

We selected the following topological attributes: Number of common neighbors (CN),
Jaccard coefficient (JC), Preferential attachment (PA) [Huang et al., 2005], Adamic Adar
coefficient (AA) [Adamic et al., 2003], Resource allocation (RA) [Zhou et al., 2009] and
Shortest path length (SPL). These are simple measures which can be easily computed

1http://www.dblp.org
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Figure 5.4: Multiplex network visualization for year 1970-1973 of DBLP

in less time. All these topological measures were computed on the three graphs. Their
average and multiplex versions are also added as additional attributes and we also used
product of node entropy as one additional entropy based multiplex attribute. We applied
decision tree algorithm on dataset 1 to generate a model and then tested it on another
dataset 2 (See table. 5.3). Decision tree was a quick choice owing to its simplicity
and popularity. Also, we already had an in hand experience of using this algorithm for
prediction task in simple co-authorship network. So, to get some quick results for our
experiments, we decided to use this algorithm. We are using data mining tool Orange2

for this. We use four types of combinations of the attributes creating five different sets
namely:

• Direct (attributes computed only in the co-authorship graph);

• Direct+ Indirect (attributes computed in co-authorship, co-venue and co-citation
graphs);

• Direct + Multiplex (attributes computed from co-authorship graph with aver-
age attributes obtained from three dimension graphs, and also entropy based at-
tributes);

• Direct + Indirect + Multiplex (attributes computed in co-authorship, co-venue
and co-citation graphs, with average of the attributes, and also entropy based
attributes) and

• Multiplex (average of attributes and entropy based attributes).

2http://orange.biolab.si
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In this experiment, our goal is to predict co-authorship links. So, the target layer is
co-author layer. But the same procedure can be used for prediction of links in any other
layer. Figure. 5.5 shows the result obtained in terms of F1-measure and area under the
ROC curve (AUC). We observed that contrary to our belief, the inclusion of indirect
and multiplex attributes does not seem to improve the prediction result in temr of F1-
measure. However, we can see that there is slight improvement in the result when we use
only multiplex attributes for learning and validating our model. This shows that there
is indeed some useful information whic can be captured by multiplex attributes and can
be use in link prediction task. Also AUC increases for all the sets that include multiplex
and indirect attributes for both datasets. This also justifies our belief on the usefulness
of indirect and multiplex attributes.

Figure 5.5: Results on the two datasets for Decision tree algorithm

We also applied supervised rank aggregation based methods on one of the multiplex
networks (dataset 1). We report here the performance in terms of F1-measure in figure
5.6. We can see that rank aggregation based methods do not perform well with the
indirect and multiplex attributes on dataset 1. Although with supervised Kemeny 1 the
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performance on inclusion of multiplex attributes is comparative to that of using only
direct attributes.

The reason for not having a very good result with indirect and multiplex attributes can be
due to the fact that we have not really verified the edge overlaps between layers. We have
used the co-citation layer which has links based on the common bibliographical references
made by two authors in their papers and the co-venue layer has links if the authors have
published in same conferences. It is possible that these two layers are just the super-
graphs of the co-authorship layer. That means, they may contain all the links that are
also found in the co-authorship layer plus some new links. So they may not explicitly
represent the multiplexity in the network. We believe that considering edge overlap and
other such correlation measure can lead to having some different result. Moreover we
have made a naive attempt of defining the multiplex topological measures only based
on entropy. Other such concepts can also be implemented for the same purpose after
a detailed verification of importance and applicability of the concepts. This may also
result in more distinct and better performances.

5.5 Conclusion

This chapter presents a brief overview of different works that take into account the het-
erogeneous nature of complex networks. We present our new approach of link prediction
in multiplex networks. We propose some new and extended topological features that
can be used for characterizing the unlinked node pairs for link prediction task, including
also multiplex relation information. They can be applied to predict links in any of the
layers of the network. We tested our supervised model for prediction of co-authorship
links on datasets obtained from DBLP databases. The results were not extremely good,
however learning and validating a supervised machine learning link prediction model on
multiplex attribute set showed slight improvement in the result in terms of F1-measure.
The performance of the model in terms of AUC was better on inclusion of indirect and
multiplex attributes with direct attributes.

The advantage of our proposed approach is that it is a straightforward approach, simple
in implementation with less complexity and can be used for prediction of any type of
links in any layer. We have not yet considered the possibility of having inter-layer paths
while defining the new multiplex attributes, which has been done in many of the state-
of-art work. This can be left as a perspective for the time being and can be explored
later to see its applicability in the task of link prediction.
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a) Approximate Kemeny based link prediction algorithm

b) Supervised Kemeny based link prediction algorithm (weight computed by precision)

c) Supervised Kemeny based link prediction algorithm (weight computed by false positive rate)

Figure 5.6: Results for supervised rank aggregation based models





Chapter 6

Communities and Link Prediction

6.1 Introduction

Community structures are very common in real world complex networks. Communities
can be defined as groups of nodes in a network which are generally more connected within
each other than with nodes exterior to the communities. Members of a community are
supposed to have some common properties or play some kind of common roles in the
network. The semantic interpretation of a community depends largely on the type of
network or type of information presented by a network. For example, in a metabolic
network or a protein-protein interaction network communities can be a set of proteins
(nodes) performing a certain biological function in a cell [Guimera and Nunes Amaral,
2005; Guimerà et al., 2007]. In an e-commerce network communities can consist of a set
of customers with similar choices of products or similar purchase history [Benchettara
et al., 2010b]. In world wide web they can be a set of web-pages related to same topic
[Flake et al., 2002].

Community detection and link prediction are two important fields of research in complex
network analysis. They have been running in parallel since long and it is very recently
that researchers have come up with the thought of using community information for
link prediction [Benchettara, 2011; Soundarajan and Hopcroft, 2012]. However link and
path information have been already in use for finding communities [Fortunato, 2010;
Newman, 2004a; Yakoubi and Kanawati, 2014]. We were always interested to explore
communities for the sake of link prediction task but our real motivation came from a small
experiment that we did on scientific collaboration network created from DBLP data. We
observed that most of the future collaborations occur between authors belonging to
different communities. This observation gave us the idea to use the same concept for
sampling the learning dataset in order to learn a better classification model which we
use for link prediction.

In this chapter we will discuss how the task of community detection can help in link
prediction in various ways. We precisely deal with the problem of sampling huge data
used in link prediction. Section 6.2 provides a description about the problem of com-
munity detection and various traditional approaches for community detection. Section
6.3 describes a few work on link prediction that use community information. Section 6.4
presents a brief overview on sampling of data in the context of link prediction and our

89
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(a) Disjoint communities (b) Overlapping communities

Figure 6.1: Communities in a network

proposed method of using communities for the same. Section 6.5 provides the experi-
mental details on DBLP co-authorship networks.

6.2 Community detection approaches

Community detection refers to the problem of finding subgroups or clusters of nodes in
a network that form communities based on some criteria. These subgroups are found
according to optimization of some target function. Community detection algorithms
can find communities which can be disjoint or overlapping. Disjoint communities are
partitions in a network where one node can belong to only one community at a time.
Overlapping communities on the other hand, are soft clusterings that allow a node to
belong to more than one community simultaneously. Figure. 6.1 shows the two types of
partitions.

Problems of finding disjoint and overlapping communities are NP-hard [Brandes, 2008].
Hence many community detection algorithms go for an approximate optimization using
heuristics. The community detection approaches can be broadly classified as group-based
approaches, network-based approaches, propagation based approaches and seed-centric
approaches [Yakoubi and Kanawati, 2014].

Group-based approaches focus on identifying groups of nodes that are highly con-
nected. Connection pattern can be high mutual connectivity or a slightly relaxed way of
high mutual reachability. These approaches mostly involve identification of densely con-
nected subgroups like k-core, cliques and quasi cliques. Examples of such approaches are
clique percolation algorithms [Adamcsek et al., 2006; Sun and Gao, 2009]. Another ap-
proach is proposed in [Verma and Butenko, 2012] , where authors introduce the concept
of k-community which is defined as a connected subgraph of a network in which for every
couple of nodes have number of common neighbors equal to or more than k. The compu-
tational complexity of k-cores and k-communities is polynomial. The k-communities are
mostly used as seeds for computing communities. In another work [Peng et al., 2014],
authors propose to compute k-cores as mean to accelerate computation of communities
using standard algorithms but on size-reduced graphs.

Network based approaches consider the connection pattern in the entire network to
find communities. These include many classical clustering based algorithms like spectral
clustering, graph partitioning, hierarchical clustering etc. Spectral clustering tries to
partition a network into clusters by using the eigenvectors of the matrices. It consists
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of transforming nodes of the network into a set of points in space whose coordinates are
elements of eigenvectors. The points are clustered using standard k-means clustering.
Such algorithms are presented in [White and Smyth, 2005]. Hierarchical clustering al-
gorithms try to explore hierarchical structure in a network i.e. many levels of grouping
of nodes. In such cases smaller clusters may exist inside large clusters. Hence these
algorithms reveal multilevel structure of the network. These algorithms group nodes
with high similarity. Hierarchical clustering approaches are classified into two categories
[Fortunato and Barthélemy, 2007]:

1. Agglomerative approaches, in which forms clusters by iteratively merging the groups
of nodes if their similarity is high. These are bottom-up approaches and the al-
gorithm starts by considering each node as a cluster and then moving up towards
bigger clusters.

2. Divisive or separative approaches, in which clusters are split by iteratively removing
edges connecting nodes with low similarity. These are top-down approaches and
the algorithm starts by considering the whole network as one big cluster.

Hierarchical algorithms have been presented in [Blondel et al., 2008; Newman, 2006,
2004b; Pons and Latapy, 2006]. Hierarchical clustering have the advantage unlike spectral
clustering, that they do not need any prior information about numbers of clusters or
communities to be found. However the main limitation is that they do not discriminate
between any partitions obtained by the process and there is no way to choose which
level of partitions show a better community structure. To deal with this issue some
quality functions are required and hence optimization of a quality function for graph
partition came into the scene. A quality function is a function that assigns a score to
each partition to quantify the quality of the cluster [Fortunato, 2010]. Modularity is
the most widely used quality measure in community detection [Newman, 2004a]. It is
based on the concept that the possible existence of clusters is revealed by the comparison
between the actual density of edges in a cluster and the expected density of the cluster
regardless of community structure. It advocates the idea that a good community is more
connected inside than with the rest of the network. It is defined as follows. Suppose
P = C1, C2, C3, ....., Ck is a partition of nodes in a graph G =< V,E >. The modularity
of the partition P is given by:

Q(P ) =
∑

C∈P

einter(C)− eout(C) (6.1)

where einter(C) =
∑

i,j∈C Aij

2m is fraction of links inside community C and eout(C) =
∑

i∈C,j∈V Aij

2m is the fraction of links of nodes inside community with nodes outside the
community. The computational complexity of Q is O(m) [Newman, 2004b]. Some recent
work have extended the definition to bipartite and multipartite graphs [Du et al., 2008;
Liu and Murata, 2009; Murata, 2009a,b, 2010; Neubauer and Obermayer, 2009].

The Louvain algorithm [Blondel et al., 2008] is one very well known example of ag-
glomerative approaches. The algorithm is composed of two phases. First, it looks for
small communities by optimizing modularity in a local way. Second, it aggregates nodes
of the same community and builds a new network whose nodes are the communities.
Two adjacent communities merge if the overall modularity of the obtained partition can
be enhanced. These steps are repeated iteratively until a maximum of modularity is
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reached. The computational complexity of the approach is empirically evaluated to be
O(nlog(n)).

In divisive approaches different criteria can be used for splitting the cluster. The Newman-
Girvan algorithm is the most known representative of this class of approaches that use
modularity optimization in a separative way [Newman, 2004b]. The algorithm is based
on the simple idea that a tie linking two communities should have a high betweenness
centrality. This is naturally true because an inter-community tie would be traversed by
a high fraction of shortest paths between nodes belonging to these different communi-
ties. Considering the whole graph G, the algorithm iterates for m times, cutting at each
iteration the tie with the highest betweenness centrality. This allows to build a hier-
archy of communities, the root of which is the whole graph and leafs are communities
composed of isolated nodes. Partition of highest modularity is returned as an output.
The algorithm is simple to implement and has the advantage to discover automatically
the best number of communities to identify. However, the computational complexity is
rather high: O(n2m+ n3 log(n)). This is makes it unsuitable for large-scale networks.

Yet another interesting work has been proposed by P. Pons et al. [Pons and Latapy,
2006] which is based on finding node similarity using random walks. The distance is
calculated using the probabilities that a random walker moves from one node to another
in a fixed number of steps. The numbers of steps should be large enough to cover a
significant portion of the network. The nodes are grouped into communities through an
agglomerative hierarchical clustering and modularity is used to find the best partition
in the resulting dendrogram. This algorithm is commonly known as Walktrap. The
algorithm runs with a time complexity of O(n2d), where d is the depth of dendrogram. d
being often small for real graphs which are sparse, the practical computational complexity
is O(n2 log n) [Fortunato, 2010].

Last but not the least, is the method of Infomap partitioning algorithm proposed by M.
Rosvall et al. [Rosvall et al., 2009]. With greedy modularity optimization, this method
produces a partitioning of the network which are generally of very high quality. S.
Fortunato [Fortunato, 2010] evaluated several detection methods and concluded that, of
the methods tested, Infomap was the most accurate. This algorithm attempts to identify
a coarse-grained representation of how information flows through a network. The goal is
to optimally compress information needed to describe the process of information diffusion
across the graph. Each cluster is given a name or number and each node inside a cluster
is given a local name or number. Nodes in different clusters may have same local names.
A random walk in the network can thus have a structure: [name of cluster Ci- local
name of node vi - local name of node vj - . . . - local name of node vk - a code
indicating a link outside - name of cluster Cj] . An example of this is given in
figure 6.2. The goal of the algorithm is to find a partitioning and labeling of nodes in
the network so as to minimize the expected length of a random walk’s description. An
initial clustering is identified using a greedy algorithm, and simulated annealing is then
used to improve the results.

The modularity optimization based approaches make some implicit assumptions that the
best partition in the graph is the one that maximizes the modularity and if a network has
a community structure, then partitions inducing high modularity values are structurally
similar. However in recent works it has been shown that these assumptions may not
be true. In the work of B.H. Good et al. [Good et al., 2010], authors show that the
modularity function exhibits extreme degeneracy. It accepts an exponential number
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Figure 6.2: An example for Infomap.

The nodes can have same local names inside communities. A random path between node v1 of

community C1 and node v5 of community C3 is [C1 - v1 - v2 - C2 - v1 - C3 - v2 - v3 - v5]

of distinct high scoring solutions and typically lacks for a clear global maximum. In
a few other work [Fortunato, 2010], it has been shown that communities detected by
modularity maximization have a resolution limit. These serious drawbacks of modularity-
based algorithms motivated the research for alternative approaches. Some interesting
emerging approaches are label propagation approaches [Raghavan et al., 2007] and seed-
centric approaches [Yakoubi and Kanawati, 2014] which we will describe later.

Propagation based approaches come with an advantage of a comparatively faster
execution time unlike modularity based approaches like Louvain approach which have
high computational complexity that makes them costly to be used in large-scale networks.
One prominent work in this category is the work proposed by U. N. Raghavan et al.
[Raghavan et al., 2007] which is a simple and fast method based on label propagation
algorithm. The basic idea is that each node vi in the network is assigned a label li. a
synchronous update of labels is done by selecting the most frequent label in the direct
neighborhood.

li = argmax
l

|Γl(vi)| (6.2)

where Γl(vi) ⊆ Γ(vi) is the set of neighbors of vi that have label l. The algorithm
iterates until a stable state is reached where no nodes further change their label. The
ties are broken randomly. Nodes having same labels are grouped as a community. The
computational complexity of each iteration is O(m). Hence the overall computational
complexity is O(rm) if r is the number of iterations before convergence. However, these
algorithms have a some serious drawbacks:

1. There is no guarantee of convergence to a stable state.

2. It lacks robustness as different runs may produce different partitions due to random
breaking of ties.

A few attempts have been made to deal with these limitations. Asynchronous, and semi-
synchronous label updating have been proposed to hinder the problem of oscillation
and improve convergence conditions [Cordasco and Gargano, 2012; Raghavan et al.,
2007]. However, these approaches harden the parallelization of the algorithm by creating
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Figure 6.3: Seed centric local communities in a network

dependencies among nodes and they increase the randomness in the algorithm making
the robustness even worse. Another interesting way to handle the instability of label-
propagation approaches consists of simply executing the algorithm k times and apply an
ensemble clustering approach on the obtained partitions

Seed centric approaches are based on the idea of identifying some important nodes in
the network, called seed nodes around which local communities can be computed [Shah
and Zaman, 2010; Yakoubi and Kanawati, 2014]. There are three basic steps in these
approaches:

1. Identification of seed nodes.

2. Local community detection around the seed nodes.

3. Final community computation from the sets of local communities found in previous
step.

Figure 6.3 shows a simple example of such approaches. A special case of seed centric
approches is Leaders driven algorithms. Nodes of the network are classified into two cat-
egories: leaders and followers. Leaders are the nodes that are representative of commu-
nities. Followers can be assigned to most suitable communities identified by the leaders.
Different methods can be used for node classification and community assignment.

The work of R. Khorasgani et al. [Khorasgani et al., 2010] propose an approach based
on k − means clustering algorithms. With an input of number of communities (k) to
be identified, k nodes are randomly selected which are labeled as leaders and the rest
are followers. Each leader represents a community and followers are assigned to the
community of nearest leader node. Different levels of neighborhood are allowed in this.
If a follower is not able to find a nearby leader node, then it is labeled as outlier. When
all followers are assigned a community, then a new set of leader nodes are computed.
At this step the most central node in the communities found are considered as the new
leaders. The process is repeated with the new set of leaders until stabilization is reached.
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The convergence speed depends on the quality of initially selected k leaders. The best
approach to find initial set of leaders, according to experimentation is to select the top
k nodes that have the top degree centrality and that share less common neighbors.

Another interesting work is that of LICOD proposed in [Yakoubi and Kanawati, 2014].
It is also a seed-centric approach having leader and follower nodes. The different steps
of the algorithm are described below:

1. Search for the nodes likely to be leaders. This can be done using ranking of nodes
based on various criteria. Classical metrics of centrality are very useful for this.

2. The list of leaders thus found is further reduced by grouping leaders that have
higher probability of being in the same communities.

3. For each node in the network (leaders/followers), membership degrees to all com-
munities (represented by the leaders) is found. A ranked list of communities based
on membership degree is obtained for each node. The communities with highest
membership degree are ranked on the top.

4. Each node will then update its community preference list by merging it with those
of its immediate neighbors. Different rank aggregation techniques can be used
for this purpose (See chapter 4). This step will be repeated until stabilization is
obtained for the ranked list of communities at each node.

5. In the end each node is assigned to the top community in its final ranked list of
membership.

Having a look on a few important works in community detection we will proceed to see
how they have been used for the task of link prediction. Further details and surveys on
community detection algorithms can be found in [Fortunato, 2010; Leskovec et al., 2010;
Papadopoulos et al., 2012; Tang and Liu, 2010].

6.3 Link prediction using community information

Looking at the work combining link prediction with community detection we can say that
there are many more things to be explored in this regards. However, few researchers have
attempted to use network partitions for link prediction network.

One such work is that of A. Clauset et al. [Clauset et al., 2008], where a hierarchical
structure of the network is found by creating a binary dendrogram that joins nodes into
groups. It is a bottom-up approach where each node belongs to its own community in
the beginning. Each internal node in the dendrogram joins two groups together to form
a larger group. For two nodes u and v, number of links between them is calculated and
normalized by total number of possible links between the two. The value thus obtained
is interpreted as the probability of getting the two nodes linked.

Another category of link prediction models is that of stochastic block model [Airoldi
et al., 2006; Lü and Zhou, 2011]. In these kinds of models all nodes are grouped to form
partitions. The linking probability between two nodes is then found depending on the
group memberships of the nodes. These two methods are also discussed in the state-of-
art in chapter 3. The main disadvantage of these approaches is that these are practically
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inapplicable to large scale networks due to the complexity involved in finding an optimal
dendrogram or partition.

We found some interesting works that use communities in a different way to enhance the
values of attributes characterizing candidate node pairs. In the link prediction approach
proposed by N. Benchettara [Benchettara, 2011], author have presented a supervised
machine learning based approach for predicting new links in bipartite graphs. In this
they have used community information as an attribute characterizing unlinked node
pairs. This attribute can have value 1 or 0, based on the fact that the two concerned
nodes belong to same community or not. They show enhancement of prediction result in
terms of F1-measure on including community information during learning and validation.

In a recent work proposed by S. Soundarajan et al. [Soundarajan and Hopcroft, 2012],
the authors propose to include community information in attributes but in a different
way. They focus mainly on similarity based link prediction measures like common neigh-
bors, Jaccard’s coefficient, resource allocation etc. They propose to modify these simple
similarity measures to add community related information. The main principle of the
work is that two nodes sharing common neighbors in same community can have greater
probability of having a new link. The authors propose to assign extra points for neigh-
bors shared between two nodes u and v that are in the same communities as u and v.
Also extra points can be given when u and v are in the same communities. Points are
also added if both criteria are true. Based on these conditions, authors propose five dif-
ferent ways of adding extra points to the topological scores obtained for pairs of unlinked
nodes. In the end, they present a hierarchical link prediction model based on the work of
Clauset et al. [Clauset et al., 2008]. They do a 10 fold cross validation to find results in
terms of precision and AUC. The community enhanced similarity measures outperform
the base metrics in terms of precision while AUC is comparable for both.

A small example of this is provided in figure 6.4. Common neighbors for any two nodes
x and y is computed as CN(x, y) = |Γ(x) ∩ Γ(y)|. With a set of communities C =
C1, C2, ..., Ck) found by any community detection algorithm applied to the network,
C(x) is the subset of communities that contain node x. We chose two ways to add points
to common neighbor score:

1. Extra points are added for each common neighbors that lie in the same community
as x and y i.e

CN1(x, y) = CN(x, y) +
∑

u∈Γ(x)∩Γ(y)

|C(x) ∩ C(u) ∩ C(y)| (6.3)

2. Extra points are added if both nodes x and y are in the same communities.

CN2(x, y) = CN(x, y) + |C(x) ∩ C(y)| (6.4)

Figure 6.4 shows calculations of these versions of common neighbors score for two pairs
of nodes in a sample network.
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Figure 6.4: An example to find modified versions of common neighbors
For node pair (v2, v4): CN = 2 ; CN1 = 2 + 2 = 4 ; CN2 = 2 + 1 = 3

For node pair (v2, v6): CN = 1 ; CN1 = 1 + 0 = 1 ; CN2 = 1 + 0 = 1

6.4 Data sampling using community detection algorithms

Under-sampling or down sampling, as we have seen before in chapter 3, is a process of
selecting or filtering out a portion of data so as to reduce the size into a manageable
amount and with a goal of avoiding or minimizing loss of valuable information. It has
great importance in the task of supervised or unsupervised link prediction, especially
when we are dealing with huge and sparse networks where the number of potential
candidates is often extremely large. The goal of sampling of data should be certainly
to reduce the size, while not hampering the final prediction result in an adverse way.
Another use of this approach is to deal with the class imbalance problem or class skewness
which greatly affects classification based models. In such a scenario the models learned
during the training phase are unable to adapt equally for the minority classes as they
do for majority class. So while they are used for classification, there are greater chances
for having a bias towards the majority class. In link prediction, the correct classification
of positive class instances is more important but they represent the minority class, the
negative class being the majority. So it is very crucial in link prediction, to remove a few
candidates from the majority class (negative class) so as to learn a better model.

A seminal work on under-sampling, is the approach proposed by M. Kubat et al. [Kubat
et al., 1997]. In this work, authors discuss the problem of class imbalance in the context
of machine learning. They show how learning a model from a dataset having high class
imbalance can result in a highly biased prediction by the classifiers. Thereby, they pro-
pose a solution named One-sided selection in which all positive examples (minority class)
are kept intact and random selection is done on the negative examples (majority class) to
find a set of representative negative examples. This removes all negative examples that
are believed to be borderline or noisy. This approach is very relevant in the context of
link prediction where we definitely want to keep all the positive examples while learning
the model.

Selection of negative examples can be done randomly, as it is case in the work of M. Kubat
et al. [Kubat et al., 1997] or based on certain other criteria relevant in the context of
link prediction. In [Lichtenwalter et al., 2010], authors present a distance based sampling
method. They explore the role of distance between nodes in determining class imbalance
ratio. They suggest to restrict the distances between the nodes in the network to a
threshold say d. So with increase in d the numbers of potential candidates for link
prediction will also increase and this increase is very sharp. Thus, authors suggest to
treat samples obtained for different distance threshold separately in supervised learning
task.
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The sampling of data is mostly done on the learning data. Sometimes it is required to
sample test data also especially when extremely large number of test examples causes
unreasonable demands on processing of resources and storage. If for any reason this has
to be done, proper care should be taken based on the context where link prediction is to
be applied. For example during link prediction in terrorist networks where identifying
every possible criminal links is essential, sampling of test data may lead to missing a
truly positive link and this will be a serious issue. So in such cases where missing a true
positive link is much important, sampling of test data should be avoided. Where as it
can be very well used for link prediction in social collaboration networks in the context
of recommendation of interesting links to users. In such cases missing a few positive links
during prediction is affordable and due to the huge sizes of network which tends to grow
even more with time, under-sampling can be very useful. Also while sampling test data,
it is important to respect the distribution of positive and negative examples.

6.4.1 Community based under-sampling

During our research work, we often came across the concept of community detection
where nodes of the network are grouped based on some common characteristics or role
played by them in a network.

Motivation: While working on multiplex networks, we did a small experiment to see
the effect of communities in the co-authorship network. We wanted to see how links
are distributed across different communities in a co-authorship network. What we did
was, we applied a community detection method to the three layers of multiplex networks
of DBLP data (see chapter 5, section 5.4). A multiplex network is network having a
layered structure showing different kinds of relations between same types of nodes. In
this experiment, the three layers represent co-authorship relation, co-venue relation, and
co-citing relation between author nodes respectively. The three sets of communities thus
found were combined to find a single set of communities. This was used to form a
coarsed (see section 6.6) co-authorship graph where the communities (groups of nodes)
were represented as nodes and edges were added if there is at least one link between
nodes belonging to two communities. Thus we get a weighted coarsed graph, the weights
on edges being the number of links shared between the nodes of two corresponding
communities. The links can lie inside communities (intra-community links) and they
can be between nodes belonging to different communities (inter-community links. The
inter-community links) can be of two kinds: One that are shared between communities
which are already linked in coarsed graph and the other are the links that are shared
between communities which are not directly linked in coarsed graph. So if we categorize
links in a network, there will be three basic types:

• Type 1: Links inside a community i.e. intra-community links.

• Type 2: Inter-community links when the communities are not directly connected
in the coarsed graph.

• Type 3: Inter-community links when the communities are directly connected in
the coarsed graph.

Figure 6.5 illustrates the same diagramatically.



Chapter 6. Communities and Link Prediction 99

Figure 6.5: Distribution of links inside and outside communities.

Type 1: Links inside a community (intra-community links); Type 2: Inter-community links

when the communities are not directly connected in the coarsed graph; Type 3:

Inter-community links when the communities are directly connected in the coarsed graph.

In our experiment, we focused on the distribution of positive examples in communities
to see in which area more positive links appear. We counted the number of positive
examples on co-authorship network belonging to three types. This has been accounted
in table 6.1. As we can see in the table we used two well known community detection
algorithms Label propagation algorithm (LPA) and Walktrap, for finding communities.
Communities were found in multiplex network having three layers of co-authorship, co-
citation and co-venue. LPA, being an unstable algorithm, was run 50 times on each layer,
thus finding 50 sets of communities on each. These were then combined to form a single
set. For Walktrap we chose the default random path length i.e 4. The communities thus
obtained were used to form the compressed co-authorship graphs for different periods of
time.

We observed that most of the positive examples in the co-authorship network are inter-
community links. Of these, maximum number of positive examples are formed between
nodes belonging to communities which are not linked with each other in the condensed
graph. That means, these communities did not have any collaboration between their
authors in the past. And the minimum numbers of positive examples were found inside
communities. The reason may be that all possible links have already been established
inside a community or the authors inside a community prefer to collaborate more outside
their community. This can be a reality in the field of scientific collaboration. But we
cannot say the same is true in other kinds of network like social interaction networks
or biological networks. The pattern of appearance of positive links can differ in these
networks. Hence, we would like to specify here that the outcome of this study is very
specific to scientific collaboration network.

However this observation made us think if most of the positive examples lie between
communities, what will happen if we restrict the negative examples to the same region
also. This led us to come up with the concept of under-sampling using communities
which is described next.
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Community de-
tection method

Years
#POS #Type 1 #Type 2 #Type 3

Learn Label

LPA (n=50)

1970-1973 1974-1975 16 1 12 3
1972-1975 1976-1977 49 0 35 14
1974-1977 1978-1979 93 2 86 5
1980-1983 1984-1985 426 23 365 38

Walktrap (steps=4)

1970-1973 1974-1975 16 1 9 6
1972-1975 1976-1977 49 4 30 15
1974-1977 1978-1979 93 4 68 21
1980-1983 1984-1985 426 23 313 90

Table 6.1: Distribution of positive examples inside and outside communities
#POS: Numbers of positive examples found in the learning graphs

#Type 1, #Type 2, #Type 3: Numbers of positive examples of Type 1, Type 2, Type 3

Community based under-sampling of negative examples: We believe that the
information captured in communities can very well be used in filtering of node pairs
more relevant for the prediction task. This can allow us to have a safe under-sampling
of examples without or less loss of information. Our approach is based on One sided
sampling [Kubat et al., 1997]. So we keep all the positive examples. Out of negative
examples, we propose to select the node pairs where both nodes do not belong to the
same community. That means, they lie in the belt of inter-community links. This is
the region where we observed the presence of most of the positive examples. Hence the
negative examples that are found outside the communities can be more informative than
those found inside the communities. These node pairs can better represent the negative
class and can help to learn a better classification model.

Algorithm 3 Community based under-sampling

Input: G =< V,E > where V is set of nodes and E is set of edges;
Community detection algorithm A;
(P,N) where P is set of positive examples and N is set of negative examples
such that (x, y) ∈ N where x, y ∈ V and (x, y) 6∈ E
Output: (P,N ′) where N ′ is set of sampled negative examples

Apply A on G to find communities C = C1, C2, ..., Ck

If a node v belongs to a community Ci, then membership(v, C) = Ci

Initialize empty list N ′

for (x, y) in N do
check = false
if membership(x,C) == membership(y, C) then
check = true

end if
if check == false then
N ′.add((x, y))

end if
end for
return (P,N ′)
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6.5 Experiments

We implement our concept of under-sampling on the same data of DBLP co-authorship
networks formed from data corresponding to year 1970-1979. The information about
the three graphs for year 1970-1973, 1972-1975 and 1974-1977 respectively can be found
in table 4.1 in Chapter 4. We have used four community detection methods: Louvain
[Blondel et al., 2008], Walktrap [Pons and Latapy, 2006], Infomap [Rosvall et al., 2009]
and LICOD [Yakoubi and Kanawati, 2014]. The numbers of communities found by each
algorithm on different graphs is reported in table 6.2. Also, we compute random samples
and distance based samples. For random sampling, we have selected randomly from lot
of entire negative examples, n examples keeping n as close as possible to the numbers
found by the community based methods. For distance based sampling we have used two
values of distance between nodes of negative examples d ≤ 5 and d ≤ 10. The number
of examples found from all these sampling techniques has been reported in table 6.3.

Graphs Louvain LICOD Walktrap Infomap

1970-1973 9 9 8 16
1972-1975 14 29 17 37
1974-1977 17 25 27 47

Table 6.2: Number of communities found in DPLP co-authorship graphs

Graphs
# POS # NEG Sampling method # Sampled NEG

Train Label

1970-1973 1974-1975 16 1810 Louvain 1639
Walktrap 1553
LICOD 1507
Infomap 1737
Distance ≤ 5 810
Distance ≤ 10 1767
Random 1648

1972-1975 1976-1977 49 12141 Louvain 11122
Walktrap 11569
LICOD 11382
Infomap 11941
Distance ≤ 5 3686
Distance ≤ 10 11030
Random 11123

1974-1977 1978-1979 93 26223 Louvain 24833
Walktrap 23835
LICOD 25150
Infomap 25839
Distance ≤ 5 7832
Distance ≤ 10 24222
Random 24831

Table 6.3: Original and sampled examples found on co-authorship graphs

Using all these examples we do a supervised machine learning based classification using
a simple decision tree algorithm. For this we use TreeLearner decision tree algorithm of
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data mining tool Orange1 [Demšar et al., 2013] with default parameters. The datasets
used for this are listed in table 6.4.

Dataset Learning year Test year

Dataset 1 1970-1973 1972-1975
Dataset 2 1972-1975 1974-1977

Table 6.4: Datasets for experiment with supervised machine learning algorithms

Training of the model is done on sampled datasets where as validation of the model is
done on the original and complete dataset containing all negative examples. Figure 6.6
shows the performance of the link prediction model in terms of F1-measure and AUC.
Results of random sampling correspond to the average result of 10 random samples
based models. The lower values for AUC is due to the fact that we test our model on
the original raw dataset derived from graphs without any sort of filtering unlike a few
state-of-art work. We believe that sampling of test data will not give the true picture of
the performance of the method in real scenario and should be avoided.

It can clearly be observed from the figure that learning from a set of examples sampled us-
ing communities produces a model that outperforms models trained on original datasets,
random samples and distance based samples. One can also notice that the training done
on random samples produce better result than that of distance based samples. The fail-
ure of distance based sampling may be due to the fact that nodes which are closer are
theoretically more similar and have a greater tendency to form an edge. Thus removing
the ones with distance greater than a threshold causes loss of some relevant information
about negative class. Within community based sampling we see that Louvain method
does not give a good result on dataset 1 where as it is the best choice for dataset 2. The
other three community algorithms have a comparative result in both datasets in terms
of both F1-measure and AUC and their result is almost consistent on both datasets.

Another important point that we notice here is that Walktrap performs quite well in
both datasets where as the performance of distance based sampling methods is not as
good. The basic idea behind Walktrap is that if we perform random walk in a network,
then these walks are likely to stay within same communities as there are very few edges
that lead outside a given community. The distance to be covered in random walks can
be restricted to a certain length and the best modularity decides which level of partitions
to chose form the dendrogram obtained. So, we can say that distance and path length
can serve as a good criterion for under-sampling but careful selection of constraints are
needed to make it useful for the task.

1http://orange.biolab.si/
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Figure 6.6: Results on the two datasets for Decision tree algorithm
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6.6 Large network coarsening using communities: A per-
spective

Communities can be used for another purpose in analysis of complex networks. They
can be used for corsening of large graphs. Graph coarsening is the process of grouping
nodes together and building condensed and smaller graphs from these groups. It is a
technique largely used for multi-level partitioning of huge graphs. It consists of three
steps: Coarsening, Initial partitioning and Uncoarsening [Buluç et al., 2013; Karypis and
Kumar, 1995]. Main goal of coarsening is to gradually approximate the original problem
and input graph with fewer degrees of freedom [Buluç et al., 2013]. This goal is achieved
in multilevel partitioning by creating a hierarchy of condensed graphs with decreasing
sizes in such a way that cuts in the coarsed graphs can reflect the partition in the orig-
inal fine graph. Coarsing is usually stopped when the graph is sufficiently small to be
initially partitioned using any standard algorithm. After obtaining the initial partitions,
uncoarsening is done which is the process of safely recovering the original graph from the
condensed form. The coarsed graph is mapped to fine level and the partition is improved
using some local improvement method. This process of uncoarsening and local improve-
ment is carried on until finest hierarchy if achieved. This process is diagramatically
illustrated in figure 6.7.

Figure 6.7: Coarsening and uncoarsening of graphs

(source. http://www.almob.org/content/9/1/12/figure/F4). The first row shows the process

of coarsening merging a few nodes at each step. The second row shows the process of uncoarsening

after partitioning the coarsed graph.

There are many ways of doing coarsening of graphs. In the work by G. Karypis et
al. [Karypis and Kumar, 1995], it is done by finding maximal matching and collapsing
together the nodes that are incident on each edge of matching. A matching of a graph is
a set of edges, in which no two edges are incident on the same node. Thus in this process
not more than two edges are grouped together at one time. This matching can be done
using many heuristic algorithms like random matching, heavy edge matching, light edge
matching etc. [Buluç et al., 2013].

We suggest to use any community detection algorithm for the same purpose i.e. graph
coarsening. We are hopeful that due to their more logical base of grouping the nodes in a
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complex network, they can produce better condensed graphs. One successful attempt in
this direction has been made by L. Wang et al. [Wang et al., 2014]. In this work authors
propose a multi-level label propagation method for graph partitioning which is based on
the use of label propagation method for community detection (See section 6.2).

In our case, we propose to use graph coarsening using communities for the purpose of
link prediction. First any fast and efficient community detection method can be applied
to the graph to identify groups of nodes in the form of communities which will form
nodes in a compressed graph. The algorithm can have the following steps:

1. Apply a community detection algorithm on the large graph.

2. Merge the nodes in same community to form a single node in compressed graph.

3. Add edges in compressed graph based on the presence of edges between nodes
belonging to different communities in the original graphs. These edges will have
weights which is equal to total number of inter-community edges in original graph,
for communities corresponding to nodes taken into consideration in compressed
graphs.

This whole process of coarsening will reduce the size of the graph to work with and it
will be easier to implement various standard link analysis methods. For using this graph
in the task of link prediction, we have to keep in mind that huge compression of graph
may not be very useful as it may lead to unwanted suppression of information. So it is
essential to decide a minimum compression rate depending on the kind of network on
which the process is to be implemented.

A more generalized approach will be to do graph coarsening using community detection
along with diverse linking information available in a complex network in the form of
multiplex networks. Our suggested algorithm has the following steps:

1. Apply any community detection algorithm on different layers of graphs representing
a multiplex network.

2. Identify which sets of nodes are always together (that means always in the same
community) in the different layers.

3. Binding such nodes together, represent them as single nodes to construct a com-
pressed graph.

4. The compressed graph will have weights on edges, which are computed as the total
number of edges between two groups of nodes in the original graph (one of the
layers), and which represent single nodes in the compressed graph.

Another important point is that we are doing coarsening on only one layer of the network
on which prediction of links is to be done (any analysis task) but using information from
all three layers. This allows us to do coarsening on any layer of our choice using the same
process.

We did a small experiment using the DBLP networks. We used two of community detec-
tion methods: Label propagation approach (LPA) [Raghavan et al., 2007] and Walktrap
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[Pons and Latapy, 2006]. Following our multiplex coarsening method we found con-
densed graphs for co-authorship, co-citation and co-venue layers. The obtained result
is presented in table 6.5 along with the ratio of nodes and edges in the coarsed and
original graphs. It can be clearly seen that LPA has higher compression percentage for
larger networks while Walktrap has a higher compression rate for comparatively smaller
networks.

Use of coarsening for community detection is straightforward. It is easy to apply steps
similar to multilevel graph partitioning. Community detection methods can be applied
on the compressed graphs and uncoarsening will allow to obtain communities in the
original graphs. The same can be applied to compressed graphs in a multiplex scenario.
However the quality of communities found in the end will largely depend on the graph
partition technique used in the initial partitioning step.

For application in the link prediction task also the graph coarsening can be very helpful
to deal with the problem of computation and application of topological measures in very
large networks. However there are many questions that need to be answered. How and
where can the compressed graphs be used? A straightforward way is to use them for
computation of topological measures on the compressed graphs. Then the question is
how to use the values thus obtained to characterize the candidate node pairs belonging to
original network, because the topological measures are computed to characterize nodes
in compressed graphs (which represents groups of nodes from the original large graphs).
Another option is to do a kind of link prediction on the compressed graphs. That means
computation of topological measures and implementation of unsupervised or supervised
link prediction approach will done on the compressed graph to find links between unlinked
nodes in the compressed graph. These are actually probable inter-community links which
can further be used to determine actual new or hidden links in the original graph. The
interpretation of inter-community links found in the compressed graph to probable links
in the original graph is another big question. In other words, it is not yet clear how to do
a uncoarsening step taking advantage of the compressed graph for link prediction task.
All these require a lot of work and provide an interesting direction for further research.
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Community
Original Graph

Year
Coarsed Graph Compression ratio

Layers #Nodes (V) # Edges (E) #Nodes (v) #Edges (e) v / V e / E

LPA

Co-authorship 91 116 1970-1973 63 76 0.6923 0.6552
Co-venue 91 1256 63 821 0.6923 0.6537
Co-citing 91 171 63 121 0.6923 0.7076
Co-authorship 221 319 1972-1975 118 147 0.5339 0.4608
Co-venue 221 5098 118 2573 0.5339 0.5047
Co-citing 221 706 118 402 0.5339 0.5694
Co-authorship 323 451 1974-1977 190 255 0.5882 0.5654
Co-venue 323 9831 190 6025 0.5882 0.6128
Co-citing 323 993 190 619 0.5882 0.6234
Co-authorship 1371 2463 1980-1983 560 1010 0.4085 0.4101
Co-venue 1371 83849 560 34538 0.4085 0.4119
Co-citing 1371 13210 560 5305 0.4085 0.4015

Walktrap

Co-authorship 91 116 1970-1973 35 37 0.3846 0.3189
Co-venue 91 1256 35 261 0.3846 0.2078
Co-citing 91 171 35 55 0.3846 0.3216
Co-authorship 221 319 1972-1975 106 126 0.4796 0.3949
Co-venue 221 5098 106 1830 0.4796 0.3589
Co-citing 221 706 106 228 0.4796 0.3229
Co-authorship 323 451 1974-1977 144 172 0.4458 0.3814
Co-venue 323 9831 144 2825 0.4458 0.2873
Co-citing 323 993 144 333 0.4458 0.3353
Co-authorship 1371 2463 1980-1983 844 1224 0.6156 0.4969
Co-venue 1371 83849 844 38086 0.6156 0.4542
Co-citing 1371 13210 844 3386 0.6156 0.2563

Table 6.5: Coarsening of graphs in different layers of a multiplex network
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6.7 Conclusion

In this chapter we present how community detection algorithms can be used for under-
sampling of negative examples in the task of link prediction. We provide a global overview
of community detection task and different kinds of community detection algorithms avail-
able in existing scientific literature. We provide advantages and limitations of a few
benchmark community detection methods. We then describe the utility of communities
in the context of link prediction. To our knowledge a very limited attempts have been
made to include community information for the benefit of link prediction. We describe a
few such link prediction approaches in complex network that make use of communities.
Then we describe the method of under-sampling which is a well known solution to class
imbalance problem especially in supervised machine learning and how it has been used
in the context of link prediction in real networks that often face the same problem. We
present our proposed concept of under-sampling of negative example set using commu-
nity detection algorithms. We suggest that two nodes of a negative examples that belong
to the same community can be safely remove from the training set of examples resulting
in a better learning model for prediction of new links in scientific collaboration network.
The experimental results on DBLP co-authorship graphs justify our assumption and pro-
vide a strong base for further research in this direction. We would like to remind the
readers that this work of using communities for prediction co-authorship links is based on
some experimental observations in particularly scientific collaboration network of DBLP
data. So we cannot say at this stage if the same concept will work for other kinds of
networks like social interaction networks, biological networks, geographical networks etc.
The behavior of communities and distribution of links across communities can change
with different kinds of networks.
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Conclusion

Link prediction problem is not a new problem in information science and many methods
have been proposed time to time to deal with this problem. However, new challenges
have emerged with the continuous and rapid growth of complex networks. This report
presents our research work on link prediction problem in dynamic large graphs. The
main focus of our work is to analyze and predict links in bibliographical networks. We
apply our methods to predict co-authorship links. We make detailed studies about
the different existing link prediction approaches concentrating mainly on the topology
guided approaches. We suggest a two fold classification of link prediction approaches as
unsupervised, semi-supervised and supervised methods in one dimension and as dyadic,
sub-graph based and global methods in another dimension.

In this work, we have proposed a novel approach based on supervised rank aggregation
which has its roots in social choice theory. The approach is motivated by the belief that
each attribute can provide some unique information which can be aggregated in the end
to make a better prediction of future association between two unconnected entities in a
network. First we have come up with a new way of introducing weights in a well known
rank aggregation method. And secondly, we have proposed to apply this approach for
the purpose of link prediction in complex networks. We have evaluated our approach on
a co-authorship network obtained from DBLP database. The experimental results were
quite encouraging as our method seemed to perform better than the approaches using
classical machine learning algorithms for link prediction especially in terms of precision.
The most promising factor of using a Kemeny aggregation based model is its ability
to discard noise which has already been proved in the domain of meta-search engines
[Dwork et al., 2001].

Next we have attempted to expand the scope of link prediction by adding heterogeneous
link information in the form of multiplex networks. Multiplex networks are a subcate-
gory of heterogeneous networks which have a layered structure. Each layer is a graph
containing the nodes of the network but the edges in different layers are of different kinds.
Simple topological measures are computed on different layers. There is a target layer on
which prediction of link is to be made. The topological measures computed on the target
layer are direct attributes and the same computed on all layers except the target layer
are used as indirect attributes. An aggregate of the values of topological measures on all
the layers can also be used as attributes. We have also proposed to use an entropy-based
version of the topological measures which would take into account the existence of a
non-zero value for a measure in all layers. The last two types of attributes are called
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multiplex attributes. The application of these attributes for link prediction in multiplex
networks obtained for DBLP dataset showed that the performance of supervised decision
tree based model can be improved by including indirect and multiplex attributes.

Last but not the least we have tried to explore the utility of communities and community
based information in the context of link prediction. In this report we have given a brief
description of basic concept of communities and various community detection methods.
We have also provided details about a few works in which attempts have been made to
include community information as attributes in supervised link prediction model. We
have used communities to filter out the list of candidate node pairs that were considered
for prediction of new links but might not be very relevant for building a good model.
This approach helped us to build a better prediction model in the presence of high class
imbalance. We implemented this concept in a number of DBLP co-authorship networks
and showed that the prediction result was better after filtering of instances is done based
on communities. Moreover, the result for community based filtering was better than the
classical random filtering or distance based filtering.

An additional work includes development of a new topological measure that can be used
independently for unsupervised link prediction or as one of the attributes for supervised
link prediction. This measure is named path betweenness centrality, and it computes the
importance of a shortest path between two unlinked nodes in the form of a centrality
that is similar to the well known edge betweenness centrality. It tries to advocate the fact
that the importance of a shortest path between two nodes inside a network can reflect
some information about the linking probability of the two nodes. We experimented this
method for the prediction of co-authorship links in networks formed from DBLP data.
The performance of this measure was not the best but was better than few other path
based measures like truncated Katz and weighted shortest path length. So we believe that
it can be useful for the tasks of complex network analysis including link prediction. Its
major limitation is its computational complexity as it requires identification of shortest
paths between every pair of nodes in the network. More work needs to be done to explore
its real utility in the prediction task and other analysis tasks in complex networks.

7.1 Perspectives

We present below a few ideas and future directions for research built on the work pre-
sented in this thesis.

• Reduce complexity of algorithms: In large and ever growing complex networks,
it becomes extremely important to take care of the complexity of the algorithms
one is working on. In our case we have made a big attempt of trying to apply rank
aggregation algorithms which have their own limitations in terms of time com-
plexity. In order to avoid the limitations of Kemeny optimal aggregation(which is
NP-hard), we have focused on the concept of approximate Kemeny aggregation.
The use of merge sort has reduced the computational complexity to O(rn log n)
where r is the number of experts and n is the number of candidates in each input
ranked list. In order to enhance the performance of our approach and reduce the
computational complexity further, we are interested to use the concept of top− k
aggregation, where instead of aggregating the complete input lists, only the top−k
from each are considered for aggregation. This will greatly reduce the number of
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candidates involved in aggregation and thereby ease the computational process.
However, this will require a very careful selection of candidates and may require
aggregation of partial or even sometimes disjoint lists. In the work provided in
[Kumar et al., 2009], the authors have given a vivid description of two well-studied
approaches to achieve efficient top−k aggregations namely: early-termination algo-
rithms and pre-aggregation of some input lists. They propose generalized versions
of Threshold algorithm (TA) and No random-access algorithm (NRA) using pre-
aggregated intersection lists and they have shown its practical utility on large-scale
data of web pages and search engine queries. In our future work, we intend to apply
these algorithms to our approach. We are hopeful that it can greatly reduce the
computational complexity caused due to application of rank aggregation methods.

• Large network coarsening using communities: Another perspective of this
research directs towards using communities for coarsening of huge networks. This
may provide another solution of find a way to apply traditional network analysis
algorithms to large networks. Graph corsening (as discussed in chapter 6, section
6.6), requires grouping of nodes to build a compressed graph. Various criteria
and methods can be implemented to find groups of nodes, one of which can be
communities.In homogeneous networks, any fast and efficient community detection
algorithm can be applied to a large network to identify groups of nodes as commu-
nities. These communities are then used as nodes in the coarsed graphs. Edges are
added based on the presence of edges between nodes belonging to different commu-
nities in the original large graphs. Weights can be added to these edges according
to the numbers of inter-community links in original graph. For heterogeneous net-
work, in particular multiplex networks, the nodes of coarsed graph are found by
applying community detection algorithm to all layers of original network and then
identifying the sets of nodes that always belong to the same communities. Once
the coarsed graphs are found, they can be used for various network analysis tasks
including link prediction. However, there remains many questions to be answered
regarding how these coarsed graphs can be applicable in different tasks including
link prediction. All these needs more studies and provides an interesting direction
of future research. More discussion on application of coarsed graphs in the context
link prediction can be found in section 6.6 of chapter 6.

• Choice of efficient topological attributes: The choice of topological measures
used as attributes in a supervised link prediction task is very crucial. The individual
capability of different measures to identify a true positive link can greatly affect
the final performance of the supervised prediction model developed using them.
Moreover the individual performance of different topological measures differs with
types of network on which it is implemented. Also, not all measures perform
highly well all the time [Liben-Nowell and Kleinberg, 2007]. So proper selection of
topological measures is very essential. However, it is often very difficult to know
which measures are going to perform well without any experimentation. So, it is
better to implement some kind of selection procedure in the prediction approach
which will filter out the not-so-useful topological measures on the way of building
the prediction model. One such implementation has been done in [Bao et al.,
2013] using principal component analysis. Correlation between various measures
can be used to select the superior ones. We think that if such a selection method
can be implemented in our proposed supervised rank aggregation model, it will
really lessen the complexity of computation and also help in having a better final
prediction list. In the present case, in the supervised Kemeny based method we do
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a kind of filtering based on the weights of attributes obtained during the learning
phase. We leave all attributes that have zero weight. However, we think more work
needs to be done in this direction.

In our work on link prediction in multiplex networks, much work can be done for
implementation of better topological measures. Apart from applying the above
mentioned way, more different kinds of multiplex attributes can be explored based
on the recent advances in analysis of multiplex networks. For example we can take
into account the inter-layer links which has not been done in our approach. Also
we have applied very naive ways like average of the values of topological measures
found in different layers. Instead of that some more complex measures can be used
which will include the multiplex information in a much better way. We made an
attempt with the entropy based versions of topological measures but they do not
perform well always. Other such measures can also be explored in the context of
link prediction.
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LiPTaR : Link Predicton based Tag

Recommendation for Folksonomy

A.1 Introduction

Social tagging sites such as Delicious (for web site sharing), CiteULike and Bibsonomy
(two sites for sharing bibliographical data) have become a major tools of sharing resources
on the Web. In such sites, called also broad Folksonomies, users annotate resources (new
or existing ones) by a set of user-defined words called tags. The most important feature
of a folksonomy that makes it different from any other resource sharing networks, is the
freedom given to the users to select their own tags for annotating resources. This feature
gives an advantage of eased cost factor but at the same time, leads to various problems.
One key issue to handle is the tag ambiguity problem. It refers to the condition of having
the same tag being used to index different resources by different users or even by the
same the user but at different points of time. It may also refer to a condition where
similar resources can be indexed by different tags by different users. This witnessed
phenomena limits the utility of tags as a means for sharing new resources. One widely
studied approach to cope up with this problem is tag recommendation.

Different approaches for tag recommendation computation has been proposed in the
scientific literature. Some make use of resources contents [Mrosek et al., 2009]. Others
relay mainly analyzing the topological features of the graph induced from the ternary
relation linking users to resources the annotate [Jäschke et al., 2008]. However, according
to our knowledge, no prior work has proposed to mine the evolution of the folksonomy
graph in order to compute appropriate tags to recommend.

In this work, we describe a new approach for tag recommendation that we call LipTaR.
The original idea of the approach is to mine the dynamic of the tagging activity in order
to compute the most suitable tag for a given user and a given resource. The tagging
history of each user is modeled by a temporal sequence of bipartite graphs linking tags
to resources. Given a target user and a target resource, we first compute a set of similar
users. The tagging history of the identified set of users is merged in one temporal sequence
on bipartite graphs. The obtained sequence is used to learn a model of link prediction
in bipartite graphs. The learned model is then applied to predict tags to be linked to
the target resource and a list of top similar resources.
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A.2 Related work

Various approaches have been proposed for tag recommendation which can be broadly
categorized as:

• Content-based approaches involve extraction of tags from the content of the re-
sources or titles of the resources. They are efficient in recommending very relevant
tags but without considering user’s choice. These methods cannot be efficient when
the resources do not provide a rich content of information.

• Topology-based approaches find tags for recommendation by analyzing the graphi-
cal structures linking users, tags and resources. In this case the recommended tags
are mostly those, that has already been used in the system. They can prove to be
very efficient in cases without resource contents.

A content-based approach has been proposed in [Mrosek et al., 2009] where recommended
tags are generated from the content of the resources. Individual scores are calculated
based on different information provided by each resource and then an aggregated global
score is found for each tag. Tags with top five highest scores are selected for recommen-
dation. Another content-based approach is proposed in [Lu et al., 2009]. The proposed
approach is based on the observation that similar web pages usually have same tags. So,
each web page can share tags with similar ones. The propagation of a tag depends on its
weight in the originating web page and the similarity between the sending and receiving
web pages. The similarity metric between two web pages is defined as a linear combi-
nation of four types of cosine similarities, taking into account both tag information and
page content. In [Lipczak, 2009] authors propose yet another content-based approach
where recommendation computation is made in a three-step process: tags are first ex-
tracted from resource titles. The set of potential recommendations is then extended by
related tags proposed by a lexicon based on concurrences of tags within the resource
posts. In the third and final step tags are filtered by user’s personomy: a set of tags
previously used by the user.

In the category of topology-based approaches, one of the prominent work is given in
[Jäschke et al., 2008]. Here, authors compare a number of recommendation techniques
like collaborative filtering, PageRank and its modified version for folksonomy known as
FolkRank. They show that the FolkRank based recommender outperforms the other
two approaches. They propose two tag recommendation algorithms: an adaptation of
user-based collaborative filtering and a graph based recommender built on the top of
FolkRank. Tests were performed on the dense core of folksonomy, so it may not be very
representative. Moreover, they do not take into account the dynamic nature of a folk-
sonomy. Another work is given in [Zhang et al., 2009] in which authors propose a tag
recommendation algorithm based on an integrated diffusion on user-item-tag tripartite
graphs. Authors propose an algorithm using both user-resource relations and the col-
laborative tagging information. They emphasize on the fact that two resources, sharing
many common tags, have greater probability of being closely related in content. They
conclude that the use of tag information can significantly improve the accuracy, diversi-
fication and novelty of recommendation. Another graph-based method is FolkDiffusion
[Liu et al., 2010] which uses the concept of heat diffusion to rank tags. This method can
suggest user and resource specific tags without having topic drift. It uses a graph having
users, resources and tags with edge weights representing the relatedness between them.
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It uses the concept of physical phenomenon of flow of heat from high to low temperature.
The user and resource for which tag suggestion is to be made are given a temperature
more than zero. All other tags, users and resources are given a temperature equal to
zero. The heat is then assumed to flow from target user and target resource to all other
nodes according to the edges between them. After a certain number of iterations the
heat value on tags show their relatedness to target user and target resource and are
accordingly selected for recommendation.

A.3 LiPTaR system

Our system called LiPTaR is based on link prediction in folksonomy graphs. The system
takes as input a target user ut and a target resource rt. The goal is to compute a list of
tags best suited for the user ut to annotate resource rt.

Figure A.1: LiPTaR work cycle

Fig. A.1 illustrates the general outlines of the tag recommendation cycle applied in the
LiPTaR system. The cycle is structured in three steps :

1. First, the system computes a set of k most similar users Us based on their similarity
to ut. Many user similarity metrics can be used for this purpose. In the current
prototype the top k similar users have been found by application of k-nearest
neighbors with a similarity metrics based on both resources and tags used by a
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user. Another important aspect of this system is that while computing similarity,
it takes into account the users’s time of activity. So the similar users found have
at least one year of activity time common with the target user ut. Here we explore
the idea that users active during same period of time may have common interests
and choices.

2. Each user u ∈ Us is associated with a sequence of temporal bipartite graphs relating
resources added by user u to tags used by him at various point of time. These graphs
are combined to create a single resource-tag bipartite graph for training(Glearn).
During this process, only the graphs corresponding to a time within the duration
of training period are used. So, Glearn =

⋃

u∈Us

⋃tlearn
i=t0

Gi.

Similarly, Glabel and Gtest are also generated to be used for labeling of examples
and validation correspondingly. A couple of nodes (resource-tag pair) that are not
linked in Glearn but both belonging to the same connected component represent
an example (in terms of supervised learning convention). For each such couple of
nodes, we compute a set of topological attributes that characterize their roles in the
network as well as their similarity. The class label for them is obtained by checking
whether the couple of nodes is indeed connected in Glabel. If such a connection is
found then it is labelled positive in the supervised learning task and if not it is
labelled negative. All the training examples thus found are used by a supervised
machine learning algorithm to generate a classification model. This model is then
used to predict links in the validation graph Gtest in order to find probable links
between target resource rt and different tags during validation time period. It does
the same for each of the similar resources. At this point, we make an assumption
that the tags used by the similar users, for resources that are somehow similar to
the target resource, can also be useful for recommendation. In the end, we obtain
one or more lists of tags for annotating the resource rt and other similar resources.

3. At the end of step 2, we get one or more ranked lists of tags, obtained for rt and/or
a set of similar resources using the data related to retrieved similar users.These lists
include both already used tags and predicted tags. We apply a suitable ranked list
aggregation approach [Dwork et al., 2001] to merge these lists.

To sum up, the LiPTaR approach is conceived as a framework offering three main hotspots
to be adapted for research: a) the user and resource similarity metrics, b) the link
prediction approach to be applied to infer tags for recommendation, from the point of
view of each retrieved similar user and c) the rank aggregation method to be applied to
merge all obtained list of tags computed in step b).

A.4 Experiment

We experimented our system on data extracted from website CiteULike1 which is a bib-
liographic reference sharing website. Like any other folksonomy, users can share their
resources with other users and annotate them using their own tags. The dataset cov-
ers a time period from year 2004 to year 2010. The total number of data entries are
10, 504, 915. After pre-processing we get a tripartite graph with 71, 464 users, 2, 402, 913

1http://www.citeulike.org/
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resources and 489, 682 tags. We use only meaningful tags, discarding the system gener-
ated ones. We found that there are 397, 252 resources without a tag which counts for
16.53% of total resources.

The inputs for our tag recommendation system are a user (target user) and a resource
(target resource).We take a combination of Jaccard’s similarity coefficient based on both
tags and resources for computing similarity between users. As mentioned before, these
users also have some common time of activity. We make use of a modified version of
link prediction approach proposed in [Benchettara et al., 2010b] for prediction of new
links in the bipartite graph linking resources and tags used by top-k similar users. For
computation of resource similarity we use the same Jaccard’s coefficient but only based
on tags.

At present we are using the following topological measures: product of coefficient of
clustering, product of degree centrality, preferential attachment [Barabási et al., 2002],
an indirect computation of number of common neighbors with respect to tag and with
respect to resource, shortest path length, measure of Adamic Adar [Adamic et al., 2003].
Finally we use local Kemeny optimal method [Dwork et al., 2001] for list merging which
gives us an optimized aggregation and is computationally efficient.

We use data from period of 2005 − 2007 for training the link prediction model. We
use a boosted decision tree classifier (the Adaboost using J48 classifier) in the Orange2

platform. Validation is done on examples constructed from data of period 2006-2008 to
predict the tags used in period 2009. (We discarded the data of 2004 and 2010 as they
were not complete.)

The performance of the system is measured in terms of precision, recall and F-measure.
We experimented on 31 users and a varying number of resources for each of them. The
average precision is found to be approximately 0.01345, average recall is 0.385 and average
F-measure is 0.02326. The average precision and F-measure may seem to be very less,
but low values are due to the fact that for the moment we have not restricted the number
of predicted tags to be used for recommendation. The result is also affected by the data
sparsity of the large scale dataset we are using.

Figure A.2: Preliminary Results

2http://orange.biolab.si/
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To make a comparison with a classical approach, we experimented with a basic method of
tag-based collaborative filtering. The input graph is the union of the temporal Resource-
Tag graphs for top k similar users.We make a prediction of tags for resources used
by the target user in validation period of 2009. This prediction is made on the basis
of target user’s history and the choice of similar users. Using this approach, for the
same number of target users and target resources, the average precision is found to be
approximately 0.01335, average recall is 0.011 and average F-measure is 0.01113. Fig. A.2
shows a comparison between the two approaches. Our approach seems to give a better
result as compared to collaborative filtering method which encourages us to continue our
experiment further.

A.5 Conclusion

In this chapter, we present a new approach of tag recommendation in folksonomy based
on a method for link prediction in the bipartite graphs. The approach includes de-
composition of a tripartite graph representing a folksonomy, into three bipartite graphs.
The proposed approach is implemented as a framework structured around three main
hotspots: 1) the similarity metrics to be used for retrieving similar users and similar re-
sources, 2) the link prediction approach to apply and 3) the ranked list merging method
to use. Results obtained from applying first implementation of this framework to a real
world dataset extracted from a broad folksonomy (where tagging is oriented towards
sharing resource within a community) argue for the validity of the approach. Further
experiments are required in order to evaluate effects of using more elaborate similarity
metrics for retrieving similar users and similar resources. Evaluating different rank ag-
gregation results as well as applying the framework to different types of folksonomies
including narrow ones (where tagging is mainly motivated by personal usage).
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Path Betweenness Centrality

We propose a new measure named path betweenness centrality, which will compute the
centrality of a shortest path between any two nodes in a graph with respect to all shortest
paths of the graph. That means it counts how many of the shortest paths in the graph
contain a shortest path between two nodes under observation. This measure will try to
find the importance of a shortest path between two nodes in linking any other nodes in
a graph.

We experiment to find the utility of this measure in the context of link prediction. We
apply it to datasets derived from co-authorship networks using the real data of DBLP.
Next we formally present path betweenness centrality and briefly explain how it can be
used to predict new links .

B.0.1 Path betweenness centrality

Let G = (V,E) be a network, with V is the set of nodes and E is the set of edges. Let
paths(u, v) be the set of shortest paths between nodes u and v. We say that nsp(u, v) =
|paths(u, v)| is the number of shortest paths and dist(u, v) is the shortest path length.
The betweenness centrality for a path p ∈ paths(u, v) is defined as :

cB(p) =
∑

s,t∈V and (s,t) 6=(u,v)

nsp(s, t | p)

nsp(s, t)
(B.1)

nsp(s, t | p) is the number of shortest paths between s and t passing through path p.
If the number of shortest paths between two nodes is more than one, then the path
betweenness centrality of the pair of nodes is the maximum of the centralities found for
all the shortest paths between them. Another way is to apply the average, sum or any
other suitable function to aggregate these multiple centrality. But for the time being we
will study maximum.

The basic idea underlying this measure is to weight shortest paths in function of there
degree of inclusion in other shortest paths in the network. Figure B.1 illustrates compu-
tation of path betweenness centrality on a sample graph.

This measure can be used for predicting new links by assuming that the more central a
shortest path between two nodes is, the more are the chances of having a direct connection
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Step 1: Target network

Step 2: Node pair under consideration are (3, 5). The green color highlights the path for which

betweenness centrality is to be found.

Step 3: All shortest paths to be considered to find a path betweenness centrality. Numbers of

shortest paths containing the shortest path between node 3 and node 5 is 8 and centrality of

the path comes to be PBC(3,5) = 8.0. If normalized by dividing it by number of all shortest

paths, the value becomes PBC(3,5) = 0.2963

Figure B.1: An example to find the betweenness centrality of a shortest path between
a pair of nodes

between them at some point of time in future. Our link prediction approach is similar to
that of work of [Liben-Nowell and Kleinberg, 2007]. We rank all pairs of unlinked nodes
at a certain time t, based on their path betweenness centrality value. The k-top ranked
node pairs are considered to be the predicted new edges at time say t+ 1. Thereby the
performance of path betweenness centrality is measured.

B.0.2 Experiment

We did experiments on networks generated from DBLP1 data. Various datasets were
derived corresponding to different periods of time. Due to its computational complexity
and for a justified comparison between node pairs, we decided to use the largest connected
components of the networks. Hence, we use data between years 1970-1979 and 1980-1983.
We created six different datasets from this and computed the unlinked node pairs (We
call them examples as in machine learning. See section 3.3.2.1) to be used for validation.

1http://www.dblp.org
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The different graphs, datasets and numbers of positive and negative examples obtained
have been listed in table B.1 and B.2.

Graphs V E Density

1970-1973 91 116 0.0283
1972-1975 221 319 0.0131
1974-1977 323 451 0.0087
1980 147 232 0.0216
1981 241 407 0.0141
1982 202 310 0.0153

Table B.1: Co-authorship graphs used for generation of examples

Learning Labeling # Positive # Negative

Dataset 1 1970-1973 1974-1975 16 1810
Dataset 2 1972-1975 1976-1977 49 12141
Dataset 3 1974-1977 1978-1979 93 26223

Dataset 4 1980 1981 39 5515
Dataset 5 1981 1982 67 13411
Dataset 6 1982 1983 37 9069

Table B.2: Examples from largest connected component of co-authorship graphs

We implement an unsupervised prediction method (see section 3.3.1) to find the perfor-
mance of path betweenness centrality in link prediction. Further we compare it with a
few of path based, neighborhood based and node’s feature based measures as done in
[Liben-Nowell and Kleinberg, 2007] (see section 3.3.1). The different neighborhood based
measures used are: Jaccard’s coefficient (JC), Neighbor’s clustering coefficient(NFC),
Common neighbors (CN), Adamic Adar coefficient (AA), Resource allocation (RA); one
node feature based measure: Preferential attachment (PA); and path based measures:
shortest path length (SPL), truncated Katz coefficient (TKatz), and a weighted form
of shortest path length (WSPL).

Before going to the actual evaluation, we really wanted to understand how exactly path
betweenness centrality functions when it comes to prediction of positive links. So we
computed the probability of getting positive examples by varying the values of path
betweenness centrality in out DBLP datasets in order to verify if our assumption is
justified.

For all the datasets we found that the probability of getting positive examples is much
higher with lower values of path betweenness centrality. This is contrary to our initial
assumption as the lower values of the topological measure are able to identify more
positive examples. On explanation for this situation can be that when two unlinked
nodes have a shortest path with a high betweeness centrality, it means that they have a
shortest path which is more often passed to travel between any other two nodes in the
network. This also indicates to the fact that the two nodes may have a higher popularity
(in terms of degree or centrality) in their own respective local circles. For example, they
may have the highest degree within their respective groups of direct neighbors. And due
to which they do not feel any need to connect directly with each other during immediate
future. Another example can be that of authors of scientific papers in a co-authorship
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure B.2: Positive probability of path betweenness centrality

network (as it is in our case). If two authors are already highly connected or atleast are
highly connected in the local network of their direct neighbors, they can have a shortest
path with high centrality. But in spite of that, having high importance in their local
circles, they may not collaborate with each other, at least in immediate future. This is
a similar scene as shown by preferential attachment also when used for link prediction.
Hence here onwards we will assume that a lower path betweenness centrality of shortest
path with cause higher linking probability and accordingly ranking of examples is done.

Different topological measures including path betweenness centrality (PBC) are com-
puted on the corresponding graphs and examples (unlinked node pairs) are ranked based
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on the values. Then the top-k ranked pairs are taken as predicted new links and pre-
diction result is computed in terms of precision and AUC. AUC is computed using the
formula given in section 3.2.1 but the difference is that instead of exact score we compare
the ranks of negative and positive examples. So actually, we compute the probability
of finding a positive example ranked above a negative example in the list of prediction
which is the top-k ranked list. Also we are unable to take into account the equal ranks
between negative and positive examples, as we are not treating ties for the moment.
Ties are broken randomly whenever they appear in the score and dealing with ties dur-
ing ranking can be added to future updates of our method. The value of k for each
dataset is taken to be the number of actual new links. Tables B.3, B.4,B.5, B.6, B.7 and
B.8 summarize the results we obtained in terms of precision.

Looking at result in terms of precision, path betweenness centrality did not seem to be
working absolutely well for link prediction, although for some of the datasets it per-
forms better than truncated Katz, neighbor’s clustering coefficient, weighted shortest
path length and preferential attachment. However, in terms of AUC it is always per-
forming well, thereby justifying its capacity to rank a positive example above all negative
examples classified during the prediction process. Hence, this can be a motivation for
further experimentation on other networks to see its practical utility. Also, its relevance
in other complex network analysis tasks like community detection and influential node
identification can be explored.
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Topological measures Precision AUC

Neighborhood based

JC 0.0625 0.8667
NCF 0.0 0.0
CN 0.3125 0.2727
AA 0.125 0.0714
RA 0.125 0.0714

Node’s feature based PA 0.0 0.0

Path based

PBC 0.1875 1.0
TKatz 0.0 0.0
WSPL 0.0 0.0
SPL 0.3125 1.0

Table B.3: Results of prediction on Dataset 1 (k = 16)

Topological measures Precision AUC

Neighborhood based

JC 0.1633 0.7104
NCF 0.1633 0.3323
CN 0.4898 0.25
AA 0.1837 0.5611
RA 0.1633 0.5152

Node’s feature based PA 0.0204 0.5833

Path based

PBC 0.0612 1.0
TKatz 0.1224 0.2597
WSPL 0.0 0.0
SPL 0.4898 1.0

Table B.4: Results of prediction on Dataset 2 (k = 49)

Topological measures Precision AUC

Neighborhood based

JC 0.0645 0.6322
NCF 0.0323 0.5333
CN 0.2688 0.4141
AA 0.0645 0.4962
RA 0.0538 0.5250

Node’s feature based PA 0.0107 0.5652

Path based

PBC 0.0746 1.0
TKatz 0.0323 0.4778
WSPL 0.0107 0.1848
SPL 0.2688 1.0

Table B.5: Results of prediction on Dataset 3 (k = 93)
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Topological measures Precision AUC

Neighborhood based

JC 0.0769 0.6204
NCF 0.0513 0.4865
CN 0.3846 0.4167
AA 0.2051 0.3226
RA 0.1795 0.7813

Node’s feature based PA 0.0 0.0

Path based

PBC 0.0746 1.0
TKatz 0.0256 0.2632
WSPL 0.0513 0.0
SPL 0.3846 1.0

Table B.6: Results of prediction on Dataset 4 (k = 39)

Topological measures Precision AUC

Neighborhood based

JC 0.0298 0.9077
NCF 0.0448 0.4479
CN 0.2687 0.0555
AA 0.0448 0.6198
RA 0.1045 0.3119

Node’s feature based PA 0.0149 0.6364

Path based

PBC 0.1026 1.0
TKatz 0.0448 0.2135
WSPL 0.0298 0.9385
SPL 0.2985 1.0

Table B.7: Results of prediction on Dataset 5 (k = 67)

Topological measures Precision AUC

Neighborhood based

JC 0.1622 0.7742
NCF 0.0811 0.5294
CN 0.2973 0.0909
AA 0.0811 0.7255
RA 0.0811 0.8824

Node’s feature based PA 0.0270 0.0555

Path based

PBC 0.0746 1.0
TKatz 0.1081 0.2879
WSPL 0.0540 0.7714
SPL 0.4595 1.0

Table B.8: Results of prediction on Dataset 6 (k = 37)
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Performance of Topological

Measures

We summarize here the probability of getting a true positive links with increasing values
of different topological measures. These values have been computed on six different co-
authorship networks created from DBLP data. Table C.1 shows the different datasets
used, the corresponding years, and the number of examples in them.

Learning Labeling # Positive # Negative

Dataset 1 1970-1973 1974-1975 16 1810
Dataset 2 1972-1975 1976-1977 49 12141
Dataset 3 1974-1977 1978-1979 93 26223

Dataset 4 1980 1981 39 5515
Dataset 5 1981 1982 67 13411
Dataset 6 1982 1983 37 9069

Table C.1: Examples from largest connected component of co-authorship graphs
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.1: Positive probability of number of common neighbors
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.2: Positive probability of path Jaccard’s coefficient
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.3: Positive probability of path Adamic Adar coefficient
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.4: Positive probability of resource allocation
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.5: Positive probability of neighbor’s clustering coefficient
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.6: Positive probability of preferential attachment



Appendix C. Performance of Topological Measures 134

(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.7: Positive probability of truncated Katz centrality
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.8: Positive probability of shortest path length
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6

Figure C.9: Positive probability of weighted shortest path length
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DBLP Network Visualization

E.1 Co-authorship networks

We present below the visualizations of co-authorship graphs created from the DBLP data
corresponding to different time period. All visualizations have been done using Gephi
1 [Bastian et al., 2009]. The nodes represent authors of scientific papers and the links
are added if two authors have written or published an article together. There is also
visualization of the largest connected components (LCC) of a few graphs.

Figure E.1: Co-authorship network for year 1970-1973

1http://gephi.github.io/
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Figure E.2: Co-authorship network for year 1972-1975

Figure E.3: Co-authorship network for year 1974-1977
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Figure E.4: Co-authorship network for year 1980-1983

Figure E.5: Co-authorship network for year 1982-1985



Appendix E. DBLP Network Visualization 142

Figure E.6: Co-authorship network for year 1984-1987

Figure E.7: LCC of co-authorship network for year 1980-1983
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Figure E.8: LCC of co-authorship network for year 1982-1985

Figure E.9: LCC of co-authorship network for year 1984-1987
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E.2 Multiplex networks

This section contains the visualization of multiplex networks created from DBLP data
corresponding to different periods of time. These networks represent different kinds of
links between authors (nodes) in the form of different layers of graphs. All visualizations
have been done using MuxViz2. MuxViz is a framework for multilayer network analysis
and visualization.

Figure E.10: LCC of network for year 1972-1975

Figure E.11: LCC of network for year 1974-1977

2http://muxviz.net/
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Figure E.12: LCC of network for year 1980-1983

Figure E.13: LCC of network for year 1982-1985
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Figure E.14: LCC of network for year 1984-1987
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