
HAL Id: tel-01480669
https://hal.science/tel-01480669

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multiscreen Refactoring System for Video-centric
Web Applications

Mira Sarkis

To cite this version:
Mira Sarkis. A multiscreen Refactoring System for Video-centric Web Applications. Computer Science
[cs]. Telecom ParisTech, 2016. English. �NNT : �. �tel-01480669�

https://hal.science/tel-01480669
https://hal.archives-ouvertes.fr

2016-ENST-0057

EDITE - ED 130

Doctorat ParisTech

T H È S E
pour obtenir le grade de docteur délivré par

Télécom-ParisTech
Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Mira Sarkis
le 4 Octobre 2016

Création Automatique d’Applications Multi-Ecrans à partir d’Applications
Web Existantes

Directeur de thèse: Jean-Claude DUFOURD
Encadrant de thèse: Cyril CONCOLATO

Mme Cécile Roisin, Professeur, Université Grenoble-Alpes Rapporteur
M. Pablo Cesar, Maitre de Conférence, Centrum Wiskunde & Informatica Rapporteur
M. Pierre Senellart, Professeur, Télécom-ParisTech Examinateur
M. Stephan Steglich, Docteur Ingénieur, Institut Fraunhofer FOKUS Examinateur
M. Cyril Concolato, Maitre de Conférence, Télécom ParisTech Encadrant
M. Jean-Claude Dufourd, Directeur d’étude, Télécom ParisTech Directeur

Télécom-ParisTech
Grande école de l’Institut Mines-Télécom - membre fondateur de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Abstract

The ubiquity of web applications and the user possession and utilization of multiple
devices are major factors for the increased demand for multi-screen applications.
Multi-screen applications impose challenges on the application developer and designer
especially if existing single-screen applications have to be transformed to the multi-
screen environment. Designers should plan the user interface distribution and should
adapt the layout for various devices. Developers should re-organize the application
logic and associate it to the distributed user interface. They should preserve the
application functionality and �nally they need to adapt it to the underlying multi-
screen platform. In this work, we propose an end-to-end refactoring system. The
system allows the re-use of existing single-screen applications to automatically create
multi-screen applications. The components of the multi-screen applications have their
layout adapted to small and large device and they are ready to operate synchronously
to provide a complementary usage experience. Our system is quantitatively evaluated
on di�erent sets of applications containing at least one video element and interactive
content. The content division of our system corresponds to a ground truth division
with an average recall of 0.84. In addition, our layout refactoring approach obtains
60% accuracy on the tested applications. In addition, we evaluate the performance of
the run-time behavior of one application and we compute the delays that are caused
by our system and by the network in a real physical environment: with a total delay
of 5 ms, our solution is realistic.

i

RESUME

L'omniprésence des applications Web, la possession et l'utilisation simultanée de
plusieurs appareils par un seul utilisateur sont les principaux facteurs de la demande
accrue pour les applications multi-écrans. La création des applications multi-écrans
imposent des dé�s sur le développeur d'applications et sur le designer, en particulier
s'ils réutilisent les applications web existantes. Par exemple, les developpeurs doivent
plani�er la distribution de l'interface utilisateur et ils doivent prendre en compte la
diversité des dispositifs pour mieux présenter le contenu.

En plus, ils doivent re-penser l'organisation du code de l'application a�n de
préserver la fonctionnalité de l'application et surtout assurer la communication entre
les parties distribuées de l'application.

Dans ce travail, nous proposons un système de bout en bout pour le refactoring
des applications web. Le système permet la réutilisation des applications existante,
mono-écran, pour créer automatiquement des applications multi-écrans. Les par-
ties distribuées des applications générées ont leur mise en page adaptée aux petits
et grands dispositifs et ils sont prêts â fonctionner de manière synchrone tout en
fournissant des tâches complémentaires.

La performance du système est évaluée quantitativement sur un ensemble d'applications
contenant au moins un élément vidéo et du contenu interactif.

ii

Contents

1 Introduction 1

1.1 The multi-screen application context and challenges 1

1.2 Thesis motivations and challenges . 3

1.3 Thesis context . 4

1.4 Thesis objectives . 4

1.5 Thesis contributions . 4

1.6 Organization of the dissertation . 6

2 State of the art 9

2.1 Technologies and protocols in multi-screen platforms 10

2.1.1 Web Services . 10

2.1.2 Service Discovery Systems in multi-device platforms 12

2.1.2.1 UPnP . 13

2.1.2.2 Bonjour . 14

2.1.3 The COLTRAM platform . 15

2.2 Frameworks for MSA creation . 17

2.3 Exploiting the environment . 18

2.3.1 Standards for device description 19

2.3.2 Processing the environment features 19

2.4 Web application analysis methods . 20

iii

2.5 Adaptive web applications and Responsive Web Design 22

2.5.1 Adaptive Design Features . 22

2.5.1.1 What to adapt? . 23

2.5.1.2 How does the adaptation take place? 24

2.5.1.3 How to adapt the layout? 26

2.5.2 Adaptive Design Strategies . 28

2.5.3 Frameworks for Responsive Web Design 30

2.6 State persistence for multi-screen . 30

2.7 Conclusion . 32

3 Overview of the Refactoring System 35

3.1 System Global Description and Architecture 35

3.1.1 System Features . 36

3.2 System Input and Dataset Characterization 40

3.3 The content-device duality . 43

3.4 Multi-Screen Application model . 46

3.4.1 Splitting the HTML document 46

3.4.2 HTML/JavaScript links . 47

3.4.3 To Split or Not To Split the JavaScript 48

3.4.3.1 Scenario 1: To Split the JavaScript 49

3.4.3.2 Scenario 2: Not To Split the JavaScript 51

3.4.4 Summary and Our MSA application model 52

3.5 Conclusion . 53

4 Creating Multi-screen Applications 55

4.1 Screen-Region Selection Method . 56

4.1.1 Principles . 56

4.1.2 Method limitations . 60

iv

4.2 DOM-based Division Method . 60

4.2.1 Principles . 60

4.2.2 Limitations . 62

4.3 The hybrid segmentation method . 63

4.3.1 Principles, challenges and overview 63

4.3.2 DOM tree simpli�cation and labeling 64

4.3.3 Segmentation: Processing the simpli�ed tree 67

4.4 User Interface distribution: The DOM Distribution 71

4.4.1 Annotation Projection from logical tree to DOM tree 72

4.4.2 DOM Annotation Resolution 75

4.4.3 Creating the master and the slave components 76

4.5 Summary . 76

4.6 Segmentation Evaluation . 78

4.6.1 E�ciency of the simpli�cation method 78

4.6.2 Qualitative evaluation: Comparing to BoM 81

4.6.3 Quantitative Evaluation: Comparison to a ground truth . . . 84

4.6.3.1 Creating the ground truth and our metrics 85

4.6.3.2 Results and interpretation 86

4.7 Conclusion . 87

5 Layout Refactoring 89

5.1 E�ects of content distribution on the application layout 90

5.1.1 Layout Discontinuity . 90

5.1.2 Invalid content re-arrangement 92

5.1.3 Horizontal scrolling . 92

5.1.4 Summary . 93

5.2 Overview of Layout Re-factoring . 93

v

5.2.1 Layout resetting principles . 95

5.2.2 Layout re-design principles . 97

5.3 Master Adaptation: Full-Window Design for large devices 99

5.3.1 Overview . 99

5.3.2 Blank-Space Identi�cation based solely on geometrical features 100

5.3.3 Block re-dimensioning and re-positioning 100

5.3.4 Dynamic generation of style sheets 102

5.3.5 Full-Window Design Evaluation 104

5.3.5.1 Quantifying the blank space problem and the resulting
metrics . 104

5.3.5.2 Applying these metrics on our dataset 105

5.4 Slave Adaptation: Responsive Web Layout Re-Design 107

5.4.1 The responsive web design as the solution to our problem . . . 107

5.4.2 Identi�cation of the spatial distribution while respecting the
DOM structure . 110

5.4.3 RWD layout con�guration . 112

5.4.3.1 General Layout con�guration 112

5.4.3.2 Layout con�guration for large devices 112

5.4.3.3 Layout con�guration for small devices 113

5.4.4 Applying grid system rules on the DOM tree 113

5.4.5 Evaluation of the RWD algorithm 114

5.4.5.1 Quantifying the horizontal scrolling problem and the
resulting metrics . 114

5.4.5.2 Setup and Results 118

5.5 Conclusion . 122

6 Run-time Support and State Distribution 125

6.1 Introduction . 125

vi

6.2 Logic Distribution . 126

6.2.1 Synchronization . 126

6.2.2 Handling the addition of dynamic elements 128

6.2.3 Integration to the runtime environment 129

6.3 Synchronization Implementation . 134

6.4 State Distribution Evaluation . 136

6.4.1 Characterizing the dynamicity of the Video Semantic application136

6.4.2 Runtime analysis of the state distribution of the Multi-screen
video semantic application . 139

6.4.2.1 DOM updates . 141

6.4.2.2 Communication and System Delays 142

6.5 Proof-of-concept: Extending the Refactoring System 146

6.5.1 Extending the application model to three components 147

6.5.2 Extended UI Division . 148

6.5.3 Extended UI Distribution . 149

6.5.4 Extended State Synchronization 149

6.5.5 Validation of the VideoSemantic application 149

6.6 Conclusion . 151

7 Conclusion and perspectives 153

7.1 Summary . 153

7.2 Synthesis . 154

7.3 Perspectives . 155

8 Resume en francais 157

8.1 Introduction . 157

8.2 Etat de l'art . 159

8.3 Contribution: Système de refactoring 160

vii

8.3.1 Introduction globale du système 160

8.3.2 Decouverte et Caractérisation de l'environnement 161

8.3.3 Division et distribution du contenu 162

8.3.3.1 Introduction . 162

8.3.3.2 Simpli�cation de l'arbre DOM et l'étiquetage 162

8.3.3.3 Segmentation: Traitement de l'arbre simpli�é 163

8.3.3.4 UI distribution . 164

8.3.3.5 Résultats et Bilan 165

8.3.4 Adaptation de l'agencement des applications au contenu et aux
appareils . 167

8.3.4.1 Responsive Web Re-design 167

Identi�cation de la grille 168

Con�guration et application de la mise en page 170

Pour les dispositifs à grands écrans 170

Pour les petits dispositifs 171

8.3.4.2 Evaluation de l'Algorithme RWD 171

8.3.5 Distribution de l'état des applications et synchronisation . . . 172

8.3.5.1 Adaptation de l'application multi-écran pour la dis-
tribution de l'État 173

8.3.5.2 Répartition de l'Etat pendant l'exécution 173

8.3.5.3 Expérimentation et Résultats 174

Résultats durant le runtime 174

Complexité du système et Bilan 175

8.4 Conclusion . 176

List of Publications 179

Bibliography 181

viii

List of Figures

2-1 Illustrating discovery and communication using Web Service 11

2-2 COLTRAM Discovery, Communication and architecture 16

2-3 Adaptive Design Process . 24

2-4 Static Layout on large and small window sizes 26

2-5 Fluid Layout on large and small window sizes 27

2-6 Adaptive Layout on large, medium and small window sizes 27

2-7 Responsive Layout on large, medium and small window sizes 28

3-1 The architecture of the refactoring system 36

3-2 The refactoring system between the user agent and the application . . 38

3-3 The delivered multi-screen application 39

3-4 Average number of DOM nodes per page 42

3-5 Default DOM Splitting illusttration 47

3-6 The adopted multi-screen application model 52

4-1 UI Division and UI Distribution phases in our refactoring system . . 55

4-2 Screen-Region Selection Method . 57

4-3 Calculating intersections between the selected region and DOM elements 58

4-5 Building blocks for the segmentation algorithm 64

4-6 Trivial Segmentation leading to an excessive number of blocks 67

4-7 A reference web page with a representation of all its logical nodes and
their corresponding relative areas. 69

ix

4-9 Building blocks for the UI Distribution phase of the refactoring system 72

4-11 Segmentation results on a YouTube page: BoM with pG = 0.31 . . . 82

4-12 Segmentation results on a YouTube page: MSoS with pG = 0.31 and
0.36 . 83

5-2 Simple example illustrating the drawbacks of the logical tree comparing
to the geometric tree . 94

5-3 Common building blocks for layout refactoring algorithms 95

5-4 Vertical and Horizontal separators . 98

5-5 Building blocks for the Full-Window design algorithm on the master
application . 99

5-6 Full-Window Design: horizontal vs vertical stretching 100

5-8 Building blocks for making the responsive re-design on the Slave . . . 109

5-10 Window Area versus Page Area . 115

5-11 Example of a page with horizontal scrolling 116

5-12 Doing horizontal scrolling to see block 2 116

5-13 Doing horizontal scrolling to see block 3 117

5-14 False positive for horizontal scrolling 117

5-15 Amount of horizontal scrolling for each tested application 118

5-16 Number of blocks causing horizontal scrolling for each tested application119

6-1 Architecture of the master and the slave components including the
added monitoring logic . 127

6-2 Main Application . 137

6-3 Master Application after splitting the Semantic Video application be-
tween large devices . 140

6-4 Slave Application after splitting the Semantic Video application be-
tween large devices . 140

6-5 Model of ideal one-way delay between master and slave 142

6-6 Estimation of the clock shift between master and slave 143

x

6-7 Delay Variation in function of time 145

6-8 Number of messages corresponding to the delay values 146

8-1 L'architecture du système de refactoring 160

8-2 Les di�érentes parties de l'algorithme de segmentation 161

8-3 Blocs de bases pour le responsive design sur le composant Esclave . . 168

8-5 Les caractéristiques des composant maitre et esclave 172

xi

List of Tables

2.1 Description of the HTTP header �elds re�ecting the browser pro�le . 25

2.2 Adaptive Design Approaches and Techniques 29

3.1 Dataset characterization on a 1920*1080px viewport 41

3.2 Characterizing devices with features related to the context of usage . 43

4.1 DOM node types and associated logical nodes 64

4.2 Complexity of each algorithm in the UI Division and UI Distribution
phases . 76

4.3 Results of the simpli�cation algorithm on the geometrical and logical
trees in terms of node and depth count 79

4.4 Reduction rates for DOM tree, geometric tree and logical tree 80

4.5 Evaluation of the segmentation approach 86

5.1 Full-Window Design results on 1920*1080 window 106

5.2 Di�erences between the two Layout refactoring implementations . . . 122

6.1 Number of changes related to the dynamic parts of Video Semantic . 137

6.2 Number of changes related to the dynamic parts of Video Semantic . 138

6.3 Simultaneous changes between the dynamic parts of Video Semantic 138

6.4 Number of Slave Events . 141

8.1 Caractérisation des dispositifs avec des functions 161

8.2 Evaluation de l'approche de segmentation 165

xiii

8.3 Dé�lement horizontal sur les applications esclave avant et après RWD 171

xiv

List of abbreviations

MSA Multi-Screen Application
XML eXtensible Mark-up Language
HTML HyperText Markup Language
CSS Cascading Style Sheets
JS JavaScript
DOM Document Object Model
UI User Interface
GUI Graphical User Interface
DUI Distributed User Interface
RWD Responsive Web Design
FWD Full-Window Design
RESS REsponsive Server Side
NSD Network Service Discovery
UPnP Universal Plug and Play
WebRTC Web Real Time Communication
SSDP Simple Service Discovery Protocol
SOAP Simple Object Access Protocol
WSDL Web Services Description Language
SOA Service-Oriented Architecture
mDNS multicast Domain Name System
DNS-SD Domain Name System - Service Discovery
CC/PP The Composite Capability/Preferences Pro�les

xv

Chapter 1

Introduction

1.1 The multi-screen application context and chal-

lenges

The rise of web technologies and their continuous evolution, especially with the emer-
gence of HTML5, led to powerful web-based applications. These web applications
enable users to access the same content from various devices, thus making ubiquitous
applications a reality.

Due to this ubiquity and to the growing number of connected devices available for
one user, each of them having di�erent physical features, i.e., screen size and input-
output methods, the user consumption for content has changed. A Google study [23]
states that 90% of our media interactions are screen-based and that our interactions
are no longer limited to one device. Involving multiple devices to consume and to
interact with the content of an application de�nes the multi-screen ecosystem and
makes this application a multi-screen application.

Concerning the usage of multi-screen applications, there are three forms of inter-
actions 1,2:

i) The sequential usage happens when an application is moved seamlessly from
one device to another to continue running it. For example, using a PC to select items
on a shopping site and moving to a smart phone to pay for the items.

1See http://uxmag.com/articles/designing-for-context-the-multiscreen-ecosystem
2See https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.

html

1

http://uxmag.com/articles/designing-for-context-the-multiscreen-ecosystem
https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.html
https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.html

ii) The multi-tasking usage happens when multiple independent applications are
running at the same time over multiple devices. For example, watching news on a
TV while checking social media applications on the tablet.

iii) The complementary usage happens when multiple complementary applications
are running at the same time over multiple devices to provide one global task. For
example, watching a movie on the TV while controlling it using a smart phone or
using multiple small-screen devices to construct a bigger display [18].

In the context of this PhD, we focus on the complementary usage. We assume a
Multi-Screen Application (MSA) as consisting of multiple components, each having a
speci�c role, running on a distinct device and always communicating with each other
to provide the complementary usage. As a matter of simplicity, the web application
term is herein referred to as application.

Developing and designing multi-screen applications from scratch for a comple-
mentary usage is more challenging than the development of MSA for sequential or
multi-tasking usages. Additionally, it is more challenging than the development of
traditional single-screen applications (SSA). We have identi�ed these additional chal-
lenges for developer as follows:

� Developers have to determine how the application content will be distributed
across devices based on their capabilities. This challenge is speci�c for MSA for
complementary usage.

� Developers have to manage the synchronization and consistency of the dis-
tributed content. While this content consistency should also be addressed
when developing MSA for sequential usage, especially that the application state
should be preserved across devices, the synchronization challenge is speci�c for
complementary usage.

� Application designers have to provide a consistent rendering of the content
across devices. This challenge is common for all types of applications, especially
if the developer wants his application to be used on the main classes of devices
(i.e., PC, tablet, smart phones, TV).

� Finally, they have to adapt these applications to the multi-screen platform on
which they are going to run, notably to ensure communication. This challenge
is absent for SSA and for multi-tasking usage.

The use of web technologies helps reducing the complexity of the developer chal-

2

lenges listed above, and increases the possibility of deploying ubiquitous applications
on any device connected to the web and having a browser, but it is not su�cient.

1.2 Thesis motivations and challenges

The motivation of this thesis is to face/eliminate/reduce these challenges while avoid-
ing that a developer has to intervene at any level of the process of creating multi-screen
applications for complementary usage. In fact, we want to conceive a system for au-
thoring automatically multi-screen applications and that is dedicated for end-users
and not for specialized users, e.g, developers among others.

While some e�orts aim at developing multi-screen applications from scratch, the
originality of this PhD is to re-use existing single screen applications to author multi-
screen applications.

Multiple problems arise when we try to re-use applications that initially were not
intended for the complementary multi-screen usage. These problems are added to the
classical MSA developer challenges listed in the previous section.

First, applications are not necessarily developed in a modular manner that facili-
tates the identi�cation of independent components of content and their distribution.

Second, existing applications were not intended to run on multiple devices with
di�erent physical characteristics, especially on mobile devices with a reduced screen
size. This implies a non-coherent user experience across devices. A coherent user
experience is de�ned based on Seok [49] as follows: �In spite of the variation of user
interfaces provided for each screen, when a user accesses content through the screen,
the user experiences remain consistent without any sense of di�erence, irrespective of
the change of devices when user utilizes the contents".

Third, there exist tight relations between the documents that form a web applica-
tion, i.e., HTML, script logic and styling documents. Though these documents ful�ll
di�erent purposes, i.e., the HTML document de�nes the content and its structure,
the JavaScript document contains the logic that describes the application behavior
and the styling sheet designs the application layout, they can overlap and make the
application decomposition a tedious task. Thus, separating the content of an appli-
cation implies an additional workload on the logic and on the layout if we want to
provide the user with a functional multi-screen application and an acceptable layout.

3

1.3 Thesis context

The work reported in this PhD thesis was partly carried within the context of
COLTRAM [22], a 3-year research cooperation between Telecom ParisTech and Fraun-
hofer FOKUS. The aim of COLTRAM is to design, develop and promote an open
cross-device platform for multi-screen services and applications in the heterogeneous
Home Network. It features a new model of service as a collaboration of multiple
applications running on multiple devices, and where each application is not tied to
one device and able to move seamlessly to another device.

In addition, COLTRAM aims at assisting the application authors and developers
for the development of multi-screen applications by proposing semi or automatic
tools for displaying applications according to the device on which they are running,
mapping applications to the best-�t device and �nally refactoring existing applications
and converging them towards the multi-screen environment in general and to the
COLTRAM platform in speci�c. This PhD �ts in that objective.

1.4 Thesis objectives

The main objective of this PhD is to study and address the challenges related to
the creation of multi-screen applications, in particular when starting from a single-
screen application. The objectives include 1) the creation of the distributed graphical
user interface, 2) the layout adaptation to a multitude of devices and to the amount
of content on each side of the multi-screen application, and 3) the support of the
cross-device synchronization to preserve the complementary usage. Moreover, this
PhD work includes the characterization of video-centric applications to identify the
presence of a duality between the content and the features of common devices. This
is in the objective of mapping the application content to the �best-�t" device on the
network. The ultimate objective of this PhD is to conceive an automated system
dedicated for end-users and that eliminates the need for the developer intervention.

1.5 Thesis contributions

During this PhD, we came up with a re-factoring system that is guided by the features
of the multi-screen environment and that re-uses existing single-screen applications
to produce multi-screen applications automatically.

4

The refactoring system executes during run-time and can be used directly and
transparently by an end-user. It assumes the presence of at least two devices discov-
ered in the network. This assumption is crucial since our system exploits the physical
features of devices to guide the analysis of the single-screen application and the design
of the multi-screen application at last.

The system is dedicated mainly, but not limited, for multimedia applications and
speci�cally video-centric applications that consist of at least one video element.

The contributions of this PhD to the scienti�c community are six as follows:

� A system dedicated for end-users to create multi-screen applications.

� A hybrid approach for segmenting the graphical user interface of single-screen
applications.

� A simple mapping algorithm that analyzes the application content segments
and associates them to devices on the network following device features.

� A master-slave model of multi-screen applications consisting of a master com-
ponent and one or more slave components.

� A tool that re-layouts automatically user interfaces of all components to provide
a seamless viewing experience on diverse devices.

� A runtime tool that provides a complementary-task experience for the created
multi-screen application during run-time. It consists of synchronizing the com-
ponents DOM trees to preserve the application main functionality.

This PhD thesis resulted in two papers published in the proceedings of the ACM
Symposium on Document Engineering (DocEng).

� The virtual splitter: refactoring web applications for the multi-screen environment[47]
in 2014. This paper presents a primitive refactoring system that is the founda-
tion of this dissertation.

� MSoS: a multi-screen-oriented web page segmentation approach [48] in 2015.
This paper addresses speci�cally the processing and the analysis of web appli-
cations to partition their user interfaces among multiple devices based on the
multi-screen environment.

5

A journal article was submitted in April 6, 2016 to the Multimedia Tools and
Applications (MTAP) journal 3 and is currently under review. It englobes the six
contributions listed above, all implemented together and evaluated on a set of existing
web applications.

1.6 Organization of the dissertation

Chapter 2 positions the work of this thesis within the literature. We focus on the
existing multi-screen platforms, the characterization of the multi-screen ecosystem,
the mechanisms used for analyzing and segmenting web documents. In addition, we
focus on the existing works related to the content and layout adaptation to di�erent
devices (i.e., with di�erent capabilities), notably the responsive web design in contrast
to adaptive design. Finally, we conduct a study related to the existing methodologies
for content synchronization.

In Chapter 3 we introduce the global system we have developed with its main
features, its inputs and the common de�nitions that will be used across the follow-
ing chapters. In addition, we describe and characterize the dataset that is used
throughout this thesis to validate the system parts. Finally, we de�ne the adopted
master-slave model for the output multi-screen application. This is done after con-
ducting a study of the tight relations that exist between HTML and JavaScript and
after studying the advantages and drawbacks of multiple possibilities.

Chapter 4 describes in detail the process of using the single-screen application
to create the multi-screen application. The chapter starts detailing the di�erent
segmentation approaches, i.e., pure structural, pure visual and hybrid, that were
developed during this PhD in the purpose of separating the application content.
Then, it describes the distribution of these content and their mapping to the master
and the slave components. Finally, we evaluate the hybrid segmentation relatively to
a ground truth manually created.

The basis of the layout refactoring approach in addition to the main challenges and
the solutions we propose are described in Chapter 5. On the one hand, we describe the
Full-Window Design algorithm that is dedicated for the master component running
on large devices. It aims at eliminating blank spaces on the master. On the other
hand, we describe the Responsive Web Design algorithm that is dedicated for the

3http://www.springer.com/computer/information+systems+and+applications/journal/

11042

6

http://www.springer.com/computer/information+systems+and+applications/journal/11042
http://www.springer.com/computer/information+systems+and+applications/journal/11042

slave component(s) running on portable devices. It aims at making the slave layout
adapt dynamically to device dimensions. For both algorithms, we de�ne our metrics
to evaluate the two algorithms.

Chapter 6 presents details about the synchronization mechanism adopted in our
system. This mechanism consists in watching the DOM changes and the user inter-
actions respectively on the master and the slave components and in communicating
these changes to the concerned component. Finally, we validate this mechanism on
a highly dynamic application to conclude about its performance and the system per-
formance as a whole.

Finally in Chapter 7, we summarize the thesis work and we draw some conclusions
concerning the validity of our system in real situations. Finally, we present our future
plan for further investigations in the topic.

7

Chapter 2

State of the art

This chapter covers the review of the multiple tracks investigated in this thesis and it
links the adopted solutions to the works in the literature. Section 2.1 describes tech-
nologies and protocols behind the cross-device and cross-platform communications in
the multi-screen platforms.

In general, a platform is a group of technologies that are used as a basis upon
which other applications, processes or technologies are developed 1. For example,
the web browser is considered as a platform since it lets plug-ins run as part of it.
Operating systems e.g., Mac OS, Windows, Android, etc. are also platforms. In
this thesis, a multi-screen platform is an operating environment upon which various
multi-screen application can run, independently from the hardware or the software
features of the environment.

Aside form the platform, this chapter reviews the proposed solutions for the cre-
ation of multi-screen applications in Section 2.2, the environment characterization
in Section 2.3, the segmentation techniques for user interface distribution in Section
2.4, layout adaptation to the physical environment in Section 2.5 and �nally the
synchronization techniques for web applications in Section 2.6.

1Platform, https://www.techopedia.com/definition/3411/platform

9

https://www.techopedia.com/definition/3411/platform

2.1 Technologies and protocols in multi-screen plat-

forms

The main requirements for a multi-screen platform are to provide solutions for devices
and web applications 1) to discover each other in the network and 2) to communicate
with each other.

Due to the dynamicity of a multi-screen ecosystem, where devices continuously
enter and leave the network, the platform should keep track of device and applica-
tion availability to ensure a continuous user experience. It should ensure the device
�invisibility" in the sense that a user does not have to explicitly con�gure the devices
entering to the network and taking part in the multi-screen experience. In addition,
the platform needs to allow HTML interfaces loaded from the Internet to access and
to interact with multiple devices in the home network.

Multiple technologies and protocols are considered in multi-screen platforms to
satisfy the above requirements and challenges. In the following sections, we mainly
focus on those adopted by the COLTRAM project and we describe the main contri-
butions brought by the COLTRAM platform to the multi-screen domain in Section
2.1.3.

2.1.1 Web Services

Web services are a web technology that allows clients to communicate with a server
in a platform-independent and programming language-independent manner 2. A web
service is accessed via HTTP and executed on a remote system (a web server), hosting
the requested service.

A web service is a unit of work handling a speci�c task described using a context-
free declarative language like XML or JSON. These languages can describe any and all
data in a platform independent manner for exchange across systems, thus it provides
a universal interface. Adopting these universal interfaces is not enough to let a group
of web services understand each other. Indeed, they need to agree on the vocabulary
and semantics of the data they are going to exchange. In addition, the communication
between devices or software requires that they agree on the technology, standards and
protocols for the communication and the discovery.

2Web Service, http://www.ibm.com/developerworks/webservices/newto/service.html

10

http://www.ibm.com/developerworks/webservices/newto/service.html

A group of web services interacting together de�nes a �web service application"
in a Service-Oriented Architecture (SOA)3. An SOA describes an entire �system of
services" dynamically looking around for each other and getting together to perform
some application. Adopting the web service technology to design applications, notably
multi-screen applications, promotes task-oriented applications.

Figure 2-1: Illustrating discovery and communication using Web Service

Figure 2-1 illustrates a web service application made of two web services: Web-
Service 1 and WebService 2. WebService 1 is associated to an application developed
in JavaScript and running on Device1. The XML service description comprises a
function (i.e., Fun1) that can be called by WebService 2 with one argument (i.e.,
arg1).

WebService 2 is associated to an application developed in Java and running on
Device2. The XML service description comprises a function (i.e., Fun2) that can be
called by WebService 1 with one argument (i.e., arg2).

The two descriptions are published and managed on the network. Once web-
Service 1 �nds webService 2 and webService 2 �nds webService 1, a bidirectional

3Service Oriented Architecturehttp://www.ibm.com/developerworks/webservices/newto/
service.html

11

http://www.ibm.com/developerworks/webservices/newto/service.html
http://www.ibm.com/developerworks/webservices/newto/service.html

communication channel is established between them.

Once a web service receives an instruction to execute one operation (e.g., Fun2
with myArg2), it maps this instruction to the application code it represents (e.g., a
call to the Java function Func2).

Web services use a set of XML/JSON-based formats and protocols in order to:

1. describe 1) the operations to execute or 2) the data to exchange with another
web service, 3) the web service location (e.g., using URLs). For instance, Web
Services Description Language 4 (WSDL) is an XML format that describes the
availability of web services.

2. provide message exchange. The most well-known is Simple Object Access Pro-
tocol 5 (SOAP). SOAP is a peer-to-peer protocol for sending and receiving
structured XML messages between applications. This protocol encodes mes-
sages so they can be delivered over the network using a transport protocol such
as HTTP.

3. Advertise and Discover web services: for instance, the Universal Description
Discovery and Integration (UDDI) protocol, Simple Service Discovery Protocol
(SSDP), multicast Domain Name (mDNS). More information about web service
discovery are provided in Section 2.1.2.

The following section focuses on describing in details two discovery systems that
include at least an advertising and a discovery protocol.

2.1.2 Service Discovery Systems in multi-device platforms

Discovery is the process by which a client is spontaneously and dynamically noti�ed
of the availability of a device or service on the network [55]. In the following, we refer
to devices and services as resources.

Resources entering the network register themselves with the discovery system.
Depending on the system topology, i.e., using centralized directories or peer-to-peer
topology, the registration happens by �nding a directory service or by simply sending
periodic announcements on the network.

4WSDL, https://www.w3.org/TR/wsdl
5SOAP, https://www.w3.org/TR/soap/

12

https://www.w3.org/TR/wsdl
https://www.w3.org/TR/soap/

During the discovery process, resources provide information that a client will need
to access them (e.g.,IP address and port number) and descriptive information such
as the resource type (e.g., a gateway device). On the other side, clients provide
information about the resource pro�le they are looking for. The discovery system
is responsible for matching the appropriate resources for the client. Examples of
discovery systems are Universal Plug and Play (UPnP) [2], Zeroconf 6, Bluetooth,
Jini 7, etc.

In the following sections, we focus on the description of UPnP and Zeroconf peer-
to-peer systems since they are used in the current sample implementations of Network
Service Discovery (NSD)8 speci�cations and they are at the basis of the COLTRAM
platform.

NSD was proposed to �ll the gap related to the absence of a uni�ed way for the
web to discover local HTTP-based services. The NSD API enables web pages to
discover and to communicate with devices advertising themselves on the network via
di�erent discovery protocols in a peer-to-peer con�guration. It abstracts away the
underlying complexity of Service Discovery protocols and returns back for instance,
one or more UPnP or Zeroconf services in the network via a single API call. NSD was
investigated in the W3C committee but it is now stopped for �ngerprinting concerns.

2.1.2.1 UPnP

Universal Plug and Play is a set of protocols for service discovery de�ned by a con-
sortium of industrial vendors led by Microsoft.

UPnP builds upon the existing web technologies, such as HTTP, SOAP and XML
to provide access to devices and to services in addition to their corresponding de-
scriptions. These web technologies are employed not only to cover Discovery through
the use of Simple Service Discovery Protocol (SSDP), but also to cover 5 additional
areas, i.e., Addressing, Description, Controlling, Eventing and Presentation [2].

"Addressing� corresponds to the mechanism for a device to get an IP address. IP
addresses are usually provided using DHCP servers. In the absence of such servers,
UPnP uses the Auto-IP protocol to automatically generate non-routable IP addresses,
especially for home networks.

6ZeroConf, http://www.zeroconf.org/
7Jini, http://www.sun.com/software/jini/specs/jini1.2html/jini-title.html
8NSD, https://www.w3.org/TR/discovery-api/

13

http://www.zeroconf.org/
http://www.sun.com/software/jini/specs/jini1.2html/jini-title.html
https://www.w3.org/TR/discovery-api/

"Discovery� is realized by the implementation of the peer-to-peer SSDP protocol
de�ned on top of HTTP. In UPnP, devices and services are characterized using two
attributes: type (expressed in the form of URI), and IDs. These attributes are useful
for the SSDP discovery as we are going to detail.

SSDP exploits link-local multicast to let clients discover resources directly in a
peer-to-peer manner. Once a device joins the network and gets an IP, it sends a
presence message in the form of HTTPMU (HTTP over multicast User Datagram
Protocol) that is received by all parties listening to the local link. A client sends
discovery requests as well over HTTPMU where it speci�es its IP address and its
port number. Devices respond to this speci�ed address. This response and the
presence message both contain: a URI identifying the resource type, its ID, and a
URL referring to the device description document.

"Description� allows the client to get and to investigate the device features (model,
serial number, the services it o�ers, URLs for communication with the device). The
device features are obtained from the device description document coded in XML.

The client examines the device description document. If it decides to interact
with the services provided by that device, the client sends a control message to that
device using SOAP that runs over TCP. The control message contains action names,
argument names and variable names speci�c to the service in question. This step
covers the "Controlling� step.

To be informed of important state changes, UPnP clients subscribe to the event
services o�ered by a device. This mechanism makes up the "Eventing� portion of
the UPnP speci�cation and is handled by the GENA (General Event Noti�cation
Architecture) protocol [2]. Eventing consists of noti�cations of state changes.

Finally, the "Presentation� aspect of UPnP allows devices to de�ne a presentation
URL, which is the location of an HTML document which provides a graphical interface
to the device (e.g., a "virtual� remote control).

2.1.2.2 Bonjour

Bonjour is the Apple implementation of the Zero-con�guration networking protocol
(Zeroconf) that includes address assignment, host name resolution and service dis-
covery. In contrast to UPnP, Bonjour does neither provide a service description nor
propose a means of communication between the discovered services. Thus, in practice
it has to be extended to cover these two areas. Bonjour aims at enabling devices to

14

work together without end-users having to con�gure the network or having to use IP
addresses to refer to machines.

Bonjour combines multicast Domain Name System (mDNS)9 with DNS Service
Discovery (DNS-SD) 10 to leverage existing Internet protocols.

mDNS resolves host names to IP addresses in a small network without the neces-
sity to include a DNS server. Instead, it is the responsibility of the hosts to resolve the
names. mDNS de�nes a new top-level domain, i.e., .local, and it supposes that names
ending with .local are analogous to link-local IP addresses (such as 169.254.x.x/16).
When an mDNS client needs to resolve a host name, it sends an IP multicast query
for a name ending with .local to a special multicast address. Parties that are listening
to that address and that can resolve the name respond with their addresses.

To browse the network for services, Bonjour uses DNS-SD that is a set of naming
conventions describing how services will be represented in DNS records. Clients use
DNS-SD by issuing a request containing the service types they are looking for. As
a response, a list of service instance names matching the query is returned. Ser-
vice names are user-friendly in DNS-SD that considers them as the canonical names
for the services, e.g., PrinterFloor5.local. This naming approach is the main di�er-
ence between DNS-SD and the other discovery systems that only use service IDs to
disambiguate services.

2.1.3 The COLTRAM platform

In this thesis, we adopt COLTRAM as a platform under which our multi-screen
applications are going to run. We focus our work on the creation and the design of
multi-screen applications.

COLTRAM promotes an application platform for Multiscreen services and appli-
cations. It provides a uni�ed protocol addressing service discovery, advertising and
control. The aim of COLTRAM Discovery and Advertising Framework is to make
existing standards and technologies for service discovery available for COLTRAM
applications. The network service protocols that are used in COLTRAM are UPnP
and Bonjour. In this section, we provide a brief description of the COLTRAM main
features and architecture.

In COLTRAM, a multi-screen application consists in multiple components called

9mDNS, http://www.multicastdns.org/
10DNS-SD, http://www.dns-sd.org/

15

http://www.multicastdns.org/
http://www.dns-sd.org/

atoms. Atoms are able to discover, bind and control remote web services in the local
network on the one hand, and can o�er and expose web services to other applications
or services on the other hand. Web Services are the only interface between atoms and
they allow peer-to-peer communication between them.

The particularity in COLTRAM is that services are de�ned inside the atoms, thus
the service discovery and advertising are done at the level of the atoms in the browser
using an extended version of the Network Service Discovery API (NSD). Atoms com-

Figure 2-2: COLTRAM Discovery, Communication and architecture

municate with the COLTRAM agent as illustrated in Figure 2-2. Together, they
are at the heart of the COLTRAM platform and they provide advertising, discovery,
messaging, synchronization, atom distribution, resource sharing, etc.

For each exposed service including Bonjour and UPnP services, COLTRAM gen-
erates a uni�ed description as a JSON �le. This description abstracts from the un-
derlying service discovery protocols, thus allowing services of di�erent types (UPnP
and Bonjour) to communicate.

The COLTRAM descriptions (JSON �les) are then sent to the COLTRAM agent
using HTML5 WebSockets 11 as Figure 2-2 shows. The COLTRAM agent is an entity
that manages the COLTRAM service declaration, discovery and communication.

The webSockets API [45] was developed as part of HTML5 as a JavaScript inter-
face. It de�nes a bi-directional connection, i.e., a full-duplex single socket connection,
between a client and a server. Once the client and the server have opened a Web-
Socket connection, both endpoints can asynchronously send data to each other at any
moment. The WebSocket protocol does not follow the traditional request-response
convention, but instead it allows pulling and pushing information between both end-
points. The connection remains open and active until either client or server closes
the connection.

11WebSockets, http://www.websocket.org/aboutwebsocket.html

16

http://www.websocket.org/aboutwebsocket.html

In COLTRAM, the agent interprets these descriptions and according to the ser-
vice type, i.e., UPnP or Bonjour, it translates them into the corresponding service
description (XML �le for UPnP and a url to a JSON �le for Bonjour, with the re-
quired information). The service discovery and advertising is performed similarly to
Sections 2.1.2.2 and 2.1.2.1 between the COLTRAM agent and the network.

Once the COLTRAM agent discovers a service or detects the disappearance of
a service, it noti�es directly the concerned atoms. The communication between the
web services passes necessarily by the COLTRAM agent.

2.2 Frameworks for MSA creation

We have identi�ed multiple approaches in the literature, that propose solutions for
the creation of multi-screen applications.

In prior work [25], a `WebSplitter' was proposed to split web applications, based
on a metadata �le. This �le is unique for each application and determines which ap-
plication portions can be seen on each user device. The splitter requires a middleware
proxy that splits the application content into partial views and a client-side compo-
nent that receives data pushed by the server. The splitter architecture is centralized
and requires a manual mapping for each element of the application.

In his research, Cheng [13] proposed a virtual browser capable of separating the
application logic from its rendering. The logic is kept within a virtual web page.
Automatically the virtual browser splits the main DOM tree into multiple DOM
trees and maps these trees to corresponding devices as denoted in a hint �le that
is speci�c to each application and manually created by the developer. Cross-device
operations are executed in a centralized manner depending ultimately on the virtual
browser that is a proxy between the web server and the browsers on end-user devices.

Bassbouss et al. [4] outlined how to enable traditional applications to become
multi-screen-ready. The application is developed as a single-screen application but
requires a multi-screen enabled browser. Based on metadata information provided
manually by the developer, speci�c elements are assigned to a remote device while
always being shown on the main device.

Panelrama [57] is a client-server framework for the construction of distributed
user interfaces. The framework includes device categorization, state synchronization
and automatic distribution. The content distribution is automatic but it requires

17

an explicit intervention from the developer on multiple levels to manually divide the
graphical user interface. First a developer should select the relevant DOM elements
that form a block and then to wrap them in individual templates and second he
should characterize the need of each block for device characteristics.

Zorrilla et al. [60] proposed an architecture for distributing a single-screen appli-
cation over multiple devices while o�ering users coherent experiences across devices.
The architecture decides the best con�guration for application visualization through
a dynamic set of devices based on some hints provided by the application developer.
The applications they consider here should be formed with logic components, i.e., web
components 12 and each component should be characterized with hints. These hints
provided by the author describe the targeted behavior of the application in a dynamic
multi-device environment, but they do not carry information about the context or
the targeted devices. It is up to the distributing architecture to map the components
to available devices.

In contrast to [13] and [25] our system has a decentralized architecture. Similar
to [4] it delivers master-slave applications. The common point for the above works in
addition to [57] is that they require a single development environment that facilitates
the creation of multi-screen applications. But this means that each single-screen
application should be either designed in a modular way [60], or analyzed by the
developer to identify the di�erent modules or blocks that form it. There is no an
automatic and generic analysis method that can be applied to a large set of existing
applications for the application analysis and distribution. Our work provides such
method.

2.3 Exploiting the environment

In a multi-screen context, application distribution should be guided by the available
devices and their characteristics. To do this, there are two steps: identifying and
characterizing the environment and using that characterization.

In this section we present 1) the standardization e�orts aiming at describing the
environment, i.e., devices, and 2) the works in the literature that exploit the environ-
ment description for application distribution.

12Web components, http://webcomponents.org/

18

http://webcomponents.org/

2.3.1 Standards for device description

Standardization e�orts were conducted by the W3C forum and the WAP Forum to
de�ne common interfaces for device features. The purpose behind device description
is to provide customized content delivery, i.e., depending on the device features a
di�erent content is sent. These e�orts are speci�c for web applications in general.

W3C proposed Composite Capability/Preferences Pro�les (CC/PP) 13 and WAP
created the User Agent Pro�le (UAProf) 14 that is a concrete implementation of
CC/PP but dedicated for Wireless Application Protocol (WAP) phones.

CC/PP de�nes a way to specify the capabilities of a mobile user agent and the user
preferences as a collection of Uniform Resource Identi�ers and Resource Description
Framework (RDF) 15 descriptions. RDF provides a model for describing resources
that have properties or attributes and characteristics. RDF itself uses XML for its
syntax and for its serialization across networks. In another term, RDF provides
the vocabulary while CC/PP provides a common structure for any vocabulary. The
mobile vendors are responsible for authoring these reference pro�les that are stored
on their servers.

Among the identi�ed features, there are the device hardware characteristics (i.e.,
type, model number, display size, input/output methods, etc.), the device operating
system, the network infrastructure, the browser software, etc.

In addition, CC/PP uses a mechanism for sending the device pro�le to the content
server along with a web page request. The client browser adds to the HTTP request
a header containing a URL for the device pro�le. When a content server receives an
HTTP request containing a CC/PP reference, it processes the request, follows the
URL to the pro�le, and uses the information it �nds there to format content that is
suited to the device and to the user preferences, all automatically.

2.3.2 Processing the environment features

Zorrilla et al. [60] use a set of rules to distribute application user interfaces based on
device features. The main rules are as follows. In general, dimensions, screen size,
means of interaction and the content type are the main factors that in�uence the
distribution. Concerning the TV, they consider that the amount of textual content

13CC/PP, https://www.w3.org/TR/CCPP-struct-vocab/
14Wireless Application Forum, http://www.wapforum.org/
15RDF,https://www.w3.org/RDF/

19

https://www.w3.org/TR/CCPP-struct-vocab/
http://www.wapforum.org/
https://www.w3.org/RDF/

should be limited; application parts that are not suitable for TV should be avoided,
because of the limited interactivity of a remote control; content to be shared among
multiple users should be presented on the TV. Concerning mobile devices, they con-
sider that the essential interactive parts should be rendered there to control media
elements on remote devices; personal information should remain on personal devices.

Yang and Wigdor [57] model devices and the application parts (or blocks of con-
tents) by considering �rst the device characteristics, i.e., device resolution, pixel den-
sity, physical screen size and means of interaction, where some of the characteristics
need to be hand-coded since it is di�cult to detect them automatically. Second,
a score is provided by the developer to express the relative importance of a device
characteristic for the usability of a block of content. Then, a cost matrix is calcu-
lated to relate devices to blocks and a linear optimization function is then applied to
get the optimal block distribution model. On the appearance or removal of a new
device or a new block, the matrix is re-calculated and re-optimized for the new dis-
tribution. While this approach looks optimal, it requires that the developer knows
in advance the application blocks, that he characterizes each block and describes the
block requirements in terms of device features using scores.

Similar to [60], we mainly focus on the device characteristics that a�ect the us-
ability of a block of content. We also focus on keeping the interactive content on
mobile devices and media content on the TV. To this end, we start by analyzing
and characterizing the application content to assist �rst the identi�cation of di�erent
parts of the single-screen application and to the content distribution in a second step.

2.4 Web application analysis methods

To identify the di�erent blocks that form an application, that are self-contained and
independent from each other, segmentation techniques are used in the literature to
segment the user interface of an application. These blocks will be then distributed
across devices discovered in the network.

Multiple approaches exist for segmenting a web page. Structure-based segmen-
tation approaches [54][28][24][34] consider only the DOM tree. These approaches
su�er from limitations since they do not consider the visual aspects of the applica-
tion and that the DOM tree does not necessarily correspond to what is rendered by
the browser. On the contrary, visual approaches [43][41][9][58] consider the rendered
page without necessary considering the DOM tree. Usually, these approaches are ex-

20

pensive in terms of processing because they require rendering the web page and they
often require processing the document as an image using signal processing techniques.
There are also content-based segmentation approaches [30][11] where only the textual
information is considered to segment the page into sections of di�erent semantics.
The problem here is that the employed techniques are not e�ective on pages with
limited textual content.

Hybrid approaches combine multiple criteria to analyze and to segment an ap-
plication. For instance the hybrid VIPS [8], based on the joint DOM and visual
analysis, utilizes both structural information in the DOM tree and visual cues to
semantically segment a page. The hybrid Block-o-Matic (BoM) platform [46], based
also on the joint DOM and visual analysis, additionally abstracts the segmentation
from the DOM tree and works at higher levels, called logical trees without pixel ren-
dering. This abstraction facilitates the understanding and the processing of the page
structure. Though the processing of BoM is automatic, its con�guration with a gran-
ularity parameter (pG) is manual and has to be tailored for each page. Con�guring
BoM with an inadequate pG value leads to a page not correctly segmented, and ap-
plying BoM with the same pG value on a heterogeneous page does not always create
coherent blocks similarly on the whole page.

After identifying the application blocks, some segmentation works in the literature
proceed with a characterization of these blocks. Sanoja and Gançarski [46] assign
labels for each resulting block, that are not relevant for our multi-screen environment,
e.g., header, content, image, logo, etc.[46]. A function-based object model (FOM)
for website adaptation is introduced by Chen et al. [12]. The segmentation model
de�nes a block as a set of information that have a speci�c function, i.e., information,
navigation, interaction, decoration or others. In FOM, even if a function re�ects the
intention of the author for using this object, it does not re�ect the type of interaction
with the end-user.

In our work, we reuse the hybrid approach and the abstraction model proposed
by Sanoja and Gançarski [46] but we adapt the segmentation to make it completely
automatic and multiscreen-oriented. Additionally, our approach reuses the idea of
identifying the block functions from the page content as in FOM, but we de�ne
functions from the end-user perspective and not from the author perspective.

21

2.5 Adaptive web applications and Responsive Web

Design

Changing the context-of-use for an application towards the multi-screen environment
can cause an unpleasant experience for the end-user especially at the level of the
graphical user interface. This is mainly due to the fact that single-screen applications
are designed for a speci�c amount of content and for a speci�c device at a time.

In a multi-screen environment, there are multiple elements that make the layout
design of an application a challenging task. First, depending on the available devices
in the network we cannot know in advance the device on which the application is
going to run. Second, with the migration service [20] provided in a multi-screen plat-
form, an application can move seamlessly from one device to another. This requires
maintaining or adapting the layout to the new target device. Third, the amount of
content that is associated to each device is not predictable during the design process
and it highly depends on the segmentation results. Thus, there is a need for a layout
design that adapts to the dynamicity of the multi-screen environment, i.e., new de-
vices appearing or disappearing in the network, and that adapts to the abrupt change
in the amount of content on the web page.

2.5.1 Adaptive Design Features

Adaptive Design is a global concept which aims at designing web applications that
adapt in terms of form, function and accessibility to the environment changes. The
environment includes the application context-of-use (i.e., device features, browser fea-
tures, time, bandwidth, user preferences etc.) and the end-user disabilities (e.g., deaf,
blind, etc.). The particularity of Adaptive Design is that it is paranoid about the envi-
ronment capabilities and it makes no assumptions. During runtime, the environment
is �rst detected and characterized. Depending on the environment the adequate de-
sign, layout and/or content are sent to the client. The main principles of the Adaptive
Design are to the ensure ubiquity, �exibility, performance and enhancement for web
applications.

In this section, we present our analysis for the main features/approaches that
characterize the di�erent strategies adopted in Adaptive Design. These features an-
swers the following questions: �what to adapt?", �where and how does the adaptation
happen?" , �how to adapt?".

22

2.5.1.1 What to adapt?

The Adaptive Design (AD) includes not only the layout adaptation, but the content
adaptation as well.

The layout adaptation consists in adjusting the content dimensions and positions
to �t the device screen size, to highlight the most relevant content on a web page
or to make these content readable and accessible even on small-screen devices. For
instance, considering an airline website that can be used to search and buy plane
tickets, to check user reservations, to do the online check-in, etc. On the desktop,
all these utilities are present on the website. But a user, having a smart phone, will
be mostly interested in checking her reservations or doing the online check-in on-the-
go. One strategy here consists in hiding the search and buying utilities from smart
phone users. A complementary strategy can be to rotate the horizontal menu to get
a vertical visualization in the aim of enhancing the readability and the accessibility
for each of the reservation checking and the online check-in utilities.

The content adaptation, including multimedia content, consists in selective con-
tent delivery based on the user pro�le, on the device pro�le and on the browser. A
user pro�le is related to the user interests and preferences. It can be built based
on collecting demographic information, information interests, browsing history (e.g.,
recently visited web sites, visiting frequency, etc.), access privilege referring to the
information a user with little or more right can access, etc. [59]. For instance, we con-
sider a user that uses the airline website to search for a ticket from Peru to Lebanon
for summer vacations in August. If two days later she opens the same website on the
same device, the website recognizes the user and exploits her browsing history and
by default proposes the same journey.

The device pro�le as de�ned in 2.3.1 is used to support device-related adaptation.
It speci�es the MIME types and physical characteristics of a device including color
depth, screen size, memory size, operating system, as well as supported markup
languages [59].

For instance, we consider that our airline company designed two di�erent website
versions: one full-version for desktop users and one optimized version for mobile users.
When loading the airline website on a smart phone, e.g., iPhone 6S Plus, the server
identi�es the device type and in consequence sends the mobile version to the iPhone.

The adaptation of multimedia content (for example, images, audio and video)
considers the network bandwidth, the decoding power of a device, the supported

23

formats (e.g., png, jpeg, esp, etc. for images, ogv, gif, avi, mp4, etc. for videos)
and the memory capacities (in particular for video). To this end, the device pro�le
and the network state are tested to choose the suitable parameters for encoding the
multimedia content.

In this thesis, we are mostly concerned about the layout adaptation to the browser
window size. We do not want to generate new content for our multi-screen applications
especially given that our proposed solution is a client-side system.

2.5.1.2 How does the adaptation take place?

Figure 2-3: Adaptive Design Process

A typical adaptation process consists of four main phases as shown in Figure 2-3.

It starts with detecting or constructing the user pro�le and the device pro�le.
Usually this phase is called Browser sni�ng or Device Detection. Then, the pro�le is
analyzed and classi�ed in order to select or generate the suitable content and layout.
The Device Detection, the classi�cation and the serving can happen on either the
client-side or on the server-side or on both sides.

In this section, we focus on the di�erent approaches for device and browser detec-
tion. There are two approaches: client-side and server-side. In general the client-side
approach is based on scripts or on native methods o�ered by the user agent. The
server-side approach can use server-side scripts or it can exploit the header of the
HTTP requests.

Opening a web page in the browser consists in the browser sending an HTTP
request to the server where the application main document resides. Inside the header
of the HTTP request, the browser communicates some information about its identity
(i.e., in the User-Agent string) and its capabilities (i.e., the supported MIME types,
the accepted character set, the accepted languages). Table 2.1 presents the main
HTTP request header �elds and their descriptions, in addition to an emergent header,
i.e., the HTTP Client Hints that is still a draft in the HTTP working group 16. Its
main objective is to deliver optimized content for each device.

16HTTP Client Hints, http://httpwg.org/http-extensions/client-hints.html

24

http://httpwg.org/http-extensions/client-hints.html

HTTP header �eld Description

User-Agent
Name of browser, user agent or

platform from which the request originates

Accept
Comma separated values (CSV) which

are MIME types that are supported by user agent
Accept-Charset Speci�es the character set that supports the user agent

Accept-Language
Contains information about the supported languages

in the user agent
X-wap-pro�le
and Pro�le

Provides information about the UAProf (User Agent Pro�le)
XML �le that is unique to each device

HTTP Client Hints Indicates a list of device and agent speci�c preferences

Table 2.1: Description of the HTTP header �elds re�ecting the browser pro�le

Additionally, the header may contain inside the X-wap-pro�le a link to an XML
�le that is unique to each device and that describes the device on which the browser
is running. Further details about the device descriptions are found in Section 2.3.1.

Additionally, the server can be augmented with Device Description Repositories
(DDR) APIs and databases that take the responsibility of getting accurate informa-
tion about the browser and the device. An example of a DDR is Wireless Universal
Resource FiLe (WURFL) 17, DeviceAtlas, DetectRight, etc. As a result, they return
more relevant information about the device features comparing to the classic detec-
tion using only the HTTP header [14]. DDRs are e�cient and accurate, but they
require the database to be up-to-date.

In addition to the standardization e�orts described in Section 2.3.1, many client-
side JavaScript libraries have been released that enable developers to determine prop-
erties of the browser with a simple JavaScript API. For instance, the `Modernizr' API
18 that consists of a set of tests run on the application load and that provides fall-
backs. The problem here is that these libraries cannot determine some aspects of the
underlying device, e.g., its operating system.

Some browsers implement a set of device detection methods that can be accessed
using DOM objects, e.g., screen.width, screen.pixelDepth, navigator.userAgent, nav-
igator.cookieEnabled. In addition, media-queries [1] are another client-side strategy
for adapting the application design based on the device or display dimension, orienta-

17WURFL, http://wurfl.sourceforge.net/
18Mdernizr, https://modernizr.com/

25

http://wurfl.sourceforge.net/
https://modernizr.com/

tion, resolution, etc. Using these strategies, decisions related to the design adaptation
can be taken immediately without referring to the server (as it is the case for Re-
sponsive Web Design).

We are mostly interested in the client-side adaptation since our solution is a pure
client-side solution. In the rest of this section, we focus on the layout adaptation to
browser window size.

2.5.1.3 How to adapt the layout?

In this section we focus on the methodologies and on the multiple techniques that exist
to adapt the layout to the browser window. There are two main layout techniques:
static and �uid layouts that are the basis for two other techniques: adaptive and
responsive layouts.

Figure 2-4: Static Layout on large and small window sizes

The static layout (also called �xed layout) is designed with preset sizes for its
elements, for instance using the pixel units. As a consequence, the layout does not
change based on the browser dimension. Figure 2-4 shows a static layout displayed
on a large and a small window. The drawback here is that horizontal scrolling is
required to see the complete content on the browser window.

The �uid layout (also called liquid layout) uses relative units (i.e., percentage,
em) for content dimensions and positions instead of pixel units. Dimensions/positions
with percentage values are calculated on-the-�y, relative to a reference context (e.g., a
parent element). The higher reference context is the browser window. Thus, a change
in the browser window will trigger changes to related elements. The �uid layout �lls
the entire width of the browser window while adapting either to the varying size of
the screen from one device to another or to the resized browser window on the same
device.

Figure 2-5 compares the �uid layout presentation on a large and small window.

26

Figure 2-5: Fluid Layout on large and small window sizes

The layout is not optimal when moving from a wide window to a narrow window
especially if it results in very small content that makes the text illegible and the
interactions inaccessible.

Figure 2-6: Adaptive Layout on large, medium and small window sizes

To avoid the �uid layout issue with the very small content, one can de�ne multiple
static layouts one for each relevant window size called breakpoint. The adaptive layout
adopts this approach and switches between a set of static layouts at these breakpoints.
During runtime, the switching happens promptly due to using CSS media-queries.
Figure 2-6 illustrates an example of adaptive layout on a large, medium and small
windows. We consider here only one breakpoint. The switching happens when moving
from a �large window" to a �small" window, or vice versa. The problem here is
speci�cally on the �medium" window where the layout behaves as a �xed layout and
the horizontal scrolling is required again. The layout adaptation is discontinuous.

The responsive layout overcomes the drawback of the adaptive layout by adopting
the �uid layout. As the browser window size changes, the responsive layout will �ex
just like the �uid layout. However, once the window size reaches and detects one of
the set breakpoints using CSS3 media-queries [1], it switches the layout. Figure 2-7
is an example of a responsive layout with one breakpoint on three di�erent window
sizes. The layout only switches when the window size passes from �medium" and
�large" to �small" or vice versa. But, the layout continues adapting itself between the

27

Figure 2-7: Responsive Layout on large, medium and small window sizes

medium windows as Figure 2-7 shows.

In summary, the responsive layout, also called Responsive Web Design (RWD)
changes its layout at any point while the adaptive design adapts to the browser
window width at speci�c points.

For either the �uid, adaptive or responsive layouts, the application URL is always
the same. The only di�erence is how the content dimensions are re-evaluated and
when the re-evaluation takes place.

2.5.2 Adaptive Design Strategies

Among the client-side approaches for layout adaptation, we cite the adaptive layout
[40] and the Responsive Web Design (RWD) [17] that adapt the layout to the browser
window size, orientation, etc. RWD makes use of three technical items, i.e., �uid
grids instead of static layouts, �exible images and CSS3 media queries. The goal of
the RWD is to build all-in-one web pages that detect user screen and orientation and
that automatically and dynamically re-organize the content for an optimal experience
without adapting the content itself and without requesting the server for additional
layouts. Multiple transformations on the user interface elements can take place,
e.g., re-arrangement, re-sizing, replacing, changing visibility, moving elements across
pages, etc.

One strategy for pure content adaptation is using multiple versions that are saved
on the server. Based on the device and browser features detected on the server, the
appropriate version is sent. In this case, the application URL is not the same on all
devices.

For hybrid approaches, i.e., that include both content and layout adaptations,
there is an approach called �RWD proxy sites" that consists in designing multiple

28

RWD versions for the same site. The only di�erence with the classic multi-version
site, is that the layouts are responsive to the viewport dimensions.

Finally, REsponsive + Server Side Components (RESS) 19 is another hybrid ap-
proach that, in contrast to RWD proxy sites, serves the content from one URL. It was
proposed by Luke Wroblewski in 2011. The concept uses RWD but supplements it
with server-side detection feature to serve modi�ed content when required. The cor-
nerstone of RESS is that the application components are associated dynamically on
the server side. For each component, multiple versions exist on the server. Depend-
ing on the device detection and the server classi�cation results, the corresponding
component version is selected.

The importance of RESS, compared to RWD, is that it serves smaller images
on smaller screen or when bandwidth is limited. In contrast, RWD downloads the
image and then scale it in the browser. Using RESS, the browser features can be
considered in the content delivery (e.g., serving video elements only if the browser
supports HTML5, avoid serving Flash games on iOS, fallsback to png when SVG is
not supported, etc.).

Strategies
Content

Adaptation
Layout

Adaptation

Server
-Side

Detection

Client
-Side

Detection

Fixed
Layout

Fluid
Layout

One URL
for all
devices

Adaptive
Layout

- + - + + - +

RWD - + - + - + +
Multi-
version
Sites

+ - + - + - -

RWD
multi-
version
Sites

+ + + + + + -

RESS + + + + + + +

Table 2.2: Adaptive Design Approaches and Techniques

Table 2.2 summarizes this study and maps the above features to the common AD
strategies.

19RESS, http://www.lukew.com/ff/entry.asp?1392

29

http://www.lukew.com/ff/entry.asp?1392

2.5.3 Frameworks for Responsive Web Design

In this thesis, we focus speci�cally on the RWD due to its �exible model and since as
previously denoted our requirement is to just modify the layout and not the content.

There are several front-end frameworks that support the development of RWD
applications. For instance, Bootstrap [53] and Foundation [62] are used to develop
responsive mobile-�rst web applications. They include a grid system to scale the
layout as the device or viewport size changes. While these frameworks are powerful,
they only address the design of responsive layout from scratch. In this thesis, we
develop our re-factoring system to approach the automatic and dynamic re-design of
non-RWD application to make them responsive to device screen width.

One identi�ed limitation for the above frameworks is that they do not adapt the
application layout based on the dynamicity of the application content nor based on
the available empty spaces on the screen. To this end, a variant of media queries,
i.e., the element-queries poly�lls 20, was developed by Marc J. Schmidt as a proof-
of-concept. It triggers changes to an application layout based on the dimension of
some DOM elements instead of the screen dimensions. This new concept, though
not yet standardized, pushes the layout design one step forward towards the dynamic
layout adaptation to the application content. Element-queries can be used as part of
our layout refactoring solution to trigger a layout adaption to the amount of visible
content on each side of the multi-screen application. More details are found in the
Chapter 5.

2.6 State persistence for multi-screen

In the multi-screen context, sequential and complementary usages for multi-screen
applications require state persistence across devices. In the �rst case, moving an
application from one device to another is called migration [5]. In addition to changing
the device, the migration requires preserving the application view and data. In the
second case, the components of a complementary application share a shared context
that is distributed between them. This context is continuously changing especially
for dynamic applications that evolve with time, and for interactive applications with
which a user interacts. The shared context has to be up-to-date to ensure the correct
functioning of the application.

20Element-queries, https://github.com/marcj/css-element-queries

30

https://github.com/marcj/css-element-queries

State persistence was addressed in the literature for collaborative multi-user ap-
plications where multiple users are collaborating on the same application, e.g., [51],
[3], etc.

We have identi�ed two global approaches for state persistence. A �rst approach
requires supporting state persistence by design, using toolkits for distributed user in-
terfaces [36] or using existing APIs, e.g., ShareJS [19] that is capable of synchronizing
simple string objects and JSON documents. The problem in this approach is that it
requires scattered and verbose source code changes.

Using these tools or libraries for automatically refactoring the code of an existing
application is a tedious task, especially because of the complexity of the JavaScript
language and the tight relations between the documents of a web application. More
details are found in Section 3.4.1. In addition they impose constraints on the author-
ing technique to developing multi-screen applications.

A second approach consists in transparently adapting the logic to support state
monitoring. Using the transparent adaptation approach [51] does not require a change
in the application main source code. Instead, it requires extending the code with
an adaptation layer that is responsible of listening to changes, recording them and
redirecting them. In our work, we use the transparent adaptation approach.

Below, we review a set of existing transparent adaptation mechanisms from the
literature.

Imagen [33] proposed an automated generic and transparent approach for persist-
ing and migrating an application state of JavaScript applications. The application
state here includes not only the state of the DOM tree but also the state of the
JavaScript code. They face the complexities of the JavaScript language, e.g., closures
and event-handlers and the complex HTML5 media objects that can be captured and
serialized. Quan et al. [44] proposed to collect user parameters into an object called
user interface continuation. Programs can create UI continuations by specifying what
information has to be collected from the user and supplying a callback to be noti�ed
with the collected information. Ghiani et al. [21] focus only on managing the state
of forms on web applications.

Mutation-summary [56] is a JavaScript library that can be used to ensure the
transparent adaptation and to synchronize elements from a DOM tree. It only requires
to be con�gured to watch speci�c type of changes that may happen on a DOM
tree. Mutation-summary does not allow the synchronization of the JavaScript data
and variables. In contrast, ColADA [27] is a front-end framework that extends the

31

Knockout21 library and that allows the synchronization of the application model and
view. The main objective here is to make easier the development of collaborative
MVC applications by limiting the developer responsibilities to simply annotating
the application source code. During run-time, these annotations are processed and
expanded to blocks of code that ensure the document synchronization.

Panelrama [57] already mentioned in Section 2.2, achieves the "block� [57] syn-
chronization through a client-server architecture. The developer should �rst select
the state variables that need to be synchronized among the distributed blocks, and
then should change the logic of the application. Once detected, the block changes are
propagated to a central page to be after redirected to the device concerned in this
change to update its view.

HydraScope [26] is a framework that distributes and orchestrates the distributed
web-based user interfaces that run in parallel through a central synchronization server.
The orchestration consists in synchronizing mainly the application view without hav-
ing to access the application logic, based on DOM sensing, inspections and event
injection methods. HydraScope can be extended with libraries to support the data
view synchronization following some rules hard-coded by the developer or provided
as options for end-user.

In this thesis, we focus mainly on the view synchronization and we use decentral-
ized mechanism for the synchronization.

2.7 Conclusion

This chapter focused on presenting the technological and scienti�c advances in the
domain of multi-screen application development and the corresponding platform sup-
port. Web services is the adopted technology that makes the cross-platform and
cross-language communication a reality. The protocol stacks that orchestrate the
web service behavior were also presented.

The COLTRAM research project exploits web service technologies and proto-
col stacks to build a multi-screen platform that harmonizes the interfacing between
UPnP and Bonjour services. The COLTRAM platform does not include authoring
COLTRAM-enabled multi-screen applications, while it is required.

In the literature, multiple multi-screen application frameworks were proposed us-

21KnockOut, https://github.com/knockout/knockout

32

https://github.com/knockout/knockout

ing either a client-server topology or a centralized client topology. Most of these
frameworks reuse existing applications to create multi-screen applications following
their topology, but they all require the developer to decide on the content distribution
either by manual annotation or using web components. In contrast, we propose an
automatic content distribution for video-centric applications based on device features.

Concerning the content distribution, segmentation approaches are developed in
the literature with multiple applications in mind. We found that the hybrid seg-
mentation approach is useful for our content distribution requirements. After study-
ing the existing hybrid techniques for segmentation, we found that the abstraction
model provided by BOM [46] facilitates the segmentation task, and the application
re-design. By adopting its abstraction model and by making the multi-screen envi-
ronment controls the segmentation results, we propose a new approach for application
segmentation for content distribution.

We investigated as well the theory and the basis of the web application design,
speci�cally the adaptive web design that is capable of adapting the content and the
layout to the environment. We found that client-side approaches for layout design are
the solution for our requirements to enhance the multi-screen applications delivered
by our system. This is due to the fact we have no control over the domains from
which the applications are served.

Finally, we checked in the literature the existing approaches for providing state
persistence. While rewriting and intercepting the JavaScript logic looks very limiting
and complex to be done automatically, the transparent adaptation technique seemed
more feasible. In addition, we reviewed some of the logic transforming works that
were used to ensure the synchronization between distributed content, with a focus on
view synchronization.

33

Chapter 3

Overview of the Refactoring System

This chapter is a global introduction to the refactoring system. The aim is to present
the whole picture and to give an overview the system basis before detailing them in
the following chapters. The chapter covers the system architecture, the input and
output characterization, the extrinsic factors in�uencing the system, and �nally the
multi-screen application model that it assumes.

As part of the input characterization, we also characterize the application datasets
that are used in the following chapters to validate the system components.

3.1 System Global Description and Architecture

Our work operates on multiple aspects to provide an end-to-end refactoring system
that delivers functional multi-screen applications.

The �rst aspect is the exploitation of the multi-screen environment and the char-
acterization of web applications. More details are found in Section 3.3.

The second aspect is the distribution of the application user interfaces and their
adaptation to the multi-screen environment.

A user interface is considered as the association 1) of the information structure,
2) of the interaction design that de�nes how people can manipulate and contribute
to that information and �nally 3) of the visual design 1. For web applications, the
user interface structure and the visual design are mainly created using HTML and
CSS documents. The interaction design designates the logic behind the elements of

1See http://www.freshtilledsoil.com/what-is-user-interface-design/

35

http://www.freshtilledsoil.com/what-is-user-interface-design/

the user interface and it is usually implemented in JavaScript.

In the context of multi-screen applications, a single User Interface (UI) is substi-
tuted with Distributed User Interfaces (DUI) that can be distributed geographically,
among multiple devices, among graphical displays and means of interaction [15].

The third aspect is the state distribution and the preservation of the application
functionality during runtime and the runtime support for the application dynamicity.

Section 3.4 introduces and arguments the adopted model for the user interface
distribution.

Figure 3-1: The architecture of the refactoring system

Each of the above three aspects are implemented in one or more components in
our system architecture presented in Figure 8-1.

The �rst aspect is represented with the Device Discovery and Characterization
component (number 1). The second aspect covers components number 2, 3 and 4. UI
Division and UI Distribution deal with the processing of the HTML and the JavaScript
documents to deliver the functional multi-screen application. Layout Adaptation
processes the application CSS document to adapt the multi-screen application layouts
to the device types. The third aspect is represented with the State Distribution
component (number 5) that is mainly concerned in JavaScript.

3.1.1 System Features

The refactoring system is dedicated mainly for end-users and aims at alleviating
the user tasks during a multi-screen experience. The system is automatic and it is
designed to not require a con�guration from the end-user. The end-user only needs to
provide the application she wants to split, to connect multiple devices to the network
and �nally to command the system after selecting the devices of her interest.

Our current implementation targets speci�cally multimedia web applications, and

36

more precisely video-centric applications that have at least one video element. Our
choice for supporting the video-centric application is motivated by the increase of
the online video consumption across the globe. In 2015, a survey related to the
online video consumption 2 forecasts that the average amount of time people spend
consuming online video each on a daily basis will grow by 23.3 % by 2015 and 19.8%
by 2016. In an article published in June 2016, Cisco forecasts that the IP video
tra�c will be 82% of the consumer tra�c by 2020, up from 70% in 2015 3. The most
notable in these forecasts is that the mobile video consumption is growing at roughly
5 times the rate of non-mobile devices (i.e., smartTV and desktops), and that mobile
consumption will form 52.7% of the total consumption in 2016.

Based on these facts and following our requirement, a dataset was selected among
existing single-screen applications and it is described in Section 3.2. The dataset is
used throughout the thesis to validate most of the system components.

Enlarging the system scope to cover di�erent types of applications is possible since
the system is extensible. The key point here is to characterize these applications and
to identify the common features that can be used by the system to automatically
separate and distribute the application contents. We note that the system is designed
in a modular manner that facilitates its reuse and its extension to support di�erent
application types.

From a practical point of view, the complementary multi-screen usage is mostly
relevant between two devices. Based on this, the system implementation focuses
on a distribution between two devices, but the system is also valid for more than
two devices. Throughout the following chapters, we will validate quantitatively our
system on two devices. In addition, a �rst investigation for our system with three
devices is also conducted in Chapter 6.

Figure 3-2 illustrates a layered and a global presentation of the system runtime
environment. The system runs on top of the browser, speci�cally the JavaScript
engine, and the COLTRAM platform. It de�nes multiple APIs that operate on the
three documents (i.e., HTML, JS and CSS) of the single-screen application.

Situating the system between the JavaScript engine and the application is re-
quired since the system conducts a dynamic analysis on the application documents
and thus it requires the access to the DOM tree, and it needs also to �lter browser

2Online video consumption growth forecasts, http://www.zenithoptimedia.com/

mobile-drive-19-8-increase-online-video-consumption-2016/
3Cisco survey, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/complete-white-paper-c11-481360.html

37

http://www.zenithoptimedia.com/mobile-drive-19-8-increase-online-video-consumption-2016/
http://www.zenithoptimedia.com/mobile-drive-19-8-increase-online-video-consumption-2016/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

Figure 3-2: The refactoring system between the user agent and the application

38

events. We note here that the execution context of the refactoring system and the
execution context of the MSA application are completely separated. The interest
of this separation is to avoid the incompatibility issues in the presence of multiple
development environments of web applications, i.e., using external libraries such as
jQuery 4, prototype 5, RequireJS 6.

Figure 3-3: The delivered multi-screen application

Once the end-user commands the system, the system output is a multi-screen ap-
plication that is not tied to the refactoring system. It runs on top of the browser and
the COLTRAM platform as shown in Figure 3-3. This feature makes the multi-screen
application portable (or migratable) across connected devices in the COLTRAM plat-
form.

Note that the system is not tied to the COLTRAM platform, and other discovery
and communication solutions (e.g., postMessage 7, webRTC 8) are also applicable.
In a preliminary work reported in [47], we used postMessage as a means of com-
munication between the multi-screen application components running on the same
device. This last aspect is a limitation for postMessage since it does not support the
cross-device communication.

4jQuery, https://jquery.com/
5Prototype, http://prototypejs.org/
6RequireJS, http://requirejs.org/
7postMessage API, https://developer.mozilla.org/en-US/docs/Web/API/Window/

postMessage
8WebRTC, https://webrtc.org/

39

https://jquery.com/
http://prototypejs.org/
http://requirejs.org/
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://webrtc.org/

3.2 System Input and Dataset Characterization

We believe that characterizing the system inputs and the selected dataset at �rst
helps in sensitizing the reader to our system scope and to the application features
that are relevant for the processing of the �ve system components.

We build a dataset of web applications containing at least one video. Most of
these applications are designed for the desktop and are not responsive. Our dataset
can be split into three categories as follows:

1. Full-featured video-centric applications: here, we select the top 11 most popular
video websites based on the ranking of eBizMBA Rank 9 by March 2016.

2. Basic video player applications: we select 7 basic applications provided by dif-
ferent video libraries, i.e., mediaElement 10, videojs 11, jplayer 12.

3. the semantic video application: a highly dynamic video application developed
by Mozilla.

Table 3.1 contains the exhaustive list of our 19 applications. We characterize these
applications by identifying mostly the aspects related to the graphical user interface.
For instance, the number of links with which a user can interact, the presence of video
elements (HTML5, Flash, etc.), the number of images, the word count that gives an
idea about the website type and the page height when rendered on a 1920*1080px
desktop. Finally, we conducted some manual tests to check whether the selected sites
are responsive. One limitation here is that we do not provide an automatic mechanism
to detect whether an application is responsive or not.

It is important to note that values are reported in Table 3.1 re�ect the state of
the application just after the page has loaded, i.e., before running the video and
without considering any advertisements on the page. These numbers might change
during runtime after running the application. These changes characterize the dynamic
behavior of an application. This is in particular very relevant for the semantic video
application.

For each application, Table 3.1 indicates di�erent characteristics of these applica-
tions. It indicates the number of DOM elements each page contains ranging from 113

9See http://www.ebizmba.com/articles/video-websites
10See http://mediaelementjs.com/
11See http://www.videojs.com/
12See http://jplayer.org/

40

http://www.ebizmba.com/articles/video-websites
http://mediaelementjs.com/
http://www.videojs.com/
http://jplayer.org/

Table 3.1: Dataset characterization on a 1920*1080px viewport

Apps/Count
DOM
nodes

Video
elem.

Inter-
active
elem.

Link
elem.

Image
elem.

Word
Doc.
Height

RWD

Viewster a 684 1 480 89 31 333 2285 Yes
Vimeoprob 113 1 73 24 5 83 1465 No
Vimeoc 1083 1 572 166 34 864 3169 Yes
Youtubed 2800 1 1633 254 56 878 4831 Yes
Dailymotione 1172 1 572 55 17 441 2506 Yes
Yahooscreenf 1284 1 596 159 2 170 5881 Yes
Twitchg 809 1 403 209 60 440 3981 No
Liveleak h 631 2 308 111 21 392 1971 No
Ustream i 1051 1 436 91 4 403 2015 No
Break j 3411 1 1401 538 106 1495 7750 No
Metacafe k 449 1 225 46 6 181 1663 No
VideoJS l 175 1 124 1 0 37 1099 No
Jplayer demo1 m 31 1 8 1 0 15 1099 No
Jplayer demo2 n 36 1 8 2 0 16 1099 No
JWPlayer
demo1 o

19 1 2 2 0 2 1099 No

JWPlayer
demo2 p

324 1 284 5 18 13 1099 No

JWPlayer
demo3 q

1091 1 3 2 0 10077 1099 No

MediaElements r 104 2 18 3 1 138 1306 No
Video Player

Pages (average)
254 1.14 64 2 3 1471 1129 No

Semantic Videos 528 1 312 41 39 119 1090 No

Average 831 1,1 376 90 20 878 2371 -
aViewster, http://bit.ly/1RiOBqA, bVimeopro, http://bit.ly/29uf3xQ,
cVimeo, http://bit.ly/1QsT7lm, dYoutube, http://bit.ly/1OVFaLO,
eDailymotion, http://bit.ly/25nuLka, fYahooscreen, http://bit.ly/1T7nQqk,
gTwitch, http://bit.ly/18uyRaC, h Liveleak, http://bit.ly/1pJG8CV,
iUstream, http://bit.ly/1XPrpkl, j Break, http://bit.ly/1RiOBqA,
kMetacafe, http://bit.ly/1RncU5m, lVideoJS, http://bit.ly/29y2ceE,
m Jplayer demo1, http://bit.ly/29J6r90, n Jplayer demo2, http://bit.ly/29nULaY,
o JWPlayer demo1, http://bit.ly/29p3eXN, p JWPlayer demo2, http://bit.ly/29nUR2o,
q JWPlayer demo3, http://bit.ly/29uezrJ, rMediaElements, http://bit.ly/29Fnwhg,
s Semantic video, http://bit.ly/29CwVpN

41

http://bit.ly/1RiOBqA
http://bit.ly/29uf3xQ
http://bit.ly/1QsT7lm
http://bit.ly/1OVFaLO
http://bit.ly/25nuLka
http://bit.ly/1T7nQqk
http://bit.ly/18uyRaC
http://bit.ly/1pJG8CV
http://bit.ly/1XPrpkl
http://bit.ly/1RiOBqA
http://bit.ly/1RncU5m
http://bit.ly/29y2ceE
http://bit.ly/29J6r90
http://bit.ly/29nULaY
http://bit.ly/29p3eXN
http://bit.ly/29nUR2o
http://bit.ly/29uezrJ
http://bit.ly/29Fnwhg
http://bit.ly/29CwVpN

Figure 3-4: Average number of DOM nodes per page

to 2800, on average 831 nodes.

This shows that our dataset is representative of typical websites as illustrated
in Figure 3-413. We have 8 applications with less than 400 nodes, 4 applications
between 401 and 800 nodes, 5 applications between 801 and 1200 and 2 applications
with more than 3000 nodes. Among these nodes, on average only one element is a
video except for the Liveleak page and for one mediaElement application where there
are 2 videos. On average 46% of these nodes are interactive following our de�nition
given in Section 4.3, among which 24% are links. These percentages con�rm the
presence of interactivity in our dataset. Youtube, Dailymotion, Vimeo and Viewster
applications are responsive, thus they will not be used to test our responsive re-design
approach. The average word count is 878 words that is distributed between the video
title, the link text, user comments, short description about the video, or video-linked
information (or transcript) as it is the case for the semanticVideo application and
JWPlayer demo3.

For a window with a width of 1920 px, the height of these pages varies between
1090 and 7750 pixels, on average 2371 pixels. This helps us to identify whether the
height of a page can in�uence the performance of our system.

13HTTPArchive statistics, http://httparchive.org/interesting.php

42

http://httparchive.org/interesting.php

3.3 The content-device duality

As mentioned earlier in this chapter, an important feature of our system is that it
is automatic and does not require any external assistance from a user. It uses the
environment diversity in the multi-screen ecosystem to assist the distribution of the
application content. In this section, we study the relations that exist between devices
and applications with the intention of providing on each device a `well-�t' portion of
the application, based on device features and capabilities.

In the context of multi-screen applications, a Google study [23] conducted a user-
study in 2012 to understand the user behavior in a cross-platform. It identi�ed four
main device combinations for complementary interactions between two devices, with
their corresponding usability percentages:

1. TV and Tablet, 40%

2. PC and Smartphone, 36%

3. TV and Smartphone, 35%

4. TV and PC, 32%

In most of the above combinations, the main device is a TV or a PC that both
have a large screen allowing a user to be placed relatively far from it. The second-
screen device, i.e., tablet or smart phone, has a smaller screen size, it is a portable
device and it is simple to use and to interact with its touch screen.

XXXXXXXXXXXXXX
Devices

Functions
Video Rendering Text Visualization User Interaction

TV ++ + �
PC ++ ++ +

Smart Phone + + ++
Tablet + ++ ++

Table 3.2: Characterizing devices with features related to the context of usage

Based on these observations, we propose in Table 8.1 a characterization for the
four device types, i.e., TV, PC, Smart phone and tablet, with functions, i.e., video
rendering, text visualization and user interaction. A function refers to the type of
media that a device can render, i.e., audio, video, or to the type of interaction between

43

an end-user and a device, i.e., to display content or to listen to user data and user
requests. The list of functions is not exhaustive and can be extended and re�ned to
consider more device features, such as checking the support for media formats.

We associate a score for each combination of a device and a function. This score
varies between '-' at its minimum utility, '+' at its medium utility and '++' at its
maximum utility. It re�ects how much a device is suitable for a certain function. For
instance, Table 8.1 states that TV and PCs are more suitable for video rendering
than smart phones and tablets in the context of home networks and complementary
usage.

TVs, with a negative interaction score, should be avoided for non-trivial user
interactions. Cesar et al.[10] and Bernhaupt et al. [6] report on the complexity of
using a remote control to interact with a TV especially because its buttons are limited
to arrows, channel numbers and a validation button. For example, navigating an EPG
requires extra e�ort comparing to using a mouse on a PC, or touch screen on smart
phones. On the other side, smart phones and tablets are the most suitable for user
interaction.

For text visualization, PC is considered better than TV though both have a large
screen, but in contrast a TV is usually situated far from the user while the PC is at a
shorter distance, thus allowing a better visualization for large texts. If we compare the
text visualization on a smart phone and on a tablet, they are both good at displaying
large text content and they are both destined for private use, but a tablet with its
wider screen requires less e�ort to read the text, e.g., the amount of text displayed
at once on the tablet is larger than the one on a smart phone with a smaller screen
size, in addition the text can be better readable on a tablet.

The functions characterizing devices in Table 8.1 also characterize the content of
the applications. For example, a media part of an application can be identi�ed by
the presence of a video or audio element or an embedded Flash object. Similarly, an
interactive part of an application can be identi�ed by the presence of input elements,
or event listeners that listen to user interactions. In consequence, these functions can
be used to associate the application content to devices.

A multimedia application is an application that uses a collection of various media
sources, e.g., text graphics, audio, animation and/or video. Comparing these media
sources to the functions identi�ed above, a multimedia application can be viewed as
formed with multiple blocks where each block is characterized with a function. A
block here is de�ned as a set of application elements that are visible on the screen

44

and that form an entity that is independent from the rest of the blocks.

In our work, we do not duplicate visible blocks between the primary device and
the secondary device(s) on the one hand. In consequence the number of devices
among which we distribute the application is smaller or equal to the number of the
identi�ed blocks. But visible blocks could be duplicated among multiple secondary
devices resulting in cloned components. In this case, there would be no constraint
on the number of secondary devices. We assume that audio and video content are
associated to a large device, i.e., TV or a PC as a �rst choice. We call these content
`multimedia' content. Interactive content are associated to smart phones or tablets as
a �rst choice together with large text content. We call them the `interactive' content.

As previously stated, our system is responsible for guiding automatically the split-
ting of the applications based on the environment. A user can at any time launch
her single-screen application on a device, connect another device and then query the
system to distribute the application on the two devices. The selection of two devices
among multiple devices on the network is out-of-scope in this thesis. This can be
done automatically, for instance, using the cost matrix approach proposed by Yang
et al. [57]. In our work, we assume there are always no more than two devices at a
time.

The device characteristics on which we focus are: (1) the number of screens, (2)
the screen size, i.e., large or small display, (3) the means of interaction, i.e., touch
input, keyboard, mouse or non-interactive, (4) the type, i.e., TV, PC, tablet or smart
phones. The COLTRAM platform includes a web service that collects the features
listed above. Then, for each device we identify its dominant feature that we consider
as the function of the device based on Table 8.1 explained in the previous section.
For instance, in the case where a user selects two identical large devices, i.e., 2 PCs,
we �rst compare their screen sizes. We consider that the PC with a bigger screen is
more suitable for displaying `multimedia' content than the other PC.

We recall that the two functions we consider in this work are `interactive' and
`multimedia', but this list is not exhaustive and could be extended to include for
example an `information' function for large textual content.

The identi�ed content functions will guide the application analysis done inside the
components number 2 and 3 in Figure 8-1. More details are provided in Chapter 4.

45

3.4 Multi-Screen Application model

As mentioned earlier, distributing an application user interface is equivalent to dis-
tributing its associated documents, i.e., notably HTML, JavaScript and CSS.

Multiple questions arise when trying to �nd an application model that is based on
splitting the HTML, CSS and the JavaScript documents. The questions are related
to 1) the features of each language, 2) the di�culties of their dynamic analysis during
runtime, 3) their dependence from each other (tight links) and 4) the distribution
cost on the system performance.

Sections 3.4.1, 3.4.2 and 3.4.3 are dedicated to answer these questions from a
technical point of view. The resulting multi-screen application model is detailed in
Section 3.4.4.

3.4.1 Splitting the HTML document

The JavaScript representation of HTML documents, CSS properties and the event
system is given by the W3C Document Object Model (DOM) 14. In another word,
the DOM tree is a dynamic representation of the HTML document, where parent and
sibling relations among HTML nodes are explicitly expressed and where the HTML
elements and attributes are accessible and manipulable dynamically using JavaScript.
In addition, using the DOM tree more information concerning the application state
can be captured compared to the HTML document. For instance, multiple event
listeners can be set simultaneously on one HTML element and this can only be seen
in the DOM tree.

By analyzing the DOM tree dynamically, it is possible to partition and to dis-
tribute the corresponding HTML document. Figure 3-5 illustrates a simple DOM
tree (a) where elements have two patterns. To split this tree, elements having the
yellow pattern created DOM tree 1 (b) and elements having the blue pattern cre-
ated DOM tree 2 (c). The body element is at the head of every DOM tree, so it is
duplicated.

On one side, this splitting methodology reduces the size (i.e., in terms of number
of nodes) and the complexity of the DOM tree compared to the initial DOM tree.
In consequence, it reduces the loading time of the distributed application especially
on devices with limited connectivity and resources. In this example, the DOM tree

14DOM, http://www.w3.org/DOM

46

http://www.w3.org/DOM

Figure 3-5: Default DOM Splitting illusttration

is small but existing web applications have a more complex DOM trees as shown in
Table 3.1, and the reduction of the number of DOM nodes is more remarkable and
more relevant than this simple example.

On the other side, this radical splitting is harsh especially because parent and sib-
ling relations are not preserved. The body element had three children in the reference
DOM tree (a), but has two on DOM tree 1 and only one on DOM tree 2. In addi-
tion, this radical splitting can have consequences on the main logic interpretation and
correctness since there are tight relations between the DOM tree and the JavaScript
code, as it is going to be detailed in the next Section 3.4.2.

3.4.2 HTML/JavaScript links

Jensen et. al. [29] states that the JavaScript code in general cannot be analyzed
separately from the HTML code. This is because the JavaScript logic is usually added
to the browser to manipulate the HTML documents dynamically during runtime and
to allow end-user to interact with the application. The JavaScript engine on the
browser is responsible for these tasks, i.e., dealing with the application user interface,
in addition to dealing with the server communication and other tasks.

Using the DOM interfaces de�ned in the browser API, the JavaScript logic can
concretely:

1. access DOM elements directly, e.g., using �document.getElementById", or through
exploiting parent relations using �.�rstElementChild", �.parentElement", �.nextSi-
bling", etc.

2. add DOM elements, e.g., using �document.appendChild"

3. add and edit the attributes of DOM elements, e.g., using �.setAttribute"

47

4. delete DOM elements or their HTML attributes, e.g., using �.removeChild",
�removeAttribute"

5. add and delete event listeners on DOM elements, using HTML attributes, e.g.,
the �onclick" attribute, or using �.addEventListener"

Using the DOM interface methods to manipulate the DOM tree usually implies a
perceivable change on the HTML document. Thus, these methods preserve a coher-
ence between the state of the HTML document and the DOM tree object. Some of
the above changes to the DOM tree, especially those related to HTML attributes and
event listeners, can be done using built-in setters, i.e., JavaScript properties. Exam-
ples for these properties are: �.id", �.selected", �.value", �.style", etc. Correspondingly,
some of them imply an update to the HTML document while some others do not (e.g.,
.selected, .value, etc).

In addition, the JavaScript program execution is driven by events in the browser,
e.g., the page is �rst loaded, the user interacts using the mouse or the keyboard,
timeouts occur, responses to HTTP requests are received, etc. The event handler
code reacts by modifying the program state and the HTML page via its DOM tree
and by interacting with the browser API. The event handler code can be de�ned
separately in a JavaScript document or in a script element or as a value for an HTML
attribute. Here again Jensen et al. [29] statement applies.

Running the JavaScript code separately from the HTML document, for instance
in NodeJS 15, will not run or will break because 1) its execution is triggered following
events on the HTML elements and 2) it continuously interacts with the DOM tree.

This means that the option of isolating the JavaScript document from the appli-
cation DOM tree is not a possible solution.

3.4.3 To Split or Not To Split the JavaScript

From the previous section, the JavaScript logic should always be on the side of the
DOM tree. But if the distributed application has two DOM trees, is it necessary to
assign a logic for each of them?

In this section, we are going to answer this question throughout two scenarios
and we are going to study their feasibility and their challenges. Scenario 1 aims at

15NodeJS, https://nodejs.org/en/

48

https://nodejs.org/en/

splitting the JavaScript document. Scenario 2 is to keep the main JavaScript logic
intact next to each of DOM tree 1 and DOM tree 2 of Figure 3-5.

In the beginning of this thesis, we adopted by default Scenario 1 and we developed
an algorithm to split the JavaScript code according to the split DOM tree. This �rst
trial helped us in identifying concretely the challenges and the complexities of this
scenario. Then, it pushed us to think about Scenario 2 and to conclude �nally about
the drawback and the advantages of each of them.

3.4.3.1 Scenario 1: To Split the JavaScript

We recall that Scenario 1 consists of splitting the DOM tree and splitting the JavaScript
document as well.

The basis for the JavaScript splitting is to try to separate the code related to
elements in the DOM tree 1 from the code related to elements in the DOM tree 2.
The following section focuses on the challenges and the cost of splitting the JavaScript
code on the performance of the application and the system.

The �rst obstacle we face is the JavaScript language itself and its dynamic as-
pects. JavaScript has higher-order functions and closures, exceptions, extensive type
coercion rules, and a �exible object model where methods and �elds can be added or
change types and inheritance relations can be modi�ed during execution [29]. The
complexity of the JavaScript language is also expressed in the complex interactions
with the browser and with the HTML DOM as stated earlier in Section 3.4.2.

Talking about browsers, the browser environment gives rise to additional chal-
lenges. In fact, they do not follow the ECMAScript language speci�cation as it was
reported by Ma�eis et al. [35] in their trial to understand the JavaScript language.
In addition, browsers provide non-standard functionality. Incompatibilities in the
browser environments are a major concern when it comes to modeling the interac-
tions between JavaScript and browsers.

More challenges were identi�ed in the literature [35], [29] and static analysis ap-
proaches were proposed to deal with them. But, these methods are heavy since they
consist in constructing data �ow graphs and call graphs on one side. On the other
side, they require a preliminary phase, running the complete application to illustrate
all its states. Thus, such a method is not suitable for our system objectives concerning
refactoring any application at any moment.

For the moment, let us assume that we could split the JavaScript document to

49

study the consequences on the performance of the application and of the system.

Listing 3.1: Example of a JS document

1 var f = function (){

2 var v = document.getElementById('DOM1element ').value;

3 document.getElementById('DOM2element ').value = v * 10;

4 };

A simple function in Listing 3.1 is de�ned. It reads the value of an element belonging
to DOM tree 1 in line 2 and updates accordingly the value of an element belonging
to DOM tree 2, in line 3.

Listing 3.2: Split JS document

1 //code associated to DOM tree 1

2 var f1 = function (){

3 var v = document.getElementById('DOM1element ').value;

4 stub ({'call': 'f2', 'args': v});

5 };

Listing 3.3: Split JS document

1 //code associated to DOM tree 2

2 var f2 = function(remoteValue){

3 document.getElementById('DOM2element ').value = remoteValue *

10;

4 };

The splitting of the function f is straightforward here as shown in Listings 3.2 and 3.3.
But it is much more complicated in the presence of loops, global variables, anonymous
functions, etc.

But apart from conceiving and developing a runtime method to split the code
instructions, additional tasks are required to preserve the initial execution order and
to preserve the data �ow between the distributed application. This is illustrated in
line 4 of f1 where a stub function is called after line 3 has executed. The stub function
is responsible for collecting the necessary arguments, i.e., the remote function to be
called (f2) and the required arguments to make f2 executes as expected. In addition,
the stub function is responsible for calling f2 with these arguments.

Practically, Listing 3.2 is associated to DOM tree 1 that is rendered on the browser
of a �rst device. And Listing 3.3 is associated to DOM tree 2 that is rendered on the
browser of a second device. In this case, the stub manages as well the messaging and

50

the communication between both sides. The drawback of using stub functions is that
they can overwhelm the network with excessive and non-relevant messaging between
both devices.

These challenges make the dynamic analysis of the executable JavaScript code a
very complex and heavy task especially during the application runtime. For these
reasons, we dropped the idea of analyzing the JavaScript code and we decided to
abstract from the JavaScript code.

3.4.3.2 Scenario 2: Not To Split the JavaScript

We recall that Scenario 2 consists in splitting radically the DOM tree and keeping an
unmodi�ed version of the JavaScript document next to DOM tree 1 and DOM tree
2.

The JavaScript element lookup mechanism, i.e., using for example getElementById,
getElementsByTagname and related functions, searches for elements based on their
id, tag name, class names, etc., or using the JavaScript properties. These methods
are applied to a DOM element object and return null, one or more elements.

A null element is returned 1) if the DOM tree does not have at least one element
that satis�es the search criteria or 2) if the search criteria is not valid. In addition,
calling a method or getting/setting properties on a null element breaks the application
logic. This exactly can happen if trying to access the omitted elements in Figure 3-
5(b) or (c).

In some other cases, the logic will not break but instead the application behavior
may change.

Listing 3.4: Example of a HTML document

1 if (document.body.children.length == 3)

2 call f();

3 else

4 call g();

For instance, the JavaScript in code Listing 3.4 is associated to the reference DOM
tree in Figure 3-5(a), and the expected behavior is to call function f(). Applying this
code on DOM tree 1/2 of Figure 3-5 , results in executing function g() since the body
element has 2 children now on DOM tree 1 and one child on DOM tree 2.

To avoid the above problems, there are two solutions:

51

� to modify the main logic and adapt it to the distributed DOM tree. But we
dropped it in Section 3.4.3.1.

� to preserve both the JavaScript logic and the main logic on one side.

3.4.4 Summary and Our MSA application model

Reverse engineering logic is a heavy and a complex task that is complicated to be
done dynamically as previously shown. Our solution operates transparently on the
original source code. It does not change it but instead it adds a layer between the
browser and the application at runtime.

The challenges in transparently modifying the logic are �rst that the script logic
of a web application cannot be valid if it is separated from the DOM tree, especially
if the code is used to read and manipulate the DOM tree during run-time. Thus,
having the whole script logic with a subset of the main DOM tree does not ensure
that the code will not break.

Figure 3-6: The adopted multi-screen application model

In consequence, we decided to keep the main logic intact and to assign it to only
one component of the distributed application.

Our multi-screen application model consists of a master and a slave component
as shown in Figure 3-6. The master component is a rich application that holds all
the application logic. It has a DOM tree that is a slightly modi�ed copy of the main
application DOM tree. Elements that belong to the slave component are hidden on
the master as illustrated in Figure 3-6 with dotted borders. These hidden elements
are considered as a shortcut to the slave component whenever the logic requires the
access to the slave DOM tree. Thus, the strategy of keeping the original tree on
the master reduces and limits the communications between both components to only
exchanging changes and updates.

52

The slave component has a DOM tree that is a subset of the main application
DOM tree. It has no logic, but it is dependent on the master component.

Using this application model, our system has an additional responsibility to pro-
vide an interface between the master and the slave components to let them ensure
the complementary usage and the state coherence especially for the slave component.

The complementary usage implies a dependency between the components that
form the multi-screen application, especially if the application is dynamic and if during
the run-time a change on one component triggers a change on the other component(s).
Thus, additional cross-device operations are required during run-time and need to be
provided by our system.

The main two run-time operations that interest us are the synchronization and
the redirection, to which we refer by state distribution. The synchronization consists
in ensuring that the states of the application components are coherent at any moment
during run-time. The term state in this thesis is limited to the state of the DOM tree.
The redirection refers to the mechanism of propagating the state changes towards the
concerned component. To integrate these operations at the level of each component,
we add an additional layer of logic that detects state changes and sends them when
necessary.

To make the slave capable of propagating user requests and data input to the
master component where they will be processed, and in order to make it capable of
integrating the updates received from the master, we enrich the slave with a logic,
independent from the original application logic. On the master component, updates
concerning the slave will be monitored, captured and serialized to the slave. Further
details are provided in Chapter 6

3.5 Conclusion

This chapter aimed at previewing the complete system and at presenting its main
features and requirements based on technical and theoretical studies.

The architecture of the described system consists in �ve principal blocks: the
environment exploitation, the UI division, the UI distribution, the layout adaptation
and �nally the state distribution.

As an input, the system takes a video-centric application that contains at least
one video element and delivers a multi-screen service application at the output.

53

The refactoring process is in�uenced by the device features. This was the result
of the identi�ed content-device duality that exists between a multimedia application
and device features.

The model of the output application was decided after investigating multiple so-
lutions and after conducting technical studies on the HTML and JavaScript codes.
The adopted model consists in a master-slave model. The master is a rich application
having the main application logic on its side and having a slightly modi�ed version of
the main DOM tree. The master relies on the slave to receive user data and queries.

The slave has a DOM tree that is an extract from the main DOM tree and it relies
on the master to update the state of its DOM tree.

54

Chapter 4

Creating Multi-screen Applications

Figure 4-1: UI Division and UI Distribution phases in our refactoring system

This chapter describes the part of our refactoring system responsible for the appli-
cation distribution including: the User Interface (UI) division and the UI distribution
components as illustrated in step 2 and step 3 in Figure 4-1. While UI division only
selects/identi�es the elements to distribute, the UI distribution creates the user in-
terface of the master and slave components. The UI distribution approach described
in Section 4.4 is independent of the UI division methods. As a result of the applica-
tion distribution, a multi-screen application is created following the application model
described in Chapter 3.

The chapter describes �rst our three di�erent tentatives to divide a user interface.
First, we have developed a visual tool in Section 4.1, that requires the user to divide
visually the user interface by selecting a region of interest. Second, we have developed
a DOM-based analysis method described in Section 4.2, to automatically divide the
user interface structure, from the environment features.

55

Finally, we combined the visual analysis of the �rst method and the structural
analysis of the second method to obtain a hybrid analysis method using a segmenta-
tion technique described in Section 4.3. This combination circumvents the limitations
of each of the two methods and adapts them to our system requirements while re-
sulting in the expected user interface division. The conformance of the resulting user
interface to the expected user interface is studied and evaluated in Section 4.6.

4.1 Screen-Region Selection Method

4.1.1 Principles

The screen-region selection method is based solely on the application visual render-
ing. It requires that an end-user selects a rectangular region of the browser window
during runtime. The method consists in replicating the selected region on the slave
component. The remaining regions belong to the master component. It works by
analyzing the geometry of the DOM elements to identify those that fall within the
selected region.

The challenges here are mostly related to the proper mapping of the selected region
to the corresponding DOM elements, based on their geometrical properties. If the
mapping is not correctly done, unwanted elements are sent to the slave component
while they should remain on the master component or vice versa. There are multiple
causes for these problems, as follows:

� the region selection might lack of precision and in consequence unwanted ele-
ments are considered as selected DOM elements (Problem 1) or vice versa.

� there might be an incoherence between the calculated geometry of some DOM
elements and the e�ective space they occupy on the screen. This can happen
for elements whose geometry does not encompass those of its descendants, or
for the block-level elements that take the available full-width independently of
their content size (for example, the H1-H6, P, DIV elements) (Problem 2)

The screen-region selection method is illustrated in Figure 4-2 in the form of a
program �ow. The algorithm runs once an end-user selects a region on the screen
using a selection tool, e.g., RectMarquee 1. The geometry of the selected region is
provided as an input to the algorithm in addition to the DOM tree.

1rectMarquee Tool, https://github.com/mfaber/quexf/tree/master/js

56

https://github.com/mfaber/quexf/tree/master/js

Figure 4-2: Screen-Region Selection Method

The algorithm main building blocks are: 1) traversing the DOM tree in pre-order,
2) checking each element geometry and 3) computing the intersection between the
area corresponding to the DOM element and the area of the selected region.

If an element has no geometry, i.e., his height is null, the algorithm still processes
the element descendants for the reasons described in Problem 2. If the element is a

57

leaf node, i.e., do not have a child, it is moved by default to the same component as its
parent element. Otherwise, depending on the component(s) to which the descendants
belong, the element follows the same component.

If an element has a geometry, the algorithm detects if the element belongs partially,
completely or not at all to the selected region. To explain how the algorithm detects
the intersection, we illustrate the di�erent cases in Figure 4-3. The four blue blocks
enumerated from 1 to 4 represent four DOM elements and the pink region is the
selected region.

Figure 4-3: Calculating intersections between the selected region and DOM elements

Block 1 is completely outside the pink region (intArea = 0), then it belongs to
the master component. Block 2 is completely inside the pink region (intArea =
100%), then it belongs to the slave component. For those cases, the algorithm is
straightforward. The complexity comes with elements that are partially inside the
pink region, i.e., blocks 3 and 4. These cases are usually the result of the lack of
precision when selecting the region of interest (Problem 1). To deal with this, the
algorithm checks if the intArea covers more than 60% (a heuristic value based on our
experience) of the DOM element area. If it is the case, as for block 3, then the element
belongs to the slave component. Otherwise, it belongs to the master component, as
it is the case for block 4.

58

(a)

(b)

(c)

Figure 4-4: (a) Selecting the right side of the VideoSemantic application (b) The
resulting master component (c) The resulting slave component

59

Figure 4-4 illustrates an example for dividing the VideoSemantic application using
the marquee tool for screen-region selection. Figure 4-4(a) shows the selected region
containing the video element, its footer and the �ickr box. Figure 4-4(b) shows the
master component and Figure 4-4(c) shows the content of the selected region on the
slave component.

4.1.2 Method limitations

This visual method has the advantage of abstracting from the complexity of the DOM
structure to partition the user interface. It also follows the user preferences. But, it
does neither consider the application content nor the environment features since it
does not check whether an element is suitable for a certain device or not.

The selection is manual and requires the user interaction. The issue here is that
on some devices, especially on a TV, the screen-region selection is not practical using
a remote control. In consequence, this can limit the usability of the overall system.

To circumvent the two limitations related to the environment and to the system
usability, we developed a primitive DOM-based analysis method that �rst character-
izes the DOM elements and then partitions the DOM tree between the slave and the
master components. Further details are found in Section 4.2.

4.2 DOM-based Division Method

4.2.1 Principles

The DOM-based division method is an automatic method that focuses only on the
static and dynamic analysis of the structure and the content of the DOM tree. The
purpose is to �nd the DOM elements that correspond to our two functions de�ned in
Section 3.3.

The method requires �rst a study of the HTML5 elements as de�ned in the W3C
speci�cation to determine their roles and how they could be classi�ed for the purpose
of the application division.

WHATWG 2, W3C 3and Mozilla 4 all categorize the HTML elements according
2WHATWG, https://whatwg.org/
3W3C Content models, https://www.w3.org/TR/html5/dom.html#content-models
4Mozilla content categories, https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/

60

https://whatwg.org/
https://www.w3.org/TR/html5/dom.html#content-models
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories

to their content model. The content model refers here to a description of the ele-
ment expected contents, i.e., the element children in the DOM tree. Examples for
content models are Metadata content, Flow content, Sectioning content, Phrasing
content, Interactive content, Paragraphs, Transparent content models, etc. Notice
that one HTML5 element may belong to one or more content models. Among these
content models, the two most relevant for our requirements concerning the content-
device duality are: the Interactive and the Embedded contents. Interactive content
is speci�cally intended for user interaction and it includes the following HTML5 el-
ements: a, button, input, keygen, label, select, textarea, in addition to audio, video
(with controls), embed, and img and iframe.

The Interactive content list as de�ned in W3C speci�cation does not �t exactly
into our �interactive" function. This is because the audio, video and embed elements
are more �multimedia" than �interactive". An image and iframe are not �interactive"
in our classi�cation if no event listener is set on them.

�Embedded content", following the W3C speci�cation is content that imports
other resource into the document, or content from another vocabulary that is inserted
into the document 5. The associated element list includes but is not limited to the
audio, video, object and embed elements that correspond exactly to our �multimedia"
function. The remaining elements, i.e., canvas, iframe, svg, img and math, do not �t
into any of our functions.

In consequence, we de�ned our own categories for visual elements as follows:

� interactive elements (e.g., a, area, button, datalist, form, input, keygen, textarea,
nav, optgroup, option, output, select),

� multimedia elements (e.g., video, audio, object, source, track),

� non-interactive, non-multimedia leaf elements (e.g., caption, dialog, �g-
caption, h1 to h6, hgroup, img, kbd, label, legend, p, progress, span) and that
may contain text nodes.

� other grouping elements that include the remaining HTML5 elements with-
out the Metadata content and the Script-supporting elements (e.g., table, div,
header, footer, article, etc.).

This categorization is a prerequisite for our runtime DOM-based analysis. If

Content_categories
5Embedded Content, https://www.w3.org/TR/html5/dom.html#embedded-content-2

61

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_categories
https://www.w3.org/TR/html5/dom.html#embedded-content-2

one would want to extend our system, more re�ned categories could be added to
correspond to other functions, such as �information".

The analysis of the DOM tree includes 1) a static analysis of the DOM element
tag names and 2) a dynamic analysis of the DOM element behavior to check if event
listeners are set to make them belong to the �interactive" category.

The algorithm iterates over each DOM element in the DOM tree and compares
its tag name to those present in the �interactive" or in the �multimedia" categories.

� If the element falls within the �rst category, then it belongs to the slave com-
ponent.

� If the element falls within the second category, then it belongs to the master
component.

� If the element falls within the third category, the element is undecidable.

� If the element falls within the forth category, the algorithm iterates over its
children �rst. If the all children belong to the same component, the element
follows its children. Otherwise, if the children are divided between both compo-
nents, then the element is duplicated on the master and the slave. If none of the
children belong to any component, the element remains undecidable. If most
children belong to one component and there are some undecidable children, the
element follows the majority of its children.

Then, the algorithm detects any change in the element basic role by checking
statically its attributes, mainly declarative event listeners (e.g., `onclick'). Then, it
checks dynamically whether an event listener is added using JavaScript. If it is the
case, the element belongs to the slave component.

4.2.2 Limitations

At the end of this analysis, only part of the DOM tree could be divided between
the master and the slave component. The remaining elements, especially some leaf
nodes, remain undecidable while they usually take part in the application graphical
user interface, notably the non-interactive non-multimedia elements.

One solution would be to cluster or aggregate DOM elements following the par-
enthood and sibling relationships, but this can yield to an unsatisfactory UI division.

62

This is explained by the fact that these structural relationships do not necessary imply
visual/geometrical relationships if CSS is used to layout elements. For instance, we
consider two siblings in the DOM tree; using CSS, we make one element �oat to the
top left of the window and the other to the bottom right of the window. Structurally
they can be aggregated since they are siblings but visually they should not.

Adopting the structural analysis makes it easier to consider the functions derived
from the environment features but it is very limiting for the above mentioned reasons.
Thus there is a need to consider the element geometries and their visual e�ects to
divide the application user interface.

After implementing and experiencing with the two above methods, we decided
to abstract the analysis from the DOM tree and the visual block concept that were
introduced in the screen-region selection method. In addition, we kept our HTML5
content categorization that was introduced in the DOM-based analysis method. By
combining these ideas and concepts, we designed the hybrid segmentation method
described in the following section.

4.3 The hybrid segmentation method

4.3.1 Principles, challenges and overview

The segmentation we consider here is an automatic and a hybrid segmentation method
guided by the multi-screen environment based on 1) the visual analysis using the
rendering tree that is associated to the DOM tree, 2) the structural analysis of the
DOM tree and 3) the content function analysis. We recall that the content functions,
derived by the environment, re�ect the type of interaction between an end-user and
a block of content.

The two main requirements here are 1) to identify in the application structure the
elements that correspond to the content functions provided at the input, following
Section 4.2 and 2) to build visual and semantic blocks around these elements.

Generally, a segmentation process assumes that a big block is decomposed into
sub-blocks of smaller sizes. In our approach segmenting an application based on its
structural analysis works the opposite way. The analysis starts from the particles,
i.e., DOM elements, that we try to aggregate into bigger blocks.

Two main challenges appear here. First, how to determine the point at which we

63

should stop the elements aggregation. Second, the number of DOM elements that
we have to deal with varies and can be large, as web page statistics indicate6. In
addition, not all DOM elements are visible or relevant to our segmentation.

We decided �rst to simplify the DOM tree to only keep the graphical DOM ele-
ments while giving special attention to those that are representative of our functions,
provided at the input. Afterwards, the segmentation takes place on the simpli�ed
tree to identify the function blocks. Finally we project back the segmentation result
to the DOM tree. Both steps are represented in Figure 8-2 and will be described in
the following sections.

Figure 4-5: Building blocks for the segmentation algorithm

4.3.2 DOM tree simpli�cation and labeling

The aim of simplifying the DOM tree is to keep only the elements that form the user
interface. By doing so, the number of elements we are dealing with is reduced. The
simpli�cation process is inspired by BoM [46]. It takes the DOM tree as an entry and
delivers a logical tree representing the user interface structure that is partially labeled
with functions. A pre-requisite for this phase is having the application rendered on the
browser, not necessarily full-rendering (pixels). In this case, the browser computes
automatically the content geometry based on CSS and it creates a rendering tree.
Using this information provided by the browser, we can focus on the segmentation
process.

Table 4.1: DOM node types and associated logical nodes

DOM node Types Visibility Function
Associated
Logical node

Label

Relevant yes yes yes Function
Visible yes no yes/no no
Non-relevant no no no no

6See http://httparchive.org

64

http://httparchive.org

We assume that in general a DOM tree consists of three types of nodes, i.e.,
�relevant elements", �visible elements" and �non-relevant elements", as shown in Table
4.1. Each type can contain any DOM node no matter its position in the DOM tree,
i.e., leaf node or grouping node. We characterize these types as follows:

1. �relevant elements" correspond to nodes that have a visual e�ect (e.g., visible)
and have a function, e.g., a video element or one of the interactive element types.

2. �visible elements" correspond to nodes that have a visual e�ect but have no
function, e.g., a visible paragraph containing text.

3. �non-relevant elements" correspond to nodes that have no visual e�ect, e.g.,
hidden nodes.

The �rst step for the simpli�cation process is thus to classify the DOM tree el-
ements of the current application. The classi�cation is based on 1) a visual and
geometrical analysis, 2) a static and a dynamic analysis of the DOM elements be-
havior. The visual and geometrical analysis checks if a DOM element is visible on
the screen and has dimensions. The static and the dynamic analyses are the same of
Section 4.2 and aim at identifying the function of the relevant elements.

A �rst traversal of the DOM tree is conducted to identify the DOM elements that
have by default a function following our categories in Section 4.3.1. This is done based
on the static and dynamic analysis of the DOM elements. As a result, the DOM tree
is partially annotated because not all elements belong to our two main categories,
i.e., interactive and multimedia.

Similar to BoM [46], a second pre-order traversal of the DOM tree is required to
start the simpli�cation process and to create an intermediate structure between the
DOM tree and the logical tree. We call this structure the geometric tree. This sec-
ond traversal could be merged with the �rst traversal, but for separation of concerns
we preferred to separate them. Another classi�cation is applied here to eliminate
DOM nodes that are �non-relevant" whether because they are comment nodes, meta-
data, style, scripting tags, text nodes with white spaces, carriage return tags, etc., or
whether they are nodes with no geometry (i.e., their area is null). This classi�cation
is described in Table 4.1. We note that we took the liberty to adjust these categories
especially because BoM [46] bypasses the HTML img and video tags from its cate-
gories, while their presence is necessary for our approach. As a result, the geometric
tree represents both the visible DOM nodes and their corresponding geometry in one

65

structure. The geometric tree is more representative of the DOM tree than the logi-
cal tree is, as we are going to see below. Each geometrical node contains information
about its content category, including our `interactive' and `multimedia' categories,
and the content geometry.

The geometric tree is then used to create the logical tree. The geometric tree is
traversed in pre-order starting from the root. For every geometric element, depending
on its category and its visibility, the algorithm decides on the creation of a logical
node as follows and as shown in Table 4.1.

� A �relevant element" is retained to form a logical node labeled with its corre-
sponding function. In this case, the corresponding logical node is a leaf node
since the algorithm does not iterate over the descendants of its geometric node.

� A �visible element" forms a non-labeled logical node. Similar to BoM [46], one
exception happens for a visible element that does not have siblings and that
only has one children. In this case, we do not create an associated logical node.

The corresponding geometric subtree is then processed iteratively.

� A �non-relevant" element does not form a logical node.

At the end of the simpli�cation process, the logical tree contains a reduced number of
elements compared to the DOM tree and it is partially labeled with functions. The
e�ciency of the simpli�cation is evaluated quantitatively later in Section 4.6.1.

Every logical node is characterized with an id, a pointer to the corresponding
DOM node, layout information and the associated function if any.

Some of the logical leaf nodes are labeled, their number is big as shown in Figure
4-6. In addition, they form geometrically small blocks in most cases.

To reduce their number, the logical tree is optimized again to form geometrically
bigger labeled blocks whenever it is possible. The optimization procedure traverses
the tree from the root to the leaf nodes in a breadth-�rst manner, and acts as follows:

� If a node is labeled, the algorithm checks whether its next sibling is labeled
with the same function. If positive, the algorithm merges them to form geo-
metrically a bigger node. The result of the merging is one logical node with
updated information, i.e., an updated list of DOM nodes to include all DOM
nodes of both logical objects, updated function if necessary and updated layout
information. After analyzing all siblings, if only one labeled child remains, we

66

propagate its label to its parent. If negative, i.e., the sibling has no similar
function, the algorithm continues to the next sibling.

� If a node is not labeled, we move down into its subtree to search for a possible
optimization.

At the end, the output of this optimization is a logical tree with a smaller number
of nodes but with bigger geometry. It should be noted that some leaf nodes may still
be non-labeled, and grouping nodes are not labeled.

4.3.3 Segmentation: Processing the simpli�ed tree

The segmentation phase consists in producing labeled blocks from the partially-
labeled logical tree. In order to understand the di�culty of the segmentation we
can consider two extreme cases. A segmentation that produces one block from each

Figure 4-6: Trivial Segmentation leading to an excessive number of blocks

logical leaf node, results in creating an excessive number of blocks as Figure 4-6
shows for the VideoSemantic application. A trivial segmentation without constraint,

67

that produces one block from all the logical tree, is not useful for the user interface
distribution between two components.

To get a better segmentation, we impose our own constraints for the processing
of the logical tree as follows.

Two logical nodes are part of one independent block (1) if they are siblings in
the logical tree, (2) if they satisfy Gestalt laws that �prescribe for us what we are to
recognize as one thing" [42] and that are based on the proximity, similarity, closure
and simplicity and (3) if they are neither labeled with more than one function, nor
their descendants are.

Similar to BoM [46], we adopt the notion of granularity parameter (pG). The
granularity parameter determines the area under which a logical node can be con-
sidered as a �nal block. This can be applied only if its descendants verify condition
(3). In contrast to BoM where the pG value is a constant value set by the user, our
approach consists of calculating the pG values automatically and continuously during
the logical tree processing based on the dimensions of the labeled logical nodes. This
continuous update of the pG value adapts the processing of the node subtree to its
content. In our work, we consider the notions of global and local pGs. The global
pG is set before starting the segmentation based on the labeled nodes of the entire
tree. The local pG is updated during runtime, as described in the next paragraph, to
adapt the segmentation of the node subtree to its content.

Both the global and the local pG are computed by considering the geometry of the
labeled descendants respectively in the entire logical tree and in the local subtree as
follows: For all the labeled nodes, we compute the ratio of their areas to the relevant
page area. We de�ne the relevant page area as the rectangular area de�ned by the
top-left corner of the page, a width equal to the page width, and a height set to the
minimum between the page height and �ve times (i.e., a heuristic value based on our
experience) the screen height.

The pG value of a subtree corresponds to the biggest calculated ratio in the sub-
tree, or to the global pG if the subtree does not have labeled descendants. Intuitively,
the bigger the pG, the fewer �nal blocks are produced and the better the segmenta-
tion results are as shows Figure 4-8. Figure 4-7 presents a page with an illustration of
all its logical nodes and their corresponding areas expressed in percentage, relatively
to the complete page. Figure 4-8(a) presents the segmentation results of the refer-
ence page with a big pG value, i.e., 60%. We consider that the green and the pink
colors correspond to two di�erent functions. The segmentation resulted in two large

68

Figure 4-7: A reference web page with a representation of all its logical nodes and
their corresponding relative areas.

69

(a)

(b)

Figure 4-8: (a) Segmentation results with a big pG value, i.e., 60% (b) Segmentation
results with a small pG value, i.e., 5%

70

blocks, both blocks with an area smaller than pG. In Figure 4-8(b), the pG value is
very small, i.e., 5%. Thus, the segmentation lead to segment the biggest green block
and the biggest pink blocks, resulting in 6 smaller blocks comparing to Figure 4-8(a).
Note that this example is a simple case where the blocks with di�erent functions are
not mixed.

Then, we proceed with the processing of the logical tree starting from the root
node and using the global pG value, as follows: (1) If a node is labeled, we try to
merge it with its siblings, as described below. (2) If a node is non-labeled and its
descendants have di�erent labels, we process its subtree �rst. (3) If a node is non-
labeled, its descendants have only one function and its relative area is bigger than
the pG, then we process its subtree; Otherwise, if its relative area is smaller than the
pG, we investigate the possibility of merging it with its siblings.

We try to merge a node with its next siblings, as follows: if the node does not have
any sibling, it produces a block. Otherwise, for each sibling, if one of the functions
of the sibling descendants is di�erent from the current node function, the nodes are
not merged even if the Gestalt laws and geometrical conditions are satis�ed, and
the current node produces a block. Otherwise, if the functions are the same, the
merging of nodes is tested using the Gestalt laws and the geometrical conditions, as
in literature [46]. At the end of the merging, at least one labeled block is produced.

At the end of the processing, the leaves of the processed logical tree represent
the �nal blocks that constitute the application user interface. All leave nodes are
labeled and ready for the distribution in contrast to the grouping nodes that remain
non-labeled.

4.4 User Interface distribution: The DOM Distribu-

tion

The user interface distribution represents the time at which the single-screen applica-
tion turns into a functional multi-screen application with a distributed user interface
between the master and the slave components as Figure 4-9 shows. More precisely,
this phase has two objectives: to build the HTML documents for each component
and to prepare them for the runtime environment.

This section focuses on the �rst objective since this chapter is dedicated to the
work on the DOM tree. The second objective is treated separately in Chapter 6.

71

Figure 4-9: Building blocks for the UI Distribution phase of the refactoring system

Depending on the UI division method that is used, the UI distribution part takes
either two lists of DOM elements to be associated to each component or a segmented
and labeled logical tree.

In the �rst case, the DOM distribution is straightforward and starts with the
DOM annotation resolution in Section 4.4.2. In the second case, an intermediate step,
described in Section 4.4.1, for label projection is required to move the work from the
logical tree to the DOM tree. This projection determines for each DOM element in
the DOM tree whether it is part of the slave or the master HTML document, and
whether it should be monitored for changes during run-time.

In both cases, the DOM distribution basis is the same; the leaves that share the
same label, i.e., `interactive' or `multimedia', create respectively the slave and the
master user interfaces.

For the remaining sections, we only consider the hybrid approach for dividing the
user interface since it takes part in the �nal version of the refactoring system.

4.4.1 Annotation Projection from logical tree to DOM tree

Listing 4.1: Example of a HTML document

1 <body>

2 <head er id="header">

3 this is link1

4

5 </head er>

6 <div id="container">

7 <video src="videosource.ext" style="width:530px;height:299px

"></video>

8 <div id="videocontrols" onclick="playpause ()"></div>

9 <div id="subtitles" style="

position:absolute;width:530px;top:370px;left:417px">

10 <div id="subtitle-0" style="display:none;"></div>

11 <div id="subtitle-1" style="display:none;"></div>

72

(a) (b)

(c) (d)

(e)

Figure 4-10: (a) DOM simpli�cation into logical tree (b) Function projection from log-
ical tree into the DOM tree (c) Function resolution of DOM descendants (d) Function
resolution of DOM siblings (e) Function resolution of DOM antecedents

73

12 <div id="subtitle-2" style="display:none;"></div>

13 </div>

14 </div>

15 <footer id="footer">

16 this is link2

17

18 </footer>

19 </body>

The projection algorithm uses the fact that each logical node has an explicit
correspondence with a DOM node in the form of a property illustrated with green
lines in Figure 4-10(a). Figure 4-10(a) illustrates the DOM tree associated to the
HTML document in Listing 4.1 as well as the resulting segmented logical tree on the
top of the �gure.

The projection starts from the leaves of the logical tree in a depth-�rst post-
traversal manner. We set three straightforward rules for the function projection on
the DOM tree, as follows:

1. DOM elements associated to logical nodes with a function `multimedia', repre-
sented in Figure 4-10 with the grey color belong to the master (e.g., the video
element)

2. DOM elements associated to logical nodes with a function `interactive', repre-
sented in Figure 4-10 with the light green color, belongs to the slave, (e.g., the
header and the footer elements with all their descendants)

3. DOM elements whose direct children correspond to logical nodes of di�erent
functions are shared between the master and the slave components. These are
colored in dark-green and surrounded with red circles in Figure 4-10(e).

At the end of the projection, we have the DOM tree of the main application
partially annotated and the annotated elements are sparse in the DOM tree. This is
because not all the DOM nodes are represented in the logical tree and because among
those that are represented not all of them are linked to a leaf logical node that has a
function. Figure 4-10(b) shows that the header and footer are annotated as a result
of the projection. By opposition to the annotation of the logical tree, after this step
any element (either a leaf or a grouping node) may be annotated.

74

4.4.2 DOM Annotation Resolution

For the rest of this section we focus on the DOM tree and speci�cally on the annotated
elements that are the key to resolving the DOM annotations. For each element having
initially a function, referred to as the `center', we apply the function resolutions in
three steps. We �rst deal with descendants, then with siblings and �nally with parents
respectively as follows:

� resolving the annotation of its sub-tree,

� resolving the annotation of its geometrical siblings �rst, especially because the
segmentation approach does not cover the case of overlapping elements. Second,
the algorithm resolves the annotation of its structural siblings to cover all the
DOM tree, and

� resolving the annotation of its antecedents if possible.

The `center' descendants inherit by default their parent function as shown in
Figure 4-10(c) since they belong to the same user interface block as it is the case
for the descendants (i.e., img) of the header and the footer elements represented in
Figure 4-10(c).

For elements that do not have a function, the algorithm iterates over each of its
siblings and it �rst checks if the sibling geometrically overlaps the `center'. 7 If it does,
the element gets the same function as `center'. In Figure 4-10(d), the div element
with `id = subtitle' overlaps the video element and as a consequence it obtains the
`multimedia' function that it passes as well to its descendants.

If the sibling does not overlap any element, then it gets by default the function of
the �rst element to its left in the tree. 8

The parent of the `center' iteratively creates a record of its children functions.
Once all his children get a function, the parent resolves its own as follows: if all
children have the same function, the parent adopts it. If there are multiple functions,
then the parent is shared between the master and the slave. For instance in Figure
4-10(e), the circled 'container` div (resp. body) is a shared element since it has
descendants of di�erent functions.

7 Note that this test is not valid for the pure structural UI Division method.
8 Note that if an element has no `center' sibling, then the algorithm moves upwards to resolve

the function of the parent element.

75

4.4.3 Creating the master and the slave components

The third step is the production of the master and the slave HTML documents fol-
lowing the application model introduced in Section 3.4.4. To produce the master
application, the system works on the main application and makes the `interactive'
DOM elements `hidden' using CSS `visibility:hidden' property-value pair.

To create the slave application, elements having the `interactive' function and
those that are common with the master component are extracted and serialized to
the new slave component running on the secondary device 9.

To this level, we have produced the master and the slave HTML documents.
But, the master and slave can neither communicate with each other, nor work in
complementary fashion. This will be explained later in Chapter 6.

4.5 Summary

Table 4.2: Complexity of each algorithm in the UI Division and UI Distribution
phases

Algorithms Number of Tree traversals
DOM Geometrical Logical

DOM tree simpli�cation
and labeling

2 1 1

Processing the logical tree - - 2
Projection - - 1
Propagation 1 - -
MSA Creation 1 - -

In Table 4.2, we summarize the main steps of the hybrid UI Division and the UI
Distribution phase. We focus on showing for each step the concerned trees and the
number of traversals for each of them.

The DOM tree simpli�cation requires traversing twice the DOM tree: once to
hook the content elements that correspond to our functions, and another time to
create the geometric tree. The geometric tree is then traversed once to create the

9Note: Our system proposes as well an option to download each of the slave and the master
HTML documents. This is useful if the system is used by a multi-screen application developer, and
also for testing purposes.

76

non-optimized logical tree. This latter is also traversed once to optimize the logical
tree in order to prepare it for the segmentation.

Processing the logical tree, i.e., the segmentation, requires three traversals of the
logical tree: one to calculate the relative areas of all logical nodes in order to set the
global pG value, one to determine if a node has descendants with di�erent funcitons,
and another traversal is required to aggregate the logical nodes while annotating them
with our functions.

The projection step consists in projecting the annotations from the logical tree to
the DOM tree. Thus, it requires one traversal for the logical tree.

The propagation works only on the DOM tree and aims at fully annotating it
while traversing it once. Finally, MSA creation requires one traversal of the DOM
tree in order to serialize the slave (resp. master) content to the slave (resp. master)
component.

In our work, the `interactive' contents are always assigned to the slave and the
`multimedia' contents are always assigned to the master component that contains the
main logic. The latter assumption is crucial if the state of an element depends on
more than what is stored in the DOM tree (e.g., canvas, videos with bu�ered data,
etc.). An example could be an application that has its contents dependent from the
state of the video element (e.g., the video current time). For an application like
Youtube, where the page content is not updated accordingly to the video element,
the master could have either multimedia or interactive content.

No matter which video player (HTML5 video, �ash, or other players) is used in
an application, the video state is managed natively inside the browser and exposed
partially in JavaScript. Every video player o�ers a JavaScript object representing the
video element and its state. This state is not expressed inside the DOM tree.

The problem of moving the video to the component that does not have the main
logic (neither the video object), is that it is not possible to track its state changes.
In consequence, the linked content on the other components will never receive any
update. One solution for HTML5 videos is to extend the native methods to capture
the video state and redirect it to the other component.

77

4.6 Segmentation Evaluation

In this section, we evaluate quantitatively the two phases of the hybrid segmentation
method, i.e., DOM tree simpli�cation and the logical tree processing.

The �rst objective is to check how e�cient the simpli�cation is by measuring the
number of nodes and the tree depth. To this end, some statistics are collected from
the tested DOM trees and from the logical trees before and after the segmentation of
our dataset applications (Section 3.2). Section 4.6.1 presents the statistics.

The second objective is to check whether the segmentation results respect and
satisfy our constraints. For this reason, we compare the segmentation results to a
ground truth and to one segmentation method from the literature. Sections 4.6.2 and
4.6.3 describe the methodologies and the comparison results.

4.6.1 E�ciency of the simpli�cation method

Tables 4.3 and 4.4 present the statistics obtained on our dataset of existing sites after
applying the DOM tree simpli�cation and after segmenting the logical tree. Table
4.3 contains the average number of nodes (resp. the depth) of each of the DOM,
the geometric, the logical and the segmented logical trees. Table 4.4 presents the
reduction percentages 1) of the DOM tree relatively to the geometric tree, 2) of the
DOM tree relatively to the main logical tree and 3) of the logical tree relatively to
the segmented logical tree.

The number of DOM nodes varies between 254 and 3411 nodes with an average of
1133 nodes. The number of geometric nodes varies between 9 and 2203 nodes with an
average of 622 nodes. It is notable that in the case of JWPlayer demo3, the number
of geometrical nodes exceeds the number of DOM nodes. This is because during the
creation of the geometric tree, text nodes are wrapped into HTML span elements in
order to compute their geometry. This leads to the increase in the number of visible
DOM nodes, thus the increase in the number of geometric nodes and �nally the one-
level increase in the tree depth. The number of logical nodes varies between 17 and
346 nodes with an average of 90.5 nodes.

Table 4.4 shows that the average reduction rate of node count is only 27% when
moving from the DOM tree to the geometrical tree. The average reduction rate of
node count is of 86% when moving from the DOM tree to the initial logical tree.
Comparing these two reduction rates, we remark that the geometric tree is closer to

78

Table 4.3: Results of the simpli�cation algorithm on the geometrical and logical trees
in terms of node and depth count

Applications
DOM
tree

Geometrical
tree

Logical
tree

Segmented
Logical
Tree

Nodes Depth Nodes Depth Nodes Depth Nodes Depth
Viewster 684 27 576 27 39 9 29 3
Vimeopro 113 9 103 9 17 3 13 2
Vimeo 1083 18 950 19 346 9 78 5
Youtube 3263 23 2203 23 71 9 39 6
Dailymotion 1172 17 794 15 147 9 74 8

Yahooscreen 1284 21 768 20 46 7 27 6
Twitch 809 10 528 11 71 6 42 4
Liveleak 631 17 521 17 109 6 38 3
Ustream 1051 17 264 14 80 8 37 5
Break 3411 20 1974 20 47 6 42 6
Metacafe 449 16 348 12 127 8 27 4

VideoJS 175 8 62 8 18 3 14 1
Jplayer demo1 31 8 34 8 13 4 7 1
Jplayer demo2 36 8 37 8 14 4 8 1
JWPlayer demo1 19 4 9 3 8 2 8 2
JWPlayer demo2 324 12 178 11 8 2 8 2
JWPlayer demo3 1091 5 2145 6 1080 4 8 2
Media Elements 104 7 70 5 25 3 17 2

Video player pages 254 7 362 7 166 3 10 1.6

Video Semantic 528 14 112 11 52 8 29 5

Average 1133 16.6 622 13 90.5 7 37.8 4.5

79

Table 4.4: Reduction rates for DOM tree, geometric tree and logical tree

Applications
DOM-Geom
Reduction(%)

DOM-Log
Reduction(%)

Log-Log
Reduction(%)

Nodes Depth Nodes Depth Nodes Depth
Viewster 16 0 94 67 26 67
Vimeopro 9 0 85 67 24 33
Vimeo 12 -6 68 50 77 44
Youtube 32 12 98 61 45 33
Dailymotion 32 12 87 47 50 11

Yahooscreen 40 5 96 66 41 14
Twitch 35 -10 91 40 41 33
Liveleak 17 0 83 65 65 50
Ustream 75 18 92 53 54 38
Break 42 0 99 70 11 0
Metacafe 22 25 72 50 79 50

VideoJS 65 0 90 63 22 67
Jplayer demo1 -10 0 58 50 46 75
Jplayer demo2 -3 0 61 50 43 75
JWPlayer demo1 53 25 58 50 0 0
JWPlayer demo2 45 8 98 83 0 0
JWPlayer demo3 -96 -20 1 20 99 50
Media Elements 33 29 76 57 35 43

Video player pages 12 6 63 53 35 43

Video Semantic 78 21 90 45 44 37.5

Average 27 6 86 56.5 46 35

80

the DOM tree than to the logical tree. This means that on average only 14% of the
DOM elements are su�cient to represent the user interface. Reducing the number of
elements of the main application re�nes the segmentation phase since only relevant
elements will be considered for the segmentation.

The number of logical nodes at the end of the segmentation varies between 7 and
74 with an average of 37.8 nodes (see Table 4.3), leading in Table 4.4 to an average
reduction rate of 46% of logical nodes comparing to the initial logical tree. This means
that on average only 3.3% of the DOM elements are represented in the segmented
logical tree.

The DOM tree depth varies between 7 and 27 levels with an average of 16.6 levels.
The geometric tree depth varies between 9 and 27 levels with an average of 13 levels.
The logical tree depth varies between 3 and 9 levels with an average of 7 levels. The
DOM-Geom depth reduction is 6% on average. The DOM-Log depth reduction is
56.5% on average. Reducing the hierarchical structure of an application approaches
us to what an end-user perceives exactly in the application since the leaves of the
logical tree represent the application content.

The logical tree depth at the end of the segmentation varies between 2 and 8 with
an average of 4.5 levels, leading to an average reduction rate of 35% of the tree depth.
With a total reduction of 80% in the tree depth, the logical tree approaches from the
application user interface.

4.6.2 Qualitative evaluation: Comparing to BoM

In this Section, we compare the results of our segmentation method to that of BoM
[46].

The methodology consists in applying the two segmentation methods on the same
application and in illustrating the results in the form of visual blocks on top of the
application content. We selected a Youtube page 10 that is a very complex application
in terms of number of DOM nodes and in terms of page size as shown in Table 4.3
with 3263 DOM nodes and 23 levels of hierarchy.

Figures 4-11 and 4-12 present segmentation results of the YouTube page, respec-
tively using BoM and our hybrid method. Note that we cropped the comments section
for a better illustration.

10http://bit.ly/1eue6i3

81

Figure 4-11: Segmentation results on a YouTube page: BoM with pG = 0.31

82

Figure 4-12: Segmentation results on a YouTube page: MSoS with pG = 0.31 and
0.36

83

Figure 4-11 represents the results segmentation using BoM with a pG value set
manually to 0.31. Note here that in Figure 4-11 the block colors are speci�c for BoM
and they express its classi�cation for DOM elements. The yellow color re�ects content
elements (e.g., span, a, li, h1-5, video etc.), the green color represents the container
elements (e.g., ul, p, table, section, header, footer, etc.) and the blue color represents
content container. Following BoM, a content container is a container element that all
its descendants are content elements. The video element was not considered initially
in BOM classi�cation, but we added it to the list of content elements.

Figure 4-12 represents the results using our hybrid segmentation. The light-blue
blocks refer to interactive blocks and the unique purple block refers to the multimedia
content. During the segmentation, only two di�erent pG values were computed: 0.36
(global and local) and 0.31 (local). Most of the logical nodes were processed with the
0.31 value, this is why we decided to con�gure BoM with this value.

Using BoM, the segmentation generated 16 blocks while using our method the
segmentation generated 9 blocks. The HEADER block in Figure 4-12 corresponds
to two blocks in Figure 4-11. The SIDE BAR block corresponds also to two blocks
in BoM results. The NEW COMMENT block corresponds to three blocks in BoM
results. In contrast, the VIDEO block with the VIDEO CONTROLS block correspond
to one block in BoM. This shows that content functions were taken into consideration
during our segmentation. Note that video subtitles are judged as multimedia content
since they overlap the video element. The COMMENTS block corresponds to two
blocks in BoM results. Finally, the FOOTER block corresponds to three blocks in
BoM results.

Our segmentation method resulted in a reduced number of blocks and most of
these blocks are self-descriptive since they contain all the content.

In this example, we see that our method ensured the separation of blocks with
di�erent functionality, thus facilitating the content mapping to the 'best-match' device
in the context of multi-screen environment.

4.6.3 Quantitative Evaluation: Comparison to a ground truth

In this section, we evaluate quantitatively the quality of the segmentation method by
comparing the segmented applications from our dataset to a ground truth.

In the context of our work, the segmentation quality depends on two aspects.
The �rst aspect is related to the visual coherence of the resulting blocks. The visual

84

coherence means that every resulting block corresponds to a block that is naturally
identi�ed by the human eye.

The second aspect is related to the correctness of the function attributed to each
block.

In the following Section 4.6.3.1, we quantify the segmentation quality using some
metrics and we brie�y describe how the ground truth was created. The comparison
results and their interpretation are presented in Section 4.6.3.

Note that ground truth and results are accessible from our site 11.

4.6.3.1 Creating the ground truth and our metrics

The ground truth (GT) was created manually, where coherent blocks were determined
and assigned a function between `multimedia' and `interactive'. Afterwards, we com-
pare our segmentation results to this GT. We provide the comparison results in Table
8.2 in the form of precision and recall metrics. We de�ne the precision and recall
metrics as follows:

Precision =
Nb of Matching Blocks

Nb of Resulting Blocks
(4.1)

Recall =
Nb of Matching Blocks

Nb of GT Blocks
(4.2)

Recall is equal to one if the segmentation algorithm could identify correctly all
the blocks of the GT. Precision is equal to one if our segmentation algorithm did not
produce any non-matching block. The non-matching column refers to the number of
blocks that: 1) are over-segmented by the segmentation algorithm, i.e., when 1 block
in the GT corresponds to multiple blocks in our results, 2) have no correspondence
with any block in the GT (i.e., extra blocks or concatenated blocks) or they are not
correctly labeled.

In our case, the over-segmentation does not present a problem as long as all the
resulting blocks have the same function. Only the block function assignment a�ects
the distribution of the graphical user interface, i.e., the percentage of non-related
blocks from Table 8.2. Moreover, this category covers the absence of a function,
which is not even a big issue in our work especially if it is related to a content that

11See http://download.tsi.telecom-paristech.fr/gpac/MSoS

85

http://download.tsi.telecom-paristech.fr/gpac/MSoS

is neither multimedia, nor interactive. This is because during the distribution phase,
our system is capable of resolving the lack of functions as described in Section 4.4.2.

4.6.3.2 Results and interpretation

Applications Precision Recall
Non-Matching

Over-

Segmented
Non-Related

Viewster 0.4 0.8 0.2 0
Vimeopro 1 0.71 0 0
Vimeo 0.13 0.33 0.5 0.03
Youtube 0.86 0.83 0.125 0.125

Dailymotion 0.174 0.8 0.2 0.22

Yahooscreen 0.38 0.83 0.17 0.23

Twitch 0.67 0.89 0.11 0.04
Liveleak 0.875 0.7 0 0.06
Ustream 0.38 0.625 0.25 0.155
Break 0.33 0.75 0.25 0.055

Metacafe 0.36 0.37 0.33 0.09

Social pages 0.6 0.7 0.2 0.08

VideoJS 1 1 0 0
Jplayer demo1 1 1 0 0
Jplayer demo2 0.5 0.5 0 0.25

JWPlayer demo1 0.5 0.5 0 0.25
JWPlayer demo2 0.67 1 0 0.165
JWPlayer demo3 1 1 0 0
Media Elements 0.44 0.67 0.33 0.11

Video player pages 0.73 0.81 0.05 0.11

Semantic Video 0.71 0.83 0.07 0.035

Average 0.63 0.75 0.12 0.09

Table 4.5: Evaluation of the segmentation approach

Looking at Table 8.2, we can see that our system performs quite well as the
percentage of non-related blocks is between 0 and 0.25, on average 0.09. The value

86

of 0.25 for the video player pages mostly corresponds to blocks for which no label is
assigned in applications where there was a small number of blocks.

Table 8.2 also shows that the calculated metrics are coherent for the three sets
of applications, independently from the application height or the number of DOM
nodes. The precision rate is the lowest for the social applications with 0.6 comparing
to the video player and to the semantic video applications with respectively 0.71 and
0.73.

The Vimeo application has the lowest precision and recall values (resp. 0.13 and
0.33), but it also has the lowest rate of non-related blocks (0.03). The problem here
is that the computed pG was small enough to lead to a high over-segmentation (0.5).

Most applications from the video player category are simple and mostly composed
of a video element, a custom control bar and in some cases a subtitle area, etc. The
segmentation results of these applications show high precision and recall values (resp.
0.73 and 0.81). This indicates that our algorithm is capable of separating the control
bar from the video rendering part.

For the video semantic application, the precision rate is 0.71 indicating that most
of the GT blocks were identi�ed by our algorithm, even for this complex application.

Though the average number of the over-segmented blocks is small for the video
player pages and for the video semantic application (resp. 0.03 and 0.05), its value is
important for social pages (0.2). The over-segmentation is the drawback of calculating
the value of the granularity parameter according only to the labeled nodes, see Section
4.3.3.

4.7 Conclusion

The user interface division and distribution that are described in this chapter are the
key components of our refactoring system.

The interface division decides on the content that belongs to each of the master
and the slave components. While multiple approaches were tested in this chapter to
divide the DOM tree, only the hybrid approach provided a complete solution. The
complete solution includes 1) the usage of the environment features to divide the
DOM tree and 2) the abstraction from the complexity of the DOM structure and
conducting the segmentation following the visual and geometric aspects.

87

The performance evaluation of this hybrid approach included:

� the comparison of the segmentation results on a Youtube page to those of a
segmentation method from the literature, and

� the comparison of the segmentation results on our dataset applications to a
ground truth manually created.

In both cases, the evaluation shows that our segmentation method respects the system
requirements described in Chapter 3 and that the resulting blocks are visually coher-
ent in most of the cases. This does not preclude the production of extra non-relevant
blocks, but their number is small.

Our content classi�cation and division does not take into consideration container
elements that can embed external elements (e.g., iframes) or elements that mix dif-
ferent languages (e.g., svg elements). To consider iframes in our division algorithm,
we have to analyze the nested document inside the iframe. But for security reasons,
Cross-Origin problems appear if the main HTML element and the nested document
belong to di�erent domains. In the other case were both documents belong to the
same domain, we have observed that in existing applications iframes are used to em-
bed advertisement content or to embed a video player. In these cases, there is no need
to divide the iframe document as long as we identify its function in the page (e.g.,
advertisement, video, etc.). In addition, elements used to draw graphics on-the-�y,
as it is the case with canvas are challenging for division. The canvas contents are
not part of the DOM tree and a canvas has no DOM descendants. This means if we
want to split a canvas, we should think about analyzing its corresponding JavaScript
object. This can be an interesting future work, i.e., splitting canvas elements.

In this chapter, the distribution of the user interface is limited to the DOM tree
distribution. The distribution includes as well the transparent transformation of the
logic and the adaptation to the COLTRAM platform that are described later in
Chapter 6. At the end of the complete distribution, each of the master and the slave
components is created and run on its corresponding device.

Running on a new environment, the two components will confront layout anoma-
lies especially given that the CSS documents are not distributed. As a solution, the
component layouts are also refactored to adapt to the screen dimensions, as it is
described in the following Chapter 5.

88

Chapter 5

Layout Refactoring

This chapter focuses on the Layout Adaptation phase in our system architecture in
Figure 8-1.

The chapter starts in Section 5.1 with an overview of the layout problems that
are caused by the application distribution and relates these problems to each of the
master and the slave components.

In Section 5.2, we describe globally the basis of our layout refactoring solution
that aims at resolving the identi�ed layout anomalies.

Section 5.3 explains the Full-Window Design solution that is a �rst implementation
of the global solution for the master component. It aims at making the master
component exploit the large display of the master device by making its content stretch
to occupy the whole display.

Section 5.4 is another implementation of the global solution, but it is dedicated
for the slave component. In contrast to the master component, the slave runs on a
small device with a small screen size. The aim of this implementation is to optimize
the user experience to avoid the horizontal scrolling in favor of the vertical scrolling.

For each of the two layout problems, a set of relevant metrics is identi�ed and
used to evaluate the two solutions for the master and the slave components.

Finally, a conclusion is provided in Section 5.5.

89

5.1 E�ects of content distribution on the application

layout

We have identi�ed two factors that in�uence the result of the application layout in a
distributed environment.

The �rst factor is related to the environment and to the multiple devices on which
the application blocks are going to be laid out. This is true especially if the main
application was intended for one speci�c type of devices; desktop applications are
good for large screens but not good enough for small screens.

The second factor is related to the content distribution itself irrespective of the
device characteristics. Indeed, distributing an application results in two or more
applications, each having fewer blocks than the single-screen application.

Depending on how blocks were initially positioned relative to each other in the
main application, those selected for each candidate device can su�er from layout
anomalies once rendered alone on that device. Examples of layout anomalies are: 1)
layout discontinuity, 2) misplacement or wrong re-arrangement of blocks, 3) horizontal
scrolling. Figure 5-1 illustrates these anomalies on a reference layout of a single-screen
application. As depicted in Figure 5-1(a), the application has �ve blocks enumerated
from 1 to 5. This numbering follows the reading order, as de�ned by Faraday [16],
moving from left to right, and from top to bottom. The importance of the reading
order is that it expresses how a user perceives the di�erent parts of an application.
Layout anomalies are detailed hereafter.

5.1.1 Layout Discontinuity

A layout discontinuity corresponds to large empty blocks between content blocks or
around a unique block in the page. We de�ne a �blank space" as a region on the
screen that does not correspond to any foreground element in the DOM tree. For
instance, the region that separates the visible blocks from each other is a �blank
space". This blank space is caused by the padding or margin properties of the DOM
elements, �oating elements, hidden elements using the CSS 'visibility' property, etc.
It can also be the result of rendering a content that has a �xed and static layout on
a large-screen device. In such a case, the content fails to utilize the available space.
The blank space can be represented by a white space, or it can have a background
color or a background image.

90

(a)

(b) (c)

(d) (e)

Figure 5-1: Layout Anomalies: (a) Main Application (b) Master Layout Discontinuity
(c) Slave Layout Discontinuity (d) Misplacement (e) Horizontal Scrolling

91

Figure 5-1(b) represents block number 2 displayed alone on the page and sur-
rounded with blank spaces. Figure 5-1(c) represents all the blocks of the main ap-
plication except block number 2. This last one is replaced with a blank space in
the center of the page. In both cases, the blocks do not occupy all the available
space of the browser window. This can be the result of the split described in the
application model in Section 3.4. In order to propose a better rendering and a more
acceptable layout, we want to re-dimension and re-position the blocks to optimize the
screen occupancy and to better exploit the totality of the device screen. Inspired by
the full-screen API 1, Section 5.3 presents our solution for this layout discontinuity
problem.

5.1.2 Invalid content re-arrangement

A wrong or invalid re-arrangement of blocks appears when at least two blocks of
content are mapped to a sub-application and when their new dispositions break the
original reading order. Figure 5-1(d) illustrates this anomaly where block number 4
is placed before block number 3, thus breaking the reading order.

This anomaly normally appears when the block positions are not set by the appli-
cation designer as �xed positions using absolute units (pixels or points), but instead
when they depend on the disposition of previous blocks or next blocks which is often
the case in applications using CSS.

These blocks, once rendered alone, should respect the reading order of the main
application to ensure the application understandability even after distribution. The
challenge here is to �rst identify the reading order and then to respect it during the
layout re-design. The reading order identi�cation is part of the block identi�cation
mechanism described in Section 4.3. Sections 5.3 and 5.4 represent our solutions to
avoid the wrong content re-arrangement.

5.1.3 Horizontal scrolling

Another problem can appear when large and wide blocks are attributed to devices
with a small screen size and when the layout is not capable of adapting to the screen
size, i.e., case of non-responsive or non-adapted applications. This is illustrated in
Figure 5-1(e) where blocks 1 and 5 are partially shown on the page and block 4 is

1Full-screen API, https://developer.mozilla.org/en-US/docs/Web/API/Fullscreen_API

92

https://developer.mozilla.org/en-US/docs/Web/API/Fullscreen_API

almost absent from the application view.

This results in a user experience that requires continuously the horizontal scrolling
in order to see the whole content. Based on user tests, Zorrilla et al. [61] claim that
horizontal scrolling causes an unpleasant user experience. Therefore, we want to make
sure that the blocks of content adapt their positions and dimensions to the screen size
while always having the application content readable, especially on small screens.

The challenge is to dynamically adapt the layout of an application that targets
one device, to multiple devices. Section 5.4 presents our approach that is based on
the dynamic design of responsive web applications.

5.1.4 Summary

In this chapter, we propose to solve the problems induced by the content distribution
and by the multitude of devices on which the components are going to run.

The solution consists in refactoring the layout for a better rendering experience.
We consider two types of layout refactoring: one that avoids the horizontal scrolling
mainly on small devices, i.e., second-screen devices, while being responsive; and an-
other that optimizes the content occupancy especially on primary devices. In both
cases, the content disposition always follows the application reading order.

In the following section, we present the common building blocks for the refactoring
solutions, including the inputs, output and the common logic.

5.2 Overview of Layout Re-factoring

The layout refactoring consists in adjusting the content disposition without a�ecting
neither the content itself, nor its functionality, nor its reading order.

In general, a layout de�nes the placement and the dimensions of DOM elements
on a web page using cascading style sheets. But, as stated earlier, working with
the DOM tree is challenging especially given that not all of its nodes are visible.
As we have seen in Section 4.3, we have the logical tree representation, which is an
abstraction of the DOM tree and which contains information about the reading order
of the content. However, this representation is not su�cient to work on the layout
for two reasons:

93

� its structure is not close enough to the DOM tree, in terms of number of DOM
nodes and depth of the tree as it was shown in Table 4.3. Figure 5-2 shows an
example of this problem on the DOM tree of Listing 5.1. The DOM tree consists
of three visible nodes on three level of hierarchy. Similarly the geometric tree
has three geometric objects in contrast to the logical tree that has only two
nodes on two levels hierarchy. We recall that this is one rule in the construction
of the logical tree, that consists of eliminating an intermediate parent in the
case where the number of nodes is equal to the number of the hierarchy levels
in the geometric tree.

Figure 5-2: Simple example illustrating the drawbacks of the logical tree comparing
to the geometric tree

Listing 5.1: CSS styling rules

1 <style>

2 #div1 {

3 width:500px;

4 }

5

6 #div2 {

7 width:80 %;

8 }

9

10 img{

11 width:50 %;

12 }

13 </style>

14 <div id='div1'>

15 <div id='div2'>

16

17 </div>

94

18 </div>

� the parent-children relationships in the DOM tree need to be preserved; oth-
erwise the designed style will not give the expected layout. Listing 5.1 is an
example illustrating the importance of respecting the parent-children relation-
ships. Div1 has a width of 500px. Div2 has a width expressed in percentage,
i.e., 80%. In CSS, percentages de�ne sizes in terms of parent objects, e.g., Div1
width. Thus, the width of Div2 is equal to 400px. Div2 contains an icon image
with a width equal to 50%, i.e., 50%*400px = 200px.

As mentioned in [46], the logical tree construction also produces an intermediate
structure called the geometrical tree, whose structure is very close to the DOM tree.
For each visible DOM element, a geometric object is associated. To preserve the
reading order and to respect the parent-children relationships during the re-design,
we use both structures, the logical and the geometrical trees, as inputs for the layout
refactoring phase.

Figure 5-3: Common building blocks for layout refactoring algorithms

The refactoring consists of two main phases: resetting and re-design, as shown in
Figure 5-3. The layout resetting presented in Section 5.2.1 ensures that the new layout
will take e�ect on the application and will not be inhibited by the old layout style
sheets. The layout re-design whose basis is described in Section 5.2.2 automatically
identi�es the layout changes that should take place on the normalized application
depending on the re-design objectives.

These changes are then applied to the normalized application and as a result a
re-designed application is delivered.

5.2.1 Layout resetting principles

The layout resetting aims at eliminating or neutralizing the CSS properties that can
throw o� the redesign algorithm. Without this preliminary phase, the CSS styling
rules that are dynamically created at the end of the layout refactoring process could

95

be inhibited. This is caused by two mechanisms speci�c to the rendering engine of a
web browser: the style sheet cascade order and the speci�city.

The �rst mechanism is the style sheet cascade order. Declarations for style prop-
erties can appear in the form of (1) styling rules and (2) simple properties de�ned
inside the HTML document. Styling rules can be de�ned explicitly in the HTML
document in the form of HTML style tags, or implicitly with links to external CSS
�les. The simple properties can be only de�ned inside the HTML style attributes for
a speci�c HTML element. These declarations can appear simultaneously in several
style sheets or several times inside a style sheet. The cascade order determines the
order of applying the style properties depending on their origin and their precedence.

The second mechanism computes the speci�city that determines which styling
rule is going to apply in the case of several declared styles. It consists of assigning a
weight for each utilized CSS selector. By comparing these weights, the CSS rule with
the highest weight is applied. CSS properties de�ned as inline styles have the highest
speci�city.

Dealing with these two mechanisms is a complex task. To avoid this complexity,
we �lter out the styling rules after we have created the logical tree and we only select
the relevant properties (i.e., to which our algorithm is going to assign a new value).
We classify the relevant properties as follows:

� The sizing set that includes only the `width' property and that indicates the
width of an HTML element.

� The o�set set that includes `margin', `margin-left' and `margin-right' properties
that indicate the amount of white space around the box model of an HTML
element.

� The position set that includes `position', `�oat', `left' and `right' properties that
indicate the position of an HTML element and its �oating type and amount.

Then for each �ltered property we normalize it by setting its value to the empty
value. An empty value lets the browser attribute the initial/inherited value for each
property. By doing this, we ensure that our new layout 1) will be applied and 2) the
tasks for the rendering engine after applying the new rules will be alleviated [7] since
there will be only one CSS declaration de�ned in one style sheet for the above listed
properties.

An alternative for normalizing the layout would be to remove radically all styling

96

rules and all properties and to produce our new design. This implies more e�ort
since we need to �lter out the layout to backup the properties that have no relation
with element geometries, to save them and then create new styling rules. This work
is error prone and the produced CSS styling rules may not be optimized if they are
created automatically.

5.2.2 Layout re-design principles

As previously mentioned, we implemented two solutions for the layout re-design that
ful�ll di�erent objectives but share a common logic. In this section we focus on this
common logic.

In the early days of HTML/CSS design, HTML tables have been misused by
application designers to design layouts using HTML. Tables organize their content
inside cells, thus resulting in a good looking display. Recently CSS3 came along and
provided new means of organizing the content on the page in the form of grids without
using HTML elements. In either case, the spatial distribution of the content can be
represented in the form of a grid that contributes to optimizing the space occupied
by content.

We use this to automatically re-design the application layouts following a grid-
based template. In our approach, grids are dynamically derived from the content
geometry as described below.

The identi�cation of a grid follows a set of rules or constraints. A grid cell can
contain at maximum one geometric block, but a geometric block can span horizontally
and vertically multiple cells. This means that there might be some empty cells in the
grid, that are useful for the master Full-Window Design (FWD) presented in Section
5.3. In addition, cells can have non-uniform dimensions.

The grid identi�cation problem can be simpli�ed as the identi�cation of the hori-
zontal and the vertical separators between geometric blocks and to positioning these
blocks in the grid.

To identify the separators, we can equally start with the horizontal or the vertical
separators. For horizontal separators, we iterate over all the application blocks in
the order of their appearance on the screen, i.e., from top to bottom and from left
to right, and we test for each of them whether they are horizontally separable from
the remaining blocks. Two blocks are horizontally separated if the biggest ordinate
of one block is smaller or equal to the smallest ordinate of the other, and vice versa.

97

If this condition is satis�ed, we consider the maximal ordinate between the top left
corner of each block as the separator.

If not, we try to identify a vertical separator between them. The same reasoning
is applied to identify the vertical separators. The number of columns in the grid is
equal to the number of vertical separators augmented by 1. The number of rows in
the grid is equal to the number of horizontal separators augmented by 1.

Figure 5-4: Vertical and Horizontal separators

Figure 5-4 represents 3 blocks for which we identify the horizontal and vertical
separators. Blocks 1 and 2 are both horizontally separable from block 3, thus H1 is
considered as a horizontal separator. In contrast, blocks 1 and 2 are not horizontally
separable since there is at least one line, e.g., S1 that passes simultaneously through
both blocks.

Blocks 1 and 2 are vertically separable and the corresponding vertical separator is
V1. In contrast, none of block 1 or block 2 is vertically separable from block 3 since
line S2(3) passes simultaneously through block 1(2) and block 3.

We position each object within its cell, relatively to the vertical and horizontal
separators. As an output, we get a grid representing the spatial distribution of the
application blocks as well as blank spaces representation. Some cells are empty and

98

there may be blank space around the blocks of occupied cells. In our example, we
identi�ed a 2*2 grid. Block1 and Block2 occupy one cell each in the �rst row, while
block3 occupies 2 cells in the second row.

After identifying a grid and depending on the re-design objectives i.e., eliminate
the blank spaces (Section 5.3) or eliminate the horizontal scrolling (Section 5.4), a
set of re-design rules are applied on the application to recon�gure its layout.

5.3 Master Adaptation: Full-Window Design for large

devices

5.3.1 Overview

The Full-Window Design approach aims at exploiting the available blank spaces on
the master application, that runs on large-screen devices.

To remedy the excess of blank spaces, our solution takes the set of blocks intended
for the master application, i.e., logical objects labeled with a 'multimedia' function
and the associated geometric tree. The main requirement here is to deliver a layout
that fully covers the window, without altering the structure of the DOM tree.

Figure 5-5: Building blocks for the Full-Window design algorithm on the master
application

As Figure 5-5 shows, the Full-Window Design algorithm consists of three main
phases: the blank-space identi�cation, the block re-dimensioning and re-positioning
and the application of the new layout on the application DOM tree. The blank space
identi�cation is based on the grid identi�cation. Once the blank spaces are identi�ed,
we look for possibilities to occupy them with content in the second step. Finally, the
new layout is applied on the application DOM tree.

99

5.3.2 Blank-Space Identi�cation based solely on geometrical

features

To identify the blank spaces, the algorithm described in Section 5.2.2 is applied on
the set of the master blocks and as result a grid is obtained.

Among the grid cells, those that are empty correspond to the blank spaces that
need to be eliminated.

We note here that the grid identi�cation is pure geometrical in contrast to the
grid identi�cation for RWD as we are going to see in Section 5.4.2.

Figure 5-6: Full-Window Design: horizontal vs vertical stretching

5.3.3 Block re-dimensioning and re-positioning

This phase takes as an input the identi�ed grid and exploits the empty cells to re-
position and re-dimension the blocks by stretching them to occupy the whole space
on the browser window.

To follow the reading order of the blocks, we start �rst checking the possibility for
a horizontal stretching mainly from left to right, and then we check the possibility of

100

a vertical stretching mainly from top to bottom. We took this decision based on the
block matrix for web applications as de�ned by Song et al. [50]. Song et al. state
that the regions containing information in a web page do not have equal importance.
Usually the most important blocks reside in the most visible part of the page. Thus
the block importance is correlated to the spatial features of a web page. Song et al.
conclude that a highest importance is assigned to blocks found in the middle of a web
page, and a lower importance to blocks outside this area. During the stretching we
want that the blocks at the middle of the page stay in the middle and those in the
bottom (to the top resp.) stay at the bottom (to the top resp.) of the page.

Stretching rules may be broken in some case. Exceptions may happen for the last
block in a column (e.g., block2 in Figure 5-6(c) where the vertical stretching happened
to the bottom in addition to the top) and for the �rst block in a row (e.g., block1 and
block3 in Figure 5-6(b) where the horizontal stretching happened to the right instead
of to the left).

A stretching is only possible if the cell that is next to the concerned block is an
empty cell. If it is the case, we update the grid occupancy and we continue checking
the stretching possibility of the same block in the updated grid. Note that if a block
spans multiple rows (columns resp.), it is possible to extend it only if the above
condition applies for each of its rows (columns resp.).

Exploring �rst the vertical possibilities of stretching the blocks is also possible but
the �nal result can be very di�erent without necessary breaking the reading order as
illustrated in Figure 5-6 where three blocks are present with their reading order. The
horizontal stretching led to a one-column layout. The vertical stretching led to a
pavement layout formed by two columns and where the �rst column contains two
blocks and the second contains only one block.

The algorithm iterates over the blocks as they are positioned in the grid and
following the reading order. For each block, it checks the stretching possibility. Once
there are no more possibilities, we update the position of each block to let it start at
the top left corner of the �rst cell it occupies and ends at the bottom right corner of
the last cell it occupies to remove the padding and margin spaces.

Depending on the position of the empty spaces around a block, the stretching
happens as follows.

1. A block is re-positionned to the left and then stretched to the right if the blank
space is to the left.

101

2. It is stretched to the right if the blank space is to the right.

3. It is re-positionned to the top and then stretched to the bottom if the blank
space is to the top.

4. It is simply stretched to the bottom if the blank space is to the bottom.

Additional constraints can be added here 1) especially to respect the aspect ratios
of each block, i.e., the ratio of its width to its height, 2) to respect the relative sizes
between the di�erent blocks, or 3) to consider the block position and the importance
matrix to decide on the stretching direction. These two constraints are left for future
work but they can be easily integrated.

The block new dimensions are then computed based on the cell dimensions and
positions. These new values are used to create CSS styling rules and they are applied
on the DOM element associated to each block.

5.3.4 Dynamic generation of style sheets

The intent of this process is to create CSS rules for re-designing the master component.

As mentioned earlier, the Full-Window Design should produce a layout that over-
lays the master application layout.

The reason is that the master application is a modi�ed version of the single-
screen application where parts of it are hidden using the CSS style property-value
pair `visibility: hidden'. The e�ect of this property on the master application is the
creation of large blank spaces that stand between blocks.

Another property-value pair that could have been used for hiding HTML elements
is the `display: none'. In this case, the blank spaces are eliminated since the `display:
none' works by setting the element height to zero. The issue with `display:none' is
that the corresponding element is ignored during the construction of the rendering
tree 2 in the browser. This can cause a dysfunctioning as it is the case with the Google
maps that check the height of the map container before loading the map images. For
this reason, we replaced it with `visibility: hidden'.

To overlap blocks on top of an application, a set of style rules are applied to their
corresponding DOM elements and to their antecedents.

2 Render Tree Construction, http://www.html5rocks.com/en/tutorials/internals/

howbrowserswork/#Render_tree_construction

102

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/#Render_tree_construction
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/#Render_tree_construction

Listing 5.2: Simpli�ed Full-window CSS styling rules

1 /* Global CSS style rule for antecedents of FWD element */

2 .parent {

3 z-index: auto; /*To not establish a new local stacking context */

4 position: static;

5 opacity: 1;

6 }

7 /* Global CSS style rule for all the FWD elements */

8 .fullWindow {

9 z-index: 2147483647;

10 position: absolute; /* z-index only for positioned elements */

11 margin: 0px !important; /* to eliminate margins */

12 flex: 1 1 0% !important;

13 object-fit: contain; /*To make the element updates its dimension

while respecting the aspect ratio */

14 background-color: black;

15 }

16 /* An example of a dynamically created FWD CSS rule for an

element with 'blockID ' id*/

17 #blockID {

18 width: 50%;

19 height: 50%;

20 left: 0%;

21 top: 0%;

22 }

Listing 5.2 presents three CSS style rules.

The �rst rule is global and applied to all antecedents of the DOM elements in the
Full-Window Design. It ensures that the parent elements do not create a new stacking
context. This aims at making the concerned block(e.g., the blockID element) belongs
to the stacking context of the page root, i.e., the window element.

The second rule is also global and applied to only the DOM elements concerned
in the Full-Window Design. The main thing to note here is the presence of `z-index'
property that determines the stack order of a DOM element. An element with greater
stack order is always in front of an element with a lower stack order. With a value
set to in�nity, e.g., 2147483647, we let the full-window elements overlap the other
non-relevant elements. `z-index' only works for positioned elements, for this reason
the element positions are set to absolute. Another main property is the `�ex' 3 that
speci�es the ability of an item to alter its dimensions to �ll available spaces. Flex items

3 See https://developer.mozilla.org/en/docs/Web/CSS/flex

103

https://developer.mozilla.org/en/docs/Web/CSS/flex

can be stretched to use the available space proportionally to their �ex grow factor or
their �ex shrink factor to prevent over�ow as de�ned in the W3C standards4. The
values attributed to �ex means that the concerned element will have the same width
as its siblings. The 0% value refer to the �ex basis and it means that initially the
concerned element occupies 0% of the available space.

Object-�t 5 de�nes how an element responds to the height and width of its content
box. The assigned value, i.e., contain, means that the concerned element will adjust
its height and width while respecting its aspect ratio. As a result, if the element new
dimensions do not �ll the container width, the remaining space is �lled with a black
background as de�ned in line 14.

The third rule is personalized for all the DOM element concerned in the Full-
Window Design algorithm. It consists in assigning values for the width, height, top
and left properties. These values are percentages and calculated relative to the ul-
timate container, i.e., the window. In addition, They correspond to the calculated
dimensions and position in Section 5.3.3. The selector we have chosen is the `id'
represented by the dash sign.

Once we �nish creating the CSS rules, we inject them dynamically into the master
application in the form of inline style sheets inside a `style' tag.

5.3.5 Full-Window Design Evaluation

To evaluate the Full-Window Design algorithm, we test the presence of blank space
after applying the algorithm on the master application.

We start identifying some metrics to quantify the amount of blank spaces on an
application, and then we apply these metrics on the set of application before and
after applying the FWD algorithm.

5.3.5.1 Quantifying the blank space problem and the resulting metrics

Tarasewich [52] de�nes the percentage of blank space as the percentage of a page
not taken up by graphics and text. This de�nition is slightly di�erent from our
de�nition. We recall that the blank spaces correspond to the blocks of the slave
device that are made hidden and to the margins and borders caused by CSS. We

4 See https://developer.mozilla.org/en/docs/Web/CSS/flex
5Object-�t, https://css-tricks.com/almanac/properties/o/object-fit/

104

https://developer.mozilla.org/en/docs/Web/CSS/flex
https://css-tricks.com/almanac/properties/o/object-fit/

express this de�nition by the di�erence between the window area and the master
area, as Equation 5.1 shows.

PercentageBlankSpaces =
AreaWindow − AreaMasterBlocks

Area(Window)
; (5.1)

Tarasewich [52] states that small percentages of blank space can lead to less
scrolling and a more compact visualization, but a higher percentage may lead to more
readable pages. In the context of our work, and speci�cally with the Full-Window
Design algorithm, we are looking to minimize the percentage of blank space.

This will not a�ect the readability of the master component since the amount of
content we are dealing with is relatively small, i.e., between 1 and 3 objects as shown
in Table 5.1.

5.3.5.2 Applying these metrics on our dataset

We tested the FWD algorithm on our dataset as shown in Table 5.1. As a large
device, we considered a PC with a window of 1920*1080, equivalent to the screen of
TV HD.

We identi�ed for each master application the number of geometric elements it
contains. In 72% of the cases, the master has only one geometric block. In 17% of
the cases, the master has two geometric blocks. In 11% of the cases, the master has
three geometric blocks. This shows that the master component has a simple user
interface with a reduced number of blocks.

Before applying the FWD algorithm, we calculated the percentage of blank spaces
on the master applications relative to the window dimensions following Equation 5.1.

Table 5.1 shows that on average 74% of the space on the master application
produced by our system is a blank space. This high value of blank spaces on the
master application is a quantitative explanation for the necessity of eliminating these
non-exploited blank spaces on the browser window.

After applying the FWD algorithm, we calculated the percentage of the device
window that is occupied with the content of the master application. In 95% of the
tested applications, the updated master component was covering more than 98% of
the device window.

In Table 5.1, we reported also the percentages of the horizontal and vertical

105

Table 5.1: Full-Window Design results on 1920*1080 window

Applications
Geometric
objects

Blank-space
before FWD%

Blank-space
after FWD%

Vertical
Stretch%

Horizontal
Stretch%

Viewster 1 71 0 100 85
Vimeopro 1 86 0 170 163
Vimeo 1 75 0 104 100
Youtube 1 56 0 52 50
Dailymotion 3 44 1 1719 646
Yahooscreen 1 88 0 2125 2030
Twitch 1 40 0 213 213
Liveleak 3 74 1 655 369
Ustream 1 89 2 203 203
Break 2 80 0 222 203
Metacafe 1 87 0 222 203
Jplayer demo1 1 89 0 203 203
Jplayer demo2 2 88 0 203 203
JWPlayer demo1 1 86 0 163 170
JWPlayer demo2 1 92 10 244 245
JWPlayer demo3 1 91 0 244 233
MediaElements 2 10 0 51 203
Video Players
(average)

1.3 76 0 185 210

Video-semantic 1 93 1 270 257
Average 1.4 74 2 343 398

stretching that took place on the blocks. We de�ne respectively the horizontal and
vertical stretching as follows in Equation 5.2 where Dim refers to the width or to the
height of a geometric block.

PercentageDimStretching =
oldDim− newDim

oldDim
; (5.2)

It is notable that for 70% of the tested applications, the di�erence between the
vertical stretching and horizontal stretching is less than 15%. Thus the aspect ratio of
the master content is maintained speci�cally for the video element. For dailymotion
and liveleak, the vertical stretching was respectively double and triple the horizontal
stretching of the geometric blocks. The FWD is open for re�nement to consider the

106

blocks aspect ratios and the blocks relative dimensions for stretching.

In addition, we conducted unit tests to further validate our FWD algorithm on
applications with up to 10 geometric blocks especially because with our dataset, we
had at maximum three geometric blocks. Figure 5-7(a) illustrates an example of
our unit test pages. It consists of 9 images with red borders positioned within div
elements. These div elements are randomly positioned on the page. The result of the
FWD algorithm is shown in Figure 5-7(b). Results show that all empty spaces are
eliminated and the content occupies all the window space.

5.4 Slave Adaptation: Responsive Web Layout Re-

Design

5.4.1 The responsive web design as the solution to our prob-

lem

The objective of this section is to adapt the slave layout to the screen width of the
devices on which the slave will run. By re-designing the layout, we do not target a
speci�c device but instead we plan at designing a layout that dynamically identi�es
the device screen width, and dynamically selects the corresponding layout. This
is useful in the multi-screen environment where applications can move seamlessly
between various devices, even after the split.

The applications we consider here are dedicated for the desktop. The challenge is
to produce a layout that:

1. is capable of reproducing a layout close to the original layout on large devices
because the slave can also run on large devices as explained in Section 3.3,

2. avoids horizontal scrolling on small devices,

3. respects the reading order,

4. respects the relative sizing between all blocks on large devices,

5. does not modify the DOM structure, and �nally

6. detects dynamically the changes in the window size and adapts to them.

107

(a)

(b)

Figure 5-7: (a) Example of a unit test page for testing the FWD algorithm with 9
blocks (b) Results of FWD on the unit test page

108

One obvious solution to avoid the horizontal scrolling on small devices is to resize
all the blocks individually to �t into the device window, or to zoom out the complete
application. By doing so, we satisfy most of the above requirements but this results
in illegible text, image, video, etc. In addition, this makes the user interaction more
complex especially on a touch screen device.

The responsive web design (RWD) introduced in Chapter 2 is the response to our
objectives and to our requirements (1), (2), (5) and (6) since it uses media queries to
attribute dynamically a di�erent layout to each range of device display width and it
designs the layout in a grid-like system that is �exible. For each device, a speci�c grid
is designed in advance without adding additional CSS rules and without changing the
DOM structure.

Among the most famous RWD frameworks that are based on a grid-like system is
Twitter Bootstrap [53]. Using Bootstrap, a designer determines a grid where he places
the application content and sets for each cell its width and position. Afterwards, the
width and position are attributed to the corresponding DOM element in the form of
a set of HTML classes.

In Bootstrap, the width and the position of a DOM element is computed relative
to a container element while respecting the relative sizing between the parent and the
children(4). Indeed, the width of a DOM element is computed relative to the width
of its parent element. Thus, once the parent element changes its dimensions, all its
children will follow equally this change.

To re-design the application layout, our approach imitates the RWD designer work
and starts by identifying a bootstrap-like grid, then it con�gures the grid with new
position and dimension values. Finally, these new values are attributed to the DOM
nodes following the Bootstrap model.

Figure 5-8: Building blocks for making the responsive re-design on the Slave

These building blocks are represented in Figure 5-8.

As indicated earlier, it takes the logical and geometrical trees of the slave compo-
nent as an input. It delivers a responsive design con�gured with two layouts using
Bootstrap. A one-column-grid layout is produced for small devices with a screen size

109

smaller than or equal to 768 px. For large devices, the number of rows and columns
of the grid is not �xed in advance and the grid is deduced from the �xed-layout of the
initial slave. The aim is to reproduce this layout on large devices that have a screen
width greater than 768 px.

5.4.2 Identi�cation of the spatial distribution while respecting

the DOM structure

The grid identi�cation problem consists in �nding a multi-level grid that respects
the Bootstrap grid-model. The grid levels should correspond to the geometric tree
levels that itself corresponds to the DOM tree. In another word, for each level in the
geometrical tree a grid is identi�ed. Figure 5-9(a) represents the layout corresponding
to the DOM tree of Listing 4.1, and Figure 5-9(b) shows its corresponding geometric
tree. This geometric tree contains two levels: the �rst consists of three geometrical
objects (i.e., G21, G22 and G23) and the second consists of 6 leaves. Similarly, the
associated grid should have two levels.

At any level, a grid cell can contain at max one geometrical object from the
corresponding level. But indeed, it can contain other geometrical objects from a
deeper level of hierarchy.

The algorithm starts with the root of the geometric tree. If the root has children,
then it is considered as the container of a �rst-level grid and its direct children are
the elements of this grid. The grid container corresponds to the geometrical object
that groups all the blocks of a grid. The geometry of these children is then processed
to characterize the �rst grid. We �rst identify the horizontal and vertical separators
by checking the children alignment, similar to Section 5.2.2.

Then, we identify the cell to which each child belongs. Note that not all the
cells are occupied by a geometrical object and there might be some empty cells. In
our example, the �rst-level consists of only one grid (Grid1) that contains three cells
(G21, G22 and G23) separated horizontally. G1 is considered as the container of the
top level grid.

The algorithm iterates over the children sub-trees in a depth-�rst manner until it
reaches the leaves of the geometric tree to form a N-level grid where N is the number
of levels of the geometric tree. If a child has descendants, we identify its second-level
sub-grid. For instance, G21 (resp. G22, G23) has two descendants in the geometric
tree, thus it forms a second-level grid (resp. Grid2, Grid3, Grid4) of two cells. G21

110

(a)

(b)

(c)

Figure 5-9: (a) Initial application Layout (b) Associated Geometric Tree (b) Grid
and separator identi�cations

111

(resp. G22, G23) is considered the container of this second-level grid.

We note that the �rst index in G21 (resp. G22, G23) refers to the level of the
grid, i.e., level 2. The second index is speci�c for each grid in the same level.

5.4.3 RWD layout con�guration

5.4.3.1 General Layout con�guration

As previously mentioned, we want a layout with two con�gurations: a one-column
grid for small devices and a multi-column grid that reproduces the initial slave layout
for large devices. The main requirements here are to respect the aspect ratio of each
block and to respect its relative dimension and position compared to other blocks. In
addition, we should maintain the blocks reading order in both con�gurations.

Similar to Bootstrap, during the design phase we abstract from the real value of
the screen width since we do not target a speci�c device but mostly a range of device
screen sizes.

We assume that each grid at any level of hierarchy is formed with one row and its
total width is decomposed into M e�ective columns of equal width.

This abstraction phase to which we refer as normalization, is at the base of the
grid �exibility in RWD. Its main interest for us is to express the block width and
block position relative to the dimensions of the grid container no matter what is its
width or its position. The problem of con�guring the layout is thus simpli�ed to
mapping the grids identi�ed in the previous Section 5.4.2 to the normalized grid that
is contains M e�ective columns.

The algorithm takes as an input the hierarchical grid. It identi�es for each grid
cell the e�ective number of columns that span its width and its position as explained
in the following paragraph. Note that we do not take into consideration the object
heights since our objective is to avoid only the horizontal scrolling.

5.4.3.2 Layout con�guration for large devices

The algorithm starts processing the �rst-level grid and then iterates over the sub-grids
in a depth-�rst manner. Note that a sub-grid refers to an L-level grid where L is an
integer referring to the level of hierarchy.

112

A crucial step here is to determine for each grid or sub-grid the total width that its
blocks can span, we call it the reference width. The reference width for the �rst-level
grid is the window width, while the reference width for an L-level grid is the width
of its container.

For each L-level grid, the algorithm iterates over the grid cells that contain blocks
and calculates for each of them, in terms of number of e�ective columns: 1) its width
relative to the reference width, 2) its left-o�set relative to the distance that separates
it from the block to its left.

The calculated width and left-o�set are immediately applied using CSS styles, on
the DOM elements that correspond to each block. This is crucial before moving to
the (L+1) level since the width and the position of the associated grid (i.e., (L+1)
grid) might have been changed by the layout con�guration of the L-level grid. By
re-evaluating their values (in pixels), we ensure that if the width and the position
were not exact, the error is not propagated to the descendants. Thus the descendants
will always have the same width relative to their parent element.

The algorithm passes to the (L+1) level grid and continues until it reaches the
�nal N-level grid.

5.4.3.3 Layout con�guration for small devices

The same logic is applied to con�gure the single-column layout for small devices. The
only di�erence is that we consider that all the blocks of a grid have a width equal to
their container, i.e., M e�ective columns.

In addition, since the screen size of small devices is very small, we eliminate the
left o�sets that exist between the blocks to eliminate blank spaces.

5.4.4 Applying grid system rules on the DOM tree

For the implementation, we reuse some of the CSS classes de�ned in Bootstrap [53],
among which the `.container-�uid' applied to the root grid of a document for proper
alignment and padding for the whole document, and the `.col-xx-yy' that determines
the content width and position. The `yy' is a value between 1 and 12 and it denotes
the number of columns that the element spans. The `xx' is a string that refers to one
of the four possible breakpoints provided by Bootstrap:

113

1. The `extra-small' breakpoint, represented by `xs', corresponds to devices with
a maximal width of 480px, i.e., phones.

2. The `small' breakpoint, represented by `sm', corresponds to devices with a max-
imal width of 768px, i.e., tablets.

3. The `medium' breakpoint, represented by `md', corresponds to devices with a
maximal width of 992px, i.e., desktops.

4. The `large' breakpoint, represented by `lg', corresponds to devices with a max-
imal width of 1200px, i.e., wide screens of TVs.

The e�ective columns, described in Section 5.4.3.2, correspond to the Bootstrap
columns. To calculate the number of Bootstrap columns for each geometrical object,
we use simply the following formula:

yy =

⌊
Width(geom.object)

Width(container)
∗ 12

⌋
; (5.3)

A similar formula is applied to calculate the number of columns representing the
o�sets between blocks:

Offsetyy =

⌊
OffsetLeft(geom.object)

Width(container)
∗ 12

⌋
; (5.4)

Now that we calculated the Bootstrap width and o�set values, we can proceed to at-
tribute them to the `.col-xx' and `.col-xx-o�set-yy' classes. For extra small devices, we
use the single columns class, i.e., `.col-xs-12', and for devices with a screen size greater
than 768 px, the `.col-sm-' and `.col-sm-o�set-' to which we concatenate respectively
the calculated width and o�set.

5.4.5 Evaluation of the RWD algorithm

5.4.5.1 Quantifying the horizontal scrolling problem and the resulting

metrics

The problems we try to solve with our RWD layout re-factoring approach essentially
relate to the horizontal scrolling.

A set of metrics are found in the literature that quanti�es this aspect. Nebeling
et al. [39] identi�es some metrics related to the scrolling in the context of evaluating
a layout on large devices. He distinguishes between:

114

1. the amount of scrolling needed to see the whole page, de�ned in Equation 5.5

PageWindow Ratio =
AreaPage

AreaWindow

; (5.5)

2. the amount of scrolling needed to see only the relevant content of a page, de�ned
in Equation 5.6; where the content area is the sum of the foreground content
areas; and the window area refers the room available to display the content
without scrolling.

ContentWindow Ratio =
AreaContent

AreaWindow

; (5.6)

Figure 5-10: Window Area versus Page Area

The di�erence between the window area and the page area is illustrated in Figure
5-10. Note that only part of the page area was illustrated since the page is very big
with a height equal to 12 761 px.

Using the above two metrics, we quantify the required scrolling without making a
di�erence between the horizontal and the vertical scrolling. In our work, we are con-
cerned about the horizontal scrolling especially because the vertical scrolling cannot
be avoided on a small device.

In our work, we consider that a page causes horizontal scrolling if:

� at least one of its blocks is partially positioned outside the window box, or

115

� at least one of its blocks is completely outside the window box.

Figure 5-11: Example of a page with horizontal scrolling

Figure 5-11 is an example of a page causing horizontal scrolling. The black border
illustrates the window borders, and the blue border represents the page borders. The
page consists of three blocks (i.e., block1, block2 and block3), represented with orange
rectangles. Block 2 is partially outside the window box and block 3 is completely
outside the window box. The page has a height equal to the window height, but it
has double the width W of the window. In consequence, in order to see the part of
the page that is outside the window box, it is enough to scroll a distance equal to W.

Figure 5-12: Doing horizontal scrolling to see block 2

In contrast, to see the totality of block 2 we only need to scroll a distance smaller
than W, as shown in Figure 5-12. But, to see completely block 3 we only need to
scroll a distance equal to W, as shows Figure 5-13.

Based on these observations, measuring the horizontal scrolling at the level of the
content blocks is more relevant than measuring it at the level of the page. Using
CSS, a page (or a block) can have a width that exceeds the maximal abscissa of its

116

Figure 5-13: Doing horizontal scrolling to see block 3

Figure 5-14: False positive for horizontal scrolling

descendants and as a result it causes a horizontal scrolling. In Figure 5-14, we have
three boxes that all belong to the window box, but the page still causes horizontal
scrolling since the parent element has a width greater than the ideal width to wrap
horizontally its descendants. The horizontal scrolling in this case can be considered
as false positive since there is no content outside the window box. The false positive
detection can be avoided by testing the presence of horizontal scrolling at the level of
content blocks rather than the page.

We de�ne the amount of horizontal scrolling for a speci�c block (x, y, w, h) as the
distance between the right border of the window box (W, H), i.e., W, and the right
border of the corresponding block, i.e., x + w. Equation 5.7 illustrates this de�nition.

dist(block, window) = x + w − W (5.7)

Based on the distance equation 5.7, we de�ne the amount of horizontal scrolling
for a page in Equation 5.8 as the average amount of horizontal scrolling for all the

117

blocks causing the horizontal scrolling.

Amount HSpage =

∑
dist(blockHS, window)

Nb. blocksHS

; (5.8)

5.4.5.2 Setup and Results

For the RWD algorithm, the evaluation of the responsive layout consists in testing the
presence and the amount of horizontal scrolling on small devices for slave components.

Tests consist in traversing the geometric tree, checking for each node in the geo-
metric tree its position relative to the window box. If the block is outside the box,
then we calculate the distance separating them following Equation 5.7. After checking
all the nodes, we calculate the average amount of horizontal following Equation 5.8.

We conducted these tests on 6 non-responsive applications from our dataset. We
exclude the demos from the video libraries because they have limited content.

Figure 5-15: Amount of horizontal scrolling for each tested application

Figure 5-15 shows the amount of horizontal scrolling calculated for each applica-
tion before and after applying our algorithm. This Figure shows that, before applying
our algorithm, all slave applications cause horizontal scrolling on the small device.
The minimal amount of horizontal scrolling before applying our algorithm is 38 px
and it corresponds to the non-RWD Ustream that has 14 blocks responsible for the
scrolling. The amount of horizontal scrolling for the remaining non-RWD applications
varies between 348 px and 408 px. Relatively to the width of our small device (i.e.,

118

412px), these values are big.

After applying our algorithm, the horizontal scrolling was completely eliminated
for VideoSemantic, VimeoPro, Liveleak and Ustream. In contrast, the amount of hor-
izontal scrolling was reduced from 381 px to 97 px (i.e., 75% of reduction) for Twitch
and from 408 px to 283 px for Break (i.e., 30% of reduction). This enhancement is

Figure 5-16: Number of blocks causing horizontal scrolling for each tested application

detailed in Figure 5-16 that shows for every application the number of blocks causing
the horizontal scrolling before and after applying our algorithm. In this Figure, we
can see that our algorithm eliminated the horizontal scrolling from 92% (i.e., (268-
20)*100/268) of the Twitch blocks, and it eliminated the horizontal scrolling from
99% of the Break blocks.

Figures 5-17 and 5-18 illustrate the results obtained by applying the RWD algo-
rithm on the slave component of the video semantic application on the small and
large devices. On large devices and by comparing Figures 5-17(a) and 5-17(b), we
can see that the RWD reproduced a layout similar to the initial.

On the small device, we represent the window views before and after applying the
RWD algorithm in Figures 5-18(a) and 5-18(b). To better illustrate the totality of the
slave RWD layout, we apply twice the vertical scrolling and show the corresponding
window views in Figures 5-18(d) and 5-18(c). We can see that all the parts of the
reference slave applications are aligned in one column and the horizontal scrolling is
not required to see the complete application. In addition, we can clearly remark that
after applying our RWD algorithm the content is still readable.

119

(a)

(b)

Figure 5-17: Window view of the video semantic slave component: (a) Non-RWD on
the large device (b) RWD on the large device

120

(a) (b)

(c)

(d)

Figure 5-18: Window view of the video semantic slave component: (a) Non-RWD on
the small device (b) RWD on the small device (c) RWD on the small device, after
one vertical scrolling (d) RWD on the small device, after two vertical scrolling

121

5.5 Conclusion

Table 5.2: Di�erences between the two Layout refactoring implementations

Features Master FWD Slave RWD
Objective Adapt the content to the window Adapt layout to multiple devices
Layout Anomaly Blank spaces Horizontal scrolling

Basis
Make content occupy all

the window space
Create RWD layouts

Grid
One-level Grid, following

blocks geometry
Multi-level Grid, following blocks
geometry and the DOM structure

Dimensions
and Positions
(percentage)

Calculated relative to window
Calculated relative to every

grid head (variable)

In this section, we review the master FWD and the slave RWD algorithms. Their
di�erences are summarized in Table 5.2.

While FWD aims at adapting the master content to large devices, RWD aims at
adapting the slave layout to multiple devices.

On the one side, FWD resolves the blank space anomaly that is induced by our
model for the content distribution. It consists in making the content occupy all the
available space by updating their positions and their dimensions. These latter are
calculated relative to the window.

On the other side, RWD resolves the horizontal scrolling anomaly that is induced
by displaying wide contents on small-screen devices. It consists in re-designing the
application layout to produce a responsive web design that identi�es and adapts
dynamically to the device on which it is running.

Both FWD and RWD are based on the identi�cation of a grid out of their content.
But since the new positions and dimensions for FWD are calculated relative to the
window size, we abstracted from DOM structure and considered that all the visible
contents have one parent, i.e., the window size. Based on the content geometry, we
created a one-level grid.

In contrast, the RWD requires not only the respect of the content geometry but as
well the respect of the DOM structure for CSS to apply. This lead to the identi�cation
of a multi-level grid.

122

The evaluation of both algorithms, after the quanti�cation of each of the layout
anomalies, revealed: (1) the absence of blank spaces on the master components, (2)
the absence or the reduction of the horizontal scrolling on the slave components.

As a perspective, FWD can be improved to consider the block aspect ratios and
their dimensions relative to each other. The stretching decisions can be taken for
instance after studying the importance of a block in the application. As a result,
blocks with higher importance should occupy more space than a block with lower
importance.

The RWD algorithm can also be improved for instance to not only generate the
initial layout on large devices but also to optimize the initial layout to better occupy
the available space, and to design automatically an optimized layout for medium
devices.

Finally, a user study is mandatory to verify qualitatively the two layouts and to
measure the level of end-user satisfaction for the application look and feel.

123

Chapter 6

Run-time Support and State

Distribution

6.1 Introduction

This chapter aims at presenting the work related to transforming the master and the
slave components into a multi-screen application.

At the end of Chapter 4, the resulting components are static pages that neither
have attached a JavaScript code, nor are interactive, nor can communicate with each
other. In contrast, a multi-screen application consists of having two components with
a functional user interface, capable of communicating with each other and �nally
providing a complementary usage experience during runtime.

The required transformations are mainly related to working with JavaScript. They
are provided in our system as a part of the UI Distribution phase (number 3) in Fig-
ure 8-1. Within this phase, we refer to these transformations as `logic distribution'.
It consists in preparing the two components for the dynamicity of the runtime envi-
ronment and for the state distribution.

While `logic distribution' happens before running the multi-screen application,
state distribution is a runtime phase. The state distribution is the ultimate objective
of this thesis since it makes the application interactive and usable for end-users. Its
aim is to preserve the state coherence between the two components without a�ecting
the application overall performance and without implying additional delays. The
state distribution is a bidirectional mechanism, i.e., it happens at the level of the two
components as we are going to see later in the text.

125

In Section 3.4.4, we identi�ed two relevant runtime operations that characterize
the state distribution: synchronization and redirection. For each of these operations,
we describe the challenges they imply on the logic distribution,) our corresponding
solutions in Section 6.2 and the techniques used for our solutions in Section 6.3.

In Section 6.4, we evaluate the state distribution phase on one highly dynamic
application. In addition, we evaluate the overall performance of the system by cal-
culating the communication delays caused by the network and the processing delays
caused by the system. Finally, we conclude about the system usability.

6.2 Logic Distribution

As mentioned in Section 3.4.4, the application logic is kept on the side of the master
component that has a slightly modi�ed version of the main DOM tree.

In consequence to our application model described in Section 3.4, Logic Distri-
bution consists in abstracting from the application logic and providing an interface
for each of the two components 1) to manage transparently the main logic as intro-
duced in Section 3.4, 2) to track the changes made to the user interfaces of the two
components and 3) to ensure the communication between them.

The �rst two requirements are used to ensure the state synchronization during
runtime. Further details are found in Sections 6.2.1 and 6.2.2.

The third requirement is related to the redirection operation and consists in adapt-
ing our components to the multi-screen platform, i.e., the COLTRAM platform, and
to make them discoverable on the network. Further details are found in Section 6.2.3.

6.2.1 Synchronization

The interaction is the result of user events, mostly connected to scripts, which modify
the DOM. If the script is kept on the master component, events occurring on the slave
component need to be redirected to that master and any DOM modi�cations need to
be sent to the slave.

Changes to the user interface may happen on the master component when the logic
is triggered due to user interactions, or to internal events, i.e., the time of a video.
For instance, an image appears at a time t1 of the video, and a text disappears at
time t2, etc.

126

Figure 6-1: Architecture of the master and the slave components including the added
monitoring logic

The synchronization challenges illustrated here are 1) to continuously capture
these dynamic changes, 2) to characterize (e.g., delete, add or edit) and analyze these
changes to check to which component they belong, 3) to redirect them if necessary to
the corresponding component, 4) to integrate the changes into this component and
�nally 5) all this should be done without a�ecting the application overall performance.

Each of the master and the slave components are extended with additional features
to confront with the above challenges.

The four main features as depicted in Figure 6-1 are: the DOM monitoring for
the master and its equivalent the User Interface monitoring for the slave, the changes
noti�er, the UI manager and the DOM changes integrator. These four features make
the runtime functioning of the master and the slave components independent from
the system especially because they are injected inside each component in the form of
a JavaScript API, i.e., Monitoring APIs.

During runtime, the DOM monitoring listens to every change happening on the
master DOM tree. Once a change is captured, it is propagated to the changes noti�er.
The changes noti�er analyzes this change and creates a noti�cation that contains in-
formation about the type of the change (i.e., addition, deletion or edition of elements,
attributes or text), the concerned element and some related information concern-
ing the element position in the DOM tree (e.g., parent element, next and previous
siblings, etc.).

127

The noti�cation is then sent to the UI manager acting as a gateway for the com-
munication between the two components. On the master component, the UI manager
checks whether the change concerns the slave. If it is the case, the change noti�cation
is redirected to the slave component. We refer to this redirection as `content redirec-
tion' because mainly updates related to the slave content are redirected to the slave.
Otherwise if the changes concern the master only, the UI manager skips this change.

Once received by the UI manager of the slave device, the noti�cation is sent
directly to the DOM changes integrator. The DOM changes integrator is responsible
for integrating all types of changes inside the slave DOM tree.

On the slave component, the User Interaction Monitoring is responsible for lis-
tening to the changes related to the user interactions only. Any user interaction is
signaled to the changes noti�er that creates a noti�cation and then sent to the slave
UI manager. The slave UI manager redirects the changes towards the master UI
manager. We call it `input redirection' because mainly user inputs in the form of
textual data or requests (i.e., events) are redirected to the master.

Once the master UI manager receives this noti�cation, it determines if the change
is at the level of the DOM tree or if the slave is asking to execute a certain function
(i.e., event handler) in the application main logic. In the �rst case, the noti�cation
is sent to the DOM changes integrator of the master. In the second case, the master
UI manager calls the required logic.

6.2.2 Handling the addition of dynamic elements

Among the changes that can happen on a DOM tree, new elements can be dynami-
cally created and added during runtime in consequence of the execution of the main
application logic. In our work, handling the addition of dynamic elements is only
related to the master component where the application main logic resides as shown
in Figure 6-1. The issue here is that not all the added elements belong to the master
user interface especially if the newly added elements are interactive for example. If
our objective is to always provide the `well-�t' content on the best device, thus we
have to make the master capable of dividing and distributing on-the-�y the newly
created content.

The challenges we face for the content division are the same described in Chapter
4. The only di�erence is that the on-the-�y division is done by the master and during
the application runtime. Thus, we need a simple and non-expensive solution to not

128

a�ect the application performance.

Similar to the system UI Division phase, we start checking statically the content
tag name, attributes and registered event listeners. If it satis�es one of our `interac-
tive' or `multimedia' categories, then the division is straightforward.

Otherwise, we try to divide (or map) it based on its structural relationships and
geometrical relationships as described in Section 4.4.2. For instance, if the added
DOM element is neither `interactive' nor `multimedia' and if it is a descendant of an
`interactive' element, then it should follow its parent.

6.2.3 Integration to the runtime environment

The requirements for this phase are to adapt the master and the slave components to
the runtime environment and to the COLTRAM platform in order to prepare them for
the redirection operation including the content redirection and the input redirection
described in Section 6.2.1 and illustrated in Figure 6-1.

As detailed in Section 2.1, applications running on top of COLTRAM are web
services that expose and discover other services. Thus this phase goes back to trans-
forming the slave and master components into web services. On the one side, the
master component exposes a `Content-Mirroring' service that will be discovered by
the slave. On the other side, the slave component exposes a `Input-Mirroring' service
that will be discovered by the master.

At the end, the two components can ensure the `content redirection' and the `input
redirection' of Figure 6-1.

The COLTRAM platform simpli�es the tasks for the web service developer. For
each component, the developer responsibilities are �rst to de�ne the name of the ser-
vice to expose and second to determine the discovery protocol and service name it
should discover. Once the master and the slave discover each other, the communica-
tion is straightforward in COLTRAM. Then, we need to de�ne the service interfaces
and link them to the state distribution components of Figure 6-1.

For each web service, a set of JavaScript documents are added as detailed below.

Listing 6.1: The Master Web Service

1 <html>

2 <head>

3 <script src="masterMirroring.js"></script>

129

4 <script src="coltramLib.js"></script>

5 <script src="COLTRAM_masterDevice.js"></script>

6 <!-- Application main logic -->

7 <script src="main.js"></script>

8 </head>

9 <body data-coltram = 'master expose '>

10 ---Content-----

11 </body>

12 </html>

Listing 6.2: The Slave Web Service

1 <html>

2 <head>

3 <script src="slaveMirroring.js"></script>

4 <script src="coltramLib.js"></script>

5 <script src="COLTRAM_slaveDevice.js"></script>

6 </head>

7 <body data-coltram = 'slave expose '>

8 ---Content-----

9 </body>

10 </html>

Listings 6.1 and 6.2 are an extract of the HTML documents of the two compo-
nents. An HTML attribute is added to the body element and its value contains
the atom name (e.g., `master' and `slave' resp.) and the `expose' keyword that lets
the COLTRAM API (i.e., coltramLib.js) understand that the master and the slave
are exposing (or o�ering) a service.

Listing 6.3: Extract of the COLTRAM_MasterDevice.js document

1 var masterProxy = null;

2

3 //the master discovers the slave service

4 Coltram.discoverAny('Input-Mirroring ', callback);

5

6 //the master exposes the "Content-Mirroring" service

7 Coltram.serviceImplementation = new Coltram.ServiceImplementation

("zeroconf", "Content-Mirroring");

8

9 //.UIManager is the interface of the ``Content-Mirroring" service

(called when a message arrives)

10 Coltram.serviceImplementation.UIManager = function (msg) {

11 master_domChangesIntegrator(msg); //To process inputs or to

trigger events

130

12 };

13

14 //once the master discovers the slave service , do the binding to

this service

15 function callback(service) {

16 masterProxy = Coltram.bindService(service.id , Coltram.hostName)

;

17 };

Listing 6.4: Extract of the COLTRAM_SlaveDevice.js document

1 var slaveProxy = null;

2

3 //the slave discovers the master service

4 Coltram.discoverAny('Content_Mirroring ', callback);

5

6 //the slave exposes the "Input_Mirroring" service

7 Coltram.serviceImplementation = new Coltram.ServiceImplementation

("zeroconf", "Input_Mirroring");

8

9 //.UIManager is the interface to the ``Input-Mirroring" service (

called when a message arrives)

10 Coltram.serviceImplementation.UIManager = function (msg) {

11 slave_domChangesIntegrator(msg); //To integrate changes to the

slave DOM tree

12 };

13

14 //once the slave discovers the master service , do the binding to

this service

15 function callback(service) {

16 slaveProxy = Coltram.bindService(service.id , Coltram.hostName);

17 };

The web service interfaces, where the exposed operations of the slave and the mas-
ter are de�ned, are added inside a JavaScript document; COLTRAM_masterDevice.js
for the master illustrated partially in Listing 6.3 and COLTRAM_slaveDevice.js for
the slave illustrated partially in Listing 6.4. In both documents,

� we set the service to discover on line 4

� we determine the service to expose with its name and the service protocol (e.g.,
zeroconf) on line 7

� once the master and the slave discover each other, a callback on line 15 is

131

called to establish the communication channel between them and to include the
operation exposed by the slave and the master components resp.

� the exposed operations are provided on line 10 of Listings 6.3 and 6.4, i.e.,
UIManager method for the master and UIManager method for the slave that
can be called respectively by the slave and the master once they need to redirect
inputs or content. Then, the UIManager of the master (resp. the UIManager of
the slave) propagates these information to the master_domChangesIntegrator
(resp. slave_domChangesIntegrator).

Listing 6.5: Extract of the masterMirroring.js document

1 function masterDOMMonitoring (){

2 var queryDevice = [{

3 element: '*[data-device="device2 "]',

4 elementAttributes: att //a list of all attributes set

on the slave DOM elements

5 },{

6 characterData: true //to watch changes made on text

nodes

7 }];

8 // configure mutation-sumary to watch the slave DOM elements

9 var mutation = new Mutation-Summary ({ query: queries , callback:

redirectContent });

10 }

11

12 function redirectContent(content){

13 //send new DOM content to the slave

14 slaveProxy.UIManager(content);

15 }

16 function master_domChangesIntegrator (msg){

17 var change = {};

18 for(change in msg){

19 //if the user adds her data inputs

20 if(change is 'data_inputs ')

21 applyToDOMTree(change);

22 //if the user interaction triggers DOM events

23 if(change is 'DOM_event ')

24 callEventHandler(change);

25 }

26 }

Listing 6.6: Extract of the slaveMirroring.js document

1 function slaveUIMonitoring (){

132

2 var change = null;

3 // watch changes and wait for user interactions

4 [extracted code]

5

6 if(change)

7 redirectInputs(change);

8 }

9

10 function redirectInputs(inputs){

11 //send new user inputs to the master

12 masterProxy.UIManager(inputs);

13 }

14

15 function slave_domChangesIntegrator (msg){

16 var change = {};

17 for (change in msg){

18 // access DOM tree and integrate the changes received in msg

19 applyToDOMTree ();

20 }

21 }

DOM changes Integrator for the slave and for the master are de�ned respectively
in the `slaveMirroring.js' and the `masterMirroring.js' documents. An extract of these
�les are illustrated respectively in Listings 6.5 and 6.6. For each received change, the
slave component integrates it in the DOM tree (line 17) and the master component
does the same only if the slave sent the input data that the user provided. In the case
where the user interaction implied a DOM event (e.g., onclick, onmousover, etc.), the
master calls the event handler that corresponds to that event (line 24) and that is
de�ned in the application main logic.

On the master component, a query is set on line 2 of Listing 6.6 to watch all the
changes made to elements belonging to the slave components, to their attributes and
to their text nodes. Using this query, an instance of the mutation-summary library is
created and a callback function, i.e., redirectContent(), is called upon the availability
of any change. Once the master DOM monitoring captures a change, it uses the web
service interface to call the slave UIManager as shown on line 14 of Listing 6.6.

Once the slave UI monitoring captures a change (line 5), it uses the web service
interface to call the master UIManager as shown on line 10 of Listing 6.6.

133

6.3 Synchronization Implementation

As discussed in Section 6.2, we need to detect relevant changes in the DOM tree on the
master and the slave applications and to exchange the updates and user interactions
between them.

To this end and for the master application, we use the Mutation-Summary library
[56] based on the Mutation Observer API 1. The key advantage of mutation observers
is that they observe nodes for changes. Mutation-Observers are not called for every
single change in the DOM tree, but they receive periodic call for a group of changes
in the DOM tree.

This behavior is opposite to the Mutation-Events spec 2 that was dropped because
it is verbose (i.e., �res too often, for every change), slow (because of event propagation)
and they prevent UA run-time optimization and �nally it is the source of many crashes
for browsers 3.

We con�gure a Mutation-Summary object to watch changes made to DOM ele-
ments with `device2' annotation, i.e., associated to the slave component, including
their attributes, their text content, their descendants. Mutation-Summary creates an
internal node map for the watched DOM nodes to which its assigns an internal id to
simplify the referencing for these elements. If any change happens to these elements,
their descendants or attributes, a callback (i.e., redirectContent() in Listing 6.5) is
triggered to construct and to send a change message to the slave application.

The change message contains a list of changes represented as change objects. A
change object contains di�erent information depending on the change type, as follows:

� for a newly added node, the change object contains the node tag name, its
attributes, its parent node, its previous siblings and its descendants if any.

� for a moved node (i.e., reparented), the change object contains the mutation-
summary internal id for the node concerned in this change, its new parent node
and its new previous siblings if any.

� for a modi�ed attribute or a modi�ed text node, the change object contains the
mutation-summary internal id for the node concerned in this change and the
new value for this attribute.

1Mutation-observer http://www.w3.org/TR/domcore
2Mutation-events, https://developer.mozilla.org/en-US/docs/Web/Guide/Events/

Mutation_events
3http://lists.w3.org/Archives/Public/public-webapps/2011JulSep/0779.html

134

http://www.w3.org/TR/domcore
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mutation_events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mutation_events
http://lists.w3.org/Archives/Public/public-webapps/2011JulSep/0779.html

However, the Mutation Summary library su�ers from some limitations. For in-
stance, it cannot detect changes made to standard JavaScript properties that are
associated to HTML attributes unless the HTML attributes are synchronized with
the JS properties. For instance, the `.id' property and the HTML id attribute are
continuously synchronized. This synchronization does not always guarantee the same
value as it is the case with the href attribute and `.href' property. The `.href' prop-
erty returns the absolute URL while the href attribute returns the value within the
HTML document. As long as there is synchronization, mutation-summary can mon-
itor the changes. But the problem is when the changes made on JS properties are
not synchronized to the HTML attributes. In this case, the mutation-summary is
not aware of the change. For instance, the `checked' attribute that is used with
HTML input checkboxes, the `value' attribute that is used for example to write text
in HTML input textboxes, etc. In addition, mutation-summary cannot detect if an
event listener is added dynamically to a DOM node using the `.addEventListener()'
JavaScript native method especially that these event listeners are not synchronized
with their corresponding HTML attributes.

Listing 6.7: Monkey Patching appendChild method

1 var origAppendChild = Element.prototype.appendChild;

2 Element.prototype.appendChild = function(child){

3 // dynamic distribution for newly created element

4 var annotation = analyze(child);

5 annotate(child , annotation);

6 origAppendChild.call(this , child);

7 }

To overcome these limitations, as well as to support the dynamic division and dis-
tribution described in Section 6.2.2 and to update the con�guration of the mutation-
summary we use the Monkey Patching technique [31] to extend native functions with
custom code. The following extensions are done:

� the `.appendChild' method is extended as shown in Listing 6.7 to detect the
addition of new elements and to trigger dynamically the annotation and the
distribution of these elements;

� the `.setAttribute' method is extended to update the Mutation Summary con-
�guration whenever a new attribute is set on the slave elements. This has the
intention of monitoring and mirroring the newly created attributes.

� the `.addEventListener' method is extended 1) to catch the event listeners that

135

are declared dynamically using JavaScript and 2) to replace an event handler
on the slave application with a call to the master application.

These extended functions should be loaded before the application logic loads to
ensure that the relevant application events will be captured.

On the slave application, user inputs are sent to the master application upon user
request (e.g., the user pushed a button to submit his input data). In the absence of
user request (e.g., the user entered his data but did not push the submission button),
user inputs are sent upon their availability based on a polling mechanism and using
a timer. In the case where only a user request is available (e.g., the user clicked on a
button to stop a running video), the request is immediately redirected to the master.
In all cases, a function is triggered on the slave device to notify the master about the
user queries. First, it identi�es 1) the type of the user interaction, e.g., a click, user
inputs, etc., 2) the concerned DOM element(s) and 3) the provided input data if any
or/and the type of the �red event. Second, it prepares a change message and sends
it across the communication channel to the master application.

6.4 State Distribution Evaluation

Testing the runtime performance of our system consists in considering it as a black box
and checking if the overall performance ful�lls the main objective: to have a functional
multi-screen application that ensures the state distribution during run-time without
unacceptable delays.

6.4.1 Characterizing the dynamicity of the Video Semantic

application

We consider the Video Semantic application developed by Mozilla characterized in
Table 3.1. This application is highly dynamic. It is developed using the PopcornJS
library [38] that aims at creating time-based interactive media on the web. Figure 6-2
is a screen-shot of the application during run-time. It shows a video with subtitles
and four blocks of information representing a Google map, a Wikipedia text, Flickr
images and Lastfm music, that are dynamically updated depending on the video time.

In the application, 11 parts are subject to at least one change during the runtime
and for the duration of the video, i.e., 4 minutes and 46 seconds. Table 6.1 represents

136

Figure 6-2: Main Application

Table 6.1: Number of changes related to the dynamic parts of Video Semantic

PPPPPPPPPPP
Parts

Count
Total Changes

Subtitle 222 changes
Flicker 8
Wikipedia 26
Googlemap 24
Attribution 26
Footnote 8
Tagthisperson 40
Lastfm 2
Webpage 4
Complete Application 360 changes

137

the list of these parts, e.g., �icker, wikipedia, googlemap, subtitle, etc.

For each part, we calculated the number of changes. For instance, the Flicker
part changes 8 times, the Wikipedia part 26 times, the Googlemap part 24 times, the
subtitles part 222 times, etc. The total number of changes is 360 for the application
as a whole.

These 360 changes were �red at 267 di�erent instants for the duration of the video,
as Table 6.1 shows. This means that on average every 1.07s (i.e., 286s/267 = 1.07s)
one or more changes are happening.

The subtitle changes happen at 202 distinct instants. The changes for the re-
maining parts happen at 83 distinct instants. We note that there are instants at
which there are simultaneous changes between the subtitles and the remaining parts
(202+83 = 285>268).

Table 6.2: Number of changes related to the dynamic parts of Video Semantic

Count Distinct Change Instants Number of Changes
One change only 205 instants 205 changes
Two or more changes 62 instants 155 changes
Total 267 instants 360 changes

At 205 di�erent instants (205*100/267 = 77% of total instants), only one change
was triggered, in total 205 changes (205*100/360 = 57% of total changes). At 62
di�erent instants (62*100/267 = 23%), two or multiple changes are triggered simul-
taneously. In total, 155 changes (155*100/360 = 43% of total changes) are triggered
during these 62 di�erent instants, as shown in Table 6.2.

Table 6.3: Simultaneous changes between the dynamic parts of Video Semantic

Simultaneous chan-
ges between:

Distinct Change
Instants

Max. number of
simultaneous changes

Nb of changes

Subtitles - Subtitles 20 instants 2 40 changes
Others - Others 33 instants 5 88 changes
Subtitles - Others 18 instants 6 42 changes

Table 6.3 reports about the application parts that were simultaneously changed.
The objective is to study the relations that exist between the di�erent application
parts. This is in the intention of building an idea about the amount of the required
exchanges that will be redirected from the master component to the slave component.

138

As it is going to be described in the following section, the subtitles part are attached
to the video element on the master component. The remaining parts, listed in Table
6.1, belong to the slave component. We refer to these remaining parts as `Others' in
Table 6.3.

At 20 distinct instants, two simultaneous changes happened between the subtitles.
In this case, a simultaneous change refers to deleting one subtitle and adding a new
subtitle at the same instant.

At 33 distinct instants, two to �ve simultaneous changes happened between the
`Others' parts. In this case, a simultaneous change refers to showing a wikipedia
text related for example to Telco Village simultaneously with a google map for Telco
Village for example. On average, there are 2.7 changes (88/33 = 2.7) per instant.

Finally, at 18 distinct instants, two to six simultaneous changes happened between
the subtitle part and the `Others' parts. In this case, a simultaneous change refers
for example to showing a wikipedia text related to Telco Village simultaneously with
the appearance of a subtitle containing the word `Telco Village'. On average, there
are 2.4 changes (42/18 = 2.4) per instant.

We can see that at least 18 change messages should be sent from the master to
the slave component. Every message contains on average 2.4 changes to be applied
on the slave.

6.4.2 Runtime analysis of the state distribution of the Multi-

screen video semantic application

To test the performance during run-time, we implemented the complete system as a
Google Chrome extension. We load the extension on the Google Chrome browser of a
desktop that we consider as a master device. We used another PC as the slave device.
Both devices are connected through an ethernet connection in LAN and communicate
through the COLTRAM platform.

We run the Video Semantic application on the master device and let our system
distribute the application into master and slave web services. Figure 6-3 and Figure 6-
4 represent respectively the master and the slave components. The master component
contains only the video element with the subtitles, that occupy the full-window. The
slave component contains the remaining elements notably the header, the footer, the
Wikipedia, the Googlemap, etc.

139

Figure 6-3: Master Application after splitting the Semantic Video application between
large devices

Figure 6-4: Slave Application after splitting the Semantic Video application between
large devices

140

Then, we ran the video on the master and we inspected the number and types of
DOM changes that were redirected to the slave component.

Finally, we measured the delays that were added by 1) our system and by 2)
the multi-screen platform COLTRAM to check whether our system is realistic and
whether it a�ects the overall functionality of the original application.

6.4.2.1 DOM updates

Table 6.4: Number of Slave Events

Event types Removed AddedOrMoved Attributes
Slave VideoSemantic 27 1001 555

Table 6.4 summarizes the inspection results: 27 updates were received to remove
DOM elements from the slave DOM tree. 1001 updates were received to add or move
DOM nodes, including text nodes. 555 updates were received to edit, add or remove
an HTML attribute. The communication of these updates from the master to the
slave required 295 messages in total.

Listing 6.8: Example of a change message as a JSON object

1 {"f": "slave_domChangesIntegrator",

2 "args":[

3 {"removed" : null},

4 {"addedOrMoved": [{"nodeType: 1,

5 "id": 474,

6 "tagName": "DIV",

7 "parent": {"id": 106},

8 "attributes": {"style": "

position: absolute;

left: 0px; z-index: 1;

visibility: inherit"}

9 }]},

10 {"attributes":[{"id": 192,

11 "attributes": {"class": "

hover"}

12 }]},

13 {"text":null}

14]

141

15 }

Each message contained on average 5 DOM updates. Listing 6.8 contains a JSON
object corresponding to a message sent from the master to the slave. The JSON
object has two property-value pairs, the �rst one (i.e., f) corresponds to the function
name that should be called locally on the slave side. The second property corresponds
to an array of changes. We can see that one DIV element was added to the DOM
tree, it is a child of a node with id equals to 106, it has 474 as an id and only one
attribute (i.e., style with its value). In addition, the node that has an id equals to
192 has an updated class attribute with �hover" as a value.

By comparing the number of messages sent to the slave (i.e., 295 messages) to
the 360 application changes of Table 6.1, we can see that on average 1.2 changes on
the level of the application user interface triggered the sending of 1 message from the
master to the slave.

6.4.2.2 Communication and System Delays

We proceed to measure the communication delay induced by the COLTRAM plat-
form and by our system between two machines (i.e., one desktop and one portable
computer) connected via Ethernet. The delay value gives an idea about the presence
of visual incoherence for the videoSemantic application. We note that visually no in-
coherence was detected during runtime between the master component and the slave
component.

Figure 6-5: Model of ideal one-way delay between master and slave

More speci�cally, we want to measure the one-way delay between detecting a

142

change on the master component (i.e., Tdetection,m) and integrating this change
on the slave component (i.e., Tintegration,s) as shown in Figure 6-5. The one-way
delay is the sum of the system delay (related to the synchronization mechanism) and
the communication delay (related to the network and the platform) as expressed in
Equation 6.1.

OneWayDelay = Delay_communication+Delay_system (6.1)

Practically, the one-way delay can be calculated following Equation 6.2:

OneWayDelay = Tintegration, s− Tdetection,m; (6.2)

Equation 6.2 assumes that the clocks of both machines are synchronized. The
challenge in real scenarios is that there is always a clock drift that needs to be consid-
ered. A �rst step here consists in calculating this clock drift to exclude it later from
the one-way communication delay. Figure 6-6 illustrates the mechanism we set in this

Figure 6-6: Estimation of the clock shift between master and slave

intention. The master, running on the desktop, starts the mechanism and sends a
message containing only his sending time (i.e., T1,m) to the slave that is running on
a portable computer. Once the slave receives this message, it gets its reception time
(i.e., T1,s) and calculates Delta1 that is the di�erence between T1,s and T1,m. Then,
the slave sends Delta1 and his new sending time (i.e., T2,s) to the master. On his
side, the master calculates Delta2 that is the di�erence between his reception time
(i.e., T2,m) and T2,s. Both Delta1 and Delta2 include the clock drift (to which we
refer as deltaSync) and half the round trip time (RTT) as follows:

143

� Delta1 = 0.5*RTT + deltaSync;

� Delta2 = 0.5*RTT - deltaSync;

By solving these two equations, we get the following equation:

deltaSync =

∣∣∣∣Delta1−Delta2

2

∣∣∣∣ . (6.3)

We note that these equations are only valid if connections from the master to the
slave and vice versa are symmetric. The master uses the values of Delta1 and Delta2
to calculate the deltaSync value and to compute RTT, i.e., the sum of Delta1 and
Delta2. The RTT value corresponds to double the value of Delay_communication.

This mechanism is repeated enough times (i.e., 600 times) before we compute the
average of deltaSync that we take as the value for the clock drift. Similarly, we take
the average of RTT values as the value for RTT. In our experiments, RTT varies
between 6 ms and 41 ms, on average 8 ms and in consequence Delay_communication
varies between 3 ms and 21 ms, on average 4 ms on Ethernet.

Note that similar experiments were conducted on WiFi to measure the commu-
nication delay induced by the COLTRAM platform. Results show that on average
RTT_wi� is 90 ms.

Considering the clock drift on the slave side, the real OneWayDelay is calculated
as follows in Equation 6.4:

OneWayDelay = (Tintegration, s− Tdetection,m)− deltaSync; (6.4)

It is the di�erence between the time the slave integrated the change (i.e., Tintegra-
tion,s), the time the master detected the change (i.e., Tdetection,m) and the delta-
sync. This OneWayDelay includes on the one side the communication delay induced
by COLTRAM and by the network, and our system processing time on the other side.

After calculating the deltaSync, we run the video on the master component. For
every message received on the slave, the slave computes the OneWayDelay following
Equation 6.4. In the text below, we present and analyze the obtained results.

In Figure 6-7, we show the variation of the delay values with every received mes-
sage on the slave for the lifetime of the video. The variations we present are the
average values obtained after running 10 times the videoSemantic application. Fig-
ure 6-7 shows that a burst of 5-15 consecutive messages on average implies a slightly

144

Figure 6-7: Delay Variation in function of time

modi�ed delay value and then the delay changes abruptly. This behavior can be seen
for all the 295 messages reported in the �gure. The one-way delay (i.e., including
Delay_communication and Delay_system) varies between 5 and 34 ms, on average
11 ms 4 on ethernet. Having both the one-way delay and Delay_communication and
following Equation 6.1, Delay_system varies between 2 ms and 13 ms on Ethernet.

Using WiFi, Delay_system would increase by 45 ms (i.e., RTT_wi�/2) and the
total one-way delay would be between 47 ms and 57 ms.

In Figure 6-8, we present for each delay value the number of messages to which
it corresponds. On average more than 65% of messages produce a delay smaller than
11 ms and 95% of messages produce a delay smaller than 20 ms.

The values of these delays, whether on ethernet and on Wi�, are not perceivable
by the human eye based on Miller [37]. Miller [37] states that a response time of 100
ms is perceived as instantaneous.

Comparing the one-way delay (i.e., 34 ms at max for ethernet or 57 at max for
Wi�) and Delay_system to the threshold of 100 ms, our system mechanism provides
an instantaneous synchronization.

4We note that these values are the same for UPnP services and Bonjour services in this experiment
setup.

145

Figure 6-8: Number of messages corresponding to the delay values

6.5 Proof-of-concept: Extending the Refactoring Sys-

tem

All along the thesis, we have been addressing the authoring of multi-screen applica-
tions for two devices, i.e., one master and one slave. We have identi�ed some use-cases
in the literature where the number of devices involved in the multi-screen experience
exceeded two devices. For instance, multiple devices are aggregated to widen the
visualization of an application [26], to create a panoramic street views across three
devices [57], to schedule a large conference on a wall-size display [32], etc. Another
example is an interactive presentation where the presenter and the public share the
same version or a customized version of the presentation, or a multi-user game where
every user has his own private user interface but they all share one screen where
results and interactions take e�ect.

In our work, we did not focus on these use cases (i.e., considering user pro�le to
deliver customized content, aggregating content from multiple sources (e.g., cameras)
to create a panoramic view, or online games). But as a �rst step towards supporting
them, we decided to extend our refactoring system to support the segmentation, the
distribution and the synchronization among three devices as it will be described in
the next Sections. The relayouting phase is not a�ected by the increase of the number

146

of devices since it is applied to each component individually.

To validate the extended system, we tested it on the videoSemantic application
in Section 6.5.5.

6.5.1 Extending the application model to three components

We decided to keep the main application model that consists of one master component
having a modi�ed version of the main application and one (or more) slave components
having each a part of the main DOM tree. It is always the master component that
sends the DOM updates to the slave components (i.e., �rst slave, second slave). Each
slave on his turn sends the user data and requests upon their availability to the master
component.

Concerning the slaves, we considered two cases:

1. Both slaves are identical. We call them cloned slaves.

2. Slaves are di�erent. Each slave has distinct content.

The application model with cloned slaves does not impose challenges to the exten-
sion of the refactoring system. This is because the content is still divided between two
components. Then the slave content is duplicated and serialized to the �rst and the
second slave. For the UI synchronization step, the change messages that are detected
on the master are the same for both slaves. Thus, it is enough that the master sends
simultaneously the same message to both slaves to ensure the state synchronization.
If one user interacts with one slave, the corresponding slave sends the change to
the master and the master on his turn update the view of both slaves, resulting in
coherent slave views.

In the second case where slave components have di�erent content, additional ques-
tions and challenges need to be addressed. We summarize them as follows: What are
the additional functions that can be extracted from the device features and that map
to the application content? Should we allow peer-to-peer communications between
the slaves or is it better to always centralize them on the master component?

In both cases, there are additional challenges related to the discovery and to the
communication between the master on the one side and the slaves on the other side.
Our system has to discover three devices in the network and to characterize them. Out
of the device features, the system usually should derive functions that may correspond

147

to the application content. But by lack of time to re�ne the characterization of video-
centric applications and the mapping to device features, we decided to consider a
third customized function, i.e., `maps'. More details are found in Section 6.5.2.

In the following sections, we brie�y describe our solution to solve the challenges
while focusing only on the changes brought to the refactoring system, speci�cally for
the case of distinct devices.

6.5.2 Extended UI Division

As mentioned earlier, in addition to our `multimedia' and `interactive' functions,
we adopted the `maps' function. Using this function, the map content should be
separated from the remaining content, i.e., interactive and multimedia content.

Here, we consider that the input to the UI Division step is an application where
only the DOM element associated to the map element is annotated as belonging to
the second slave. The remaining DOM nodes are not yet annotated, but they will be
during the annotation projection in the UI Distribution step in Section 6.5.3.

Similarly to the basic UI Division, the geometric and the logical trees are con-
structed and characterized with three functions instead of two. We impose an ad-
ditional rule that resolves multiple functions into one function. We consider that
the `maps' function has a higher priority than the `interactive' function, the same as
`multimedia' function has a higher priority than the `interactive' function. Thus if we
have a map element that is interactive, its corresponding logical node will have the
`maps' function.

During the processing of logical nodes:

� `maps' content should be separated from `interactive' content,

� `maps' content should be separated from `multimedia' content, and

� `multimedia' content should be separated from `interactive' content.

As a result of the processing, the segmented application represented by the leaf
logical nodes is annotated with three di�erent functions.

148

6.5.3 Extended UI Distribution

We recall that UI Distribution consists of three phases: projection, propagation and
MSA creation. The only change for the projection and the propagation steps is solely
at the level of the annotations.

In the case of cloned slaves, there are only two functions on the logical tree simi-
larly to the basic implementation of our system. Thus, on the DOM tree only three
annotations can be found, i.e., `device1', `device2' and `dev1/dev2' annotations. In
contrast to this �rst case, the second case with two distinct slaves requires having
additional annotations. The �rst is `device3' that is reserved for logical nodes hav-
ing `maps' as a function. The second is `dev1/dev3' (and `dev2/dev3' resp.) that is
reserved for DOM nodes grouping content from the master component (and the �rst
slave component resp.). The third is `dev1/dev2/dev3' that is associated to DOM
nodes grouping content from the three components.

During the MSA creation, for cloned slaves, DOM elements annotated with `de-
vice2' are serialized simultaneously to the �rst slave and to the second slave and then
made hidden on the master component.

For distinct slaves, DOM elements annotated with `device2' (and resp. `device3')
are serialized to the �rst slave (and resp. second slave) and then made hidden on the
master component.

6.5.4 Extended State Synchronization

In the second case, for each slave a new instance of the mutation-summary is created
and con�gured to watch the changes made respectively to `device2' DOM elements and
to `device3' DOM elements. Upon the detection of a change on the �rst slave (resp.
second slave), a callback function is called to send these changes to the corresponding
slave using its COLTRAM interface.

6.5.5 Validation of the VideoSemantic application

We have validated the system on the semanticVideo application in both cases.

For the case of distinct slaves, we show the segmentation results in Figure 6-9.
The master component contains only the video element with the subtitles, in Full-
Window Design mode as shown in Figure 6-9(a). The �rst slave component shown in

149

(a)

(b)

(c)

Figure 6-9: (a) Master component containing only a video element in Full-window
Design mode (b) First RWD Slave component containing interactive content, except
the map block (c) Second RWD Slave component containing only the map block

150

Figure 6-9(b) is a responsive application that contains all the content of Figure 6-2
except the video element, and except the map block with its corresponding header.
This latter, i.e., was reserved for the second slave component shown in Figure 6-9(c).

In the case of cloned slaves, both slave components were visually synchronized and
no time shift is visually perceivable during runtime. The slave components stayed
synchronized during the video playing for both cases, i.e., cloned slaves and distinct
slaves.

6.6 Conclusion

This chapter focused on the transformation of the static master and slave components
into a multiscreen application. Each of the master and the slave went through two
additions (i.e., mirroring and adaptation to the COLTRAM platform) to become
capable of providing the synchronization and the redirection operations.

During runtime, these two operations provide the state distribution mechanism
that can function independently from our system. Being the ultimate objective,
the state distribution was evaluated on the VideoSemantic application that is highly
dynamic. Results show that the DOM changes were continuously captured during
the lifetime of the video element and no visual incoherence was detected.

This test helped us in validating our application model and in showing that re-
stricting the state distribution to the DOM tree state can be enough for some appli-
cations. In contrast, this model imposes some constraints for HTML elements that
use JavaScript to �ll their content, e.g., canvas, Google maps, etc. In such cases,
these HTML elements should be kept on the master where the logic resides.

As a perspective, a study can be conducted to deal with these constraints and to
extend the state concept to include also JavaScript objects related to these elements,
and the browser native state.

In addition, we evaluated the performance of the overall system. Results show
that our system is very realistic during runtime. The total delay, including system
and communication delays, is of 34 ms at max on Ethernet, on average 11 ms, and
the delay produced by the system processing varies between 2 ms and 13 ms.

151

Chapter 7

Conclusion and perspectives

7.1 Summary

In this dissertation, we have addressed the reuse of video-centric web applications for
the automatic creation of distributed applications in a multi-screen context.

The literature on this subject focuses on the design of an application model,
on the creation of a platform adapted to the application requirements and on its
functioning after the distribution. But the works in the literature remain inconclusive
about the content distribution, since in most of the cases a manual distribution is
adopted. Another gap was identi�ed and it is related to the layout adaptation after
the distribution. This dissertation sought to cover these two gaps.

The work has been carried out as follows:

� The design of a model for the distributed applications

� The characterization and the exploitation of the multi-screen environment for
the user interface distribution

� The adaptation of the distributed application to the multi-screen environment,
including to the multitude of devices and to the multi-screen platform

� The development and the evaluation of a refactoring system that integrates the
above three points all together.

In Section 7.2, we synthesize the �ndings of this thesis while citing some of its
limitations. Section 7.3 is an outline plan for further research in the topic.

153

7.2 Synthesis

Among the results, we have shown that single-screen applications can be reused to
create functional multi-screen applications. The key points here are: the application
division and the design of a model for the multi-screen applications while optimizing
the damages on the application documents.

Concerning the �rst point, we have shown that our hybrid segmentation approach
not only identi�es coherent blocks of content, but it also separates interactive content
from multimedia content. Thus, it allows the distribution of the �best-�t" content to
the �best-�t" device following device features.

In this work, the distribution was limited to the DOM tree while keeping the ap-
plication logic on one side of the distributed application. This resulted in a particular
multi-screen application model consisting of a master component and its correspond-
ing slave component. These components are made capable of executing two cross-
device operations: redirection and synchronization, using a monitoring technique for
the DOM tree only.

Results show that the DOM monitoring was enough to provide the state distri-
bution and the state coherence especially that no visual incoherence was reported
during our tests.

After distributing the content, we have also covered the dynamic adaptation of the
component layouts to resolve two main layout anomalies: blank spaces and horizontal
scrolling. To eliminate blank spaces from the master layout, we neglected the DOM
structure and imposed a new design calculated relatively to the window dimensions.
For eliminating the horizontal scrolling from the slave layout, the DOM structure was
respected.

The evaluation of both algorithms, after the quanti�cation of each of the anoma-
lies, revealed: (1) the absence of blank spaces on the master components, (2) the
absence or the reduction of the horizontal scrolling on the slave components. Both
algorithms are relatively basic but they resolve the layout problems created by our
application model or by the dynamic nature of the multi-screen environment. As
a perspective, the two algorithms are open for re�nement and improvement, for in-
stance to consider the importance of each content on the page to re-position it and
re-dimension it accordingly and to respect the aspect ratio during the content re-
dimension.

Results obtained after evaluating the performance of the overall system show that

154

our system is realistic during runtime with a max delay of 34 ms, on average 11 ms
on ethernet. This delay that is small comparing to the 100 ms de�ned by Miller [37]
shows that the response time of our system is instantaneous. In addition, the system
is compatible with all the tested environments for developing web applications. This
helps in enlarging its applicability to most web applications.

7.3 Perspectives

Several important issues could not be investigated during this thesis owing to the
precise thesis objectives in the domain of document engineering, while focusing solely
on web applications. This includes:

� Extending the system applicability to other XML-based languages di�erent from
HTML, such as SMIL and NCL. This requires the study of the nature and
the type of these applications to verify 1) whether there is a way to analyze
every element to determine its function and its geometrical parameters, and 2)
whether there is a runtime programming interface that allows interfacing the
mirroring code.

� Extending the environment exploitation to include not only the device features,
but as well the user preferences. This requires conducting a user-study to in-
vestigate about user preferences in multiple scenarios.

� A usability study can be conducted to evaluate qualitatively 1) the layout re-
design of each of the master and the slave components, and 2) the results of the
content distribution.

� Extending the mirroring mechanism to synchronize not only the DOM tree
states but as well the states of JavaScript objects. Such a mechanism eliminates
our system limitation of keeping special content (e.g., canvas) next to the main
logic on the master component.

� Studying the possibility of integrating approaches from the web semantic do-
main to give a semantic meaning for the blocks produced at the end of the UI
division.

� Pushing the design of HTML-based applications one step further to optimize
application DOM trees, especially given that only 14% of DOM elements in our
dataset are visible and only 3% of DOM elements take part in the application

155

user interface. We believe that using the logical tree representation jointly with
the basis of our FWD algorithm, (i.e., to design the user interface independently
from the DOM tree), we can reduce the depth and the number of nodes in the
DOM tree and still reproduce the application look.

Another type of perspective is identi�ed and it is related to making our system
into a product. In our implementation, we slightly changed the main DOM tree by
adjusting the visibility of slave contents. One challenge here is to circumvent the case
where the visibility of these slave contents decides on the application functionality.
This challenge can be solved for instance by keeping an updated record (using JS
objects) of the slave content visibility on the master application.

In addition, the separation of a video element from its control bar is not possible
for HTML5 videos and HTML5 audios since the control bar is natively de�ned within
them. To circumvent this limitation, a customized control bar can be added to the
application DOM tree and can be linked to the video element using JavaScript and
then it can be separated from the video element. We have developed a �rst prototype
that validates the importance of this perspective if we want to make our system a
�nal product.

156

Chapter 8

Resume en francais

8.1 Introduction

La prépondérance des technologies du Web et leur évolution continue, surtout avec
l'émergence de HTML5, a conduit à des applications Web puissantes. Ceci permet
aux utilisateurs d'accéder au même contenu à partir de di�érents dispositifs. La
consommation du contenu par l'utilisateur a changé en raison de cette prépondérance
et du nombre d'appareils connectés disponibles pour un seul utilisateur, chacun d'eux
possédant des caractéristiques physiques di�érentes, à savoir, la taille de l'écran ou les
types d'entrée-sortie. Une étude Google [23] indique que 90% de nos interactions ne se
limitent plus à un seul appareil. Dans cette thèse, nous supposons qu'une application
multi-écran est constituée de multiples Composants. Chaque composant correspond
à un contenu distinct qui o�re une tâche spéci�que. Chaque composant fonctionne
sur un dispositif distinct. Ces composants communiquent les uns avec les autres pour
fournir une utilisation complémentaire.

Les applications multi-écrans imposent de multiples dé�s pour les développeurs.
Tout d'abord, ils doivent concevoir une application qui tire partie de l'environnement
multi-écran. Ensuite, ils doivent déterminer comment le contenu de l'application
sera répartis sur les di�érents dispositifs en fonction de leurs capacités. Ils doivent
également gérer la synchronisation et la cohérence des contenus distribués. En outre,
les développeurs doivent fournir un rendu uniforme du contenu à travers les dispositifs.

L'utilisation des technologies web aide à réduire la complexité de ces tâches et
augmente la possibilité de déployer une application sur divers dispositifs. Alors que
des travaux scienti�ques visent à développer des applications multi-écrans à partir

157

de rien, notre objectif est de réutiliser des applications existantes déstinées pour un
écran unique et de les transformer.

Plusieurs problèmes se posent lorsque nous essayons de réutiliser des applications
qui ne sont pas destinées à l'utilisation multi-écran complémentaire. Tout d'abord,
les applications ne sont pas nécessairement développées de façon modulaire facili-
tant l'identi�cation des composants indépendants de contenu a�n de les distribuer.
Deuxièmement, ces applications ne sont pas destinées à fonctionner simultanément
sur plusieurs appareils avec di�érentes caractéristiques physiques, en particulier sur
les appareils mobiles avec un petit écran. Par conséquent, l'expérience utilisateur
peut être rompue par la distribution à travers les dispositifs. Troisièmement, une
application web consiste en un ensemble de documents, i.e., document HTML qui
détermine le contenu et sa structure, un document JavaScript contenant la logique et
des document de styles (CSS) pour la mise en page du contenu. Il existe des relations
étroites entre ces trois derniers. La séparation du contenu d'une application implique
une charge de travail supplémentaire sur la logique et sur la mise en page si nous
voulons satisfaire un utilisateur.

L'objectif principal de cette thèse est d'étudier et de relever les dé�s liés à la créa-
tion d'applications multi-écrans, notamment à partir d'une application mono-écran.
Les objectifs intermédiaires comprennent: 1) la création d'une interface utilisateur
distribuée, 2) l'adaptation à une multitude d'appareils et à la quantité de contenu de
chaque côté de l'application multi-écran, et 3) la synchronisation et l'orchestration
entre les composants de l'application distribuée. De plus, ce travail de thèse comprend
la caractérisation des applications vidéo-centrique pour identi�er la présence d'une
dualité entre le contenu et les caractéristiques des dispositifs. Cette caractérisation
a pour but d'associer une partie de l'application au meilleur dispositif sur le réseau.
L'objectif ultime de cette thèse est de concevoir un système automatisé dédié pour
les utilisateurs �naux et qui élimine la nécessité de l'intervention des développeurs.

Au cours de cette thèse, nous avons conçu et développé un système de refactoring
des applications existantes, qui est guidé par les caractéristiques de l'environnement
multi-écran pour produire automatiquement des applications multi-écrans.

Le système de refactoring peut être utilisé directement et de manière transparente
par un utilisateur �nal. Il suppose la présence d'au moins deux dispositifs décou-
verts dans le réseau. Cette hypothèse est cruciale puisque notre système exploite les
caractéristiques physiques des dispositifs pour guider l'analyse des contenus des ap-
plications et par conséquence la conception de l'application multi-écran. Le système
est dédié principalement, mais sans être limité, pour les applications multimédia et

158

les applications vidéo-centriques consistant en au moins un élément vidéo.

Les sections qui suivent s'articulent de la façon suivante. Section 8.2 dresse l'état
de l'art des plateformes multi-écran et des travaux ayant comme objectif la création
des applications multi-écrans.

Dans la Section 8.3, nous introduisons le système global que nous avons mis au
point avec ses principales caractéristiques, ses entrées et le modèle adopté pour les ap-
plications multi-écrans. En outre, nous décrivons et caractérisons le jeu d'applications
utilisées tout au long de cette thèse pour valider les composants du système. Les
di�érents composants du système, i.e., la division du contenu, la distribution du con-
tenu, la synchronisation et l'adaptation de la mise en forme des applications, sont
brièvement décrits. Les méthodes d'évaluation ainsi que les résultats obtenus seront
détaillés par la suite.

Dans la Section 8.4, nous résumons les travaux de cette thèse et nous tirons des
conclusions concernant la validité de notre système dans des situations réelles. En�n,
nous présentons les perspectives de notre travail.

8.2 Etat de l'art

Dans des travaux antérieurs [25], un `WebSplitter' a été proposé pour diviser les
applications web, sur la base de méta-données contenus dans un �chier. Ce �chier
est unique pour chaque application. Il contient les associations entre les contenus des
applications et les appareils possibles. L'architecture du `WebSplitter' exige un proxy
qui sépare le contenu de l'application dans des vues partielles et un composant côté
client qui reçoit des données envoyées par le serveur. L'architecture est centralisée et
requiert une distribution manuelle de chaque élément DOM de l'application.

Dans ses recherches, Cheng [13] a proposé un navigateur virtuel capable de séparer
la logique d'une application de son rendu. La logique est maintenue dans une page
web virtuelle. Automatiquement, le navigateur virtuel divise l'arbre DOM principale
(DOM) en plusieurs sous-arbres DOM et associe ces sous-arbres au dispositifs comme
noté dans un �chier d'indices qui est spéci�que à chaque application. Ce �chier
d'indices est créé manuellement par le développeur. Les opérations multi-appareils
sont exécutées de manière centralisée en fonction du navigateur virtuel qui constitue
un proxy entre le serveur Web et les navigateurs des appareils des utilisateurs �naux.

Bassbouss et al. [4] décrit comment transformer des applications traditionnelles

159

en applications multi-écrans. Une application est d'abord développée comme une ap-
plication mono-écran, mais a�n de la distribuer elle nécessite un navigateur spéci�que
multi-écran. De même, la distribution du contenu se fait sur la base de méta-données
fournies manuellement par le développeur. Le modèle de l'application générée est
maitre-esclave.

Zorrilla et al. [60] a proposé une architecture de distribution d'une application
mono-écran sur plusieurs dispositifs tout en assurant aux utilisateurs une expérience
cohérente à travers les dispositifs. L'architecture décide de la meilleure con�gura-
tion entre le contenu (sous forme de Web Components) et dispositifs et cela d'une
façon dynamique en se basant sur des indices fournis par le développeur. Ces indices
décrivent le comportement ciblé de l'application dans un environnement dynamique
multi-dispositif, mais ils ne portent pas d'informations sur le(s) dispositif(s) cible(s).

Contrairement à [25] et [13], notre système a une architecture décentralisée. Sem-
blable à [4], il fournit des applications suivant un modèle maître-esclave. Le point com-
mun pour les travaux ci-dessus est qu'ils exigent un seul environnement de développe-
ment qui facilite la création des applications multi-écrans. Mais cela signi�e que
chaque application mono-écran doit être soit conçue de façon modulaire [60] soit
analysée par le développeur pour identi�er le di�érents modules ou blocs qui la com-
posent. Il n'existe pas de procédé automatique pour e�ectuer une analyse générique
qui pourra être appliquée à un grand ensemble d'applications existantes a�n de dis-
tribuer ces applications.

8.3 Contribution: Système de refactoring

8.3.1 Introduction globale du système

Figure 8-1: L'architecture du système de refactoring

Le système de refactoring détaillé dans ce chapitre et illustré dans la Figure 8-1 se

160

compose de 5 phases principales: Découverte et Caractérisation de l'environnement,
UI Division, UI Distribution, Layout Refactoring et Distribution de l'État.

XXXXXXXXXXXXXX
Devices

Functions
Multimedia Text Interactive

TV ++ + �
PC ++ ++ +
Smart Phone + + ++
Tablet + ++ ++

Table 8.1: Caractérisation des dispositifs avec des functions

8.3.2 Decouverte et Caractérisation de l'environnement

Le système détecte automatiquement tous les périphériques sur le réseau. Dans le
travail de cette thèse, on suppose que uniquement deux dispositifs sont simultané-
ment présents sur le réseau. Les caractéristiques des appareils sur lequel nous nous
concentrons sont: (1) nombre d'écrans, (2) taille de l'écran, (3) moyens d'interaction,
(4) type des dispositifs, à savoir, TV, PC, tablette ou smartphone. En utilisant un
service Web fourni par la plate-forme COLTRAM, nous collectons ces caractéristiques
pour les deux appareils. Pour chaque dispositif, nous identi�ons sa caractéristique
dominante que nous considérons comme `La fonction' du dispositif, en se basant sur
Tableau 8.1. Par exemple, dans le cas où deux grands appareils ont été détectés,
à savoir, 2 PC, nous comparons en premier leurs tailles d'écran. Nous considérons
qu'un PC avec un plus grand écran est plus adapté à l'a�chage `multimédia' que
l'autre PC avec un plus petit écran. La caractéristique dominante constitue l'entrée
pour la phase de UI Division.

Figure 8-2: Les di�érentes parties de l'algorithme de segmentation

161

8.3.3 Division et distribution du contenu

8.3.3.1 Introduction

La phase UI Division consiste à identi�er les éléments qui correspondent aux fonctions
fournies par la phase précédente et à construire des blocs visuels et sémantiques autour
de ces éléments. On note que même dans le cas d'un document HTML mal-formé,
un navigateur produit un arbre DOM correct.

En général, la segmentation signi�e qu'un gros bloc est décomposé en sous-blocs
de tailles plus petites. En revanche, la segmentation d'une application en se basant
sur l'analyse de sa structure fonctionne à l'inverse. Notre analyse commence par les
particules, à savoir, les éléments DOM, que nous essayons de regrouper pour former
des blocs plus grands. Deux principaux dé�s apparaissent ici: 1) comment déter-
miner le point auquel nous devrions arrêter l'agrégation des éléments, et, 2) comment
détecter les éléments DOM visibles ou pertinents à notre segmentation. En outre,
le nombre d'éléments DOM que nous devons faire face varie entre les applications et
peut être élevé (plusieurs milliers) comme des statistiques indiquent.

Compte tenu de ces dé�s, notre algorithme de segmentation se compose de deux
étapes: la simpli�cation de l'arbre DOM et le traitement de l'arbre simpli�é comme
indiqué dans Figure 8-2. Il prend l'arbre DOM et les fonctions de contenu comme
entrées et o�re une page segmentée et étiquetée en sortie.

8.3.3.2 Simpli�cation de l'arbre DOM et l'étiquetage

L'objectif de simpli�er l'arbre DOM est de ne garder que les éléments qui forment
l'interface utilisateur (UI). Le processus de simpli�cation analyse et classi�e automa-
tiquement tous les éléments DOM a�n de les étiqueter avec l'une des fonctions de
la section 8.3.2. Puis il décide de la création d'un n÷ud logique pour former l'arbre
logique, en traversant l'arbre DOM avec un parcours en profondeur.

Pour la classi�cation, nous utilisons trois types d'analyse. L'analyse géométrique
qui véri�e la visibilité d'un élément DOM. L'analyse statique qui considère les at-
tributs HTML et les noms des balises HTML pour déterminer: les éléments qui ont
un comportement correspondant à nos fonctions et les éléments qui devraient être
ignorés, par exemple, meta, br. L'analyse dynamique détermine si un élément est
interactif en capturant les event-listeners qui sont dynamiquement con�gurés sur cet
élément. Par conséquent, les éléments visibles qui sont classés comme ayant une

162

fonction (par exemple, une vidéo visible) sont appelés des �éléments pertinents". Un
n÷ud logique est en conséquence créé et il est associé à cet élément, et il est éti-
queté avec la fonction de l'élément DOM, à savoir, `multimédia' ou `interactive'. Les
éléments visibles qui ne disposent pas d'une fonction sont appelés simplement `élé-
ments visibles', par exemple, les n÷uds texte. En fonction de sa position dans l'arbre
DOM, un élément visible peut former ou non un noeud logique non-étiqueté. En�n,
des éléments n'ayant pas un aspect visuel sont considérés comme des `éléments non
pertinents' et ne créent pas un n÷ud logique.

En conséquence, l'arbre logique contient un nombre réduit d'éléments comparé à
l'arbre DOM et il est partiellement étiqueté avec des fonctions. Certains des n÷uds
feuilles sont étiquetés, leur nombre est grand et ils forment géométriquement des
petits blocs dans la plupart des cas.

8.3.3.3 Segmentation: Traitement de l'arbre simpli�é

La phase de traitement consiste à agréger les n÷uds logiques en respectant un en-
semble de contraintes, pour produire des blocs étiquetés. Pour regrouper deux n÷uds
logiques dans un bloc indépendant, ils doivent satisfaire trois conditions: être frères
dans l'arbre logique, non étiquetés avec des fonctions di�érentes, et satisfaire les lois
dites 'Gestalt' qui tentent `de reconnaître des objets comme étant une seule chose' [42]
et qui sont basés sur la proximité, la similitude, la fermeture et la simplicité. Une con-
trainte géométrique supplémentaire est imposée pour déterminer le point pour lequel
un n÷ud logique pourra être considéré comme un bloc �nal, et cela si ses descendants
n'ont pas d'étiquettes di�érentes. Pour appliquer cette contrainte, nous adoptons la
notion de paramètre de granularité (pG) [46] qui détermine le point sous lequel un
n÷ud peut être considéré comme un bloc �nal. Plus le pG local est grand, moins
nombreux sont les blocs produits et mieux les résultats de segmentation sont. Con-
trairement à BoM [46], on calcule automatiquement et en continu plusieurs valeurs
pour PG, à savoir, un PG global et des pG locaux, et cela durant le traitement des
n÷uds logiques pour adapter la segmentation au contenu de l'application.

Ensuite, l'algorithme de traitement traverse l'arbre logique, en utilisant le pG
global. Un n÷ud étiqueté est fusionné avec son frère si les contraintes ci-dessus sont
satisfaites pour les deux parties. Pour un n÷ud non marqué qui a des descendants
avec di�érents étiquettes, nous traitons le sous-arbre en premier. Pour un n÷ud non
marqué qui a des descendants avec une seule étiquette, si sa super�cie est plus grande
que pG, alors nous traitons son sous-arbre. Dans le cas contraire, si sa surface relative

163

est inférieure à pG, nous essayons de le fusionner avec ses frères qui respectent les
contraintes ci-dessus. A la �n du traitement, les feuilles de l'arbre logique représentent
les blocs �naux et ils sont étiquetés et prêts pour la distribution.

8.3.3.4 UI distribution

La phase UI Distribution représente le moment auquel l'application mono-écran se
transforme en une application multi-écran formée d'un composant maître et d'un
composant esclave. Cette phase prend en entrée l'arbre logique étiqueté et elle sépare
les feuilles de l'arbre qui sont `interactives' de celles qui sont `multimédia' pour créer
l'interface utilisateur distribuée de l'application multi-écran (à savoir, les documents
HTML et JS). Les dé�s sont premièrement de partitionner l'arbre DOM, en partic-
ulier parce que l'arbre logique ne représentent pas tout l'arbre DOM et deuxièmement
d'adapter d'une manière transparente le script associé à l'interface de chaque com-
posant.

Pour réellement diviser l'arbre DOM, nous avons besoin de projeter les fonctions
des n÷uds logiques sur le arbre DOM. La projection est facilitée par la correspondance
entre les n÷uds logiques d'un part et les n÷uds DOM de l'autre part. L'algorithme
de projection traverse l'arbre logique à partir des feuilles. Les éléments DOM associés
à des n÷uds logiques étiquetés avec une fonction `multimédia' (resp. `interactive')
appartiennent au composant maitre, (resp. au composant esclave). Les éléments
DOM dont les enfants directs correspondent à des noeuds logiques de di�érents de
fonctions sont partagés entre le maître et les composants esclaves. En conséquence
de cette projection, les éléments annotés sont rares dans l'arbre DOM. Nous décidons
alors les annotations des autres n÷uds sur la base des éléments annotés. Pour chaque
élément annoté, dénommé `centre', nous résolvons les annotations de ses descendants,
ses frères (à savoir sur des bases géométriques et structurelles) et ses parents, si possi-
ble. Les descendants du `centre' héritent leur fonction du parent, car ils appartiennent
au même bloc d'interface utilisateur. Pour un élément qui ne possède pas de fonc-
tion, l'algorithme itère chacun de ses frères et il véri�e d'abord si le frère chevauche
géométriquement un `centre'. Si c'est le cas, l'élément obtient la même fonction du
`centre'. Si non, il obtient par défaut la fonction du premier `centre' à sa gauche
dans l'arbre. Notez que si un élément n'a pas de frère comme `centre', l'algorithme se
déplace vers le haut dans l'arbre pour régler d'abord la fonction de l'élément parent.

Une fois que tous les enfants du `centre' obtiennent une fonction, le parent décide
de sa propre fonction et adopte la fonction de ses enfants si elle est unique. Si les

164

enfants ont di�érents fonctions, le parent est partagé entre le maître et l'esclave.

La deuxième étape est la production des documents HTML du maître et de
l'esclave. Pour produire l'interface principale, le système agit sur l'application princi-
pale et cache les éléments DOM `interactives'. Le maitre est alors une version modi�ée
de l'application principale, où seulement les blocs maîtres sont a�chés et où les élé-
ments cachés servent comme raccourcis chaque fois que la logique de l'application
principale nécessite la lecture ou la modi�cation des éléments du composant esclave.
Pour créer l'interface utilisateur de l'esclave, les éléments ayant une étiquette `interac-
tive' et ceux qui sont partagés dans l'application principale sont extraits et importés
au nouveau composant, l'esclave, assurant ainsi la création de l'application multi-
écran mais pas encore fonctionnel.

8.3.3.5 Résultats et Bilan

Applications Precision Rappel
Non-correspondance

Sur-

segmentation

Absence

de

relation

Social pages 0.6 0.7 0.2 0.08

Video player pages 0.73 0.81 0.05 0.11

Semantic Video Application 0.71 0.83 0.07 0.035

Table 8.2: Evaluation de l'approche de segmentation

Dans cette section, nous évaluons l'approche de segmentation en la comparant à
un Vérité Terrain (GT). La procédure d'évaluation est basée sur l'évaluation de deux
paramètres: la cohérence visuelle des blocs et la justesse de la fonction attribuée à
chaque bloc.

La Vérité Terrain a été créé manuellement, où des blocs cohérents étaient déter-
minés et a�ectés une fonction. Ensuite, nous avons comparé les résultats de notre
segmentation à ceux du GT et nous fournissons les résultats de la comparaison dans le
Tableau 8.2 sous forme de taux de précision et de rappel que nous dé�nissons comme
suit:

Precision =
Nb of Matching Blocks

Nb of Resulting Blocks
(8.1)

165

Rappel =
Nb of Matching Blocks

Nb of GT Blocks
(8.2)

Le Rappel est égal à un si l'algorithme de segmentation peut identi�er correcte-
ment tous les blocs de la GT. La précision est égale à un si notre segmentation n'a
pas produit un bloc `non-correspondant'. La colonne 'Non-correspondance' indique
le nombre moyen de blocs qui: 1) sont trop segmentés par l'algorithme de segmenta-
tion, i.e. quand un bloc dans le GT correspond à plusieurs blocs dans nos résultats,
2) ont aucune correspondance avec un bloc du GT ou s'ils ne sont pas correctement
étiquetés.

Dans notre cas, la sur-segmentation ne présente pas un problème tant que tous les
blocs résultants ont la même fonction. Seule la fonction du bloc a�ecte la distribution
de l'interface utilisateur graphique, à savoir le pourcentage des blocs "Absence de
relation" du tableau 8.2. En outre, cette catégorie couvre l'absence d'une fonction,
ce qui ne présente pas un problème dans notre travail, surtout si elle est liée à du
contenu qui ne soit ni multimédia, ni interactif.

En regardant le tableau 8.2, notre algorithme est fonctionnel puisque le pourcent-
age des blocs sans correspondance est entre 0.035 et 0.11, et la valeur de 0.11 pour
les pages de vidéo player correspond à des blocs pour lesquels aucune étiquette est
a�ectée.

Le tableau 8.2 montre également que les métriques calculées sont plus ou moins
cohérentes pour les trois ensembles d'applications indépendamment de la hauteur de
l'application ou du nombre des n÷uds de DOM. Le taux de précision est le plus bas
pour les applications sociales avec 0.61 par comparaison à celui du lecteur vidéo et à
l'application VidéoSémantique avec respectivement 0.73 et 0.71.

Les applications de la catégorie du Player vidéo sont simples et la plupart du temps
composées d'un élément vidéo, une barre de contrôle personnalisée et dans certains
cas, des sous-titres. Les résultats de leurs segmentations montrent des valeurs élevées
de Précision et de Rappel (0.73 et 0.81 respectivement). Ceci indique que l'algorithme
est capable de séparer la barre de contrôle de la vidéo elle-même.

Pour l'application VideoSémantique, le taux de précision est 0.71 indiquant que
la plupart des blocs du GT ont été identi�és par notre algorithme, même pour cette
application complexe.

166

8.3.4 Adaptation de l'agencement des applications au contenu

et aux appareils

La phase de Layout Refactoring adapte la mise en page de l'application multi-écran
au contenu de l'application et à l'appareil sans changer l'arbre DOM. La mise en
page de l'application pourra être assimilée à une grille. La mise en page détermine
la répartition spatiale du contenu de l'application et les dimensions du contenu d'une
page à l'aide des feuilles de style. Comme indiqué précédemment, travailler avec
l'arbre DOM est di�cile en particulier étant donné que pas tous ses n÷uds sont
visibles. Du fait, nous utilisons l'arbre logique qui contient des informations sur
l'ordre de la lecture du contenu. Cependant, l'arbre logique est pas assez proche de
l'arbre DOM, notamment les relations entre parents et enfants sont cassées et ces
relations doivent être préservées pour appliquer correctement les styles CSS.

Comme décrit dans BoM [46], la construction de l'arbre logique produit également
une structure intermédiaire appelée l'arbre géométrique, qui a une structure très
proche de l'arbre DOM. A�n de préserver l'ordre de lecture et les relations parentales,
nous utilisons les deux structures: arbres logiques et géométriques.

Cette phase consiste à déterminer la nouvelle con�guration pour chacun des com-
posants esclave et maître sous la forme de nouvelles feuilles de style CSS. Le com-
posant maitre est souvent composé d'un seul bloc. Dans ce cas, l'optimisation du
layout consiste simplement à étirer ce bloc, d'une manière similaire à la Full-Window
API résultant du travail de W3C. Cependant, il y a des cas où le maître est com-
posé de 2 blocs ou plus. Pour ces cas, nous avons développé un algorithme, appelé
Full-Window Design (FWD). Par souci de concision, nous limitons la description de
FWD à son objectif algorithme et ses principes comme suit. FWD vise à exploiter
les espaces disponibles sur le maitre sur la base de la disposition des blocs et de
leurs géométries. Ensuite, FWD repositionne ces blocs et les étire horizontalement et
verticalement pour recouvrir les espaces vides.

Le composant esclave passe par le re-design réactif (RWD) décrit comme suit.

8.3.4.1 Responsive Web Re-design

Avec notre algorithme RWD, nous ne ciblons pas un dispositif spéci�que mais nous
visons la conception d'une mise en page, qui dynamiquement identi�e la largeur de
l'écran du dispositif sur lequel l'esclave s'execute, et sélectionne la disposition cor-
respondante. Ceci est utile dans l'environnement multi-écran où les applications

167

peuvent se déplacer de manière transparente entre les dispositifs (par exemple, du-
rant la migration des services). Les dé�s sont de produire une mise en page qui est
(1) proche de la mise en page originale sur les grands et moyens appareils et qui (2)
évite le dé�lement horizontal sur les petits ou extra-petits appareils et cela(3) sans
casser l'ordre de lecture du contenu. Ces deux mise en page devraient également
(4) respecter le dimensionnement relatif entre tous les blocs (5) ainsi que leurs ratio
largeur/hauteur. En�n, suite à un changement de taille de la fenêtre, (6), la mise
en page devrait s'adapter dynamiquement. Le Responsive Web Design (RWD) est
la réponse à nos besoins (1), (2) et (6) puisqu'il utilise des 'Media Queries` pour dé-
tecter des changements et pour a�ecter di�érente mise en page pour chaque gamme
de largeurs de la fenêtre du dispositif. Finalement, il conçoit dynamiquement une
mise en page à la base d'un système de grille �exible.

Figure 8-3: Blocs de bases pour le responsive design sur le composant Esclave

Pour rendre l'esclave responsif, nous avons choisi la bibliothèque Twitter Boot-
strap [53] pour la conception des mises en pages responsives. En utilisant Bootstrap,
la largeur et la position d'un élément sont calculées par rapport à un élément con-
teneur (en pourcentage) tout en respectant le dimensionnement relatif (4) et les ratio
largeur/hauteur de chaque élément (5). En imitant le travail d'un développeur Boot-
strap, notre algorithme consiste en trois phases comme indiqué dans la Figure 8-3 et
comme suit: Identi�cation de grille, Con�guration de la mise en page et Application
de la mise en page sur l'arbre DOM. Plus de détails sont donnés ci-dessous.

Identi�cation de la grille Le problème d'identi�cation de grille consiste à iden-
ti�er une grille multi-niveaux qui respecte le modèle de grille de Bootstrap. Figure
8-4(a) représente un arbre DOM et Figure 8-4(b) montre l'arbre géométrique corre-
spondant. Cet arbre géométrique comporte deux niveaux: 3 éléments (à savoir, G21,
G22 et G23) au premier niveau et 6 éléments feuille dans le second. Comme nous
pouvons le voir, les niveaux de grille correspondent exactement aux niveaux de l'arbre
DOM. De même, la grille associée doit avoir deux niveaux. L'algorithme commence
à partir de la racine de l'arbre géométrique. Si la racine a des enfants, la racine est
alors considérée comme la tête d'une grille de premier niveau et ses enfants sont les

168

(a)

(b)

(c)

Figure 8-4: (a) Mise en page initiale de l'application (b) Arbre géométrique associé
(b) Identi�cation des séparateurs de la grille

169

éléments de cette grille. La tête de la grille correspond à l'élément géométrique re-
groupant l'ensemble des blocs d'une grille. Itérativement, la géométrie des enfants est
ensuite traitée pour véri�er l'alignement des enfants et cela dans le but d'identi�er les
séparateurs horizontaux et verticaux et de situer tous les enfants dans la grille. Une
cellule contient au plus un élément du même niveau de hiérarchie. Il pourrait y avoir
quelques cellules vides. Dans notre exemple, le premier niveau se compose d'une seule
grille (Grid1) qui contient trois cellules (G21, G22 et G23) séparées horizontalement
et G1 est considéré comme la tête de la grille. L'algorithme itère sur les sous-arbres
des n÷uds enfants jusqu'à ce qu'il atteigne les feuilles pour former une grille à N
niveaux où N est le nombre de niveaux hiérarchique dans l'arbre géométrique. Par
exemple, G21 (resp. G22, G23) a deux descendants dans l'arbre géométrique, donc
elle forme une grille de second niveau (resp. Grid2, Grid3, Grid4) contenant deux
cellules.

Con�guration et application de la mise en page Similaire à Bootstrap, au
cours de la phase de conception nous faisons abstraction de la valeur réelle de la largeur
de l'écran puisque nous ciblons une gamme de tailles d'écran. Nous supposons que
chaque grille, à tout niveau hiérarchique, consiste en une seule ligne et sa largeur
totale est décomposée en M colonnes e�ectives ayant des largeurs égaux. Cette phase
d'abstraction à laquelle nous référons comme la normalisation, exprime la largeur du
bloc et sa position par rapport aux dimensions de la tête de la grille. Ainsi, une
modi�cation de la largeur/position de la tête déclenche un changement similaire à ses
descendants. Le point clé ici est d'exprimer les dimensions des cellules de la grille en
termes de nombre de colonnes e�ectives comme expliqué ci-dessous.

Pour les dispositifs à grands écrans L'algorithme commence à traiter la pre-
mière grille et ensuite itère sur les sous-grilles. A noter qu'une sous-grille fait référence
à une grille de niveau L où L est un nombre entier se référant au niveau de la hiérar-
chie. Une étape cruciale ici est de déterminer pour chaque grille ou sous-grille la
largeur totale (en px) que les blocs peuvent couvrir, nous l'appelons la largeur de
référence. La largeur de référence pour le premier niveau de la grille est la largeur
de la fenêtre, tandis que la largeur de référence pour une grille de niveau L est la
largeur de sa tête. Pour chaque grille de niveau L, l'algorithme itère sur ses cellules
et calcule, en termes de nombre de colonnes e�ectives: 1) sa largeur par rapport à la
largeur référence, 2) son o�set gauche (dé�ni par rapport à la distance qui le sépare du
bloc se trouvant à sa gauche). Les valeurs calculées sont immédiatement appliquées
à l'élément DOM correspondant à chaque élément géométrique. L'algorithme passe

170

itérativement à la grille de niveau (L + 1) et se poursuit jusqu'à ce qu'il atteint la
grille niveau N.

Pour les petits dispositifs La même logique est appliquée pour con�gurer la mise
en page en une seule colonne pour les petits dispositifs. La largeur de référence de la
grille au niveau de la première grille est la largeur de la fenêtre du dispositif. Nous
considérons que, dans n'importe quel grille de niveau L, toutes les cellules ont une
largeur égale à la largeur de la tête, à savoir, M Colonnes e�ectives. En outre, nous
éliminons l'o�set-gauche pour éliminer les espaces vides, étant donné que la taille de
la fenêtre pour petit appareil est très petite).

8.3.4.2 Evaluation de l'Algorithme RWD

Pour l'algorithme RWD, l'évaluation de la présentation est limitée à tester la présence
et la quantité du dé�lement horizontal (HS) sur les petits appareils. Le principe
consiste à comparer les dimensions des éléments géométriques à la dimension de la
fenêtre. Notre objectif est d'identi�er le nombre d'éléments géométriques qui sont à
l'origine du dé�lement horizontal en suivant la règle suivante.

Table 8.3: Dé�lement horizontal sur les applications esclave avant et après RWD

Applications Block causant du dé�lement Etendue du dé�lement
Avant RWD Après RWD Avant RWD Après RWD

Video-semantic 107 0 394 0

Vimeopro 64 0 348 0

Twitch 268 20 381 97

Liveleak 308 0 360 0

Ustream 14 0 38 0

Break 1157 2 408 283

Un élément géométrique provoque du dé�lement horizontal si l'un de ses abscisses,
à savoir, la position gauche et la position droite, est en dehors de la fenêtre du
dispositif. Nous dé�nissons la quantité de HS comme la distance moyenne entre la
fenêtre du navigateur et les blocs provoquant le dé�lement horizontal.

Tableau 8.3 indique le nombre de blocs provoquant HS ainsi que la quantité de HS
calculé avant et après l'application de notre algorithme. Ce tableau montre qu'avant
d'appliquer notre algorithme, toutes les applications esclaves provoquaient HS sur

171

le petit dispositif. La quantité minimale de HS avant d'appliquer notre algorithme
est de 38 px et elle correspond à la page Ustream non-RWD qui comporte 14 blocs
responsables du dé�lement. La quantité de HS pour les autres applications non-
RWD varie entre 348 px et 408 px. Relativement à la largeur de notre petit appareil
(à savoir, 412px), ces valeurs sont grandes. Après l'application de notre algorithme,
le HS a été complètement éliminé pour VideoSemantique, VimeoPro, Liveleak et
Ustream. En revanche, la quantité de HS était réduite de 381 px à 97 px (à savoir,
75% de réduction) pour Twitch et de 408 px à 283 px pour Break (à savoir, 30% de
réduction). Tableau 8.3 montre également que notre algorithme a éliminé le HS de
92% des blocs de Twitch, et il a éliminé le HS de 99% des blocs de Break.

8.3.5 Distribution de l'état des applications et synchronisation

Figure 8-5: Les caractéristiques des composant maitre et esclave

La solution de la distribution que nous avons proposé consiste à adapter chaque
composant à l'environnement multi-écrans et à fournir un composant esclave sans
logique. Les événements survenus coté esclave doivent être redirigés vers le composant
maître et les événements coté maître (événements liés à la vidéo) doivent être renvoyés
à l'esclave une fois détectés. Les dé�s principaux sont à capturer et à caractériser
continuellement ces changements dynamiques et de les envoyer, si nécessaire, vers le
composant correspondant sans a�ecter la performance globale de l'application.

172

8.3.5.1 Adaptation de l'application multi-écran pour la distribution de

l'État

Chacun des composants maître et esclave est enrichi par quatre caractéristiques, à
savoir, DOM/UI Monitoring, Modi�cation Noti�er, UI Manager et DOM Changes
Integrator, comme représenté sur la Figure 8-5.

DOM Monitoring écoute et capture les changements qui se produisent sur l'arbre
DOM du maître et les transmet ensuite aux DOM Changes Noti�er qui est respons-
able de la caractérisation du changement. UIManager agit comme une passerelle pour
assurer la communication entre les deux composants. Coté maître, UIManager véri�e
si le changement concerne l'esclave et il l'envoie si c'est le cas. Nous appelons cela
`Redirection de contenu'. Une fois reçue par le UIManager de l'esclave, le change-
ment est envoyé directement aux DOM Changes Integrator qui est responsable de
l'intégration de ces changements dans l'arbre DOM.

Coté esclave, UI Monitoring écoute les interactions de l'utilisateur. Sur une inter-
action, l'interaction est envoyé aux Changes Noti�er, puis au UIManager qui redirige
le changement vers le UIManager du maître. Nous appelons cela `Redirection de
requête'. Une fois reçu du côté du maître, UIManager détermine si le changement
contient des entrées de l'utilisateur et les envoie au DOM Changes Integrator. Dans
le cas contraire, si le changement demande l'exécution d'une certaine logique, alors
UIManager déclenche cette logique.

8.3.5.2 Répartition de l'Etat pendant l'exécution

La distribution de l'État est une phase d'exécution qui est basée sur une technique
de mise en miroir. Durant la phase de la distribution de interface utilisateur, certains
contenus sont doublés entre le maître et l'esclave. La technique de mise en miroir
assure en permanence que l'esclave a un arbre DOM qui est un miroir exact de
l'arbre DOM caché sur le maître et elle assure que les interactions de l'utilisateur sur
l'application esclave sont transmises au maître.

Sur le maître, tout changement dynamique a�ectant les éléments de l'esclave, par
exemple, modi�cation, suppression ou création des n÷uds, est d'abord capturé et
analysé. Ensuite, les modi�cations sont envoyées au composant esclave par le biais
des messages de changement. Sur la réception d'un message, l'esclave met à jour son
arbre DOM et intègre ce changement. Coté esclave, nous devons rediriger les entrées
de l'utilisateur et ses requêtes vers le maître où la logique d'application réside. Pour

173

cela, l'esclave écoute les interactions des utilisateurs et envoie les entrées utilisateur
au maître.

8.3.5.3 Expérimentation et Résultats

Pour tester les performances lors du runtime, nous avons déployé notre système dans le
navigateur Chrome d'un PC que nous considérons comme un dispositif maître. Nous
utilisons un autre PC comme dispositif esclave. Les deux appareils sont connectés au
réseau LAN e ils communiquent à travers la plate-forme de COLTRAM.

Nous lançons l'application VideoSemantic sur le dispositif maître et laissons notre
système distribuer l'application entre les composants maître et esclave. Par con-
séquence, le maître contient uniquement l'élément vidéo avec les sous-titres, qui
occupent la fenêtre complète. L'esclave contient le reste des éléments, notamment
l'en-tête, le pied de page, les sections Wikipédia et Googlemap, etc.

Résultats durant le runtime Nous avons lançé la vidéo sur le maître et nous
avons inspecté le nombre et le type des mises-à-jour dans l'arbre DOM qui ont été
redirigés vers l'esclave. Et puis, nous avons mesuré les délais de retard qui ont été
ajoutés par notre système, y compris ceux en relation avec le plate-forme multi-écran
pour véri�er si notre système maintient la fonctionnalité globale de l'application.

Les résultats de l'inspection sont les suivantes: 27 mises à jour ont été reçues pour
enlever des éléments DOM de l'arbre DOM de l'esclave. 1001 mises à jour ont été
reçues pour ajouter ou déplacer un élément DOM. 555 mises à jour ont été reçues
pour modi�er, ajouter ou supprimer un attribut HTML. La communication de ces
mises-à-jour par le maître à l'esclave exige 293 messages. Chaque message contient
en moyenne 5 mises à jour.

Nous avons ensuite mesuré le délai global de notre système. Nous avons évalué
le RTT en relation avec la plate-forme COLTRAM et avec la couche physique, en
envoyant des messages de ping ne contenant que des valeurs de temps. 6000 messages
ping ont été échangés entre le maître et l'esclave. RTT varie entre 6 ms et 41 ms, en
moyenne 8 ms entre deux machines connectées via Ethernet et en utilisant un service
Bonjour. Ainsi, la communication unidirectionnelle induit un délai qui varie entre 3
ms et 21 ms, en moyenne 4 ms.

Ensuite, nous avons lancé l'application videoSemantic 10 fois pour calculer le
retard global du système sur les 295 * 10 messages de changement reçus sur l'esclave.

174

Le retard global du système varie entre 5 ms et 34 ms, en moyenne 11 ms. L'écart-
type calculé est de 4.8. 65% des messages produisent un retard inférieur à 11 ms et
95% ne dépassent pas le délai de 20 ms. Ayant le retard global du système et le
retard unidirectionnel, le délai de traitement relié seulement à la surveillance des
changements de l'arbre DOM sur le maître et à l'intégration des changements sur
l'esclave varie entre 2 ms et 13 ms. En se basant sur les travaux de Miller [37], un
délai inférieur à 100 ms n'est pas perceptible par l'÷il humain. Le retard du système
global, y compris la communication, même à sa valeur maximale, ne dépasse pas les
34 ms. Ainsi, notre système assure une synchronisation satisfaisante aux utilisateurs.

Complexité du système et Bilan Les di�érents parties du système fonctionnent
sur trois di�érentes arbre: arbre DOM, arbre géométrique et l'arbre logique. L'arbre
géométrique qui est une structure intermédiaire entre arbre DOM et arbre logique.
Dans notre dataset, en moyenne, un arbre géométrique contient 73% du nombre de
n÷uds DOM et 94% du nombre de niveaux hiérarchiques dans l'arbre DOM. Un arbre
logique contient seulement 14% du nombre de n÷uds DOM et 43,5% du nombre
de niveaux hiérarchiques. Le processus de simpli�cation diminue la complexité du
traitement de certains des parties du système.

Notre système nécessite 5 traversées de l'arbre DOM, 2 traversées de l'arbre
géométrique et 4 traversées de l'arbre logique pour produire les composants maître
et esclave. Toutes ces traversées ont une complexité de calcul de O(n). Au cours de
l'exécution, une fois le maître et l'esclave commencent à communiquer les changements
(distribution de l'État), Mutation-Observer traverse l'arbre DOM une seule fois pour
identi�er les changements dans l'arbre DOM. La Mutation-Summary ne parcourt pas
l'arbre DOM, mais seulement elle analyse les records du Mutation-Observer. La di-
vision et la distribution du contenu durant le runtime nécessitent une analyse locale
des n÷uds autour d'un nouveau noeud (parent, n÷uds voisins). L'algorithme de dis-
tribution de l'État, avec une complexité en O(n), ne pénalise pas la fonctionnalité de
l'application multi-écran pendant l'exécution. Cette analyse est validée dans la sec-
tion précédente, où le retard du système varie entre 2 ms et 13 ms et notre système
est aperçu comme instantanée.

175

8.4 Conclusion

Dans cette thèse, nous avons abordé la réutilisation des applications Web vidéo-
centrique pour la création automatique d'applications distribuées dans le contexte
des applications multi-écran.

La littérature sur ce sujet se concentre sur la conception d'un modèle d'application,
sur la création d'une plate-forme adaptée aux exigences de l'application et sur son
fonctionnement après la distribution. Mais les ÷uvres de la littérature ne sont pas
concluantes sur la distribution de contenu, étant donné que dans la plupart des cas,
une distribution manuelle est adoptée. Une autre lacune a été identi�ée et elle est
liée à l'adaptation de la mise en page après la distribution. Cette thèse a cherché à
couvrir ces deux lacunes.

Le travail a été e�ectué comme suit:

� La conception d'un modèle pour les applications distribuées

� La caractérisation et l'exploitation de l'environnement multi-écran pour la dis-
tribution de l'interface utilisateur

� L'adaptation de l'application distribuée à l'environnement multi-écran, y com-
pris à la multitude de dispositifs et de la plate-forme multi-écran

� Le développement et l'évaluation du système de refactoring qui intègre les trois
points ci-dessus.

Parmi les résultats, nous avons montré que les applications mono-écrans peuvent
être réutilisées pour créer des applications multi-écrans fonctionnelles. Les points
clés sont: la division du contenu de l'application et la conception d'un modèle pour
les applications multi-écrans, tout en optimisant les dommages sur les documents de
l'application.

En ce qui concerne le premier point ci-dessus, nous avons montré que notre ap-
proche de segmentation hybride non seulement identi�e des blocs cohérents, mais elle
sépare également le contenu interactif du contenu multimédia. Ainsi, elle permet la
distribution du meilleur contenu sur le meilleur périphérique.

Dans ce travail, la distribution a été limitée à l'arbre DOM tout en gardant la
logique de l'application sur un côté de l'application distribuée. En conséquence, il
en résulte un modèle particulier pour les applications multi-écran constitués d'un

176

composant maître et un composant esclave correspondant. Ces composants sont en
mesure d'exécuter deux opérations cross-device: la redirection et la synchronisation,
en utilisant une technique de contrôle pour l'arbre DOM seulement. Les résultats
montrent que la surveillance de l'arbre DOM était su�sante pour assurer la distribu-
tion de l'état et la cohérence de l'état spécialement que pas d'incohérence visuelle a
été signalé lors de nos tests.

Après la distribution du contenu, nous avons également couvert l'adaptation dy-
namique de la mise en page des composants maitre et esclave pour résoudre deux
principales anomalies dans la mise en page: les espaces vides et le dé�lement hor-
izontal. Pour éliminer les espaces vides du composant maitre, nous avons négligé
la structure de l'arbre DOM et nous avons imposé un nouveau design calculé par
rapport aux dimensions de la fenêtre. Pour éliminer le dé�lement horizontal du com-
posant esclave, la structure DOM était obligatoirement respectée. L'évaluation de
ces deux algorithmes, après la quanti�cation de chacune des anomalies, a révélé: (1)
l'absence d'espaces vides sur les composants de base, (2) l'absence ou la réduction du
dé�lement horizontal sur les composants esclaves. Tous les deux algorithmes sont rela-
tivement basiques mais résolvent les problèmes de mise en page créés par notre modèle
d'application ou par la nature dynamique de l'environnement multi-écran. Les deux
algorithmes sont ouverts à des améliorations. Les résultats obtenus après l'évaluation
de la performance globale du système, indiquent que notre système est réaliste avec
un retard maximum de 34 ms, en moyenne 11 ms sur Ethernet, lors de l'execution.
Ce retard qui est petit comparé au 100 ms dé�ni par Miller [37] montre que le temps
de réponse de notre système est su�sant pour conserver l'interactivité. En outre, le
système est compatible avec tous les environnements testés pour le développement
d'applications web. Ceci contribue à élargir son application à la plupart des applica-
tions web.

Plusieurs questions importantes n'ont pas été étudiées au cours de cette thèse en
raison des objectifs précis de la thèse dans le domaine de Document Engineering. Ces
questions comprennent:

� L'extension du système à d'autres langages basés sur XML et di�érents de
HTML, comme SMIL et NCL. Cela nécessite l'étude de la nature et le type de
ces applications pour véri�er 1) s'il existe un moyen d'analyser chaque élément
a�n de déterminer sa fonction et ses paramètres géométriques, et 2) s'il y a
une interface de programmation d'exécution qui permet l'interfaçage du code
de surveillance du contenu.

177

� L'extension de l'exploitation de l'environnement a�n d'inclure non seulement les
caractéristiques de l'appareil, mais aussi les préférences de l'utilisateur. Cela
nécessite la réalisation d'une étude utilisateur pour enquêter sur les préférences
de l'utilisateur dans des multiples scénarios.

� Une étude de faisabilité pourra être menée pour évaluer qualitativement 1) la
refonte de la mise en page de chacun du composant maître et esclave, et 2) les
résultats de la distribution de contenu par notre système.

178

List of Publications

Journal papers

[J.1] Mira Sarkis, Cyril Concolato, and Jean-Claude Dufourd, A multiscreen Refac-

toring System for Video-centric Web Applications, Multimedia Tools and Ap-
plications. MTAP, Submitted in April 2016, Revised submission in August.

Conference papers

[C.1] Mira Sarkis, Cyril Concolato, and Jean-Claude Dufourd. 2014. The virtual

splitter: refactoring web applications for themultiscreen environment. In Pro-
ceedings of the 2014 ACM symposium on Document engineering (DocEng '14).
ACM, New York, NY, USA, 139-142. DOI=http://dx.doi.org/10.1145/2644866.2644893

[C.2] Mira Sarkis, Cyril Concolato, and Jean-Claude Dufourd. 2015. MSoS: A Multi-

Screen-Oriented Web Page Segmentation Approach. In Proceedings of the 2015
ACM Symposium on Document Engineering (DocEng '15). ACM, New York,
NY, USA, 85-88. DOI=http://dx.doi.org/10.1145/2682571.2797090

179

Bibliography

[1] W3C recommendation (2010) mobile web application best practices. http://

www.w3.org/TR/css3-mediaqueries/.

[2] J. Allard, V. Chinta, S. Gundala, and G. G. Richard III. Jini meets upnp: An
architecture for jini/upnp interoperability. In Proceedings of the 2003 Symposium
on Applications and the Internet, SAINT '03, pages 268�, Washington, DC, USA,
2003. IEEE Computer Society.

[3] Sriram Karthik Badam and Niklas Elmqvist. Polychrome: A cross-device frame-
work for collaborative web visualization. In Proceedings of the Ninth ACM In-

ternational Conference on Interactive Tabletops and Surfaces, ITS '14, pages
109�118, New York, NY, USA, 2014. ACM.

[4] L Bassbouss, M Tritschler, S Steglich, K Tanaka, and Y Miyazaki. Towards a
multi-screen application model for the web. In IEEE 37th Annual Computer

Software and Applications Conference Workshops, pages 528�533, Japan, July
2013.

[5] Federico Bellucci, Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. Engi-
neering javascript state persistence of web applications migrating across multiple
devices. In Proceedings of the 3rd ACM SIGCHI Symposium on Engineering In-

teractive Computing Systems, EICS '11, pages 105�110, New York, NY, USA,
2011. ACM.

[6] Regina Bernhaupt, Marianna Obrist, Astrid Weiss, Elke Beck, and Manfred
Tscheligi. Trends in the living room and beyond: Results from ethnographic
studies using creative and playful probing. Comput. Entertain., 6(1):5:1�5:23,
May 2008.

[7] Martí Bosch, Pierre Genevès, and Nabil Layaïida. Automated refactoring for
size reduction of css style sheets. In Proceedings of the 2014 ACM Symposium on

181

http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/

Document Engineering, DocEng '14, pages 13�16, New York, NY, USA, 2014.
ACM.

[8] D Cai, S Yu, JR Wen, and WY Ma. Vips: A vision-based page segmentation
algorithm. Technical report, Microsoft, MSR-TR-2003-79, 2003.

[9] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content
structure for web pages based on visual representation. In Proceedings of the 5th

Asia-Paci�c Web Conference on Web Technologies and Applications, APWeb'03,
pages 406�417, Berlin, Heidelberg, 2003. Springer-Verlag.

[10] Pablo Cesar and Konstantinos Chorianopoulos. The evolution of tv systems,
content, and users toward interactivity. Foundations and Trends in Human Com-

puter Interaction, 2(4):279�373, 2009.

[11] Soumen Chakrabarti. Integrating the document object model with hyperlinks
for enhanced topic distillation and information extraction. In Proceedings of the

10th International Conference on World Wide Web, WWW '01, pages 211�220,
New York, NY, USA, 2001. ACM.

[12] J Chen, B Zhou, J Shi, H Zhang, and Q Fengwu. Function-based object model
towards website adaptation. In Proceedings of the 10th International Conference

on World Wide Web, WWW '01, pages 587�596, New York, NY, USA, 2001.
ACM.

[13] B Cheng. Virtual browser for enabling multi-device web applications. In Pro-

ceedings of the Workshop on Multi-device App Middleware, Montreal, Quebec,
December 2012.

[14] Zlatko �ovi¢, Miodrag Ivkovi¢, and Biljana Radulovi¢. Mobile detection algo-
rithm in mobile device detection and content adaptation. Acta Polytechnica

Hungarica, 9(2):95�113, 2012.

[15] N Elmqvst. Distributed user interfaces: State of the art. In ACM Press (2011),

DUI, pages 7�11, 2011.

[16] P Faraday. Visually critiquing web pages. In Multimedia 99, pages 155�166.
Springer, 2000.

[17] B Frain. Responsive web design with HTML5 and CSS3. Packt Publishing Ltd,
2012.

182

[18] A Garrard. Multi-display desktops and the case for more pixels. In J. Chen,
W. Cranton, and M. Fihn, editors, Handbook of Visual Display Technology, pages
2571�2579. Springer Berlin Heidelberg, 2012.

[19] J Gentle. Sharejs - live concurrent editing in your app, 2012. http://sharejs.
org/.

[20] G Ghiani, J Polet, V Antila, and J Mäntyjärvi. Evaluating context-aware user in-
terface migration in multi-device environments. Journal of Ambient Intelligence
and Humanized Computing, 6(2):259�277, 2013.

[21] Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro. On-demand cross-device
interface components migration. In Proceedings of the 12th International Con-

ference on Human Computer Interaction with Mobile Devices and Services, Mo-
bileHCI '10, pages 299�308, New York, NY, USA, 2010. ACM.

[22] GitHub. Coltram: Collaborative transmedia services for home networks. ac-
cessed:06 April 2014. [Online].Available:http://github.com/COLTRAM.

[23] Google. The multi-screen world study. https://www.thinkwithgoogle.com/

research-studies/the-new-multi-screen-world-study.html.

[24] S Gupta, G Kaiser, D Neistadtand, and P Grimm. Dom-based content extraction
of html documents. In Proceedings of the 12th International Conference on World

Wide Web, WWW '03, pages 207�214, New York, NY, 2003. ACM.

[25] R Han, V Perret, and M Naghshineh. Websplitter: A unifed xml framework
for multi-device collaborative web browsing. In Proceedings of the 2000 ACM

Conference on Computer Supported Cooperative Work, pages 221�230, USA, De-
cember 2000.

[26] B Hartmann, M Beaudouin-Lafon, and WE Mackay. Hydrascope: Creating
multi-surface meta-applications through view synchronization and input multi-
plexing. In Proceedings of the 2Nd ACM International Symposium on Pervasive

Displays, PerDis '13, pages 43�48, New York, NY, USA, 2013. ACM.

[27] M Heinrich, FJ Grüneberger, T Springer, and M Gaedke. Exploiting annotations
for the rapid development of collaborative web applications. In Proceedings of the
22nd international conference on World Wide Web, pages 551�560. International
World Wide Web Conferences Steering Committee, 2013.

183

http://sharejs.org/
http://sharejs.org/
http://github.com/COLTRAM
https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.html
https://www.thinkwithgoogle.com/research-studies/the-new-multi-screen-world-study.html

[28] Jer Lang Hong, Eu-Gene Siew, and Simon Egerton. Information extraction for
search engines using fast heuristic techniques. Data and Knowledge Engineering,
69(2):169�196, 2010.

[29] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the html
dom and browser api in static analysis of javascript web applications. In Proceed-

ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ESEC/FSE '11, pages 59�69, New York,
NY, USA, 2011. ACM.

[30] C Kohlschütter and W Nejdl. A densitometric approach to web page segmenta-
tion. In Proceedings of the 17th ACM conference on Information and knowledge

management, pages 1173�1182. ACM, 2008.

[31] BS Lerner, H Venter, and D Grossman. Supporting dynamic, third-party code
customizations in javascript using aspects. SIGPLAN Not., 45(10):361�376, Oc-
tober 2010.

[32] Can Liu, Olivier Chapuis, Michel Beaudouin-Lafon, Eric Lecolinet, and
Wendy E. Mackay. E�ects of display size and navigation type on a classi�cation
task. In Proceedings of the 32Nd Annual ACM Conference on Human Factors

in Computing Systems, CHI '14, pages 4147�4156, New York, NY, USA, 2014.
ACM.

[33] James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. Imagen: Runtime mi-
gration of browser sessions for javascript web applications. In Proceedings of the

22Nd International Conference on World Wide Web, WWW '13, pages 815�826,
New York, NY, USA, 2013. ACM.

[34] Jianli Luo, Jie Shen, and Cuihua Xie. Segmenting the web document with doc-
ument object model. In Services Computing, 2004. (SCC 2004). Proceedings.

2004 IEEE International Conference on, pages 449�452, Sept 2004.

[35] Sergio Ma�eis, John C. Mitchell, and Ankur Taly. An operational semantics
for javascript. In Proceedings of the 6th Asian Symposium on Programming

Languages and Systems, APLAS '08, pages 307�325, Berlin, Heidelberg, 2008.
Springer-Verlag.

[36] Jérémie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter Van Roy.
A toolkit for peer-to-peer distributed user interfaces: Concepts, implementation,

184

and applications. In Proceedings of the 1st ACM SIGCHI Symposium on Engi-

neering Interactive Computing Systems, EICS '09, pages 69�78, New York, NY,
USA, 2009. ACM.

[37] Robert B. Miller. Response time in man-computer conversational transactions.
In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,

Part I, AFIPS '68 (Fall, part I), pages 267�277, New York, NY, USA, 1968.
ACM.

[38] Mozilla. Semantic video with popcorn.js, 2011. accessed 22 May 2014. [Online]
. Available:http://popcornjs.org/demo/semantic-video.

[39] M Nebeling, F Matulic, and M Norrie. Metrics for the evaluation of news site
content layout in large-screen contexts. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI '11, pages 1511�1520. ACM,
2011.

[40] M Nebeling, M Speicher, and M Norrie. Crowdadapt: Enabling crowdsourced
web page adaptation for individual viewing conditions and preferences. In Pro-

ceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Com-

puting Systems, EICS '13, pages 23�32, New York, NY, USA, 2013. ACM.

[41] C. K. Nguyen, L. Likforman-Sulem, J. C. Moissinac, C. Faure, and J. Lardon.
Web document analysis based on visual segmentation and page rendering. In
Document Analysis Systems (DAS), 2012 10th IAPR International Workshop,
pages 354�358, March 2012.

[42] D Pelli, N Majaj, N Raizman, C Christian, E Kim, and M Palomares. Grouping
in object recognition: The role of a gestalt law in letter identi�cation. Cognitive
Neuropsychology, 26(1):36�49, 2009.

[43] A Pnueli, R Bergman, S Schein, and O Barkol. Web page layout via visual
segmentation. HP Laboratories, 2009.

[44] Dennis Quan, David Huynh, David R. Karger, and Robert Miller. User interface
continuations. In Proceedings of the 16th Annual ACM Symposium on User

Interface Software and Technology, UIST '03, pages 145�148, New York, NY,
USA, 2003. ACM.

[45] M. R. Rahman and S. Akhter. Real time bi-directional tra�c management sup-
port system with gps and websocket. In Computer and Information Technology;

185

http://popcornjs.org/demo/semantic-video

Ubiquitous Computing and Communications; Dependable, Autonomic and Se-

cure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PI-

COM), 2015 IEEE International Conference on, pages 959�964, Oct 2015.

[46] A Sanoja and S Gançarski. Block-o-matic: A web page segmentation framework.
InMultimedia Computing and Systems (ICMCS), 2014 International Conference

on, pages 595�600. IEEE, 2014.

[47] M Sarkis, C Concolato, and JC Dufourd. The virtual splitter: Refactoring web
applications for the multiscreen environment. In Proceedings of the 2014 ACM

Symposium on Document Engineering, DocEng '14, pages 139�142. ACM, 2014.

[48] M Sarkis, C Concolato, and JC Dufourd. Msos: A multi-screen-oriented web
page segmentation approach. In Proceedings of the 2015 ACM Symposium on

Document Engineering, DocEng '15, pages 85�88. ACM, 2015.

[49] W Seok. A framework proposal of ux evaluation of the contents consistency
on multi screens. In Constantine Stephanidis, editor, HCI International 2015

- Posters Extended Abstracts, volume 528 of Communications in Computer and

Information Science, pages 69�73. Springer International Publishing, 2015.

[50] Ruihua Song, Haifeng Liu, Ji-Rong Wen, and Wei-Ying Ma. Learning block
importance models for web pages. In Proceedings of the 13th International Con-

ference on World Wide Web, WWW04, pages 203�211, New York, NY, USA,
2004. ACM.

[51] C Sun, S Xia, D Sun, D Chen, H Shen, and W Cai. Transparent adaptation
of single-user applications for multi-user real-time collaboration. ACM Trans.

Comput.-Hum. Interact., 13(4):531�582, December 2006.

[52] P Tarasewich. An investigation into web site design complexity and usability
metrics. Quarterly Journal of Electronic Commerce, 2008. Northeastern Univer-
sity.

[53] Twitter. Bootstrap framework for responsive web design. twitter.github.com/
bootstrap.

[54] S Vadrevu, F Gelgi, and H Davulcu. Semantic partitioning of web pages. In Web

Information Systems Engineering�WISE 2005, pages 107�118. Springer, 2005.

[55] C. N. Ververidis and G. C. Polyzos. Service discovery for mobile ad hoc networks:
a survey of issues and techniques. IEEE Communications Surveys Tutorials,
10(3):30�45, Third 2008.

186

twitter.github.com/bootstrap
twitter.github.com/bootstrap

[56] R Weinstein, A Klein, M Kearney, E Delgado, A Komorosko, E Bidelman, and
P Irish. Mutation-summary, 2013. accessed 21 February 2014. [Online]. Available:
http://code.google.com/p/mutation-summary/.

[57] J Yang and D Wigdor. Panelrama: Enabling easy speci�cation of cross-device
web applications. In Proceedings of the 32Nd Annual ACM Conference on Human

Factors in Computing Systems, CHI '14, pages 2783�2792, New York, NY, USA,
2014. ACM.

[58] Yudong Yang and HongJiang Zhang. Html page analysis based on visual cues.
In Document Analysis and Recognition, 2001. Proceedings. Sixth International

Conference on, pages 859�864, 2001.

[59] Dongsong Zhang. Web content adaptation for mobile handheld devices. Com-

mun. ACM, 50(2):75�79, February 2007.

[60] M Zorrilla, N Borch, F Daoust, A Erk, J Flórez, and A Lafuente. A web-
based distributed architecture for multi-device adaptation in media applications.
Personal and Ubiquitous Computing, 19(5-6):803�820, 2015.

[61] M Zorrilla, I Tamayo, A Martin, and A Dominguez. User interface adapta-
tion for multi-device web-based media applications. In Broadband Multimedia

Systems and Broadcasting (BMSB), 2015 IEEE International Symposium, pages
1�7, June 2015.

[62] Zurb. Foundation framework for responsive web design. http://foundation.

zurb.com/.

187

http://code.google.com/p/mutation-summary/
http://foundation.zurb.com/
http://foundation.zurb.com/

	Introduction
	The multi-screen application context and challenges
	Thesis motivations and challenges
	Thesis context
	Thesis objectives
	Thesis contributions
	Organization of the dissertation

	State of the art
	Technologies and protocols in multi-screen platforms
	Web Services
	Service Discovery Systems in multi-device platforms
	UPnP
	Bonjour

	The COLTRAM platform

	Frameworks for MSA creation
	Exploiting the environment
	Standards for device description
	Processing the environment features

	Web application analysis methods
	Adaptive web applications and Responsive Web Design
	Adaptive Design Features
	What to adapt?
	How does the adaptation take place?
	How to adapt the layout?

	Adaptive Design Strategies
	Frameworks for Responsive Web Design

	State persistence for multi-screen
	Conclusion

	Overview of the Refactoring System
	System Global Description and Architecture
	System Features

	System Input and Dataset Characterization
	The content-device duality
	Multi-Screen Application model
	Splitting the HTML document
	HTML/JavaScript links
	To Split or Not To Split the JavaScript
	Scenario 1: To Split the JavaScript
	Scenario 2: Not To Split the JavaScript

	Summary and Our MSA application model

	Conclusion

	Creating Multi-screen Applications
	Screen-Region Selection Method
	Principles
	Method limitations

	DOM-based Division Method
	Principles
	Limitations

	The hybrid segmentation method
	Principles, challenges and overview
	DOM tree simplification and labeling
	Segmentation: Processing the simplified tree

	User Interface distribution: The DOM Distribution
	Annotation Projection from logical tree to DOM tree
	DOM Annotation Resolution
	Creating the master and the slave components

	Summary
	Segmentation Evaluation
	Efficiency of the simplification method
	Qualitative evaluation: Comparing to BoM
	Quantitative Evaluation: Comparison to a ground truth
	Creating the ground truth and our metrics
	Results and interpretation

	Conclusion

	Layout Refactoring
	Effects of content distribution on the application layout
	Layout Discontinuity
	Invalid content re-arrangement
	Horizontal scrolling
	Summary

	Overview of Layout Re-factoring
	Layout resetting principles
	Layout re-design principles

	Master Adaptation: Full-Window Design for large devices
	Overview
	 Blank-Space Identification based solely on geometrical features
	Block re-dimensioning and re-positioning
	Dynamic generation of style sheets
	Full-Window Design Evaluation
	Quantifying the blank space problem and the resulting metrics
	Applying these metrics on our dataset

	Slave Adaptation: Responsive Web Layout Re-Design
	The responsive web design as the solution to our problem
	Identification of the spatial distribution while respecting the DOM structure
	RWD layout configuration
	General Layout configuration
	Layout configuration for large devices
	Layout configuration for small devices

	Applying grid system rules on the DOM tree
	Evaluation of the RWD algorithm
	Quantifying the horizontal scrolling problem and the resulting metrics
	Setup and Results

	Conclusion

	Run-time Support and State Distribution
	Introduction
	Logic Distribution
	Synchronization
	Handling the addition of dynamic elements
	Integration to the runtime environment

	Synchronization Implementation
	State Distribution Evaluation
	Characterizing the dynamicity of the Video Semantic application
	Runtime analysis of the state distribution of the Multi-screen video semantic application
	DOM updates
	Communication and System Delays

	Proof-of-concept: Extending the Refactoring System
	Extending the application model to three components
	Extended UI Division
	Extended UI Distribution
	Extended State Synchronization
	Validation of the VideoSemantic application

	Conclusion

	Conclusion and perspectives
	Summary
	Synthesis
	Perspectives

	Resume en francais
	Introduction
	Etat de l'art
	Contribution: Système de refactoring
	Introduction globale du système
	Decouverte et Caractérisation de l'environnement
	Division et distribution du contenu
	Introduction
	 Simplification de l'arbre DOM et l'étiquetage
	 Segmentation: Traitement de l'arbre simplifié
	 UI distribution
	Résultats et Bilan

	Adaptation de l'agencement des applications au contenu et aux appareils
	Responsive Web Re-design
	Identification de la grille
	 Configuration et application de la mise en page
	 Pour les dispositifs à grands écrans
	Pour les petits dispositifs

	Evaluation de l'Algorithme RWD

	Distribution de l'état des applications et synchronisation
	Adaptation de l'application multi-écran pour la distribution de l'État
	Répartition de l'Etat pendant l'exécution
	Expérimentation et Résultats
	Résultats durant le runtime
	Complexité du système et Bilan

	Conclusion

	List of Publications
	Bibliography

