
�>���G �A�/�, �i�2�H�@�y�R�9�e�k�3�R�e

�?�i�i�T�b�,�f�f�?���H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�R�9�e�k�3�R�e

�a�m�#�K�B�i�i�2�/ �Q�M �3 �6�2�# �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�S�`�Q�;�`���K�K���#�H�2 �a�v�M�i�?�2�b�B�b �Q�7 �1�H�2�K�2�M�i �h�2�t�i�m�`�2�b ���M�/
���T�T�H�B�+���i�B�Q�M �i�Q �*���`�i�Q�;�`���T�?�v

�>�m�;�Q �G�Q�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�>�m�;�Q �G�Q�B�X �S�`�Q�;�`���K�K���#�H�2 �a�v�M�i�?�2�b�B�b �Q�7 �1�H�2�K�2�M�i �h�2�t�i�m�`�2�b ���M�/ ���T�T�H�B�+���i�B�Q�M �i�Q �*���`�i�Q�;�`���T�?�v�X �:�`���T�?�B�+�b
�(�+�b�X�:�_�)�X �l�M�B�p�2�`�b�B�i�û �/�2 �:�`�2�M�Q�#�H�2�- �k�y�R�8�X �1�M�;�H�B�b�?�X �I�i�2�H�@�y�R�9�e�k�3�R�e�=

https://hal.archives-ouvertes.fr/tel-01462816
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques-Informatique

Arrêté ministériel : todo

Présentée par

Hugo LOI

Thèse dirigée par Joëlle THOLLOT, Thomas HURTUT et Romain
VERGNE

préparée au sein du Laboratoire Jean Kuntzmann (LJK)
et de l'École doctorale EDMSTII

Programmable Synthesis of Ele-
ment Textures and Application to
Cartography

Thèse soutenue publiquement le 16 octobre 2015 ,
devant le jury composé de :

Craig S. KAPLAN
Associate Professor, University of Waterloo, Rapporteur
Sylvain LEFEBVRE
Research Associate, Inria Nancy, Rapporteur
Cyrille DAMEZ
Software Engineer, Allegorithmic SAS, Examinateur
Sidonie CHRISTOPHE
Research Associate, French National Mapping Agency (IGN-France),
Examinateur
Joëlle THOLLOT
Professor, Grenoble Université, Directeur de thèse
Thomas HURTUT
Assistant Professor, Polytechnique Montréal, Directeur de thèse
Romain VERGNE
Assistant Professor, Grenoble Université, Directeur de thèse
Marie-Paule CANI
Professor,Grenoble Université, Présidente

ABSTRACT

This thesis introduces a programmable method to design 2D arrangements forelement tex-
tures: Textures made of small geometric elements. These textures are ubiquitous in numerous
applications of computer-aided illustration. Our approach targets technical artists who will de-
sign an arrangement by writing a script. Such scripts are based on three types of operators
dedicated to the fast creation of stationary arrangements:Partitioningoperators for de�ning the
broad-scale organization of the arrangement,mappingoperators for controlling the local orga-
nization of elements, andmergingoperators for mixing different arrangements. We show that
this simple set of operators is suf�cient to reach a much broader variety of arrangements than
previous methods. Editing the script leads to predictable changes in the synthesized arrange-
ment, which allows an easy iterative design of complex structures. Finally, our operator set
is extensible and can be adapted to application-dependent needs. In particular, we introduce
an additional contribution to this main framework: We present a method that demonstrates in-
teractive performances at synthesizing (in�nite) regular and semi-regular arrangements using
the Tiled Planar Map, a novel data structure that contains few yet suf�cient information for
representing these arrangements. Finally, we show how to extend our system for designing
spatially-varying textures using control �elds. In particular, we present a practical application
to cartography in which we collaborated with the French National Mapping Agency (IGN-
France) to automatically synthesize hatchings in rocky mountain areas of topographic maps.

ACKNOWLEDGEMENTS

Hi there. I have no idea what this section will look like when it is �nished, since I am
working on it the exact opposite way than what you're supposed to do for scienti�c documents:
write a draft, submit it to a few colleagues, add a bullet list of new ideas to insert, write again,
revise, resubmit, back and forth until the thing is considered perfect. Actually I got twenty
minutes before my laptop battery runs out, before which I have to summarize four years of a
fun and ful�lling life. So my updated strategy is writing once, hitting “save” and upload. The
result is not going to be perfect. In the case you opened this document to �gure out if you are
cited or not in my acknowledgements, you will just have to endure it. This is known as the
“captive audience principle”. If you want to look up for your name using your digital reader
then proceed at your own risk: it may be misspelled or replaced by an embarrassing metaphor.
Now let's start.

The �rst to go is Quentin Doussot, a guy I knew from my previous life. At the time I was
shy and stubborn so having a welcoming, friendly hand to shake every morning saved me in
the �rst months. This man walked in socks around the lab, which was very comforting.

Then comes Laurent Belcour which taught me the power of words: a simple question asked
about some Fourier stuff and he went right into an afternoon-long religion war with Eric, who
comes later. You got to know which topic is sensitive for whom: Fourier is de�nitely sensitive
for Laurent.

I never knew where Fabrice Neyret came from. Maybe he was a mountain hermit who
someday got trapped inside Inria and never found the exit door. Since then he lurks in the lab
corridors, watering dry students with generous loads of his knowledge. Make sure to sleep a
good night before you go and ask for advice, otherwise you won't remember everything.

Once upon a time, Jeremy Jaussaud said something brief which made several people hap-
pier on the long run. Cool superpower he got there. Apparently he likes doing game jams as
well, which is nice - I never got to check that out though.

A lot of people made Inria a great place in the daylight, a few of them were still there to
keep it great overnight. In particular, Eric Heitz, Benoit Zupancic and Alban Fichet deserve
special thanks for making this half of my life shine like sunlight. Cokes, milk, “that other
SOB”, Micko Black and zeu Lounge will remember you for eternity.

5

6

Also I address special thanks to Zeno Loi that helped me make whiteboards alive over one
magic night, which was sort of a real-life Ib.

To keep it to the serious side, this PhD would never have been �nished and would never
have bene�ted from such inspiration on day only. I wish to thank FranÃ§ois Sillon and Nicolas
Holzschuch for understanding this side of Science and letting Inria live at night, just like all
other high-class international computer science labs.

A guy named Leo Allemand-Giorgis saved my back several times, along with another guy
named Pierre-Luc Manteaux. Without them a short animated movie named “Dessins de Mome”
would have been let un�nished. Instead it was a mediocre piece of art born out of an amazing
adventure. I am glad we did it.

On the topic of watching animated movies rather than drawing them, a good one is Paprika.
Check it out or ask Armelle Bauer if you don't have the DVD. She has pretty good other ones
too.

I feel like Pierre Benard should be somewhere in here. In the end I just know him as a cool
guy just like all the other Animarians (hey there), but he also happened to write my favorite
computer graphics paper. That's pretty cool to me.

On the same line, I would like to thank Szymon Rusinkiewicz for his software RTSC.
Indeed it was a lot of fun to procrastinate playing with RTSC. That participated heavily to
awaken curiosity in me, which I still use to enjoy stuff I did not expect to work on.

I dreamt working for Disney since I was a kid. Wojciech Jarosz allowed me to do that,
which is incredibly lucky I must say. I remember how shaky I was on the �rst skype interview.
Just after that I went and work with Adam Finkelstein in Princeton, which sounded like a double
achievement to me. In the end it turned out that these two places were amazing, true paradises
for research. My conclusion was that I wanted to start my company rather than continuing
research. Looks like �nding what you need requires iterations, apparently.

What truly made me happy and allowed me to perform accomplishing work were the people
I met there; in particular Antoine Milliez, who is nothing less than a never-depleted source of
enthusiasm. Someone �nd a way to distribute Antoine energy in cans; we'll be done with war
and depression.

Benoit Arbelot, I am talking to you. We are big boys now, we shall �nish this Justine DLC
soon.

Cyril Soler, thanks for this memorable latex gloves party.
Guillaume Loubet, keep this ability to wrap up trolls and emotions in a few piano chords.
Working with the French National Mapping Agency was a great experience, in particular

with Sidonie Christophe and Mathieu Bredif. These weeks of diving in the cartography world
have been great also thanks to Jean-Sebastien Vinals, who is to be thanked for many other
reasons. But since this is a set of citations rather than an exhaustive wrap-up, people will not
know the extent of how Jean-Sebastien prepared me to even start this very PhD.

Around the thesis world, are also to thank Pop, Moune and Wawan. These enigmatic cha-
racters are true legends to me. As well is to thank Agathe, who suddenly appeared and made
my days ten times better. I guess this document bene�ted from her presence as much as my
work.

You were not cited so far? You will probably not be cited in the last two paragraphs even
though you probably have very good reasons to be in here. The twenty minutes are about to
run out. I still love you. It's ok.

Finally, Romain Vergne, Thomas Hurtut and Joelle Thollot were great adventure mates,
in�exible teachers and enlightening supervisors. Believe it or not: Not all researchers are good
mentors. Based on a relatively large study among the PhD students I met during the past four

7

years, it turns out that I was quite lucky to go with these three. Hey, maybe every single PhD
student thinks the same. That would be awesome!

Finally �nally, the guy who encouraged me into doing a PhD is none other than my father.
“Try it, you'll see this is amazing!”. I was not as enthusiastic. I tried. I'm happy I did. Cheers!

TABLE OF CONTENTS

Table of Contents 9

1 Introduction 13
1.1 Element Textures . 13
1.2 A Bill of Speci�cations for Computer-Aided Arrangement Design Tools 15
1.3 Our Approach . 15

2 Related Work 19
2.1 Example-Based Element Texture Synthesis 19
2.2 Prede�ned Layouts . 20
2.3 Procedural Modeling . 20

3 Programmable Design of Stationary Arrangements 23
3.1 Overview . 23
3.2 Data structure . 24
3.3 Partitioning Operators . 25
3.4 Mappers . 27

3.4.1 Mapper De�nition . 28
3.4.2 Programming Mappers . 29
3.4.3 Using Mappers . 29

3.5 Merging Operators . 31
3.6 Results and Validation . 33

3.6.1 Results . 33
3.6.2 User Study . 40

3.7 Operator List . 43

4 Tiled Planar Maps for Interactive Design of Regular and Semi-Regular Arrange-
ments 45
4.1 The Tiled Planar Map . 47
4.2 Operators on Tiled Planar Maps . 47

9

10

4.2.1 TPM Partitions . 47
4.2.2 TPM Mappers . 48
4.2.3 TPM Combiners . 49
4.2.4 Ghost Mapping . 51
4.2.5 Conversion to Planar Maps . 52

4.3 Results and Validation . 52

5 Application to Cartography 55
5.1 Introduction . 55
5.2 Related Work . 57

5.2.1 Artistic Mountains Maps . 57
5.2.2 Computational Depiction of Rocky Areas 58
5.2.3 Spatially-Varying Element Textures in Computer Graphics 58

5.3 Programmable Design of Spatially-Varying Arrangements 59
5.3.1 Control Fields . 59
5.3.2 Controled (Higher-Order) Mappers 60

5.4 Cartographic Data . 60
5.5 Design Iterations . 61

6 Discussion 65
6.1 Limitations . 65
6.2 User Interface . 66
6.3 Towards a Complete Programmable Illustration Pipeline 67

7 Conclusion 71

A Example Python Scripts 73

B Example Scripts using Tiled Planar Maps 119

C User Study Tutorial 125

D User Study Results 137

E Python Scripts for Cartographic Design 171

References 179

12

CHAPTER

1

INTRODUCTION

This PhD thesis introduces a programmable model that helps to designelement textures:
Patterns made of small geometric elements. These textures are ubiquitous in a number of artistic
contents such as 3D scenes, comic books and technical illustrations: Figure 1.1 shows examples
of 3D models exhibiting element textures and Figure 1.2 shows examples of element textures
used in illustrations.

FIGURE 1.1 –Element textures on 3D models.Numerous natural and manufactured entities
exhibit patterns made of small geometric elements, also called element textures. When ma-
king artistic representations of these objects, such textures have to be produced by a designer.
The arrangements of elements in each texture were designed and generated using the tool we
present in this manuscript. (image courtesy from Guillaume Loubet)

1.1 ELEMENT TEXTURES

From the artist perspective, the wordtexturerefers to a repetitive pattern aimed at covering
a surface. Various kinds of assets fall in this category, including wallpapers, materials on 3D
surfaces and illustration patterns such as in topographic maps or Computer-Assisted Design

13

14 CHAPTER 1. INTRODUCTION

tools. Textures carry a lot of the feeling artists want to express about the look of each surface.
Therefore they also make a large part of the experience for people watching animated movies,
artworks or technical illustrations.

Artists often produce textures manually, which implies a major pain point: workload. Art
in general is well-known for asking quantities of workload, but textures hold a particular re-
ponsibility for that: it is much longuer to draw a pattern all over a surface than just sketching a
contour. This task is also repetitive: once the artists decided how they want to draw the texture,
then they have to apply their idea consistently all over the surface. If they change their mind
then they have to start over again.

Repetitive tasks are good candidates for computer assistance. During the two past decades,
texture design has received much attention from research and software industry. Today,
many solutions attempt to help artists designing large textures without drawing everything
by themselves. Among these proposals, techniques for combining pixel noises, color maps
and other operators as nodes of a graph have been widely accepted. Allegorithmic's software
Substance proved the need for such computer-assisted tools and is now used in 80 percent of
major game development studios1.

However, many textures are not combinations of pixel noises. These textures still require
lots of workload to design and to produce. We observe that a signi�cant amount of these
time-consuming textures are composed of separate geometric elements: textures representing
separate objects such as leaves, bricks, cables, textures containing recognizable geometric
features such as cracks, medium-driven textures such as pen-and-ink hatchings, and �nally
textures representing precise semantics such as terrain types in cartography or materials in
Computer-Assisted Design. In this manuscript we will refer to these aselement textures. Ele-
ment textures are mandatory to depict important information such as materials in architectural
plans, fabric in clothes, terrain type in topographic maps, biological materials in medical
illustrations, etc. Producing element textures is therefore needed for many illustration systems
and application �elds, such as 2D animation, cartography, and other computer-assisted design
tasks like pattern creation for textile or wallpaper industry.

We believe that there are only a few steps towards a complete computer-aided tool for
designing element textures. Let's review all the steps involved in the production of an element
texture: creating geometric elements, arranging them together, choosing style attributes for each
element and �nally rendering the elements regarding the chosen style. Actually, almost all the
steps of their production are handled by existing industrial or academic software. Elements
themselves can be drawn manually with softwares such as Inkscape or Adobe Illustrator. They
can also be generated with computer-assisted techniques [BA06, HL12, CK14]. Stylization
and rendering geometrical data can be performed in Illustrator as well, or with more advanced
research work [Her02, EWHS08, GTDS10, DiV13]. In this work we address the remaining
problem of spatiallyarranging existing elements so as to �ll a given region. The design of such
arrangements is a key component of element textures design in that it describes the geometric
content of the texture. By �nding a relevant computer-aided way to arrange elements, we hope
that a �rst version of a complete work�ow will be feasible. The ideal goal is to lighten the
repetitive tasks of professional artists in various domains, which would widen the room allowed
to inventiveness: everyone is more likely to iterate over several trials when they can more easily

1. www.allegorithmic.com

1.2. A BILL OF SPECIFICATIONS FOR COMPUTER-AIDED ARRANGEMENT DESIGN
TOOLS 15

implement each idea. Another desired consequence is to allow more casual artists to step into
texture design and let everyone enjoy their creative inputs.

1.2 A BILL OF SPECIFICATIONS FOR COMPUTER -A IDED

ARRANGEMENT DESIGN TOOLS

A computer-aided design tool for the production of arrangements should meet several re-
quirements which we formalize in the following targeted properties:

— Predictability. Iterations between clients and technical artists involve numerous edits
of the produced arrangements, which is feasible only through a controllable synthesis
engine with predictable results.

— Expressiveness. The design tool must be expressive enough to allow the creation of
classic layouts used by technical artists (see Figure 1.2 for an overview). When looking
at manually drawn patterns, we observe that artists use regular and non-regular ele-
ments distributions and control elements' adjacency such as contact or overlap. Com-
plex arrangements are obtained by composing multiple distributions, the composition
rule being generally a non-overlap superposition of these distributions. Some arrange-
ments are also structured into clusters of elements and can be thought of as being based
on multi-scale arrangements.

— Usability. Experienced users should be able to quickly and easily design or edit arran-
gements. A canonical and intuitive set of operations should also be provided to ensure
a steep learning curve of the design tool.

— Extensibility. Some speci�c projects might need arrangements that cannot be initially
produced by the design tool, despite its native expressiveness. It must then provide a
way to add new components for synthesizing these arrangements, while still guaran-
teeing the above properties.

Textures are speci�c since they are repetitive, enforcing their perception as a whole [TG80].
In practice this characteristic can be formalized as the result of astationaryprocess, meaning
that the spatial statistics of an arrangement should not depend on its spatial location. In this
manuscript, we will �rst consider textures under this property of stationarity (Chapters 3,4).
Afterwards we will addressspatially-varying textureswhich are locally repetitive while follo-
wing low-frequency variations over space.

1.3 OUR APPROACH

In this work we propose a programming-based method where each arrangement is
represented by a user-written script. Programmable approaches have been proven useful for
many designing tasks in computer graphics, including shading [Coo84], modeling [MWH� 06],
stylized rendering of 3D scenes [GTDS10, EWHS08] and motion effects [SSBG10]. As in
these works, we target artists having programming abilities such as technical directors. In
Chapter 3 we present the �rst programmable design tool dedicated to the creation of stationary
arrangements while satisfying the four properties de�ned above.

To build this programmable method, we de�ne a set of predictable operators that allow
to produce a wide variety of arrangements while ensuring their stationarity. For that we take
inspiration from programmable raster texture design such as in Allegorithmic's Substance. In
these methods, the design process (1) starts with an initialization such as Perlin's noise, (2)

16 CHAPTER 1. INTRODUCTION

involves a number of �lters such as color mapping, and (3) uses combining operations such
as blending to mix multiple textures. Instead of a pixel grid, we store our arrangements in
planar maps[BG89], a high-level structure that stores adjacency and geometric information.
Then, similarly to raster texture, we introduce three types of operations for the design process:
(1) the planar map is initialized with stationary partitions such as a grid; (2) instead of �lters,
local geometric transformations are next applied to re�ne the partitions; (3) merging operators
�nally allow multiple arrangements to be combined into complex ones.

These three categories of operators are suf�cient to achieve expressiveness, while creating
a modeling scheme where stationarity is guaranteed at all stages. The synthesis is controlled
step-by-step, which allows to edit the script with predictable effects. Finally, this method can
easily be extended by adding new operators as long as they satisfy the conditions that preserve
stationarity.

We envision this design model as being extended towards a more interactive tool. On top
of our core contribution, in Chapter 4 we present a method that synthesizes in�nite regular and
semi-regular arrangements at interactive rates. We introduceTiled Planar Maps, a new data
structure that contains few yet suf�cient information for representing these arrangements.

Finally in Chapter 5 we show how to extend our system for creating spatially-varying tex-
tures by controlling the designed arrangements with user-provided control �elds. From this
extension, we present a practical application to cartography made in collaboration with the
French National Mapping Agency (IGN-France): In this application, we designed and synthe-
sized automatically hatchings that represent rocky mountain areas in topographic maps.

a e

� f

c �

d h

FIGURE 1.2 – Element textures commonly used.Distributions with (a) contact, (b) overlap
and (c) no adjacency between elements. (d) Overlap of two textures creating cross hatching.
(e) Non overlapping combination of two textures. (f,g,h) Complex element textures with clus-
ters of elements. For each example, we show a hand-drawn image (left), and our synthesized
reproduction of its geometric arrangement (right). — Image credit: these textures can be found
in professional art (d,g,h) [Gup97], casual art (a,e,f) [profusionart.blogspot.com ,
hayesartclasses.blogspot.com], technical productions such as Computer-Assisted
Design illustration tools (c) [www.compugraphx.com], and textile industry (b)
[www.123stitch.com].

18 CHAPTER 1. INTRODUCTION

CHAPTER

2

RELATED WORK

We focus our study on object-based texture representations, such as vector graphics repre-
sentations, rather than their raster counterpart. Indeed, even if some ef�cient methods have been
devised in the context of raster textures design [EMP� 02], pixel-based textures lose geometric
and connectivity information of the elements at stake, preventing further stylization or editing.
In the context of object-based texture representation, existing computer-aided solutions for ele-
ment placement fall into two main categories: example-based approaches which have seen a
recent increased interest, and layout-based solutions usually proposed in commercial software.
After reviewing these two classes of approaches that allow to produce stationary arrangements,
we will review other procedural modeling approaches that are more expressive or predictable
but lose stationarity.

2.1 EXAMPLE -BASED ELEMENT TEXTURE SYNTHESIS

Most methods in the literature of element textures synthesis are dedicated to example-based
approaches. They propose an artist-friendly interface where a small user-drawn exemplar is
analyzed and synthesized over a larger domain. These approaches produce stationary arran-
gements and are easy to use for casual users. However they have a limited use in industrial
contexts due to their lack of predictability and expressiveness.

Predictability. Describing the texture through a single exemplar brings an ambiguity bet-
ween desired invariants (such as “all elements must touch each other at their ends”) and va-
riable properties (such as “elements can have random orientations”). Furthermore, small modi-
�cations in the exemplar may produce large unpredictable changes in the output. Besides, the
exemplar needs to be stationary. So any modi�cation has to be spread all over the exemplar
meaning that the user has to rearrange the entire exemplar at each design iteration.

Expressiveness. None of the existing example-based methods succeeds to cover all classic
layouts presented in Figure 1.2. We tested four recent methods [IMIM08, HLT� 09, MWT11,

19

20 CHAPTER 2. RELATED WORK

LGH13] and we observed limitations controlling contact or overlap (Figure 2.1(a)), regularities
such as alignments (Figures 2.1(b) and 2.1(c)) and multi-level arrangements (Figure 2.1(d)).
These limitations come from two fundamental issues. First,approximate representationslimit
the types of elements and adjacencies that can be handled. For example, a centroidal element
model [IMIM08] is not adapted to strongly anisotropic elements. The perceptually-based ap-
proach of [BBT� 06] is also limited to the synthesis of simple strokes and irregular patterns.
Similarly, bounding boxes [HLT� 09] or sampling [MWT11, XCW14] reduce control on ad-
jacency (Figure 2.1(a)). The proxy geometries introduced in [LGH13] help to control more
precisely elements adjacency. However, it does not solve overlapping cases due to an inac-
curate similarity measure of overlapping relations. Second, the lack ofhigh-level information
makes it hard to detect geometrical constraints at variable scales such as alignments and clus-
ters. It has been done for speci�c applications, like in [YBY� 13] for arrangements of tiles, but
we are looking for a more general approach.

2.2 PREDEFINED L AYOUTS

Vector graphics software such as Adobe Illustrator or Inkscape propose prede�ned layouts
to arrange user-drawn elements. The most common example of such layouts is the grid.
With the same approach, recent online tools1 propose methods for tiling small user-drawn
arrangements. More complex stand-alone algorithms can synthesize uniform distributions ef�-
ciently [HHD03, LD05]. All these methods produce stationary results and are straightforward
to use for obtaining a single particular layout. Their effect is predictable but their expressi-
veness is limited to a single kind of arrangement and they are usually not easily extendable.
Typically Figure 2.1(d) would be hard to do with such approaches because it mixes regular and
random distributions.

2.3 PROCEDURAL M ODELING

In this section, we present several inspiring procedural methods, coming from �elds other
than texture synthesis. We share some properties with these approaches, but none of them
is well suited to element texture production because they have not been designed to ensure
stationary outputs.

Historically, L-Systems [Lin68] were used early in computer graphics to model plants
[PL96]. Being originally dedicated to the generation of one-dimensional patterns, they can-
not enforce a stationarity property in a two-dimensional domain. This is also the case for their
extensions: parametric, timed and open L-Systems.

Shape grammars are another renowned procedural modeling approach [SGSG71,
WWSR03, MWH� 06]. Like more general context-dependent growth systems [WZS98,
MM12], they use an axiom that is either a single element or the domain boundary. User-
programmed growth rules must handle the propagation (or the subdivision) into the entire
domain. Consequently, users would have to make a careful, non-intuitive use of each rule to
obtain stationary arrangements.

Other arrangement transformations have been studied such as parquet deformations
[Kap10] and Escher construction operators [Hen02]. These models are speci�c to their res-
pective application �elds, which limits their expressiveness. However they are similar to our

1. www.colourlovers.com/seamless

2.3. PROCEDURAL MODELING 21

approach in the sense that they locally apply geometric transformations to an initial partition.
Our approach targets general stationary arrangements.

22 CHAPTER 2. RELATED WORK

FIGURE 2.1 – Example-based methods' limitations.Input exemplars are shown on the left.
Synthesized results from previous methods [IMIM08, HLT� 09, MWT11, LGH13] are shown on
the four right columns.(a) A bimodal hatching, explicitly cited as one of the last limitations in
[HLT � 09]. While each interior hatch drawn in the exemplar crosses exactly three other hatches,
no method preserves this property. In the case of the Expectation-Maximization algorithm of
[MWT11], possibly unwanted overlaps created during the patch-based initialization tend to be
corrected during the optimization step thanks to the deformations handled. However, desired
overlaps are still not ensured.(b,c) Regular structures with respect to three and one axis of
alignment. The growing Delaunay-based approach of [IMIM08] achieves to reproduce these
regularities in some ways. Yet the heuristics used to preserve the local graph structure also
tend to create some gaps. Dense packing is challenging for Monte-Carlo statistical approaches
such as [HLT� 09, LGH13]. Indeed, although running108 iterations, the (b) example outputs
for these two methods still have some density variations.(d) A simple case of element clusters
that no method succeeds to reproduce faithfully.

CHAPTER

3

PROGRAMMABLE DESIGN OF
STATIONARY ARRANGEMENTS

3.1 OVERVIEW

In a programmable approach, the task of the user is to build the algorithm that will
produce his envisioned result. For that we provide the user with three types of operators,
each of them responsible of a speci�c task: partitioning operators initialize an arrangement,
mapping operators re�ne it and merging operators create combinations of arrangements. All
of these operators have to guarantee the stationarity of the resulting arrangement. The texton
theory [Jul81] states that the appearance of an arrangement emerges from the broad-scale
organization of micro-patterns called “local texture elements”. Therefore stationarity occurs
at broad-scale whereas local texture elements do not need to be constrained. Following this
theory each type of operator will guarantee stationarity at its own scale:

— Partitioning operators. The design of an arrangement starts with a stationary partition.
It ensures stationarity at broad-scale while letting the user choose between a regular or
non-regular global arrangement structure.

— Mappers. The initial partition is locally re�ned using mappers. Mappers are user-
programmed functors and control both local geometry and adjacency, for instance by
placing an imported element and transforming it depending on its neighbors. A mapper
is always applied everywhere on the arrangement via amapping operator. Whereas no
speci�c property has to be satis�ed by elements, this is the locality and the homoge-
neous application of the mapper all over the arrangement that will ensure stationarity.
Note that mappers can also call a partitioning operator in order to create a subscale
arrangement. This can be useful to create texture elements made of stationary arrange-
ments (see for instance the subscale stripe arrangements in Figure 1.2(g)).

— Merging operators. Finally, complex arrangements are sometimes more easily designed
when seen as the merge of simple arrangements such as the overlap of two textures.

23

24 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

Merging operatorsprovide such mechanisms by performing overlap, inclusion and ex-
clusion operations. They do not change the stationarity of their input arrangements.

Functional programming. Our approach is entirely functional. We de�ne an arrangement
as a function that takes as input a region and returns a collection of curves. All our operators,
regardless of their category (partitioning, mapping, merging), output an arrangement. On the
input side, partitioning operators take in a region whereas merging operators take in two ar-
rangements to be combined. Mapping operators take in both a mapper and an arrangement to
be mapped. We use Python as the programming user interface, its syntax being simple and
intuitive to most programmers and well designed for functional programming.

Overview example. Figure 3.1 gives an example of the synthesis of a two-scale arrange-
ment. Three mappers are �rst designed in this script. The �rst two ones map an SVG element
on a face (L.9) and an edge (L.19). The last one creates a regular partition (L.29) and calls the
second mapper (L.32) to map a curve on each of its edges. Once these mappers are de�ned, a
uniform partition is created (L.37). A blob shape is mapped on each of its faces using the �rst
mapper (L.40). The third mapper then maps a regular arrangement on the resulting faces which
are now blobs (L.43). Induced edges and faces are exported respectively as open and closed
SVG polylines (L.46).

3.2 DATA STRUCTURE

We represent our arrangements of geometric elements as a collection of curves embedded
into a planar map: a topological modeling tool introduced in [BG89] for representing drawings.
This structure contains vertices (intersection points), edges (pieces of curves linking vertices)
and faces (2D domains enclosed by edges). Spatial adjacency between these three types of cells
can be easily handled, providing an easy access to precise topological relations between them
such as intersections, contacts, and inclusions.

De�nition . The planar map induced from a collection of curvesCis de�ned as a set of cells
partitioning the plane (Figure 3.2). Cells are of three types: edges, vertices and faces. Edges
are the set of maximal pairwise disjoint subcurves ofC. Vertices are the set of limit end points
of edges. Faces are the set of maximal parts ofR2 � C. An incidence graph completes the
representation allowing access to all types of adjacencies in the planar map.

Cell labels. On top of the planar map, we add a set of labels to each cell. They will typically
be used to select a subset of cells when needed and are set by the user at the initialization step.

Face labels reconstruction.When modifying or combining planar maps, labelling has
to be conserved. We adopt the same solution as [ASP07]. Since planar maps are induced by
curves, labels should be stored only on curves. Faces labels are thus stored on their adjacent
edges and reconstructed each time a new planar map is induced.

Implementation. Practically, in our implementation, planar maps are based on the CGAL
arrangement structure [FHW12] and use exact arithmetic and geometry with rational coordi-
nates to avoid any topological artifacts due to numerical imprecision.

3.3. PARTITIONING OPERATORS 25

1 de f overv iew () :
2 s i z e = 2000
3 b lob = ImportSVG (" d a t a / b lob . svg ")
4 z i g = ImportSVG (" d a t a / z i g . svg ")
5

6 # Mapper : P laces a b lob i n a f a c e .
7 de f map_blob_to (f a c e) :
8 new_blob = R o t a t e (blob , Random (face ,0 ,2� p i , 0))
9 r e t u r n MatchPo in t (new_blob , BBoxCenter (

new_blob) , C e n t r o i d (f a c e))
10

11 # Mapper : Rep laces an edge by a curved l i n e .
12 de f map_curve_to (edge) :
13 i f I sBoundary (edge) :
14 r e t u r n ToCurve (edge)
15 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
17 s r c_v = Loca t i on (SourceVer tex (edge))
18 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
19 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c , s rc_v ,

ds t_v)
20

21 # Mapper : Genera tes an ar rangement i n a f a c e .
22 de f map_ar rangement_ to (f a c e) :
23

24 # Grid p a r t i t i o n w i t h randomized o r i e n t a t i o n s
25 t h e t a = Random (face ,0 ,2� p i , 1)
26 wid th = BBoxWidth (f a c e) / 5
27 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
28 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i / 2 , w id th

)
29 i n i t = Gr i dPa r t i t i on (l i n e s 1 , l i n e s 2 ,

CROP_ADD_BOUNDARY)
30

31 # Mapping o p e r a t o r : maps a curve on each edge
32 ar rangemen t =MapToEdges(map_curve_to , i n i t)
33 r e t u r n a r rangemen t (f a c e)
34

35 # I n i t : Uni form p a r t i t i o n
36 props = I r r e g u l a r P r o p e r t i e s (1 0 / (s i z e� s i z e))
37 i n i t _ t e x = Un i fo rmPar t i t i on (props , KEEP_OUTSIDE)
38

39 # Mapping o p e r a t o r : maps a b lob i n each f a c e
40 b l o b _ t e x = MapToFaces(map_blob_to , i n i t _ t e x)
41

42 # Mapping o p e r a t o r : maps an ar rangement i n each
f a c e

43 f i n a l _ t e x = MapToFaces(map_arrangement_to ,
b l o b _ t e x)

44

45 # Expor t f i n a l a r rangement
46 ExportSVG (f i n a l _ t e x , s i z e)

FIGURE 3.1 –An example of a script and its output. Left:A script based on two imported
SVG elements (a blob-like shape and a small stroke) and three user-de�ned local mappers
to control local features.Right: The output is a two-scale arrangement. We show here two
imported elements, followed by the two intermediary results and the �nal output. The square
window represents the �lled output region: Transparent lines are shown for clarity, yet they are
not in the actual arrangement.

3.3 PARTITIONING OPERATORS

The �rst step in the design of an arrangement is to choose a partition to de�ne its global
structure. Such partitions must be stationary and should hold a regular or non-regular global

26 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

FIGURE 3.2 – Planar map representation. Left:Three oriented curves.Middle: Induced
planar map composed of nine vertices, nine edges and two faces. The facef 0 is unbounded.
Edges are oriented accordingly to their originating curves. For example,e1's source vertex
is v2 and its target vertex isv3. Right: The incidence graph of the planar map denotes the
relationships between vertices, edges and faces. We did not include arcs between vertices and
faces for clarity, they can be deduced by transitivity.

structure. These partitions will be extensively re�ned by de�ning local transformations using
mappers, as presented in Section 3.4. If required, more operators could be easily added to
adapt to speci�c needs. Our goal in this section is therefore to provide operators that ensure
a stationary partition, simple enough to begin the design, but subsequently �exible enough to
allow all possible re�nements.

We propose four partitioning operators that allow to design regular and non-regular parti-
tions of the input region. These operators, in addition to a few others that let specify partition
labels and properties, are recalled in the Table 3.2 of the appendix.

Regular partitions. The “StripesPartition” operator partitions the domain with a distribu-
tion of parallel lines. This operator is de�ned with the stripe angle and the width between two
successive lines. Optionally, the user may de�ne a cycle of widths that will be repeated perio-
dically until all lines are placed. For instance in Figure 3.3(a) the top image shows a cycle with
two alternating width values (20 units and 10 units), while the bottom image uses only one
width value (15 units). These parameters are set by the "StripesProperties" function that takes
a variable number of arguments. Labels might also be associated to faces and/or edges using
the same cycle process. In that case, all partition's faces/edges are labelled by successively
picking the corresponding value in the label list (Figure 3.3(a)). “GridPartition” partitions the
domain with two distributions of parallel lines and is thus obtained by specifying two stripes
partitions. Note that when faces are labelled for both stripes, each single face receives a total of
two labels. For instance in the top image of Figure 3.3(b), the green color denotes the presence
of both labels “yellow” and “blue”.

Non-regular partitions. “UniformPartition” and “RandomPartition” operators are compu-
ted using Voronoi diagrams, respectively based on Poisson-Disk and Poisson distributions. In
both cases, the user needs to specify a density value that de�nes the number of samples per unit
area via the "IrregularProperties" function. Labels might also be attached to faces and edges
of these partitions. In that case, the user de�nes a list of probabilities used to randomly assign
labels to faces and/or edges (Figure 3.3(c,d)).

3.4. MAPPERS 27

(a) Stripes (b) Grid (c) Uniform (d) Random

FIGURE 3.3 – Available types of partition.When designing an arrangement, the �rst step is
to choose a type of partition among four possible ones, whether it is a regular (a,b) or a non-
regular partition (c,d). Colors denote assigned labels to faces (top) or edges (bottom). We vary
the width between lines of regular partitions using periodic cycles of values. The same process
is used to assign labels. The density of irregular partitions is controlled by a single parameter.
Labels may also randomly be assigned according to user-de�ned probabilities. Faces and edges
may contain multiple (cycling) labels to precisely control the �nal arrangement.

When partitioning a face, the user may want various behaviors at its boundary. We provide
four border management options that cover all the cases we encountered (Figure 3.4). The
CROP option cuts the partition at the boundary of the face. The CROP_ADD_BOUNDARY
option does the same except that it adds the outline curve of the face. For these two options, the
resulting planar map usually ends up with faces with a different shape on the border than in the
middle of the original face. If one prefers to keep constant face shapes, like to keep constant
grid cells, he can choose between two other options: KEEP_INSIDE or KEEP_OUTSIDE. The
�rst option keeps only the cells that are strictly included in the original face whereas the latter
keeps all the cells that intersect the original face. The resulting cells can thus overlap the face
border. Note that stripes partitions are always cropped as their faces are in�nite.

3.4 MAPPERS

Mappers are a central feature of our approach. As previously mentioned, a texture is alarge-
scalestationary arrangement ofsmall-scaleelements. Contrary to partitioning operators that
create the broad-scale structure of the arrangement, mappers are targeting small-scale elements.
In practice, a mapper is a function that takes as input a single cell of a planar map. It applies
(almost) arbitrary code written by the user so as to create, combine, transform and place curves
on a particular location according to the cell's information (position, incident vertices, edges,
faces, etc.). Finally, a mapper outputs a collection of curves.

In order to preserve stationarity, mappers must be executed homogeneously on all the cells
of a planar map. Since the initial planar map comes from a stationary partition, this property is
preserved, formalizing the large-scale repetitive aspect of textures. This homogeneous execu-

28 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

(a) CROP (b) CROP_ADD_BOUNDARY

(c) KEEP_INSIDE (d) KEEP_OUTSIDE

FIGURE 3.4 –Border behaviors.The user can choose between four partition behaviors at the
domain's border. In these illustrations, a uniform partition is created on a light blue domain.
One can �rst simply crop the partition along the border (a), with possibly adding the domain's
outline curve (b). The cells of the partition that overlap the border can also be discarded (c) or
kept (d).

tion is handled by mapping operators. We provide one mapping operator per cell's type: "Map-
ToVertices", "MapToEdges" and "MapToFaces" (Table 3.3 in appendix). A mapping operator
takes as arguments the arrangement to be mapped and a user-programmed mapper. Its output
is a new set of (stationary) curves. It is worth noting that the resulting arrangement can in turn
be used as input to another mapping operator in order to generate more complex patterns.

3.4.1 Mapper De�nition

Formally, a mapper is a user-programmed functorm that maps a single cellc of a planar
mapP to a new collection of curvesC. The key idea of our model is that the programmed
functorm will automatically be executed on each cellc P P by a mapping operator. To ensure
that the mapping ofm onP preserves stationarity, the following conditions must be respected:

— m is local and depends only on cells ofP inside a given bounded neighborhood. Only
a bounded number of incidence queries should then be called inside a given functor.

— m does not depend on a particular execution order. It means that global variables are
read-only and should not be overwritten.

— m does not depend on global coordinates to avoid speci�c mappings to be applied
at particular locations in the plane. Consequently, only relative cell's coordinates are
available from the user point of view.

These conditions ensure that a functor will have the same behavior everywhere in the input
planar map.

3.4. MAPPERS 29

3.4.2 Programming Mappers

We provide a set of low-level built-in operators speci�cally designed to program mappers,
given in Table 3.4 of the appendix. All the examples shown in this chapter have been created
with this simple operator set:

— Incidenceoperators are dedicated to access all the information stored in the incidence
graph of the planar map.

— Adjacencyoperators are used to place elements while controlling their adjacency either
to one or two vertices, or in a face.

— Geometryoperators retrieve information of the input cell such as its location, contour,
centroid, etc.

— Labeloperators are dedicated to the management of labels.
— Random valuesoperators allow to easily vary the properties of the mapping inside each

cell.
We also provide a set of useful utility functions that yield simple geometric af�ne transforma-
tions, bounding box information as well as the loading of an SVG element. These functions are
accessible from everywhere in user-scripts (see Table 3.6 of the appendix).

3.4.3 Using Mappers

A typical use of mapping operators is to modify an original partition, for instance by re-
moving or modifying some cells, then placing some new elements possibly controlling their
adjacency. One can stop here or continue to map elements until reaching the desired arrange-
ment. We show four examples in Figure 3.5 to illustrate the variety of effects a mapper allows
to create on the partitions. In (a), a grid is locally modi�ed to successively create triangular and
hexagonal partitions that could themselves be used as starting points for other mappers. The
second example (b) leverages labels and the precise matching of curve endpoints to create a
puzzle-like brick wall arrangement. The third one (c) uses single point matching and location
operators to create a uniform distribution of rosette shapes. In the last example (d), the faces
of a uniform partition are �rst rescaled before replacing each of their edge by a new smooth
curve. More complex arrangements can be created by calling partitions operators into mappers
as shown in the overview (Figure 3.1).

30 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

Initial partition Mapping operators

(a) MapToFaces MapToEdges

(b) MapToEdges MapToEdges

(c) MapToFaces MapToVertices

(d) MapToFaces MapToEdges

FIGURE 3.5 –Using mappers.Four examples of mappers effect on initialized partitions.(a)
A grid is �rst initialized using the "GridPartition" operator (left). A line is then inserted inside
each face to obtain a subdivided triangular arrangement (middle). The hexagonal partition
(right) is obtained by replacing edges by their duals: lines connecting the centroids of adjacent
faces.(b) Each edge of an initial grid partition (left) is labelled using user-de�ned value cycles
(shown with colors in this example). Based on the "HasLabel" operator, a mapper that keeps
edges in staggered rows is applied on each edge of the grid (middle). The �nal puzzle pattern
is obtained by a mapper using the "MatchPoints" operator that places a simple curved line on
each edge (right).(c) The planar map is initialized with a uniform partition (left). Four lines
are matched to the centroid of each face of the partition to build a new set of construction lines
(middle). Overlapping circles are mapped on the resulting vertices to create rosette �owers
(right). (d) Starting from a random initial partition (left), the induced faces are slightly scaled
down (middle). Some curves, picked from a limited example set are �nally mapped on each
induced edge using the "MatchPoints" operator (right).

3.5. MERGING OPERATORS 31

3.5 MERGING OPERATORS

Merging operatorstake two arrangements as inputs, and return one arrangement (Fi-
gure 3.6). They provide a simple way to mix simple arrangements to obtain complex patterns.
We propose three different merging operators (Table 3.5):

— Union computes a new arrangement that results from the collection of all the edges
produced by the two inputs arrangements. It is used to group multiple distributions
(Figure 3.6(d)).

— Inside and Outsideare masking operators. They keep only the edges produced by a
�rst arrangement that are falling inside and outside the bounded faces, respectively, of
a second arrangement. A border management option is mandatory for these operators.
It allows to precisely de�ne if cells have to be kept-in, kept-out or cropped along the
�rst arrangement boundaries (Figure 3.6(e-h)).

32 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

(a) tex1 (b) tex2

(c) tex3 (d) Union(tex1,tex2)

(e) Inside(tex2,tex1,CROP) (f) Inside(tex3,tex1,KEEP_OUTSIDE)

(g) Outside(tex3,tex1,CROP) (h) Outside(tex3,tex1,KEEP_INSIDE)

FIGURE 3.6 – Merging multiple distributions. (a,b,c)Three simple arrangements obtained
via partitioning and mapping operators.(d) The Union operator overlaps its two input arran-
gements.(e,f) The Inside operator behaves like a mask, keeping only the edges from a �rst
arrangement that fall inside the faces of a second one. The same border management options
are proposed as for partitions (see Figure 3.4).(g,h) The Outside operator also behaves like
a mask, keeping only the edges from a �rst arrangement that fall outside the faces of a second
one. Same border management options are available.

3.6. RESULTS AND VALIDATION 33

3.6 RESULTS AND VALIDATION

3.6.1 Results

Along the chapter we have shown that our method guarantees stationary outputs by
construction. We also have highlighted how it is extensible at all stages. Here we present prac-
tical modeling sessions that demonstrate itspredictability and expressiveness. Designing an
arrangement is an iterative process. The user progressively �nds the set of successive rules that
leads to the result he has in mind. As shown along the chapter, the basic strategy is to design
simple arrangements to be combined. A general structure is chosen for each one, and further
re�ned. All the scripts and execution times used to produce the images of this chapter are
included in appendix. Most results were generated in a few seconds (except Figures 1.2(b,d)
and 3.9(d) that needed more than one minute).

Script Editing . In terms of interaction, our modeling approach is very similar to node-
based material shaders commonly used in the 3D pipeline: (1) partitioning operators corres-
pond to initialization nodes, (2) mapping operators correspond to �ltering nodes, and (3) mer-
ging operators correspond to the2 Ñ 1 combination nodes. This interaction scheme has been
used during the last 30 years since the seminal work on Shade Trees [Coo84]. It is commonly
acknowledged to be ef�cient. In particular, it favors iterative design processes as well as the
exploration of various combinations at the artist's whim.

Figure 3.7 shows the kind of variations that are produced during such an exploratory usage
of our tool. Each image shows the result obtained by a slight modi�cation of the script presented
in the overview (Figure 3.1). These variations are predictable because the script is composed
of small understandable chunks of code (partitions and mappers) linked together by simple
merging operators. A regular user of our tool should be able to foresee how these edits in the
script will in�uence the execution of the other chunks left unchanged.

In Figures 3.8 and 3.9 we show iterative design sessions where the user envisions a par-
ticular arrangement and edits the result towards this objective. Our method allows to proceed
step by step and to display the arrangements produced at each step. This helps making sure
that the edits converge towards the envisioned result. These two �gures display the temporary
steps of the design sessions as well as the results �nally obtained. They showcase how this
script-editing scheme is helpful for quickly designing complex arrangements.

All the scripts producing these examples have less than 60 human-readable lines and they
use only the operators given in appendix.

These results demonstrate that expressiveness is achievable with a restrained set of ope-
rators. It also validates our insight of separating the design tasks between a very small set of
partitioning operators and an unlimited set of possible re�nements. It is particularly visible
in Figure 3.8 where a variety of arrangements are designed based on simplistic regular parti-
tions. Figure 3.12 also shows that more complex tilings can be easily created such as wallpaper
groups tilings.

Expressiveness. All the examples shown in this section demonstrate that the arrangement
properties we mentionned in Section 1 can be obtained with our set of operators: regular and
non-regular arrangements, various elements adjacency relations such as contact or overlap,
compositions of several arrangements and clusters of elements. Figure 3.10 shows that our
approach overcomes the limitations of existing example-based techniques. In Figure 3.11, we
show how labels can be used to create some interactions between combined arrangements
allowing to create complex structures in a controllable way.

34 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

These results validate as well our choice of manipulating all kinds of primitives (vertices,
edges and faces), whereas alternative strategies based only on dot anchors or edge distributions
would limit the possible spectrum of edits.

Finally, Figure 3.13 shows a complete vector drawing, textured with seven scripts using our
approach. The seven produced arrangements were then stylized and combined using Inkscape.
This demonstrates how such a programmable approach could be used throughout a complete
texture design tool.

(a) Original script (b) Switch partitions

(c) Switch arrangements (d) Vary mappings

FIGURE 3.7 – Script edition.A design strategy can be to edit iteratively a starting arran-
gement.(a) Original two-scale arrangement from Figure 3.1.(b) The grid partition previously
applied to the lower scale is exchanged with the uniform partition from the blob distribution.(c)
Another inversion: blobs are now regularly distributed inside the uniformly distributed cells.
(d) A twig is mapped to the smooth stroke of (c), and �owers or leafs with varying scales are
now mapped to the blob shape.

3.6. RESULTS AND VALIDATION 35

(a)

Grid Rotate faces Scale faces Stripes Outside

(b)

Grid Remove Edges Scale faces Map stripes

(c)

Stripes Map curve Merge Map random stripes

(d)

Grid Map circle Scale faces Delete random faces

FIGURE 3.8 – Creating complex structures starting from regular partitions.Each row
shows some iterative design steps, starting from an initial regular partition.(a,b,c)Two-scale
examples where the initial partition is re�ned in different ways, and the resulting regions �lled
with various stripe patterns to produce hatching effects.(d) A mosaic-like partition is made
using a grid and mapped circles. A kind of aging effect is �nally obtained by deleting some
faces randomly.

36 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

(a)

Uniform Map circle Uniform Map scaled faces

(b)

Random Map curve Map Random Map curve

(c)

Uniform 1 Scale faces Uniform scaled 2 2 Inside 1

(d)

Random Scale edges x5 Scale edges x10 Rotate edges

FIGURE 3.9 – Creating complex structures starting from non regular partitions. (a)First
row shows two examples starting from a uniform partition, yet with radically different �nal
arrangements.(b) A random partition, after having mapped its edges with a curve, is recur-
sively applied to its own regions, achieving a two-scale cracks effect.(c) Another two-scale
arrangement, based on an inside merging operator, leading to a turtle shell effect.(d) The
arrangements can quickly depart from the initial partition, even with simple re�nements: the
edges of a random partition are directly scaled then rotated to produce various random lines
distributions.

3.6. RESULTS AND VALIDATION 37

FIGURE 3.10 – Comparison with exemplar-based approaches.Top: we go beyond by-
example methods' limitations from Figure 2.1 by faithfully reproducing the target arrangements
with our set of operators.Bottom: The evaluation protocol developed in [AKA13] showed that
even expert designers do not usually agree on what should be the output arrangement based on
one exemplar. We show here that we can reproduce the four different expert manual arrange-
ments gathered in the second �gure from AlMeraj's study, which all subtly vary from the given
input exemplar.

38 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

(a) (b) (c) (d)

FIGURE 3.11 –Interactions between arrangements' scales.This CPU-like arrangement is
composed of two levels: chips and junctions connected together.(a) Junctions are created
using SVG elements mapped on an initial random partition.(b) Chips are created using the
same method and each chip is labelled.(c) These two arrangements are merged using the Out-
side operator.(d) A mapper uses the labeling information to generate two kinds of connectors
depending on the vertices status (end points and chip junctions).

FIGURE 3.12 –Creating wallpaper groups tilings of the plane. (Top)A wallpaper group P6
(left) is obtained from an hexagonal tiling (Figure 3.5(a, right)) followed by a mapper replacing
each edge with a “Z”-shaped curve. A wallpaper group P4M (center) is obtained by replacing
each edge of a tilted grid by a piece of circle. A wallpaper group P31M (right) is obtained
by mapping three curves in each face of a triangular tiling (Figure 3.5(a, middle)) .(Bottom)
Mapping more complex SVG elements allows Escher-like tilings to be created.

3.6. RESULTS AND VALIDATION 39

FIGURE 3.13 –Texture-based illustration. (Top)A simple SVG drawing.(Bottom)The dra-
wing is textured using seven scripts. The created paths can be grouped and imported in any
vector drawing software. They can then be processed as any other SVG element. For example
here, a single action was needed for �lling all the parquetry slats with a horizontal linear
gradient.

40 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

3.6.2 User Study

We evaluated the practical use of our model by asking eight users to produce three arrange-
ments as close as possible to three target examples we gave them. As detailed in the following,
these users attended the same supervised tutorial session in order to get them familiar with our
tool before working on their own in an unsupervised session. The tutorial, the script �les and
rendered arrangements are all available as supplemental materials.

Procedure

In order to obtain comparable results, the user-study has been conducted under the follo-
wing procedure:

— All participants have backgrounds similar to technical directors. They have either a
master degree in Computer Science or a title from a digital art school. They all had
some experience with scripting before the study.

— Tutorial (45min): They all attended a 45 minutessupervisedtutorial session, where
they were introduced to the general principles of our model including partitions, map-
pers, and combining operators. The user was also provided with a Python script �lled
with working examples of textures. The user was invited to modify this �le during the
teaching part so as to get used with our operator syntax.

— Sandbox (15min): Users were next asked to produce two target textures, based on
some given SVG elements, and some Python code snippets of partitions and mappers.
The goal of this briefsupervisedsession was to get users a step-further independent.
This was their last chance to ask some questions about our tool before the unsupervised
session.

— Practice (3� 15min): This is the unsupervised part of the study. We gave users three
manually drawn examples found on online photostocks (First column of Figure 3.14).
Each participant was then asked to “use our tool during 15 minutes so as to produce a
texture having an appearance as close as possible to the target”. Each user was provided
with the Python scripts that she/he used during the Sandbox, and two SVG elements:
one “horseshoe” and one wavy curve. For each target example, we measured the num-
ber of times each user visualized intermediary results and we stored the resulting script
and arrangement. We also asked the user to assign himself a mark between 1 and 10
that represents how satis�ed she/he is with her/his result.

The study was followed by an oral discussion, based on the same set of questions for each user,
in order to get qualitative feedback.

TABLE 3.1 – User-study measures.Mean values / standard deviation of measures made on
the eight participants.

Puzzles Cracks Waves
Satisfaction (out of 10) 9.1 / 1.5 7.8 / 1.8 7.8 / 1.5
Script length (in lines) 22 / 2.4 15.4 / 5.9 26 / 2.9

Number of operators used 2 / 0 4.4 / 1.6 6 / 1.4
Number of executions 3.1 / 1.0 2.4 / 0.5 3.6 / 0.7

3.6. RESULTS AND VALIDATION 41

A1

A2

A3

Targets U1 U2 U3 U4

A1

A2

A3

Targets U5 U6 U7 U8

FIGURE 3.14 – Results from new users given a target image.After a one-hour tutorial,
we asked eight users to produce arrangements having an appearance as close as possible to
the target images in the �rst column. Some of the results have been cropped in order to have
comparable scales. Full results are given in the supplemental material.

42 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

Practice Results

The three arrangements produced by the eight users during the practice session are shown
in Figure 3.14. Table 3.1 gives the means and standard deviation of the satisfaction, script
length, number of operators and number of executions for each example.

The results obtained after 15 minutes vary from being strongly similar to the target example
(aside from the stroke grain) to being partly similar. All users except U5 achieved a perfect
match with the target A1. Although visually simple, this regular puzzle-like target needs to use
some labels to handle the orientation permutation of the stroke. Considering the second arran-
gement A2, the main variation among users' results comes from the chosen partition at each
level, being either uniform (U3, U4, U8) or random, the latter leading to more faithful results.
However, all participants except U6 and U7 managed to propose a two-levels arrangement. For
the third arrangement A3, all participants also proposed a two-scales result. For this target, the
main feature that users (except U2) did not manage to design under 15 minutes are the striped
strokes that are traversing all the image.

After one hour of tutorial, the users mastered our proposed model enough to be able to
divide input textures into structures that can independently be generated and combined using
our operators. They usually took similar paths to generate their results. This is con�rmed by the
low standard deviations in script lengths and the number of operators used for each target listed
in Table 3.1. All participants worked with rather small scripts, mostly between 15 and 30 lines,
even for the waves example which embeds different level of structures. On average, they wrote
21 lines of code and composed 4 partitioning/mapping/combining operators in 15 minutes for
a given texture. It is very important for a scripting tool to describe complex results in such a
compact fashion because the most time-consuming scripting mistakes generally come when
the script becomes too long. The users checked out for intermediary results every �ve minutes
on average, which is sound for a scripting system.

These results demonstrate that our tool is simple to learn, intuitive and ef�cient when ap-
plied to practical tasks. All the positive points mentioned above are con�rmed by the high
satisfaction marks assigned by the users, as well as their feedbacks which are summarized in
the next section.

Interview Summary

The last 15 minutes of the study consisted in a guided discussion. The supervisor took some
notes for each question (see supplemental material). During the interview, all users declared
that the target textures were easy to mentally decompose into our operator set and that it is easy
to make these mental decompositions real by scripting using our system. Users said that they
always kept tight control over their scripts, except U3 and U5 who mentioned that they once
lost the sense of what the script was doing when manipulating multiscale partitions and labels.
Half of the users pointed out that the labels were a bit hard to manage (U1, U2, U5 and U7) and
that reducing the computation time would improve their experience (all users except U5 and
U6). However, they all found that our operators are intuitive. In particular, some of the users
mentioned that the model was very convenient because it reminded them other nodal tools
(U2, U4 and U8). Two users (U4 and U8) especially liked that our tool encourages iterative
design despite the computational time. Three users (U1, U2, U8) pointed a satisfying learning
curve and the two latter found that they produced results that were surprisingly complex and
aesthetic. All the users were positive about the overall experience of learning and practicing
our tool.

3.7. OPERATOR LIST 43

3.7 OPERATOR L IST

We give here the list of our operators in respective tables: partition operators (Table 3.2),
mapping operators (Table 3.3), mappers' built-in operators (Table 3.4), merging operators
(Table 3.5), and other useful functions available anywhere in user scripts (Table 3.6).

TABLE 3.2 – Partition Operators.

Regular partitions
StripesProperties(Scalara,Scalarw1[,Scalarw2,...]) Sets stripes properties
SetEdgeLabels(Propertiesp, Stringl1[, String l2,...]) Adds edges labels top
SetFaceLabels(Propertiesp, Stringl1[, String l2,...]) Adds faces labels top
StripesPartition(Propertiesp) Creates a stripes partition
GridPartition(StripesS1, StripesS2, Borderb) Creates a grid partition

Irregular partitions
IrregularProperties(Scalard) Sets the partition density
SetWeightedVertexLabels(Propertiesp, Adds vertices labels top

Stringl1, Scalarw1[, String l2, Scalarw2...])
SetWeightedEdgeLabels(Propertiesp, Adds edges labels top

Stringl1, Scalarw1[, String l2, Scalarw2...])
SetWeightedFaceLabels(Propertiesp, Adds faces labels top

Stringl1, Scalarw1[, String l2, Scalarw2...])
UniformPartition(Propertiesp, Borderb) Creates a uniform partition
RandomPartition(Propertiesp, Borderb) Creates a random partition

TABLE 3.3 – Mapping Operators.

MapToVertices(Mapperm, ArrangementA) Appliesm to all vertices ofA
MapToEdges(Mapperm, ArrangementA) Appliesm to all edges ofA
MapToFaces(Mapperm, ArrangementA) Appliesm to all edges ofA

44 CHAPTER 3. PROGRAMMABLE DESIGN OF STATIONARY
ARRANGEMENTS

TABLE 3.4 – Mappers built-in operators.

Incidence
IncidentFaces(Vertexv) Faces connected tov
IncidentEdges(Vertex | Facec) Edges connected toc
IncidentVertices(Facef) Vertices connected tof
SourceVertex(Edgee) Source vertex connected toe
TargetVertex(Edgee) Target vertex connected toe
LeftFace(Edgee) Left face connected toe
RightFace(Edgee) Right face connected toe

Adjacency
MatchPoint(Curvesc, Points, Pointt) Translates curves in the directiont � s
MatchPoints(Curvesc, Points1, Applies the rigid transformation

Points2, Pointt1, Pointt2) ps1; s2q Ñ pt1; t2qto c
MatchFace(Curvesc, Facef) Scales and Translatesc in f

Geometry
Location(Vertexv) Position of vertexv
LocationAt(Edgee, Scalars) Position one, according tos P r0; 1s
Centroid(Facef) Centroid position of facef
Contour(Facef) Boundary of facef
Append(Curvesc1, Curvesc2) Appendsc2 to c1 and returns the new set
ToCurve(Edgee) Transforms edgee into a curve

Labels
HasLabel(Cell | Cellsc,Stringl) Tests if cell(s)c contain the labell
IsBoundary(Cellc) Tests ifc is adjacent to the unbounded face
PointLabeled(Curvesc,Stringl) Returns the location inc labelled byl
CurveLabeled(Curvesc,Stringl) Returns the curvec labelled byl

Random values
Random(Scalarmin ,Scalarmax) Random valueP rmin; max s
Random(Cellc,Scalarmin , Deterministic random value. This function

Scalarmax ,Scalarn) always returns the same value for a given
cell c and scalarn

TABLE 3.5 – Merging operators.

Union(ArrangementA1, ArrangementA2) All the curves fromA1 andA2
Inside(ArrangementA1, ArrangementA2, Edges ofA1 insideA2's faces

Borderb)
Outside(ArrangementA1, ArrangementA2, Edges ofA1 outsideA2's faces

Borderb)

TABLE 3.6 – Useful functions available in our scripts.

ImportSVG(Stringf ilename) Loads curves from the given SVG �le
ExportSVG(ArrangementA , Scalarsize) ExportsA in SVG
BBoxWidth(Cell | Curvesc) Bounding box width of an elementc
BBoxHeight(Cell | Curvesc) Bounding box height of an elementc
BBoxCenter(Cell | Curvesc) Bounding box center of an elementc
Scale(Curvesc,Scalars) Scalesc by a factors
Rotate(Curvesc,Scalars) Rotatesc by a factors P r0; 2� s
Translate(Curvesc,Vectorv) Translatesc in the directionv
Nothing() Returns an empty set of curves

CHAPTER

4

TILED PLANAR MAPS FOR
INTERACTIVE DESIGN OF

REGULAR AND SEMI-REGULAR
ARRANGEMENTS

A major feedback of our user study is that execution time is the main pain point for
the usability of our tool, in particular when users design arrangements through trials and
errors (Section 3.6.2). This motivates the need for an arrangement synthesis method with
interactive performances. Arrangements generated interactively also have broader appli-
cations: For example, they become potential assets for self-generating digital worlds such
as in computer games and simulators. This chapter presents a method that demonstrates
interactive performances at synthesizing a commonly used subclass of arrangements: regu-
lar and semi-regular arrangements. This method extends the design tool presented in Chapter 3.

Making Chapter 3's method faster is a hard problem. Arrangements represented as planar
maps involve large amounts of geometry to store and process. For example a planar map with
105 cells usually takes over100MB in RAM. Intense computational geometry algorithms
have to be performed at each design iteration, such as detecting intersections between all
the arrangement curves. Fortunately, these computations appear to be redundant when the
arrangements exhibit regularities. Our goal here is to leverage these redundancies so as to
craft a much faster synthesis method for (semi) regular arrangements. Such arrangements are
frequently needed: For example manufactured surfaces and materials fall in this category.

The cases with most computation redundancies are the purely regular arrangements (also
called periodic arrangements). Simply storing a regular arrangement can be strongly optimized
because most of the geometry could be expressed as translations of a small group of cells.
Furthermore when a regular arrangement is transformed into another regular arrangement (for

45

46 CHAPTER 4. TILED PLANAR MAPS FOR INTERACTIVE DESIGN OF
REGULAR AND SEMI-REGULAR ARRANGEMENTS

example with a non-random mapper), we can observe that the mapper iscommutative with
translation. This means that applying the mapper to a small group of cells should be suf�cient
for knowing the composition of the entire output arrangement.

Our method allows the user to design and visualize an in�nite, regular arrangement which
is represented behind the scenes by aTiled Planar Map(TPM): A new data structure that
contains a small set of cells that are suf�cient for representing the entire arrangement. The
user designs this in�nite arrangement using the operators from Chapter 3. We introduce
algorithms to compute TPMs that represent the output in�nite arrangements for each operator.
These algorithms allow to construct regular arrangements following Chapter 3's design rules,
at interactive performances. Additionally we allow to randomize the regular arrangement at
the end of the script, which makes it a semi-regular arrangement. The resulting design tool
features the following advantages:

Interactive design. All operators execute at interactive performances. Those are inde-
pendent from the arrangement size.

Parallel, constant-time point location.TPMs' point location is parallel and its computa-
tional cost does not depend on the point's spatial location. Consequently the following opera-
tions can be done in constant-time and in parallel:

— Finding which arrangement cell contains a given pointpx; yq.
— Computing the distance between a given pointpx; yqand its nearest curve in the arran-

gement.
— Rendering the arrangement at any pixelpx; yq.

Deterministic, parallel conversion to planar maps.A TPM can still be converted to a
planar map �lling a given region, in linear time regarding the number of duplicated cells. This
is much faster than Chapter 3's quadratic synthesis method. Conversion to planar maps is still
a deterministic process. Furthermore, it is alsolocal: The content of the output planar map
inside a small window is independent from the overall shape of the region to �ll, as opposed
to Chapter 3's method. This allowsparallel conversion: the region to �ll can be cut in any
number of parts. Then, each of these parts can be handled in parallel. Let note that the position
of each part does not affect the conversion cost. This allows seamless, on-the-�y generation
of arrangements for a stream of windows, which is an important feature for interactive
applications such as computer games.

Same design process.From the designers' perspective, arrangement creation follows the
logics proved ef�cient in Chapter 3.

In the next sections we will give details about the TPM, how to implement Chapter 3's
operators for TPMs, how to design procedural noise for creating semi-regular arrangements and
�nally how to export TPMs to planar maps. We will validate our approach by showing several
arrangements produced side-by-side with the system from Chapter 3 and our new method.
We will demonstrate the interactive usability of our new tool regarding the previous one by
displaying the performance speed-ups we obtained.

4.1. THE TILED PLANAR MAP 47

4.1 THE T ILED PLANAR M AP

The Tiled Planar Map is a structure that represents an in�nite, regular arrangement by sto-
ring a small, suf�cient set of planar map cells. The rest of the in�nite arrangement is expressed
as translations of these cells. Formally, a TPMT is a record of the following items:

— Two non-zero, non-colinear vectorsv 1; v2 which are the TPM'speriods.
— A point o which is the TPM'sorigin.
— A planar mapp following the de�nition from Section 3.2.

Additionally, these members are used to de�ne:
— Thecentral tilewhich is the parallelogram

t0;0 � p o; o � v1; o � v1 � v2; o � v2q

— Thetileswhich are the translated parallelograms

t i;j � t0;0 � i v1 � j v2

Finally, the size ofp is constrained byT's periods according to the following invariant: All
faces ofp are at least partially overlaping with the central tilet0;0, and they are always entirely
contained in the tilest i;j with i; j P t� 1; 0; 1u. An example of TPM is displayed in Figure 4.1.

Each TPMT can be associated with an in�nite planar mapp� whose cells are exactlyp's
cells translated along multiples ofv1 andv2. This means the following:

— For any cellc Pp and all integersk1; k2, its translationc� k1v1 � k2v2 is a cell inp� .
— Conversely, any cell inp� is the translation of a cellc Pp alongk1v1 � k2v2 for some

integersk1; k2.
This in�nite planar mapp� corresponds to the actual arrangement designed by the user. The
two properties above ensure that the TPM we process represents exactlyp� at all design steps.
Note that the small planar map contained in a TPM is usually larger than its tile so that we store
at least one sample of each cell present inp� (see Figure 4.1). This involves slight redundancies
in the stored geometry, but these redundancies are small enough to be harmless for our method's
performances. This solution is also better than cuttingp inside the central tile, which would
breakp's topology and for example add new vertices not desired by the user.

In the following sections we will consider each arrangement as being represented by a
TPM.

4.2 OPERATORS ON T ILED PLANAR M APS

Here we describe implementations of Chapter 3's operators. Designers can use them the
same way, except that they output TPMs instead of arrangements. However this implies no
syntax change since any TPM can also be seen as an arrangement (a function which associates
a planar map to each face).

4.2.1 TPM Partitions

As in Chapter 3, designing an arrangement always begins with a partition operator. This
time, only the GridPartition operator is available since our method addresses regular structures
with two non-colinear periods. This operator can still be parameterized for both grid direc-
tions, each one following an angle, a cycle of spacing valuess1; : : : ; sn and a cycle of labels

48 CHAPTER 4. TILED PLANAR MAPS FOR INTERACTIVE DESIGN OF
REGULAR AND SEMI-REGULAR ARRANGEMENTS

FIGURE 4.1 – Contents of a Tiled Planar Map.Each TPM contains a small planar map
(black vertices and thick orange edges) as well as two vectorsv1; v2 that de�ne how to tile this
planar map. These vectors de�ne the TPM's central tile (green square). Note that the planar
map is usually larger than its tile so that the TPM contains at least one sample of each cell
present in the arrangement. The rest of the arrangement (thin orange curves) is not stored and
can be deduced from the TPM.

l1; : : : ; lm provided by the user. Given these informations, the output TPM has periodsv1 and
v2 aligned on provided angles. For each direction, we compute the lengthL of the corres-
ponding period in function of the spacing valuess1; : : : ; sn and of the number of label values
m:

L �
LCM pn; mq

n

n¸

i � 1

si

WhereLCM pn; mq refers to the Least Common Multiple ofn and m. The output TPM's
planar map is a grid computed as in Chapter 3's GridPartition operator and populated with the
labels provided by the user.

4.2.2 TPM Mappers

Such as in Chapter 3, arrangements can be re�ned at will using mappers on vertices, edges
or faces. These mappers follow the same programming rules as in Section 3.4. They also allow
to use the same API, except for random functions which are forbidden in order to keep the
arrangement regular. Mappers are applied to the whole arrangement using the corresponding
operator (MapToVertices, MapToEdges or MapToFaces). The output arrangement can then be
re�ned again or combined with other arrangements.

Behind the scene, we have to compute a new TPM that represents the output arrangement.
For that, let note that a non-random mapper applied to a regular arrangement yields an other
regular arrangement withequal periods. Note that this is also true in case of mappers using
labels: the initial arrangement period already accounts for labels. Using this observation, we
design an algorithm (Figure 4.2) independent from the mapper type (vertex, edge or face) which
runs as follows. For an input mapperm and an input TPMT with planar mapp and central tile
t0;0 representing the in�nite arrangementp� :

1. Applym to all cells ofp. We consider thatm returns nothing for cells of the wrong type
(for example, a vertex mapper returns nothing for faces) and we call the resultmppq.

4.2. OPERATORS ON TILED PLANAR MAPS 49

2. Compute the setA of tiles t i;j overlapped bymppq.
3. Compute the setB of couplespi 1; j 1qsuch thatmpp � i 1v1 � j 1v2qoverlapst0;0. This

set is obtained by applying a central symetry onA:

B � tp i 1; j 1q � p� i; � j q|pi; j q PAu

4. Compute theNeighborhood In�uence ZoneNIZ which is the set of couplespi 2; j 2q
such thatmpp � i 2v1 � j 2v2qoverlaps one of thet i;j for i; j P t� 1; 0; 1u. This set is
obtained by computing the convolution betweent� 1; 0; 1u2 andB .

5. Compute the planar map

p1 �
¤

pi 2 ;j 2qPNIZ

mppq � i 2v1 � j 2v2

6. Compute the set of cells ofp1 that overlapt0;0. These constitute the planar map of the
output TPMmpTq. This output TPM has periods equal toT 's.

Implementation of adjacency operators.In our method, mappers can use the same API
as in Section 3.4 except for random functions. This API follows the same implementation.
The only exception is adjacency operators: in the central planar map of a TPM, some cells are
incident to only a subset of their real neighbors in the in�nite arrangement: For example in
Figure 4.1, border vertices are incident to only two edges whereas they have four real neigh-
bours in the in�nite arrangement. In order to reproduce the behavior of Chapter 3's adjacency
operators, we need to �nd these additional neighbors and return them as well. This will return
cells that are actually not stored anywhere (being outside the central planar map). We use the
property that such cells can be expressed as translations of cells in the central planar map. We
represent them asshifted cells, a simple structure that contains a reference to an actual cellc in
the central planar map plus two countersk1; k2 that record which translation ofc is designated.
When applying an adjacency operator onc, we look for neighbors ofc's translations along
period multiples in the central planar map. Formally, if the TPM's periods arev1 andv2, the
adjacency operatorN on a shifted cellpc; i; j qis computed as following:

N pc; i; j q � tp c1; i � i 1; j � j 1q|c1 � p c � i 1v1 � j 1v2qu

where� refers to the incidence relationship between two planar map cells. This operator can
be extended to the TPM's actual cells asN pcq � N pc;0; 0q. If any, copies are removed from
this set using the equality relationship between shifted cells:

pc1; i 1; j 1q � p c2; i 2; j 2q ô c1 � i 1v1 � j 1v2 � c2 � i 2v1 � j 2v2

4.2.3 TPM Combiners

Such as in Chapter 3, in�nite arrangements can be combined using the operators Merge, In-
side and Outside. These operators can still be parameterized with border management options.
Note that the output arrangement is regular if and only if the input arrangements have aligned
periods with a common multiple. Otherwise, their combination exhibits unique local con�gura-
tions that “shift” slowly over space, without ever occuring more than one time1. Conversely, if

1. When periods are not aligned, one would need to multiply them with non-rational numbers in order to �nd a
common multiple. This makes it impossible to �nd an integer number of period repetitions that ends up producing
two occurences of the same con�guration. Some exceptions work in theory but cannot be computed in practice:
For example an axis-aligned grid with period1 merged along a�4 -rotated grid with period

?
2 produces a regular

arrangement, but it would imply to store
?

2 numerically and then to compute intersections between non-rational
segments, which is not practical. A much simpler way to obtain this result is to write a mapper that cuts in two parts
each face of the axis-aligned grid.

50 CHAPTER 4. TILED PLANAR MAPS FOR INTERACTIVE DESIGN OF
REGULAR AND SEMI-REGULAR ARRANGEMENTS

FIGURE 4.2 – Applying a mapper to a TPM.When the user asks for applying a mapper
to the in�nite arrangement being designed, we have to compute the TPM respresenting the
output in�nite arrangement. We already know the output central tile since input and output
arrangements have equal periods. Thus we just have to �nd all cells overlapping this central
tile. From the TPMT representing the input arrangement (top left), we1. apply the user-
de�ned mapper to all cells ofT 's planar map - in this example the mapper associates a shifted
ellipse to each face;2.compute which tiles are overlapped by the mapper result. This result will
allow us to determine conversely which cells of the output arrangement will overlap a given tile
t i;j ; 3. compute the Neighborhood In�uence Zone, which is the set of tiles from where mapper
results will overlap the central tile's 8-neighbors;4. group these mapper results in a single
planar map, and5. keep cells from this planar map only when they overlap at least partially
the central tile.

input arrangements have aligned periods with common multiples then the output arrangement
is periodic 's period is equal to the least of these common multiples. In practice, we check that
the two input arrangements periodspv1; v2qandpv 1

1; v 1
2qrespect the following property:

Dk1; k1
1; k2; k1

2 PN|k1v1 � k1
1v 1

1; k2v2 � k1
2v 1

2

In this case we will use the Least Common Multiple notation:LCM pv1; v 1
1q � k1v1 and

LCM pv2; v 1
2q � k2v2. These vectors are the output arrangement periods. From there, it is

simple to �nd a TPM that represents the output arrangement. For input TPMs having planar
mapsp1, p2 and a masking operatorO, our algorithm (Figure 4.3) runs the following steps:

1. Computev 2
1 � LCM pv1; v 1

1q andv 2
2 � LCM pv2; v 1

2q. These de�ne the output
central tile.

2. Compute the planar mapp1
1 duplicated fromp1 over a3� 3 neighborhood of the output

central tile. The same way, compute the planar mapp1
2 duplicated fromp2 over a3 � 3

neighborhood of the output central tile.

3. Compute the desired masking operator:M � Opp1
1; p1

2q

4.2. OPERATORS ON TILED PLANAR MAPS 51

4. Finally, keep only cells ofM that overlap at least partially the new central tile de�ned
by v 2

1 andv 2
2.

FIGURE 4.3 – Applying a combiner to TPMs.When the user asks for applying a combiner
to a couple of in�nite arrangements, we have to compute the TPM respresenting the output
in�nite arrangement. This operation needs input arrangements to have periods with common
multiples. If it is the case, from the two input planar maps (top left) we:1. compute the output
central tile which dimensions are the least of these common multiples;2. duplicate the input
planar maps along a 3x3 neighborhood of this new central tile;3. compute the desired masking
operator on the bigger planar maps we obtained in 2. and4. keep the obtained cells only when
they overlap the new central tile.

4.2.4 Ghost Mapping

In our design tool, we allow to use procedural noise that changes purely regular arran-
gements into semi-regular arrangements. This noise is introduced with the same principle
as mappers (Section 3.4). When users are done designing their desired regular structure,
we allow them to write an ultimate mapper where random functions are allowed. When
this mapper is applied to the arrangement, we do not compute a new planar map such as in
Section 3.4's mapping process. Instead we keep a pointer to the mapper function. This pointer
will be used to call the mapper on-the-�y at rendering/export time. Since this mapper does not
have any in�uence on the rest of the script, its result not being usable, we call this process
ghost mapping: an opportunity to add randomness and details without having to compute the
involved costly intersection calculus.

Ghost mapping can be used for the same broad range as Section 3.4's mappers. This pro-
cedural noise thus opens possibilities beyond simple element jittering. One can add or re-
move new elements, add detail to the geometry, generate new shapes, etc. See Figure 4.5 for
examples.

52 CHAPTER 4. TILED PLANAR MAPS FOR INTERACTIVE DESIGN OF
REGULAR AND SEMI-REGULAR ARRANGEMENTS

4.2.5 Conversion to Planar Maps

In the previous sections, we have seen that every planar map storing a regular arrangement
can be represented more ef�ciently as a TPM. Conversely, every TPM can be converted back to
a planar map covering a given region. Our algorithm is rather simple: The TPM's planar map is
duplicated over all the region to �ll (see Figure 4.4 for details about this duplication process).
Then the result is cropped regarding a border management option given by the user. If any
ghost mapper has been attached to the TPM, then it is called during the duplication process.

FIGURE 4.4 – Converting TPMs into planar maps.Any TPM (left) can be converted back to a
regular planar map. Each curve is processed in function of its position regarding the tile: Inner
curves (blue) are duplicated every periodpv1; v2q, border curves (orange) are duplicated every
other period and outer curves (pink) are not duplicated since they are already inner curves of
adjacent tiles. This process has linear complexity regarding the number of duplicated curves.
In this example, the conversion took less than one second.

Conversion from TPM to planar maps validates the full equivalence between this new syn-
thesis method and Chapter 3's engine. Therefore our new method can be used as a drop-in
replacement for all regular and semi-regular arrangements: For these targets it provides the
same design features than Chapter 3's, plus interactive performances.

4.3 RESULTS AND VALIDATION

This section features performance measurements for comparison with Chapter 3 as well as
several example outputs.

The performances obtained with our new approach are displayed in Table 4.1. These mea-
sures validate our bill of speci�cations. First, they validate that operators on TPMs actually
execute in constant time regarding the size of the designed arrangement. Second, they show
that converting TPMs to planar maps has indeed linear cost regarding the number of output
cells. Third, they show that computing operators on TPMs and then converting the outputs is
always much faster than using Chapter 3's engine. This last result validates that our new syn-
thesis method can be used as a drop-in replacement of the previous engine for all regular and

4.3. RESULTS AND VALIDATION 53

semi-regular arrangements. Let note that the table says “aborted” for the previous engine's re-
sult at 9000 synthesized cells because the process was killed before completion due to memory
swap. This means that there is no hope to obtain the 9000 cells in reasonable time for this
example.

TABLE 4.1 – Performance comparisonsfor the brickwall texture (Figure 1.2(c)), generated
for several window sizes. All time measurements are given in seconds for geometry operations
computed on a single Intel(R) Core(TM) i7-3610QM CPU with frequency 2.30GHz and 4GB
RAM.

Amount synthesized Operator computation Conversion to planar mapPrevious method
350 cells 1.92s 1.57s 6.5s
1400 cells 2.09s 4.16s 69.9s
2100 cells 1.99s 5.68s 162.39s
4200 cells 1.92s 9.45s 700.16s
9000 cells 1.99s 17.25s aborted

A few results are shown in Figure 4.5. These results demonstrate how the same regular
and semi-regular arrangements can be designed as with Chapter 3's tool. Furthermore, we
hope that this new approach to arrangement synthesis will allow users to go further and create
even more complex designs now that performance is less of a limitation. In the case of semi-
regular arrangements, tuning amplitude of random functions such as jittering usually takes
several iterations before getting the desired look. The performance speed-up is even more of
an advantage in these cases.

54 CHAPTER 4. TILED PLANAR MAPS FOR INTERACTIVE DESIGN OF
REGULAR AND SEMI-REGULAR ARRANGEMENTS

(a) Brickwall (2s) (b) Jitter and scale elements randomly (2s)

(c) Delete elements randomly (2s) (d) Fabric pattern (4s)

FIGURE 4.5 – Results produced with our new synthesis engine.All these results demonstrate
a speed-up of at least two orders of magnitude regarding Chapter 3's engine.(a) Reproduction
of Figure 1.2(c). 3200 cells are synhesized.(b) Same example with ghost mapping. The map-
per jitters and scales randomly the arrangement faces from (a).(c) Another example of ghost
mapper that also deletes elements randomly in addition to jittering and scaling the others.(d)
Reproduction of Figure 1.2(h).

CHAPTER

5

APPLICATION TO CARTOGRAPHY

5.1 INTRODUCTION

Cartography is one of the oldest craftsmanship in human history, and also one of the
most critical vectors of development for human culture, communication, trading and leisure.
Maps, as real world representations, have been completely drawn by hand for centuries. Map
production bene�ted from a signi�cant speed-up with the invention of printing, but at least
one exemplary of each map still had to be drawn exhaustively by hand. Drawing by hand
a topographic map, representing the terrain based on its natural features such as relief or
hydrography, and its arti�cial entities if any (buildings, roads), was a very labor-intensive
task, due to the quantity of information to be represented [Duf66]. For example, the 1986 map
of Austrian Alps took over 11000 hours of work [Jen04]. The past �fty years of scienti�c
and technical advances in geographical information sciences, i.e. data acquisition, image
processing, geographic database and cartography, brought topographic map series production
to became digital and most of all automated. Institutional National Mapping Agencies, but
also, for instance, Google Maps1 and OpenStreetMap2, took then part to the development of
geographical information services in providing geographical data and cartography on-demand
tools to users.

Nevertheless, a main dif�culty related to the automation of the map series production pro-
cess remains, for instance at the French National Mapping Agency: this process still relies on
some non-automatic steps which could prevent from being able to update the map series. Cer-
tain parts of the terrain, i.e. rocks, scree, etc. in mountain areas, are currently represented using
scans of old manual drawings. It implies now some problems while the French National Map-
ping Agency has to update geographical data and related maps: the melting and thus retreat
of glaciers in mountain areas cannot be updated as long as we do not have automatic tools to
generate those parts of the terrain.

1. http://maps.google.com
2. http://www.openstreetmap.org

55

56 CHAPTER 5. APPLICATION TO CARTOGRAPHY

Yet topographic maps are of primary importance for many users, in particular in
mountainous areas: Terrain perception is the �rst information needed there for determining
where are the hazardous zones, choose a path towards a given destination, etc. based on the
understanding of the main morphological structures of the terrain (height, slope, roughness,
ridges, valleys, etc.). Cartographers need a more automated and controllable production
pipeline for topographic maps, which is not trivially feasible using state-of-the-art automated
cartographic techniques: for example, the classic cartographic representation of terrain
height are contour lines (lines of constant height). This representation is now generated
automatically, but it is not practical when the terrain slopes are too steep. In these cases,
the height step between two consecutive contour lines would be too big for providing
relevant information. If one tries to display a bigger amount of contour lines, they would
become too compressed and would make the map illegible. The case where terrain slopes
are too big is very common in mountainous areas, especially in rocky zones where the
slopes reach values around 70-80%. Moreover, in order to enhance the terrain perception, at
some adapted scales, it would be more interesting to manage more expressive renderings of
the relief. Therefore, these rocky zones, ubiquitous in mountains, require a dedicated depiction.

Traditionally, rocky areas are represented using hatchings whose density and orientation
convey information about the orientation of rock surfaces (see Figure 5.1). Various hatching
styles have been designed over centuries [Ali73], but the last map produced with this method
was �nished in 1956 [Gui05]. Since then, this artistic knowledge has not been transmitted to
earlier generations of cartographers due to the extensive training periods needed. This overlong
training time is yet another motivation for automating the production of mountain maps. In
practice, it is challenging to generate hatching textures that convey the rock areas morphology
as in hand-drawn maps. In particular some hatches correspond to actual terrain features such
as ridges or valleys (also calledthalwegs), whereas other hatches do not have this meaning and
rather carry information through global properties of their distribution: density, orientation,
randomness, etc. Finally, some properties of the hatches like length and randomness are in-
�uenced by the artistic style of the map. These should be made easy-to-tweak for applications
such as map-on-demand.

These challenges call for a texture design tool that grants a lot of control over the hatching
arrangement. Our programmable approach is a good candidate in such a context. In this chapter
we describe how we use this approach to generate hatching textures that depict rocky areas in
mountain maps. This depiction is expected to1. convey correctly the mountain morphology,
and2. be easy to adapt for each viewer's particular needs. This part of my work has been done
in collaboration with the French National Mapping Agency (IGN-France). In order to �nd a
relevant design, we draw inspiration from maps they produced manually beforehand.

In practice, producing automatically hatching textures that represents mountain rocky
areas implies to make these texturesspatially-varying. We can observe in the manually-
produced hatching shown in Figure 5.1(d,e) that the hatching indeed takes various density and
orientation values over the map. Our texture design method described in Chapter 3 outputs
purely stationary results, which does not permit to generate spatially-varying textures as is. In
this chapter, we describe how we extend our method so as to handle spatial variations and we
describe our hatching design for representing rocky areas. Figure 5.1 shows how the hatching
textures are traditionally composited with shading layers to make the �nal map. Artistic
shading is a research problem by itself, we will address hatching only in this chapter. Let

5.2. RELATED WORK 57

note that our method could also be applied to other cartography themes that involve textures:
representation of vegetation, sand, sunken sea rocks, etc. We envision these usages as future,
more thorough applications of our method to cartography.

FIGURE 5.1 – Layers in a mountain map.A complete map (a) for high mountain areas
is traditionally composed of a number of black and white layers (b to e) that are composed
using various color inks. Among these, several layers of artistic shading (b& c) and a layer of
hatching for rocks (d) are major actors in the global look of the map. (e) shows a close-up view
of the rock hatching layer. The goal of our project is to produce automatically rock hatching
layers inspired by such existing maps. This map has ben produced between 1940 and 1956 by
the French National Mapping Agency [Ali73].

5.2 RELATED WORK

5.2.1 Artistic Mountains Maps

A lot of mountain maps used today still rely on manual designs. A good review of hand-
drawn mountain maps is available in [Ali73]. Drawing these maps is a very labor-intensive
task [Duf66, Jen04]. Another drawback of hand drawing is that the result is too dependent of
each cartographer's personal style. For example, the French National Mapping Agency course
for rock drawing gives a large freedom to the interpretation of each cartographer [Duf66].
Although this might not be a problem for other arts, it caused production issues when scaling
up to the mapping of an entire country: this task generally involved many cartographers, which

58 CHAPTER 5. APPLICATION TO CARTOGRAPHY

made it dif�cult to maintain an uniform look between areas handled by each cartographer with
his/her personal style.

These drawbacks motivated the development of computer-aided techniques for depicting
the terrain, in particular rocky areas. Let note that hand-drawn maps still possess the highest
rendering qualities of all existing techniques. Even though hand drawing is no longer a viable
solution for worldwide mapping, these maps serve as a strong inspiration tool for our project.

5.2.2 Computational Depiction of Rocky Areas

The French National Mapping Agency has been looking for the automation of mountain
maps production for years. An early example of a fully automated depiction of mountains
has been realized and published in 2008 [LG08]. In this work, all traditional layers used
in cartographic representations of mountains are automatically produced and assembled.
However, the rock drawing layer was considered by the French National Mapping Agency as
not conveying well enough the shape of rocky areas: it was carrying ambiguities about the
rock shapes, passable zones and hazardous areas. This work continued with a better depiction
of areas containing screes using an example-based texture synthesis method [HL11].

More recently, advances were made in the direction of imitating the Swiss rock drawing
style [JGG� 14, GH15] and apply it to creating a new topographic map for the mount Everest
[LH15]. Here again, several layers of rendering are generated and assembled. The rock
hatching layer is produced by drawing streamlines of constant height, with varying density
[JL97]. This method produces results with a look close to the Swiss drawing style, but is based
on a single prede�ned arrangement of hatches. This makes this method not �exible enough
for applications such as map-on-demand. Furthermore, it was still not expressive enough for
revealing all the relevant relief features such as structure lines, steep slope areas, in�exion
points and saddles.

On the Computer Graphics side, works such as [BST09] have been achieved towards
representing mountains in an artistic way. These works make good inspiration material even
though they target aesthetic results rather than precise terrain morphology conveyance.

5.2.3 Spatially-Varying Element Textures in Computer Graphics

More generally, several methods presented in Chapter 2 aim at automatically producing
spatially-varying arrangements. These methods are either not expressive or controllable enough
for addressing the rendering of rocky mountain areas. Some of them are based upon a user-
drawn exemplar [MWT11, IMIM08, KNBH12, AdPWS10, HLT� 09, LGH13]. This does not
�ts our needs for precise control over the output design and for adaptation to varying user
needs. Furthermore, most rock hatching arrangements exhibit precarious topological properties
that these methods fail to reproduce faithfully, for example contact between hatches. The others
propose to contract and stretch a prede�ned element arrangement in order to match precisely
user-given density and orientation �elds [SHS02, LWSF10]. Due to being constrained to such
a prede�ned layout, these methods would be hard to use and adapt to the user demands. Finally,
examplar-based nor layout-based methods provide enough control for generating hatches that

5.3. PROGRAMMABLE DESIGN OF SPATIALLY-VARYING ARRANGEMENTS 59

correspond exactly to ridges or valleys simultaneously with hatches that carry information
through global properties of their distribution such as density, orientation or randomness.

5.3 PROGRAMMABLE DESIGN OF SPATIALLY -VARYING

ARRANGEMENTS

Hatching textures that represent rocky areas arespatially-varyingtextures: their density
and orientation vary over the map. Such textures are beyond our de�nition of stationary
outputs (see Chapter 3). Therefore we need to add an extension to our design method so as to
add user-providedcontrol �elds that in�uence the texture over space. These control �elds can
come from any kind of data: bitmaps, close-form or implicit functions, etc.

Our approach needs to be �exible and allows each arrangement to be applied to any control
�eld. Therefore, the system should allow to design arrangements and control �elds separately.
In practice, control �elds are designed by the National Mapping Agency researchers which
formalize the design rules used empirically by cartographers in the 40s. This research involves
numerous iterations over the control �elds. Designing the texture arrangement and its control
�elds simultaneously is not a situation speci�c to cartography: texture designers often mani-
pulate both the texture and its control �elds until they obtain the desired result [Dem01]. This
is much easier to do when painting over some area of the control �eld modi�es only the cor-
responding area in the output arrangement. This is often the case in texture design through
shaders applied to bitmap data, but it is not the case for most element arrangement algorithms
mentionned in Section 5.2.3 because these methods rely on global optimisations that run over
the entire texture each time the control �eld is edited. With these methods, a small localized
modi�cation of the control �eld can yield changes in the entire arrangement. In our case, we
want to guaranteelocal control: a small localized modi�cation of the control �eld must yield
only local changes in the output arrangement.

We achieve local control by using control �elds inside mappers only, with special program-
ming rules. These rules guarantee that there exists a window outside which modi�cations of the
control �eld will not in�uence the mapper's result. This way we let the user free to in�uence
many properties of the texture with control �elds. The only exception is density, which can only
be piecewise-constant in this model: In order to follow a density �eld, the user must start with
a constant-density partition. Then he can use a mapper to make subscale textures with various
densities in each face of this partition. This is not a problem for our application because the
rock hatching designs used by map makers seem to have piecewise-constant densities. There-
fore we let as further work the issue of partition algorithms that both follow density �elds and
guarantee local control.

5.3.1 Control Fields

In our approach, we de�ne a control �eld as a function that associates a scalar or vector
value to any point of the plane:In practice, control �elds can be crafted from any kind of data
(bitmap, close-form or implicit functions, etc) as long as they are associated with a function
that follows the de�nition above. For example, a �le containing bitmap data can be associated
with an interpolation method.

60 CHAPTER 5. APPLICATION TO CARTOGRAPHY

It must be easy to apply any control �eld to any designed arrangement. Therefore, the
arrangements must be designed separately from the de�nition of any particular control �eld.
For that we de�ne acontrolled arrangementas a higher-order function:

f 1; f 2; : : : ; f n Ñ A

wheref i refers to a control function andA refers to an arrangement - a function that associates
a new planar map to any face. In this model, the programmer is able to design controlled
arrangements without knowing which control �eld will be applied to them. Afterwards, any
set of control �elds can be fed as beingf 1; f 2; : : : ; f n . Let note that these de�nitions require
no change in our implemented API since higher-order functions are handled natively in Python.

5.3.2 Controled (Higher-Order) Mappers

Similarly to controlled arrangements, we de�ne acontrolled mapperas being a higher-
order function:

f 1; f 2; : : : ; f n Ñ m

wheref i refers to a control function andm refers to a mapper. This way, programmers can
design controlled mappers independently from any particular control �eld.

There are two programming rules for controlled mappers. First, they are the only place in
the script where control �elds can be used. Second, access the values off 1; f 2; : : : ; f n only
within a bounded range around the cell being processed bym. A good way to ensure that is to
use only points of the plane that are inside faces accessed bym: there always exist a global
upper bound to the arrangement cells' size, andm can access to neighbor cells only inside a
bounded window (Section 3.4).

5.4 CARTOGRAPHIC DATA

In order to generate hatching textures that convey the rock areas morphology, we need to
synthesize hatches that correspond to one-dimensional terrain features (ridges and valleys) plus
hatches that carry surface information through global properties of their distribution (density,
orientation and randomness). The National Mapping Agency provides the following cartogra-
phic data to represent this information:

— A partition of the terrain in faces to be textured separately. Face borders are tagged as
being ridges, valleys or non-feature lines. Each face is expected to receive a hatching
texture with roughly constant density and orientation.

— Hatching orientation: A face-wise constant control �eld which represents the overall
orientation desired for each face's hatching.

— Hatching density: A face-wise constant control �eld representing the overall density
desired for each face's hatching.

— Terrain elevation: A scalar control �eld which gives the measured elevation of the
mountain in meters at any point.

— Terrain slope: A scalar control �eld which gives the slope of the mountain derived from
the elevation at any point (in percent).

5.5. DESIGN ITERATIONS 61

1 de f t e s t _ o r i e n t f i e l d () :
2 s i z e = 1000
3 # C o n t r o l l e d Mapper
4 e l l i p s e = ImportSVG (" d a t a / e l l i p s e _ l o n g . svg ")
5 de f f a c e _ t o _ e l l i p s e (o r i e n t _ f i e l d) :
6 de f out_mapper (f a c e) :
7 c = C e n t r o i d (f a c e)
8 r e t u r n R o t a t e (MatchPo in t (e l l i p s e ,

BBoxCenter (e l l i p s e) , c) , o r i e n t _ f i e l d (
c))

9 r e t u r n out_mapper
10 # C o n t r o l l e d ar rangement
11 de f c o n t r o l l e d _ e l l i p s e s (o r i e n t _ f i e l d) :
12 props = I r r e g u l a r P r o p e r t i e s (500 / 1000000)
13 p a r t = Un i fo rmPar t i t i on (props , KEEP_OUTSIDE)
14 t e x = MapToFaces(f a c e _ t o _ e l l i p s e (o r i e n t _ f i e l d

) , p a r t)
15 r e t u r n t e x
16 # O r i e n t a t i o n f i e l d
17 c e n t e r = P o i n t (s i z e / 2 , s i z e / 2)
18 o r i e n t = lambda p : a tan2 ((c e n t e r� p) . y () , (

c e n t e r � p) . x ())
19 # Expor t
20 ExportSVG (c o n t r o l l e d _ e l l i p s e s (o r i e n t) , s i z e)

FIGURE 5.2 –An example of script controlled with a control �eld. Left:A script based on
an imported SVG element and a controlled mapper that orients this element along the input
control �eld. This control �eld is de�ned as an analytic vector �eld that points towards the
center of the image.Right: The SVG output of the example script.

— Terrain roughness: A scalar control �eld which gives the roughness of the area derived
from the slope at any point (normalized between 0 and 1).

Terrain elevation is measured using Light Detection And Ranging sensors placed on a
plane �ying over the area. Slope and roughness are computed from this data using classic
differential operators. Getting a clean partition automatically is yet an open research topic
because it involves to compute ridges and valleys of the height �eld with correct topology (in
particular umbilics). For this reason ridges and valleys are extracted manually from the existing
1:10000 map of the Mont-Blanc which is also used as an inspiration for our design. Similarly,
�nding the hatching orientation and density that best convey the terrain morphology to human
perception is another open research topic at the National Mapping Agency. In order to get
the best possible results with our method, hatching orientation and density were extracted
manually as well from the 1:10000 map. This information is expected to be automatically
produced in the �nal pipeline.

5.5 DESIGN I TERATIONS

A number of iterations were done jointly with the National Mapping Agency before getting
to our �nal design. In this section we describe and discuss our main design decisions over
time. Our results after each decision are shown in Figure 5.4. These iterations demonstrate
how our method was able to adapt to our design choices in terms of expressivity and controla-
bility: It was always possible to put in practice our design intents and apply the needed changes.

62 CHAPTER 5. APPLICATION TO CARTOGRAPHY

(a) Partition of the mountain (b) Hatching orientation (c) Hatching density

(d) Terrain elevation (e) Terrain slope (f) terrain roughness

FIGURE 5.3 – Data used for rendering rocky areas.This data was produced at the Natio-
nal Mapping Agency by extracting features from the 1:10000 Mont-Blanc map (shown with
transparency in (a) and (b)).(a) A partition of the terrain into faces to �ll independently with
hatchings. Blue lines denote ridges, purple lines denote thalwegs (valleys) and red lines com-
plete the partition. The rest of the data makes up the control �elds used in our design:(b) In
each face of the partition (purple), a blue line indicates the hatching orientation for this face.
(c) Mean hatching density desired for each face, from very dense (black) to very sparse (white).
(d) Terrain elevation captured from Light Detection And Ranging sensors, from 2200m (black)
to 3400m (white).(e) Terrain slope derived from elevation, from 60% (black) to 90% (white).
(f) Terrain roughness normalized between 0 and 1. The area represented here is the Aiguille du
Moine in the French Alpes.

We started with a hatching obtained by keeping one axis of a jittered grid. This hatching
has constant density and orientation (except for the noise) in each face of the mountain
partition. These density and orientation take their values in the control �elds at the centroid
of each partition face. Our second design choice was to add a thicker hatching texture falling
from ridges in order to enhance the contrast between dark and lit faces such as recommended
in [Duf66]. The next step was again to enhance slightly the contrast between dark and lit faces
when the elevation is higher. For that we needed to make the hatching density vary inside each
mountain face. We achieved this by making a �rst grid partition, jittering it and then �ll each
grid face with the �rst hatching pattern.

We obtained more subtle results by re�ning the hatchings on ridges: First, we shrinked the
hatching shapes and we distributed them more sparsely. Then, we �lled these shapes with a

5.5. DESIGN ITERATIONS 63

subscale hatching distribution rather than just rendering them as uniform black areas. We also
balanced the density of the main hatching pattern in order to avoid visual clutter near the top
of the mountain. Still following [Duf66], we enhanced the ridge hatching on higher grounds
and we added a rendering of valleys using QuantumGIS (QGIS), a geographical information
system. Finally, we added hatchings in a second direction so as to render the terrain roughness
by breaking the perceived hatching orientations.

The �nal design we obtained was considered a good starting point for representing rocky
areas and convey their important features: ridges, valleys, saddles and slope directions. This
result is planned to be improved again, judged by a panel of cartographers and �nally included
in a more automatic pipeline for producing topographics maps.

64 CHAPTER 5. APPLICATION TO CARTOGRAPHY

(a) Simple noisy hatching (b) Added 1D hatching of ridges (c) Subscale density variations

(d) Finer ridge hatching (e) Density balanced (f) Ridges boosted + valleys

(g) Added roughness effect

FIGURE 5.4 – Main design iterations.Our �rst trial was a hatching obtained by keeping one
axis of a jittered grid (a). Then we added a distribution of triangles and kept those touching
ridges so as to enhance the contrast between dark and lit faces (b). The next step was to
authorize density variations within a face (c) by partitioning the face and then applying the
hatching texture. We chose to re�ne the ridge hatching shapes and to distribute them more
sparsely (d), then to balance density in order to avoid visual clutter near the needle (e). We
enhanced the ridge hatching on higher grounds and we added a rendering of valleys in post-
processing (f), and we �nally switched to bidirectional hatching so as to render the terrain
roughness (g).

CHAPTER

6

DISCUSSION

In this chapter we present our vision about our current research's limitations and the steps
forward that we think impactful for further work in the area of arrangement design.

6.1 LIMITATIONS

Continuous density variations.The dotted stripes arrangement in Figure 3.10 could be
seen as a distribution of dots following a periodic step density function, alternating blank re-
gions with null density and crowded regions with high density. One could imagine a variation
with a sinusoidal density function instead. This variation would be unfeasible in our system,
even with our extension in Chapter 5. The only possible way to do something close to it would
be to generate a very �ne StripesPartition, and then to �ll the faces obtained with constant
densities that would make a piecewise-constant approximation of the sine function.

Implicit control. In our approach the user explicitly controls all spatial relations in the
arrangement. Unlike most by-example approaches where targeted properties are given as input
of the synthesis algorithm, our input is the construction script. As a consequence our approach
allows to precisely control element adjacencies but does not help producing arrangements that
exhibit implicit behaviors such as the ones resulting of physical simulation or other global opti-
mization processes. A typical example is a distribution containing the biggest amount possible
of non-overlapping elements (see Figure 6.1).

Operators. We designed our operator set in order to allow a wide variety of arrangements.
More operators could be added for speci�c needs. As an example, we currently control ad-
jacency based on one or two contact points. It may be interesting to increase the number of
constraint points to create more constrained arrangements. This requires non-rigid transforma-
tions and interpolation, which is left for future work.

65

66 CHAPTER 6. DISCUSSION

FIGURE 6.1 –Arrangement de�ned through implicit control.This texture is based upon an
arrangement de�ned as being a “maximum amount of non-overlapping elements”. In practice,
this arrangement is computed using dart throwing. This is a typical example of arrangement
that would be dif�cult to obtain with our purely explicit approach.

Planar maps. Since our internal representation is either a planar map or a Tiled Planar
Map, we inherit all the limitations of these models. In particular, there is no simple way to deter-
mine which faces of the planar map are intended to be the interior of the elements. For instance,
the drawing of a ring is constituted of two concentric circles. This induces two faces conside-
red at the same level by our operators, whereas the user might want to process them separately.
Labels can be used to resolve some ambiguities but not all of them. Other representations could
be investigated to solve this problem such as Vector Graphics Complexes [DRVDP14].

Performances.In Chapter 4 we have presented an extension that increases synthesis per-
formances a lot for (semi) regular texture arrangements. This extension could be optimized
further in order to create a no-latency interactive application. Fore example, operators could
be computed on Tiled Planar Maps with minimal periods and labels could increase the period
only at the moment their are used in a mapper. More importantly, irregular arrangements still
need expensive computations to synthesize with our system. This also could be optimized a lot:
For example, planar maps are a overly heavy representation for uniform distributions without
overlap. Figure 6.2 shows such a distribution generated fastly using an optimized landmark
point location which detects and remove collisions between objects, but which does not store
them.

6.2 USER I NTERFACE

We have shown that our programmable approach yields predictable and controllable re-
sults. However the interaction scheme offered by a programming language is not suitable for
non-programmers. A way to broaden the audience of our method is to offer more intuitive user
interfaces. This should be possible thanks to the combination scheme of our operators which
is natively nodal. Formally, operations are organized as a Directed Acyclic Graph where nodes
are operations and pointers are planar maps (we call them “nodes” and “pointers” to avoid
confusion with planar map cell types). It means that a straightforward node-based graphical
interface such as in [AW90] would be suf�cient to wrap our operator combination scheme.
However the (almost) arbitrary code in our mappers is much more dif�cult to represent gra-
phically. A simple solution could be to abstract these mappers as operation nodes. Users with

6.3. TOWARDS A COMPLETE PROGRAMMABLE ILLUSTRATION PIPELINE 67

FIGURE 6.2 – High-performance uniform distribution.This arrangement contains 32754
triangles and was generated in eight seconds using an optimized landmark point location.

programming skills would then create such nodes using a regular text editor and share these
nodes to the non-programming community.

An interesting issue to pursue could be to propose inverse procedural modeling such as in
[GLLD12]. A full inverseprogrammable approachis probably too dif�cult since it would boil
down to going back to the limitations of by-example approaches. Yet one could target just a
few operators' parameters such as density and cycles, or more global characteristics such as
the type of partition. These could be learned from simple examples or user given sketches.

6.3 TOWARDS A COMPLETE PROGRAMMABLE I LLUSTRATION

PIPELINE

Our programmable approach addresses the problem of spatiallyarranging elements in a
texture. This problem is part of a complete texture synthesis pipeline. We discuss here how the
remaining parts could be combined with our approach.

Elements synthesis.Our current system in able to import existing elements. A straight-
forward extension could be to add an import operator that pick random elements produced by
existing algorithms of element synthesis such as [BA06]. However if one may want to stay in
a programmable pipeline, operators may be devised to increase the control on each element
shape. Procedural modelling already offers numerous methods for context-dependent element
synthesis that we could use to extend our model [MM12].

Continuous density variations. In addition to our extension that handles control �elds
in Chapter 5, it would be impactful to add partition operators that follow continuous density
�elds, especially for artists designing large backgrounds �lled with a single texture (which is
commonly done in comic books for example). One idea we experienced for UniformPartition
and RandomPartition is to compute Voronoi diagrams from biased point distributions generated
using dart throwing algorithms. An example of result we obtained so far is shown in Figure 6.3.

68 CHAPTER 6. DISCUSSION

However, there is no guarantee that such an algorithm respects the property of local control
needed for faster design iterations.

FIGURE 6.3 –Texture-based background with continuous density variations.The arrange-
ment in background cannot be designed with our current model. It was generated by computing
Voronoi diagrams whose seeds are dart-thrown using a user-painted density function. This kind
of result could be a target design for future systems.

Stylization. The stylization step can be done manually by loading SVG exported by our
system in commercial vector graphics software. However, it would make sense to stay in a
programmable approach for this step because style attributes could be linked with placement
data via speci�c operators. A similar approach has been applied to the stylization of line-
drawn 3D models [GTDS10, EWHS08]. This method would be a good candidate to extend our
approach to stylization. Figure 6.4 gives a glimpse of the freedom let to the user when stylizing
a geometric arrangement.

FIGURE 6.4 –Examples of arrangement stylization.Three examples of stylization applied on
geometric arrangements.

6.3. TOWARDS A COMPLETE PROGRAMMABLE ILLUSTRATION PIPELINE 69

Rendering.Currently, we produce simple SVG outputs containing only polylines. As our
internal representation is a planar map, the resulting SVG �le does not contains stacked po-
lygons. In order to extend the vector formats handled by our approach, new operators should
be de�ned. For example, stacked polygons would need ordering operators on top of the planar
map. We could also produce other types of vector formats such as diffusion curves [OBW� 08]
by adding color points mappers.

70 CHAPTER 6. DISCUSSION

CHAPTER

7

CONCLUSION

In this thesis we presented a new way to design 2D arrangements of geometric elements,
which is a major concern in the task of texture creation. We developped ideas and arguments
about aprogrammingdescription of arrangements, which we believe is a reliable way to carry
the designer's intent. We also demonstrated how this approach is predictable and extensible.

Our experimentation tool focuses on planar map arrangements because they give maximum
information to the programmer about the arrangement's geometry and topology, which is a
powerful way to demonstrate a broad spectrum of possible results. However it also formalizes
a canonical way tothink arrangement design from the programmer's side:1. Decompose
the arrangement into a number of scales and layers;2. Decide wether each arrangement's
broad-scale organization is regular or not;3. Decide how the elements are arranged locally
and which geometrical/topological details they exhibit. We believe this way of thinking
could apply to designing geometric arrangements represented differently: triangulations, point
clouds, meshes, etc.

Along this manuscript, we presented tools in which a user describes a texture by writ-
ting a script. However we envision that, for most users, this model will eventually serve as an
internal representation only: Most user choices could actually be made through a graphical in-
terface, which would be a more natural way to interact with the designed arrangement even for
programming-friendly users. Partitions can be manually sketched and their parameters (angles,
density) can be recognized automatically. A lot of mappers can be drawn manually over several
example cells, then their source code should be generated automatically by the tool. Arrange-
ments can be dragged-and-dropped from various layers so as to be merged. Such a tool poten-
tially represents several PhDs worth of research in inverse procedural modelling, user interface
and human-computer interaction. Yet, I like to think of this project as a step towards a helpful
design method, which would capture reliably users' intents while exhibiting the same “magic”
as examplar-based texturing tools.

71

72 CHAPTER 7. CONCLUSION

APPENDIX

A

EXAMPLE PYTHON SCRIPTS

In this appendix we show the scripts used to synthesize all the arrangements in Chapter 3.

Stripes <1 sec

1 de f s t r i p e s () :
2 # T e x t u r e s i z e
3 s i z e = 2000
4

5 # S t r i p e s ang le=p i / 4 , w i d t h s =200 and 67
6 l i n e s = S t r i p e s P r o p e r t i e s (p i / 4 , s i z e / 1 0 ,

s i z e / 3 0)
7

8 # P a r t i t i o n
9 t e x = S t r i p e s P a r t i t i o n (l i n e s)

10

11 # Expor t r e s u l t
12 ExportSVG (tex , s i z e)

73

74 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Grid <1 sec

1 de f g r i d () :
2 # T e x t u r e s i z e
3 s i z e = 2000
4

5 # H o r i z o n t a l s t r i p e s ang le =0 , w i d t h s =200
and 80

6 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , s i z e / 1 0 , s i z e
/ 2 5)

7

8 # V e r t i c a l s t r i p e s ang le=p i / 2 , w id th =250
9 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , s i z e / 8)

10

11 # P a r t i t i o n
12 t e x = Gr i dPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
13

14 # Expor t r e s u l t
15 ExportSVG (tex , s i z e)

Uniform 2 sec

1 de f un i fo rm () :
2 # T e x t u r e s i z e
3 s i z e = 2000
4

5 # D e n s i t y ~= 50 f a c e s
6 prop = I r r e g u l a r P r o p e r t i e s (5 0 / (s i z e� s i z e))
7

8 # P a r t i t i o n
9 t e x = Un i fo rmPar t i t i on (prop , KEEP_OUTSIDE)

10

11 # Expor t r e s u l t
12 ExportSVG (tex , s i z e)

75

Random <1 sec

1 de f random () :
2 # T e x t u r e s i z e
3 s i z e = 2000
4

5 # D e n s i t y ~= 50 f a c e s
6 prop = I r r e g u l a r P r o p e r t i e s (5 0 / (s i z e� s i z e))
7

8 # P a r t i t i o n
9 t e x = RandomPart i t ion (prop , KEEP_OUTSIDE)

10

11 # Expor t r e s u l t
12 ExportSVG (tex , s i z e)

76 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Puzzle 18 sec

1 de f p u z z l e () :
2 s i z e = 2000
3 z i g = ImportSVG (" d a t a / z i g2 . svg ")
4

5 # Grid p a r t i t i o n , i n c l u d i n g edge l a b e l s
6 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 . 0 , s i z e / 1 6)
7 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , s i z e / 1 6)
8 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
9 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 ")

10 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,
KEEP_OUTSIDE)

11

12 # Mapper : remove edges
13 de f g r i d _ t o _ w a l l (edge) :
14 i f ((HasLabel (edge , " v1 ") and HasLabel (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , "
h1 ")) o r

15 (HasLabel (edge , " v2 ") and HasLabel (
I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)
) , " h2 "))) :

16 r e t u r n Noth ing ()
17 r e t u r n ToCurve (edge)
18

19 # Mapper : r e p l a c e each edge by a curved
l i n e

20 de f edge_ to_cu rve (edge) :
21 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
22 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
23 s r c_v = Loca t i on (SourceVer tex (edge))
24 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
25 i f Random (edge , 0 , 1 , 0) <0 .5 :
26 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

s rc_v , ds t_v)
27 e l s e :
28 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

ds t_v , s r c_v)
29

30 # Mapping o p e r a t o r s
31 w a l l _ t e x = MapToEdges(g r i d _ t o _ w a l l ,

g r i d _ t e x)
32 p u z z l e _ t e x = MapToEdges(edge_ to_curve ,

w a l l _ t e x)
33

34 # F ina l t e x t u r e
35 ExportSVG (puzz l e_ tex , s i z e)

77

Rosettes 36 sec

1 de f r o s e t t e () :
2 s i z e = 2000
3 l i n e = ImportSVG (" d a t a / l i n e . svg ")
4 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
5

6 # Uniform p a r t i t i o n (around 70 f a c e s)
7 props = I r r e g u l a r P r o p e r t i e s (7 0 / (s i z e�

s i z e))
8 p a r t _ t e x = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
9

10 # Mapper : c r e a t e a s t a r i n each f a c e
11 de f f a c e _ t o _ s t a r (f a c e) :
12 r o t = Random (face , 0 . 0 , 2 . 0� p i , 0)
13 elem1 = MatchPo in t (l i n e , BBoxCenter (l i n e

) , C e n t r o i d (f a c e))
14 elem2 = Append (R o t a t e (elem1 , r o t) , R o t a t e

(elem1 , r o t + p i / 2))
15 elem3 = Append (elem2 , R o t a t e (elem2 , p i / 4)

)
16 r e t u r n elem3
17

18 # Mapper : p l ace a c i r c l e on each v e r t e x
19 de f v e r t e x _ t o _ c i r c l e (v e r t e x) :
20 i f (l e n (I n c i d e n t E d g e s (v e r t e x)) >1) :
21 r e t u r n Noth ing ()
22 r e t u r n MatchPo in t (c i r c l e , BBoxCenter (

c i r c l e) , Loca t i on (v e r t e x))
23

24 # Mapping o p e r a t o r s
25 s t a r s _ t e x =MapToFaces(f a c e _ t o _ s t a r ,

p a r t _ t e x)
26 f l o w e r s _ t e x = MapToVertices (

v e r t e x _ t o _ c i r c l e , s t a r s _ t e x)
27

28 # F ina l t e x t u r e
29 ExportSVG (f l o w e r s _ t e x , s i z e)

78 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Cracks 35 sec

1 de f c r a c k s () :
2 s i z e = 2000
3 l i n e s = [ImportSVG (" d a t a / l i n e 1 . svg ") ,
4 ImportSVG (" d a t a / l i n e 2 . svg ") ,
5 ImportSVG (" d a t a / l i n e 3 . svg ")]
6

7 # Random p a r t i t i o n (around 200 f a c e s)
8 props = I r r e g u l a r P r o p e r t i e s (2 0 0 / (s i z e�

s i z e))
9 p a r t _ t e x = RandomPart i t ion (props ,

KEEP_OUTSIDE)
10

11 # Mapper : r e s c a l e each f a c e
12 de f r e s c a l e _ f a c e (f a c e) :
13 r e t u r n Sca le (Contour (f a c e) , 0 . 8)
14

15 # Mapper : r e p l a c e each edge by a random
curved l i n e

16 de f edge_ to_cu rve (edge) :
17 l i n e = l i n e s [f l o o r (Random (edge , 0 , l e n (

l i n e s) , 0))]
18 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
19 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
20 s r c_v = Loca t i on (SourceVer tex (edge))
21 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
22 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
23

24 # Mapping o p e r a t o r s
25 r e d u c e d _ t e x =MapToFaces(r e s c a l e _ f a c e ,

p a r t _ t e x)
26 c r a c k s _ t e x =MapToEdges(edge_ to_curve ,

r e d u c e d _ t e x)
27

28 # F ina l t e x t u r e
29 ExportSVG (c r a c k s _ t e x , s i z e)

79

By example limitations: bimodal hatching 7 sec

1 de f examp la r_based_a () :
2 s i z e = 2000
3 ha t ch = ImportSVG (" d a t a / ha t ch . svg ")
4

5 # Grid p a r t i t i o n , i n c l u d i n g f a c e l a b e l s
6 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , s i z e / 1 0)
7 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , s i z e / 2 0)
8 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
9 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")

10 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,
KEEP_OUTSIDE)

11

12 # Mapper : p l ace 2 h a t c h e s i n one f a c e on
two

13 de f f a c e _ t o _ h a t c h e s (f a c e) :
14 i f ((HasLabel (face , " v1 ") and HasLabel (

face , " h1 ")) o r
15 (HasLabel (face , " v2 ") and HasLabel (

face , " h2 "))) :
16 elem1 = Sca le (hatch , Random (face

, 2 . 6 , 2 . 7 , 1))
17 elem2 = R o t a t e (elem1 , p i /7+ Random (

face ,� p i / 1 2 , p i / 1 2 , 2))
18 elem3 = R o t a t e (elem1 , p i /2+ Random (

face ,� p i / 1 2 , p i / 1 2 , 3))
19 elem4 = Append (elem2 , elem3)
20 w = BBoxWidth (f a c e) / 7
21 h = BBoxHeight (f a c e) / 7
22 pos = C e n t r o i d (f a c e) + P o i n t (Random (

face ,� w,w, 4) , Random (face ,� h , h , 5)
)

23 r e t u r n MatchPo in t (elem4 , BBoxCenter (
elem4) , pos)

24 r e t u r n Noth ing ()
25

26 # Mapping o p e r a t o r
27 h a t c h _ t e x = MapToFaces(f a c e _ t o _ h a t c h e s ,

g r i d _ t e x)
28

29 # F ina l t e x t u r e
30 ExportSVG (ha t ch_ tex , s i z e)

80 APPENDIX A. EXAMPLE PYTHON SCRIPTS

By example limitations: regular crosses 6 sec

1 de f examplar_based_b () :
2 s i z e = 2000
3 c r o s s = ImportSVG (" d a t a / c r o s s . svg ")
4

5 # Grid p a r t i t i o n , i n c l u d i n g f a c e l a b e l s
6 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , s i z e / 1 0)
7 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , s i z e / 1 8)
8 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
9 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")

10 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,
KEEP_OUTSIDE)

11

12 # Mapper : p l ace a c r o s s i n one f a c e on two
13 de f f a c e _ t o _ h a t c h e s (f a c e) :
14 i f ((HasLabel (face , " v1 ") and HasLabel (

face , " h1 ")) o r
15 (HasLabel (face , " v2 ") and HasLabel (

face , " h2 "))) :
16 elem1 = Sca le (c ross , Random (face

, 1 . 3 5 , 1 . 4 5 , 2))
17 elem2 = R o t a t e (elem1 , Random (face ,� p i

/ 2 0 , p i / 2 0 , 4))
18 r e t u r n MatchPo in t (elem2 , BBoxCenter (

elem2) , BBoxCenter (f a c e))
19 r e t u r n Noth ing ()
20

21 # Mapping o p e r a t o r
22 h a t c h _ t e x = MapToFaces(f a c e _ t o _ h a t c h e s ,

g r i d _ t e x)
23

24 # F ina l t e x t u r e
25 ExportSVG (ha t ch_ tex , s i z e)

81

By example limitations: regular curves 4 sec

1 de f examp la r_based_c () :
2 s i z e = 2000
3 ha t ch = ImportSVG (" d a t a / ha t ch . svg ")
4

5 # Grid p a r t i t i o n
6 l i n e s 1 = S t r i p e s P r o p e r t i e s (p i / 4 , s i z e / 1 0)
7 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i /2+ p i / 4 ,

s i z e / 1 0)
8 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
9

10 # Mapper : p l ace a curved l i n e i n each f a c e
11 de f f a c e _ t o _ h a t c h (f a c e) :
12 s r c_p = BBoxCenter (ha t ch)
13 ds t_p = C e n t r o i d (f a c e)
14 elem1 = Sca le (hatch , Random (face

, 1 . 3 , 1 . 4 , 0))
15 elem2 = R o t a t e (elem1 , p i /4+ Random (face ,�

p i / 1 2 , p i / 1 2 , 1))
16 r e t u r n MatchPo in t (elem2 , src_p , ds t_p)
17

18 # Mapping o p e r a t o r
19 h a t c h _ t e x = MapToFaces(f a c e _ t o _ h a t c h ,

g r i d _ t e x)
20

21 # F ina l t e x t u r e
22 ExportSVG (ha t ch_ tex , s i z e)

82 APPENDIX A. EXAMPLE PYTHON SCRIPTS

By example limitations: clusters 42 sec

1 de f examplar_based_d () :
2 s i z e = 2000
3 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
4

5 # S t r i p e s p a r t i t i o n , i n c l u d i n g f a c e l a b e l s
6 l i n e s = S t r i p e s P r o p e r t i e s (p i / 2 , s i z e / 1 0)
7 S e t F a c e L a b e l s (l i n e s , " v1 " , " v2 ")
8 s t r i p e s _ t e x = S t r i p e s P a r t i t i o n (l i n e s)
9

10 # Mapper : p l ace a c i r c l e i n each f a c e
11 de f f a c e _ t o _ c i r c l e (f a c e) :
12 r e t u r n Sca le (MatchPo in t (c i r c l e ,

BBoxCenter (c i r c l e) , C e n t r o i d (f a c e))
, 0 . 0 2)

13

14 # Mapper : c r e a t e s a do t p a t t e r n i n one
f a c e on two

15 de f f a c e _ t o _ c i r c l e s (f a c e) :
16 i f HasLabel (face , " v2 ") :
17 props = I r r e g u l a r P r o p e r t i e s (1 0 0 / (

BBoxWidth (f a c e)� BBoxHeight (f a c e)
))

18 p a r t = Un i fo rmPar t i t i on (props ,
CROP_ADD_BOUNDARY)

19 c i r c = MapToFaces(f a c e _ t o _ c i r c l e ,
p a r t)

20 r e t u r n c i r c (f a c e)
21 r e t u r n Noth ing ()
22

23 # Mapping o p e r a t o r
24 t e x t u r e = MapToFaces(f a c e _ t o _ c i r c l e s ,

s t r i p e s _ t e x)
25

26 # F ina l t e x t u r e
27 ExportSVG (t e x t u r e , s i z e)

83

Teaser: example a 25 sec

1 de f t e a s e r _ a () :
2 # Load m u l t i p l e cu rve and b lob shapes
3 c u r v e s = [ImportSVG (" d a t a / cu rve1 . svg ") ,
4 ImportSVG (" d a t a / cu rve2 . svg ") ,
5 ImportSVG (" d a t a / cu rve3 . svg ") ,
6 ImportSVG (" d a t a / cu rve4 . svg ")]
7 b lobs = [ImportSVG (" d a t a / b lob1 . svg ") ,
8 ImportSVG (" d a t a / b lob2 . svg ") ,
9 ImportSVG (" d a t a / b lob3 . svg ") ,

10 ImportSVG (" d a t a / b lob4 . svg ")]
11 s i z e = 2000
12

13 # Mapper : r e p l a c e each edge by a random
curve

14 de f edge_ to_cu rve (edge) :
15 cu rve = c u r v e s [f l o o r (Random (edge , 0 , l e n (

c u r v e s) , 0))]
16 s r c _ c = P o i n t L a b e l e d (curve , " bot tom ")
17 d s t _ c = P o i n t L a b e l e d (curve , " top ")
18 s r c_v = Loca t i on (SourceVer tex (edge))
19 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
20 r e t u r n MatchPo in ts (curve , s rc_c , ds t_c ,

s rc_v , ds t_v)
21

22 # Mapper : r e p l a c e each v e r t e x by a random
blob

23 de f v e r t e x _ t o _ b l o b (v e r t e x) :
24 b lob = b lobs [f l o o r (Random (ve r t ex , 0 , l e n (

b l obs) , 0))]
25 r e t u r n MatchPo in t (b lob , BBoxCenter (b lob)

, Loca t i on (v e r t e x))
26

27 # Grid P a r t i t i o n
28 l i n e s 1 = S t r i p e s P r o p e r t i e s (p i / 3 , 1 5 0)
29 l i n e s 2 = S t r i p e s P r o p e r t i e s (� p i / 3 , 1 5 0)
30 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
31

32 # Mapping o p e r a t o r s
33 c u r v e _ t e x = MapToEdges(edge_ to_curve ,

g r i d _ t e x)
34 b l o b _ t e x = MapToVertices (v e r t e x _ t o _ b l o b ,

g r i d _ t e x)
35

36 # Combining
37 f i n a l _ t e x = Union (b lob_ tex ,Outs ide (

cu rve_ tex , b lob_ tex ,CROP))
38

39 # F ina l t e x t u r e
40 ExportSVG (f i n a l _ t e x , s i z e)

84 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Teaser: example b 2 min, 9 sec

1 # c r e a t e a t e x t u r e w i t h non� o v e r l a p p i n g
c o n c e n t r i c c i r c l e s

2 de f c i r c l e s _ i n _ c i r c l e s (d e n s i t y) :
3 c i r = [ImportSVG (" d a t a / c i r c l e 1 . svg ") ,
4 ImportSVG (" d a t a / c i r c l e 2 . svg ") ,
5 ImportSVG (" d a t a / c i r c l e 3 . svg ")]
6

7 # Uniform p a r t i t i o n
8 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
9 p a r t = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
10

11 # Mapper : p l ace c i r c l e s i n each f a c e
12 de f f a c e _ t o _ c i r c l e s (f a c e) :
13 a l l _ c i r c = Noth ing ()
14 c u r _ s c a l e = Random (face , 0 . 3 , 0 . 8 , 0) ;
15

16 # Per tu rb shape and s c a l e f o r each
c i r c l e

17 i = 0
18 whi le c u r _ s c a l e > 0 . 0 :
19 c i r c l e = c i r [f l o o r (Random (face , 0 ,

l e n (c i r c l e s) , i))]
20 c u r _ c i r c = Sca le (MatchFace (c i r c l e ,

f a c e) , c u r _ s c a l e)
21 c u r _ c i r c = R o t a t e (c u r _ c i r c , Random (

face ,0 ,2� p i , i +10))
22 a l l _ c i r c = Append (a l l _ c i r c , c u r _ c i r c

)
23 c u r _ s c a l e = c u r _ s c a l e� Random (face

, 0 . 0 9 , 0 . 2 , i +20)
24 i = i +1
25

26 r e t u r n a l l _ c i r c
27

28 r e t u r n MapToFaces(f a c e _ t o _ c i r c l e s , p a r t)
29

30 de f t e a s e r _ b () :
31 s i z e = 2000
32

33 # Crea te a f i r s t l a y e r o f c i r c l e s
34 t e x = c i r c l e s _ i n _ c i r c l e s (1 5 / (s i z e� s i z e))
35

36 # Combine l a y e r s
37 f o r i i n range (0 , 9) :
38 tmp = c i r c l e s _ i n _ c i r c l e s (1 5 / (s i z e� s i z e)

)
39 t e x = Union (tmp , Outs ide (tex , tmp ,CROP))
40

41 ExportSVG (tex , s i z e)

85

Teaser: example c 1 sec

1 de f t e a s e r _ c () :
2 s i z e = 2000
3

4 # Grid p a r t i t i o n , i n c l u d i n g edge l a b e l s
5 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
6 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 1 2 0)
7 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
8 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 " , " v3 " , " v4 ")
9 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
10

11 # Mapper : remove edges c o n t a i n i n g s p e c i f i c
l a b e l sequences

12 de f remove_edge (edge) :
13 i f HasLabel (edge , " h1 ") o r HasLabel (edge

, " h2 ") :
14 r e t u r n ToCurve (edge)
15 i f HasLabel (I n c i d e n t E d g e s (T a r g e t V e r t e x (

edge)) , " h1 ") :
16 i f HasLabel (edge , " v1 ") :
17 r e t u r n ToCurve (edge)
18 e l s e :
19 r e t u r n Noth ing ()
20 e l s e :
21 i f HasLabel (edge , " v2 ") o r HasLabel (

edge , " v4 ") :
22 r e t u r n ToCurve (edge)
23 e l s e :
24 r e t u r n Noth ing ()
25

26 # Mapper : r e s c a l e each f a c e
27 de f s h r i n k _ f a c e (f a c e) :
28 i f HasLabel (I n c i d e n t E d g e s (f a c e) , " v1 ") :
29 r e t u r n Sca le (Contour (f a c e) , 0 . 9)
30 e l s e :
31 r e t u r n Sca le (Contour (f a c e) , 0 . 8)
32

33 # Mapping o p e r a t o r
34 w a l l _ t e x = MapToEdges(remove_edge ,

g r i d _ t e x)
35 s h r i n k _ t e x = MapToFaces(s h r i n k _ f a c e ,

w a l l _ t e x)
36

37 # F ina l t e x t u r e
38 ExportSVG (s h r i n k _ t e x , s i z e)

86 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Teaser: example d 3 min, 40 sec

1 de f t e a s e r _ d () :
2 # Load s e v e r a l c u r v e s
3 c u r v e s = [ImportSVG (" d a t a / b i g h a t c h 1 . svg "

) ,
4 ImportSVG (" d a t a / b i g h a t c h 2 . svg "

) ,
5 ImportSVG (" d a t a / b i g h a t c h 3 . svg "

) ,
6 ImportSVG (" d a t a / b i g h a t c h 4 . svg "

)]
7 s i z e = 2000
8

9 # Uniform p a r t i t i o n (w i t h around 1000
f a c e s)

10 props = I r r e g u l a r P r o p e r t i e s (1 0 0 0 / (s i z e�
s i z e))

11 i n i t _ t e x = Un i fo rmPar t i t i on (props ,
KEEP_OUTSIDE)

12

13 # Mapper : p l ace a v e r t i c a l or h o r i z o n t a l
cu rve on each f a c e

14 de f f a c e _ t o _ h a t c h e s (f a c e) :
15 cu rve = c u r v e s [f l o o r (Random (face , 0 , l e n (

c u r v e s) , 0))]
16 i f Random (face , 0 , 1 , 1) >0 .5 :
17 cu rve = R o t a t e (curve , p i / 2)
18 r e t u r n MatchPo in t (curve , BBoxCenter (

cu rve) , C e n t r o i d (f a c e))
19

20 # Mapping o p e r a t o r
21 h a t c h _ t e x = MapToFaces(f a c e _ t o _ h a t c h e s ,

i n i t _ t e x)
22

23 # F ina l t e x t u r e
24 ExportSVG (ha t ch_ tex , s i z e)

87

Teaser: example e 20 sec

1 de f t e a s e r _ e () :
2 s i z e = 2000
3 wheel = ImportSVG (" d a t a / wheel1 . svg ")
4 s t i p p l e = ImportSVG (" d a t a / s t i p p l e 1 . svg ")
5

6 # Uniform p a r t i t i o n (around 100 f a c e s)
7 props1 = I r r e g u l a r P r o p e r t i e s (1 0 0 / (s i z e�

s i z e))
8 t ex1 = Un i fo rmPar t i t i on (props1 ,

KEEP_OUTSIDE)
9

10 # Random p a r t i t i o n (around 1200 f a c e s)
11 props2 = I r r e g u l a r P r o p e r t i e s (1 2 0 0 / (s i z e�

s i z e))
12 t ex2 = RandomPart i t ion (props2 ,

KEEP_OUTSIDE)
13

14 # Mapper : p l ace a wheel i n each f a c e
15 de f f a c e _ t o _ w h e e l (f a c e) :
16 w = Sca le (R o t a t e (wheel , Random (face ,0 ,2�

p i , 0)) , Random (face , 0 . 8 , 1 , 1))
17 r e t u r n MatchPo in t (w, BBoxCenter (w) ,

C e n t r o i d (f a c e))
18

19 # Mapper : p l ace a s t i p p l e i n each f a c e
20 de f f a c e _ t o _ s t i p p l e s (f a c e) :
21 s = Sca le (R o t a t e (s t i p p l e , Random (face

,0 ,2� p i , 0)) , Random (face , 0 . 9 , 1 , 1))
22 r e t u r n MatchPo in t (s , BBoxCenter (s) ,

C e n t r o i d (f a c e))
23

24 # Mapping o p e r a t o r s
25 t ex_whee l = MapToFaces(face_ to_whee l ,

t ex1)
26 t e x _ s t i p p l e s =MapToFaces(f a c e _ t o _ s t i p p l e s

, t ex2)
27

28 # Combining o p e r a t o r s
29 t e x t u r e = Union (tex_wheel ,Outs ide (

t e x _ s t i p p l e s , tex_whee l , KEEP_INSIDE))
30

31 # F ina l t e x t u r e
32 ExportSVG (t e x t u r e , s i z e)

88 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Teaser: example f 3 sec

1 de f t e a s e r _ f () :
2 # Random p a r t i t i o n (around 30 f a c e s)
3 s i z e = 2000
4 props = I r r e g u l a r P r o p e r t i e s (3 0 / (s i z e�

s i z e))
5 i n i t _ t e x = RandomPart i t ion (props ,

KEEP_OUTSIDE)
6

7 # Mapper : r e s c a l e each f a c e
8 de f sca le_map (f a c e) :
9 r e t u r n Sca le (Contour (f a c e) , 0 . 9 5)

10

11 # Mapper : p roduces s t r i p e s on each f a c e
12 de f hatch_map (f a c e) :
13 ang le = Random (face ,0 ,2� p i , 1)
14 l i n e s = S t r i p e s P r o p e r t i e s (ang le , 4 0)
15 r e t u r n S t r i p e s P a r t i t i o n (l i n e s) (f a c e)
16

17 # Mapper : remove boundary edges
18 de f border_map (edge) :
19 i f I sBoundary (edge) :
20 r e t u r n Noth ing ()
21 r e t u r n ToCurve (edge)
22

23 # Mapping o p e r a t o r s
24 t ex1 = MapToFaces(scale_map , i n i t _ t e x)
25 t ex2 = MapToFaces(hatch_map , tex1)
26 t ex3 = MapToEdges(border_map , tex2)
27

28 # F ina l t e x t u r e
29 ExportSVG (tex3 , s i z e)

89

Teaser: example g 6 sec

1 de f t e a s e r _ g () :
2 c u r v e s = [ImportSVG (" d a t a / l i n e 1 . svg ") ,
3 ImportSVG (" d a t a / l i n e 2 . svg ")]
4

5 # Grid p a r t i t i o n , i n c l u d i n g f a c e l a b e l s
6 s i z e = 2000
7 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
8 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
9 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")

10 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
11 g r i d l _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
12

13 # Mapper : r e p l a c e each edge by a random
curve

14 de f edge_ to_cu rve (edge) :
15 i f I sBoundary (edge) :
16 r e t u r n ToCurve (edge)
17 cu rve = c u r v e s [f l o o r (Random (edge , 0 , l e n (

c u r v e s) , 0))]
18 s r c _ c = P o i n t L a b e l e d (curve , " s t a r t ")
19 d s t _ c = P o i n t L a b e l e d (curve , " end ")
20 s r c_v = Loca t i on (SourceVer tex (edge))
21 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
22 i f Random (edge , 0 , 1 , 1) <0 .5 :
23 r e t u r n MatchPo in ts (curve , s rc_c , ds t_c

, s rc_v , ds t_v)
24 e l s e :
25 r e t u r n MatchPo in ts (curve , ds t_c , s rc_c

, s rc_v , ds t_v)
26

27 # Mapper : c r e a t e s s t r i p e s i n each f a c e
28 de f f a c e _ t o _ s t r i p e s (f a c e) :
29 wid th = BBoxWidth (f a c e) / Random (face

, 4 , 6 , 0)
30 t h e t a = 0
31 i f ((HasLabel (face , " h1 ") and HasLabel (

face , " v1 ")) o r
32 (HasLabel (face , " h2 ") and HasLabel (

face , " v2 "))) :
33 t h e t a = p i / 2
34 l i n e s = S t r i p e s P r o p e r t i e s (t h e t a , w id th

)
35 s t r i p e s = S t r i p e s P a r t i t i o n (l i n e s)
36 r e t u r n MapToEdges(edge_ to_curve , s t r i p e s

) (f a c e)
37

38 # Mapping o p e r a t o r
39 t i l e d _ t e x = MapToFaces(f a c e _ t o _ s t r i p e s ,

g r i d l _ t e x)
40

41 # F ina l t e x t u r e
42 ExportSVG (t i l e d _ t e x , s i z e)

90 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Teaser: example h 26 sec

1 de f t e a s e r _ h () :
2 s i z e = 2000
3

4 # S t r i p e p a r t i t i o n
5 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 . 0 , 3 0 0)
6 SetFaceTags (l i n e s 1 , " h1 " , " h2 ")
7 s t r i p e s 1 = S t r i p e s P a r t i t i o n (l i n e s 1)
8

9 # S t r i p e p a r t i t i o n
10 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 3 0 0)
11 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
12 s t r i p e s 2 = S t r i p e s P a r t i t i o n (l i n e s 2)
13

14 # Grid p a r t i t i o n w i t h l a b e l s
15 l i n e s 3 = S t r i p e s P r o p e r t i e s

(0 . 0 , 1 0 0 , 1 0 0 , 1 0 0 , 3 0 0)
16 S e t F a c e L a b e l s (l i n e s 3 , " h1 " , " h2 " , " h3 " , " h4 ")
17 l i n e s 4 = S t r i p e s P r o p e r t i e s (p i

/ 2 , 100 ,100 ,100 ,300)
18 S e t F a c e L a b e l s (l i n e s 4 , " v1 " , " v2 " , " v3 " , " v4 ")
19 g r i d = Gr idPa r t i t i on (l i n e s 3 , l i n e s 4 ,

KEEP_OUTSIDE)
20

21 # Crea te a s t r i p e p a r t i t i o n w i t h s p e c i f i e d
ang le and w id th

22 de f ha t ch (ang le , w id th) :
23 l i n e s = S t r i p e s P r o p e r t i e s (ang le , w id th)
24 r e t u r n S t r i p e s P a r t i t i o n (l i n e s)
25

26 # Mapper : c r e a t e� p i / 4 s t r i p e s i n each
f a c e

27 de f h a t c h _ m a p _ s t r i p e s 1 (f) :
28 ang le = � p i / 4
29 i f HasLabel (f , " h1 ") :
30 r e t u r n ha t ch (ang le , 3 0) (f)
31 e l s e :
32 r e t u r n Noth ing ()
33

34 # Mapper : c r e a t e p i / 4 s t r i p e s i n each f a c e
35 de f h a t c h _ m a p _ s t r i p e s 2 (f) :
36 ang le = p i / 4
37 i f HasLabel (f , " v1 ") :
38 r e t u r n ha t ch (ang le , 3 0) (f)
39 e l s e :
40 r e t u r n Noth ing ()
41

42 # Mapper : c r e a t e p i / 2 s t r i p e s i n s p e c i f i c
f a c e s

43 de f ha tch_map_gr id (f) :
44 ang le = p i / 2
45 i f HasLabel (f , " h1 ") :
46 r e t u r n ha t ch (ang le , 1 0) (f)
47 e l i f HasLabel (f , " v1 ") :
48 r e t u r n ha t ch (ang le , 1 0) (f)
49 e l s e :
50 r e t u r n Noth ing ()
51

52 # Mapping o p e r a t o r s
53 t ex1 = MapToFaces(h a t c h _ m a p _ s t r i p e s 1 ,

s t r i p e s 1)
54 t ex2 = MapToFaces(h a t c h _ m a p _ s t r i p e s 2 ,

s t r i p e s 2)
55 t ex4 = MapToFaces(hatch_map_gr id , g r i d)
56

57 # Merging o p e r a t o r s
58 t ex3 = Union (tex1 , t ex2)
59 t ex5 = Union (tex3 , t ex4)
60

61 ExportSVG (tex5 , s i z e)

91

Combining a: texture 1 1 sec

1 de f s q u a r e s (t h e t a , w id th) :
2 # Grid p a r t i t i o n w i t h g i ven w id th and

o r i e n t a t i o n
3 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
4 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i / 2 . 0 ,

w id th)
5 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
6 s q u a r e = ImportSVG (" d a t a / s q u a r e . svg ")
7

8 # Mapper : p l ace a rounded square i n each
f a c e

9 de f f a c e _ t o _ s q u a r e (f a c e) :
10 r e t u r n R o t a t e (MatchFace (square , f a c e) ,

Random (face , 0 . 0 , 2 . 0� p i , 1))
11

12 # Retu rn t h e t e x t u r e gen ra ted v i a t h e
mapping o p e r a t o r

13 r e t u r n MapToFaces(f a c e _ t o _ s q u a r e , g r i d _ t e x)
14

15 de f combine_a () :
16 t ex1 = s q u a r e s (p i / 4 , 4 0 0)
17 ExportSVG (tex1 , 2 0 0 0)

Combining b: texture 2 1 sec

1 de f c u r v e s (t h e t a , w id th) :
2 # S t r i p e s p a r t i t i o n w i t h g i ven w id th and

o r i e n t a t i o n
3 props = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
4 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
5 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
6

7 # Mapper : r e p l a c e each edge by a curve
8 de f l i n e _ t o _ c u r v e (edge) :
9 i f I sBoundary (edge) :

10 r e t u r n Noth ing ()
11 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
12 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
13 s r c_v = Loca t i on (SourceVer tex (edge))
14 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
15 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
16

17 # Retu rn t h e t e x t u r e gen ra ted v i a t h e
mapping o p e r a t o r

18 r e t u r n MapToEdges(l i n e _ t o _ c u r v e , s t r i p e s)
19

20 de f combine_b () :
21 t ex2 = c u r v e s (p i / 6 , 8 0)
22 ExportSVG (tex2 , 2 0 0 0)

92 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Combining c: texture 3 13 sec

1 de f c i r c l e s (d e n s i t y) :
2 # Uniform p a r t i t i o n w i t h g i ven d e n s i t y
3 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
4 p a r t = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
5 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
6

7 # Mapper : p l ace a c i r c l e i n each f a c e
8 de f f a c e _ t o _ c i r c l e (f a c e) :
9 s r c_p = BBoxCenter (c i r c l e)

10 ds t_p = C e n t r o i d (f a c e)
11 r e t u r n Sca le (MatchPo in t (c i r c l e , s rc_p ,

ds t_p) , Random (face , 0 . 0 5 , 0 . 1 5 , 0))
12

13 # Mapping o p e r a t o r
14 r e t u r n MapToFaces(f a c e _ t o _ c i r c l e , p a r t)
15

16 de f combine_c () :
17 t ex3 = c i r c l e s (8 . 5 e� 5)
18 ExportSVG (tex3 , 2 0 0 0)

Combining d: merging tex1 and tex2 4 sec

1 de f combine_d () :
2 t ex1 = s q u a r e s (p i / 4 , 4 0 0)
3 t ex2 = c u r v e s (p i / 6 , 8 0)
4 t e x f = Union (tex1 , t ex2)
5 ExportSVG (t e x f , 2 0 0 0)

93

Combining e: tex2 inside tex1 (crop) 3 sec

1 de f combine_e () :
2 t ex1 = s q u a r e s (p i / 4 , 4 0 0)
3 t ex2 = c u r v e s (p i / 6 , 8 0)
4 t e x f = I n s i d e (tex2 , tex1 ,CROP)
5 ExportSVG (t e x f , 2 0 0 0)

Combining f: tex3 inside tex1 (keep outside) 15 sec

1 de f combine_f () :
2 t ex1 = s q u a r e s (p i / 4 , 4 0 0)
3 t ex3 = c i r c l e s (8 . 5 e� 5)
4 t e x f = I n s i d e (tex3 , tex1 , KEEP_OUTSIDE)
5 ExportSVG (t e x f , 2 0 0 0)

94 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Combining g: tex3 outside tex1 (crop) 15 sec

1 de f combine_g () :
2 t ex1 = s q u a r e s (p i / 4 , 4 0 0)
3 t ex3 = c i r c l e s (8 . 5 e� 5)
4 t e x f = Outs ide (tex3 , tex1 ,CROP)
5 ExportSVG (t e x f , 2 0 0 0)

Combining h: tex3 outside tex1 (keep inside) 15 sec

1 de f combine_h () :
2 t ex1 = s q u a r e s (p i / 4 , 4 0 0)
3 t ex3 = c i r c l e s (8 . 5 e� 5)
4 t e x f = Outs ide (tex3 , tex1 , KEEP_INSIDE)
5 ExportSVG (t e x f , 2 0 0 0)

95

Regular result (a) 30 sec

1 de f comp lex_ regu la r01 () :
2 s i z e = 2000
3

4 # Grid p a r t i t i o n
5 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 . 0 , 2 0 0)
6 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , 2 0 0)
7 g r i d = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
8

9 # S t r i p e p a r t i t i o n
10 l i n e s = S t r i p e s P r o p e r t i e s (0 , 1 5)
11 ha t ch = S t r i p e s P a r t i t i o n (l i n e s)
12

13 # Mapper : r o t a t e f a c e s w i t h a p i / 4 ang le
14 de f ro ta te_map (f) :
15 r e t u r n R o t a t e (Contour (f) , p i / 4)
16

17 # Mapper : s c a l e each f a c e w i t h a f a c t o r
0 .8

18 de f sca le_map (f) :
19 r e t u r n Sca le (Contour (f) , 0 . 8)
20

21 # Mapping o p e r a t o r s (r o t a t e / s c a l e)
22 t ex1 = MapToFaces(ro ta te_map , g r i d)
23 t ex2 = MapToFaces(scale_map , tex1)
24

25 # Combining o p e r a t o r
26 t ex3 = Outs ide (hatch , tex2 ,CROP)
27

28 ExportSVG (tex3 , s i z e)

96 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Regular result (b) 39 sec

1 de f comp lex_ regu la r02 () :
2 s i z e = 2000
3 l i n e = ImportSVG (" d a t a / l i n e 3 . svg ")
4

5 # Grid p a r t i t i o n and l a b e l s
6 l i n e s 1 = S t r i p e s P r o p e r t i e s (p i / 4 . 0 , 2 0 0)
7 l i n e s 2 = S t r i p e s P r o p e r t i e s (� p i / 4 . 0 , 2 0 0)
8 SetEdgeTags (l i n e s 1 , " h1 " , " h2 " , " h3 " , " h4 ")
9 SetEdgeTags (l i n e s 2 , " v1 " , " v2 " , " v3 " , " v4 ")

10 g r i d = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 , KEEP_OUTSIDE)
11

12 # Mapper : keep or remove edge
13 de f gr id_ to_V_mapper (edge) :
14 i f HasTag (edge , " v1 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " h1 ") :
15 r e t u r n Noth ing ()
16 i f HasTag (edge , " v2 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " h2 ") :
17 r e t u r n Noth ing ()
18 i f HasTag (edge , " v3 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " h3 ") :
19 r e t u r n Noth ing ()
20 i f HasTag (edge , " v4 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " h4 ") :
21 r e t u r n Noth ing ()
22 i f HasTag (edge , " h1 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " v3 ") :
23 r e t u r n Noth ing ()
24 i f HasTag (edge , " h2 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " v4 ") :
25 r e t u r n Noth ing ()
26 i f HasTag (edge , " h3 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " v1 ") :
27 r e t u r n Noth ing ()
28 i f HasTag (edge , " h4 ") and HasTag (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , " v2 ") :
29 r e t u r n Noth ing ()
30 r e t u r n ToCurve (edge)
31

32 # Mapper : r e s c a l e f a c e
33 de f sca le_map (f) :
34 r e t u r n Sca le (Contour (f) , 0 . 8)
35 # Mapper : r e p l a c e each edge by a curve
36 de f map_curve_to_edge (edge) :
37 s t a r t = Po in tTagged (l i n e , " s t a r t ")
38 end = Po in tTagged (l i n e , " end ")
39 i f I sBoundary (edge) :
40 r e t u r n Noth ing ()
41 e l s e :
42 r e t u r n MatchPo in ts (l i n e , s t a r t , end , Loca t i on

(SourceVer tex (edge)) , Loca t i on (
T a r g e t V e r t e x (edge)))

43 # Crea te a s t r i p e p a r t i t i o n
44 de f ha t ch (ang le) :
45 l i n e s = S t r i p e s P r o p e r t i e s (ang le , 4 0)
46 r e t u r n S t r i p e s P a r t i t i o n (l i n e s)
47 # Mapper : c r e a t e s t r i p e s i n each f a c e
48 de f hatch_map (f) :
49 ang le = 0 .0
50 r e t u r n ha t ch (ang le) (f)
51 # Mapping o p e r a t o r : s e l e c t g r i d edges
52 t ex1 = MapToEdges(gr id_to_V_mapper , g r i d)
53 # Mapping o p e r a t o r : r e s c a l e f a c e s
54 t ex2 = MapToFaces(scale_map , tex1)
55 # Mapping o p e r a t o r : p l ace h a t c h e s f a c e s
56 t ex3 = MapToFaces(hatch_map , tex2)
57 # Mapping o p e r a t o r : r e p l a c e h a t c h e s by smooth

c u r v e s
58 t ex4 = MapToEdges(map_curve_to_edge , t ex3)
59

60 ExportSVG (tex4 , s i z e)

97

Regular result (c) 30 sec

1 de f comp lex_ regu la r03 () :
2 s i z e = 2000
3 l i n e = ImportSVG (" d a t a / l i n e 4 . svg ")
4 l i n e 2 = ImportSVG (" d a t a / l i n e 2 . svg ")
5

6 # S t r i p e p a r t i t i o n s and t h e i r l a b e l s
7 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
8 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
9 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")

10 SetEdgeLabe ls (l i n e s 2 , " h1 " , " h2 ")
11 s t r i p e s 1 = S t r i p e s P a r t i t i o n (l i n e s 1)
12 s t r i p e s 2 = S t r i p e s P a r t i t i o n (l i n e s 2)
13

14 # Mapper : r e p l a c e each edge by a curve
15 de f map_curve_to_edge (edge) :
16 s t a r t = Po in tTagged (l i n e , " s t a r t ")
17 end = Po in tTagged (l i n e , " end ")
18 i f I sBoundary (edge) :
19 r e t u r n ToCurve (edge)
20 e l i f HasLabel (edge , " h1 ") :
21 r e t u r n MatchPo in ts (l i n e , s t a r t , end ,

Loca t i on (SourceVer tex (edge)) ,
Loca t i on (T a r g e t V e r t e x (edge)))

22 e l s e :
23 r e t u r n MatchPo in ts (l i n e , end , s t a r t ,

Loca t i on (SourceVer tex (edge)) ,
Loca t i on (T a r g e t V e r t e x (edge)))

24

25 # Mapper : r e p l a c e each edge by a curve
26 de f map_curve_to_edge2 (edge) :
27 s t a r t = Po in tTagged (l i n e 2 , " s t a r t ")
28 end = Po in tTagged (l i n e 2 , " end ")
29 i f I sBoundary (edge) :
30 r e t u r n Noth ing ()
31 e l s e :
32 r e t u r n MatchPo in ts (l i n e 2 , s t a r t , end ,

Loca t i on (SourceVer tex (edge)) ,
Loca t i on (T a r g e t V e r t e x (edge)))

33

34 # Mapper : c r e a t e s t r i p e s i n each f a c e w i t h
random o r i e n t a t i o n s

35 de f hatch_map (f) :
36 ang le = Random (f , 0 , 2� p i , 0)
37 l i n e s = S t r i p e s P r o p e r t i e s (ang le , 3 0)
38 ha t ch = S t r i p e s P a r t i t i o n (l i n e s)
39 r e t u r n ha t ch (f)
40

41 # Mapper : r e s c a l e each f a c e
42 de f sca le_map (f) :
43 r e t u r n Sca le (Contour (f) , 0 . 9)
44

45 # Mapping / combin ing o p e r a t o r s
46 t ex1 = MapToEdges(map_curve_to_edge ,

s t r i p e s 1)
47 t ex2 = MapToEdges(map_curve_to_edge ,

s t r i p e s 2)
48 t ex3 = Union (tex1 , t ex2)
49 t ex4 = MapToFaces(scale_map , tex3)
50 t ex5 = MapToFaces(hatch_map , tex4)
51 t ex6 = MapToEdges(map_curve_to_edge2 , t ex5)
52

53 ExportSVG (tex6 , s i z e)

98 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Regular result (d) 25 sec

1 de f comp lex_ regu la r04 () :
2 s i z e = 2000
3 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
4

5 # Grid p a r t i t i o n
6 l i n e s 1 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , 2 0 0)
7 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i , 2 0 0)
8 p a r t i t i o n 1 = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
9

10 # Mapper : p l ace a c i r c l e i n each f a c e
11 de f c i r c l e _ m a p (f) :
12 r e t u r n Sca le (MatchFace (c i r c l e , f) , 2 . 5)
13

14 # Mapper : r e s c a l e f a c e
15 de f sca le_map (f) :
16 r e t u r n Sca le (Contour (f) , 0 . 6 5)
17

18 # Mapper : keep or remove f a c e
19 de f de le te_map (f) :
20 r = Random (f , 0 , 1 , 2)
21 i f r < 0 . 3 :
22 r e t u r n Noth ing ()
23 e l s e :
24 r e t u r n Contour (f)
25

26 # Mapping o p e r a t o r s
27 t ex1 = MapToFaces(c i r c le_map , p a r t i t i o n 1)
28 t ex2 = MapToFaces(scale_map , tex1)
29 t ex3 = MapToFaces(de le te_map , tex2)
30

31 ExportSVG (tex3 , s i z e)

Non regular result (a) left 6 sec

1 de f comp lex_non_regu la r01 () :
2 s i z e = 2000
3 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
4

5 # Uniform p a r t i t i o n
6 d e n s i t y = 1 0 0 / (s i z e� s i z e)
7 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
8 p a r t i t i o n = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
9

10 # Mapper : p l ace a c i r c l e i n each f a c e
11 de f c i r c l e _ m a p (f) :
12 r e t u r n Sca le (MatchFace (c i r c l e , f) ,

Random (f , 0 . 2 , 2 . 0 , 2))
13

14 # Mapping o p e r a t o r
15 t ex1 = MapToFaces(c i r c le_map , p a r t i t i o n)
16

17 ExportSVG (tex1 , s i z e)

99

Non regular result (a) right 29 sec

1 de f comp lex_non_regu la r02 () :
2 s i z e = 2000
3 l i n e = ImportSVG (" d a t a / l i n e 2 . svg ")
4

5 # Uniform p a r t i t i o n
6 d e n s i t y = 20 / (2000� 2000)
7 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
8 p a r t i t i o n = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
9

10 # Mapper : r e p l a c e each edge by a curve
11 de f map_curve_to_edge (edge) :
12 s t a r t = Po in tTagged (l i n e , " s t a r t ")
13 end = Po in tTagged (l i n e , " end ")
14 r e t u r n MatchPo in ts (l i n e , s t a r t , end ,

Loca t i on (SourceVer tex (edge)) ,
Loca t i on (T a r g e t V e r t e x (edge)))

15

16 # Mapper : r e s c a l e a f a c e
17 de f sca le_map (f) :
18 r e t u r n Sca le (Contour (f) , 0 . 8)
19

20 # Mapping o p e r a t o r s (i t e r a t i v e l y r e s c a l e
f a c e s)

21 l 1 = MapToEdges(map_curve_to_edge ,
p a r t i t i o n)

22 l 2 = MapToFaces(scale_map , l 1)
23 l 3 = MapToFaces(scale_map , l 2)
24 l 4 = MapToFaces(scale_map , l 3)
25 l 5 = MapToFaces(scale_map , l 4)
26 l 6 = MapToFaces(scale_map , l 5)
27 l 7 = MapToFaces(scale_map , l 6)
28 l 8 = MapToFaces(scale_map , l 7)
29 l 9 = MapToFaces(scale_map , l 8)
30 l 10 = MapToFaces(scale_map , l 9)
31

32 # Combining o p e r a t o r s : merge a l l
a r rangements

33 t e x = Union (Union (Union (Union (Union (Union (
Union (Union (Union (l1 , l 2) , l 3) , l 4) , l 5) ,
l 6) , l 7) , l 8) , l 9) , l 10)

34

35 ExportSVG (tex , s i z e)

100 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Non regular result (b) 12 sec

1 de f comp lex_non_regu la r03 () :
2 s i z e = 2000
3 l i n e = ImportSVG (" d a t a / l i n e 3 . svg ")
4

5 # Random p a r t i t i o n
6 d e n s i t y = 1 0 / (s i z e� s i z e)
7 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
8 p a r t i t i o n = RandomPart i t ion (props ,

KEEP_OUTSIDE)
9

10 # Mapper : r e p l a c e i n t e r n a l edges by c u r v e s
11 de f map_curve_to_edge (edge) :
12 s t a r t = Po in tTagged (l i n e , " s t a r t ")
13 end = Po in tTagged (l i n e , " end ")
14 i f I sBoundary (edge) :
15 r e t u r n ToCurve (edge)
16 e l s e :
17 r e t u r n MatchPo in ts (l i n e , end , s t a r t ,

Loca t i on (SourceVer tex (edge)) ,
Loca t i on (T a r g e t V e r t e x (edge)))

18

19 # Mapper : c r e a t e a random p a r t i t i o n i n
each f a c e

20 de f p a r t i t i o n _ m a p (f) :
21 d e n s i t y 2 = 1 0 0 / (s i z e� s i z e)
22 props2 = I r r e g u l a r P r o p e r t i e s (d e n s i t y 2)
23 p a r t i t i o n 2 = RandomPart i t ion (props2 ,

CROP_ADD_BOUNDARY)
24 r e t u r n p a r t i t i o n 2 (f)
25

26 # Mapping o p e r a t o r s
27 t ex1 = MapToEdges(map_curve_to_edge ,

p a r t i t i o n)
28 t ex2 = MapToFaces(p a r t i t i o n _ m a p , tex1)
29 t ex3 = MapToEdges(map_curve_to_edge , t ex2)
30

31 ExportSVG (tex3 , s i z e)

101

Non regular result (c) 30 sec

1 de f comp lex_non_regu la r04 () :
2 s i z e = 2000
3

4 # Uniform p a r t i t i o n
5 d e n s i t y 1 = 2 0 / (s i z e� s i z e)
6 props1 = I r r e g u l a r P r o p e r t i e s (d e n s i t y 1)
7 p a r t i t i o n 1 = Un i fo rmPar t i t i on (props1 ,

KEEP_OUTSIDE)
8

9 # Uniform p a r t i t i o n
10 d e n s i t y 2 = 9 0 / (s i z e� s i z e)
11 props2 = I r r e g u l a r P r o p e r t i e s (d e n s i t y 2)
12 p a r t i t i o n 2 = Un i fo rmPar t i t i on (props2 ,

KEEP_OUTSIDE)
13

14 # Mapper : r e s c a l e f a c e s
15 de f sca le_map (f) :
16 r e t u r n Sca le (Contour (f) , 0 . 8)
17

18 # Mapper : c r e a t e a un i fo rm p a r t i t i o n i n
each f a c e

19 de f p a r t i t i o n 2 _ m a p (f) :
20 r e t u r n MapToFaces(scale_map , p a r t i t i o n 2)

(f)
21

22 # Mapping o p e r a t o r s
23 t ex1 = MapToFaces(scale_map , p a r t i t i o n 1)
24 t ex2 = MapToFaces(scale_map , p a r t i t i o n 2)
25

26 # Combining o p e r a t o r s
27 t ex3 = I n s i d e (tex2 , tex1 ,CROP)
28 t ex4 = Union (tex1 , t ex3)
29

30 ExportSVG (tex4 , s i z e)

102 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Non regular result (d) 1 min, 28 sec

1 de f comp lex_non_regu la r05 () :
2 s i z e = 2000
3

4 # Random p a r t i t i o n
5 d e n s i t y = 30 / (2000� 2000)
6 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
7 p a r t i t i o n = RandomPart i t ion (props ,

KEEP_OUTSIDE)
8

9 # Mapper : r o t a t e edge
10 de f r o t a t e _ e (e) :
11 r e t u r n R o t a t e (ToCurve (e) , p i / 4)
12

13 # Mapper : r e s c a l e edge
14 de f sca le_map_5 (e) :
15 r e t u r n Sca le (ToCurve (e) , 5 . 0)
16

17 # Mapper : r e s c a l e edge
18 de f sca le_map_10 (e) :
19 r e t u r n Sca le (ToCurve (e) , 1 0 . 0)
20

21 # Mapping o p e r a t o r s
22 t ex1 = MapToEdges(scale_map_5 , p a r t i t i o n)
23 t ex2 = MapToEdges(scale_map_10 , p a r t i t i o n)
24 t ex3 = MapToEdges(r o t a t e _ e , t ex2)
25

26 ExportSVG (tex3 , s i z e)

103

Script edition (a) original script 25 sec

1 de f o v e r v i e w _ o r i g () :
2 s i z e = 2500
3 b lob = ImportSVG (" d a t a / b lob . svg ")
4 z i g = ImportSVG (" d a t a / z i g . svg ")
5

6 # Mapper : p l ace a b lob i n each f a c e
7 de f map_blob_to (f a c e) :
8 new_blob = R o t a t e (blob , Random (face ,0 ,2�

p i , 0))
9 r e t u r n MatchPo in t (new_blob , BBoxCenter (

new_blob) , C e n t r o i d (f a c e))
10

11 # Mapper : r e p l a c e each edge by a curved
l i n e

12 de f map_curve_to (edge) :
13 i f I sBoundary (edge) :
14 r e t u r n ToCurve (edge)
15 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
17 s r c_v = Loca t i on (SourceVer tex (edge))
18 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
19 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

s rc_v , ds t_v)
20

21 de f c r e a t e _ b l o b _ t e x () :
22 # Uniform p a r t i t i o n
23 props = I r r e g u l a r P r o p e r t i e s

(11 / (2000� 2000))
24 i n i t _ t e x = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
25

26 # Mapping o p e r a t o r s
27 r e t u r n MapToFaces(map_blob_to , i n i t _ t e x)
28

29 # Mapper : g e n e r a t e a t e x t u r e i n each f a c e
30 de f c r e a t e _ z i g _ t e x (f a c e) :
31

32 # Grid p a r t i t i o n w i t h randomized
o r i e n t a t i o n s

33 t h e t a = Random (face ,0 ,2� p i , 1)
34 wid th = BBoxWidth (f a c e) / 5
35 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a ,

w id th)
36 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 , w id th)
37 i n i t _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

CROP_ADD_BOUNDARY)
38

39 # Mapping o p e r a t o r
40 t e x t u r e 2 = MapToEdges(map_curve_to ,

i n i t _ t e x)
41 r e t u r n t e x t u r e 2 (f a c e)
42

43 i n i t _ t e x = c r e a t e _ b l o b _ t e x ()
44 f i n a l _ t e x = MapToFaces(c r e a t e _ z i g _ t e x ,

i n i t _ t e x)
45

46 # Expor t f i n a l t e x t u r e
47 ExportSVG (f i n a l _ t e x , s i z e)

104 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Script edition (b) switch partitions 52 sec

1 de f ove rv iew_var1 () :
2 s i z e = 2500
3 b lob = ImportSVG (" d a t a / b lob . svg ")
4 z i g = ImportSVG (" d a t a / z i g . svg ")
5

6 # Mapper : p l ace a b lob i n each f a c e
7 de f map_blob_to (f a c e) :
8 new_blob = R o t a t e (blob , Random (face ,0 ,2�

p i , 0))
9 r e t u r n MatchPo in t (new_blob , BBoxCenter (

new_blob) , C e n t r o i d (f a c e))
10

11 # Mapper : r e p l a c e each edge by a curved
l i n e

12 de f map_curve_to (edge) :
13 i f I sBoundary (edge) :
14 r e t u r n ToCurve (edge)
15 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
17 s r c_v = Loca t i on (SourceVer tex (edge))
18 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
19 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

s rc_v , ds t_v)
20

21 de f c r e a t e _ b l o b _ t e x () :
22 # Grid p a r t i t i o n
23 t h e t a = 0
24 wid th = s i z e / 4
25 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a ,

w id th)
26 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 , w id th)
27 i n i t _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
28

29 # Mapping o p e r a t o r s
30 r e t u r n MapToFaces(map_blob_to , i n i t _ t e x)
31

32 # Mapper : g e n e r a t e a t e x t u r e i n each f a c e
33 de f c r e a t e _ z i g _ t e x (f a c e) :
34 # Uniform p a r t i t i o n
35 props = I r r e g u l a r P r o p e r t i e s (1 1 / (

BBoxWidth (f a c e)� BBoxHeight (f a c e)))
36 i n i t _ t e x = Un i fo rmPar t i t i on (props ,

CROP_ADD_BOUNDARY)
37

38 # Mapping o p e r a t o r
39 t e x t u r e 2 = MapToEdges(map_curve_to ,

i n i t _ t e x)
40 r e t u r n t e x t u r e 2 (f a c e)
41

42 i n i t _ t e x = c r e a t e _ b l o b _ t e x ()
43 f i n a l _ t e x = MapToFaces(c r e a t e _ z i g _ t e x ,

i n i t _ t e x)
44

45 # Expor t f i n a l t e x t u r e
46 ExportSVG (f i n a l _ t e x , s i z e)

105

Script edition (c) switch arrangements 12 sec

1 de f ove rv iew_var2 () :
2 s i z e = 2500
3 b lob = ImportSVG (" d a t a / b lob . svg ")
4 z i g = ImportSVG (" d a t a / z i g . svg ")
5

6 # Mapper : p l ace a b lob i n each f a c e
7 de f map_blob_to (f a c e) :
8 new_blob = R o t a t e (blob , Random (face ,0 ,2�

p i , 0))
9 r e t u r n MatchPo in t (new_blob , BBoxCenter (

new_blob) , C e n t r o i d (f a c e))
10

11 # Mapper : r e p l a c e each edge by a curved
l i n e

12 de f map_curve_to (edge) :
13 i f I sBoundary (edge) :
14 r e t u r n ToCurve (edge)
15 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
17 s r c_v = Loca t i on (SourceVer tex (edge))
18 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
19 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

s rc_v , ds t_v)
20

21 de f c r e a t e _ b l o b _ t e x (f a c e) :
22 # Grid p a r t i t i o n
23 t h e t a = 0 #Random (face ,0 ,2� p i , 0)
24 wid th = s i z e /16
25 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a ,

w id th)
26 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 , w id th)
27 i n i t _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_INSIDE)
28

29 # Mapping o p e r a t o r s
30 r e t u r n MapToFaces(map_blob_to , i n i t _ t e x)

(f a c e)
31

32 # Mapper : g e n e r a t e a t e x t u r e i n each f a c e
33 de f c r e a t e _ z i g _ t e x () :
34 # Uniform p a r t i t i o n
35 props = I r r e g u l a r P r o p e r t i e s (1 1 / (s i z e

� s i z e))
36 i n i t _ t e x = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
37

38 # Mapping o p e r a t o r
39 r e t u r n MapToEdges(map_curve_to , i n i t _ t e x

)
40

41 i n i t _ t e x = c r e a t e _ z i g _ t e x ()
42 f i n a l _ t e x = Union (i n i t _ t e x ,MapToFaces(

c r e a t e _ b l o b _ t e x , i n i t _ t e x))
43

44 # Expor t f i n a l t e x t u r e
45 ExportSVG (f i n a l _ t e x , s i z e)

106 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Script edition (d) vary mappings 56 sec

1 de f ove rv iew_var3 () :
2 s i z e = 2500
3 f l o w e r = ImportSVG (" d a t a / f l o w e r . svg ")
4 l e a f = ImportSVG (" d a t a / l e a f . svg ")
5 z i g = ImportSVG (" d a t a / z i g7 . svg ")
6

7 # Mapper : p l ace a b lob i n each f a c e
8 de f map_blob_to (f a c e) :
9 new_f lower = Sca le (R o t a t e (f lower , Random

(face ,0 ,2� p i , 0)) , Random (face
, 0 . 7 , 1 , 1))

10 new_ lea f = Sca le (R o t a t e (l e a f , Random (
face ,0 ,2� p i , 2)) , Random (face
, 0 . 7 , 1 , 3))

11 i f Random (face , 0 , 1 , 4) >0 .5 :
12 r e t u r n MatchPo in t (new_f lower ,

BBoxCenter (new_f lower) , C e n t r o i d (
f a c e))

13 e l s e :
14 r e t u r n MatchPo in t (new_leaf ,

BBoxCenter (new_ lea f) , C e n t r o i d (
f a c e))

15

16 # Mapper : r e p l a c e each edge by a curved
l i n e

17 de f map_curve_to (edge) :
18 i f I sBoundary (edge) :
19 r e t u r n ToCurve (edge)
20 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
21 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
22 s r c_v = Loca t i on (SourceVer tex (edge))
23 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
24 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

s rc_v , ds t_v)
25

26 de f c r e a t e _ b l o b _ t e x (f a c e) :
27 # Grid p a r t i t i o n
28 t h e t a = 0
29 wid th = s i z e /16
30 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a ,

w id th)
31 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 , w id th)
32 i n i t _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_INSIDE)
33

34 # Mapping o p e r a t o r s
35 r e t u r n MapToFaces(map_blob_to , i n i t _ t e x)

(f a c e)
36

37 # Mapper : g e n e r a t e a t e x t u r e i n each f a c e
38 de f c r e a t e _ z i g _ t e x () :
39 # Uniform p a r t i t i o n
40 props = I r r e g u l a r P r o p e r t i e s (1 1 / (s i z e

� s i z e))
41 i n i t _ t e x = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
42

43 # Mapping o p e r a t o r
44 r e t u r n MapToEdges(map_curve_to , i n i t _ t e x

)
45

46 i n i t _ t e x = c r e a t e _ z i g _ t e x ()
47 f i n a l _ t e x = Union (i n i t _ t e x ,MapToFaces(

c r e a t e _ b l o b _ t e x , i n i t _ t e x))
48

49 # Expor t f i n a l t e x t u r e
50 ExportSVG (f i n a l _ t e x , s i z e)

107

Parquetry 20 sec

1 de f p a r q u e t r y () :
2 # Labe l f i l t e r i n g : t r a n s f o r m s a g r i d

p a r t i t i o n i n t o
3 # p a r q u e t r y s l a t s w i t h space i n between
4 de f p a r q u e t r y _ s t r u c t u r e (e) :
5 f a c e s = Faces ()
6 f a c e s . push_back (Le f tFace (e))
7 f a c e s . push_back (R igh tFace (e))
8 i f no t Le f tFace (e) . i s_bounded_ face () \
9 or no t R igh tFace (e) . i s_bounded_ face () :

10 r e t u r n ToCurve (e)
11 i f HasTag (faces , " v1 ") and HasTag (faces

, " v2 ") and HasTag (faces , " h1 ") \
12 or HasTag (faces , " v2 ") and HasTag (faces

, " v3 ") and HasTag (faces , " h1 ") \
13 or HasTag (faces , " v3 ") and HasTag (faces

, " v4 ") and HasTag (faces , " h1 ") \
14 or HasTag (faces , " v4 ") and HasTag (faces

, " v1 ") and HasTag (faces , " h1 ") \
15 or HasTag (faces , " v1 ") and HasTag (faces

, " v2 ") and HasTag (faces , " h3 ") \
16 or HasTag (faces , " v2 ") and HasTag (faces

, " v3 ") and HasTag (faces , " h3 ") \
17 or HasTag (faces , " v3 ") and HasTag (faces

, " v4 ") and HasTag (faces , " h3 ") \
18 or HasTag (faces , " v4 ") and HasTag (faces

, " v1 ") and HasTag (faces , " h3 ") \
19 or HasTag (faces , " h1 ") and HasTag (faces

, " h2 ") and HasTag (faces , " v1 ") \
20 or HasTag (faces , " h2 ") and HasTag (faces

, " h3 ") and HasTag (faces , " v1 ") \
21 or HasTag (faces , " h3 ") and HasTag (faces

, " h4 ") and HasTag (faces , " v3 ") \
22 or HasTag (faces , " h4 ") and HasTag (faces

, " h1 ") and HasTag (faces , " v3 ") \
23 or HasTag (faces , " v2 ") and HasTag (faces

, " v3 ") and HasTag (faces , " h2 ") \
24 or HasTag (faces , " v3 ") and HasTag (faces

, " v4 ") and HasTag (faces , " h2 ") \
25 or HasTag (faces , " v4 ") and HasTag (faces

, " v1 ") and HasTag (faces , " h4 ") \
26 or HasTag (faces , " v1 ") and HasTag (faces

, " v2 ") and HasTag (faces , " h4 ") :
27 r e t u r n Noth ing ()
28 r e t u r n ToCurve (e)
29

30 # Grid p a r t i t i o n
31 my_scale = 50
32 i n t e r s t i c e _ s i z e = 0 .2� my_sca le
33 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 . 0 , 1�

my_scale , i n t e r s t i c e _ s i z e ,1� my_scale ,
i n t e r s t i c e _ s i z e)

34 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 " , " h3 " , "
h4 ")

35 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i /6+ p i /32+ p i
/100 ,8� my_scale , i n t e r s t i c e _ s i z e ,8�
my_scale , i n t e r s t i c e _ s i z e)

36 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 " , " v3 " , "
v4 ")

37 p a r t = Gr i dPa r t i t i on (l i n e s 1 , l i n e s 2 ,
KEEP_OUTSIDE)

38 # Re f i nemen t
39 s t r u c t = MapToEdges(p a r q u e t r y _ s t r u c t u r e ,

p a r t)
40 # Expor t
41 f rame = ImportSVG (" d a t a / n e w _ c a r p e t _ o u t l i n e

. svg ")
42 ExportSVGinDomain (s t r u c t , f rame)

108 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Table 45 sec

1 de f t a b l e () :
2 # Impor t e l e m e n t s
3 ha tch1 = ImportSVG (" d a t a / smoothhatch1 . svg "

)
4 ha tch2 = ImportSVG (" d a t a / smoothhatch2 . svg "

)
5 ha tch3 = ImportSVG (" d a t a / smoothhatch3 . svg "

)
6 h a t c h e s = [hatch1 , hatch2 , ha tch3]
7 # Parameter f o r m o d i f y i n g ha tch

o r i e n t a t i o n
8 s i d e _ a n g l e = 0
9

10 # Mapper : p l ace a ha tch on a v e r t e x
11 de f p l a c e _ h a t c h (v) :
12 randx = Random (v , � 20, 20 , 1)
13 randy = Random (v , � 80, 80 , 2)
14 l o c = Loca t i on (v) + P o i n t (randx , randy)
15 elem0 = h a t c h e s [f l o o r (Random (0 , l e n (

h a t c h e s)))]
16 elem = R o t a t e (elem0 , s i d e _ a n g l e)
17 r e t u r n MatchPo in t (Sca le (elem , 1 . 0) ,

BBoxCenter (elem) , l o c)
18

19 # Grid p a r t i t i o n
20 l i n e s A = S t r i p e s P r o p e r t i e s (s i d e _ a n g l e +

p i / 3 . 0 , 6 0)
21 l i n e s B = S t r i p e s P r o p e r t i e s (s i d e _ a n g l e +

2 .0� p i / 3 . 0 , 150)
22 p a r t = Gr i dPa r t i t i on (l inesA , l i nesB ,

KEEP_OUTSIDE)
23 # Apply t h e mapper
24 t e x t u r e = MapToVertices (p l a c e _ h a t c h , p a r t)
25 # F i l l t h e o u t l i n e
26 f rame = ImportSVG (" d a t a /

o u t l i n e _ t a b l e _ t o p s i d e . svg ")
27 ExportSVGinDomain (t e x t u r e , f rame)

109

Bottle 11 sec

1 f rame = ImportSVG (" d a t a / o u t l i n e _ b o t t l e . svg
")

2 bubb le1 = ImportSVG (" d a t a / bubb le1 . svg ")
3 bubb le2 = ImportSVG (" d a t a / bubb le2 . svg ")
4 bubb le3 = ImportSVG (" d a t a / bubb le3 . svg ")
5 bubb le4 = ImportSVG (" d a t a / bubb le4 . svg ")
6 bubb les = [bubble1 , bubble2 , bubble3 ,

bubb le4]
7 s i d e _ a n g l e = p i / 2 .0
8

9 # Mapper : p l ace a bubb le on a v e r t e x
10 de f p l a c e _ b u b b l e (v) :
11 randx = Random (v , � 20, 20 , 1)
12 randy = Random (v , � 40, 40 , 2)
13 l o c = Loca t i on (v) + P o i n t (randx , randy)
14 elem0 = bubb les [f l o o r (Random (0 , l e n (

bubb les)))]
15 elem = R o t a t e (elem0 , s i d e _ a n g l e)
16 r e t u r n MatchPo in t (Sca le (elem , 1 . 0) ,

BBoxCenter (elem) , l o c)
17

18 # Grid p a r t i t i o n
19 l i n e s A = S t r i p e s P r o p e r t i e s (s i d e _ a n g l e +

p i / 3 . 0 , 6 0)
20 l i n e s B = S t r i p e s P r o p e r t i e s (s i d e _ a n g l e +2�

p i / 3 . 0 , 60)
21 p a r t = Gr i dPa r t i t i on (l inesA , l i nesB ,

KEEP_OUTSIDE)
22 # Apply t h e mapper
23 t e x t u r e = MapToVertices (p lace_bubb le , p a r t

)
24 # F i l l t h e o u t l i n e
25 ExportSVGinDomain (t e x t u r e , f rame)

Teapot 22 sec

1 de f t e a p o t () :
2 d e n s i t y = 3 .0 e� 4
3 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
4

5 # Mapper : p l ace a c i r c l e i n each f a c e
6 de f f a c e _ t o _ c i r c l e (f a c e) :
7 s r c_p = BBoxCenter (c i r c l e)
8 ds t_p = C e n t r o i d (f a c e)
9 r e t u r n Sca le (MatchPo in t (c i r c l e , s rc_p ,

ds t_p) , Random (face , 0 . 0 5 , 0 . 1 5 , 0))
10

11 # Uniform p a r t i t i o n w i t h g i ven d e n s i t y
12 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
13 p a r t = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
14 # Apply t h e mapper
15 t ex3 = MapToFaces(f a c e _ t o _ c i r c l e , p a r t)
16 # F i l l t h e o u t l i n e
17 f rame = ImportSVG (" d a t a / o u t l i n e _ t e a p o t . svg

")
18 ExportSVGinDomain (tex3 , f rame)

110 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Triangles 4 sec

1 # Mapper : s p l i t s i n two a un ique f a c e from a
g r i d p a r t i t i o n

2 de f s p l i t (f a c e) :
3 a r e _ i n c i d e n t = lambda e , f : f == Le f tFace (

e) o r f == R igh tFace (e)
4 v1 = 0
5 v2 = 0
6 f o r v i n I n c i d e n t V e r t i c e s (f a c e) :
7 s c o r e _ s o u r c e = 0
8 s c o r e _ t a r g e t = 0
9 f o r e i n I n c i d e n t E d g e s (v) :

10 i f v == SourceVer tex (e) and
a r e _ i n c i d e n t (e , f a c e) :

11 s c o r e _ s o u r c e += 1
12 i f v == T a r g e t V e r t e x (e) and

a r e _ i n c i d e n t (e , f a c e) :
13 s c o r e _ t a r g e t += 1
14 i f s c o r e _ s o u r c e == 2 :
15 v1 = v
16 i f s c o r e _ t a r g e t == 2 :
17 v2 = v
18 i f v1 == 0
19 r e t u r n Noth ing ()
20 seg = ImportSVG (" segment . svg ")
21 s t a r t _ s e g = P o i n t L a b e l e d (seg , " s t a r t ")
22 end_seg = P o i n t L a b e l e d (seg , " end ")
23 r e t u r n MatchPo in ts (seg , s t a r t _ s e g ,

end_seg , Loca t i on (v1) , Loca t i on (v2))
24

25 de f e x a m p l e _ t r i a n g l e s () :
26 # Grid p a r t i t i o n
27 props1 = S t r i p e s P r o p e r t i e s (p i / 3 . 0 , 200)
28 props2 = S t r i p e s P r o p e r t i e s (� p i / 3 . 0 , 200)
29 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
30 # Apply mapper and merge t h e r e s u l t w i t h

t h e o r i g i n a l g r i d
31 t r i a n g l e s = Union (g r i d , MapToFaces(s p l i t ,

g r i d))
32 # Expor t f i n a l t e x t u r e
33 ExportSVG (t r i a n g l e s , 2000)

111

Bee hive 5 sec

1 # Mapper : r e t u r n s a segment l i n k i n g t h e
c e n t r o i d s o f t h e f a c e s i n c i d e n t t o e

2 de f dua l (e) :
3 i f e . i s _ o u t s i d e () :
4 r e t u r n Noth ing ()
5 seg = ImportSVG (" segment . svg ")
6 s t a r t _ s e g = P o i n t L a b e l e d (seg , " s t a r t ")
7 end_seg = P o i n t L a b e l e d (seg , " end ")
8 r e t u r n MatchPo in ts (seg , s t a r t _ s e g ,

end_seg , C e n t r o i d (Le f tFace (e)) ,
C e n t r o i d (R igh tFace (e)))

9 de f example_hexa () :
10 # Grid p a r t i t i o n
11 props1 = S t r i p e s P r o p e r t i e s (p i / 3 . 0 , 200)
12 props2 = S t r i p e s P r o p e r t i e s (� p i / 3 . 0 , 200)
13 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
14 # S p l i t f a c e s (f rom example ` ` T r i a n g l e s

' ')
15 t r i a n g l e s = Union (g r i d , MapToFaces(s p l i t ,

g r i d))
16 # Take t h e dua l s o f a l l edges
17 hexa = MapToEdges(dual , t r i a n g l e s)
18 # Expor t f i n a l t e t x u r e
19 ExportSVG (hexa , 2000)

Wallpaper group P6 48 sec

1 de f example_p6 () :
2 # Impor t SVG e lemen t
3 l i n e = ImportSVG (" d a t a / p 6 _ e l t . svg ")
4 # Mapper : r e p l a c e s an edge by t h e

impor ted SVG e lemen t
5 de f l i n e _ t o _ c u r v e (edge) :
6 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
7 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
8 s r c_v = Loca t i on (SourceVer tex (edge))
9 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))

10 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,
s rc_v , ds t_v)

11 props1 = S t r i p e s P r o p e r t i e s (p i / 3 . 0 , 200)
12 props2 = S t r i p e s P r o p e r t i e s (� p i / 3 . 0 , 200)
13 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
14 # S p l i t f a c e s (f rom example ` ` T r i a n g l e s

' ')
15 t r i a n g l e s = Union (g r i d , MapToFaces(s p l i t ,

g r i d))
16 # Take dua l s o f a l l edges (f rom example

` ` Bee h i v e ' ')
17 hexa = MapToEdges(dual , t r i a n g l e s)
18 # Rep lace edges by Z� shaped c u r v e s
19 p6 = MapToEdges(l i n e _ t o _ c u r v e , hexa)
20 # Expor t f i n a l t e x t u r e
21 ExportSVG (p6 , 2000)

112 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Wallpaper group P4M 24 sec

1 de f example_p4m () :
2 # Impor t SVG e lemen t
3 l i n e = ImportSVG (" d a t a / p4m_el t . svg ")
4 # Mapper : r e p l a c e s an edge by t h e

impor ted SVG e lemen t
5 de f l i n e _ t o _ c u r v e (edge) :
6 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
7 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
8 s r c_v = Loca t i on (SourceVer tex (edge))
9 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))

10 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,
s rc_v , ds t_v)

11 # Mapper : r e p l a c e s an edge by a r o t a t i o n
o f t h e impor ted SVG e lemen t

12 de f l i n e _ t o _ c u r v e _ i n v (edge) :
13 d s t _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
14 s r c _ c = P o i n t L a b e l e d (l i n e , " end ")
15 s r c_v = Loca t i on (SourceVer tex (edge))
16 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
17 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
18 # Grid p a r t i t i o n
19 props1 = S t r i p e s P r o p e r t i e s (p i / 4 . 0 , 200)
20 props2 = S t r i p e s P r o p e r t i e s (� p i / 4 . 0 , 200)
21 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
22 # Take t h e r e s u l t s o f bo th mappers
23 p4m = Union (MapToEdges(l i n e _ t o _ c u r v e ,

g r i d) , MapToEdges(l i n e _ t o _ c u r v e _ i n v ,
g r i d))

24 # Expor t f i n a l t e x t u r e
25 ExportSVG (p4m , 2000)

113

Wallpaper group P31M 50 sec

1 de f example_p31m () :
2 l i n e 0 = ImportSVG (" d a t a / p31m_el t . svg ")
3 l i ne0_sym = ImportSVG (" d a t a / p31m_elt_sym .

svg ")
4 # Mapper : s u b d i v i d e s a t r i a n g l e f a c e i n

t h r e e pseudo� t r i a n g l e s
5 de f s u b d i v i d e (f a c e) :
6 ou t = Noth ing ()
7 l i n e = l i n e 0
8 n b _ l e f t = 0
9 f o r e i n I n c i d e n t E d g e s (f a c e) :

10 i f f a c e == Le f tFace (e) :
11 n b _ l e f t = n b _ l e f t + 1
12 i f n b _ l e f t > 1 :
13 l i n e = l ine0_sym
14 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
15 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
16 ds t_v = C e n t r o i d (f a c e)
17 f o r v i n I n c i d e n t V e r t i c e s (f a c e) :
18 s r c_v = Loca t i on (v)
19 cu rve = MatchPo in ts (l i n e , s rc_c ,

ds t_c , s rc_v , ds t_v)
20 ou t = Append (out , cu rve)
21 r e t u r n ou t
22 # Grid p a r t i t i o n
23 props1 = S t r i p e s P r o p e r t i e s (p i / 6 . 0 , 200)
24 props2 = S t r i p e s P r o p e r t i e s (p i� p i / 6 . 0 ,

200)
25 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
26 # S p l i t f a c e s (f rom example ` ` T r i a n g l e s

' ')
27 t r i a n g l e s = Union (g r i d , MapToFaces(s p l i t ,

g r i d))
28 # S u b d i v i d e t r i a n g l e f a c e s
29 p31m = MapToFaces(subd i v i de , t r i a n g l e s)
30 # Expor t f i n a l t e x t u r e
31 ExportSVG (p31m , 2000)

114 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Escher P6 38 sec

1 de f examp le_p6_escher () :
2 # Impor ted SVG e l e m e n t s
3 l i n e = ImportSVG (" d a t a / p6_e l t_comp lex3 .

svg ")
4 c e n t e r _ e l t = ImportSVG (" d a t a /

p 6 _ e l t _ c o m p l e x 3 _ c e n t e r . svg ")
5 # Mapper : r e p l a c e s an edge by a p i e c e o f

a f i s h o u t l i n e
6 de f l i n e _ t o _ c u r v e (edge) :
7 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
8 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
9 s r c_v = Loca t i on (SourceVer tex (edge))

10 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
11 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
12 # Mapper : p l a c e s a f i s h i n t e r i o r i n s i d e a

f a c e
13 de f f a c e _ t o _ c e n t e r _ e l t (f) :
14 c e n t e r s _ c e n t e r = P o i n t L a b e l e d (

c e n t e r _ e l t , " end ") + P o i n t (2 0 , 0)
15 r e t u r n MatchPo in t (c e n t e r _ e l t ,

c e n t e r s _ c e n t e r , C e n t r o i d (f))
16 # Grid p a r t i t i o n
17 props1 = S t r i p e s P r o p e r t i e s (p i / 3 . 0 , 200)
18 props2 = S t r i p e s P r o p e r t i e s (� p i / 3 . 0 , 200)
19 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
20 # S p l i t f a c e s (from example ` ` T r i a n g l e s

' ')
21 t r i a n g l e s = Union (g r i d , MapToFaces(s p l i t ,

g r i d))
22 # Take dua l s o f a l l edges (f rom example

` ` Bee h i v e ' ')
23 hexa = MapToEdges(dual , t r i a n g l e s)
24 # Rep lace edges by f i s h o u t l i n e s
25 p6 = MapToEdges(l i n e _ t o _ c u r v e , hexa)
26 # Place f i s h i n t e r i o r s
27 p 6 _ c e n t e r =MapToFaces(f a c e _ t o _ c e n t e r _ e l t

, hexa)
28 # Expor t f i n a l t e x t u r e
29 f i n a l = Union (p6 , p 6 _ c e n t e r)
30 ExportSVG (f i n a l , 1000)

115

Escher P4M 43 sec

1 de f example_p4m_escher () :
2 # Impor ted SVG e l e m e n t s
3 oc topus = ImportSVG (" d a t a /

p4m_el t_complex1 . svg ")
4 guy = ImportSVG (" d a t a / p4m_el t_complex2 .

svg ")
5 # Mapper : p l a c e s an oc topus on an edge
6 de f l i n e _ t o _ o c t o p u s (edge) :
7 s r c _ c = P o i n t L a b e l e d (oc topus , " s t a r t ")
8 d s t _ c = P o i n t L a b e l e d (oc topus , " end ")
9 s r c_v = Loca t i on (SourceVer tex (edge))

10 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
11 r e t u r n MatchPo in ts (oc topus , s rc_c ,

ds t_c , s rc_v , ds t_v)
12 # Mapper : p l a c e s a guy on a f a c e ' s c e n t e r
13 de f f ace_ to_guy (f a c e) :
14 c e n t e r _ g u y = P o i n t L a b e l e d (guy , " s t a r t "

)
15 c = C e n t r o i d (f a c e)
16 r e t u r n MatchPo in t (guy , cen te r_guy , c)
17 # Grid p a r t i t i o n
18 props1 = S t r i p e s P r o p e r t i e s (p i / 4 . 0 , 200)
19 props2 = S t r i p e s P r o p e r t i e s (� p i / 4 . 0 , 200)
20 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
21 # Merge o c t o p u s e s and guys
22 p4m = Union (MapToEdges(l i n e _ t o _ o c t o p u s ,

g r i d) , MapToFaces(face_ to_guy , g r i d))
23 # Expor t f i n a l t e x t u r e
24 ExportSVG (p4m , 1000)

116 APPENDIX A. EXAMPLE PYTHON SCRIPTS

Escher P31M 35 sec

1 de f example_p31m_escher () :
2 # Impor ted SVG e l e m e n t s
3 l i n e 0 = ImportSVG (" d a t a / p31m_el t_complex .

svg ")
4 l i ne0_sym = ImportSVG (" d a t a /

p31m_elt_complex_sym . svg ")
5 # Mapper : s u b d i v i d e s each t r i a n g l e f a c e

i n t o t h r e e pseudo� t r i a n g l e s
6 de f s u b d i v i d e (f a c e) :
7 ou t = Noth ing ()
8 l i n e = l i n e 0
9 n b _ l e f t = 0

10 f o r e i n I n c i d e n t E d g e s (f a c e) :
11 i f f a c e == Le f tFace (e) :
12 n b _ l e f t = n b _ l e f t + 1
13 i f n b _ l e f t > 1 :
14 l i n e = l ine0_sym
15 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
17 ds t_v = C e n t r o i d (f a c e)
18 f o r v i n I n c i d e n t V e r t i c e s (f a c e) :
19 s r c_v = Loca t i on (v)
20 cu rve = MatchPo in ts (l i n e , s rc_c ,

ds t_c , s rc_v , ds t_v)
21 ou t = Append (out , cu rve)
22 r e t u r n ou t
23 # Grid p a r t i t i o n
24 props1 = S t r i p e s P r o p e r t i e s (p i / 6 . 0 , 200)
25 props2 = S t r i p e s P r o p e r t i e s (p i� p i / 6 . 0 ,

200)
26 g r i d = Gr idPa r t i t i on (props1 , props2 ,

KEEP_OUTSIDE)
27 # S p l i t f a c e s (from example ` ` T r i a n g l e s

' ')
28 t r i a n g l e s = Union (g r i d , MapToFaces(s p l i t ,

g r i d))
29 # S u b d i v i d e r e s u l t i n g t r i a n g l e f a c e s
30 p31m = MapToFaces(subd i v i de , t r i a n g l e s)
31 # Expor t f i n a l t e x t u r e
32 ExportSVG (p31m , 1000)

117

Microprocessor 54 sec

1 de f p r o c e s s o r () :
2 # Globa l pa ramete rs
3 s i z e = 2000
4 s t e p = 50
5

6 # ������������ Leve l 1 ������������
7 d e n s i t i e s = [0 . 0 0 2 , 0 .00175 , 0 .00125 , 0 .00225 , 0 . 0 0 1]
8 # Paths and d e n s i t y i n d e x e s
9 e l t s _ d e n s i t i e s = [[" ne t1 . svg " , 0] , [" ne t2 . svg " , 0] , [" ne t3 .

svg " , 1] , [" ne t4 . svg " , 0] , [" ne t5 . svg " , 1] , [" ne t6 . svg "
, 1] , [" ne t7 . svg " , 2] , [" ne t8 . svg " , 1] , [" ne t9 . svg " , 0] , ["
ne t10 . svg " , 3] , [" ne t11 . svg " , 3] , [" ne t12 . svg " , 4]]

10

11 # De f i ne a new mapper f o r each ' e l t '
12 de f mapper (e l t) :
13 de f new_face_mapper (f a c e) :
14 p t = C e n t r o i d (f a c e)
15 # Clamp p o s i t i o n f o r r e g u l a r s i l i c i u m look
16 clamp = lambda x : s t e p� f l o o r (x / s t e p)
17 p t = P o i n t (clamp (p t . x ()) , clamp (p t . y ()))
18 r e t u r n MatchPo in t (e l t , P o i n t L a b e l e d (e l t , " s t a r t "

) , p t)
19 r e t u r n new_face_mapper
20

21 # d s t : d i s t r i b u t e s randomly e l t e w i t h d e n s i t y d
22 d s t = lambda e , d :MapToFaces(mapper (e) , RandomPart i t ion

(I r r e g u l a r P r o p e r t i e s (d) , KEEP_OUTSIDE))
23

24 # D i s t r i b u t e a l l e l e m e n t s
25 l e v e l 1 = lambda f : Noth ing ()
26 f o r e_d i n e l t s _ d e n s i t i e s :
27 d = d e n s i t i e s [e_d [1]]
28 l e v e l 1 = Merge(l e v e l 1 , d s t (ImportSVG (e_d [0]) , d))
29

30 # ������������ Leve l 2 ������������
31 s h i p s = [" sh i p1 . svg " , " sh i p2 . svg " , " sh i p3 . svg " , " sh i p4 . svg "

, " sh i p5 . svg " , " sh i p6 . svg "]
32

33 # Mapper : g e n e r a t e s and p l a c e s a s h i p on t h e f a c e
34 de f f a c e _ t o _ s h i p (f a c e) :
35 s h i p = ImportSVG (s h i p s [f l o o r (Random (face , 0 , 6 , 0))])
36 s h i p = Sca le (sh ip , f l o o r (Random (face , 0 , 4 , 0)))
37 p t = C e n t r o i d (f a c e)
38 # Clamp p o s i t i o n f o r r e g u l a r s i l i c i u m look
39 clamp = lambda x : s t e p� f l o o r (x / s t e p)
40 p t = P o i n t (clamp (p t . x ()) , clamp (p t . y ()))
41 r e s = MatchPo in t (sh ip , BBoxCenter (s h i p) , p t)
42 r e t u r n r e s
43

44 props = I r r e g u l a r P r o p e r t i e s (8 / (20 00� 20 00))
45 p a r t _ s h i p s = Un i fo rmPar t i t i on (props , KEEP_OUTSIDE)
46 l e v e l 2 = MapToFaces(f a c e _ t o _ s h i p , p a r t _ s h i p s)
47

48 # ������������ F i na l t e x t u r e ������������
49 c = ImportSVG (" d a t a / c o n n e c t o r . svg ")
50 j = ImportSVG (" d a t a / j o i n t . svg ")
51

52 # Mapper : g e n e r a t e s c o n n e c t o r s and s o l d e r e d j o i n t s
53 de f make_cj (v) :
54 # Connec to rs a t c o n t a c t s between l e v e l 1 and l e v e l 2
55 i f l e n (I n c i d e n t E d g e s (v)) == 3 and HasLabel (

I n c i d e n t F a c e s (v) , " s h i p ") :
56 r e t u r n MatchPo in t (c , BBoxCenter (c) , Loca t i on (v))
57 # Genera te j o i n t s a t j u n c t i o n ends
58 e l i f l e n (I n c i d e n t E d g e s (v)) == 1 :
59 r e t u r n MatchPo in t (j , BBoxCenter (j) , Loca t i on (v))
60 r e t u r n Noth ing ()
61

62 l v l s _ 1 _ 2 = Outs ide (l e v e l 1 , l e v e l 2 ,CROP_ADD_BOUNDARY)
63 c j s = MapToVertices (make_cj , l v l s _ 1 _ 2)
64 f i n a l _ t e x = Outs ide (l v l s_1_2 , c j s , CROP_ADD_BOUNDARY)
65 ExportSVG (f i n a l _ t e x , s i z e)

118 APPENDIX A. EXAMPLE PYTHON SCRIPTS

APPENDIX

B

EXAMPLE SCRIPTS USING TILED
PLANAR MAPS

In this appendix we show the scripts used to synthesize all the arrangements in Chapter 4.

119

120 APPENDIX B. EXAMPLE SCRIPTS USING TILED PLANAR MAPS

Brickwall 2 sec

1 de f b r i c k w a l l _ t p m () :
2 s i z e = 6000
3 # Mapper : remove some v e r t i c a l edges
4 de f f i l t e r _ b r i c k w a l l (edge) :
5 i f HasLabel (edge , " h1 ") o r HasLabel (

edge , " h2 ") o r HasLabel (edge , " h3
") o r HasLabel (edge , " h4 ") :

6 r e t u r n ToCurve (edge)
7 i f HasLabel (I n c i d e n t E d g e s (

T a r g e t V e r t e x (edge)) , " h1 ") o r
HasLabel (I n c i d e n t E d g e s (
T a r g e t V e r t e x (edge)) , " h3 ") :

8 r e t u r n ToCurve (edge) i f HasLabel (
edge , " v1 ") e l s e Noth ing ()

9 e l s e :
10 r e t u r n ToCurve (edge) i f (HasLabel

(edge , " v2 ") o r HasLabel (edge
, " v4 ")) e l s e Noth ing ()

11 # Mapper : s c a l e s down a f a c e ' s con tou r
12 de f s h r i n k _ f a c e (f a c e) :
13 r e t u r n Sca le (Contour (f a c e) , 0 . 9) i f

HasLabel (I n c i d e n t E d g e s (f a c e) , " v1
") e l s e Sca le (Contour (f a c e) , 0 . 8)

14 # Grid p a r t i t i o n
15 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
16 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 1 2 0)
17 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
18 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 " , " v3 " , " v4 ")
19 gr id_ tpm = TPMGr idPar t i t i on (l i n e s 1 , l i n e s 2

, KEEP_OUTSIDE)
20 # Mapping and e x p o r t
21 tpm = MapToTPMedges(f i l t e r _ b r i c k w a l l ,

g r id_ tpm)
22 tpm2 = MapToTPMfaces(s h r i n k _ f a c e , tpm)
23 ExportTPMtoSVG (tpm2 , s i z e)

121

Noisy Brickwall 2 sec

1 de f n o i s y _ b r i c k w a l l _ t p m () :
2 s i z e = 6000
3 # Mapper : remove some v e r t i c a l edges
4 de f f i l t e r _ b r i c k w a l l (edge) :
5 i f HasLabel (edge , " h1 ") o r HasLabel (

edge , " h2 ") o r HasLabel (edge , " h3
") o r HasLabel (edge , " h4 ") :

6 r e t u r n ToCurve (edge)
7 i f HasLabel (I n c i d e n t E d g e s (

T a r g e t V e r t e x (edge)) , " h1 ") o r
HasLabel (I n c i d e n t E d g e s (
T a r g e t V e r t e x (edge)) , " h3 ") :

8 r e t u r n ToCurve (edge) i f HasLabel (
edge , " v1 ") e l s e Noth ing ()

9 e l s e :
10 r e t u r n ToCurve (edge) i f (HasLabel

(edge , " v2 ") o r HasLabel (edge
, " v4 ")) e l s e Noth ing ()

11 # Mapper : s c a l e s down a f a c e ' s con tou r
12 de f s h r i n k _ f a c e (f a c e) :
13 r e t u r n Sca le (Contour (f a c e) , 0 . 9) i f

HasLabel (I n c i d e n t E d g e s (f a c e) , " v1
") e l s e Sca le (Contour (f a c e) , 0 . 8)

14 # Mapper : s c a l e s and t r a n s l a t e s randomly
a f a c e ' s con tou r

15 de f j i t t e r _ f a c e (f a c e) :
16 r e t u r n T r a n s l a t e (Sca le (Contour (f a c e) ,

Random (face , 0 . 8 , 1 . 0 , 1)) ,
P o i n t (Random (face ,� 24, 24 , 0) ,
0))

17 # Grid p a r t i t i o n
18 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
19 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 1 2 0)
20 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
21 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 " , " v3 " , " v4 ")
22 gr id_ tpm = TPMGr idPar t i t i on (l i n e s 1 , l i n e s 2

, KEEP_OUTSIDE)
23 # Mapping
24 tpm = MapToTPMedges(f i l t e r _ b r i c k w a l l ,

g r id_ tpm)
25 tpm2 = MapToTPMfaces(s h r i n k _ f a c e , tpm)
26 # Ghost mapping
27 GhostMapToTPMfaces(j i t t e r _ f a c e , tpm2)
28 # Expor t
29 ExportTPMtoSVG (tpm2 , s i z e)

122 APPENDIX B. EXAMPLE SCRIPTS USING TILED PLANAR MAPS

Noisy Brickwall 2 2 sec

1 de f n o i s y _ b r i c k w a l l _ t p m _ 2 () :
2 s i z e = 6000
3 # Mapper : remove some v e r t i c a l edges
4 de f f i l t e r _ b r i c k w a l l (edge) :
5 i f HasLabel (edge , " h1 ") o r HasLabel (

edge , " h2 ") o r HasLabel (edge , " h3
") o r HasLabel (edge , " h4 ") :

6 r e t u r n ToCurve (edge)
7 i f HasLabel (I n c i d e n t E d g e s (

T a r g e t V e r t e x (edge)) , " h1 ") o r
HasLabel (I n c i d e n t E d g e s (
T a r g e t V e r t e x (edge)) , " h3 ") :

8 r e t u r n ToCurve (edge) i f HasLabel (
edge , " v1 ") e l s e Noth ing ()

9 e l s e :
10 r e t u r n ToCurve (edge) i f (HasLabel

(edge , " v2 ") o r HasLabel (edge
, " v4 ")) e l s e Noth ing ()

11 # Mapper : s c a l e s down a f a c e ' s con tou r
12 de f s h r i n k _ f a c e (f a c e) :
13 r e t u r n Sca le (Contour (f a c e) , 0 . 9) i f

HasLabel (I n c i d e n t E d g e s (f a c e) , " v1
") e l s e Sca le (Contour (f a c e) , 0 . 8)

14 # Mapper : d e l e t e s randomly a face , or
s c a l e s and t r a n s l a t e s i t randomly

15 de f j i t t e r _ f a c e (f a c e) :
16 i f Random (face , 0 , 1 , 2) < 0 . 1 :
17 r e t u r n Noth ing ()
18 r e t u r n T r a n s l a t e (Sca le (Contour (f a c e) ,

Random (face , 0 . 8 , 1 . 0 , 1)) ,
P o i n t (Random (face ,� 24, 24 , 0) ,
0))

19 # Grid p a r t i t i o n
20 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
21 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 1 2 0)
22 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
23 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 " , " v3 " , " v4 ")
24 gr id_ tpm = TPMGr idPar t i t i on (l i n e s 1 , l i n e s 2

, KEEP_OUTSIDE)
25 # Mapping
26 tpm = MapToTPMedges(f i l t e r _ b r i c k w a l l ,

g r id_ tpm)
27 tpm2 = MapToTPMfaces(s h r i n k _ f a c e , tpm)
28 # Ghost mapping
29 GhostMapToTPMfaces(j i t t e r _ f a c e , tpm2)
30 # Expor t
31 ExportTPMtoSVG (tpm2 , s i z e)

123

Fabric 4 sec

1 e f f a b r i c () : # Rep roduc t i on o f t e a s e r _ h
2 s i z e = 6000
3 # S t r i p e p a r t i t i o n
4 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 . 0 , 3 0 0)
5 SetFaceTags (l i n e s 1 , " h1 " , " h2 ")
6 s t r i p e s 1 = S t r i p e s P a r t i t i o n (l i n e s 1)
7 # S t r i p e p a r t i t i o n
8 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 3 0 0)
9 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")

10 s t r i p e s 2 = S t r i p e s P a r t i t i o n (l i n e s 2)
11 # Grid p a r t i t i o n w i t h l a b e l s
12 l i n e s 3 = S t r i p e s P r o p e r t i e s

(0 . 0 , 1 0 0 , 1 0 0 , 1 0 0 , 3 0 0)
13 S e t F a c e L a b e l s (l i n e s 3 , " h1 " , " h2 " , " h3 " , " h4 ")
14 l i n e s 4 = S t r i p e s P r o p e r t i e s (p i

/ 2 , 100 ,100 ,100 ,300)
15 S e t F a c e L a b e l s (l i n e s 4 , " v1 " , " v2 " , " v3 " , " v4 ")
16 g r i d = Gr idPa r t i t i on (l i n e s 3 , l i n e s 4 ,

KEEP_OUTSIDE)
17 # Crea te a s t r i p e p a r t i t i o n w i t h

s p e c i f i e d ang le and w id th
18 de f ha t ch (ang le , w id th) :
19 l i n e s = S t r i p e s P r o p e r t i e s (ang le , w id th

)
20 r e t u r n S t r i p e s P a r t i t i o n (l i n e s)
21 # Mapper : c r e a t e� p i / 4 s t r i p e s i n each

f a c e
22 de f h a t c h _ m a p _ s t r i p e s 1 (f) :
23 ang le = � p i / 4
24 i f HasLabel (f , " h1 ") :
25 r e t u r n ha t ch (ang le , 3 0) (f)
26 e l s e :
27 r e t u r n Noth ing ()
28 # Mapper : c r e a t e p i / 4 s t r i p e s i n each

f a c e
29 de f h a t c h _ m a p _ s t r i p e s 2 (f) :
30 ang le = p i / 4
31 i f HasLabel (f , " v1 ") :
32 r e t u r n ha t ch (ang le , 3 0) (f)
33 e l s e :
34 r e t u r n Noth ing ()
35 # Mapper : c r e a t e p i / 2 s t r i p e s i n s p e c i f i c

f a c e s
36 de f ha tch_map_gr id (f) :
37 ang le = p i / 2
38 i f HasLabel (f , " h3 ") :
39 r e t u r n ha t ch (ang le , 1 0) (f)
40 e l i f HasLabel (f , " v3 ") :
41 r e t u r n ha t ch (ang le , 1 0) (f)
42 e l s e :
43 r e t u r n Noth ing ()
44 # Mapping o p e r a t o r s
45 t ex1 = MapToTPMfaces(h a t c h _ m a p _ s t r i p e s 1 ,

s t r i p e s 1)
46 t ex2 = MapToTPMfaces(h a t c h _ m a p _ s t r i p e s 2 ,

s t r i p e s 2)
47 t ex4 = MapToTPMfaces(hatch_map_gr id , g r i d)
48 # Merging o p e r a t o r s
49 t ex3 = TPMUnion (tex1 , t ex2)
50 t ex5 = TPMUnion (tex3 , t ex4)
51 # Expor t
52 ExportTPMtoSVG (tex5 , s i z e)

124 APPENDIX B. EXAMPLE SCRIPTS USING TILED PLANAR MAPS

APPENDIX

C

USER STUDY TUTORIAL

I. General Principle

In this tool textures will be represented asplanar maps. A planar map is a set of curves whose
intersections and enclosed faces are computed. Therefore, you can manipulate three kinds of
cellsin the planar map:vertices, edgesandfaces. Each of these cells knows all of its neighbors,
also calledincident cells.

All textures begin with apartition, then they are re�ned usingmappers. When two textures are
created this way, they can becombined:

125

126 APPENDIX C. USER STUDY TUTORIAL

II. Partitions

Partitions act as construction lines which de�ne the broad-scale organization of the texture.
You can choose between four starting partitions:

— 2 regular ones (stripes, grid)
— 2 irregular ones (uniform, random)

Partitions are cut at the border of the domain using a border management option (see Additional
document No 2). You will be able to manipulate the cells of partitions using mappers.

Practice: execute partitions scripts and modify their parameters

1 de f t e s t _ S t r i p e s P a r t i t i o n () :
2 l i n e s 1 = S t r i p e s P r o p e r t i e s (� p i / 3 . 0 , 1 1 0)
3 p a r t = S t r i p e s P a r t i t i o n (l i n e s 1)
4 ExportSVG (p a r t , 2 0 0 0)
5

6 de f t e s t _ G r i d P a r t i t i o n () :
7 l i n e s 1 = S t r i p e s P r o p e r t i e s (p i / 6 . 0 , 1 1 0)
8 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 + p i / 3 . 0 , 2 0 0)
9 p a r t = Gr i dPa r t i t i on (l i n e s 1 , l i n e s 2 ,CROP_ADD_BOUNDARY)

10 ExportSVG (p a r t , 2 0 0 0)
11

12 de f t e s t _ U n i f o r m P a r t i t i o n () :
13 props = I r r e g u l a r P r o p e r t i e s (1 / 22000)
14 p a r t = Un i fo rmPar t i t i on (props , CROP_ADD_BOUNDARY)
15 ExportSVG (p a r t , 2 0 0 0)
16

17 de f t e s t _ R a n d o m P a r t i t i o n () :
18 props = I r r e g u l a r P r o p e r t i e s (1 / 22000)
19 p a r t = RandomPart i t ion (props , CROP_ADD_BOUNDARY)
20 ExportSVG (p a r t , 2 0 0 0)

127

III. Mappers

Mappers are the operators that give you the most freedom in this tool. Actually you write
yourself your mappers so that they do exactly what you want them to do. In practice, a mapper
is a kernel function that draws a new element from one cell of the planar map. For instance, the
following mapper is a function that draws a randomly-rotated blob shape on a given face:

Once you wrote the mapper, you have to wrap it inside a mapping operator which applies your
mapper on every cell of the planar map. Here, this mapping operator is “MapToFaces” because
the mapper deals with faces. There are also a “MapToEdges” and a “MapToVertices” for the
two other kinds of cells. This mapping operator ensures that your mapper has an homogeneous
effect all over the texture, thus preserving a repetitive, predictable look.
You can write almost anything inside a mapper. At the end of this document there is an API of
built-in functions you can use, but you can develop your own. All you have to do is observing
the three following rules:

— Always stay in abounded neighborhoodaround the current cell. For instance, you
must not use neighborhood functions for writing a loop that travels along the texture
until reaching the border. This would yield non-homogeneous effects and unwanted
artifacts.

— Do not modify global variables in your mapper. If global variables change at each
execution of your mapper, then the mapping operator will not be able to apply it with a
homogeneous effect.

— Do not use global, hard-coded coordinates. For example if your mapper depends on
the position (255, 42) then it will never have a homogeneous effect all over the texture.

In practice, mappers can be used for modifying both geometry and connections, for randomi-
zing the texture, etc. See the examples for more info.

128 APPENDIX C. USER STUDY TUTORIAL

IV. Combining Textures

There are two ways of combining textures. The �rst one is to call the code of one of the textures
in a mapper:

1 de f t e s t _ O v e r v i e w () :
2 s i z e = 2000
3 b lob = Sca le (ImportSVG (" d a t a / b lob . svg ")

, 0 . 6)
4 z i g = ImportSVG (" d a t a / z i g . svg ")
5

6 # Mapper : p l ace a b lob i n each f a c e
7 de f map_blob_to (f a c e) :
8 new_blob = R o t a t e (blob , Random (face ,0 ,2�

p i , 0))
9 r e t u r n MatchPo in t (new_blob , BBoxCenter (

new_blob) , C e n t r o i d (f a c e))
10

11 # Mapper : r e p l a c e each edge by a curved
l i n e

12 de f map_curve_to (edge) :
13 i f I sBoundary (edge) :
14 r e t u r n ToCurve (edge)
15 s r c _ c = P o i n t L a b e l e d (z ig , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (z ig , " end ")
17 s r c_v = Loca t i on (SourceVer tex (edge))
18 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
19 r e t u r n MatchPo in ts (z ig , s rc_c , ds t_c ,

s rc_v , ds t_v)
20

21 # Mapper : g e n e r a t e a t e x t u r e i n each f a c e
22 de f m a p _ t e x t u r e _ t o (f a c e) :
23

24 # Grid p a r t i t i o n w i t h randomized
o r i e n t a t i o n s

25 t h e t a = Random (face ,0 ,2� p i , 1)
26 wid th = BBoxWidth (f a c e) / 5
27 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a ,

w id th)
28 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 , w id th)
29 i n i t _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

CROP_ADD_BOUNDARY)
30

31 # Mapping o p e r a t o r
32 t e x t u r e 2 = MapToEdges(map_curve_to ,

i n i t _ t e x)
33 r e t u r n t e x t u r e 2 (f a c e)
34

35 # Uniform p a r t i t i o n
36 props = I r r e g u l a r P r o p e r t i e s (1 0 / (s i z e�

s i z e))
37 i n i t _ t e x = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
38

39 # Mapping o p e r a t o r s
40 b l o b _ t e x = MapToFaces(map_blob_to ,

i n i t _ t e x)
41 f i n a l _ t e x = MapToFaces(map_ tex tu re_ to ,

b l o b _ t e x)
42

43 # Expor t f i n a l t e x t u r e
44 ExportSVG (f i n a l _ t e x , s i z e)

129

You can also combine two textures using either Union, Inside or Outside:

130 APPENDIX C. USER STUDY TUTORIAL

V. Labels

You can add additional information to the planar map's cells. In particular you can addlabels,
which can then be used in mappers for varying effects.
In StripesPartition labels are de�ned periodically: “Red, blue, red, blue, ...” for instance. It is the
same in GridPartition, except with two dimensions. For UniformPartition and RandomPartition,
the labels are added randomly. You can specify the chances of each label appearing.

(a) Stripes (b) Grid (c) Uniform (d) Random

Labels can be used everytime you want to make your mappers' behavior variable. Here is an
example with periodic re�nement of the texture's topology:

1 de f b r i c k w a l l () :
2 s i z e = 2000
3

4 # Grid p a r t i t i o n , i n c l u d i n g edge l a b e l s
5 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 . 0 , s i z e / 1 6)
6 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , s i z e / 1 6)
7 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
8 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 ")
9 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
10

11 # Mapper : remove edges
12 de f g r i d _ t o _ w a l l (edge) :
13 i f ((HasLabel (edge , " v1 ") and HasLabel (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , "
h1 ")) o r

14 (HasLabel (edge , " v2 ") and HasLabel (
I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)
) , " h2 "))) :

15 r e t u r n Noth ing ()
16 r e t u r n ToCurve (edge)
17

18 # Mapping o p e r a t o r
19 w a l l _ t e x = MapToEdges(g r i d _ t o _ w a l l ,

g r i d _ t e x)
20

21 # F ina l t e x t u r e
22 ExportSVG (wa l l _ tex , s i z e)

131

VI. Sandbox

Let's plug the components in the sandbox script (Additional document No III) together so as
to make the two following textures:

Additional document No I. API

Partition operators
Regular partitions

StripesProperties(Scalara,Scalarw1[,Scalarw2,...]) Sets stripes properties
SetEdgeLabels(Propertiesp, Stringl1[, String l2,...]) Adds edges labels top
SetFaceLabels(Propertiesp, Stringl1[, String l2,...]) Adds faces labels top
StripesPartition(Propertiesp) Creates a stripes partition
GridPartition(StripesS1, StripesS2, Borderb) Creates a grid partition

Irregular partitions
IrregularProperties(Scalard) Sets the partition density
SetWeightedVertexLabels(Propertiesp, Adds vertices labels top

Stringl1, Scalarw1[, String l2, Scalarw2...])
SetWeightedEdgeLabels(Propertiesp, Adds edges labels top

Stringl1, Scalarw1[, String l2, Scalarw2...])
SetWeightedFaceLabels(Propertiesp, Adds faces labels top

Stringl1, Scalarw1[, String l2, Scalarw2...])
UniformPartition(Propertiesp, Borderb) Creates a uniform partition
RandomPartition(Propertiesp, Borderb) Creates a random partition

Mapping operators
MapToVertices(Mapperm, ArrangementA) Appliesm to all vertices ofA
MapToEdges(Mapperm, ArrangementA) Appliesm to all edges ofA
MapToFaces(Mapperm, ArrangementA) Appliesm to all edges ofA

132 APPENDIX C. USER STUDY TUTORIAL

Mappers built-in operators
Incidence

IncidentFaces(Vertexv) Faces connected tov
IncidentEdges(Vertex | Facec) Edges connected toc
IncidentVertices(Facef) Vertices connected tof
SourceVertex(Edgee) Source vertex connected toe
TargetVertex(Edgee) Target vertex connected toe
LeftFace(Edgee) Left face connected toe
RightFace(Edgee) Right face connected toe

Adjacency
MatchPoint(Curvesc, Points, Pointt) Translates curves in the directiont � s
MatchPoints(Curvesc, Points1, Applies the rigid transformation

Points2, Pointt1, Pointt2) ps1; s2q Ñ pt1; t2qto c
MatchFace(Curvesc, Facef) Scales and Translatesc in f

Geometry
Location(Vertexv) Position of vertexv
LocationAt(Edgee, Scalars) Position one, according tos P r0; 1s
Centroid(Facef) Centroid position of facef
Contour(Facef) Boundary of facef
Append(Curvesc1, Curvesc2) Appendsc2 to c1 and returns the new set
ToCurve(Edgee) Transforms edgee into a curve

Labels
HasLabel(Cell | Cellsc,Stringl) Tests if cell(s)c contain the labell
IsBoundary(Cellc) Tests ifc is adjacent to the unbounded face
PointLabeled(Curvesc,Stringl) Returns the location inc labelled byl
CurveLabeled(Curvesc,Stringl) Returns the curvec labelled byl

Random values
Random(Scalarmin ,Scalarmax) Random valueP rmin; max s
Random(Cellc,Scalarmin , Deterministic random value. This function

Scalarmax ,Scalarn) always returns the same value for a given
cell c and scalarn

Merging operators
Union(ArrangementA1, ArrangementA2) All the curves fromA1 andA2
Inside(ArrangementA1, ArrangementA2, Edges ofA1 insideA2's faces

Borderb)
Outside(ArrangementA1, ArrangementA2, Edges ofA1 outsideA2's faces

Borderb)

Useful functions available in our scripts
ImportSVG(Stringf ilename) Loads curves from the given SVG �le
ExportSVG(ArrangementA , Scalarsize) ExportsA in SVG
BBoxWidth(Cell | Curvesc) Bounding box width of an elementc
BBoxHeight(Cell | Curvesc) Bounding box height of an elementc
BBoxCenter(Cell | Curvesc) Bounding box center of an elementc
Scale(Curvesc,Scalars) Scalesc by a factors
Rotate(Curvesc,Scalars) Rotatesc by a factors P r0; 2� s
Translate(Curvesc,Vectorv) Translatesc in the directionv
Nothing() Returns an empty set of curves

133

Additional document No II. Border Management.

(a) CROP (b) CROP_ADD_BOUNDARY

(c) KEEP_INSIDE (d) KEEP_OUTSIDE

134 APPENDIX C. USER STUDY TUTORIAL

Additional document No III-1. Sandbox script part 1

1 # Ca l l your f u n c t i o n here
2 de f main () :
3 t e s t 1 ()
4

5 # Pas te p i e c e s o f code i n your f u n c t i o n here
6 de f t e s t 1 () :
7 p r i n t (" He l l o ! ")
8

9 # Warning : p a r t i t i o n s () w i l l r a i s e e r r o r s i f c a l l e d
10 # Grab p i e c e s o f code t h a t you want and mod i fy t h e i r pa ramete rs
11 de f p a r t i t i o n s () :
12 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
13 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i / 2 . 0 , w id th)
14 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 , KEEP_OUTSIDE)
15

16 props = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
17 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
18

19 props = I r r e g u l a r P r o p e r t i e s (d e n s i t y)
20 p a r t = Un i fo rmPar t i t i on (props , KEEP_OUTSIDE)
21

22 props1 = I r r e g u l a r P r o p e r t i e s (1 0 0 / (s i z e� s i z e))
23 t ex1 = Un i fo rmPar t i t i on (props1 , KEEP_OUTSIDE)
24

25 props2 = I r r e g u l a r P r o p e r t i e s (1 2 0 0 / (s i z e� s i z e))
26 t ex2 = RandomPart i t ion (props2 , KEEP_OUTSIDE)
27

28 props = I r r e g u l a r P r o p e r t i e s (3 0 / (s i z e� s i z e))
29 i n i t _ t e x = RandomPart i t ion (props , KEEP_OUTSIDE)
30

31 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
32 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
33 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
34 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
35 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 , KEEP_OUTSIDE)
36

37 # Warning : e l e m e n t s () w i l l r a i s e e r r o r s i f c a l l e d
38 # Grab p i e c e s o f code t h a t you want and mod i fy t h e i r pa ramete rs
39 de f e l emen ts () :
40 c i r c l e = ImportSVG (" d a t a / c i r c l e . svg ")
41 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
42 s q u a r e = Sca le (ImportSVG (" d a t a / s q u a r e . svg ") , 0 . 5)
43 wheel = ImportSVG (" d a t a / wheel1 . svg ")
44 s t i p p l e = ImportSVG (" d a t a / s t i p p l e 1 . svg ")

135

Additional document No III-2. Sandbox script part 2

1 # Warning : mappers () w i l l r a i s e e r r o r s i f c a l l e d
2 # Grab p i e c e s o f code t h a t you want and mod i fy t h e i r pa ramete rs
3 de f mappers () :
4 de f f a c e _ t o _ s q u a r e (f a c e) :
5 r e t u r n Sca le (R o t a t e (MatchFace (square , f a c e) , Random (face , 0 . 0 , 2 . 0� p i , 1)) , 0 . 5)
6

7 de f l i n e _ t o _ c u r v e (edge) :
8 i f I sBoundary (edge) :
9 r e t u r n Noth ing ()

10

11 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
12 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
13 s r c_v = Loca t i on (SourceVer tex (edge))
14 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
15 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c , s rc_v , ds t_v)
16

17 de f f a c e _ t o _ c i r c l e (f a c e) :
18 s r c_p = BBoxCenter (c i r c l e)
19 ds t_p = C e n t r o i d (f a c e)
20 r e t u r n Sca le (MatchPo in t (c i r c l e , s rc_p , ds t_p) , Random (face , 0 . 0 5 , 0 . 1 5 , 0))
21

22 de f f a c e _ t o _ w h e e l (f a c e) :
23 w = Sca le (R o t a t e (wheel , Random (face ,0 ,2� p i , 0)) , Random (face , 0 . 8 , 1 , 1))
24 r e t u r n MatchPo in t (w, BBoxCenter (w) , C e n t r o i d (f a c e))
25

26 de f f a c e _ t o _ s t i p p l e s (f a c e) :
27 s = Sca le (R o t a t e (s t i p p l e , Random (face ,0 ,2� p i , 0)) , Random (face , 0 . 9 , 1 , 1))
28 r e t u r n MatchPo in t (s , BBoxCenter (s) , C e n t r o i d (f a c e))
29

30 de f sca le_map (f a c e) :
31 r e t u r n Sca le (Contour (f a c e) , 0 . 9 5)
32

33 de f hatch_map (f a c e) :
34 ang le = Random (face ,0 ,2� p i , 1)
35 l i n e s = S t r i p e s P r o p e r t i e s (ang le , 4 0)
36 r e t u r n S t r i p e s P a r t i t i o n (l i n e s) (f a c e)
37

38 de f border_map (edge) :
39 i f I sBoundary (edge) :
40 r e t u r n Noth ing ()
41 r e t u r n ToCurve (edge)
42

43 de f f a c e _ t o _ s t r i p e s (f a c e) :
44 wid th = BBoxWidth (f a c e) / Random (face , 4 , 6 , 0)
45 t h e t a = 0
46 i f ((HasLabel (face , " h1 ") and HasLabel (face , " v1 ")) o r
47 (HasLabel (face , " h2 ") and HasLabel (face , " v2 "))) :
48 t h e t a = p i / 2
49 l i n e s = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
50 r e t u r n S t r i p e s P a r t i t i o n (l i n e s) (f a c e)

136 APPENDIX C. USER STUDY TUTORIAL

APPENDIX

D

USER STUDY RESULTS

Target textures

FIGURE D.1 – “puzzle”

FIGURE D.2 – “cracks”

FIGURE D.3 – “waves”

137

138 APPENDIX D. USER STUDY RESULTS

User 1 - puzzle.21 lines, two operators (green),
three executions.

User satisfaction: 10/10

1 de f t e s t 2 () :
2 l i n e = ImportSVG (" d a t a / e s t e l l e / b i t o n i o .

svg ")
3

4 de f e d g e _ t o _ b i t o n i o (edge) :
5 d s t _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
6 s r c _ c = P o i n t L a b e l e d (l i n e , " end ")
7 i f (HasLabel (Le f tFace (edge) , " v1 ")

and HasLabel (Le f tFace (edge) , " h1 "
)) :

8 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t "
)

9 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
10 e l i f (HasLabel (Le f tFace (edge) , " v2 ")

and HasLabel (Le f tFace (edge) , " h2 ")
) :

11 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t "
)

12 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
13 s r c_v = Loca t i on (SourceVer tex (edge))
14 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
15 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
16

17 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
18 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
19 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
20 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
21 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
22 p a r t = MapToEdges(e d g e _ t o _ b i t o n i o ,

g r i d _ t e x)
23

24 ExportSVG (p a r t , 1000)

139

User 1 - cracks.20 lines, six operators (green),
three executions.

User satisfaction: 10/10

1 de f t e s t 3 () :
2 props = I r r e g u l a r P r o p e r t i e s (1 / 1 0 0 0 0 0)
3 i n i t _ t e x = RandomPart i t ion (props ,

KEEP_OUTSIDE)
4

5 de f hatch_map (f a c e) :
6 props = I r r e g u l a r P r o p e r t i e s (1 / 1 0 0 0 0)
7 r e t u r n RandomPart i t ion (props ,

CROP_ADD_BOUNDARY) (f a c e)
8

9 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
10 de f l i n e _ t o _ c u r v e (edge) :
11 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
12 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
13 s r c_v = Loca t i on (SourceVer tex (edge))
14 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
15 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
16

17 de f sca le_map (f a c e) :
18 r e t u r n Sca le (Contour (f a c e) , 0 . 9 5)
19

20 t e x t u r e = MapToEdges(l i n e _ t o _ c u r v e ,
i n i t _ t e x)

21 t e x t u r e = MapToFaces(scale_map , t e x t u r e)
22 t e x t u r e = MapToFaces(hatch_map , t e x t u r e)
23 t e x t u r e = MapToFaces(scale_map , t e x t u r e)
24

25 ExportSVG (t e x t u r e , 1000)

140 APPENDIX D. USER STUDY RESULTS

User 1 - waves.21 lines, �ve operators (green),
three executions.

User satisfaction: 8/10

1 de f t e s t 4 () :
2 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
3 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , 2 0 0)
4 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
5

6 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
7 de f l i n e _ t o _ c u r v e (edge) :
8 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
9 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")

10 s r c_v = Loca t i on (SourceVer tex (edge))
11 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
12 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
13

14 de f sca le_map (f a c e) :
15 r e t u r n Sca le (Contour (f a c e) , 0 . 9 5)
16

17 de f hatch_map (f a c e) :
18 props = S t r i p e s P r o p e r t i e s (p i / 4 . 0 , 4 0)
19 z o r g l u b = S t r i p e s P a r t i t i o n (p rops)
20 b loub = MapToEdges(l i n e _ t o _ c u r v e ,

z o r g l u b)
21 r e t u r n b loub (f a c e)
22

23 t e x t u r e = MapToFaces(scale_map , g r i d _ t e x)
24 t e x t u r e = MapToFaces(hatch_map , t e x t u r e)
25

26 ExportSVG (t e x t u r e , 500)

141

Interview of User 1

How easy was it to decide what you would do in order to reach the target designs?Extremely easy. No dif�culty.
The decomposition process looks very natural because it corresponds to the way our brain decomposes images into
separate structures.
How easy was it to realize your plans by scripting in our tool?Not so hard. With a little bit of practice it becomes
easy, and this learning appears to take little time. I would say labels took me the most time to handle in practice.
How often did you loose the understanding of what your script was doing?Never. The scripts are short and the
syntax is clear. No problem.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?It works quite well. It �ts our natural way to split structures into simpler
parts. I liked this set of operators.
What are your thoughts about what you liked or disliked while experiencing our tool?The system itself is not
far from being extremely comfortable. I would say the synthesis speed is the thing to be improved, because some
trial-and-errors are slown down when the texture becomes complex.

142 APPENDIX D. USER STUDY RESULTS

User 2 - puzzle.26 lines, two operators (green),
three executions.

User satisfaction: 10/10

1 de f t e s t 3 () :
2 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
3 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
4 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
5 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
6 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
7

8 l i n e = ImportSVG (" d a t a / e s t e l l e / b i t o n i o .
svg ")

9

10 de f l i n e _ t o _ c u r v e (edge) :
11 i f I sBoundary (edge) :
12 r e t u r n Noth ing ()
13

14 f a c e = Le f tFace (edge)
15

16 i f ((HasLabel (face , " h1 ") and HasLabel (
face , " v1 ")) o r

17 (HasLabel (face , " h2 ") and HasLabel
(face , " v2 "))) :

18 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t "
)

19 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
20 s r c_v = Loca t i on (SourceVer tex (

edge))
21 ds t_v = Loca t i on (T a r g e t V e r t e x (

edge))
22 r e t u r n MatchPo in ts (l i n e , s rc_c ,

ds t_c , s rc_v , ds t_v)
23 e l s e :
24 s r c _ c = P o i n t L a b e l e d (l i n e , " end ")
25 d s t _ c = P o i n t L a b e l e d (l i n e , " s t a r t "

)
26 s r c_v = Loca t i on (SourceVer tex (

edge))
27 ds t_v = Loca t i on (T a r g e t V e r t e x (

edge))
28 r e t u r n MatchPo in ts (l i n e , s rc_c ,

ds t_c , s rc_v , ds t_v)
29

30 t e x t u r e = MapToEdges(l i n e _ t o _ c u r v e ,
g r i d _ t e x)

31 ExportSVG (t e x t u r e , 1000)

143

User 2 - cracks.12 lines, four operators (green),
two executions.

User satisfaction: 6/10

1 de f t e s t 4 () :
2 props = I r r e g u l a r P r o p e r t i e s (10 /4000000)
3 p a r t = RandomPart i t ion (props ,

KEEP_OUTSIDE)
4

5 de f s u b d i v i d e F a c e (f a c e) :
6 ang le = Random (face ,0 ,2� p i , 1)
7 props2 = I r r e g u l a r P r o p e r t i e s

(100 /4000000)
8 r e t u r n RandomPart i t ion (props2 ,

CROP_ADD_BOUNDARY) (f a c e)
9

10 de f sca le_map (f a c e) :
11 r e t u r n Sca le (Contour (f a c e) , 0 . 9 5)
12

13 t e x t u r e = MapToFaces(subd i v i deFace , p a r t)
14 t e x t u r e 2 = MapToFaces(scale_map , t e x t u r e)
15 ExportSVG (t e x t u r e 2 , 1000)

144 APPENDIX D. USER STUDY RESULTS

User 2 - waves.29 lines, seven operators (green),
three executions.

User satisfaction: 7/10

1 de f t e s t 5 () :
2 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 5 0 , 2 0 0)
3 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 5 0 , 2 0 0)
4 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
5 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
6 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
7

8 de f vagues (f a c e) :
9 i f ((HasLabel (face , " h1 ") and HasLabel (

face , " v1 "))) :
10

11 ang le = p i / 4
12 l i n e s = S t r i p e s P r o p e r t i e s (ang le

, 1 0)
13 r e t u r n S t r i p e s P a r t i t i o n (l i n e s) (

f a c e)
14 e l s e :
15 r e t u r n Noth ing ()
16

17 de f l i n e _ t o _ c u r v e (edge) :
18 i f I sBoundary (edge) :
19 r e t u r n Noth ing ()
20

21 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
22 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
23 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
24 s r c_v = Loca t i on (SourceVer tex (edge))
25 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
26 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
27

28 t e x t u r e = MapToFaces(vagues , g r i d _ t e x)
29 T1 = MapToEdges(l i n e _ t o _ c u r v e , t e x t u r e)
30

31 props = S t r i p e s P r o p e r t i e s (p i / 4 , 4 0)
32 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
33 T2 = MapToEdges(l i n e _ t o _ c u r v e , s t r i p e s)
34 t e x t u r e F i n a l e = Union (T1 , T2)
35

36 ExportSVG (t e x t u r e F i n a l e , 1000)

145

Interview of User 2

How easy was it to decide what you would do in order to reach the target designs?It was quite simple. The
nodal formulation is common to other usual modeling tools. Only the labeling design was a bit harsh.
How easy was it to realize your plans by scripting in our tool?It was simple, and it becomes quicker and quicker
when you start re-using bricks you designed before.
How often did you loose the understanding of what your script was doing?Never.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?I thought it was correct and logical. I liked the way of thinking textures
as simple bases which are re�ned and then combined. It reminded me Maya's system for designing procedural
textures.
What are your thoughts about what you liked or disliked while experiencing our tool?I liked the operator
syntax embedded in Python, which is quite practical as a scripting language. I think the main limitation is the
computational cost of the textures. I would like them to update in real-time when I achieve one piece of code.
I liked the way modeling is thought in the system. You have an idea, you can easily make it real. The needed
reasoning looks obvious. I also liked the quality of random textures that can be done, such as in the cracks example.
Such textures are really hard to make with current commercial software.

146 APPENDIX D. USER STUDY RESULTS

User 3 - puzzle.20 lines, two operators (green),
three executions.

User satisfaction: 8/10

1 de f t e s t 3 () :
2 l i n e = ImportSVG (" d a t a / e s t e l l e / b i t o n i o .

svg ")
3

4 de f e d g e _ t o _ b l a (edge) :
5 i f (HasLabel (Le f tFace (edge) , " v1 ")

and HasLabel (Le f tFace (edge) , " h1 "
)) o r (HasLabel (Le f tFace (edge) ,
" v2 ") and HasLabel (Le f tFace (edge)
, " h2 ")) :

6 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t "
)

7 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
8 e l s e :
9 d s t _ c = P o i n t L a b e l e d (l i n e , " s t a r t "

)
10 s r c _ c = P o i n t L a b e l e d (l i n e , " end ")
11

12 s r c_v = Loca t i on (SourceVer tex (edge))
13 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
14 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
15

16 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
17 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
18 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
19 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
20 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
21 p a r t = MapToEdges(edge_ to_b la , g r i d _ t e x)
22

23 ExportSVG (p a r t , 2000)

147

User 3 - cracks.12 lines, four operators (green),
two executions.

User satisfaction: 5/10

1 de f t e s t 4 () :
2 de f s h r i n k _ f a c e (f a c e) :
3 r e t u r n Sca le (Contour (f a c e) , Random (

face , 0 . 9 0 , 0 . 9 7 , 1))
4

5 de f un i f o rm_ to_un i f o rm (f a c e) :
6 props2 = I r r e g u l a r P r o p e r t i e s

(50 /4000000)
7 p a r t 2 = Un i fo rmPar t i t i on (props2 ,

CROP_ADD_BOUNDARY)
8 p a r t 2 = MapToFaces(s h r i n k _ f a c e , p a r t 2)
9 r e t u r n p a r t 2 (f a c e)

10

11 props = I r r e g u l a r P r o p e r t i e s (5 /4000000)
12 p a r t = Un i fo rmPar t i t i on (props ,

KEEP_OUTSIDE)
13 p a r t = MapToFaces(un i fo rm_to_un i fo rm , p a r t

)
14

15 ExportSVG (p a r t , 2000)

148 APPENDIX D. USER STUDY RESULTS

User 3 - waves.30 lines, nine operators (green),
three executions.

User satisfaction: 10/10

1 de f t e s t 5 () :
2 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
3 de f l i n e _ t o _ c u r v e (edge) :
4 i f I sBoundary (edge) :
5 r e t u r n ToCurve (edge)
6

7 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
8 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
9 s r c_v = Loca t i on (SourceVer tex (edge))

10 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
11 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
12

13 de f s h r i n k _ f a c e s (f a c e) :
14 r e t u r n Sca le (Contour (f a c e) , 0 . 8 5)
15

16 de f wav i f y_ face (f a c e) :
17 props = S t r i p e s P r o p e r t i e s (p i / 4 , 5 0)
18 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
19 s t r i p e s = MapToEdges(l i n e _ t o _ c u r v e ,

s t r i p e s)
20 r e t u r n s t r i p e s (f a c e)
21

22 props = S t r i p e s P r o p e r t i e s (p i / 4 , 5 0)
23 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
24 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
25 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , 2 0 0)
26 s t r i p e s = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
27 s t r i p e s = MapToFaces(wav i f y_ face , s t r i p e s)
28

29 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
30 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 . 0 , 2 0 0)
31 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
32

33 g r i d _ t e x = MapToFaces(s h r i n k _ f a c e s ,
g r i d _ t e x)

34 g r i d _ t e x = MapToFaces(wav i f y_ face ,
g r i d _ t e x)

35

36 f i n a l = Union (g r i d _ t e x , s t r i p e s)
37

38 ExportSVG (f i n a l , 2000)

149

Interview of User 3

How easy was it to decide what you would do in order to reach the target designs?Quite easy. You always
succeed in extracting some structure, some hierarchy in the target images. I think it would remain easy as long as
there is some clear arrangement to see.
How easy was it to realize your plans by scripting in our tool?It was simple and enjoyable. I liked to have base
bricks provided, that helped a lot constructing my own examples.
How often did you loose the understanding of what your script was doing?Never. I had some dif�culties with
the �rst combination involving a partition inside a mapper. After that I had no trouble.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?It works very well. I �nd the idea sound.
What are your thoughts about what you liked or disliked while experiencing our tool?I liked a lot that some
ready-to-use bricks are provided on top of the set of operators. It helps a lot �nding your way during the �rst
moments. I found the computation a bit slow, but it is not blocking the creative process. Let say, it is not slow
enough to be frustrating. One other cool point is that since you are scripting, you can use whatever text editor or
IDE you want. It looks neglictible, but actually the usual sources of frustration with user interfaces are the basic
shortcuts and the undo/redo feature. All of these are no problem here.

150 APPENDIX D. USER STUDY RESULTS

User 4 - puzzle (10min only).20 lines, two ope-
rators (green), �ve executions.

User satisfaction: 10/10

1 de f t e s t 3 () :
2 s i z e = 2000
3 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
4 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
5 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
6 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
7 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
8

9 b i t o n i o = ImportSVG (" d a t a / e s t e l l e / b i t o n i o
. svg ")

10

11 de f l i n e _ t o _ c u r v e (edge) :
12

13 s r c _ c = P o i n t L a b e l e d (b i t o n i o , " s t a r t ")
14 d s t _ c = P o i n t L a b e l e d (b i t o n i o , " end ")
15 s r c_v = Loca t i on (SourceVer tex (edge))
16 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
17

18 f a c e = Le f tFace (edge)
19

20 i f ((HasLabel (face , " h1 ") and HasLabel (
face , " v1 ")) o r

21 (HasLabel (face , " h2 ") and HasLabel
(face , " v2 "))) :

22 r e t u r n MatchPo in ts (b i t o n i o , s rc_c ,
ds t_c , s rc_v , ds t_v)

23 e l s e :
24 r e t u r n MatchPo in ts (b i t o n i o , ds t_c ,

s rc_c , s rc_v , ds t_v)
25

26 T1 = MapToEdges(l i n e _ t o _ c u r v e , g r i d _ t e x)
27 ExportSVG (T1 , 1000)

151

User 4 - cracks.25 lines, seven operators (green),
three executions.

User satisfaction: 8/10

1 de f t e s t 4 () :
2 s i z e = 2000
3 props1 = I r r e g u l a r P r o p e r t i e s (3 0 / (s i z e�

s i z e))
4 t ex1 = Un i fo rmPar t i t i on (props1 ,

CROP_ADD_BOUNDARY)
5

6 de f sca le_map (f a c e) :
7 r e t u r n Sca le (Contour (f a c e) , 0 . 9 5)
8

9 de f par t_map (f a c e) :
10 s = 2000
11 props = I r r e g u l a r P r o p e r t i e s (1 0 0 0 / (s�

s))
12 r e t u r n Un i fo rmPar t i t i on (props ,

CROP_ADD_BOUNDARY) (f a c e)
13

14 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
15

16 de f l i n e _ t o _ c u r v e (edge) :
17 i f I sBoundary (edge) :
18 r e t u r n ToCurve (edge)
19

20 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
21 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
22 s r c_v = Loca t i on (SourceVer tex (edge))
23 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
24 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
25

26 T1 = MapToEdges(l i n e _ t o _ c u r v e , t ex1)
27 T2 = MapToFaces(scale_map , T1)
28 T3 = MapToFaces(part_map , T2)
29 T4 = MapToEdges(l i n e _ t o _ c u r v e , T3)
30 T5 = MapToFaces(scale_map , T4)
31 ExportSVG (T5 , 1000)

152 APPENDIX D. USER STUDY RESULTS

User 4 - waves.28 lines, six operators (green),
four executions.

User satisfaction: 6/10

1 de f t e s t 5 () :
2 s i z e = 2000
3 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
4 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
5 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
6 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
7 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
8

9 de f sca le_map (f a c e) :
10 r e t u r n Sca le (Contour (f a c e) , 0 . 7 5)
11

12 de f hatch_map (f a c e) :
13 ang le = p i / 4 .
14 s i z e = Random (face , 0 , 5)
15 l i n e s = S t r i p e s P r o p e r t i e s (ang le , 2 0)
16 r e t u r n S t r i p e s P a r t i t i o n (l i n e s) (f a c e)
17

18 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
19

20 de f l i n e _ t o _ c u r v e (edge) :
21 i f I sBoundary (edge) :
22 r e t u r n Noth ing ()
23

24 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
25 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
26 s r c_v = Loca t i on (SourceVer tex (edge))
27 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
28 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
29

30 T1 = MapToFaces(scale_map , g r i d _ t e x)
31 T2 = MapToFaces(hatch_map , T1)
32 T3 = MapToEdges(l i n e _ t o _ c u r v e , T2)
33 T4 = MapToEdges(l i n e _ t o _ c u r v e , T3)
34 ExportSVG (T4 , 1000)

153

Interview of User 4

How easy was it to decide what you would do in order to reach the target designs?Quite easy. You only have
to look at how to decompose the image, and then how to do each part with mappers. These are a lot like shaders,
which is very practical.
How easy was it to realize your plans by scripting in our tool?It is quite easy to put the ideas into practice - I
already coded with Python. I had a few dif�culties only with the parameters of the Random operator and the density
in RandomPartition and UniformPartition. Besides, it is possible to design the textures iteratively, which is super
practical when you are editing code. Also the mapper/mapping operator design is very compact, which made my
life a lot simpler.
How often did you loose the understanding of what your script was doing?Never.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?The concept is really sound. It allows to create complex results very easily, step
by step. In particular I found that the way of editing topology in mappers is very powerful.
What are your thoughts about what you liked or disliked while experiencing our tool?Among all things I
appreciated, I think the mappers were my favourite part. Maybe the thing I disliked was the computation time
which was a bit heavy.

154 APPENDIX D. USER STUDY RESULTS

User 5 - puzzle.23 lines, two operators (green),
four executions.

User satisfaction: 6/10

1 de f t e s t 3 () :
2 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
3 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
4 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
5 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 ")
6 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
7 l i n e = ImportSVG (" d a t a / e s t e l l e / b i t o n i o . svg "

)
8

9 # e lemen t t o edge
10 de f l i n e _ t o _ c u r v e (edge) :
11 i f I sBoundary (edge) :
12 r e t u r n Noth ing ()
13

14 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
15 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
16 s r c_v = Loca t i on (SourceVer tex (edge))
17 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
18

19 i f (HasLabel (I n c i d e n t E d g e s (T a r g e t V e r t e x (
edge)) , " h2 ")) o r (HasLabel (
I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , "
v2 ")) and (HasLabel (edge , " v2 ") o r
HasLabel (edge , " h1 ")) :

20 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,
s rc_v , ds t_v)

21

22 e l i f (HasLabel (I n c i d e n t E d g e s (T a r g e t V e r t e x
(edge)) , " h1 ")) o r (HasLabel (
I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , "
v1 ")) and (HasLabel (edge , " v1 ") o r
HasLabel (edge , " h2 ")) :

23 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,
s rc_v , ds t_v)

24

25 e l s e :
26 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

ds t_v , s r c_v)
27

28 T = MapToEdges(l i n e _ t o _ c u r v e , g r i d _ t e x)
29 ExportSVG (T , 1000)

155

User 5 - cracks.14 lines, �ve operators (green),
two executions.

User satisfaction: 8/10

1 de f t e s t 4 () :
2 s i z e = 2000
3 props = I r r e g u l a r P r o p e r t i e s (3 0 / (s i z e�

s i z e))
4 i n i t _ t e x = RandomPart i t ion (props ,

KEEP_OUTSIDE)
5

6 de f f a c e _ t o _ s t r i p e s (f a c e) :
7 props = I r r e g u l a r P r o p e r t i e s (1 5 0 / (s i z e�

s i z e))
8 i n i t _ t e x = RandomPart i t ion (props ,

CROP_ADD_BOUNDARY)
9 r e t u r n i n i t _ t e x (f a c e)

10

11 de f sca le_map (f a c e) :
12 r e t u r n Sca le (Contour (f a c e) , Random (face ,

0 . 9 , 0 . 9 9 , 0))
13

14 T = MapToFaces(scale_map , i n i t _ t e x)
15 T2 = MapToFaces(f a c e _ t o _ s t r i p e s , T)
16 T3 = MapToFaces(scale_map , T2)
17

18 Add (T3 (Sta r tDomain (2000)))

156 APPENDIX D. USER STUDY RESULTS

User 5 - waves.24 lines, six operators (green),
three executions.

User satisfaction: 9/10

1 de f t e s t 5 () :
2 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
3 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
4 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
5

6 props = S t r i p e s P r o p e r t i e s (p i / 4 , 1 0)
7 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
8 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
9

10 de f sca le_map (f a c e) :
11 r e t u r n Sca le (Contour (f a c e) , 0 . 8)
12

13 de f f a c e _ t o _ s t r i p e s (f a c e) :
14 l i n e s = S t r i p e s P r o p e r t i e s (p i / 4 , 1 0)
15 t e x _ s t r i p e s =MapToEdges(l i n e _ t o _ c u r v e ,

S t r i p e s P a r t i t i o n (l i n e s))
16 r e t u r n t e x _ s t r i p e s (f a c e)
17

18 de f l i n e _ t o _ c u r v e (edge) :
19 i f I sBoundary (edge) :
20 r e t u r n Noth ing ()
21

22 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
23 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
24 s r c_v = Loca t i on (SourceVer tex (edge))
25 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
26 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c , s rc_v

, ds t_v)
27

28 T2 = MapToFaces(scale_map , g r i d _ t e x)
29 T3 = MapToFaces(f a c e _ t o _ s t r i p e s , T2)
30

31 ExportSVG (T3 , 1000)

157

Interview of User 5

How easy was it to decide what you would do in order to reach the target designs?Easy, natural. As long as
there is a structure to observe, it takes just an instant. It became a little harder for me for random patterns (cracks).
How easy was it to realize your plans by scripting in our tool?Surprisingly easy. In particular, I got exactly what
I expected for the waves although I coded everything in a single strike.
How often did you loose the understanding of what your script was doing?Once with labels in the puzzle. Then
never again.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?At least it was appropriate for the given examples, which is already something
given the broad variety of targets. The principle is easy to understand and easy to visualize. It is easy to imagine
the resulting texture of a given composition of operators.
What are your thoughts about what you liked or disliked while experiencing our tool?It was a nice experience.
I liked that the operators �t well in a node-based strategy, which could be used for making an even more convenient
interface.

158 APPENDIX D. USER STUDY RESULTS

User 6 - puzzle.20 lines, two operators (green),
three executions.

User satisfaction: 10/10

1 de f t e s t 4 () :
2

3 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
4 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
5 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
6 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 ")
7 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
8

9 b i t o n i o = ImportSVG (" d a t a / e s t e l l e / b i t o n i o .
svg ")

10

11 de f l i n e _ t o _ c u r v e (edge) :
12 i f I sBoundary (edge) :
13 r e t u r n Noth ing ()
14

15 s r c _ c = P o i n t L a b e l e d (b i t o n i o , " s t a r t ")
16 d s t _ c = P o i n t L a b e l e d (b i t o n i o , " end ")
17 s r c_v = Loca t i on (SourceVer tex (edge))
18 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
19 i f ((HasLabel (edge , " v1 ") and HasLabel (

I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) , "
h1 ")) o r (HasLabel (edge , " h1 ") and
HasLabel (I n c i d e n t E d g e s (SourceVer tex (
edge)) , " v1 ")) o r (HasLabel (edge , " v2 "
) and HasLabel (I n c i d e n t E d g e s (
T a r g e t V e r t e x (edge)) , " h2 ")) o r (
HasLabel (edge , " h2 ") and HasLabel (
I n c i d e n t E d g e s (SourceVer tex (edge)) , "
v2 "))) :

20 ds t_v = Loca t i on (SourceVer tex (edge))
21 s r c_v = Loca t i on (T a r g e t V e r t e x (edge))
22 r e t u r n MatchPo in ts (b i t o n i o , s rc_c , ds t_c ,

s rc_v , ds t_v)
23

24 T = MapToEdges(l i n e _ t o _ c u r v e , g r i d _ t e x)
25

26 ExportSVG (T , 1000)

159

User 6 - cracks.Nine lines, two operators (green),
two executions.

User satisfaction: 8/10

1 de f t e s t 5 () :
2 s i z e = 1000
3 j e n s a i s r i e n = 0.999999
4 props = I r r e g u l a r P r o p e r t i e s (3 0 / (s i z e�

s i z e))
5 i n i t _ t e x = RandomPart i t ion (props ,

KEEP_OUTSIDE)
6

7 de f sca le_map (f a c e) :
8 r e t u r n Sca le (Contour (f a c e) , Random (face ,

0 . 9 , j e n s a i s r i e n , 1))
9

10 T = MapToFaces(scale_map , i n i t _ t e x)
11 ExportSVG (T , 1000)

160 APPENDIX D. USER STUDY RESULTS

User 6 - waves.25 lines, �ve operators (green),
four executions.

User satisfaction: 7/10

1 de f t e s t 6 () :
2 t h e t a = 0
3 wid th = 100
4 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
5 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i / 2 . 0 ,

w id th)
6 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
7

8 de f sca le_map (f a c e) :
9 r e t u r n Sca le (Contour (f a c e) , 0 . 7)

10

11 T = MapToFaces(scale_map , g r i d _ t e x)
12

13 de f f a c e _ t o _ s t r i p e s (f a c e) :
14 width2 = BBoxWidth (f a c e) / Random (face

, 4 , 6 , 0)
15 l i n e s = S t r i p e s P r o p e r t i e s (p i / 6 . 0 , w id th2)
16 r e t u r n S t r i p e s P a r t i t i o n (l i n e s) (f a c e)
17 T2 = MapToFaces(f a c e _ t o _ s t r i p e s , T)
18

19 l i n e = ImportSVG (" d a t a / l i n e 4 . svg ")
20

21 de f l i n e _ t o _ c u r v e (edge) :
22 i f I sBoundary (edge) :
23 r e t u r n Noth ing ()
24

25 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
26 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
27 s r c_v = Loca t i on (SourceVer tex (edge))
28 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
29 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c , s rc_v

, ds t_v)
30

31 T3 = MapToEdges(l i n e _ t o _ c u r v e , T2)
32

33 ExportSVG (T3 , 1000)

161

Interview of User 6

How easy was it to decide what you would do in order to reach the target designs?Easy. As a structure-�nding
task, it was easy.
How easy was it to realize your plans by scripting in our tool?It was very easy as well even though I never
coded using Python before.
How often did you loose the understanding of what your script was doing?Never.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?It looked natural and sound.
What are your thoughts about what you liked or disliked while experiencing our tool?I liked that the model
is intuitive.

162 APPENDIX D. USER STUDY RESULTS

User 7 - puzzle.25 lines, two operators (green),
two executions.

User satisfaction: 10/10

1 de f t e s t 3 () :
2 t h e t a = 0
3 wid th = 200
4 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
5 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 . 0 , w id th)
6 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
7 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")
8 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
9

10 l i n e = ImportSVG (" d a t a / e s t e l l e / b i t o n i o .
svg ")

11

12 de f f a c e _ t o _ s t r i p e s 2 (edge) :
13 f a c e _ l e f t = Le f tFace (edge)
14

15 sens = True
16

17 i f ((HasLabel (f a c e _ l e f t , " h1 ") and
HasLabel (f a c e _ l e f t , " v1 ")) o r

18 (HasLabel (f a c e _ l e f t , " h2 ") and
HasLabel (f a c e _ l e f t , " v2 "))) :

19 sens = F a l s e
20

21 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
22 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
23 s r c_v = Loca t i on (SourceVer tex (edge))
24 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
25 i f sens :
26 r e t u r n MatchPo in ts (l i n e , s rc_c ,

ds t_c , s rc_v , ds t_v)
27 e l s e :
28 r e t u r n MatchPo in ts (l i n e , s rc_c ,

ds t_c , ds t_v , s r c_v)
29

30 t ex2 = MapToEdges(f a c e _ t o _ s t r i p e s 2 ,
g r i d _ t e x)

31 ExportSVG (tex2 , 2 0 0 0)

163

User 7 - cracks.Ten lines, three operators (green),
two executions.

User satisfaction: 7/10

1 de f t e s t 4 () :
2 s i z e = 2000
3 props1 = I r r e g u l a r P r o p e r t i e s (1 0 0 / (s i z e�

s i z e))
4 t ex1 = Un i fo rmPar t i t i on (props1 ,

KEEP_OUTSIDE)
5

6 de f hatch_map (f a c e) :
7 ang le = Random (face ,0 ,2� p i , 1)
8 props2 = I r r e g u l a r P r o p e r t i e s (1 0 0 0 / (

s i z e� s i z e))
9 r e t u r n RandomPart i t ion (props2 ,CROP) (

f a c e)
10

11 t ex3 = MapToFaces(hatch_map , tex1)
12 ExportSVG (tex3 , 2 0 0 0)

164 APPENDIX D. USER STUDY RESULTS

User 7 - waves.25 lines, �ve operators (green),
four executions.

User satisfaction: 6/10

1 de f t e s t 5 () :
2 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
3 t h e t a = 0
4 wid th = 200
5

6 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , width ,
w id th / 4)

7 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i
/ 2 . 0 , width , w id th / 4)

8 S e t F a c e L a b e l s (l i n e s 1 , " h1 " , " h2 ")
9 S e t F a c e L a b e l s (l i n e s 2 , " v1 " , " v2 ")

10 g r i d _ t e x 1 = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,
KEEP_OUTSIDE)

11

12 de f c l e a n (f a c e) :
13 i f ((HasLabel (face , " h1 ") o r HasLabel (

face , " v1 "))) :
14 r e t u r n Noth ing ()
15 r e t u r n Contour (f a c e)
16

17 g r i d _ t e x 1 _ c l e a n =MapToFaces(c lean ,
g r i d _ t e x 1)

18

19 props = S t r i p e s P r o p e r t i e s (p i / 4 , w id th
/ 1 0)

20 s t r i p e s = S t r i p e s P a r t i t i o n (p rops)
21

22 g r i d _ t e x 3 = I n s i d e (s t r i p e s ,
g r i d _ t e x 1 _ c l e a n ,CROP)

23

24 de f l i n e _ t o _ c u r v e (edge) :
25

26 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
27 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
28 s r c_v = Loca t i on (SourceVer tex (edge))
29 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
30 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
31

32 t ex3 = MapToEdges(l i n e _ t o _ c u r v e , g r i d _ t e x 3
)

33 ExportSVG (tex3 , 5 0 0)

165

Interview of User 7

How easy was it to decide what you would do in order to reach the target designs?It was quite easy to set up
a plan to reach the target designs. Sometimes you even see several ways to achieve the goal. I liked this because I
�nd it always more safe to think before doing rather than dive into a dead end.
How easy was it to realize your plans by scripting in our tool?Quite easy. Maybe the only dif�culty I had was
the label �ltering.
How often did you loose the understanding of what your script was doing?Never.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations?It looks very natural. Actually I cannot think of any other way to model
textures now that I learnt this model. I especially liked the intuitive way of stacking texture levels so as to obtain
“multi-level” patterns.
What are your thoughts about what you liked or disliked while experiencing our tool?The tool was enjoyable.
In particular there are few lines of code to manage even for complex textures. The computation time is a bit long,
but nothing that cannot be optimized I believe. I think this approach has some big potential to be combined with a
node-based GUI.

166 APPENDIX D. USER STUDY RESULTS

User 8 - puzzle.21 lines, two operators (green),
two executions.

User satisfaction: 9/10

1 de f t e s t 3 () :
2 l i n e = ImportSVG (" d a t a / e s t e l l e / b i t o n i o .

svg ")
3 l i n e s 1 = S t r i p e s P r o p e r t i e s (0 , 2 0 0)
4 l i n e s 2 = S t r i p e s P r o p e r t i e s (p i / 2 , 2 0 0)
5 SetEdgeLabe ls (l i n e s 1 , " h1 " , " h2 ")
6 SetEdgeLabe ls (l i n e s 2 , " v1 " , " v2 ")
7 g r i d _ t e x = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,

KEEP_OUTSIDE)
8

9 de f l i n e _ t o _ c u r v e (edge) :
10 i f I sBoundary (edge) :
11 r e t u r n Noth ing ()
12 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
13 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
14 s r c_v = Loca t i on (SourceVer tex (edge))
15 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
16 i f (HasLabel (edge , " h2 ")) :
17 r e t u r n MatchPo in ts (l i n e , s rc_c ,

ds t_c , ds t_v , s r c_v)
18 i f (HasLabel (edge , " v2 ")) :
19 r e t u r n MatchPo in ts (l i n e , s rc_c ,

ds t_c , ds t_v , s r c_v)
20 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
21

22 texE = MapToEdges(l i n e _ t o _ c u r v e , g r i d _ t e x
)

23 ExportSVG (texE , 2000)

167

User 8 - cracks.21 lines, four operators (green),
three executions.

User satisfaction: 10/10

1 de f t e s t 4 () :
2 s i z e = 2000
3 props2 = I r r e g u l a r P r o p e r t i e s (1 0 / (s i z e�

s i z e))
4 t ex2 = RandomPart i t ion (props2 ,

KEEP_OUTSIDE)
5 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
6

7 de f l i n e _ t o _ c u r v e (edge) :
8 i f I sBoundary (edge) :
9 r e t u r n Noth ing ()

10 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
11 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
12 s r c_v = Loca t i on (SourceVer tex (edge))
13 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
14 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
15

16 texE = MapToEdges(l i n e _ t o _ c u r v e , t ex2)
17

18 de f f i l l _ m a p (f a c e) :
19 d e n s i t y =500 / (s i z e� s i z e)
20 i r r _ p r o p s = I r r e g u l a r P r o p e r t i e s (

d e n s i t y)
21 u n i f _ p a r t = Un i fo rmPar t i t i on (

i r r _ p r o p s ,CROP_ADD_BOUNDARY)
22 r e t u r n u n i f _ p a r t (f a c e)
23

24 texF = MapToFaces(f i l l _ m a p , texE)
25

26 ExportSVG (texF , 2000)

168 APPENDIX D. USER STUDY RESULTS

User 8 - waves.26 lines, �ve operators (green),
�ve executions.

User satisfaction: 9/10

1 de f t e s t 5 () :
2 t h e t a = 0 .0
3 wid th = 200
4

5 l i n e s 1 = S t r i p e s P r o p e r t i e s (t h e t a , w id th)
6 l i n e s 2 = S t r i p e s P r o p e r t i e s (t h e t a + p i

/ 2 . 0 , w id th)
7

8 g r i d _ t e x 0 = Gr idPa r t i t i on (l i n e s 1 , l i n e s 2 ,
KEEP_OUTSIDE)

9

10 de f sca le_map (f a c e) :
11 r e t u r n Sca le (Contour (f a c e) , 0 . 8)
12

13 g r i d _ t e x = MapToFaces(scale_map ,
g r i d _ t e x 0)

14

15 l i n e = ImportSVG (" d a t a / l i n e 6 . svg ")
16 de f l i n e _ t o _ c u r v e (edge) :
17 i f I sBoundary (edge) :
18 r e t u r n Noth ing ()
19

20 s r c _ c = P o i n t L a b e l e d (l i n e , " s t a r t ")
21 d s t _ c = P o i n t L a b e l e d (l i n e , " end ")
22 s r c_v = Loca t i on (SourceVer tex (edge))
23 ds t_v = Loca t i on (T a r g e t V e r t e x (edge))
24 r e t u r n MatchPo in ts (l i n e , s rc_c , ds t_c ,

s rc_v , ds t_v)
25

26 de f hatch_map (f a c e) :
27 ang le = p i / 4
28 l i n e s = S t r i p e s P r o p e r t i e s (ang le , 4 0)
29 p a r t = S t r i p e s P a r t i t i o n (l i n e s)
30 myTex = MapToEdges(l i n e _ t o _ c u r v e ,

p a r t)
31 r e t u r n myTex (f a c e)
32

33 h a t c h _ t e x = MapToFaces(hatch_map ,
g r i d _ t e x)

34

35 ExportSVG (ha t ch_ tex , 1000)

169

Interview of User 8

How easy was it to decide what you would do in order to reach the target designs?Very easy. I guess it is partly
because I already know some node-based systems such as Blender's Cycles rendering engine.
How easy was it to realize your plans by scripting in our tool?Relatively easy. Trial-and-error is a good option
which is allowed by the tool and that made my life easier for the most complex cases. It would be even easier if the
computation time was a bit shorter.
How often did you loose the understanding of what your script was doing?Never. It takes a bit of time to learn
each feature of the model, but once you have done it one time, it is very easy.
How did you feel about the general principle of designing textures with our parti-
tions+mappers+combinations? You have to handle the learning curve, but then you have a clear and
strong base for referring yourself to.
What are your thoughts about what you liked or disliked while experiencing our tool?I am very happy of the
textures I was able to create during this �rst trial of the tool. I did not expect to reach such complex results, that was
a good surprise.

170 APPENDIX D. USER STUDY RESULTS

APPENDIX

E

PYTHON SCRIPTS FOR
CARTOGRAPHIC DESIGN

In this appendix we show the scripts used to synthesize all the arrangements in Chapter 5.

171

172 APPENDIX E. PYTHON SCRIPTS FOR CARTOGRAPHIC DESIGN

Noisy hatching

1 # Common t o a l l s c r i p t s : Loading p a r t i t i o n o f mounta in
2 p = ImportSHP (" d a t a / mounta in / p a r t i t i o n . shp ")
3 # Data l o a d i n g f o r c o n t r o l f i e l d s
4 mnt = L o a d e r G i s R a s t e r s (" d a t a / DEM_Chamonix_5M_aiguil le . t i f ")
5 o r i e n t a t i o n s = LoadFaceWiseOr i en ta t i ons (p , " d a t a / mounta in /

o r i e n t _ L 9 3 . shp ")
6 d e n s i t i e s = LoadFaceWiseDens i t i es (p , " d a t a / mounta in /

d e n s i t i e s _ L 9 3 . shp ")
7 # F inds t h e h i g h e s t e l e v a t i o n i n a f a c e ' s a d j a c e n t v e r t i c e s ,

no rma l i zed between 0 and 1
8 de f h i g h e s t _ h e i g h t (f a c e) :
9 e l e v a t i o n = mnt . m i n _ e l e v a t i o n ()

10 f o r v i n I n c i d e n t V e r t i c e s (f a c e) :
11 x = Loca t i on (v) . e x a c t _ p o i n t . approx_x ()
12 y = Loca t i on (v) . e x a c t _ p o i n t . approx_y ()
13 new_a l t = mnt (x , y)
14 e l e v a t i o n = new_a l t i f new_a l t > e l e v a t i o n e l s e

e l e v a t i o n
15 e l e v a t i o n = (e l e v a t i o n� mnt . m i n _ e l e v a t i o n ()) / (mnt

. max_e leva t i on ()� mnt . m i n _ e l e v a t i o n ())
16 r e t u r n e l e v a t i o n
17 # F inds t h e h a t c h i n g spac ing i n f u n c t i o n o f t h e t a r g e t

d e n s i t y
18 de f s t r i p e s _ c y c l e (d e n s i t y _ f i e l d) :
19 de f o u t _ f (f a c e) :
20 d e n s i t y = d e n s i t y _ f i e l d (C e n t r o i d (f a c e))
21 a l t = h i g h e s t _ h e i g h t (f a c e)� h i g h e s t _ h e i g h t (f a c e)
22 c o e f f _ h a t c h s p a c i n g = 0 .5� 0 .5 � a l t i f d e n s i t y <

0 .5 e l s e 0 .5 + 0 .5� a l t
23 r e t u r n ha tchspac ing_m in + (ha tchspac ing_max�

ha t chspac ing_m in)� c o e f f _ h a t c h s p a c i n g
24 r e t u r n o u t _ f
25

26 # C o n t r o l l e d ar rangement
27 de f n o i s y _ h a t c h i n g (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
28 ha tchspac ing_m in = 3 .5
29 ha tchspac ing_max = 15 .0
30 h a t c h e s _ l e n g t h = 30 .0
31 de f ou t_a r rangemen t (f a c e) :
32 # Grid p a r t i t i o n
33 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))
34 h a t c h e s _ s p a c i n g = s t r i p e s _ c y c l e (d e n s i t y _ f i e l d) (f a c e)
35 l i n e s A = S t r i p e s P r o p e r t i e s (ang le , h a t c h e s _ s p a c i n g)
36 SetEdgeLabe ls (l i nesA , " h a t c h e s ")
37 l i n e s B = S t r i p e s P r o p e r t i e s (ang le + p i / 2 . 0 ,

h a t c h e s _ l e n g t h)
38 g r i d = Gr i dPa r t i t i on (l inesA , l i nesB , KEEP_OUTSIDE)
39 # Noise mappers
40 r a n d o m i z a t i o n = 1 .0
41 de f j i t t e r (v e r t e x) :
42 h a t c h _ d i r e c t i o n = P o i n t (cos (ang le) , s i n (ang le))
43 o r t h o _ d i r e c t i o n = P o i n t (� s i n (ang le) , cos (ang le))
44 random_x = Random (ve r t ex ,� h a t c h e s _ s p a c i n g�

r a n d o m i z a t i o n / 2 , h a t c h e s _ s p a c i n g�
r a n d o m i z a t i o n / 2 , 0)

45 random_y = Random (ve r t ex ,� h a t c h e s _ l e n g t h�
r a n d o m i z a t i o n / 2 , h a t c h e s _ l e n g t h�
r a n d o m i z a t i o n / 2 , 1)

46 l o c a t i o n _ r a n d o m i z a t i o n = o r t h o _ d i r e c t i o n�
random_x + h a t c h _ d i r e c t i o n� random_y

47 r e t u r n Loca t i on (v e r t e x) + l o c a t i o n _ r a n d o m i z a t i o n
48 p e r t u r b a t e _ e d g e = lambda edge : MatchPo in ts (ToCurve (

edge) , SourceVer tex (edge) , T a r g e t V e r t e x (edge) ,
j i t t e r (SourceVer tex (edge)) , j i t t e r (T a r g e t V e r t e x
(edge)))

49 r andom ize_ha t ches = lambda edge : p e r t u r b a t e _ e d g e (
edge) i f HasLabel (edge , " h a t c h e s ") e l s e Noth ing
()

50 r a n d h a t c h e s =MapToEdges(randomize_ha tches , g r i d)
51 r e t u r n r a n d h a t c h e s (f a c e)
52 r e t u r n ou t_a r rangemen t
53

54 # Expor t
55 ExportSVG (n o i s y _ h a t c h i n g (d e n s i t i e s , o r i e n t a t i o n s) , p)

173

Multiscale density variations

1 # C o n t r o l l e d mapper : f i n e s c a l e h a t c h i n g
2 de f h a t c h _ f a c e (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
3 h a t c h e s _ s p a c i n g = s t r i p e s _ c y c l e (d e n s i t y _ f i e l d) (f a c e)
4 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))
5 h a t c h l i n e s = S t r i p e s P r o p e r t i e s (ang le , h a t c h e s _ s p a c i n g)
6 SetEdgeLabe ls (h a t c h l i n e s , " h a t c h e s ")
7 h a t c h l i n e s _ p a r t =S t r i p e s P a r t i t i o n (h a t c h l i n e s)
8 # Noise mappers
9 r a n d o m i z a t i o n = 0 .5

10 de f j i t t e r (v e r t e x) :
11 h a t c h _ d i r e c t i o n = P o i n t (cos (ang le) , s i n (ang le))
12 o r t h o _ d i r e c t i o n = P o i n t (� s i n (ang le) , cos (ang le))
13 random_x = Random (ve r t ex ,� h a t c h e s _ s p a c i n g�

r a n d o m i z a t i o n / 2 , h a t c h e s _ s p a c i n g� r a n d o m i z a t i o n
/ 2 , 0)

14 random_y = Random (ve r t ex ,� h a t c h e s _ l e n g t h�
r a n d o m i z a t i o n / 2 , h a t c h e s _ l e n g t h� r a n d o m i z a t i o n
/ 2 , 1)

15 l o c a t i o n _ r a n d o m i z a t i o n = o r t h o _ d i r e c t i o n� random_x
+ h a t c h _ d i r e c t i o n � random_y

16 r e t u r n Loca t i on (v e r t e x) + l o c a t i o n _ r a n d o m i z a t i o n
17 p e r t u r b a t e _ e d g e = lambda edge : MatchPo in ts (ToCurve (edge)

, SourceVer tex (edge) , T a r g e t V e r t e x (edge) , j i t t e r (
SourceVer tex (edge)) , j i t t e r (T a r g e t V e r t e x (edge)))

18 r andom ize_ha t ches = lambda edge : p e r t u r b a t e _ e d g e (edge)
i f HasLabel (edge , " h a t c h e s ") e l s e Noth ing ()

19 # Mapping o p e r a t o r
20 r a n d h a t c h e s =MapToEdges(randomize_ha tches , h a t c h l i n e s)
21 r e t u r n r a n d h a t c h e s (f a c e)
22

23 # C o n t r o l l e d ar rangement
24 de f m u l t i s c a l e _ d e n s i t y _ v a r i a t i o n s (d e n s i t y _ f i e l d ,

o r i e n t _ f i e l d) :
25 ha tchspac ing_m in = 2 .0
26 ha tchspac ing_max = 10 .0
27 h a t c h e s _ l e n g t h = 20 .0
28 de f ou t_a r rangemen t (f a c e) :
29 # Coarse� s c a l e g r i d p a r t i t i o n
30 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))
31 g r i d _ s p a c i n g = 2� ha tchspac ing_max
32 l i n e s A = S t r i p e s P r o p e r t i e s (ang le , g r i d _ s p a c i n g)
33 SetEdgeLabe ls (l i nesA , " g r i d ")
34 l i n e s B = S t r i p e s P r o p e r t i e s (ang le + p i / 2 . 0 ,

h a t c h e s _ l e n g t h)
35 SetEdgeLabe ls (l i nesB , " g r i d ")
36 g r i d = Gr i dPa r t i t i on (l inesA , l i nesB , KEEP_OUTSIDE)
37 # Noise mappers
38 r a n d o m i z a t i o n = 1 .0
39 de f j i t t e r _ g r i d (v e r t e x) :
40 h a t c h _ d i r e c t i o n = P o i n t (cos (ang le) , s i n (ang le))
41 o r t h o _ d i r e c t i o n = P o i n t (� s i n (ang le) , cos (ang le))
42 random_x = Random (ve r t ex ,� g r i d _ s p a c i n g�

r a n d o m i z a t i o n / 2 , g r i d _ s p a c i n g� r a n d o m i z a t i o n
/ 2 , 0)

43 random_y = Random (ve r t ex ,� h a t c h e s _ l e n g t h�
r a n d o m i z a t i o n / 2 , h a t c h e s _ l e n g t h�
r a n d o m i z a t i o n / 2 , 1)

44 l o c a t i o n _ r a n d o m i z a t i o n = o r t h o _ d i r e c t i o n�
random_x + h a t c h _ d i r e c t i o n� random_y

45 r e t u r n Loca t i on (v e r t e x) + l o c a t i o n _ r a n d o m i z a t i o n
46 p e r t u r b a t e _ g r i d _ e d g e = lambda edge : MatchPo in ts (

ToCurve (edge) , SourceVer tex (edge) , T a r g e t V e r t e x
(edge) , j i t t e r _ g r i d (SourceVer tex (edge)) ,
j i t t e r _ g r i d (T a r g e t V e r t e x (edge)))

47 r andom ize_g r i d = lambda edge : p e r t u r b a t e _ e d g e (edge)
i f HasLabel (edge , " h a t c h e s ") e l s e Noth ing ()

48 # Mapping t o coa rse n o i s y g r i d
49 r a n d g r i d = MapToEdges(randomize_gr id , g r i d)
50 # Mapping t o f i n e h a t c h i n g
51 r e t u r n MapToFaces(h a t c h _ f a c e (d e n s i t y _ f i e l d ,

o r i e n t _ f i e l d) , r a n d g r i d) (f a c e)
52 r e t u r n ou t_a r rangemen t
53 # Expor t
54 ExportSVG (m u l t i s c a l e _ d e n s i t y _ v a r i a t i o n s (d e n s i t i e s ,

o r i e n t a t i o n s) , p)

174 APPENDIX E. PYTHON SCRIPTS FOR CARTOGRAPHIC DESIGN

Balanced density variations

1 # F inds t h e h a t c h i n g spac ing i n f u n c t i o n o f t h e t a r g e t
d e n s i t y

2 de f l i n e a r _ s t r i p e s _ c y c l e (d e n s i t y _ f i e l d) :
3 de f o u t _ f (f a c e) :
4 d e n s i t y = d e n s i t y _ f i e l d (C e n t r o i d (f a c e))
5 a l t = h i g h e s t _ h e i g h t (f a c e)# Do no t square anymore
6 c o e f f _ h a t c h s p a c i n g = 0 .5� 0 .5 � a l t i f d e n s i t y <

0 .5 e l s e 0 .5 + 0 .5� a l t
7 r e t u r n ha tchspac ing_m in + (ha tchspac ing_max�

ha t chspac ing_m in)� c o e f f _ h a t c h s p a c i n g
8 r e t u r n o u t _ f
9 # C o n t r o l l e d mapper : f i n e s c a l e h a t c h i n g

10 de f h a t c h _ f a c e (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
11 h a t c h e s _ s p a c i n g = l i n e a r _ s t r i p e s _ c y c l e (d e n s i t y _ f i e l d) (

f a c e)
12 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))
13 h a t c h l i n e s = S t r i p e s P r o p e r t i e s (ang le , h a t c h e s _ s p a c i n g)
14 SetEdgeLabe ls (h a t c h l i n e s , " h a t c h e s ")
15 h a t c h l i n e s _ p a r t =S t r i p e s P a r t i t i o n (h a t c h l i n e s)
16 # Noise mappers
17 r a n d o m i z a t i o n = 0 .5
18 de f j i t t e r (v e r t e x) :
19 h a t c h _ d i r e c t i o n = P o i n t (cos (ang le) , s i n (ang le))
20 o r t h o _ d i r e c t i o n = P o i n t (� s i n (ang le) , cos (ang le))
21 random_x=Random (ve r t ex ,� h a t c h e s _ s p a c i n g�

r a n d o m i z a t i o n / 2 , h a t c h e s _ s p a c i n g� r a n d o m i z a t i o n
/ 2 , 0)

22 random_y=Random (ve r t ex ,� h a t c h e s _ l e n g t h� r a n d o m i z a t i o n
/ 2 , h a t c h e s _ l e n g t h� r a n d o m i z a t i o n / 2 , 1)

23 l o c a t i o n _ r a n d o m i z a t i o n = o r t h o _ d i r e c t i o n� random_x
+ h a t c h _ d i r e c t i o n � random_y

24 r e t u r n Loca t i on (v e r t e x) + l o c a t i o n _ r a n d o m i z a t i o n
25 p e r t u r b a t e _ e d g e = lambda edge : MatchPo in ts (ToCurve (edge)

, SourceVer tex (edge) , T a r g e t V e r t e x (edge) , j i t t e r (
SourceVer tex (edge)) , j i t t e r (T a r g e t V e r t e x (edge)))

26 r andom ize_ha t ches = lambda edge : Sca le (p e r t u r b a t e _ e d g e (
edge) , 0 . 9 5) i f HasLabel (edge , " h a t c h e s ") e l s e
Noth ing ()

27 # Mapping o p e r a t o r
28 r a n d h a t c h e s =MapToEdges(randomize_ha tches , h a t c h l i n e s)
29 r e t u r n r a n d h a t c h e s (f a c e)
30 # C o n t r o l l e d ar rangement
31 de f b a l a n c e d _ d e n s i t y (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
32 ha tchspac ing_m in = 2 .0
33 ha tchspac ing_max = 10 .0
34 h a t c h e s _ l e n g t h = 20 .0
35 de f ou t_a r rangemen t (f a c e) :
36 # Coarse� s c a l e g r i d : same code as p r e v i o u s s c r i p t
37 # . . .
38 # . . . Mapping t o coa rse n o i s y g r i d
39 r a n d g r i d = MapToEdges(randomize_gr id , g r i d)
40 # Mapping t o f i n e h a t c h i n g
41 r e t u r n MapToFaces(h a t c h _ f a c e (d e n s i t y _ f i e l d ,

o r i e n t _ f i e l d) , r a n d g r i d) (f a c e)
42 r e t u r n ou t_a r rangemen t
43 # Expor t
44 ExportSVG (b a l a n c e d _ d e n s i t y (d e n s i t i e s , o r i e n t a t i o n s) , p)

175

Roughness effect

1 # C o n t r o l l e d mapper : f i n e s c a l e h a t c h i n g
2 de f h a t c h _ f a c e (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
3 h a t c h e s _ s p a c i n g = l i n e a r _ s t r i p e s _ c y c l e (d e n s i t y _ f i e l d) (

f a c e)
4 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))
5 h a t c h l i n e s = S t r i p e s P r o p e r t i e s (ang le , h a t c h e s _ s p a c i n g)
6 SetEdgeLabe ls (h a t c h l i n e s , " h a t c h e s ")
7 h a t c h l i n e s _ p a r t =S t r i p e s P a r t i t i o n (h a t c h l i n e s)
8 # Noise mappers
9 r a n d o m i z a t i o n = 0 .5

10 de f j i t t e r (v e r t e x) :
11 h a t c h _ d i r e c t i o n = P o i n t (cos (ang le) , s i n (ang le))
12 o r t h o _ d i r e c t i o n = P o i n t (� s i n (ang le) , cos (ang le))
13 random_x=Random (ve r t ex ,� h a t c h e s _ s p a c i n g�

r a n d o m i z a t i o n / 2 , h a t c h e s _ s p a c i n g� r a n d o m i z a t i o n
/ 2 , 0)

14 random_y=Random (ve r t ex ,� h a t c h e s _ l e n g t h� r a n d o m i z a t i o n
/ 2 , h a t c h e s _ l e n g t h� r a n d o m i z a t i o n / 2 , 1)

15 l o c a t i o n _ r a n d o m i z a t i o n = o r t h o _ d i r e c t i o n� random_x
+ h a t c h _ d i r e c t i o n � random_y

16 r e t u r n Loca t i on (v e r t e x) + l o c a t i o n _ r a n d o m i z a t i o n
17 p e r t u r b a t e _ e d g e = lambda edge : MatchPo in ts (ToCurve (edge)

, SourceVer tex (edge) , T a r g e t V e r t e x (edge) , j i t t e r (
SourceVer tex (edge)) , j i t t e r (T a r g e t V e r t e x (edge)))

18 de f i s_pa r t _o f_comb (edge) :
19 i f HasLabel (edge , " r e a l _ h a t c h e s ") :
20 r e t u r n F a l s e
21 s o u r c e _ i s _ b o t = F a l s e
22 t a r g e t _ i s _ b o t = F a l s e
23 f o r e i n I n c i d e n t E d g e s (SourceVer tex (edge)) :
24 i f HasLabel (e , " r e a l _ h a t c h e s ") and SourceVer tex (

edge) == T a r g e t V e r t e x (e) :
25 s o u r c e _ i s _ b o t = True
26 break
27 f o r e i n I n c i d e n t E d g e s (T a r g e t V e r t e x (edge)) :
28 i f HasLabel (e , " r e a l _ h a t c h e s ") and T a r g e t V e r t e x (

edge) == T a r g e t V e r t e x (e) :
29 t a r g e t _ i s _ b o t = True
30 break
31 r e t u r n s o u r c e _ i s _ b o t and t a r g e t _ i s _ b o t
32 de f map_to_comb (edge) :
33 r e t u r n p e r t u r b a t e _ e d g e (edge) i f i s_pa r t _o f_comb (edge

) e l s e Noth ing ()
34 # Mapping o p e r a t o r
35 r a n d h a t c h e s =MapToEdges(map_to_comb , h a t c h l i n e s)
36 r e t u r n r a n d h a t c h e s (f a c e)
37 # C o n t r o l l e d ar rangement
38 de f r o u g h n e s s _ t e x t u r e (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
39 espacement_min = 4 .0
40 espacement_max = 8 .0
41 h a t c h e s _ l e n g t h = 15 .0# 20 .0
42 de f ou t_a r rangemen t (f a c e) :
43 # Coarse� s c a l e g r i d : same code as p r e v i o u s s c r i p t
44 # . . .
45 # . . . Mapping t o coa rse n o i s y g r i d
46 r a n d g r i d = MapToEdges(randomize_gr id , g r i d)
47 # Mapping t o f i n e h a t c h i n g
48 r e t u r n MapToFaces(h a t c h _ f a c e (d e n s i t y _ f i e l d ,

o r i e n t _ f i e l d) , r a n d g r i d) (f a c e)
49 r e t u r n ou t_a r rangemen t
50 # Expor t
51 ExportSVG (r o u g h n e s s _ t e x t u r e (d e n s i t i e s , o r i e n t a t i o n s) , p)

176 APPENDIX E. PYTHON SCRIPTS FOR CARTOGRAPHIC DESIGN

Simple ridge hatching (partition added for clarity)

1 # C o n t r o l l e d ar rangement
2 de f s i m p l e _ r i d g e _ h a t c h i n g (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
3 ha tchspac ing_m in = 2 .0
4 ha tchspac ing_max = 10 .0
5 h a t c h e s _ l e n g t h = 20 .0
6 c o u l i s _ l e n g t h = 15
7 de f ou t_a r rangemen t (f a c e) :
8 # Coarse� s c a l e g r i d p a r t i t i o n
9 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))

10 g r i d _ s p a c i n g = 2� ha tchspac ing_max
11 l i n e s A = S t r i p e s P r o p e r t i e s (ang le , g r i d _ s p a c i n g)
12 SetEdgeLabe ls (l i nesA , " g r i d ")
13 # Grid w i t h sma l l ang le so as t o make t r i a n g l e

shapes
14 l i n e s B = S t r i p e s P r o p e r t i e s (ang le + p i / 4 . 0 ,

c o u l i s _ l e n g t h)
15 SetEdgeLabe ls (l i nesB , " g r i d ")
16 g r i d = Gr i dPa r t i t i on (l inesA , l i nesB ,

CROP_ADD_BOUNDARY)
17 # Mapper : keep on l y f a c e s a d j a c e n t t o r i d g e s
18 de f k e e p _ r i d g e (m i n i f a c e) :
19 bo rde r_ found = F a l s e
20 f o r e i n I n c i d e n t E d g e s (m i n i f a c e) :
21 i f HasLabel (e , " c r e t e ") :
22 bo rde r_ found = True
23 i f no t bo rde r_ found :
24 r e t u r n Noth ing ()
25 r e t u r n Sca le (Contour (m i n i f a c e) , 0 . 9 8)
26 # Mapping t o f i n e h a t c h i n g
27 r e t u r n MapToFaces(k e e p _ r i d g e (d e n s i t y _ f i e l d ,

o r i e n t _ f i e l d) , g r i d) (f a c e)
28 r e t u r n ou t_a r rangemen t
29 # Expor t
30 ExportSVG (s i m p l e _ r i d g e _ h a t c h i n g (d e n s i t i e s , o r i e n t a t i o n s) , p)

177

Finer ridge hatching (partition added for clarity)

1 # C o n t r o l l e d ar rangement
2 de f f i n e r _ r i d g e _ h a t c h i n g (d e n s i t y _ f i e l d , o r i e n t _ f i e l d) :
3 peakshape1 = ImportLineSVG (" d a t a / montagne / ps1 . svg ")
4 t a i l s h a p e 1 = ImportLineSVG (" d a t a / montagne / t s 1 . svg ")
5 espacemen t_p i cs = 20 .0
6 l o n g u e u r _ p i c s = 20 .0
7 l ongueu r_queues = 20 .0
8 de f ou t_a r rangemen t (f a c e) :
9 # S t r i p e s s u p p o r t i n g t h e h a t c h i n g

10 ang le = o r i e n t _ f i e l d (C e n t r o i d (f a c e))
11 l i n e s A = S t r i p e s P r o p e r t i e s (ang le , espacemen t_p i cs)
12 SetEdgeLabe ls (l i nesA , " p e a k _ l i n e ")
13 s t r i p e s = S t r i p e s P a r t i t i o n (l i n e s A)
14 # Determine i f t h i s edge r e c i e v e s h a t c h i n g
15 de f m u s t _ p r o v i d e _ c o u l i s (e) :
16 o t h e r _ f a c e = Le f tFace (e) i f f a c e == Righ tFace (e)

e l s e R igh tFace (e)
17 d1 = d e n s i t y _ f i e l d (C e n t r o i d (f a c e))
18 d2 = d e n s i t y _ f i e l d (C e n t r o i d (o t h e r _ f a c e))
19 r e t u r n d1 < 0 .5 and d1 < d2
20 # Mapper : keep on l y f a c e s a d j a c e n t t o r i d g e s
21 de f k e e p _ r i d g e (m i n i f a c e) :
22 bo rde r_ found = F a l s e
23 f o r e i n I n c i d e n t E d g e s (m i n i f a c e) :
24 i f HasLabel (e , " c r e t e ") :
25 bo rde r_ found = True
26 i f no t bo rde r_ found :
27 r e t u r n Noth ing ()
28 r e t u r n Sca le (Contour (m i n i f a c e) , 0 . 9 8)
29 de f g e n e r a t e _ f i l l _ s h a p e (v e r t e x) :
30 i f no t HasLabel (I n c i d e n t E d g e s (v e r t e x) , " c r e t e ") :
31 r e t u r n Noth ing ()
32 peak_sou rce = P o i n t L a b e l e d (peakshape1 , " s t a r t ")
33 p e a k _ t a r g e t = P o i n t L a b e l e d (peakshape1 , " end ")
34 t a i l _ s o u r c e = P o i n t L a b e l e d (t a i l s h a p e 1 , " s t a r t ")
35 t a i l _ t a r g e t = P o i n t L a b e l e d (t a i l s h a p e 1 , " end ")
36 n o r m a l i z e d _ o r i e n t = P o i n t (cos (ang le) , s i n (ang le))
37 peak = MatchPo in ts (peakshape1 , peak_source ,

p e a k _ t a r g e t , Loca t i on (v e r t e x) , Loca t i on (
v e r t e x) + n o r m a l i z e d _ o r i e n t� l o n g u e u r _ p i c s)

38 # Find t a i l o r i e n t a t i o n
39 r i d g e _ e d g e = UNDEFINED_EDGE
40 f o r e i n I n c i d e n t E d g e s (v e r t e x) :
41 i f HasLabel (e , " c r e t e ") and

m u s t _ p r o v i d e _ c o u l i s (e) :
42 r i d g e _ e d g e = e
43 o t h e r _ r i d g e _ v e r t e x = SourceVer tex (r i d g e _ e d g e) i f

v e r t e x == T a r g e t V e r t e x (r i d g e _ e d g e) e l s e
T a r g e t V e r t e x (r i d g e _ e d g e)

44 t a i l _ o r i e n t = Loca t i on (v e r t e x)� Loca t i on (
o t h e r _ r i d g e _ v e r t e x)

45 c l o c k w i s e _ o r t h = P o i n t (n o r m a l i z e d _ o r i e n t . y () ,�
n o r m a l i z e d _ o r i e n t . x ())

46 i f t a i l _ o r i e n t . do t (c l o c k w i s e _ o r t h) < 0 :
47 t a i l _ o r i e n t = t a i l _ o r i e n t � (� 1 .0)
48 t a i l _ o r i e n t = t a i l _ o r i e n t / t a i l _ o r i e n t . l e n g t h ()
49 t a i l = MatchPo in ts (t a i l s h a p e 1 , t a i l _ s o u r c e ,

t a i l _ t a r g e t , Loca t i on (v e r t e x) , Loca t i on (
v e r t e x) + t a i l _ o r i e n t � l ongueu r_queues)

50 r e s = Append (peak , t a i l)
51 de f h a t c h _ v e r t e x (v e r t e x) :
52 t o f i l l = g e n e r a t e _ f i l l _ s h a p e (v e r t e x)
53 h a t c h e s _ s p a c i n g = 2 .0
54 ang le = o r i e n t _ f i e l d (Loca t i on (v e r t e x))
55 # S t r i p e s P a r t i t i o n
56 h a t c h l i n e s = S t r i p e s P r o p e r t i e s (ang le ,

h a t c h e s _ s p a c i n g)
57 h a t c h l i n e s _ p a r t =S t r i p e s P a r t i t i o n (h a t c h l i n e s)
58 # Mapping t o f i n e h a t c h i n g
59 r e t u r n MapToVertices (h a t c h _ v e r t e x (d e n s i t y _ f i e l d ,

o r i e n t _ f i e l d) , s t r i p e s) (f a c e)
60 r e t u r n ou t_a r rangemen t
61 # Expor t
62 ExportSVG (f i n e r _ r i d g e _ h a t c h i n g (d e n s i t i e s , o r i e n t a t i o n s) , p)

178 APPENDIX E. PYTHON SCRIPTS FOR CARTOGRAPHIC DESIGN

REFERENCES

[AdPWS10] ALVES DOS PASSOSV., WALTER M., SOUSA M. C.: Sample-based synthesis
of illustrative patterns. InProceedings of the 2010 18th Paci�c Conference on
Computer Graphics and Applications(Washington, DC, USA, 2010), PACIFIC
GRAPHICS '10, IEEE Computer Society, pp. 109–116.

[AKA13] A LMERAJ Z., KAPLAN C. S., ASENTEP.: Towards effective evaluation of geo-
metric texture synthesis algorithms. InProceedings of the Symposium on Non-
Photorealistic Animation and Rendering(New York, NY, USA, 2013), NPAR
'13, ACM, pp. 5–14.

[Ali73] A LINHAC M.: Présentation et Etude Critique des Meilleures Cartes Françaises
et Etrangères. InColloque sur la cartographie des régions montagneuses(May
1973).

[ASP07] ASENTEP., SCHUSTERM., PETTIT T.: Dynamic planar map illustration.ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, 3 (July 2007).

[AW90] A BRAM G. D., WHITTED T.: Building block shaders.Computer Graphics
(Proceedings of SIGGRAPH '90) 24, 4 (Sept. 1990), 283–288.

[BA06] BAXTER W. V., ANJYO K. I.: Latent doodle space.Computer Graphics Forum
(Proceedings of Eurographics 2006) 25, 3 (2006), 477–485.

[BBT � 06] BARLA P., BRESLAV S., THOLLOT J., SILLION F., MARKOSIAN L.: Stroke
pattern analysis and synthesis.Computer Graphics Forum (Proceedings of Euro-
graphics 2006) 25, 3 (Sept. 2006), 663–671.

[BG89] BAUDELAIRE P., GANGNET M.: Planar maps: An interaction paradigm for gra-
phic design. InProceedings of the SIGCHI Conference on Human Factors in
Computing Systems(New York, NY, USA, 1989), CHI '89, ACM, pp. 313–318.

[BST09] BRATKOVA M., SHIRLEY P., THOMPSON W. B.: Artistic rendering of moun-
tainous terrain.ACM Trans. Graph. 28, 4 (Sept. 2009), 102:1–102:17.

[CK14] CAMPBELL N. D. F., KAUTZ J.: Learning a manifold of fonts.ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (July 2014), 91:1–
91:11.

179

180 REFERENCES

[Coo84] COOK R. L.: Shade trees.Computer Graphics (Proceedings of SIGGRAPH '84)
18, 3 (Jan. 1984), 223–231.

[Dem01] DEMERSO.: Digital Texturing and Painting. New Riders Publishing, Thousand
Oaks, CA, USA, 2001.

[DiV13] D IVERDI S.: A brush stroke synthesis toolbox. InImage and Video-Based Ar-
tistic Stylisation, vol. 42. Springer, 2013, pp. 23–44.

[DRVDP14] DALSTEIN B., RONFARD R., VAN DE PANNE M.: Vector Graphics Complexes.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (July
2014), 133:1–133:12.

[Duf66] DUFOUR A.: Cours de cartographie, Cartographie générale, Titre I. Tech. rep.,
IGN, Ecole Nationale des Sciences Géographiques, Paris, France, 1966.

[EMP� 02] EBERT D. S., MUSGRAVEF. K., PEACHEY D., PERLIN K., WORLEY S.:Textu-
ring and Modeling: A Procedural Approach, 3 ed. Morgan Kaufmann Publishers,
San Francisco, CA, USA, 2002.

[EWHS08] EISEMANN E., WINNEMÖLLER H., HART J. C., SALESIN D.: Stylized vector
art from 3d models with region support.Computer Graphics Forum (proceedings
of the Eurographics Symposium on Rendering) 27, 4 (2008), 1199–1207.

[FHW12] FOGEL E., HALPERIN D., WEIN R.: CGAL arrangements and their applica-
tions. Geometry and Computing. Springer, 2012.

[GH15] GEISTHÖVEL R., HURNI L.: Automatic rock depiction via relief shading. In
Proceedings of the 27th International Cartographic Conference, Rio de Janeiro,
Brazil (2015).

[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.: Gabor noise by
example. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012)
31, 4 (July 2012), 73:1–73:9.

[GTDS10] GRABLI S., TURQUIN E., DURAND F., SILLION F. X.: Programmable rende-
ring of line drawing from 3d scenes.ACM Transactions on Graphics 29, 2 (Apr.
2010), 18:1–18:20.

[Gui05] GUILHOT N.: Histoire d'une parenthèse cartographique : Les Alpes du Nord
dans la cartographie topographique française aux 19e et 20e siècles. PhD thesis,
2005.

[Gup97] GUPTILL A. L.: Rendering in Pen and Ink: The Classic Book On Pen and
Ink Techniques for Artists, Illustrators, Architects, and Designers (Practical Art
Books). Watson-Guptill, Aug. 1997.

[Hen02] HENDERSONP.: Functional geometry.Higher Order and Symbolic Computation
15, 4 (Dec. 2002), 349–365.

[Her02] HERTZMANN A.: Fast paint texture. InProceedings of the 2nd International
Symposium on Non-photorealistic Animation and Rendering(New York, NY,
USA, 2002), NPAR '02, ACM, pp. 91–ff.

[HHD03] HILLER S., HELLWIG H., DEUSSENO.: Beyond Stippling – Methods for Dis-
tributing Objects on the Plane.Computer Graphics Forum (Proceedings of Eu-
rographics 2003) 22, 3 (Sept. 2003), 515–522.

[HL11] HURTUT T., LECORDIX F.: Cartography of mountain rocky areas, a statisti-
cal modeling and drawing of element arrangements. InProceedings of the 25th
International Cartographic Conference, Paris, France(2011).

REFERENCES 181

[HL12] HURTUT T., LANDES P.-E.: Synthesizing structured doodle hybrids. InSIG-
GRAPH Asia 2012 Posters(New York, NY, USA, 2012), SA '12, ACM, pp. 43:1–
43:1.

[HLT � 09] HURTUT T., LANDES P.-E., THOLLOT J., GOUSSEAU Y., DROUILLHET R.,
COEURJOLLY J.-F.: Appearance-guided synthesis of element arrangements
by example. InProceedings of the 7th International Symposium on Non-
Photorealistic Animation and Rendering(2009), NPAR '09, ACM, pp. 51–60.

[IMIM08] I JIRI T., M �ECH R., IGARASHI T., MILLER G.: An example-based procedural
system for element arrangement.Computer Graphics Forum (Proceedings of
Eurographics 2008) 27, 2 (2008), 429–436.

[Jen04] JENNY B.: Bringing traditional panorama projections from the painter's canvas
to the digital realm. InProceedings of the 4th ICA Mountain Cartography Work-
shop, Vall de Núria. Monogra�es tècniques, Institut Cartogrà�c de Catalunya,
Barcelona(2004), pp. 151–157.

[JGG� 14] JENNY B., GILGEN J., GEISTHÖVEL R., MARSTON B. E., HURNI L.: Design
Principles for Swiss-style Rock Drawing.The Cartographic Journal 51, 4 (2014),
360–371.

[JL97] JOBARD B., LEFERW.: Creating evenly-spaced streamlines of arbitrary density.
pp. 43–56.

[Jul81] JULESZ B.: Textons, the elements of texture perception, and their interactions.
Nature 290, 5802 (1981), 91–97.

[Kap10] KAPLAN C. S.: Curve evolution schemes for parquet deformations. InProcee-
dings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture(2010),
Tessellations Publishing, pp. 95–102.

[KNBH12] K ALOGERAKIS E., NOWROUZEZAHRAI D., BRESLAV S., HERTZMANN A.:
Learning hatching for pen-and-ink illustration of surfaces.ACM Trans. on Graph.
31, 1 (2012), 1–17.

[LD05] L AGAE A., DUTRÉ P.: A procedural object distribution function.ACM Transac-
tions on Graphics 24, 4 (2005), 1442–1461.

[LG08] L. GONDOL A. L E BRIS F. L.: Cartography of High Mountain Areas - Testing
of a New Digital Cliff Drawing Method. InProceedings of the 6th ICA Mountain
Cartography Workshop, Mountain Mapping and Visualisation, Lenk, Switzerland
(2008).

[LGH13] LANDES P.-E., GALERNE B., HURTUT T.: A shape-aware model for discrete
texture synthesis.Computer Graphics Forum (proceedings of the Eurographics
Symposium on Rendering) 32, 4 (2013), 67–76.

[LH15] L. H URNI A. TSORLINI L. P. R. S. R. G.: Re-mapping the cliffs of mount eve-
rest: Deriving a synoptic map from large-scale mountain map data. InProcee-
dings of the 27th International Cartographic Conference, Rio de Janeiro, Brazil
(2015).

[Lin68] L INDENMAYER A.: Mathematical models for cellular interaction in develop-
ment: Parts i and ii.Journal of Theoretical Biology 18(1968).

[LWSF10] LI H., WEI L.-Y., SANDER P. V., FU C.-W.: Anisotropic blue noise sampling.
In ACM SIGGRAPH Asia 2010 papers(2010), ACM, pp. 167:1–167:12.

182 REFERENCES

[MM12] M �ECH R., MILLER G.: TheDecoframework for interactive procedural mode-
ling. Journal of Computer Graphics Techniques (JCGT) 1, 1 (Dec 2012), 43–99.

[MWH � 06] MÜLLER P., WONKA P., HAEGLER S., ULMER A., VAN GOOL L.: Proce-
dural modeling of buildings.ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2006) 25, 3 (July 2006), 614–623.

[MWT11] M A C., WEI L.-Y., TONG X.: Discrete element textures.ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (July 2011), 62:1–62:10.

[OBW� 08] ORZAN A., BOUSSEAUA., WINNEMÖLLER H., BARLA P., THOLLOT J., SA-
LESIN D.: Diffusion curves: a vector representation for smooth-shaded images.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008) 27, 3 (Aug.
2008), 92:1–92:8.

[PL96] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic Beauty of Plants.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[SGSG71] STINY G., GIPS J., STINY G., GIPS J.: Shape grammars and the generative
speci�cation of painting and sculpture. InProceedings of the Workshop on gene-
ralisation and multiple representation, Leicester(1971).

[SHS02] SECORD A., HEIDRICH W., STREIT L.: Fast primitive distribution for illustra-
tion. In Rendering Techniques 2002 (Eurographics Symposium on Rendering)
(2002), Debevec P., Gibson S., (Eds.), Springer-Verlag Wien New York, pp. 215–
226.

[SSBG10] SCHMID J., SUMNER R. W., BOWLES H., GROSSM.: Programmable motion
effects.ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 4
(July 2010), 57:1–57:9.

[TG80] TREISMAN A. M., GELADE G.: A feature-integration theory of attention.Cog-
nitive Psychology 12(1980), 97–136.

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY W.: Instant architecture.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003) 22, 3 (July
2003), 669–677.

[WZS98] WONG M. T., ZONGKER D. E., SALESIN D. H.: Computer-generated �oral
ornament. InProceedings of SIGGRAPH '98(New York, NY, USA, 1998), ACM,
pp. 423–434.

[XCW14] X ING J., CHEN H.-T., WEI L.-Y.: Autocomplete painting repetitions.ACM
Trans. Graph. 33, 6 (Nov. 2014), 172:1–172:11.

[YBY � 13] YEH Y.-T., BREEDEN K., YANG L., FISHER M., HANRAHAN P.: Synthesis
of tiled patterns using factor graphs.ACM Transactions on Graphics 32, 1 (Feb.
2013), 3:1–3:13.

	Table of Contents
	Introduction

