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Résumé

Calcul du seuil de visibilité d’une distorsion géométrique locale

sur un maillage et ses applications

Les opérations géométriques appliquées aux maillages 3D introduisent des dis-
torsions géometirques qui peuvent être visibles pour un observateur humain.
Dans cette thèse, nous étudions l’impact perceptuel de ces distorsions. Plus pré-
cisément, notre objectif est de calculer le seuil à partir duquel les distorsions
géométriques locales deviennent visibles. Afin d’atteindre notre but, nous définis-
sons tout d’abord des caractéristiques perceptuelles pour les maillages 3D. Nous
avons ensuite effectué une étude expérimentale des propriétés du système vi-
suel humain (sensibilité au contraste et effet du masquage visuel) en observant
un maillage 3D. Les résultats de ces expériences sont finalement utilisés pour pro-
poser un algorithme qui calcule le seuil de visibilité relatif à une distorsion locale.
L’algorithme proposé s’adapte aux différentes conditions d’affichage (résolution
et taille de l’écran), d’illumination et au type de rendu. Enfin, nous montrons
l’utilité d’un tel algorithme en intégrant le seuil de visibilité dans le pipeline de
plusieurs opérations géométriques (ex: simplification, subdivision adaptative).
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Abstract

Evaluating the visibility threshold for a local geometric distortion

on a 3D mesh and its applications

Geometric operations applied to a 3D mesh introduce geometric distortion in the
form of vertex displacement that can be visible to a human observer. In this the-
sis, we have studied the perceptual impact of these geometric distortions. More
precisely, our goal is to compute the threshold beyond which a local geometric
distortion becomes visible. In order to reach this goal, we start by evaluating per-
ceptually relevant properties on 3D meshes. We have then performed a series of
psychophysical experiments in which we measured the visibility threshold rela-
tive to various properties of the Human Visual System (contrast sensitivity and
visual masking). The results of these experiments allowed us to propose an al-
gorithm that computes the visibility threshold relative to a local geometric dis-
tortion. This algorithm is capable of adapting to the different display condition
of 3D meshes (resolution, display size, illumination condition and rendering).
Finally, we showcase the utility of our work by integrating the developed per-
ceptual method in several geometric operations such as mesh simplification and
adaptive subdivision.
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Chapter 1

Introduction

1.1 Context and Motivation

Three-Dimensional (3D) objects, most commonly represented by triangular meshes,
are nowadays more and more used in a large number of applications spanning
over different fields such as digital entertainment, cultural heritage, scientific
visualization, and medical imaging. Moreover, the popularity of 3D objects is
bound to drastically increase in the near future with the release of affordable and
commercial virtual reality headsets and the current evolution of the web which
revolves around the development of web3D technologies. 3D objects are usually
created by artists via 3D modeling and sculpting tools or more recently obtained
by scanning a real world object. In both cases, the raw 3D data cannot be directly
used in a practical application. It is therefore common for 3D data to undergo
various lossy operations in order to accommodate to the needs of these applica-
tions. For example, in a video game, the detailed 3D mesh created by the artist
is simplified so that a real time and interactive visualization of the 3D world be-
comes possible. On the other hand, in a 3D web application, the 3D data usually
need to be compressed in order to limit the bandwidth usage and reduce the data
transfer time. Finally, a watermarking operation might be applied to the 3D mesh
in order to limit any illegal or unauthorized duplication of the 3D object in ques-
tion. These operations introduce geometric distortions in form of perturbation of
vertex coordinates which might be visible to a human observer (Fig. 1.1). This
is key issue for human-centered applications, as the visibility of these geometric
distortions can directly impact the quality of experience of the user. It is therefore
important to be able to predict or control the visibility of such geometric distor-
tions.

Although the importance of predicting the visibility of geometric distortions
has been recognized within the computer graphics community [OHM+04, Fer08,
FS09, MMBH10, LC10, TFCRS11, CLL+13], most existing geometry processing
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original (a) Simplification (b) Uniform Noise
RMS = 4.3× 10−4 RMS = 4.3× 10−4

FIGURE 1.1: The simplified and noisy versions of the Rabbit model have the same
RMS value, but are not perceptually equivalent.

algorithms are driven and/or evaluated by geometric metrics like Hausdorff dis-
tance [ASCE02] or root mean square error (RMS) [CRS98] which do not correlate
with human perception [CLL+13]. Figure 1.1 shows two distorted versions of the
Rabbit model with the same RMS value that are perceptually different. Recently, a
number of perceptually driven algorithms have been proposed [FSPG97, RPG99,
WLC+03, CB05, CDGEB07, QM08, Lav09, MKRH11, TWC14, DFLS14, DFL+15].
The goal of these methods is to evaluate the perceptual impact of geometric dis-
tortion or to guide geometric operations. However, existing methods are usually
based on assumptions about the general behavior of the Human Visual System
(HVS) instead of taking advantage of the characteristics of its internal mecha-
nism. Moreover, in most cases, the perceptual analysis of existing methods is car-
ried out using geometric features such as surface curvature and surface rough-
ness which are not necessarily perceptually relevant attributes. Consequently,
these methods are in general neither easily applicable to models of different prop-
erties (size, details and density) nor capable of adapting to varying circumstances
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original (b)(a) (c)

FIGURE 1.2: (a) The noise injected onto the original 3D mesh is slightly visible. (b)
Increasing the viewing distance makes that same noise invisible. (c) Changing the
light direction from front to top-left increases the perceived intensity of the noise.

of mesh usage (display characteristics, scene illumination and viewing distance).
For instance, Fig. 1.2 showcases the effects of viewing distance and lighting con-
ditions on the visibility of geometric distortions. While the noise injected onto
the Venus model is slightly visible in Fig. 1.2.(a), it becomes invisible when the
camera is moved farther away from the model in Fig. 1.2.(b). On the other hand,
the injected noise appears to be clearly visible when the light direction is changed
from front to top-left in Fig. 1.2.(c).

Early studies of the physiology of the Human Visual System (HVS) have shown
that human vision is primarily sensitive to variation in light energy, i.e., contrast,
rather than its absolute magnitude [Wan95]. In other words, a visual pattern is
only visible if its contrast value is above a certain threshold. Therefore, in the case
of geometric distortions, a vertex displacement is visible to a human observer if
it causes a change in contrast that is large enough for the HVS to detect its pres-
ence. In the field of image processing, the analysis of contrast information has
been basis in many studies that are related to the visibility of pixel-based distor-
tions [WB06, LK11, BLBI13]. In this thesis, we focus on using perceptual prop-
erties, such as contrast, to evaluate whether a geometric distortion is visible or
not through an experimental study of the characteristics of the HVS, in particular
Contrast Sensitivity and Visual Masking.
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1.2 Objectives and Methodology

The goal of this thesis is to compute threshold beyond which a local geometric
distortion becomes visible. The visibility threshold should take into account the
various parameters that affect the visibility of geometric distortions such as the
display specification (size and resolution), the rendering algorithm, the scene il-
lumination, etc. The computed threshold can then be used to either predict the
visibility of local geometric distortion or guide geometric operations. In order to
achieve this goal we will:

1. Define perceptually relevant features for 3D meshes that are sensitive to the
different parameters affecting the perception of 3D objects.

2. Perform a series of psychophysical experiments in order to study the prop-
erties of the HVS while observing a 3D mesh.

3. Use the results of these experiments to derive an algorithm that is able to
compute the visibility threshold relative to local geometric distortions.

1.3 Thesis Organization

The work presented in this thesis focuses on computing the visibility threshold of
local distortions on the surface of 3D meshes. In Chapter 2 we present the back-
ground on the properties of the HVS that are relevant to the research presented in
this thesis. In Chapter 3 we discuss existing work on perceptually driven graphics
techniques. Chapter 4 explains how perceptual properties are evaluated on a 3D
mesh and presents a series of psychophysical experiments that were carried out
in order to measure the visibility threshold and their results. Chapter 5 describes
our method to evaluate the threshold beyond which a vertex displacement be-
comes visible. Finally, in Chapter 6 we showcase how our perceptual method can
be integrated in geometric applications such as mesh simplification and adaptive
subdivision.
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Chapter 2

Background on the Human Visual

System

Over the last two decades, perceptually driven methods have drawn more and
more attention in both the computer graphics [OHM+04, Fer08, CLL+13] and im-
age/video processing [WB06, LK11, BLBI13] communities. Much of the existing
work is based on the visual mechanisms of the human vision. It is therefore im-
portant to understand the basic properties of the Human Visual System (HVS)
relevant to these methods. This chapter is divided into two parts. The first part
gives a brief overview about the process of vision which consists of analyzing
information derived from incident light (Section 2.1.1). In particular, we focus
on the physiology of the retinal receptive fields which gives us an understanding
about the type of visual information that reaches the brain (Section 2.1.2). The
second part focuses on the major characteristics of the HVS that are of relevance
to our perceptual study (Section 2.2). More precisely, we discuss the contrast sen-
sitivity and the visual masking characteristics of the HVS. For a more detailed
discussion about human vision, we refer the reader to [Wan95, Pal99].

2.1 The Process of Vision

2.1.1 Overview

Vision is the process of extracting and analyzing the information that is contained
in the incident light. This process (Fig. 2.1) starts in the eyes as the outside light
enters through the pupil and gets focused on the retina, a light-sensitive tissue,
with the help of the lens. The retina is composed of two types of photoreceptors
cells: the rods and the cones. The rods are extremely sensitive to light as they
can be excited by as little as one photon and provide the visual system with the
necessary information for an achromatic vision in low illumination levels. The
cones, on the other hand, are less sensitive to light but allow the HVS to have color
vision. This is due to the existence of three types of cones which are sensitive to
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FIGURE 2.1: The light reflected by the observed objects enters the eyes and is fo-
cused onto the retina. The visual information captured by the retina is then tran-

fered by the optic nerve to the brain where it is finally processed.

a distinct (yet overlapped) interval of light frequency. The stimulation of these
photoreceptor cells by the incident light creates an electrical signal which then
reaches the receptive fields of the ganglion cells. These cells play a crucial role in
visual perception as their goal is to encode the visual signal for a more efficient
treatment of it. The visual information then travels through the visual pathways
which lead to the lateral geniculate nucleus (LGN) and finally on to the visual cortex
which is responsible for all the higher-level aspects of vision. While the details
of the properties of the LGN and visual cortex are not within the scope of this
thesis, it is interesting to know that one of the roles of the LGN is to control the
amount of information that is allowed to pass to the visual cortex. In this work,
we are mainly interested in the role of the receptive fields of the ganglion cells
which provides us with the basic understanding of the characteristics of the HVS
that are relevant to our perceptual study.

2.1.2 The Receptive Fields

The range of light intensity that we experience is huge. For example, the inten-
sity of light coming from the sun is approximately 10 million times bigger than
the intensity of moonlight. The first challenge the HVS faces is to be able to cope
with this wide range of light intensity. More precisely, the challenge is to repre-
sent the visual information in an effective and meaningful way. This problem is
solved in the early stages of the visual system at the receptive fields of the gan-
glion cells. Their role is to pre-process the visual information before passing it
on to the brain. Early studies of the physiology of the HVS [CK66, CR68, BC69b]
have shown that the receptive fields have a center/surround organization (Fig. 2.2).
In other words, the light reaching the center of a ganglion cell’s receptive field can
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FIGURE 2.2: The center-surround organization makes the human visual system
sensitive to patterns of light rather than its absolute value. The neural response is

at its peak when the visual signal lines up with the size of the receptive field.

either excite or inhibit the cell while the light in the surrounding region will have
an opposite effect. This means that for a uniform visual stimulus, the inhibitory
and excitatory signals will neutralize each other resulting in a weak neural re-
sponse. On the other hand, if the visual stimulus consists of a pattern of dark
and bright light, then the receptive fields will produce a strong neural response.
The center/surround organization of the retinal receptive fields implies that in-
formation about the absolute value of light intensity is less important to the visual
system than contrast information, i.e., variation in light energy information. This
sensitivity to patterns of light rather than to its absolute value is at the heart of
the properties of the HVS that most perceptual methods rely on. In the following
section we will detail these characteristics of the HVS.

2.2 Characteristics of the Human Visual System

As we mentioned earlier, the center/surround organization of the receptive fields
of the ganglion cells makes the HVS primarily sensitive to variation of light en-
ergy rather than to its absolute value. This difference of light energy in a visual
pattern in generally represented by its contrast value. Ultimately, a high contrast
visual pattern should generate a strong neural response and a low contrast visual
pattern should generate a weak neural response. So studying the characteristics
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of the early stages of the HVS boils down to studying the perception of the visual
pattern’s contrast.

2.2.1 Contrast Sensitivity

The contrast threshold is the contrast value beyond which a visual stimulus be-
comes visible to a human. It represents the minimal amount of contrast required
to generate an exitatory neural response. The value of that threshold is mainly
dependent on three factors: spatial frequency, global illumination and retinal ve-
locity.

Spatial Frequency. The spatial frequency is related to the size of the visual stimulus
with respect to the size of one degree of the visual angle. It is expressed in terms
of cycles per degree (cpd) which represents the number of times a visual stimulus
can be repeated within one degree of the visual angle. The effect of the spatial
frequency on the visibility threshold can be derived from the size of the receptor
fields. While a pattern of dark and bright light will excite the ganglion cells, the
neural response will be at its strongest if the size of the visual pattern lines up
with the size of the center and surround region of the receptive field (Fig. 2.2).
This means that the human visual system will be more sensitive to the spatial
frequencies that correspond to the size of the receptive fields, generally between
2 and 5 cpd for humans, and less sensitive to the other spatial frequencies.

Global Luminance. The average energy of the light, i.e., luminance, illuminating
the observed scene also affects the contrast visibility threshold. In dark environ-
ments, the low energy light reaching the retina will trigger the rods photorecep-
tiors as the energy is not sufficient to provoke the cones. The difference in the
source of the visual signal between low and bright lights, i.e., rods in low light
and cones in bright light, causes the change in contrast visibility threshold when
the light energy changes. In summary, physiological experiments show that at
low luminance levels, the contrast threshold increases when the average lumi-
nance decreases, while it becomes relatively stable for luminance levels above
100 cd/m2 [Bar89].

Retinal Velocity. When the visual stimulus is in motion, its image on the retina
will also move. The retinal velocity is therefore defined as the velocity of the reti-
nal image of an object. This velocity is affected by the movement of the object
and the eyes whose job is to track the moving stimulus in an attempt to stabilize
the retinal image. The experiments of Kelly [Kel79a, Kel79b] have shown that the
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FIGURE 2.3: Left: The Campbell and Robson chart [CR68] that shows a sinusoidal
visual stimulus whose contrast decreases vertically and frequency increases hori-

zontally. Right: An example of the Contrast Sensitivity Function.

contrast visibility threshold is altered when the retinal velocity increases. For ex-
ample, the range of sensitive spatial frequencies varies in general from between
2 and 5 cpd for a stationary stimulus to around 0.2 and 0.8 cpd for a stimulus
whose image is moving at a 11 deg/s speed on the retina.

The reciprocal of the contrast visibility threshold is the contrast sensitivity.
The Contrast Sensitivity Function (CSF) is a mathematical model that describes the
evolution of the visibility threshold with respects to the aforementioned three pa-
rameters (spatial frequency, global luminance and retinal velocity). It was first
introduced by Campbell and Robson [CK66] whose CSF model takes only into
consideration the effects of spatial frequency and was later extended to consider
global luminance levels [Bar89, Bar99]. The effects of object motion on the con-
trast sensitivity are taken into account in the model proposed by Kelly [Kel79b].
The CSF represents the visual system’s band-pass filter characteristics when it
comes to contrast sensitivity (Fig. 2.3). In general, it exhibits a peak between 2
and 5 cpd when the visual stimulus is stationary. The shape of the CSF (peak
location and drop off slope) depends on the nature of the visual stimulus. For
example, at high spatial frequencies the HVS is more sensitive to aperiodic visual
patterns than to periodic ones [BC69a].



10 Chapter 2. Background on the Human Visual System

(a) (b)

FIGURE 2.4: (a) A visible sinusoidal stimulus on a grey background. (b) Having
another visible sinusoidal stimulus as a background makes the original one less

visible.

2.2.2 Visual Masking

Visual masking is a very important characteristic of human vision as it describes
how the HVS handles interactions between different visual stimuli. Masking oc-
curs when a stimulus (target) that is visible on its own cannot be detected due to
the presence of another visible stimulus (mask). Figure 2.4 illustrates this effect.
A visual signal, the target, that is visible on its own might become hard to notice
when it is added to a visual pattern containing a visible visual stimulus, the mask.
The effects of visual masking are caused by several factors. In particular, the vis-
ibility of the target visual stimulus is dependent on the contrast and the visual
complexity of the mask.

Ledge and Foley [LF80] studied the contrast threshold necessary to detect the
target when varying the contrast and frequency of the mask. One important ob-
servation that can be taken out from their experimental study about this aspect of
the HVS is that the visibility threshold increases almost linearly with the contrast
of the mask. The effects of masking can be mathematically described by a curve
(Fig. 2.5) which possesses two asymptotic regions: the first one with a slope of
zero and the second one with a positive slope of about 0.6 to 1 (depending on
the stimulus) [Dal93]. The zero slope occurs for mask contrast values below the
mask’s visibility threshold as given by the CSF, indicating that there is no mask-
ing effect. When the mask is visible (its contrast above the value given by the
CSF), the threshold for detecting the target lies of the second asymptotic region.

The experiments of Ledge and Foley focused on studying the visual masking
effect of simple sinusoidal patterns. This means that their results do not account
for the impact of the mask’s visual complexity on the visibility threshold. The
visual complexity is an equally important factor as a complex mask, which is vi-
sually irregular, would introduce some uncertainty to the observer’s judgement
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FIGURE 2.5: An example of a curve that describes the visual masking characteris-
tic. When the contrast of the mask signal is visible (greater than 1) then the contrast

threshold increases almost in a linear fashion.

(a) (c)(b)

FIGURE 2.6: The visual stimulus is visible when the background is either (a) uni-
form or (b) simple. However, the same stimulus becomes almost invisible when

added to a (c) visually complex background.

and thus increasing the masking effect [WBT97]. For instance, Fig. 2.6 shows a
visual stimulus that is visible on its own or when added to a relatively simple
mask. However, when added to an irregular mask, the visual stimulus becomes
harder to notice which indicates a change in the visibility threshold. The influ-
ence of the mask’s visual complexity on the visibility threshold can be inferred by
the free-energy principle theory [FKH06, Fri10]. By analyzing the incoming visual
information, the HVS helps us understand the outside world. However, due to
the sheer amount of input, the HVS cannot fully process all of the visual infor-
mation [KP04]. Instead, the HVS tries to predict the visual information with an
internal generative mechanism [KP04, FDK09]. The underlying idea behind the
free-energy principle theory is that all adaptive biological agents have a tendency
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to resist disorder [Fri10]. In other words, the HVS will try to extract as much in-
formation as possible from the coming visual information in order to minimize
any uncertainty and avoid surprises (i.e., information with uncertainty, which is
often found in visually complex stimuli). This means that visual patterns with ob-
vious statistical regularities are easier to be predicted and understood than those
without any regularity (i.e., complex patterns). As a result, the change in infor-
mation (i.e., contrast) in a regular visual pattern can be easily detected while it
would be difficult to detect in an irregular, complex one [WBT97].

2.3 Summary

To summarize, the human visual system is sensitive to variation of light inten-
sity (i.e., contrast) rather than its absolute value. This is primarily due to the
center/surround organization of the receptive fields of the ganglion cells as dis-
cussed in Section 2.1.2 (Fig. 2.2). As a consequence, the contrast value of a visual
stimulus is at the heart of the early properties of the HVS, in particular contrast
sensitivity and visual masking. Contrast sensitivity refers to the threshold beyond
which a contrast becomes visible for a human observer. This threshold is affected
by the spatial frequency, global luminance and retinal velocity of the visual stim-
ulus and can be mathematically modelled by the contrast sensitivity function.
Visual masking, on the other hand, explains how the HVS handles interactions
between different visual stimuli. In other words, the visual masking describes
the change in visibility threshold caused by the presence of another visible vi-
sual stimulus (mask). The amount by which the visibility threshold changes is
proportional to the contrast value of mask and is affected by its visual regularity.
Both the contrast sensitivity and especially the visual masking are at the center
of many perceptual methods in computer graphics. The next chapter presents a
detailed description of these methods.
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Chapter 3

Perceptual Methods for Computer

Graphics Applications

In the previous chapter, we have presented the theoretical and fundamental back-
ground about the early properties of the human visual system. This chapter fo-
cuses on the existing perceptual methods that have been proposed in the past
two decades. We start by discussing the benefits of taking into account the per-
ceptual characteristics of human vision in the design of computer graphics sys-
tems (Section 3.1). We then review in detail the most important methods in the
field of perceptually adaptive graphics. Based on the general approach taken to
perform the perceptual analysis, we group these methods into two categories:
Image-Based (Section 3.2) and Model-Based (Section 3.3). Finally we compare these
two approaches and discuss the limitations of current methods (Section 3.4).

3.1 The Role of Perception in Computer Graphics

One of the goals of computer graphics is to generate a 2D image for a human
observer from the description of a 3D scene. In most cases, the scene is consti-
tuted of the following elements: (1) a geometric representation of the surface of
an object, most commonly through a triangular mesh, (2) the material properties
attributed to that surface and (3) the illumination information. In general, any
computer graphics pipeline starts with an acquisition step where the scene’s data
is created. Usually, the 3D geometric data are then subject to various processing
algorithms (compression, level of detail generation, . . . ) in order to accommodate
for the need of the target application. Finally the scene’s elements are passed on
to a rendering algorithm which computes a 2D image. Ideally, we would like to
generate a "perfect" image, i.e., without any distortion, from this pipeline which is
in practice highly unlikely as visual artifacts are bound to appear on the rendered
image. The source of these artifacts may be the geometric operations applied to
the 3D data or the rendering algorithm which is trying to simplify the compu-
tation in order to cope with hardware limitations. Consequently, in practice, the
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best that we can hope for is that the computer graphics system is capable of gen-
erating a perceptually effective image, that is, an image that effectively provides
the indended visual information [Fer03, TFCRS11]. The success of a computer
graphics method, whether it is a rendering algorithm or a geometric operation,
is therefore dependent on the perceptual effectiveness of the resulting image. In
order to improve perceptual effectiveness of computer graphics, one approach
consists in taking advantage of the characteristics of the human vision in order
to guide computer graphics algorithms. The perceptual properties of the human
visual system can thus be used as an optimization criterion in the design of com-
puter graphics operations, in particular geometric ones.

Over the last two decades, the computer graphics community has recognized
the importance of exploiting the perceptual properties of the HVS [OHM+04,
Fer08, CLL+13] as perceptually motivated techniques have proven to be useful
for several practical applications. The goal of this research is to propose a method
that allows us to predict the visibility of a geometric distortion on a 3D triangular
mesh. This is important since before rendering a 3D model, almost all raw geom-
etry data are subject to several operations (e.g., compression, watermarking, . . . )
that introduce geometric distortions in the form of vertex displacement which
might be visible in the final 2D image. The perceptual analysis techniques that are
related to the perception of surface material [Fle14, HFM16], non-photorealistic
rendering [SD04, RBD06, CSD+09], physical simulation [HK15, HK16] and char-
acter animation [MNO07, DM08, LO11] are therefore not within the scope of this
research. Our work is more focused on the perceptual methods that aim to guide
or evaluate the output of the geometric operations applied to a 3D triangular
mesh. These methods can be grouped into two categories Image-Based and Model-
Based methods [LM15]. The first category concerns the algorithms where the per-
ceptual analysis is carried out by analyzing rendered 2D image. On the contrary,
the perceptual methods in the second category rely on a perceptual analysis that
is performed on the geometric surface of the 3D object. In the rest of this chap-
ter we will detail and discuss the most notable methods belonging to these two
approaches.

3.2 Image-Based Methods

Since the 3D models are visualized on 2D displays, it seems logical to use the 2D
rendered image in order to carry out the perceptual analysis. Using an image-
based method for studying the perceptual impact of 3D distortions has its advan-
tages. It allows researches to adapt the already established perceptual methods in
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the field of image processing to computer graphics. More importantly, applying
the perceptual analysis on the rendered 2D image will implicitly take into consid-
eration any rendering or illumination method [LM15]. In this section we will first
present the most important perceptual methods in the field of image processing
that were adapted to computer graphics. We will then describe how image-based
perceptual methods have been used for computer graphics applications.

3.2.1 Perceptual Methods in the Field of Image Processing

Two main approaches exist for designing a perceptual analysis on 2D images: a
top-down approach which relies on hypotheses about the global behavior of the
HVS and a bottom-up approach which tries to model the visual process of the HVS.
Ultimately, a bottom-up method tries to build a computational system that mim-
ics the way the HVS works [WB06]. On the contrary, in a top-down approach,
the relationship between the input and the output is the thing that matters. This
means that a top-down approach takes the visual signal as an input and outputs
a result that is in agreement with the general behavior of the HVS without having
to explicitly deal with the inner-working of the HVS.

3.2.1.1 Top-Down Perceptual Methods

Top-down approaches do not look to simulate the HVS. Instead, they are only
concerned by outputting a result that is in accordance with the general behavior
of the HVS. The advantage of these approaches is that they allow researchers to
take into consideration complex aspects of the visual system that would rather be
difficult to simulate in a bottom-up approach. Having the freedom to focus on the
general behavior of the HVS rather than its internal mechanisms has led to the
development of many top-down perceptual methods that either rely on study-
ing whether the structure between a reference of a distorted image has changed
[WB02, ?, WBSS04] or focus more on analyzing if the distortion has caused a dis-
ruption in the information contained in the image [Fie87, Sim05, SB06]. In this
section we focus on the methods that study the structure of an image as they
have been popular in many computer graphics methods.

Structural Similarity. The visual signal contains information about the outside
world that is analyzed by the visual system. This makes the HVS highly adapted
and effective in extracting the key features in a natural image, i.e., an image that
represents the natural world. The idea behind structural similarity is that a change
in the structure of an image, caused by a distortion, will be easily detected by
the HVS. Wang et al. [WBSS04] proposed a metric (SSIM Index) whose goal is to
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measure the perceptual quality of a distorted image by comparing its similarity to
the reference image. Having two images x and y, respectively the reference and
the distorted, the SSIM algorithm defines the task of comparing the similarity as
the combination of a comparison of luminance, contrast and structure between x

and y. The SSIM index is therefore defined as:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ , (3.1)

where l(x, y), c(x, y) and s(x, y) are respectively the luminance, contrast and struc-
ture components and α > 0, β > 0 and γ > 0 are parameters that control their
relative importance. Wang et al. [WBSS04] defined the luminance, contrast and
structure components as follows:

l(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1

, c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

, s(x, y) =
σxy + C3

σxσy + C3

, (3.2)

where μx, σx and σxσy represent respectively the mean, the standard deviation
and the covariance of the pixel intensity. C1, C2 and C3 are three constants added
to avoid numerical instability when the compared image is dark (μ2

x + μ2
y close to

0) or when the image contains a uniform visual stimulus (σx and σy close to 0). In
practice, it is preferable to apply the SSIM method locally on image patches (e.g.
on a 11× 11 window) rather than on the entire image. This will result in a quality
map of the compared image which can then be aggregated into a single score.
The SSIM approach has proven to be quite usefull in a number of image pro-
cessing applications [WS04, WS05, WL11]. More importantly, the idea behind the
SSIM Index has inspired the development of perceptual metrics for 3D meshes
[LDGD+06, Lav11] which we will detail later in this chapter (Section 3.3).

Although top-down methods present a simple approach of taking into account
complex properties of the HVS, they also have some drawbacks. First, the success
of top-down methods is heavily dependent on the validity of the hypotheses they
are based on, which are most of the time difficult to justify. For instance, while
the SSIM index metric has proven to correlate well with the HVS [SSB06], there is
no physiological evidence that would justify combining the contrast, luminance
and structure elements using a multiplication [WB06]. Second, designing a top-
down algorithm usually requires the inclusion of several abstract parameters to
the model that are difficult to calibrate. For example, while the inclusion of the
thee parameters α, β and γ to the SSIM model (Eq. (3.1)) has its benefits, it is
however difficult to manually find a value that works the best on any type of
image. These issues are much less likely to occur in bottom-up methods since
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FIGURE 3.1: The general framework of bottom-up perceptual methods.

these approaches rely on simulating the different components of the HVS.

3.2.1.2 Bottom-Up Perceptual Methods

Bottom-up perceptual methods focus on studying each relevant component or
feature of the HVS, such as contrast sensitivity (Section 2.3) and contrast masking
(Section 2.4), and then combining them together in a computational model that
mimics how the HVS works. This computational model can then be integrated in
various image processing algorithms [CL95, LKW06, Lin06, LLP+10]. Bottom-up
methods rely heavily on experimental results and physiological studies about the
aspects of the human visual system [CK66, Kel79b, LF80, Wan95, WB06].

In general, most existing bottom-up methods try to compute a threshold map
using mathematical models describing the characteristics of the HVS. This thresh-
old refers to the maximum change in contrast a distortion is allowed to alter be-
fore it becomes visible. Most of bottom-up algorithms follow a framework similar
to the one presented in Fig. 3.1. The first step consists of computing the percep-
tual properties, i.e., luminance, contrast and spatial frequency, from a reference
image. The luminance is generally obtained by converting the pixel values using
a non-linear function. While there are many methods for estimating the contrast
for natural images [Pel90] , the Michelson contrast [Mic27] is still adopted in most
of the bottom-up methods. Finally, the spatial frequency is usually evaluated us-
ing a channel decomposition method such as Fourier decomposition [MS74] , lo-
cal block-DCT transform [?], cortical transform [Wat87, Dal93]. In the second step,
the computed perceptual properties are passed to a computational model repre-
senting the different properties of the HVS which then outputs a threshold that
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can be used to guide various image operations [CL95, LKW06, Lin06, LLP+10].
In most cases, bottom-up algorithms take into consideration the contrast sensi-
tivity, that is modeled by the CSF, and the visual masking aspects of the HVS.
One of the most used masking models is the one proposed by Daly [Dal93]. This
model, however, does not account for the effects of the signal’s complexity on the
visual masking (see Section 2.4). Recently several methods [WSL+13, DFL+15]
have started to include the free-energy principle theory [Fri10] into the percep-
tual analysis for a more accurate simulation of visual masking.

A large number of bottom-up algorithms have been introduced in the past
few decades. More notably, we mention Daly’s Visual Difference Predictor (VDP)
[Dal93] and the Visual Discrimination Model (VDM) [Lub95] since they are the
basis of many image-based perceptual methods in computer graphics which we
will detail in the next section. Both methods, although different in their technical
details, aim to predict whether a difference between two images is visible or not.
In summary, this is done by comparing the difference in contrast between a ref-
erence image and a distorted one with the threshold computed by the perceptual
model.

3.2.2 Applying Image Processing Tools to Computer Graphics

One of the purposes of computer graphics is to render an image from a descrip-
tion of a 3D scene. However, since the 3D data are subject to various geomet-
ric operations that introduce geometric distortion to the model and due to the
computational limitation of the hardware, it is practically impossible to obtain
a "perfect" image. In consequence, computer graphics systems generally aim at
generating a perceptually acceptable image by taking advantage of the properties
of the HVS.

Early attempts to use perceptual elements consisted in adapting perceptual
methods that were designed for image processing applications to computer graph-
ics. Ferwerda et al. [FSPG97] first showed how Daly’s VDP can be used to hide
geometric visual artifacts with a texture. Furthermore, Bolin and Meyer [?] used a
simplified version of the VDM metric [Lub95] to optimize the sampling operation
in a ray-tracing algorithm. In the same context of perceptually guided rendering,
Ramasubramanian et al. [RPG99] presented an iterative perceptual framework
(Fig. 3.2) in order to reduce the computational cost of global illumination. In
this case, the proposed perceptual method is able to define an automatic stop-
ping criterion for the computationally demanding global illumination operation.
The idea is to stop the rendering when the current iteration cannot produce a
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FIGURE 3.2: Overview of the perceptual rendering framework proposed by Ra-
masubramanian et al. [RPG99] (illustration extracted from [RPG99]).

visible change in the image. In other words, the algorithm stops when the phys-
ical difference between the image at the current iteration and the previous one
is below the threshold map which is evaluated using Daly’s VDP. The results of
this method can further be improved by using a more complex perceptual model
[MKRH11]. However, this approach can be over-conservative as it tends to over-
estimate the perceptual impact of none-disturbing visible distortions [RFWB07].
For that purpose, Ramanarayanan et al. [RFWB07] later introduced the concept
of visual equivalence which considers two images equivalent if the viewer cannot
tell them apart. In this work, the authors presented an experimental study which
aimed at defining the elements that contributes to the definition of equivalency
between two images. Using the results of this experiment, they then proposed
a top-down perceptual metric, the visual equivalence predictor (VEP), which is
based on machine-learning techniques to evaluate the equivalency of two images.

For the task of selecting the best level of detail (LOD) version of a 3D mesh,
Reddy [Red97] analyzed pre-rendered images using the contrast sensitivity func-
tion. Later Dumont et al. [DPF03] proposed a system based on a decision theory
approach that is capable in real-time of selecting the best LOD and texture resolu-
tion with the help of Daly’s VDP. Another interesting approach is the one of Zhu
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et al. [ZZDZ10] which consists of studying the visibility of fine geometric details
using perceptual image metrics such as the VDP and SSIM to design a discrete
LOD for visualizing 3D buildings.

Image-based perceptual methods have also been used for guiding mesh sim-
plification. Lindstrom and Turk [LT00] first presented an image based simplifi-
cation method. This algorithm works by rendering the model being simplified
for various viewpoints and uses image-based metrics such as the VDM [Lub95]
to guide the simplification. Luebke and Hallen [LH01] proposed a perceptual
mesh simplification algorithm that uses a CSF model to estimate whether a lo-
cal simplification operation will cause a visible change in contrast and frequency.
Williams et al. [WLC+03] extended later this method to textured model. In both
of these methods the simplification result depends on the chosen viewpoint. Qu
and Meyer [QM08] used the masking function in [ZDL02] to compute a masking
map taking into account the bump map and texture attached to the 3D mesh. This
masking map is then used to drive the simplification process. Finally, Menzel and
Guthe [MG10] combined a perceptual metric that takes into account the contrast
and frequency of the 3D mesh on the rendered image with a geometric distance
to decide whether to perform the edge collapse operation or not. The interesting
point is that their method is able to handle different materials since the visual
masking analysis is performed on an image-based bidirectional texture function
(BTF).

3.3 Model-Based Methods

Apart from image-based methods, many algorithms have been developed that
use the 3D geometry information for their perceptual analysis. Existing model-
based perceptual methods for 3D meshes are based on observations about the
general behavior of the human visual system while observing 3D models. These
approaches rely on the 3D information of surface geometry in order to perform
the perceptual analysis. More precisely, they mostly rely on roughness and cur-
vature information of 3D geometry.

3.3.1 Roughness-Based Methods

3.3.1.1 Relation to Visual Masking

The earliest methods for evaluating the magnitude of geometric distortions were
simple geometric distances like the Hausdorff distance [ASCE02] or the root mean
square error (RMS) [CRS98]. These measures ignore the working principles of the
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HVS and reflect the physical variation of the mesh geometry. They do not corre-
late with the human vision [CLL+13] (Fig. 1.1) and thus cannot be used to predict
whether a geometric distortion is visible or not.

Motivated by the need of evaluating their compression algorithm, Karni and
Gostman [KG00] combined the RMS measure with the average distance of the
geometric Laplacian to obtain a visual metric capable of comparing two 3D objects
A and B.

GL1(A,B) = αRMS(A,B) + (1− α)

(
n∑

i−1

||GL(vAi )−GL(vBi )||2
)1/2

, (3.3)

where α = 0.5 and GL is the geometric Laplacian computed as follows:

GL(v) = v −
∑

i∈n(v) l
−1
i vi∑

i∈n(v) l
−1
i

, (3.4)

where n(v) is the set of indices of the neighbors of v, and li the Euclidean distance
from v to vi.

The idea behind mixing the geometric Laplacian with the RMS distance is that
the former represents a local measure of smoothness. This means that the visual
distance between two versions of a 3D model (original and distorted) given by
the GL1 is higher when the distortion causes a change in smoothness. Sorkine
et al. [SCOT03] later proposed a small modification to the GL1 distance: Setting
the value of α to 0.15 instead of 0.5 gives geometric distortions on smooth re-
gions a higher impact on the visual distance. Despite being better than simple
geometric measures for computing the visual distance between two 3D models,
the geometric Laplacian metric, GL1, does not correlate well with the human per-
ception [CLL+13]. However, the GL1 distance and several other observations
of visual artifacts produced by 3D watermarking techniques [DGECB05] suggest
that the visibility of geometric distortions is related to the roughness of the sur-
face. In other words, it was noted that the geometric distortions are more visible
on a smooth surface than on a rough one [Lav09] (Fig. 3.3). This observation
can indeed be explained by the visual masking effect of the human visual system
(Section 2.2.2). For instance, the rough regions of a 3D model are more likely to
generate a visually complex visual pattern in a computer graphics image and thus
causing a visual masking effect. These observations have led to the development
of many perceptual methods that rely on an estimation of surface roughness as
their main perceptual tool.
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FIGURE 3.3: The roughness of a surface can affect the visibility of a geometric dis-
tortion. The geometric distortion injected into the smooth surface is visible while
the one injected into the rough one is not visible (image extracted from [Lav09]).

3.3.1.2 Surface Roughness Measures

Following the idea that the effects of visual masking can be taken into consider-
ation using the roughness value of the surface of a 3D object, many roughness
estimations techniques have been proposed.

In order to evaluate the quality of the output of 3D watermarking algorithms,
Corsini et al. [CDGEB07] presented two perceptual metrics, each of which is
based on a different method for estimating surface roughness. The first method
builds on the work of Wu et al. [WHTS01] which consists of using angles between
two adjacent faces to evaluate surface roughness. This method proceeds as fol-
lows. At first, a per-face roughness measure is computed using angles between
two adjacent faces, i.e., dihedral angles. The idea here is that the face normal
varies slowly when the surface is smooth while the opposite is true for a rough
surface. Consequently, a smooth surface can be detected by the value of the di-
hedral angles which should be close to 0. Finally, a per-vertex value is obtained
by combining the per-face roughness of the N-ring adjacent faces. The number of
rings taken into account for computing the per-vertex roughness value controls
the scale at which the surface roughness is being evaluated. The second method,
first introduced in [DGECB05], is based on the idea that the difference between a
detailed and a smoothed version of a 3D model is higher in rough regions than
in smooth regions. Therefore, in this approach, computing the local per-vertex
roughness boils down two steps (Fig 3.4). First, a smoothed version of the 3D



3.3. Model-Based Methods 23

Smoothing

Computing
differences

Local
variance Visual distance

FIGURE 3.4: Overview of the roughness second estimation method presented in
[CDGEB07].

model is computed, for example by using Taubin’s smoothing operator [Tau95]).
Second, the per-vertex difference is computed as:

d(v, vs) = projns(v − vs) , (3.5)

where vs is the smoothed vertex and proj() indicates the projection of the vector
(v−vs) on the vertex normal of the smoothed surface ns. The local surface rough-
ness is finally evaluated as the variance of that difference over an N-ring scale.

Lavoué [Lav09] presented a roughness evaluation algorithm based on com-
puting the difference between the original and smoothed version of a 3D model.
The method of Lavoué can be summarized by the following steps:

1. A smoothed version of the 3D mesh is generated.

2. The maximum curvature for each vertex of the original and smoothed mesh
is computed

3. The average curvature over a local window is evaluated for each vertex.

4. The local roughness value is computed as the difference between the aver-
age curvature values of the original and smoothed models.

The local roughness measure of Lavoué improved upon the classification of the
surface type. It was able to efficiently differentiate between three types of regions
(smooth regions, rough regions and edge regions) on a 3D object (Fig. 3.5), each
of which can be attributed a masking level. Furthermore, in his paper Lavoué



24 Chapter 3. Perceptual Methods for Computer Graphics Applications

FIGURE 3.5: Surface roughness on the Armadillo model obtained with the rough-
ness estimation method of Lavoué (image extracted from [Lav09]).

demonstrated the utility of the proposed roughness measure for two geometric
operations: mesh compression and 3D watermarking. In summary, the rough-
ness value is used to locally adapt the quantization operation of a compression
algorithm. Instead of applying the same quantization level for the entire model,
a higher level can be applied to the rough part as it can tolerate more geometric
distortions. A similar idea was adapted to drive the 3D watermarking process as
the strength of the watermark becomes dependent on the local roughness value.

In the interest of objectively evaluating the perceptual quality of a distorted
mesh, Wang et al. [WTM12] proposed a perceptual metric (FMPD) that consid-
ers the visual masking effect using the roughness value of a surface. First the
local roughness value is computed at each vertex as the Laplacian of the discrete
Gaussian curvature which indicates whether the curvature is locally varying or
not. The local roughness value is then modulated using a series of simple math-
ematical operations. The idea behind this modulation is to cause a small percep-
tual distance when a geometric distortion is located in a rough region and a big
perceptual distance when the geometric distortion causes the smooth region to
become rough, which mimics the effects of visual masking. The local roughness
value is then integrated over the 3D mesh’s surface to obtain a global roughness
measure reflective of the overall roughness of the surface. Finally, the perceptual
score relative to a distorted mesh is defined simply as the difference between the
original and the distorted global roughness scores.

Finally, similarly to the first roughness measure proposed by Corsini et al.
[CDGEB07], Váša and Rus [VR12] also rely on the values of dihedral angles to
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measure the perceptual distance between two meshes. Their metric (DAME),
is simply based on a weighted difference of the corresponding dihedral angles.
Since the value of the angle between two adjacent faces is an indicator of surface
roughness, then giving more weight to the difference of dihedral angle when its
original value is small, i.e., smooth surface, simulates the effects of visual mask-
ing. Recently, DAME was integrated into a 3D mesh compression algorithm
[MVBH15] in order to perceptually drive the compression process by trying to
minimize as much as possible the visible error caused by the absolute vertex dis-
placement.

3.3.2 Curvature-Based Methods

In addition to surface roughness, the curvature of the surface has been another
important geometric feature in the design of perceptual-driven methods as sev-
eral observations [DFRS03, RBD06] have led to the conclusion that curvature in-
formation affects the intensity of the rendered image and thus affects the visual
characteristics of a 3D model. In fact, it was noted that the human visual system
is sensitive to strong variation in surface curvature [KKK02]. The surface curva-
ture has, in particular, been used for assessing the visual quality of 3D models
[Lav11, WTM12, TWC14, DFLS14] and mesh simplification through an estima-
tion of visual saliency [HHO04, LVJ05, SLMR14].

3.3.2.1 Objective Quality Assessment for 3D Models

Following the concept of the structural similarity (SSIM) index [WBSS04] which
consists of measuring the degradation of structural information in a 2D image,
Lavoué et al. [LDGD+06] introduced a method for measuring the perceptual
quality of 3D distorted meshes, MSDM. Instead of extracting the structural in-
formation using the luminance value in 2D images, the MSDM metric uses a
combination of statistical analysis of surface curvature for that task. In order
to compute the perceptual distance between two meshes X and X ′, a local per-
ceptual distance between two local patches x and x′ on the two meshes is first
evaluated as follows (Fig. 3.6):

LMSDM(x, x′) =
(
0.4 · L(x, x′)3 + 0.4 · C(x, x′)3 + 0.2 · S(x, x′)3

)1/3
, (3.6)
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original Distorted Hausforff Distance Map Local MSDM2 Map

FIGURE 3.6: Local distortion maps of the Lion model obtained with the Hausdorff
distance (left) and the MSDM2 metric (right) (image extracted from [Lav11]).

where L, C and S respectively correspond to the luminance, contrast and struc-
ture term of the SSIM index and are computed as:

L(x, x′) =
||μx − μx′ ||

max(μx, μx′)
, C(x, x′) =

||σx − σx′ ||
max(σx, σx′)

, S(x, x′) =
||σxσx′ − σxx′ ||

σxσx′
,

(3.7)
where μx, σx and σxx′ are respectively the mean, variance and covariance of the
surface curvature over a local window of size ε around the vertex. It was recom-
mended by the authors that ε would be equivalent to 0.5% the size of the model’s
bounding box. Finally the perceptual score between two models X and X ′ is
obtained via a Minkowski pooling over the vertices of the 3D mesh as:

MSDM(X,X ′) =

(
1

N

N∑
i=1

LMSDM(xi, x
′
i)
3

)1/3

, (3.8)

where N is the number of vertices. The MSDM metric was later improved by inte-
grating a multiscale analysis of the perceptual distance and allowing the compar-
ison of two meshes that do not share the same connectivity information [Lav11].

Different from MSDM and MSDM2 that only consider the amplitude of sur-
face curvature, the TPDM perceptual metric [TWC14], proposed by Torkhani et
al., makes use of the principal curvature directions in its perceptual analysis. The
surface normals vary the fastest in the direction of the maximum curvature and
the slowest in the direction of the minimum curvature. Consequently, taking into
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FIGURE 3.7: Overview of the method for computing the saliency as proposed by
Lee et al. [LVJ05] (illutration extracted from [LVJ05]).

consideration the direction and amplitude of principal curvature provides a more
detailed information about the structure of the surface. This is proven to be bene-
ficial for the assessment of the perceptual quality of 3D triangular meshes by the
TPDM metric.

3.3.2.2 Mesh Saliency and its Application to Mesh Simplification

There has been a large interest in the past few years to estimate the visual saliency
on a 3D mesh as it has proven to be useful for several applications especially mesh
simplification [HHO04, LVJ05, SLMR14]. Mesh saliency is a measure that tries to
capture the visual importance of a region of a 3D mesh. In other words, a region
with a high saliency value is more likely to attract the attention of the human
viewer than a region with a low saliency value. Motivated by the experimental
results of Howlett et al. [HHO04], in which the authors demonstrated the poten-
tial advantage of a saliency measure for geometric operations, Lee et al. [LVJ05]
proposed an algorithm for computing the saliency on a 3D mesh. Their method
is based on the idea that a region with a high saliency value stands out relative
to its neighbors. The saliency estimation algorithm proceeds by computing a se-
ries of saliency maps at different scales which are then combined in a normalized
non-linear sum (Fig. 3.7). In order to compute the saliency map at a scale σ, they
proceed by the following steps. First the curvature is evaluated for each vertex
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FIGURE 3.8: Results of the saliency guided simplification [LVJ05] (image extracted
from [LVJ05]).

of the 3D mesh. The average curvature over a local window of sizes σ and 2σ is
computed for each vertex. The saliency map value is finally obtained by comput-
ing the difference between the previously computed curvature averages. Lee et
al. then demonstrated the utility of a saliency measure for the simplification of 3D
models. They have modified the quadrics-based simplification method (Qslim)
of Garland and Heckbert [GH97] by weighting the quadrics with mesh saliency.
This resulted in a simplification procedure in which the visual important features
of a 3D mesh are preserved (Fig. 3.8).

3.4 Image-Based vs. Model-Based Methods

In the last few years, perceptual methods have seen a rise in popularity [OHM+04,
Fer08, CLL+13, LM15] as they have proven to be quite effective for a large num-
ber of applications. For instance, as detailed in this chapter, these approaches
have been useful in the context of mesh rendering by either providing a criterion
for selecting the best LOD for a certain scene [Red97, LH01, CB05, CSYB06] or
by allowing for a more efficient management of resources in a physically-based
rendering system [RPG99, RFWB07]. Perceptual methods have also provided
the computer graphics community with several objective quality metrics [Lav11,
WTM12, VR12, DFLS14, TWC14] that can be used to evaluate and debug exist-
ing geometric operations. Moreover, perceptually motivated approaches have
proven to be especially helpful for the task of mesh simplification [WLC+03,
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LVJ05, QM08, SLMR14] as they are able to preserve the visually important fea-
tures of a 3D model. Despite all the aforementioned benefits a major issue re-
mains when designing a perceptually oriented algorithm: Is it better to perform the
perceptual analysis on the 3D model or on the 2D rendered image?

There are two sources of visual artifacts in a computer graphics system. First
the geometric operation applied to the 3D model might introduce a visible geo-
metric distortion and second the rendering algorithm may also cause some pixel-
based artifacts. In theory, model-based approaches allow a more accurate anal-
ysis of geometric artifacts since the perceptual study is independent from any
artifacts caused by the rendering algorithm. In this case, the perceptual analysis
is carried out before generating the image, therefore, the visual impact of geomet-
ric and rendering distortions will not be mixed. Image-based methods have some
advantages over current model-based ones. First and most importantly, since the
perceptual analysis is carried out on the 2D image after the rendering step, it can
easily cope with different rendering pipelines. This means that, since the analysis
is done on the 2D rendered image, its results will adapt to the lighting condition,
material properties, textures and rendering algorithm without having to alter the
perceptual analysis procedure. In addition, these approaches also offer the choice
between a view-dependent perceptual analysis, by taking one snapshot of the
model, and a view-independent one, by taking multiple snapshots around the
model, each of which can be useful for a range of applications.

However, in a comparative study to test the efficiency of perceptual image-
based techniques in the case of computer generated images [CHM+12], Čadík et
al. have concluded that image metrics are too sensitive for evaluating the visibil-
ity of distortions generated by a computer graphics pipeline. This is probably due
to the difference in the type of both visual artifacts and images (artificial vs. nat-
ural) between the fields of computer graphics and image processing, for which
these methods are designed. Moreover, many subjective studies have tried to
compare between these two classes of methods in order to find out which is the
more suitable for the task of estimating the perceptual impact of geometric dis-
tortions. This started with the experiments of Rogowitz and Rushmeier [RR01]
which concluded that image-based metrics might not be suited for evaluating the
quality of 3D model. This conclusion came as the result of a subjective experiment
where the authors noticed that users have rated differently the artifacts cause by
a simplification procedure when they observed the 3D model opposed to 2D still
images. This difference is theorized to be due to the interactions when manipu-
lating a 3D model. On the contrary, Cleju and Saupe have conducted a similar
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experiment [CS06], but obtained conflicting results. The authors noticed that 2D
metrics such as SSIM performed better than model-based ones when the sim-
plification artifacts are beyond the visibility supra-threshold. Nevertheless, both
of these experiments have some limitations as they only consider simplification
artifacts and compare perceptual image metrics with non perceptual geometric
ones (Hausdorff [ASCE02], RMS [CRS98]) since at that time more sophisticated
geometric metrics (MSDM2 [Lav11], FMPD [WTM12], and DAME [VR12]) had
not yet been developed. Recently and in the interest of providing a conclusive
answer to the issue, Lavoué et al. [LLV16] realized a large study that compared
the performance of state-of-the-art image-based methods with the state-of-the-
art model-based methods for the task of evaluating the perceptual effects of a
geometric distortion. In this study the authors took into consideration a large
number of variables that affects the appearance of the 3D object in order to de-
termine the parameters for which image-based methods performed the best. For
instance, they have considered 2 rendering algorithms and 4 lighting conditions.
In addition they used a large number of 3D models from the 3D Mean Opinion
databases [LDGD+06, Lav09, VR12]. These databases contain 3D models with
different distortion types (simplification, compression, filtering, . . . ) along with
their corresponding mean subjective score. They have been used throughout the
literature to evaluate the effectiveness of computer graphics perceptual metrics
by computing the correlation between the metric results and the subjective scores.
This study showed that, under the best parameters, the SSIM inspired metric of
[WL11] along with the HDR-VDP2 [MKRH11] metric performed the best among
image-based methods with a correlation greater than 60% with every database
and scenario. Moreover, in simple scenarii, where each type of distortion or class
of model is considered independently, image-based approaches are at their best
with correlations close to 80% and even just surpassing 90% for simplification ar-
tifacts. However, this study also shows that perceptual image-based methods fall
short in front of state-of-the-art model-based metrics. Indeed, the latter have a
correlation that hovers around 85% regardless of the scenario.

Despite shown to be superior than image-based methods when it comes to
evaluating the effects of geometric distortions on 3D objects, existing model-
based methods have some issues. For instance, these metrics try to account for the
perceptual characteristics such as visual masking and saliency using geometric
measures defined on the 3D surface (surface roughness, curvature). The problem
here is that these geometric features are not necessarily perceptually relevant at-
tributes and their relation to human perception is based on general observations.
Moreover, relying only on the surface geometry for the perceptual analysis makes
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these methods unable of effectively adapting to a large number of important pa-
rameters that play an important role in the perception of rendered 3D objects such
as illumination condition, the rendering procedure or display size and resolution.

3.5 Our Approach

In this thesis, different from all the methods mentioned in this chapter that either
conduct the visibility analysis in a 2D space or completely rely on 3D geometric
features, we present original algorithms whose goal is to compute the threshold
beyond which a vertex displacement becomes visible, i.e., the so-called Just No-
ticeable Distortion (JND) profile. Our approach is inspired by the image-based
bottom-up framework (Section 3.2) which consists of trying to predict whether a
change in contrast is visible or not. Hence, we start by computing appropriate
perceptual properties (contrast, spatial frequency and visual regularity) on the
meshe surface of a 3D object. These perceptual attributes should take into con-
sideration the various parameters of mesh display (rendering, illumination, scale
and display resolution) that generally affect their appearance. We then perform
a series of psychophysical experiments to study the effects of contrast sensitivity
and visual masking of the human visual system while observing a 3D model. The
results of these experiments will allow us to propose a perceptual model that is
able to predict whether a change in local contrast on a 3D mesh, induced by a
local geometric distortion, is visible or not. This visibility model can afterwards
be used to compute the threshold beyond which a vertex displacement becomes
visible.
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Chapter 4

Experimental Studies and Threshold

Model

Existing model-based methods use measures such as surface roughness [CDGEB07,
Lav09, WTM12, VR12] and surface curvature [LDGD+06, Lav11, TWC14] in or-
der to carry out the perceptual analysis on a 3D mesh. However, these mea-
sures are not necessarily perceptually relevant. Our approach is inspired by the
image-based bottom-up framework (Section 3.2) which consists of trying to pre-
dict whether a change in contrast is visible or not with the help of a mathematical
model that simulates the perceptual properties of the HVS (Section 2.2). In this
chapter, we define local perceptual properties for 3D meshes (i.e., local contrast,
spatial frequency and visual regularity) that are appropriate for a bottom-up eval-
uation of vertex displacement visibility. These perceptual properties allow us to
study the effects of the contrast sensitivity and the visual masking in the 3D set-
ting. In the following, we start by discussing the main experimental methods
that were used throughout the literature in order to measure a certain perceptual
threshold (Section 4.1). We then present both the proposed perceptual attributes
and our experimental study regarding the visibility threshold in the case of flat-
shaded (Section 4.2) and smooth-shaded (Section 4.3) 3D models.

4.1 Measuring the Visibility Threshold

The task of measuring the visual threshold is essential in vision science [CKT+99,
WA05, Fer08, PB13] as it provides us with important information about the vi-
sual system. The results of such experiments have helped us understand and
model the basic characteristics of the HVS which then can be used in several
fields spanning from clinical studies [HHL+10] to bottom-up perceptual meth-
ods [Dal93, Red97, RPG99, LH01, LKW06, LK11].

In general, the experimental protocol for measuring a certain threshold fol-
lows the diagram presented in Fig. 4.1. The human subject is presented with task
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FIGURE 4.1: Diagram of a typical visibility threshold measurement experiment.

which usually consists in judging the visibility of some stimuli. For example, in
a typical Yes/No task the subject is shown one image containing a visual stimulus
and is asked to tell whether he can see it or not. On the other hand, in a two al-
ternative forced choice (2AFC) type task the observer is presented with two images,
one of which contains the stimulus. The observer is then asked to identify the
image containing the stimulus. In order to measure the visibility threshold, the
observer is tested over many trials. In each trial the stimulus is presented at a dif-
ferent contrast and the observer’s answer is labeled either positive or negative.
When the answer given by the observer indicates that he has seen the stimulus,
for example a Yes answer in a yes/no type task or choosing the distorted stimulus
in a 2AFC task, then it is labeled as positive. Otherwise, it is labeled as negative.
The proportion of positive answers with respect to negative ones is then used to
determine the contrast threshold.

There are many ways to select the contrast of the stimulus at which an ob-
server is tested. They are grouped in two categories: (1) non-adaptive thresh-
old methods where a set of contrasts is predetermined by the experimenter and
(2) adaptive methods where the contrast of the stimulus on a certain trial is com-
puted using the observer’s response to the previous trials. While non-adaptive
methods are easy to implement the main problem is their inefficiency. Before the
experiment begins, the designer is required to perform a series of tests in order to
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choose the set of contrasts at which the stimulus will be presented. In addition,
measuring an accurate threshold with this method usually requires a large set of
contrasts to be tested which will make the experiments long and therefore tiring
for the subject. Adaptive methods, on the other hand, are more efficient and can
converge to the threshold in as low as 20 trials. Many adaptive threshold meth-
ods have been developed throughout the literature. Starting with the staircase
method [Cor62] where the contrast of the stimulus is either reduced or increased
by a certain step after respectively a positive and negative answer. One of the
biggest challenges of using this method is to determine the value at which the
contrast is increased or decreased after each trial. This value plays an important
role in the accuracy of the resulting threshold and efficiency of the experiment. A
large value reduces the experiment time while a small value makes the resulting
threshold more precise. Many strategies has been proposed for dealing with this
issue such as using a fixed step [Cor62] or adapting its value according to the trial
number [WL65]. Another type of adaptive methods, such as the PEST (Param-
eter Estimation by Sequential Testing) [TC67], groups a certain number of trials
in several blocks. In these methods, instead of changing the contrast value after
each trial, it is changed after each block with respect to the ratio of positive an-
swers in that block. The motivation for doing that is to reduce the effects of false
positive answers on the final threshold. For instance this is an important issue for
2AFC tasks where the subject has a 50% chance of choosing the distorted mesh
even if he has not seen it. However, due to the large number of trials these meth-
ods are time consuming. Finally, there are ones that are based on the maximum
likelihood method [Gre93] such as QUEST [WP83]. In this class of methods the
contrast value and the response label are passed to a statistical model after each
trial, which then outputs the next contrast value to test. This statistical model an-
alyzes the user’s response and outputs the most likely contrast threshold value
so that the experiment is effective. it also takes into account the probability of
false positive answers so that the measured threshold is as accurate as possible.
In our experimental study we have used the QUEST method for measuring the
visibility threshold, which we will detail in the next section.

4.1.1 The QUEST method

The idea of the QUEST method is to test at each trial the contrast value that is
most likely to be the threshold. To do so, a probability density function (PDF)
is first initialized on the contrast axis. In general, the PDF is assumed to be a
Gaussian function whose parameters (mean and variance) are determined by the
experimenter’s prior knowledge about the threshold [WP83]. King-Smith et al.
[KSGV+94] have also proposed to use a modified hyperbolic secant function as
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FIGURE 4.2: Example of an iteration according to the QUEST procedure. The PDF
of the contrast threshold at trial n is multiplied with the corresponding likelihood

function in order to get the PDF for the trial n+ 1.

the PDF of the contrast threshold. The first stimulus is then presented to the
observer with a contrast corresponding to the mode of the initial PDF, i.e., the
most likely threshold value. If the observer responds positively (contrast value
is claimed to be visible by the observer), then the PDF is shifted towards lower
contrast values otherwise it is shifted towards higher intensities. Watson and
Pelly [WP83] have demonstrated that shift of the PDF can be done by applying
Bayes’ theorem. In consequence, the new PDF is computed as:

Pn+1(T ) = Q(r, T ) · Pn(T ) , (4.1)

where Pn is the PDF of the contrast threshold T at the nth trial and Q(r, T ) repre-
sents the likelihood of a getting positive answer (r = 1) or a negative one (r = 0)
for the tested contrast value (T ). This likelihood function is defined as:

Q(r, T ) =

{
1− ψ(T ) if r = 0

ψ(T ) if r = 1
, (4.2)

where ψ(T ) is the standard Weibull psychometric function [Wei51] (i.e., 1−δ−(1−
γ − δ) · e−103.5T ) whose parameters γ and δ reflect the probability of respectively
false positive and false negative answers for a certain task. For example, in a
2AFC-type task the probability of false positive answers is 50% and therefore γ is
set to 0.5 while in a Yes/No-type experiment γ is usually initialized at 0.03 [Gre93,
Tre95]. Multiplying the PDF with the likelihood function will shift position of the
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FIGURE 4.3: The contrast between adjacent faces is computed using the angle be-
tween their normals and the spherical coordinates of the light direction in the local

coordinate system defined by the face normals.

PDF on the contrast axis and reduce its variance. The QUEST procedure usually
stops when the PDF shift becomes negligible and the variance becomes too small.
This is usually around 20 trials in a Yes/No-type experiment.

4.2 Measuring Contrast Threshold for Flat-Shaded Models

In this section we consider 3D meshes that are rendered with flat-shading algo-
rithm. We start by describing a method for estimating the Michelson contrast
(Section 4.2.1) and spatial frequency (Section 4.2.2) locally on a 3D mesh. We then
present the psychophysical experiments (Section 4.2.3) that were aimed at mea-
suring the visibility threshold in a flat-shaded setting. In addition, in this section,
we limit our study to perfectly diffuse untextured surfaces that are illuminated
with a directional white light.

4.2.1 Contrast Evaluation

The human visual system is primarily sensitive to variation in light energy, i.e.,
contrast due to the center/surround organization of the receptive fields [Wan95].
In general, the most used contrast definition is that of Michelson where the con-
trast c is computed as:

c =
Lmax − Lmin

Lmax + Lmin

, (4.3)

where Lmax and Lmin correspond to the luminance of the pixel with respectively
the highest and lowest luminance value in a certain neighborhood.
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In the case of a flat-shaded rendering, each face of the 3D mesh is attributed
a single luminance value proportional to the cosine of the angle between its nor-
mal and the light direction. This means that the luminance value of each pixel
belonging to a certain face is given by:

L = max (l · n, 0) , (4.4)

where n is the unit face normal and l is the light direction. In that setting, the
local contrast is characterized between two faces as the contrast inside a face is 0
(all pixels have the same luminance level). The Michelson contrast between two
adjacent faces is therefore defined by:

c =
‖ L1 − L2 ‖
L1 + L2

=
‖ max (l · n1, 0)−max (l · n2, 0) ‖
max (l · n1, 0) + max (l · n2, 0)

, (4.5)

where n1 and n2 are the normals of the two adjacent faces. Under the circum-
stances where the inner products between the light direction and the two face
normals are both positive, the above equation yields to the following equation:

c =‖ cosα · tan θ · tan φ

2
‖, (4.6)

where α and θ are the spherical coordinates of the light direction in the local co-
ordinate system defined by n1−n2, n1+n2 and their outer product (see Fig. 4.3).
φ is the angle between the normals of the two faces. A detailed explanation of the
transition between Eqs. (4.5) and (4.6) can be found in Appendix A.

Equation (4.6) shows how the contrast is affected by surface geometry and the
scene illumination. The term tan φ

2
indicates the impact of surface geometry on

the local contrast. On the one hand, if the surface is locally smooth (φ ≈ 0◦),
then the local contrast is minimal. On the other hand, if the surface is locally
rough (φ � 0◦), then the local contrast tends to be high. In addition, the term
cosα× tan θ describes how the light direction affects the local contrast. A grazing
light direction will maximize the value of the contrast where θ is close to 90◦ and
α is close to 0◦ or 180◦, while a light direction close to the normal direction (θ ≈ 0◦)
makes the contrast minimal.

4.2.2 Spatial Frequency

The spatial frequency is related to the size of the visual pattern, with respect to
the size of one degree of the visual angle (Fig. 4.4) and is expressed in terms of
cycles per degree (cpd). It is affected by the physical size of the object and the
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ω = 1◦

deye
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FIGURE 4.4: The spatial frequency is related to the size of the observed visual
pattern (dph), with respect to the size of one degree of the visual angle (d1cpd) on

the display.

observer’s distance to the object. In a flat-shaded environment, the visual stimu-
lus is displayed on a screen and consists of the difference in luminance between
a pair of adjacent faces. The perceived size of this stimulus depends then on the
display’s properties (resolution and size), the observer’s distance to the display,
the position of the model in the virtual 3D world and the size of the faces. So es-
timating the spatial frequency in the 3D setting requires first converting the size
of the visual stimulus from its virtual value in the 3D world to its physical size
on the display. As a consequence, we first evaluate the number of pixels that are
occupied by the visual pattern. To do so, we start by computing the size of the vi-
sual stimulus in the virtual 3D world. It corresponds to the distance between the
opposites vertices of two adjacent faces in a flat shaded mode. We then compute
the number of pixels that the visual pattern occupies on the screen by applying a
perspective projection.

Having evaluated the number of pixels, the physical size of the visual pattern
is then computed using the display’s properties (resolution and size) as:

dph =
npx√

rh2 + rv2/s
, (4.7)

where npx is the number of pixels of the displayed visual pattern, rh and rv are
the display’s horizontal and vertical resolution and s its diagonal size. Finally the
spatial frequency is estimated by:

f =
d1cpd

dph
, d1cpd ≈ deye · π/180 , (4.8)

where d1cpd is the size of one degree of the visual angle on the display and deye is
the distance between the eye and the display. It is interesting to note the effects
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10 cpd

0 cpd

FIGURE 4.5: The vertex density has an impact on the spatial frequency.

of the vertex density of a 3D mesh on the perceived spatial frequency. While a
dense model will most likely exhibit high frequency stimuli, a coarse model will
show low frequency ones (Fig. 4.5).

4.2.3 Experimental Study

As the coordinates of a vertex on the surface of a 3D mesh change, the local con-
trast of the surface around this vertex changes also. The purpose of our experi-
mental study is to measure the contrast threshold relative to the displacement of
a vertex on the surface of a 3D model by studying the effects of contrast sensitiv-
ity and visual masking while observing a 3D model. We will start by describing
the experimental protocol used for the task of measuring the visibility threshold
relative to the contrast sensitivity and visual making of the visual system.

4.2.3.1 Experimental Protocol

Our first group of psychophysical experiments concerns measuring the visibility
threshold relative to the effects of contrast sensitivity and visual masking in a flat
shading rendering. To do so, we have proposed an experimental protocol that is
similar to the usual visibility threshold measurement procedure (Fig. 4.1).

We have designed the task given to the participants to be as precise and effi-
cient as possible at the same time. The efficiency of the task is an important crite-
rion since long experiments will be both time consuming and more importantly
tiring for the participants which might affect their performance. Hence, we have
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FIGURE 4.6: Experimental setup.

used the QUEST method to adjust the intensity of the stimulus after each trial
and designed the task as follows. In a typical Yes/No-type task the subjects are
shown one stimulus and are asked to indicate whether they are able to see it or
not. The presence of only one stimulus means that the observer will judge it as
visible (Yes answer) if its intensity is above a certain internal criterion [GS66]. The
issue here is that this internal criterion might shift over time and is different for
each subject and therefore could lead to a less accurate threshold. The solution
for reducing the effects of the subjective criterion is to show two objects, one act-
ing as a reference, so that the subject is able to base his answer on a comparison
with this reference. For example, in a 2AFC-type task, the subject is required to
identify which of the two displayed objects is the distorted one. However, due to
the high probability of false-positive answers in a 2AFC the QUEST will slowly
converge to the threshold which would make the experiments long and tiring
[JW06]. Therefore, in our experiments, the task given to the observers was based
on a slightly altered Yes/No procedure. Instead of showing one object, we have
displayed two objects side by side on the screen, one of which exhibits a displaced
vertex in its central area. The subjects where then asked to respond by Yes or No
to the following question: Are the two objects different? If the vertex displacement
is visible, then the objects will appear to be different and thus a Yes answer is
expected. If the vertex displacement is not visible, then both objects will appear
identical and a No answer is expected. Having a Yes/No-type task compared to a
2AFC-type one makes measuring the threshold faster as the probability of a false-
positive response is low [KSGV+94, JW06]. In addition, having a response based
on a comparison of two objects increases the accuracy of the measured threshold
compared to a typical Yes/No procedure as it reduces the effects of the internal
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criterion based on which the subjects give their answers.

The experiments took place in a low illuminated laboratory environment (Fig.
4.6). The stimuli were displayed on an Asus 23-inch display in a low illumi-
nated room. Screen resolution was 1920× 1080. The stimuli were observed from
a distance of 1 m, in order to allow us to measure the threshold for frequen-
cies between 1 and 16 cpd (a closer screen would make high-frequency stimuli
smaller than 1 pixel). 5 subjects participated in our experiments. All had normal
or corrected-to-normal vision and were 22 to 26 years old. One of the participants
was experienced in perceptual subjective evaluations and the other 4 were inex-
perienced. The participants repeated the experiment 4 times each on a different
day and on a different time of day (morning, afternoon). No user interaction was
allowed.

4.2.3.2 Contrast Sensitivity

FIGURE 4.7: Visual stimulus presented to the subjects for measuring the Contrast
Sensitivity Function in the case of flat shading. Left: the reference plane. Right: a

vertex is displaced in the central area of the plane.

Visual Stimulus In order to measure the CSF in the 3D setting, the natural vi-
sual stimulus consists of a vertex displaced from the surface of a regular plane
whose local contrast is 0 (Fig. 4.7). The displacement of the vertex alters the
normal of the adjacent faces and thus changes the contrast. In order to measure
the threshold of different frequencies we change the vertex density of the plane,
which alters the size of its faces. The threshold is measured for 8 spatial frequen-
cies (1.12, 2, 2.83, 4, 5.66, 8, 11.30 and 16 cpd). An additional "dummy" frequency,
whose data were not taken into account, was included at the beginning of each
session to stabilize the subject’s answers. In order to avoid any bias, frequency
order was randomized for each observer in each session. The plane is tilted by
20◦ to give the observer a 3D feel.
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FIGURE 4.8: Left: plot of the mean sensitivity for each observer over each fre-
quency. Right: plot of the subjects’ mean sensitivity over each frequency fitted

using Manos and Sakrison’s mathematical model.

Results The results of this experiment are shown in Fig. 4.8. The displacement
of a vertex causes a variation in contrast for multiple face pairs. We save the
maximum contrast between the affected face pairs. The left panel of Fig. 4.8 plots
the mean sensitivity for each observer over each frequency. The plot shows a high
consistency between the participants: All of them exhibit a peak in sensitivity at
2 cpd and the drop off in sensitivity on either side of the peak is similar for all
participants. The right panel of Fig. 4.8 shows the subjects’ mean sensitivity over
each frequency, fitted using Mannos and Sakrison’s mathematical model [MS74]
that is defined by:

csf(f) =

(
1− a+

f

f0

)
e−fp

, (4.9)

with a = −15.13, f0 = 0.0096 and p = 0.64. The fit predicts a peak in sensitivity
at around 2 cpd that drops rapidly at high frequencies. At low frequencies the
drop in sensitivity is much slower than the one measured with a 2D contrast
grating [BC69b, WA05]. This is probably due to the aperiodic nature of the visual
stimulus [BC69b].

4.2.3.3 Visual Masking

Visual masking occurs when the visibility of stimulus (the target) is reduced due
to the presence of another visible stimulus (the mask). Since the visibility of a
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visual pattern depends on its spatial frequency, the masking threshold is different
at each frequency. However, if we normalize the contrast values by the mask’s
CSF value, then the resulting threshold will be independent of the stimulus’s
spatial frequency [Dal93]. This normalization is achieved by the following

c̃ = c · csf(f) , (4.10)

where c and f are respectively the contrast and spatial frequency of a visual pat-
tern. Ultimately, when c̃ � 1 this means that the contrast is above the visibility
threshold given by the CSF, otherwise (c̃ < 1) the contrast is considered not vis-
ible. Therefore, measuring the masking effect can be done by changing the con-
trast value of a mask signal without the need to pay much attention to its spatial
frequency. We have verified this hypothesis through a preliminary experiment
where the contrast masking threshold for three different frequencies was the al-
most same after normalization by the corresponding CSF value. The results of
this preliminary experiment can be found in Appendix B.

FIGURE 4.9: Visual stimulus for measuring threshold relative to the aspects of
contrast masking in the case of flat shading. Left: a sphere approximated by an
icosahedron subdivided 3 times from which a vertex is displaced. Right: the ref-

erence sphere.

Visual Stimulus In order to measure the threshold relative to the masking effect,
the initial visual stimulus needs to exhibit a visible contrast (i.e., c̃ � 1). We then
increase the initial contrast and measure the value needed to notice that change.
In other words, if c is the initial contrast (mask signal) and c′ is the increased
value, we measure Δc = c′ − c (target signal) needed to discriminate between c

and c′. The stimulus consists of a vertex displaced from a sphere approximated
by a subdivided icosahedron (Fig. 4.9). The icosahedron is subdivided 3 times,
which makes the contrast between two adjacent faces (stimulus of about 2 cpd)
visible for an observer. This initial contrast represents the mask signal. Varying
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FIGURE 4.10: Left: plot of the normalized mean threshold for each observer over
normalized mask contrast. Right: plot of the subjects’ mean normalized threshold
over each normalized mask contrast, fitted using Daly’s mathematical contrast

masking model.

the light direction modifies the value of the initial contrast between two adjacent
faces. We measured the threshold relative to 7 normalized contrasts that were
log-linearly spaced from 0.6 to 4.

Results The results of this experiment are shown in Fig. 4.10. The left panel
plots for every participant the mean normalized threshold over the normalized
contrast mask. For mask contrasts below the visibility threshold (normalized con-
trast of the mask lower than 1), the measured normalized threshold is close to 1.
This indicates that the measured threshold refers to the one given by the CSF and
that no masking has occurred. For mask contrasts above the visibility thresh-
old, the measured normalized threshold is above the one given by CSF and lies
close to the asymptotic region with a slope near 0.7. The right panel of Fig. 4.10
shows the subjects’ mean threshold over each mask contrast fitted using Daly’s
mathematical masking model [Dal93] that is defined by:

masking(c̃) =
(
1 + (k1 × (k2 × c̃)s)

b
)1/b

, (4.11)

with c̃ the normalized threshold, and the fitted values k1 = 0.0078, k2 = 88.29,
s = 1.00 and b = 4.207.
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4.2.4 Contrast Threshold

Having performed a series of psychophysical experiments in order to study the
effects of contrast sensitivity and visual masking in a 3D setting, we can now
derive a computational model to evaluate the threshold T beyond which a change
in contrast becomes visible for the human observer as follows:

T (c, f) =
masking(c · csf(f))

csf(f)
, (4.12)

where c is the original contrast and f the spatial frequency. The proposed thresh-
old T can adapt to various parameters. When computing the local spatial fre-
quency, it takes into consideration the size and resolution of the display as well
as the vertex density of the mesh. The threshold T can also adjusts to the scene’s
illumination since it influences the initial contrast.

Furthermore, for estimating the probability of detecting a change in contrast,
it is common in the field of visual perception to use a psychometric function (Eq.
(4.13)) with a slope set to 3.5 [MT86].

p(Δc, T ) = 1− e(Δc/T )3.5 , (4.13)

where T is the contrast threshold and Δc is the change in contrast which corre-
sponds to contrast difference before and after the displacement of a vertex. Δc is
evaluated as:

Δc =

{
‖ c′ − c ‖ if sgn(n1 · (v4 − v3)) does not change,

c′ + c if sgn(n1 · (v4 − v3)) changes,
(4.14)

where c and c′ are respectively the contrast of the adjacent faces before and af-
ter the vertex displacement. We test whether the vertex displacement causes a
change in convexity, which is reflected by a change in the sign of n1 · (v4 − v3) in
order to detect, for instance, the ambiguous case as shown in Fig. 4.11, where the
displacement does not induce a change in the "conventional" contrast between
the adjacent faces.

The method proposed in this section works only for models illuminated by a di-
rectional light and rendered with a flat-shaded algorithm as a result of using the
limited contrast estimation method. In addition, the perceptual model used for
computing the visibility of the geometric distortions does not take into account
either the regularity of the visual pattern or the effects of global luminance on the
CSF value. This is due to the simplified CSF and masking functions (Eqs. (4.9)
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FIGURE 4.11: When the displacement of a vertex alters the convexity of two ad-
jacent faces, the contrast might remain the same as long as the angle between the
light direction (yellow arrow) and the face normal (red arrow) does not change.

and (4.11)) used in the threshold model and will most likely result in overestimat-
ing the perceptual impact of distortions in complex or dark regions of a 3D mesh.
These limitations are taken into account in our second stage of our experimen-
tal study where we present a more complete threshold model for smooth shaded
meshes.

4.3 Measuring Contrast Threshold for Smooth-Shaded Models

Building on the aforementioned work on computing the contrast visibility thresh-
old in a flat-shaded environment, we now extend it to smooth-shaded models. To
do so, we generalize the method of estimating the local contrast on a 3D model
to smooth-shaded algorithms and different illumination types (directional and
point light). We also extend our study of the contrast sensitivity to include the
effects of the scene’s global luminance. Moreover, based on the free-energy prin-
ciple, we propose a method to compute the visual regularity of a rendered mesh
which allows us to take into account its influence over the visibility threshold.

4.3.1 Contrast for a Smooth-Rendering Setting

In a smooth-shaded rendering algorithm, each point on a triangular face surface
is attributed a luminance value. In consequence, each face of the triangular mesh
exhibits a local contrast. Hence, in order to compute the contrast of a face, we
need to find the points corresponding to the highest and lowest luminance val-
ues, Lmax and Lmin respectively.

In this section, we propose an analytical method to compute these points. This
will allow us to estimate the Michelson contrast (Eq. (4.3)) for a given face. Let
F = {v1,v2,v3} be a face of a 3D mesh and let xi be a point belonging to F .
The surface normal at xi is obtained using a barycentric interpolation of vertex
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FIGURE 4.12: The projection of the normals, [n1,n2,n3], on the unit sphere and to
the tangent plane allows us to compute the barycentric coordinates of the closest

and farthest points to the light direction L.

normals:
nxi

=
hxi

||hxi
|| ; hxi

= N × bxi
, (4.15)

where N = [n1, n2, n3] is the matrix of vertex normals and bxi
= [αi, βi, 1−αi −

βi]
T is the vector of barycentric coordinates of xi. In the case of a diffuse surface,

the luminance attributed to xi is proportional to the cosine of the angle between
the surface normal nxi

at xi and the light direction L. So finding the brightest
and darkest points of a face boils down to finding the points with respectively
the smallest and biggest angle between the corresponding normal and light di-
rection. This task can be achieved by computing their barycentric coordinates as
explained below.

We first map the normals of all the points xi ∈ F and the light direction L onto
the unit sphere (Fig. 4.12). It is easy to prove that the set of normals of F forms a
spherical triangle on the unit sphere as the normals of each edge of F correspond
to a geodesic on the unit sphere. Let n̂xi

be the gnomonic projection of nxi
onto

the tangent plane of the unit sphere at the centroid of the spherical triangle (Fig.
4.12) and let L̂ be the projection of L. The gnomonic projection is especially useful
to our purposes since it projects geodesics to straight lines. In consequence, the
points n̂xi

determine a euclidean triangle F̂ in the tangent plane. This means that
finding the barycentric coordinates of the points with the smallest and biggest
angles between the normal and light direction can be achieved by computing
the barycentric coordinates of closest and farthest points between F̂ and L̂. For
xi ∈ F , the distance between corresponding n̂xi

and L̂ can be expressed as:

dxi
(α, β)2 = ||αn̂3n1 + βn̂3n2 + L̂n3||2 , (4.16)

where α, β are the barycentric coordinates of xi. The barycentric coordinates
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relative to the point with the highest and lowest luminance value can finally be
obtained by solving the following systems:

argmin {dxi
(α, β)}, α + β ≤ 1 and α, β ∈ [0, 1] ;

argmax {dxi
(α, β)}, α + β ≤ 1 and α, β ∈ [0, 1] .

(4.17)

A detailed description of the solution of Eq. (4.17) can be found in Appendix A.
Having computed the brightest and darkest points of a face, it is now possible to
evaluate its Michelson contrast. The contrast computed according to the method
described above is compatible with directional light sources. It is also possible
to extend this method to point light sources by assigning to each point xi ∈ F a
light direction according to:

lxi
=

gxi

||gxi
|| ; gxi

= xi − p = M × bxi
− p (4.18)

where lxi
is the light direction at xi, p is the light position, M = [v1,v2,v3] is the

matrix of vertex position and bxi
is vector of barycentric coordinates of xi. For the

same reason, the mapping of the light directions on the unit sphere will form a
spherical triangle as the light directions assigned to edges of the face correspond
to a geodesic and thus creating a euclidean triangle when projected to the tan-
gent plane. Finally, The distance between n̂xi

and l̂xi
on the tangent plane can be

evaluated as:

dxi
(α, β)2 = ||α(n̂3n1 − l̂3l1) + β(n̂3n2 − l̂3l2) + (l̂3n3)||2 . (4.19)

By solving Eq. (4.17) for the distance in Eq. (4.19) we can evaluate the Michelson
contrast for 3D models illuminated by a point light.

Mapping the vertex normals on the unit sphere, makes it easy to understand
how the shape of the surface affects the local contrast. As the curvature of the
surface increases, the area of the spherical triangle increases. This makes the con-
trast value attributed to that face be potentially high as for a certain light direction
the distance between the closest and farthest points on the triangle is most likely
to be large. It is important to also note that the presented method is capable of
adapting to simple rendering algorithms where the luminance is computed in a
per-pixel basis so that the contrast inside a face remains the dominant local con-
trast. For example, Fig. 4.13 shows the contrast computed on a 3D mesh rendered
with two different shadings: a regular smooth shading algorithm and a cell shad-
ing one. Notice how the contrast of the faces relative to the cell shaded rendering
of the 3D model is 0 except for the ones where a transition in luminance occurs.
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FIGURE 4.13: The Michelson contrast computed for each face of the Bimba model
for a regular smooth shading algorithm (left) and cell shading rendering (right).

This method is also independent from the normal evaluation algorithm used to
compute the normals of the vertices of the 3D model.

4.3.2 Regularity of the Visual Signal

The regularity of a visual pattern plays an important role in the ability of the
visual system to distinguish between two visible contrasts. The effects of the
visual regularity of a pattern on the contrast threshold can be explained by the
free-energy principle theory [FKH06, Fri10]. The brain can easily and successfully
predict the visual patterns of a regular stimulus while irregular visual stimuli are
difficult to be predicted [KP04, FDK09]. Based on this fact, we can relate the vi-
sual regularity to the prediction error of a visual pattern.

We propose a computational model that aims to predict the local contrast
value from the contrast information of its surrounding. The visual regularity
can then be estimated from the residue between the actual contrast value and the
predicted one. We suppose that the local contrast of a triangular face F , denoted
by c, can be estimated using a linear combination of the local contrast of the three
surrounding faces sharing an edge with F :

c′ = x1c1 + x2c2 + x3c3 , (4.20)

where c′ is the estimated contrast and c1, c2 and c3 are the contrast values of the
adjacent faces organized in a descending order. So in order to evaluate c′ we
must estimate the linear coefficients [x1, x2, x3]. This can be achieved by solving
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FIGURE 4.14: Visual regularity on the Lion-vase model.

the following linear system using the least square regression method:⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 c1,2 c1,3
...

ci,1 ci,2 ci,3
...

cn,1 cn,2 cn,3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣x1

x2

x3

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1
...
ci
...
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.21)

where ci is the contrast value of the ith face within a predefined neighborhood
centered at the current face F , ci,1, ci,2, ci,3 are the contrast values of the corre-
sponding adjacent faces and n is the total number of faces in the neighborhood.
In practice we have used a neighborhood of a size equivalent to 3.5 cpd which
corresponds to the most sensitive spatial frequency according to the contrast sen-
sitivity function in order to estimate the value of [x1, x2, x3] for each face. Finally
the visual regularity (closer to 0 means more regular) assigned to a face F is ob-
tained by computing the absolute difference between the actual contrast and the
estimated one:

r = |c− c′| . (4.22)

Figure 4.14 shows the visual regularity for the Lion-vase model. Notice how the
region containing the lion’s mane is considered as visually irregular while the
smooth face is visually regular.
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4.3.3 Spatial Frequency

In the case of a smooth-shaded model, the local visual stimulus consists of a lu-
minance patterns inside a triangular face. The frequency of this pattern is related
to the distance between its brightest and darkest points. These points can be ob-
tained using the method described in Section 4.3.1. Having computed the virtual
distance between the brightest and darkest points or a face, we now proceed sim-
ilarly to the case of flat-shaded models. First we apply the perceptive projection
to get the number of pixels corresponding to this distance and then apply Eqs.
(4.7) and (4.8) to obtain the frequency in cycles per degree.

Having defined local perceptual attributes for 3D models (contrast, frequency
and visual regularity), we now present our experimental study that aims to mea-
sure the contrast threshold required to detect a change in the geometry of the
mesh.

4.3.4 Experimental Study

In our second batch of psychophysical experiments, we measured the contrast
threshold relative to the displacement of a vertex in case of a smooth-shaded
environment. Compared with our previous experiments, we consider this time a
more complex CSF model that takes into account not only the spatial frequency
of the local stimulus but also the global luminance value of the rendered scene.
In addition, we extend the masking model to include the effects of the regularity
of a visual pattern on the contrast threshold.

4.3.4.1 Experimental Procedure

For these threshold measurements we have kept almost the same experimental
procedure used in our previous experiments as described in Section 4.2.3. Two
objects were displayed side by side on a screen, one of which exhibits a displaced
vertex or a series of displaced vertices. The subjects were instructed to answer by
Yes or No to whether the two objects on the screen appear identical. The magni-
tude of the vertex displacement was then adjusted after each response according
to the QUEST procedure [WP83]. The experiments took place in the same exper-
imental environment as the previous ones. 12 subjects took part in this series of
experiments. 4 of them have participated in the previous measurements. Also no
user interaction was allowed.
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16 cpd8 cpd2 cpd

FIGURE 4.15: Increasing the vertex density of the plane would increase the spatial
frequency of the visual stimulus.

4.3.4.2 Contrast Sensitivity

Visual Stimulus Similarly to the flat-shaded experiments, we measured the visi-
bility threshold relative to the contrast sensitivity using a regular plane (Fig. 4.15).
The difference this time is that we consider the effects of both spatial frequency
and global luminance on the contrast threshold. To do so, we alter the mesh
density to change the spatial frequency of the stimulus and we vary the lighting
conditions (light energy) to change the global luminance level of the scene. The
threshold was measured for 7 spatial frequencies (0.5, 2, 4, 5.66, 8, 11.3 and 16
cpd) and for 3 luminance levels (180, 110 and 33 cd/m2).
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FIGURE 4.16: Left: plot of the subjects’ mean sensitivity over each frequency and
luminance level. Right: plot of the 3D fit of Barten’s CSF model [Bar89].

Results The results of these experiments are shown in Fig. 4.16. The plot shows
a peak in sensitivity at around 3.5 cpd and a drop in sensitivity on either side
of the peak. Additionally we can see that there is a decrease in sensitivity for
low luminance while the sensitivity is relatively stable for a luminance level that
is above 100 cd/m2. The mean sensitivity over each frequency and luminance
was then fitted to Barten’s model [Bar89] which takes into consideration both the
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frequency and the luminance and is defined by:

csf(f, l) = A(l)fe−B(l)f
√
1 + ceB(l)f ,

A(l) = a0(1 + 0.7/l)a1

B(l) = b0(1 + 100/l)b1
(4.23)

with a0 = 125.42, a1 = 0.09, b0 = 0.343, b1 = 0.17 and c = 0.19.

4.3.4.3 Visual Masking

r = 10−4 r = 10−3 r = 0.02 r = 0.1 r = 0.2

FIGURE 4.17: Visual stimuli for measuring the visual masking threshold at differ-
ent visual regularity levels.

Visual Stimulus Measuring the threshold relative to the visual masking aspect
of the HVS requires a visual stimulus that exhibits a visible initial contrast (i.e.,
above the CSF value) and certain visual regularity. We then gradually increase
this initial contrast and measure the value needed to notice a change. Like previ-
ous experiments, we displace a series of vertices from a sphere approximated by
a subdivided icosahedron. The icosahedron is subdivided 3 times which makes
the contrast in each face visible for a human observer. By changing the light di-
rection we can control the initial contrast value and by adding uniform noise to
the sphere we can change its visual regularity (Fig. 4.17). We measure the mask-
ing threshold relative to 5 levels of visual regularity and 4 initial contrast values
for each regularity level.

Results The results of these experiments are shown in Fig. 4.18. The plot shows
the subjects’ mean threshold for each of the visual regularity levels and initial
contrast values. For the visible initial contrast whose normalized value is greater
than 1 (normalization means multiplying by the corresponding CSF value, see Eq.
(4.23)), the measured threshold lies close to an asymptote with a slope increasing
with the value of r. This means the less the human visual system is capable of
predicting the observed surface, the higher the slope of the asymptote. This result
is consistent with the analysis of Daly [Dal93] which relates the value of the slope
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FIGURE 4.18: Left: plot of the subjects’ mean threshold over each initial contrast
value and visual regularity value. Right: plot of the 3D fit of the contrast masking

model (Eq. (4.24)).

to the observer’s familiarity with the observed stimulus. It also agrees with the
observation that geometric distortions are more visible in smooth regions of the
mesh than in rough ones [Lav09]. In order to take into consideration the visual
regularity of a 3D mesh, we altered Daly’s visual masking model by mapping the
value of visual regularity to the value of the slope using an S-shaped psychomet-
ric function [Wei51], s(r):

masking(c̃, r) =

(
1 +

(
k1 · (k2 · c̃)s(r)

)b)1/b

,

s(r) = (1− δ)− (1− γ − δ) · e−10β(− log(r)−ε)

(4.24)

with c̃ the normalized contrast, r the visual regularity and the fitted values k1 =

0.015, k2 = 392.5, b = 4, γ = 0.63, δ = −0.23, β = −0.12 and ε = −3.5.

4.3.5 Contrast Threshold

With results of these psychophysical experiments, we can compute the contrast
threshold similarly to the case of flat-shaded rendering. However, since we have
carried out a more precise threshold measurement in the case of smooth-shaded
rendering mode by taking into account more parameters (luminance and visual
regularity), the computed threshold T is now a function of four variables:

T (c, f, l, r) =
masking(c · csf(f, l), r)

csf(f, l)
, (4.25)

where c is the original value of the local contrast, f the local frequency and l and
r correspond respectively to the global luminance of the scene and the regularity
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of the visual pattern. Estimating the visibility of a change in local contrast is
performed using Eq. (4.13). At first the change in contrast Δc (Eq. (4.14)) and the
contrast threshold T (Eqs. (4.23) and (4.24)) are evaluated. They are then passed
to a psychometric function which outputs the visibility probability.

4.4 Discussion

The results of this experimental study of the visibility threshold on 3D meshes
and the relation between the defined local perceptual attributes (contrast, fre-
quency and visual regularity) and the mesh properties (density, shape) can give
us some interesting insights about the behavior of this threshold. First from the
shape of the CSF and the relation between the mesh density and spatial frequency
we can deduce that a 3D mesh will become more sensitive to geometric distor-
tions when its density increases from a low value since it becomes easier for the
human visual system to detect them. However, if the density of the model passes
a certain value, then it becomes hard to detect the local geometric distortions be-
cause at high spatial frequencies the sensitivity of the visual system with respect
to contrast, decreases. This result is in part inline with previous observations
in computer graphics where it was noted that coarse mesh are better at hiding
compression artifacts than dense ones [SCOT03]. This low sensitivity for coarse
meshes will normally be located at curved coarse regions of a 3D mesh. This can
be explained by two factors. The first is that the low frequency stimuli caused by
the low density makes the human visual system less sensitive to contrast. The sec-
ond is due to the curved shape of the surface which will potentially be reflected
by high contrast values and thus create an important masking effect where a big
change in contrast would be needed to notice the difference. In addition, our re-
sults justify the relation between mesh roughness and noise visibility on which
most existing model-based methods are based. In fact, it is more likely to en-
counter complex visual pattern in rough regions which will increase the visibility
threshold due to the increasing slope of the masking function.

Moreover, while we have used Barten’s CSF mathematical model which is
quite popular in the image/video processing communities, the sensitivity values
and peak frequency positions that we have obtained are different from, for ex-
ample, the ones computed with Daly’s model [Dal93]. We think that is due to
fact that models used in image-based methods are usually fitted using data from
experiments where the visibility threshold is measured using a continuous sinu-
soidal signal. This is also in accordance with the observations of [CHM+12] in
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which the authors’ main objective is to test the efficiency of perceptual image-
based techniques in the case of computer generated images. They concluded that
image metrics are too sensitive for evaluating the visibility of computer graphics
distortions. This is probably due to the difference in the types of visual artifacts
caused by a geometric operation on the 3D mesh compared to the ones produced
by an image processing operation.

The defined perceptual attributes and the experimental study have allowed us
to propose a model whose goal is to compute the contrast visibility threshold.
However, this threshold does not reflect the amount of displacement a vertex can
tolerate but it rather indicates the maximum change in contrast a distortion can
cause before it becomes visible. In the next chapter we will present an algorithm
that will compute the vertex displacement threshold using the contrast visibility
threshold model presented in this chapter.





59

Chapter 5

Just Noticeable Distortion Profile

The just noticeable distortion (JND) profile refers to the threshold beyond which
a change in contrast becomes visible for the average observer [Lin06]. In the 3D
setting, the JND is evaluated by computing the maximum displacement each ver-
tex can tolerate. The displacement of a vertex in a given direction will probably
cause a change in the normals of adjacent faces and a change in local density.
This means that the displacement of a vertex probably alters the local perceptual
properties (contrast, frequency) which will become visible at some point. In this
chapter, we present a numerical method for computing the maximum displace-
ment beyond which the local vertex distortion can be detected by the average
human observer (Section 5.1). We then validate this computed threshold with a
series of subjective experiments (Section 5.2)

5.1 Vertex Displacement Threshold

5.1.1 Visibility of a Vertex Displacement

The displacement of a vertex v1 in a certain direction dir with a magnitude d

alters the normals of the faces belonging to its one-ring neighborhood (Fig. 5.1).
In addition, it will also cause a rotation in the normals of the vertices belonging to
the one-ring neighborhood of v1. As a result, if the 3D model is rendered in a flat-
shaded mode, then this displacement is likely to alter the contrast and frequency
of the surrounding pair of adjacent faces (Fig. 5.1.(b)). Similarly, in the case where
the model is rendered with a smooth-shading algorithm, this vertex displacement
also causes a change in contrast and frequency of faces that have at least one
vertex in the 1-ring neighborhood of v1 (Fig. 5.1.(c)). This alteration in the local
perceptual attributes of a 3D mesh might cause the vertex displacement to be
visible for a human observer.
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v1

v′1 v′1

(b) Flat shading (c) Smooth shading(a) Vertex displacement

dir

v′1

v3 v4

v2v1

FIGURE 5.1: (a) The displacement of a vertex v1 in a direction dir causes the nor-
mals of the surrounding 1-ring faces (highlighted in red) to rotate. (b) In the case
of a flat-shaded rendering, it will cause a change in contrast for surrounding pairs
of faces sharing a common edge in 1-ring and 2-ring of the displaced vertex. (c) In
the case of smooth-shaded rendering, it will cause a change in contrast in the faces

having a vertex in the 1-ring neighborhood of v1.

To estimate the visibility of a certain displacement, we start by evaluating the
new normals of each of the effected faces. For instance, we express the new nor-
mal n′

1 of the face {v1, v3, v2} (see Fig. 5.1.(a)) after displacing v1 in a direction dir

with a magnitude d by:

ñ′
1 = (v1 − v2)× (v3 − v2) + d · (dir× (v3 − v2)) ,

n′
1 =

ñ′
1

‖ ñ′
1 ‖ .

(5.1)

Since none of the vertices of the second face {v2, v3, v4} in Fig 5.1.(a) is displaced,
its normal direction does not change. We note that in the case of smooth shading,
an additional step is required which consists of computing the new normals of the
1-ring vertices using the new normals of the 1-ring faces. Having computed the
new normals we now evaluate the new contrast c′ using the methods described
in Sections 4.2.1 and 4.3.1 for respectively the set of affected face pairs in the
case of flat and the set of affected faces in the case of smooth shaded rendering.
The change in contrast Δci (Eq. (4.14)) along with the contrast threshold Ti is
evaluated for each of the affected elements using respectively Eqs. (4.12) and
(4.25) in the case of a flat or smooth shaded rendering. This change in contrast
and contrast threshold are then passed to a probability function (Eq. (4.13)) which
outputs the visibility likelihood for each affected element. The visibility of the
displacement of v1 in a direction dir with a magnitude d is then computed as:

visibility(v1,dir, d) = max{p(Δci, Ti)}, (5.2)
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where p(Δci, Ti) is the likelihood of detecting the change in contrast for the ith

affected pair of adjacent faces in the case of a flat shading or the ith affected face in
the case of smooth shading. Ultimately, the displacement of a vertex is considered
visible when the change in contrast in at least one of the elements affected by this
displacement becomes noticeable. In the following, we will describe an algorithm
that allows us to efficiently find the threshold beyond which the displacement of
a vertex becomes visible.

5.1.2 Evaluating the Vertex Displacement Threshold

In order to compute the threshold beyond which the displacement of a vertex
v in a direction dir is visible, we proceed by the following steps. First, a list
of the elements whose contrast is affected by the displacement is built (adjacent
pairs of faces in the case of flat shading and faces having a vertex in the 1-ring
neighborhood of v in the case of smooth shading). For each affected element,
we start by computing its original perceptual properties (contrast, frequency and
visual regularity) and the corresponding contrast threshold using Eq. (4.12) in
the case of flat shading and Eq. (4.25) in a smooth shading setting. Then we
gradually increase the displacement magnitude of v and compute its visibility as
described in Section 5.1.1. Note that when the displacement causes a change in
spatial frequencies (e.g., in the case of a displacement in the local tangent plane
of the vertex), we take into account the most sensitive frequency that results in a
higher detection probability. Finally, the threshold is attributed to the magnitude
where the vertex displacement visibility reaches a certain threshold. In practice
we set the probability threshold to 0.95. To better understand this process, let
us consider the two vertices v1 and v2 in Fig 5.2 in a flat shaded setting. Both
vertices are displaced in their normal direction. The first vertex v1 is situated on
a rough region (initial contrast of all surrounding pairs of adjacent faces > CSF
threshold) and the second vertex v2 on a smooth region (initial contrast < CSF
threshold). The displacement of v1 and v2 barely affects the spatial frequency of
the surrounding face pairs as can be seen in the plots of the first row. The plots in
the second row, show how displacing v1 and v2 in the normal direction affects the
local contrast. The probability of detecting this change in contrast is shown in the
plots in the third row. These plots show that v2 is more sensitive and can tolerate
less displacement than v1. This is due to the different initial contrasts of the two
vertices. The initial contrast around v1 is above the CSF threshold. This implies
that the visibility threshold is increased due to the masking effect, which explains
the slow increase in detection probability. For v2 all initial contrasts are below
the CSF threshold. No masking should occur which means that once the contrast
is above the CSF threshold the displacement should be visible. This is exactly
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FIGURE 5.2: The evolution of the local perceptual properties and visibility, for two
displaced vertices v1 and v2 on the Bimba model. Plots in the first row show the
change in frequency, middle ones show the change in contrast and the bottom ones
show the detection probability, of different pairs of affected adjacent faces of the
two vertices. Note that some of the faces have the same spatial frequency, so the

color curves overlap in the plots of the first row.

what we observe. When the contrast of "face pair 4" reaches the CSF level then the
detection probability becomes close to 1. For the case of smooth shading, the exact
same process is used to compute the displacement threshold. The only change in
this case resides in the method to compute the local perceptual properties and the
contrast threshold.

In the description above, we explain how to compute the displacement thresh-
old by brute-force incremental step searching only for clarity purposes. However,
it is important to note that as the vertex displacement increases, the contrast dif-
ference always increases as well. In addition, the psychometric function used to
compute the probability to detect a change in contrast (Eq. (4.13)) is a monotone
function. Therefore, in our implementation, we instead use a half-interval search
algorithm to find the threshold (as described in Algorithm 1), which is simple yet
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Algorithm 1: Half-interval search algorithm.
Data: v: vertex, dir: noise direction, l: light, th: visibility threshold, p: precision
Result: dist: displacement threshold

min = 0;
max = very_high_value;
dist = max;
visibility = compute_visibility(v, dir, l, dist);
while || visibility − th || > p do

dist = (max - min) / 2 + min;
visibility = compute_visibility(v, dir, l, dist);
if visibility > th then

max = dist;
else

min = dist;
end

end

very fast and accurate. In our tests we have set the visibility threshold th to 0.95,
the precision p to 0.005 and the parameter very_high_value to 1/10th of the mesh
bounding box.

Computing the displacement threshold requires an estimation of the spatial
frequency, the local contrast and the visual regularity. This makes the computed
displacement threshold capable of adapting to various display parameters. In
particular, size and resolution of the display as well as the observer’s distance to
the screen and the model’s distance to the viewpoint are inputs to the frequency
estimation operation. In addition, the scene’s illumination and the rendering
mode affect the local contrast of the model. However, in an interactive setting
where the light source is usually fixed relative to the viewpoint, the light direc-
tion varies with respect to the 3D mesh. It is therefore important to compute the
displacement threshold independently of the light direction. We hereby propose
a light independent mode for computing the displacement threshold.

5.1.2.1 Light Independent Mode

The algorithm presented in the previous section computes the vertex displace-
ment threshold for a given light direction. However, it is useful to compute the
displacement threshold independently from the light direction as in an interac-
tive setting, the light direction usually varies with respect to the 3D mesh. To
do so, we compute the threshold according to multiple light directions and then
choose the smallest one. The light independent threshold can then be seen as the
one corresponding to the worst possible illumination (i.e., the light direction that
makes the local vertex distortions the most visible).
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v

local light direction vertex displacement
(α, θ) threshold
(10, 85) 0.00195312
(10, 55) 0.003125
(10, 25) 0.0078125
(100, 85) 0.0015625
(100, 55) 0.00390625
(100, 25) 0.0069725
(190, 85) 0.00107422
(190, 55) 0.00234375
(190, 25) 0.0046875
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(280, 55) 0.0021875
(280, 25) 0.004375
(0, 0) 0.015625

FIGURE 5.3: The vertex displacement threshold in the normal direction of a vertex
v computed for different light directions.

The set of all possible light directions belongs to the local sphere around a ver-
tex. However, the local contrast is well defined when the dot product between
the light direction and the normals is positive since otherwise its value is 0. This
means that the set of all possible lights can be reduced to the local half sphere
in the direction of the unit normal. Furthermore, we can intuitively say that the
local contrast increases as the light direction gets close to the local tangent plane.
This means that if the light direction is close to the base of the local half sphere,
then a small displacement of a vertex will most likely cause a big change in con-
trast which might be visible. On the contrary, if the light direction is close to the
normal direction of the displaced vertex, then even a big vertex displacement can
only cause a small change in contrast which will make the displacement thresh-
old value high. Figure 5.3 shows the vertex displacement threshold obtained
from different light directions belonging to the half sphere of a vertex v. As pre-
viously explained, we notice that as the light direction approaches the base of the
half sphere, the threshold gets smaller. This implies that the worst possible illu-
mination is most of the time found near the base of the half sphere. Therefore, it
is actually not necessary to densely sample the half sphere in order to obtain an
accurate solution. It will be more efficient to concentrate the light samples near
the base of the local half sphere.

5.1.3 Results

By computing the vertex displacement threshold relative to a certain direction for
each vertex of a 3D mesh, we obtain the just noticeable distortion profile. Figure
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FIGURE 5.4: The vertex displacement profile for the Bimba model under different
circumstances. (a) and (b) show color map representing the displacement thresh-
old in a light-independent mode with respect to a displacement in the normal
direction and tangent plane respectively. (c) shows the displacement threshold

according to a displacement in the normal direction in a light dependant mode.

5.4 shows the JND profile for a mesh under various circumstances. Figure 5.4.(a)
displays the JND profile relative to a displacement in the normal direction in a
light independent mode. Due to the effects of contrast masking, the rough re-
gion of the model can tolerate more noise than the smooth part. This is not the
case when the JND is computed relative to a displacement in the tangent direc-
tion (Fig. 5.4.(b)) where the smooth part can tolerate more displacement. This is
because a displacement in the tangent plane for vertex in a smooth region will
barely alter the normal of the surrounding faces and thus the local contrast will
not be affected by the displacement, leading to a higher displacement threshold
than in a rough region. We note here that in the case of a displacement in the
tangent plane we make sure that the computed displacement threshold does not
cause an auto-intersection. Figure 5.4.(c) shows the JND profile relative to a dis-
placement in the normal direction when the light source is fixed at the viewpoint.
As expected, we can see that the obtained threshold is maximal when the surface
normals are in the same direction of the light as the contrast will increase slower
compared to when the light direction is close to the local tangent plane.

Figure 5.5 presents side by side the JND profile for the Bunny model in a
smooth shading mode and a flat shading mode. In general we have observed
that the displacement threshold relative to a smooth shading rendering is 5 to 10
times bigger than the one relative to a flat shading mode. This difference is due to
the way how the surface normals and contrast are computed in each mode. In a
flat shading mode, the contrast is computed using the normals of a pair of faces,
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FIGURE 5.5: The vertex displacement profile for the Bunny model in a smooth
shading mode (a) and flat shading mode (b).

while in a smooth shading the contrast is evaluated using the vertex normals
within a triangular face which reflects a smooth shading rendering. In general,
the displacement of a vertex causes a bigger rotation in the normal direction of
the faces adjacent to the displaced vertex in a flat shaded rendering, compared to
the rotation of normal direction of the vertices in the 1-ring neighborhood com-
puted in a smooth shaded rendering. In consequence, for the same displacement
magnitude, the change in contrast is higher in a flat shading mode compared to
a smooth shading mode which explains the lower visibility threshold for the for-
mer.

Figure 5.6 compares the vertex displacement threshold profile when the reso-
lution of the 3D model changes. In general, as the density of a triangular mesh
decreases the magnitude of the displacement a vertex that can tolerate, increases.
In a dense mesh, the triangular faces are small compared to the ones belonging
to a coarse mesh. As a result, rotation of the normals relative to a vertex dis-
placement of the same magnitude is higher for a dense mesh. This means that, in
general, as the displacement increases, the contrast varies slower in a low resolu-
tion mesh. In addition, the difference in density also affects the spatial frequency
of the visual stimulus which further affects the visibility of a vertex displacement.
As it can be deduced from the contrast sensitivity properties of the visual system
that are modeled by the CSF, when the density of a 3D mesh increases from a
low value it becomes easier for the visual system to detect the change in contrast
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FIGURE 5.6: The vertex displacement threshold computed with the proposed al-
gorithm is capable of adapting to the resolution of the 3D model.
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with low energy light
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FIGURE 5.7: In a smooth shading mode, the proposed threshold model takes into
consideration the energy of the light illuminating the scene. For a point light
source whose energy decreases proportionally to the square distance to the ob-
ject, the scene becomes darker as the light source becomes farther. This increases

the value of the displacement threshold.
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caused by the displacement of a vertex. Both of these reasons make the vertex
displacement threshold in high resolution models, in general, smaller than the
threshold in low resolution models.

Finally in Fig. 5.7 we show how the intensity of the scene’s illumination can
affect the vertex displacement threshold; in the case where a 3D scene is illumi-
nated with a point light whose energy decreases proportionally to the distance
between the light source and the illuminated object. So if an object is far from
the point light source (Fig. 5.7.(b)), the global luminance around that object is
reduced, which causes an increase of the magnitude of the vertex displacement
threshold. This boost in the value of the visibility threshold is mainly due to the
CSF, which describes a reduction in contrast sensitivity when the global lumi-
nance is low.

5.1.4 Performance Analysis

Here we present some information about the theoretical and practical results con-
cerning accuracy and the execution time of the vertex displacement threshold
computation.

5.1.4.1 Threshold Accuracy
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FIGURE 5.8: Effects of the number of light samples on the accuracy of the vertex
displacement threshold in a light independent mode.

In a light-independent mode, we compute the vertex displacement thresh-
old relative to several light directions sampled from a local half sphere around a
vertex. We have observed that the algorithm begins to converge to an accurate
displacement threshold value with 8 samples as it can be seen in Fig. 5.8, where
the root mean square error (RMS), computed with regard to the displacement
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threshold obtained with 64 light direction samples (shown in the leftmost corner
of each graph, starts to stabilize beyond this point. In practice, we have used
the 12-points sampling, similar to the one in Fig. 5.3 (excluding the point (0, 0)),
which ensures a very good trade-off between threshold accuracy and algorithm
speed according to our tests.

5.1.4.2 Theoretical Computational Complexity

A theoretical analysis of the proposed algorithm for computing the vertex dis-
placement threshold shows that the complexity of computing the light independent-
mode for one vertex is equivalent to:

O

(
L× log

(
xmax

xprecision

))
, (5.3)

where L is the number of light samples and xmax and xprecision are respectively
the upper displacement bound and the precision used in the half-interval search
algorithm (Algorithm 1 of this chapter). This means that the complexity for com-
puting this threshold for an entire mesh is:

O

(
V × L× log

(
xmax

xprecision

))
, (5.4)

where V is the number of vertices. This shows that the execution time increases
linearly with the number of vertices at a rate relative to the number of light sam-
ples and the precision of the search procedure.

5.1.4.3 Execution Time

Having adopted a half-interval search algorithm makes finding the JND thresh-
old a very efficient operation. On average computing the vertex displacement
threshold for a vertex in the light independent mode takes about 7 × 10−4 s. We
have used an HP EliteBook 8570w with an i7-37400QM cpu (4 cores / 8 threads)
and 16GB of RAM in our computation. As suggested by Eq. (5.4), when the num-
ber of vertices or light samples increases, we have observed that the execution
time increases approximately in a linear way (Fig. 5.9). Figure 5.9 also shows that
the computation of the vertex displacement threshold for a flat-shaded rendering
is faster than a smooth-shaded one. For instance, for a model with approximately
200k vertices the computation of the vertex displacement threshold on the entire
mesh took about 50s in a flat shading mode and about 95s in a smooth shading
mode. This difference in computation time is due to the different normal update
after each displacement iteration. In the case of a flat shading mode, the update
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FIGURE 5.9: Vertex displacement threshold execution time.

of the normal direction of the 1-ring adjacent faces is straightforward, using Eq.
(5.1). However, in a smooth shading mode, the normal update operation requires
an additional step which consists of evaluating the normals of the vertices in the
1-ring neighborhood. In addition, since the computed displacement threshold of
a vertex is independent from the threshold of other vertices then this operation
can be computed on the entire mesh in a parallel way (with respect to each ver-
tex). Using OpenMP and 8 threads, the algorithm performs about three to five
times faster. For a model with 237k vertices, the vertex displacement threshold
can be computed in about 18s instead of 52s.

5.2 Subjective Validation

In order to test the performance of a Just Noticeable Distortion profile, it is com-
mon in the image or video JND context to perform a subjective experiment where
the visibility of a JND modulated random noise added to a series of images or
videos is rated by several subjects [LLP+10, ZCZ+11, WSL+13]. A JND model
should be able to maximize the amount of noise injected into the image or video
while keeping it invisible; the best JND model being the one that is able to add
the largest amount of invisible noise. We have conducted a series of subjective
experiments where we have tested the performance of the proposed JND model
in the flat and smooth shaded settings. We have compared the visibility and the
quantity of vertex noise on altered 3D meshes, which were obtained by modulat-
ing the vertex noise in three different ways. The three types of noise modulation
are:
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• uniform random noise, i.e., without any modulation;
• random noise modulated by the surface roughness;
• random noise modulated by the proposed JND model.

Surface roughness is an important candidate to test our JND model against since
it is accepted in the computer graphics community that noise is less visible in
rough regions [Lav09]. As discussed in the previous chapter, this observation can
also be justified through the results of our experimental study.

5.2.1 Mesh Alteration

We injected noise into 3D meshes according to the following equation:

v
′
i = vi + rnd×M (vi)× diri, (5.5)

where vi is the ith vertex of the initial mesh and v
′
i is the corresponding noisy

vertex. dir is the noise direction. rnd is a random value equal to either +1 or −1

and M (vi) represents the magnitude of the noise for vi. It is defined as:

M (vi) =

⎧⎪⎪⎨⎪⎪⎩
βunif uniform noise,

βrough × lr (vi) roughness modulated noise,

βjnd × jnd (vi) JND modulated noise,

(5.6)

where βunif , βrough and βjnd regulate the global noise energy for each of the noise
injection methods. lr (vi) is the local surface roughness as defined in [WTM12]
and jnd (vi) is the JND value computed as explained in Section 5.1. In order to
allow user interaction during the experiments, the JND value was computed in-
dependently from any light direction. It is important to note that in the case of
a JND modulated noise, the value βjnd of the global noise energy value should
have some implication on the visibility of the injected noise. Therefore, if βjnd > 1

the injected noise onto the 3D mesh should be visible, while if βjnd < 1 the noise
should remain undetected by the human observer. The following mesh models
were used in our experiments:

• Bimba is a coarse model with a smooth and a rough part;
• Horse is a smooth model with a varying vertex density. Its head is densely

sampled while its body is coarse.
• Lion-vase is a dense model with a mix of smooth and rough surfaces.
• Venus is a dense model with a smooth surface.
• Dinosaur is a dense model with a rough surface.
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5.2.2 Validation of Flat-Shaded Vertex Displacement Threshold

Inspired by the literature on validation of image JND profiles, we have performed
two subjective experiments whose goal is to test the accuracy of the computed
vertex displacement threshold in the flat-shaded setting.

5.2.2.1 Experiment 1

The goal of the first experiment is to rate the visibility of noise on 3D models ac-
cording to several noise modulation types and two global energy levels (βjnd = 1

and βjnd = 2). These levels correspond to a near-threshold noise and to a supra-
threshold noise, respectively. For βjnd = 1 the injected noise is supposed to be
difficult to notice while for βjnd = 2 the noise is expected to be visible. We then fix
βunif and βrough such that for the meshes altered using our JND model, the max-
imum root mean square error (MRMS) [CRS98, ASCE02], a widely used purely
geometric distance, is the biggest for each noise level. Indeed, the objective here is
to show that our JND model is able to inject the highest amount of noise onto the
mesh among the three methods, while producing the least visible one. In addi-
tion, we tested the performance of the JND model for noise in a random direction
for each vertex and that in the normal direction for each vertex. To see the effects
of light direction we ran the experiment twice: once with the light source in front
of the model and another time with the light on top left of the model.

Experimental Protocol The first subjective experiment followed the adjectival cat-
egorical judgement method [Int12]. This procedure consists of displaying two 3D
meshes side by side, the reference on the left and the noisy one on the right. The
participants were asked to rate the visibility of the noise on a discrete scale from
0 to 5, 0 being the score attributed when the noise cannot be seen and 5 when
the noise is clearly visible. 5 "dummy" models were included at the beginning of
each session to stabilize subjective scores. The models were presented in a ran-
domized order. To avoid any memory-based bias, two meshes derived from the
same reference model were never displayed consecutively.

The experiment was conducted in a low illuminated environment. We used
a 23-inch Asus screen with a 1920 × 1080 resolution to display the 3D models.
The participants viewed the models from a distance of 50 cm. During the ex-
periment, the two displayed meshes had a synchronized viewpoint and subjects
could freely rotate around the displayed meshes. To encourage close examination
of the displayed mesh, no score could be registered before 10 seconds of interac-
tion occur. The initial viewpoint was manually set for all models. The light source



5.2. Subjective Validation 73

Noise in normal direction

Noise in random direction

0 1 2 3 4

x 10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MRMS

M
ea

n 
Su

bj
ec

tiv
e 

Sc
or

e

(a)

0 1 2 3 4

x 10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MRMS
M

ea
n

Su
bj

ec
tiv

e
Sc

or
e

(b)

Front Light
Top Left Light

JND1 JND2 Rough1Rough2 Unif1 Unif2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
ea

n 
Su

bj
ec

tiv
e 

Sc
or

e

(c)

Bimba
Horse
Venus
Lion
Dino

JND1

Unif1

Unif2
Rough2

Rough1

JND2

JND1

Unif1

Unif2
Rough2

Rough1

JND2

0 1 2 3 4

x 10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MRMS

M
ea

n 
Su

bj
ec

tiv
e 

Sc
or

e

(d)

1 2 3 4

x 10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MRMS

M
ea

n 
Su

bj
ec

tiv
e 

Sc
or

es

(e)

Front Light
Top Left Light

JND1 JND2 Rough1Rough2 Unif1 Unif2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
ea

n 
Su

bj
ec

tiv
e 

Sc
or

e

(f)

Bimba
Horse
Venus
Lion
Dino

JND1

Unif1

Unif2
Rough2

Rough1 JND2

JND1

Unif1

Unif2
Rough2

Rough1 JND2

FIGURE 5.10: Mean subjective score values versus MRMS distance values. Plots
(a) and (d) present, for different noise injections, the mean subjective scores over
all test models and the two illumination settings. Plots (b) and (e) show the dif-
ference in mean subjective scores between the experiments in the two illumination
settings. Plots (c) and (f) compare the mean subjective scores for the different mod-

els used in the experiments.

was fixed with reference to the camera position. A front and a top-left light direc-
tions were used. 12 subjects participated in these experiments. All of them had
normal or corrected-to-normal vision and were between the age of 20 and 29.

Results After collecting the subjective scores, we have computed the mean score
over each of the noise types. "JND 1" and "JND 2" refer to the models obtained by
modulating the random noise with our JND model for near-threshold and supra-
threshold levels, respectively. "Rough 1" and "Rough 2" refer to the ones obtained
using the surface roughness measure and "Unif 1" and "Unif 2" to the ones with
uniform random noise. Figure 5.10 displays the results of the subjective experi-
ments. Plots (a) to (c) present the results for the noise in the normal direction and
plots (d) to (e) the results for the noise in a random direction. Figures 5.10(a) and
5.10(d) show that the noise on the "JND 1" models was indeed difficult to detect
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as the mean subjective score is about 0.45. Interestingly, the participants rated
"Unif 1" and "Rough 1" models similarly to "JND 2" which refers to the supra-
threshold noise level models that contain approximately twice the noise of "Unif
1" and "Rough 1". Plots (b) and (e) also show that "JND 1" models were perceived
almost identically under both front and top-left illumination conditions. This is
not the case for "Unif 1" and "Rough 1" models where the grazing light direction
of the top-left illumination made the noise more apparent. It is also important to
note that the visibility of the noise for "JND 1" models was almost identical for
all models. This is not the case for "Rough 1" and "Unif 1" where the visibility
of noise varied a lot for different models (see Figs. 5.10(c) and 5.10(f)). This is
mainly due to the difference in mesh density between the models; high density
models are in general more sensitive to noise than low density ones.

These results show that the proposed JND model is indeed able to add the
largest amount of invisible noise onto the mesh surface among the three meth-
ods. Furthermore, the proposed JND model can accurately predict the visibility
threshold for 3D meshes, taking into account the noise direction, the mesh char-
acteristics and the scene illumination. However, the proposed model cannot ac-
curately describe how the supra-threshold noise visibility (or annoyance) is per-
ceived since it has not been designed for this purpose; the noise was perceived
differently for each model in "JND 2" (Figs. 5.10(c) and (f)).

5.2.2.2 Experiment 2

The first experiment showed that the models with a JND modulated noise were
rated the lowest on the visibility scale and could tolerate the biggest amount of
distortions. In the following experiment we measure the global noise energy
threshold beyond which the injected noise becomes visible for a 3D model. The
idea behind this experiment is to find the minimum noise intensity (βunif , βrough

and βjnd) starting from which the participants notice the noise in the model and
then compare their respective MRMS value. The JND modulated noise should
have the highest amount of geometric distortion which is an indication that the
proposed JND model is capable of effectively hiding a large amount of noise.

Experimental Protocol For this second experiment, we have adapted the same
experimental procedure that we have used to measure the local contrast thresh-
old in the studies of contrast sensitivity and visual masking (see Chapter 4). Two
models were displayed on the screen, one of which has noise injected. The sub-
jects had to answer by either Yes or No whether they saw the noise on one of the
model. The intensity of the noise (βunif , βrough and βjnd) is then adjusted using the
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Models Lion Bimba Horse Dino Venus
βjnd (flat shading) 0.95 0.82 0.93 1.35 0.88

TABLE 5.1: Global noise energy value relative to JND modulated noise (βjnd) in a
flat shading setting.
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FIGURE 5.11: Plot of the MRMS induced by noise injection for three different types
of noise at the same visibility level (under flat shading).

QUEST procedure [WP83]. The subjects were allowed to interact with the dis-
played models by rotating the camera around them. 5 new subjects participated
in the experiment.

Results Table 5.1 and Fig. 5.11 display the results of this subjective experiment.
Table 5.1 shows the mean measured intensity required to make JND modulated
noise visible on a 3D mesh. We see that the measured βjnd is close to 1 for all of
the models, meaning that the proposed JND profile is able to accurately detect
the threshold beyond which a noise is visible. Figure 5.11 shows that the MRMS
value of the mesh model with JND modulated noise of just noticeable level is
higher than those of the corresponding models with uniform noise or roughness
modulated noise at the same visibility level. This means that the JND model is
able to tolerate the highest amount of noise among the three candidates, which is
what we expected.

5.2.3 Validation of Smooth-Shaded Vertex Displacement Threshold

In order to test the accuracy of the computed vertex displacement threshold in
the smooth-shading setting, we have performed a subjective experiment similar
to the second one for the flat-shading setting presented in Section 5.2.2.2. The goal
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Models Lion Bimba Horse Dino Venus
βjnd (directional light) 0.87 0.91 1.06 1.15 1.09

βjnd (point light) 0.91 0.89 0.97 1.11 1.05

TABLE 5.2: Global noise energy value relative to JND modulated noise (βjnd) in a
smooth shading setting.
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FIGURE 5.12: Plot of the MRMS induced by noise injection for three different types
of noise at the same visibility level (under smooth shading).

here is to measure the global noise energy threshold beyond which the injected
noise becomes visible on the 3D model.

Experimental Protocol We have followed the same protocol as described in Sec-
tion 5.2.2.2. 12 new subjects participated in the experiment. The experiment was
carried out with two lighting conditions: front directional light and front point
light whose energy decreases proportionally to the square of the distance to the
model.

Results Table 5.2 and Fig. 5.12 show the results of this subjective experiment. It
is important to note that the value of the global noise intensity relative to the JND
(βjnd) is on average close to 1 for both types of illumination which indicates that
the perceptual model was able to accurately predict the vertex displacement and
adapt to the change in illumination conditions. Additionally, plots (a) and (b) in
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Fig. 5.12 show the MRMS (maximum root mean square error [CRS98]) value of
each model for the three noise intensity types. In all cases, the JND modulated
models have the highest MRMS value indicating that our perceptual model is
able to inject the highest amount of tolerable noise into the meshes. In addition,
we point out that the models illuminated with the point light can tolerate more
noise than the ones illuminated with the high energy directional one since the
far distance of the point light will reduce the global luminance of the scene and
thus reduces the sensitivity to contrast. We also note that the MRMS value of the
models relative to the measured global energy threshold is higher when using a
smooth-shaded rendering mode than under a flat-shaded rendering mode. The
reason is that the change in contrast relative to the displacement magnitude in-
creases slower for smooth-shaded surfaces. On average we have observed that
smooth-shaded surfaces can tolerate 5 to 10 times (depending on the mesh’s prop-
erties) more displacement noise than flat-shaded ones.

5.2.4 Further Comparisons and Examples

The series of subjective experiments that we have performed have shown that
the proposed vertex displacement threshold algorithm is capable of accurately
finding the maximum displacement magnitude a vertex can tolerate. This allows
our perceptual JND model to inject the largest amount of tolerable noise onto
a 3D mesh compared to modulating the vertex displacement magnitude with
surface roughness or having a uniform displacement magnitude. The main ad-
vantage that our proposed JND model has over surface roughness measures is
that it adapts to the mesh characteristics (density, size), the noise direction and
the scene illumination. Figure 5.13 illustrates the visibility of vertex noise for
three versions of a 3D model with the same RMS value and injected with re-
spectively a JND modulated noise, a roughness modulated noise and a uniform
noise in a smooth shaded setting and flat shaded setting. In the case of the Venus
model (Fig. 5.13.(a)), a roughness modulated noise will concentrate the vertex
distortions in the rough parts of the model and neglects its smooth parts, while
a uniform noise will blindly displace all the vertices of the model with the same
amount making it visible in the smooth areas at first. On the other hand the
JND model will take advantage of all the vertices of the 3D mesh by adapting
the magnitude of a vertex displacement to the local perceptual properties of this
vertex and thus allowing a greater quantity of invisible noise to be added. The
Horse (Fig. 5.13.(b)) is a model with mostly smooth regions, the rough regions
are packed in the head’s features. In addition, the head is densely sampled while
the body is coarsely sampled. The JND model avoids adding noise in the dense
head and takes advantage of the coarse body, while surface roughness measures
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(a) Venus (smooth shading)

(b) Horse (flat shading)

reference JND modulated roughness modulated uniform noise
noise noise

FIGURE 5.13: The visibility of vertex noise in three models having the same RMS
value and injected with respectively a JND modulated noise, roughness modu-
lated noise and uniform noise in smooth (for Venus) and flat shading (for Horse).

are not able to detect the difference in sampling. The noise is thus rather injected
in the dense head features, which makes it visible. By changing the perceptual
model used to compute the contrast threshold (Eqs. (4.12) and (4.25)) the com-
puted vertex displacement threshold can adapt to either a flat shaded rendering
or a smooth shaded rendering. For instance in Fig. 5.14, the vertex displace-
ment threshold computed for smooth shaded mode will cause the JND modu-
lated noise to be extremely visible if rendered with a flat shading algorithm. As
we mentioned earlier, a 3D model rendered with a smooth shading method is ca-
pable of tolerating up to 10 times the amount of noise compared to a flat shading
rendering.
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(a) (b) (c)

FIGURE 5.14: (a) JND modulated noise computed for a smooth shaded mode
added to the Bimba model and rendered in smooth shading. (b) JND modulated
noise computed for a smooth shaded mode added to the Bimba model and ren-
dered in flat shading. (c) JND modulated noise computed for a flat shaded mode

added to the Bimba model and rendered in flat shading.

5.3 Discussion

5.3.1 Computing the Vertex Displacement Threshold for an Interactive Scene

In an interactive scene, the user can manipulate the model displayed on the
screen. Therefore, the light direction and position of the model are susceptible to
be changed over the course of the viewing session. Changing the light direction
will change the local contrast. In addition, changing the position of the model can
lead to a change in either local contrast or local spatial frequency. If the light is
fixed relative to the view point and the model is rotated or translated according
to the X and Y axis of the view frame, i.e., distance from camera is not changed,
then this will cause a change in the angles between the surface normal and the
light direction. This is the same as fixing the model and changing the light di-
rection and therefore causes a change in contrast. If the model is being scaled or
translated according to the Z axis of the view frame, i.e., distance from camera is
changed, then this will cause a change in the perceived spatial frequency as size
of the visual stimulus is altered. Regardless of the situation, a varying local con-
trast and/or local spatial frequency would change the threshold beyond which a
displacement becomes visible.

First, to account for the change in contrast which is caused by changing the
light direction with respect to the surface normal, either by fixing the light and
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(a) reference (c) light independent JND(b) light dependent JND

FIGURE 5.15: A vertex noise equivalent to the JND level computed in a light de-
pendant mode might become visible when the light direction is altered between

the two rows. This is not the case for light independent JND.

changing the model’s position or by fixing the model and changing the light di-
rection, we compute the JND profile in the light independent mode. As explained
in Section 5.1.2.1, this is done by computing the displacement threshold from a
number of light directions sampled from a hemi-sphere around the local vertex
and then choosing the lowest displacement value. The idea here is that the light
independent threshold corresponds to the one relative to the "worst possible"
light configuration. Figure 5.15 shows the Venus model injected with a vertex
noise equivalent to the JND level computed with a light dependent and light in-
dependent mode. Notice how the noise relative to the light independent thresh-
old remains invisible while the one related to the light dependent mode becomes
visible when the light changed from a front direction (first row) to a top-right one
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(a) reference (b) vertex noise relative
to a JND computed according

to the most sensitive frequency

(c) vertex noise relative
to a distance dependent JND

FIGURE 5.16: A vertex noise equivalent to the JND computed according to (b) the
most sensitive frequency and (c) a certain fixed distance (that of the first row).

(second row).

Second, if in the interactive session the user is allowed to change the distance
between the view point and the object by either changing the view distance or
scaling the model, then the perceived spatial frequency is affected. Similarly to
the first case, computing a threshold that works with any distance boils down to
computing a threshold that works with the worst distance. Since a change in dis-
tance (or scale) affects only the spatial frequency then computing the JND relative
to the worst possible frequency results in a threshold that is adaptive to various
distances (or scales). This worst possible frequency is the one corresponding to
the peak of the CSF curve since it is by definition the most sensitive frequency
(i.e., the frequency with the lowest visibility threshold). According to our experi-
mental study we have found that the CSF peaks at around 3.5 cpd under smooth
shading. Figure 5.16 shows the Venus model injected with a vertex noise at the
JND threshold level computed according to the most sensitive frequency and that
of a JND under a certain fixed distance. The Venus model is a dense mesh, there-
fore the frequencies relative to the first row of Fig. 5.16 are high (≈10 cpd). As the
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camera approaches the model, the size of the visual stimuli becomes bigger and
therefore the frequency decreases. This means that as the model becomes closer
to the camera, the frequency becomes more sensitive (according to the CSF) and
thus should reduce the value of the visibility threshold. Indeed, when injecting
in the model a vertex noise relative to a JND computed according to the original
distance, it becomes visible when zooming in on the model (see Fig. 5.16.(c)). On
the contrary, when computing the JND according to the most sensitive frequency,
the noise remains invisible regardless of the distance since it has already been
taken into account as the worst possible distance (see Fig. 5.16.(b)).

5.3.2 Comparison with an Image-Based Method: HDR-VDP2 [MKRH11]

In this section we compare the proposed vertex displacement threshold method
to the HDR-VDP2 [MKRH11] image-based method. HDR-VDP2 is a popular per-
ceptual metric that extends Daly’s VDP to HDR images and its code is freely
available at http://hdrvdp.sourceforge.net/wiki/. Figure 5.17 shows
the visibility map given by the HDR-VPD2 method when comparing images
of a reference Lion model with a distorted one from various viewpoints. The
distorted model was obtained by injecting in the Lion model a vertex displace-
ment noise that is below the threshold given by our method. To be more precise,
the noise was injected according to the method described in Section 5.2.1 of this
manuscript with βjnd = 0.85. Therefore, according to our method the injected
noise should be invisible which is the case if we visually compare the first two
rows of Fig. 5.17. However, when looking at the visibility map given by the
HDRVDP2 method we notice that the distortion visibility is particularly exag-
gerated in the rough regions of the Lion model. This exaggeration of distortion
visibility on surface regions with high roughness and curvature can be attributed
to a possible limitation of image-based approaches for estimating the visibility. A
local geometric distortion will change the geometry of the object which will be
reflected in a slight change of pixel positions in addition to the change in con-
trast. This change in pixel positions is considerable when the surface is curved
because it can cause a local displacement of pixels without changing the global
shape. Since in image-based methods, the perceptual analysis is in general done
in a per-pixel basis, then these local pixel displacements caused by the geometric
distortions are detected to be of high amplitude, leading to an exaggeration in vis-
ibility. Furthermore, image-based methods such as HDRVDP2 have an intrinsic
limitation compared to our method, i.e., for image-based methods it is necessary
to generate the rendered 2D image before applying any perceptual analysis. This
will ultimately make the integration of these methods in geometric operations a
more complicated task and such methods also mix the visual effects of geometric
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FIGURE 5.17: The HDR-VDP2 visibility map for a distorted Lion model whose
noise is below the JND threshold.
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distortions with rendering noise. Therefore we think that image-based methods
are more suited for evaluating and/or guiding rendering algorithms rather than
geometric operations.

5.4 Summary

In this chapter we have presented an algorithm that uses the perceptual model
presented in Chapter 4 in order to compute the maximum displacement a ver-
tex can tolerate before becoming visible. This algorithm takes as parameters the
display setting (i.e., screen resolution, size and brightness), the scene’s illumi-
nation and the rendering method (flat or smooth shading). This computed ver-
tex displacement threshold, therefore, adapts to these various parameters. As
demonstrated in our subjective validations, the proposed perceptual model can
effectively guide the injection of vertex noise into the 3D mesh while keeping it
invisible at the same time. This can have a direct application in the case of 3D
watermarking and geometric compression algorithms (e.g., vertex coordinates
quantization) as their corresponding performance usually relies on the degree
of tolerable change in vertex coordinates. In the following chapter we showcase
how the vertex displacement threshold and the proposed perceptual models can
be integrated into various mesh processing operations. More precisely, we use
the computed vertex displacement threshold to detect the optimal vertex quanti-
zation level for a certain mesh, guide simplification process and we finally use the
perceptual models, i.e., the CSF, to perform an adaptive subdivision on a coarse
3D model.
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Chapter 6

Applications

The JND models of 2D images and videos have been used extensively through-
out the literature to guide and perceptually optimize several image and video
processing algorithms [CL95, LKW06, WN09]. In this chapter, we show how the
proposed JND profile as well as the perceptual models can be integrated to sev-
eral mesh processing algorithms. First, we use the JND profile to compare the
global visibility of the geometric distortions caused by a vertex coordinate quanti-
zation operation and then use this comparison to automatically select the optimal
vertex coordinates quantization level for a given mesh. Second, we use the com-
puted vertex displacement threshold to guide the simplification of 3D meshes.
Finally, we integrate the CSF model into an adaptive mesh subdivision pipeline.

6.1 Automatic Selection of Optimal Vertex Quantization Level

Vertex coordinates quantization is an important step in many mesh processing
algorithms, especially in the case of 3D mesh compression. This operation in-
troduces geometric distortions onto the original mesh that might be visible to a
human observer. It would thus be useful to evaluate whether a vertex quantiza-
tion noise is visible or not. This would allow us to find the optimal quantization
level (in bits per coordinate, bpc) for any mesh. We consider the optimal quan-
tization level to be the one with the lowest bpc, i.e., having the highest noise
engergy for which the quantization noise remains visible. The quantization noise
should remain invisible and therefore the distorted mesh should remain visually
indistinguishable from the original one. It is important to note that the optimal
quantization level is different for each mesh due to the differences in geometric
complexities, details and density.

The proposed JND model can provide a simple and automatic way to deter-
mine the optimal quantization level. The idea is to compute a global score which
compares the model’s JND profile to the magnitude of introduced noise. To do so,
we start by computing the local displacement vectors caused by the quantization
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FIGURE 6.1: The perceptual score versus the quantization levels (in bpc) of three
models rendered in (a) smooth shading and (b) flat shading. (c) shows the effects
of the model resolution, object distance and light energy on the perceptual score

of the Feline model when rendered in smooth shading.

operation as:
di = v

′
i − vi, (6.1)

where v
′
i and vi are the ith vertices of respectively the distorted mesh and the

original one. The direction of di represents the noise direction relative to the ith

vertex. We then compute the JND profile of the original mesh with respect to the
computed displacement direction at each vertex. This allows us to evaluate the
visibility of the vertex displacement by comparing its magnitude to the computed
displacement threshold as follow:

ri =
||di||

jnd
(
vi,

di

||di||

) , (6.2)

where jnd
(
vi,

di

||di||

)
represents the vertex displacement threshold of vi in the di-

rection of the local noise displacement, di. Finally, we aggregate the local ratio
values into a global visibility score using a Minkowski pooling technique as:

S =

(
1

n

n∑
i=1

rpi

)(1/p)

, (6.3)

where n is the number of vertices in the mesh and p = 2 is the Minkowski power.
This score allows us to test whether the distortion introduced by the vertex quan-
tization operation is globally visible. If S ≤ 1, the noise magnitude is globally
below the visibility threshold, which means that the distortion is not visible. On
the contrary if S > 1, the distortion becomes visible as the noise magnitude is in
general above the visibility threshold. The optimal quantization level would cor-
respond to the one with the lowest bpc where the global visibility score is below 1.
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10 bpc9 bpc 11 bpc

11 bpc10 bpc 12 bpc

12 bpc11 bpc 13 bpc

FIGURE 6.2: Quantized meshes with different quantization levels in a smooth
shading setting. The middle column corresponds to the optimal quantization level
(12, 11 and 10 bpc for respectively Feline, Rabbit and Lion). For better comparison

between the models please refer to the electronic version of this manuscript.
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12 bpc11 bpc 13 bpc

12 bpc11 bpc 13bpc

13 bpc12 bpc 14 bpc

FIGURE 6.3: Quantized meshes with different quantization levels in a flat shading
setting. The middle column corresponds to the optimal quantization level (13,
12 and 12 bpc for respectively Feline, Rabbit and Lion). For better comparison

between the models please refer to the electronic version of this manuscript.
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(b) 11 bpc - low light (c) 11 bpc - distant view point(a) 11 bpc

FIGURE 6.4: The high-resolution Feline model with an 11 bpc quantization level
under different circumstances.

Figure 6.1 shows the global perceptual score versus the level of coordinates
quantization for three meshes. According to the defined score the optimal quan-
tization level is 10 bpc for the Lion model, 11 for the Rabbit model and 12 for the
Feline model when rendered with a smooth shading algorithm. When the models
are displayed with a flat shading algorithm the optimal quantization level, com-
puted with the JND in flat shading mode, is 13 bpc for the Feline model and 12
bpc for the Rabbit and Lion models. This shows how our proposed JND profile
can adapt to the shading algorithm as the optimal quantization level will adjust
accordingly. In general, the higher optimal quantization level for the smooth
shading algorithm indicates that it is less sensitive to vertex noise than flat shad-
ing rendering. This is consistent with the results of our subjective experiments
where we noted that the vertex displacement threshold was higher for smooth
shading than for flat shading (see Section 5.2). These results are compatible with
the human observations as shown in Figs. 6.2, 6.3. In addition, the proposed
global perceptual score can adapt to different circumstances of mesh usage such
as view distance, light energy and mesh resolution (Fig. 6.4 (c)). By reducing the
resolution of the Feline model, the optimal quantization level goes down from 12
bpc to 9 bpc while a distant view or low energy light makes the optimal quan-
tization level become 11 bpc. By contrast, we cannot obtain all these results by
thresholding the output of state-of-the-art mesh perceptual metrics used in com-
puter graphics such as MSDM2 [Lav11] and HDR-VDP2 [MKRH11] (Fig. 6.5). In
particular, the output of MSDM2 remains the same under different light energies,
viewing distances and renderings (flat or smooth shading) as it relies entirely on
geometric attributes in its perceptual analysis. As for HDR-VDP2, its score is ex-
aggerated for low-resolution meshes indicating that it was not able to accurately
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FIGURE 6.5: (a) The MSDM2 and (b) the HDR-VDP2 score versus the quantization
levels (in bpc) in a smooth shading setting.

adapt to the change in mesh density. This is probably due to the fixed pixel win-
dow width used to perform the perceptual analysis, suggesting that the visibility
of all distortions are evaluated relative to nearly the same spatial frequency. This
is usually not necessarily the case in a 3D mesh where the vertex density might be
variable and thus leading to the presence of visual distortions of different spatial
frequencies.

6.2 JND Driven Mesh Simplification

The goal of mesh simplification algorithms is to reduce the number of vertices in a
mesh to a certain degree by iteratively applying a simplification step (often via an
edge collapse or vertex removal operation). Mesh simplification is usually used
to efficiently display highly detailed models or to create multiple levels of details
(LOD) of a mesh. Therefore it is required that the simplified mesh preserves the
geometric features of the model as much as possible. To do so, most simplifica-
tion methods tries to simplify the less important regions, i.e., the ones with no
geometric features, more often than the ones containing the geometric details.
More specifically, a popular class of mesh simplification algorithms achieves this
by the steps described below:

1. compute a simplification cost for each of the mesh edges (or vertices). This
cost indicates whether a certain edge (or vertex) should be removed or not.

2. apply the simplification step, i.e., edge collapse, to the edge with the lowest
cost.

3. update the simplification cost.
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FIGURE 6.6: If v1v2 and v′
1v

′
2 are in opposite directions, then the edge (v1, v2) can

be collapsed to vn without causing any visible distortion.

4. go back to step 2. until a certain number of vertices, edges or faces is ob-
tained.

Ideally, the best visual quality can be obtained if the edge collapse operation is
carried out starting from the one with the least visual impact. Throughout the
literature, several perceptual and non perceptual methods have been proposed
to compute a simplification cost that would best preserve the shape of mesh after
simplification. However, existing perceptual methods either carry out the per-
ceptual analysis on the rendered image [WLC+03, QM08, MG10] or rely on a
top-down estimation of saliency [LVJ05, WSZL13, SLMR14]. Moreover, none of
the existing algorithms propose a method to automatically control the quality of
the resulting output; the simplification is usually carried out until a manually
prescribed number of edges, vertices or faces is reached. In this section, we show
how we can use our proposed JND model to define both the simplification cost
for each edge and more importantly a stopping criterion that is able to automati-
cally control the quality of the simplified mesh.

Edge Cost In an edge collapse operation, an edge (v1, v2) is removed and is re-
placed by a vertex vn (Fig. 6.6). This can be seen as if the vertices v1 and v2 moved
towards the new vertex vn. Using our JND model we analyze the visibility of
displacing v1 and v2 along the edge (v1, v2). Let A (resp. B) be a part of (v1, v2)
bounded by v1 and v′1 (resp. v2 and v′2) (see Fig. 6.6) where v′1 (resp. v′2) is the ver-
tex obtained by displacing v1 (resp. v2) by exactly the JND value in the direction
of v1v2 (resp. v2v1). This means that replacing v1 (resp. v2) by a vertex belonging
to A (resp. B) will not cause any visible distortion. In order to apply an edge
collapse that is invisible to a human observer, we need to find a new vertex vn

such that vn ∈ A ∩ B. This requires that the vectors v1v2 and v′
1v

′
2 should be in

opposite directions so that A∩B 	= ∅. Otherwise, if v1v2 and v′
1v

′
2 are in the same

direction, then we have A∩B = ∅, making the distortion caused by the edge col-
lapse visible. This analysis leads us to define the simplification cost which reflects
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FIGURE 6.7: The simplification algorithm guided by our simplification cost, com-
puted for a flat shading redering, keeps the visible features on the right and left

sides of the cube and simplifies the invisible features on the top side.
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1
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FIGURE 6.8: The perceptual simplification cost for (a) the Feline and (b) the Lion
models under a smooth shading mode.

the perceptual impact of an edge collapse by:

c =
v1v2.v

′
1v

′
2

||v1v2||2 . (6.4)

The value of our simplification cost c varies between [−1, 1]. If c < 0 then the
collapse operation does not affect the visual fidelity of the model. If c > 0 then
the edge collapse will be visible. Figure 6.7 shows the simplification cost on a
cube under flat shading where we have injected a random noise of different in-
tensity on each of its sides. The noise on the top side is below the JND threshold.
On the right side, the noise is barely visible as it is just above the JND thresh-
old and on the left side is injected a visible noise. The simplification cost of the
edges belonging to the top side is below 0 as the injected noise is under the JND



6.2. JND Driven Mesh Simplification 93

threshold while it is above 0 on the right and left sides of the cube. The simplifi-
cation algorithm guided by our simplification cost will keep the visible features
on the right and left sides of the cube and simplify the non visible features on
the top side. Figure 6.8 shows some additional results concerning the proposed
perceptual cost. Notice how, for both the Feline and Lion models, the proposed
perceptual simplification cost is high for the parts where there are geometric de-
tails on the surface mesh. This suggests that the simplification algorithm guided
by this cost will tend to preserve these details by prioritizing the simplification of
regions that do not contain fine geometric features.

Vertex Placement Having defined the simplification cost of an edge, we now
should decide how the position of the new vertex vn is computed. In order to
get the "optimal" position we have found that minimizing the following energy
produces very good results:

arg min

{( ||v1vn||
jndv1

)p

+

( ||v2vn||
jndv2

)p}
, (6.5)

where jndv1 (resp. jndv2) is the JND threshold of v1 (resp. v2) in the direction of
v1v2 (resp. v2v1) and p is the energy’s order. For p = 2, solving Eq. (6.5) yields
to:

||v1vn|| = ||v1v2|| ×
jnd2

v1

jnd2
v1
+ jnd2

v2

, (6.6)

where ||v1vn|| and ||v2vn|| represent respectively the distances by which v1 and
v2 are being displaced. The idea behind minimizing this energy is to make the
displacement of v1 and v2 adaptive to their corresponding JND values.

Stopping Criterion The value of the defined simplification cost varies between
[−1, 1]. A negative value of the perceptual cost indicates that the collapse oper-
ation will remain unnoticed by a human observer while a positive value means
that the collapse will be visible. So if we collapse the edges according to an in-
creasing order of perceptual impact, then we can control the visual quality of
the output mesh. Intuitively, by stopping the simplification process when all the
edges have a positive perceptual impact we obtain a most simplified mesh that is
visually similar to the detailed input. For instance, in Fig. 6.9 we show a simpli-
fied tetrahedron obtained using the proposed perceptual simplification method
in the case of flat shading and smooth shading, and compare it with the tradi-
tional simplification method of [LT98]. In the case of flat shading, our method
preserves the hard edges on the model so that the resulting mesh looks identical
to the original one. The same result can also be achieved with [LT98], however
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flat shading

smooth shading

FIGURE 6.9: (a) The perceptually driven simplification is able to prevent percep-
tually relevant edges from being collapsed as it outputs a model that is visually
similar to the original one in the case of flat and smooth shading. (b) The output
model using the method of Lindstrom and Turk [LT98] with the same number of

vertices is visually different from the original mesh under smooth shading.

the major difference is that this algorithm requires that the user explicitly input
the number of edges beyond which the simplification would stop. This is not the
case with our method as the simplification operation is stopped automatically ac-
cording to the defined perceptual stopping criterion. In addition, our method can
adapt to the rendering algorithm. When rendered in smooth shading, the simpli-
fication process does not collapse the edges that are adjacent to the hard edges
of the tetrahedron as they have a big influence on the interpolation of luminance
and thus have a high perceptual impact. This is however not the case for [LT98]
which focuses on preserving the geometry of the object without taking into con-
sideration the shading. Figure 6.10 shows a very dense 3D mesh rendered in flat
shading which is then simplified with the JND-driven simplification method. The
resulting simplified mesh (Fig. 6.10.(a)) has 80% less vertices and is visually very
similar to the original version. Removing 5% more vertices beyond the JND level
introduces slightly visible distortions to the model (Fig. 6.10.(b)). In addition,
simplifying the model using Lindstrom and Turk’s method [LT98] (edge collapse
with a different cost) to the same number of vertices as the JND-driven simplifi-
cation also results in slightly visible distortions (Fig. 6.10.(c)). Additionally, since
the proposed perceptual model is capable of adapting to the various parameters
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(c) Lindstrom and Turk [LT98] - 48k

original - 237k (a) JND-Driven - 48k

(b) 45.5k

FIGURE 6.10: (a) The JND-driven mesh simplification process outputs a model
that is visually very similar to the flat shaded original model. (b) Removing 5%
more vertices will introduce slightly visible distortions to the simplified model.
(c) The simplified model by using the method of Lindstrom and Turk [LT98] to
the same number of vertices as the JND-driven simplification. (b) and (c) contain

slightly visible distortions, especially on the belly and thighs.
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FIGURE 6.11: LODs generated using the perceptually driven simplification
method at different viewing distances for the Max Plank (smooth shading) and
Venus (flat shading) models. The degree of simplification automatically adapts to

the viewing distance.
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of the display (size, resolution and brightness) and to the distance between the
model and the viewpoint, then the perceptual impact of an edge will adapt as
well. In consequence the degree of simplification applied to a detailed mesh will
depend on those parameters. This is important as it will be possible to generate
multiple LODs by simply specifying the distances between the 3D model and the
viewpoint (see Fig. 6.11).

6.3 Perceptual Adaptive Mesh Subdivision

In an adaptive mesh refinement setting, the subdivision operation is applied to
the faces that fulfil a certain condition. In most cases, the subdivision is applied to
the faces that are relatively close to the viewpoint or are part of the mesh silhou-
ette. Moreover, the subdivision process is usually stopped when a certain poly-
gon budget is reached. In general, the goal of adaptive mesh refinement methods
is to display a coarse model in a way that appears visually smooth. Intuitively, this
can be achieved if the normal vectors used for the shading computation produce
a smooth visual pattern. In other words, we may consider that visual smoothness
is achieved if the interpolation between the brightest and darkest luminance level
inside a face is unnoticeable to a human observer under a smooth shading ren-
dering. As a result, we can use the proposed perceptual model in order to test
whether this interpolation is visible or not. This test can therefore be done by
simply normalizing the contrast value by the CSF value:

c̃ = c · csf(f, l) , (6.7)

where c̃ is the normalized contrast, c is the face’s contrast value, f is the corre-
sponding frequency and l is the global luminance. Hence, the criterion to subdi-
vide a certain face could be defined when the corresponding c̃ value is above a
certain threshold:

c̃ > α. (6.8)

One major advantage of this perceptual criterion, is that the value of c̃ will change
if the spatial frequency relative to a face changes. This means that the proposed
subdivision criterion will automatically adapt to the original density of the 3D
model and its distance to the viewpoint. In a conservative way, a mesh appears
to be visually smooth if the local contrast of its faces is not visible as this means
that the interpolation between the darkest point and the brightest point of the
face will not be noticed by the observer. This implies that the subdivision opera-
tion is applied as long as c̃ is greater than 1.
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original (a)Perceptual (c) Silhouette (d) Proximity
30k 30k 30k11k3.5k
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far viewpointclose viewpoint

FIGURE 6.12: The perceptual subdivision process converges at around 30K ver-
tices when the model is (a) close from the viewpoint and at 11K when it is (b) far
away. (c) A silhouette subdivision criterion would concentrate the subdivisions
in the contour region leaving the rough part of the model intact. (d) A proximity
subdivision criterion would subdivide the face in already visually smooth areas

where the subdivision will not have any visual impact.

We have tested this perceptual subdivision criterion using Boubekeur and
Alexa’s Phong tessellation method [BA08] with a loop subdivision scheme. Fig-
ure 6.12 shows a coarse version of the Bimba model that was subdivided using
the proposed perceptually driven method. The subdivided version exhibits an
increase in density in rough regions which usually contain faces with visible con-
trast, i.e., c̃ > 1. The subdivision process automatically stops around 30k vertices,
when the local contrast in all the faces is invisible, and the resulting mesh appears
to be visually smooth (Fig. 6.12 (a)). By increasing the view distance, the spatial
frequency of the observed visual stimuli is increased. Consequently, this causes
a changes in the visibility threshold and thus affects the degree of subdivision
needed to obtain a visually smooth model. Therefore, in this case, the adap-
tive subdivision automatically stops after fewer subdivisions (Fig. 6.12 (b)). In
addition, we have compared our perceptual subdivision criterion to a silhouette-
based and proximity-based subdivision criterion. We have stopped the subdi-
vision process when they reached the same number of vertices as in Fig. 6.12
(a). The silhouette subdivision criterion (Fig. 6.12 (c)) consists of subdividing the
faces that are part of the mesh’s contour so that it appears smooth. In that case,
the subdivisions are concentrated in the silhouette and could potentially leave
rough parts of the model untouched. In a proximity subdivision criterion (Fig.
6.12 (d)), the faces that are closer to the viewpoint are subdivided. This will most
likely result in a waste of computing resources as the algorithm will subdivide
faces that are already visually smooth and therefore the operation will not have
much visual impact.
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6.4 Summary

In this chapter we have integrated the proposed perceptual model into several
mesh processing algorithms. For instance, we have used the JND profile to com-
pare the geometric distortions caused by vertex coordinate quantization opera-
tion which allowed us to detect the optimal quatization level for a given mesh.
In addition, we have used our perceptual method to guide mesh simplification.
This is done by computing an edge collapse cost using the JND threshold that
indicates whether the collapse operation is visible or not. Finally we have used
the CSF model to define a perceptual criterion for the adaptive mesh subdivi-
sion task. This series of applications showcases the usefulness of our perceptual
models in the case of guiding geometric operation. In particular, we think that
the main advantage, that our method can offer, is that it is possible to adapt the
output of the geometric operation to the various parameters (screen resolution
and size, viewpoint distance, rendering type, illumination, mesh density). This
advantage is due to the fact that our proposed perceptual analysis takes these
parameters into consideration while computing the displacement threshold.
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Chapter 7

Conclusion

It is common that a 3D mesh undergoes some lossy operations such as 3D com-
pression, simplification and watermarking which introduce geometric noise to
the underlying 3D object in the form of vertex displacement. In some cases, this
noise can be visible to the human end user. Controlling the visibility of these ge-
ometric distortions is an important issue as, for human-centered applications, it
can have a direct impact on the quality of experience of the user. It is therefore
interesting to be able to evaluate whether the vertex displacement caused by the
geometric operations is visible or not.

7.1 Summary of Contributions

In this thesis, we have presented our work which focused on evaluating the
threshold beyond which a local geometric distortion becomes visible on a 3D
mesh. This was achieved with the help of an experimental study of the proper-
ties of the human visual system. To reach our goal, we have started by evaluat-
ing perceptually oriented attributes (such as local contrast and spatial frequency)
on 3D models. We have then performed a series of psychophysical experiments
where we have measured the threshold needed for a human observer to detect a
change in contrast induced by a change in vertex position under different viewing
circumstances. The results of these experiments allowed us to derive a computa-
tional model that evaluates the threshold beyond which a change in contrast on
a 3D mesh becomes visible. This model can adapt to the various display param-
eters (resolution, size and brightness), to the size and density of the triangular
mesh as well as to directional and point light illumination. Using this perceptual
model we have then presented an algorithm that computes the vertex displace-
ment threshold relative to a certain direction, i.e., the Just Noticeable Distortion
(JND) profile. Finally, we have illustrated the utility of the proposed JND pro-
file and the perceptual model in several applications such as vertex coordinates
quantization, mesh simplification and adaptive mesh subdivision.
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The contributions of this thesis are summarized as follows.

Evaluating Local Perceptual Attributes on 3D Triangular Meshes

The properties related to the contrast are essential when studying the visibility
of a certain visual pattern. Therefore we have started our perceptual study by
evaluating the perceptual attributes related to this aspect of the human percep-
tion. More specifically, we have proposed a method to compute the local contrast
in the case of flat and smooth shaded rendering. In both cases, our methods for
computing the contrast highlight the effects of surface geometry and lighting con-
dition on the value of the local contrast. Moreover, we have evaluated the spatial
frequency and shown that it is affected by the size and vertex density of the ob-
served mesh. Finally, inspired by the free energy principle, we have computed
the regularity of a visual pattern on the 3D mesh. These perceptually related at-
tributes allowed us to take into consideration the contrast sensitivity and visual
masking effects of the visual system when it comes to its capacity of discriminat-
ing between two visual patterns.

Measuring the Visibility Threshold

The displacement of a vertex causes a change in contrast in the region surround-
ing the vertex being displaced. Therefore we have performed a series of psy-
chophysical experiments that aims at measuring the thresholds related to the con-
trast sensitivity and visual masking aspects of the visual system. For measuring
the Contrast Sensitivity Function (CSF) we have measured the contrast threshold
required for observing a displaced vertex on the surface of a plane. By changing
the density of the displayed plane, we have been able to measure the threshold
at different frequencies. Measuring the threshold related to the Visual Masking
requires detecting the threshold beyond which a human observer can notice a
difference between two visible contrasts. Therefore for these measurements we
have displaced a vertex on the surface of a sphere as its curved surface generates
a visible contrast. These experiments were carried out both in the case where the
displayed mesh is rendered by a flat shading algorithm and smooth shading one.
In the latter case we have taken into account in our measurements the effects of
luminance on the CSF threshold and the effects of visual regularity on the visual
masking. Finally, the results of these experiments have allowed us to propose a
perceptual model to obtain the contrast threshold which is then used to compute
the probability of noticing a difference given a certain change in contrast.
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Computing the Just Noticeable Distortion Profile for 3D Meshes

Having computed the probability of detecting a change in contrast caused by a
vertex displacement, we have proposed an algorithm for the evaluation of the
vertex displacement threshold, i.e., JND profile, for 3D meshes. The computed
threshold is capable of adapting to the varying circumstances of mesh usage such
as the display parameters, light direction and viewing distance since they affect
the local perceptual properties. In the case of an interactive scene where the light
and the viewing distance are likely to be changed through the course of the view-
ing session, we have proposed a way to compute this threshold independently
from the light direction and with respect to the most sensitive spatial frequency.
We have tested the performance of the computed JND profile via a series of sub-
jective experiments where the participants had to rate the visibility of JND mod-
ulated random noise added to a number of 3D models with different geometric
features. The results of these experiments show that our perceptual model can
accurately predict the visibility threshold of local vertex distortions.

Integrating the Perceptual Model into Various Geometry Processing Operations

In Chapter 6 of this thesis we have demonstrated the utility of the proposed per-
ceptual model in a number of geometric applications. First, we have used the
JND profile to compare two meshes: a reference and a distorted version. The
idea was to compute the distortion on the distorted model in terms of JND units
then to deduce a global score that is indicative of the visibility of the vertex noise
introduced by the distortion. This mesh comparison method was used to select
the optimal quantization level (in bits per coordinates), for any mesh. Second,
we used the vertex displacement threshold to guide edge-collapse-based mesh
simplification. More precisely, the vertex JND allowed us to compute a simpli-
fication cost that indicates whether the edge collapse operation would be visible
or not. The most important aspect of this application is that, since the JND value
can adapt to the display parameters and view distance, then the cost will adapt
as well. In addition, using our perceptual cost, we can define a stopping criterion
that would automatically terminate the simplification operation. This aspect is
particularly useful for generating a LOD. We have also shown that not only the
JND threshold can be useful for geometric applications but also there is a poten-
tial in using the local contrast value in combination with the proposed perceptual
model such as the CSF. For instance, we have presented a perceptual criterion for
adaptively subdividing a 3D triangular mesh, which uses the normalized local
contrast value. Similarly to the simplification operation, the main advantage of
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our perceptual criterion is that it makes possible to automatically stop the subdi-
vision operation once the subdivision operation will not add any visual smooth-
ness to the displayed mesh.

7.2 Perspectives

In this thesis, we have presented a perceptual framework for studying the vi-
sual impact of geometric distortions on the surface of 3D triangular mesh. In the
future, we think that this work can be evolved according to three axes.

Perceptual Attributes

Computing the visibility of vertex noise relies heavily on perceptual attributes
defined on the 3D mesh. In its current state, our method works for untextured
diffuse surfaces that are illuminated by one light source and rendered with either
a simple flat-shading or smooth-shading algorithm. This is due to restrictions that
we put to the algorithms used to compute the contrast. In addition, since contrast
is evaluated locally, i.e., between two faces in a flat shading setting and on a single
face for the case of smooth shading, then our visibility prediction is also limited
to local distortions. Therefore, we think that in order for our method to support
more advanced lighting such as environment maps, complex surface materials
and large-scale geometric distortions, it would require a more general definition
of contrast that could be based on a thorough and non-trivial analysis of the ren-
dering algorithm and that can be evaluated at multiple scales. Textures on the
other hand can be taken into account by trying to combine the contrast due to the
shading with the contrast of the texture. Additionally it would be interesting to
rethink the way we define the spatial frequency on a 3D mesh. In its current state
we have used the traditional unit of cpd, which represents the number of cycles
of dark and bright patterns of light that can fit in one degree of the visual angle,
to express the spatial frequency. While this frequency unit is more natural in the
case of images with sinusoidal patterns, we explained in Section 4.2.2 how it can
relate to the density of a 3D mesh. For instance, a noise injected onto a dense
mesh will exhibit visual pattern with higher frequencies than when injected on a
coarse mesh. This leads to the idea of expressing the spatial frequency in terms
of vertices per degree (vpd) which represents the number of vertices in one degree
of the visual angle and thus can be more natural in the case of 3D meshes.

Our proposed perceptual framework is now capable of evaluating whether
a local distortion is visible or not. It was not designed to test whether or not a
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visible distortion is perceptually more annoying than another visible one. For
instance, the value of our proposed perceptual simplification cost is bounded be-
tween -1 and 1 where a positive value indicates that the edge collapse operation
would be visible. However, since our perceptual analysis is focused on the vis-
ibility of a distortion then it is possible to obtain a simplification cost of value 1
for both an edge whose collapse is visible but not annoying and an edge whose
collapse is visible and not tolerable. This is due to our focus on low-level percep-
tual attributes such as contrast in this work. This is why it would be important
and interesting to exploit the utility of the proposed contrast algorithm in order
to define high-level visual attributes such as mesh saliency or visual attention.

Finally, it was important to estimate the regularity of a visual pattern in order
to have a more accurate modeling of the visual masking of the human vision. Our
method for estimating that measure was inspired from the free energy principle
theory which suggests that the visual system is actively trying to predict the vi-
sual patterns in order to minimize surprise. Therefore we have used a simple lin-
ear system to predict the local contrast using its surrounding and thus compute a
value of visual regularity. However, even if this simple linear system works well
in practice, it would be interesting to test whether higher-order methods would
give better results.

Perceptual Model

A further development of the perceptual models would make the perceptual
analysis more accurate. For instance, modifying Daly’s masking model to in-
corporate the effects of regularity of the visual system on the visibility threshold
(Section 4.3) allowed for a better treatment of visual masking and resulted in a
more precise visibility threshold. An interesting extension of the existing per-
ceptual model would be to include the effects of velocity on the computed visi-
bility threshold. As explained in Section 2.2 the contrast sensitivity of the HVS
is affected by the velocity of a moving visual stimulus. We have conducted a
preliminary study, which can be found in Appendix C, to measure the contrast
sensitivity for moving 3D objects. This would allow us to expand this current per-
ceptual model to support dynamic moving 3D meshes in addition to static ones.
Moreover, as it stands, the proposed framework does not take into account the
color attributed to the mesh or the illumination as it focuses on white lumination
levels. An idea for extending this method to color would require conducting psy-
chophysical experiments to measure the contrast threshold for each color channel
as the sensitivity is different for various light frequencies [Kel83]. We can then ap-
ply the same perceptual analysis as the one described in this manuscript for each
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channel in order to compute the visibility threshold. On the long term, we also
think that expanding the perceptual model to take into account the characteristics
of the human visual system that are related to the orientation and scale selectivity
would be interesting. These aspects would be important especially for develop-
ing methods that take into consideration the higher-level properties of human
vision. However, this step first requires a multi-scale definition of contrast for 3D
meshes.

Applications

In the end, the goal behind developing a perceptual method for 3D meshes is to
integrate it into geometry processing so that it would be possible to control the
quality of its output or to evaluate and compare existing geometric methods. The
applications showcased in this thesis present an example about the potential of
using perceptual methods in geometric application and can be further improved.
For instance, the presented simplification cost reflects whether an edge collapse
would be visible or not if the position of the new vertex is located on the collapsed
edge. We think it would be more interesting to develop a perceptual simplifica-
tion cost that overcomes this limitation. Also further improvements can be done
to the perceptual criterion proposed for the adaptive subdivision operation which
suggests that the mesh is visually smooth if the local contrast is not visible. While
this assumption can be considered as correct, it is however too conservative as it
is possible to have a visible local contrast that is visually smooth. One possible
direction to improve this application is to adapt the threshold for applying the
subdivision to the visual regularity of the surface. Intuitively, if a surface is visu-
ally regular (usually a smooth surface) then the threshold for subdividing can be
high while for a visually complex surface (usually a rough surface) it is better to
have a low threshold value.

Moreover, it would be interesting to use this perceptual method to develop
an objective perceptual quality measure for 3D meshes. A geometric distortion
would generally introduce a change in local perceptual attributes, most notably
contrast, to the 3D mesh. Using our method, it is possible to evaluate this change
in contrast and then convert it in terms of visibility threshold units. For example,
for the vertices where the change in contrast is visible the value would be greater
than 1 otherwise it will be lower than 1. The same can also be done for visual
regularity as a distortion would also cause a change in that attribute (e.g., a noise
on a smooth surface makes it more complex). Having a measure for a change
in contrast and another for a change in visual regularity can be indicative of a
change in structure and would allow us to develop, in the future, a perceptual
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quality metric for 3D meshes that is similar to the SSIM metric for images. A
preliminary test of a quality metric using our perceptual method is presented in
Appendix D and it shows some promising results.
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Appendix A

Computational Details for Contrast

Estimation

A.1 Contrast Estimation for Flat-Shaded Surfaces

We provide here the details of the transition between Eqs. (4.5) and (4.6) (see
Section 4.2.1).

c =
‖ max (l · n1, 0)−max (l · n2, 0) ‖
max (l · n1, 0) + max (l · n2, 0)

, c =‖ cosα · tan θ · tan φ

2
‖

In the case where the inner products between the light direction and the two face
normals are both positive, the first equation above becomes:

c =
‖ l · n1 − l · n2 ‖
l · n1 + l · n2

c =
‖ l · (n1 − n2) ‖
l · (n1 + n2)

c =
‖ cos∠(l,n1 − n2) ‖
‖ cos∠(l,n1 + n2) ‖ · ‖ n1 − n2 ‖

‖ n1 + n2 ‖ .

The ratio between the norms of the vectors n1 − n2 and n1 + n2 is evaluated by:

‖ n1 − n2 ‖
‖ n1 + n2 ‖ =

√
1− cosφ

1 + cosφ
= tan

φ

2
,

where φ is the angle between n1 and n2 (see Fig 4.3). The cosines of the angles
between l and n1 − n2 and between l and n1 + n2 are respectively equivalent to:

cos∠(l,n1 − n2) = cosα · sin θ
cos∠(l,n1 + n2) = cos θ,

where α and θ are the spherical coordinates of the light direction in the local
coordinate system defined by n1 − n2, n1 + n2 and their outer product (see Fig.
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4.3). This finally leads to:

c =‖ cosα · sin θ
cos θ

· tan φ

2
‖

c =‖ cosα · tan θ · tan φ

2
‖ .

A.2 Contrast Estimation for Smooth-Shaded Surfaces

We provide the details on how the optimization problem in Eq. (4.17) of the
manuscript can be solved. First we rewrite Eq. (4.16) as:

di(α, β)
2 = ||αA+ βB+C||2 , (A.1)

where A = n̂3n1, B = n̂3n2, and C = L̂n3. The reason behind changing the
notation of Eq. (4.16) is to be able to solve Eq. (4.17) for Eqs. (4.16) and (4.19) in
a similar way. For Eq. (4.19) we will have A = n̂3n1 − l̂3l1, B = n̂3n2 − l̂3l2, and
C = l̂3n3.
By developing Eq. (A.1) we obtain:

di(α, β)
2 = α2A.A+ β2B.B+ 2αβA.B+ 2αC.A+ 2βC.B+C.C. (A.2)

Equation (A.2) represents a paraboloid, so solving Eq. (4.17) boils down to find-
ing the minimum and maximum points on that paraboloid such that α + β ≤ 1

and α, β ∈ [0, 1]. The minimum point is computed by :

α =
C.B ·A.B−C.A ·B.B

B.B ·A.A−A.B ·A.B
, β = −C.B+ α ·A.B

B.B
. (A.3)

If the computed α and β do not respect the minimization constraints, then their
values are adjusted accordingly:

(α, β) =

⎧⎪⎪⎨⎪⎪⎩
(
0, min

(−C.B
B.B

, 0
))

if α < 0(
min

(−C.A
A.A

, 0
)
, 0
)

if β < 0(
min

(
C.B·A.B−C.A·B.B
B.B·A.A−A.B·A.B

, 1
)
, 1− α

)
if α + β > 1

It is easy to show that the maximum distance will always correspond to (α, β) =

(0, 1), (1, 0) or (0, 0). Having computed α and β it is simple to compute the po-
sition or normal of the corresponding point using the barycentric coordinates
[α, β, 1− α− β].
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Appendix B

Measuring the Masking Threshold

Independently from the Spatial

Frequency

As we mentioned in Chapter 4, the effects of the spatial frequency on the vis-
ibility of a visual pattern makes the masking threshold value different at each
frequency. However, it is not practical and is time consuming to measure the
masking threshold at different frequencies. In addition, it would be more dif-
ficult to model this effect based on per-frequency data. Therefore if possible,
it would be more interesting to measure the masking threshold independently
from the spatial frequency of the visual signal. In his paper [Dal93], Daly has
suggested that it would be possible to model the masking effect regardless of the
frequency if the contrast values were normalized by the CSF value. The idea here
is that instead of dealing with absolute contrast values which will depend on the
frequency, the masking model will handle normalized contrast values that are in-
dependent from the frequency. To test whether it is possible to follow this idea
by normalizing the contrast value by the CSF (Eq. (4.10)), we have performed
a preliminary experiment in which we measured the masking threshold at three
different frequencies (1.1cpd, 2.63cpd and 5.59cpd) and in a flat shading setting.

Experimental Protocol For this preliminary experiment we followed the same ex-
perimental procedure as described in Section 4.2.3 of the manuscript. To summa-
rize, two icospheres were displayed on the screen side by side, one of which ex-
hibits a vertex displacement. The subjects responded by Yes or No to whether they
can see a difference between the two displayed spheres which will then affect
the displacement magnitude using the QUEST method. In order to measure the
masking threshold at three different frequencies we have used three icospheres
each with a different subdivision level (Fig B.1).
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FIGURE B.1: By changing the subdivision level of an icosphere we were able to
measure the masking threshold at different spatial frequencies.
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FIGURE B.2: Normalizing the contrast threshold by the corresponding CSF value
allows us to measure the masking effects independently from the spatial frequency

of the mask.

Results Figure B.2 shows the results of this preliminary experiment with both
the mask contrast and measured threshold normalized by the corresponding CSF
value. When the mask contrast is not visible (normalized value < 1) the measured
threshold lies on a horizontal line while when the mask contrast increases beyond
the visibility threshold (normalized value > 1) the measured threshold increases
almost linearly. Normalizing the measured threshold by multiplying it with the
corresponding CSF value makes the data from different frequencies very close to
each other. Therefore, it would be possible to measure the threshold relative to the
visual masking effect independently from the spatial frequency of the displayed
stimulus, just as suggested by Daly in this seminal paper [Dal93].
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Appendix C

Measuring the Dynamic Aspects of

the Contrast Sensitivity Function

As detailed in Chapter 2, the threshold related to the contrast sensitivity aspect
of the HVS is affected by the velocity at which an object in moving. However, in
our experimental study (see Chapter 4) we did not take this effect into account.
The reason is that we were more focused on computing the visibility threshold for
static meshes rather than dynamic ones. Nevertheless, during the last few months
of the thesis we have carried out a preliminary study that aims at measuring the
contrast sensitivity for a moving 3D object.

C.1 Retinal Velocity and Eye Movement

Early physiological studies in human vision stated that the visibility threshold
is affected by the retinal velocity of the object, velocity of the object’s image on the
retina [Kel79a, Kel79b]. These studies showed that as the retinal velocity increases
the CSF curve is translated to the left. In other words, this means that the HVS
becomes less sensitive to mid and high frequencies as a visual stimulus moves
faster across the retina. Before measuring the CSF for a moving object, it is im-
portant to differentiate between the retinal velocity and the physical velocity of a
moving object. In general, the HVS will try to track a moving object by following
it with the eyes so that its image on the retina is as stable as possible. Therefore, it
is important to take into account the movement of the eyes in the measurements
of dynamic CSF. Having the value of the eye’s velocity, the retinal velocity can be
evaluated by the following:

vr = ||v − veye||, (C.1)

where v is the physical velocity of the object and veye is the eye’s velocity.
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There has been little attention given towards modeling the movement of the
eyes throughout the literature of CSF modeling. Nevertheless, it is suggested that
the eye’s movements can be divided into three categories [Dit73]:

• The natural eye drift. This corresponds to the minimum velocity of the eyes.
It has been shown that even if the eyes are intentionally fixated on a cer-
tain position they will be drifting at a very slow speed of about 0.15cpd/s
[Kel79a].

• The smooth eye pursuit. This corresponds to movement of the eye when
tracking a moving object.

• The saccadic movement. This corresponds to the almost instantaneous move-
ments of the eye when the moving object is fast enough so that it cannot be
tracked. It is considered that the contrast sensitivity during the saccadic
movement is 0.

In [Dal01], Daly has proposed the following model to evaluate the velocity of the
eyes:

veye = min (α · v + vmin, vmax) , (C.2)

where α is the tracking efficiency and vmin = 0.15 deg/s, vmax = 80 deg/s are
respectively the minimum eye velocity due to the drift and the maximum eye
velocity before transitioning to saccadic movements. To the best of our knowl-
edge, there have not been any consensus about the value of α in perceptual
methods for video processing. Despite having a measured value of around 0.82
[Dal01], many algorithms for computing JND of a video use a value of 0.90 or
0.98 [JLK06, WN09, AvMS10]. In addition, Yee et al. [YPG01] adapted the value
of α to the saliency value arguing that a salient object would attract the attention
of an observer and therefore makes its tracking more efficient.

C.2 Experimental Study

It is clear that measuring the dynamic aspect of the Contrast Sensitivity Function
(CSF), requires as well measuring the velocity at which the eye is moving. This
would allow us to have a relatively accurate idea about the retinal velocity of the
observed moving 3D object.

Experimental Protocol We have adapted the experimental protocol presented in
Section 4.1 of the thesis to the dynamic setting. Instead of displaying on the screen
two models side by side, we now display them one on top of the other. The
reason for that is to allow a large horizontal movement of the 3D object. Similarly
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FIGURE C.1: As the retinal velocity of the 3D object increases, the contrast sensi-
tivity is reduced and the CSF curve shits to the left.

to the static CSF measurements (see Section 4.3.4), one of the displayed planes
exhibited a displaced vertex in its central area. The subjects answered by Yes
or No to whether they noticed a difference between the displayed planes. The
magnitude of the displaced vertex is then adjusted using the QUEST method. The
CSF was measured for three different physical velocities (1 deg/s, 10 deg/s and
25 deg/s) corresponding to a slow, medium and relatively fast object movement.
5 subjects participated in these experiments which took place in a low illuminated
laboratory environment (see Fig. 4.6). The head of the subjects was fixed on
a head-stand to restrict its movement. An eye tracker was placed in front of the
display to register the position where the observer is looking at. This will allow us
to evaluate the eye movement for each subject and therefore compute the retinal
velocity using Eq. (C.1).

Results We have used an eye tracker in order to measure the corresponding reti-
nal velocity of the moving planes. Our data indicated that the observer’s eyes
were tracking the planes with an average velocity of 0.76 deg/s, 8.26 deg/s and
18.61 deg/s for respectively the 1 deg/s, 10 deg/s and 25 deg/s plane velocities.
This leads to the retinal velocities of 0.24 deg/s, 1.74 deg/s and 6.39 deg/s. It is
interesting to also note, that the average tracking efficiency deduced from these
measurements is α = 0.76 which is close to the value reported by Daly [Dal01].
We think that the difference lies within the nature of the task presented to the
subjects. In Daly’s experiments, the subjects were looking at one moving stimu-
lus while in our case the subjects were looking at two planes in order to compare
their appearances. The more complex task given to subjects in our preliminary
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experiments might explain the slight reduction in the value of the tracking effi-
ciency. The CSF results of these experiments are shown in Fig C.1. The plot shows
the subjects’ mean contrast sensitivity for each frequency for the three different
retinal velocities. As expected, as the velocity increases the CSF shifts to the left;
the CSF peak is shifted from about 4 cpd at 0.24 deg/s to about 2.9 at 6.39 deg/s.
Moreover, for the relatively high velocity of 6.39 deg/s there is a considerable loss
in contrast sensitivity observed.
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Appendix D

Towards a Contrast-Based Perceptual

Metric for 3D Meshes

As discussed in Chapter 3, the goal of many existing perceptual methods is to
evaluate the perceptual quality of a distorted mesh. This could be a useful tool
to evaluate and compare the performance of geometric algorithms. However, all
existing methods rely on a purely geometric analysis for their perceptual evalu-
ation which makes them not able to adapt to various display parameters. There-
fore, we have also tried to use our perceptual analysis to evaluate the quality of a
distorted mesh. In this method we have used the perceptual model that is suited
for smooth shading as state-of-the-art subjective quality evaluation experiments
were conducted by rendering the model with a smooth shading. The idea for
evaluating the perceptual quality is relatively simple: Having a reference and a
distorted model, we first evaluate the change in contrast (Eq. (4.14)) caused by
the geometric distortion in a per-face basis. We then compute the per face thresh-
old using Eq. (4.25). Computing the ratio between the change in contrast and
threshold gives us a local distortion map. We then compute this distortion map
for different light directions. In practice we have sampled the light direction from
a sphere around the model. We finally aggregate the local distortion maps into a
single score using a Minkowski pooling.

Table D.1 shows the Pearson correlation of our proposed contrast-based per-
ceptual metric along with existing model-based methods (MSDM2 [Lav11], FMPD
[WTM12] and DAME [VR12]) and image-based ones (IW-SSIM [WL11] and HDR-
VDP2 [MKRH11]). We notice that compared to image-based methods our method
performs better for all databases. However, it is not the case compared to model-
based methods. It is clear that MSDM2 and FMPD are better when it comes to
the Masking and General Purpose databases. A closer look at the results reveals
some interesting insights that can explain the behavior of our method and would
help improve its performance. In the General Purpose database there are two types
of distortions: a random noise type and a surface smoothing type. By isolating the
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Masking General Purpose Compression
[Lav09] [LDGD+06] [VR12]

ours 0.76 0.75 0.91

MSDM2 [Lav11] 0.87 0.81 0.89
FMPD [WTM12] 0.80 0.89 0.88

DAME [VR12] 0.58 0.75 0.93
IW-SSIM [WL11] 0.67 0.73 0.74

HDR-VDP2 [MKRH11] 0.52 0.67 0.84

TABLE D.1: Performance comparisons of our proposed perceptual quality metric
prototype, existing model-based methods and image-based ones.

noisy models from the smoothed ones and computing the Pearson correlation
scores of our method we get a correlation of 0.88 for the vertex noise type distor-
tion and 0.80 for the smoothing one. Looking more closely at the scores given by
our method we notice that there seems to be a difference in the range of the ob-
jective score between a vertex noise type distortion and a vertex smoothing type
distortion. More precisely, it appears that the score for the surface smoothing dis-
tortion is being exaggerated. There are several hypotheses that could explain this
behavior. First, our method is designed to handle local distortion types which is
not the case for the smoothing distortion. A multi-scale contrast method might
therefore help with this issue. Second and more importantly, in its current state
our method is solely based on a measured difference of contrast. However as
argued in [HP13] the quality attributed to an image is not just a function of the
change in contrast but is also related to the clarity of information which is gen-
erally conveyed by its structure. Intuitively, a change in the visual regularity can
be indicative of a change in structure. Indeed, upon further investigation, we no-
tice that a weak vertex noise and a weak surface smoothing will have an almost
similar effect on the local contrast, but only the vertex noise will cause a change
in the structure of the surface. Therefore, we think that it would be interesting
to test whether integrating the visual regularity to our method in a similar fash-
ion a a SSIM-based method [WBSS04, WL11] would improve the performance of
this quality metric. As for the Compression database our method performs bet-
ter, but remains slightly behind DAME. The reason for this good performance
in this case comes from the magnitude of the compression distortion included
in this database. In fact, we have noticed that a large number of meshes in that
database has a compression distortion that is barely visible, i.e., close to the visi-
bility threshold. This explains the high performance of our perceptual model as it
is designed to compute the visibility threshold and therefore should be accurate
in comparing distortions whose magnitude is close to it.
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Appendix E

Résumé en Français

Les objets 3D deviennent de plus en plus utilisés dans des applications diverses
allant des jeux vidéo à la visualisation scientifique. Avant que ces objets 3D soient
affichés sur un écran, ils sont souvent soumis à plusieurs opérations géomé–
triques. Par exemple, dans les applications interactives, les modèles géométriques
détaillés sont simplifiés afin de garantir un affichage rapide des données 3D.
Cependant, ces traitements géométriques introduisent des distorsions sous forme
de perturbation des positions des sommets. Vu que ces distorsions peuvent af-
fecter la qualité visuelle de l’objet 3D affiché, il est donc important de quantifier
leur visibilité. La difficulté de ce problème est que la visibilité des distorsions
géométriques sur un objet ne peut pas être déterminée en fonction de leur mag-
nitude vue qu’il y a plusieurs paramètres externes qui entrent en jeu comme :
illumination de la scène, résolution et taille de l’écran, point de vue, etc. Cela
rend les métriques géométriques traditionnelles, comme la RMS ou la distance
de Haussdorf, inefficace pour accomplir cette tâche. Le but du travail effectué
dans cette thèse est d’évaluer le seuil de visibilité d’une distorsion géométrique.
En d’autres termes, on cherche à évaluer le déplacement maximal qu’un som-
met peut tolérer avant de devenir visible tout en prenant en compte les différents
paramètres qui contribuent à la visibilité de ce déplacement.

Au cours des deux dernières décennies, les méthodes perceptuelles sont dev-
enues de plus en plus populaires dans la communauté graphique [CLL+13]. Ces
méthodes ont prouvé leurs utilités dans l’évaluation de la qualité visuelle des
modèles 3D [CDGEB07, Lav11, VR12, TWC14] et pour optimiser des processus
de plusieurs traitements géométriques comme la compression [MVBH15] et la
simplification [LVJ05, QM08, MG10]. Les techniques perceptuelles existantes se
basent sur des hypothèses sur le comportement global du système visuel en ob-
servant des objets 3D. Par exemple, il est accepté dans la communauté graphique
que les artefacts visuels sont moins visibles dans les régions rugueuses que dans
les régions lisses d’un maillage 3D [Lav09]. Plusieurs méthodes ont donc été
développées pour estimer la rugosité d’une surface en utilisant des propriétés
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géométriques comme la courbure [Lav09, WTM12]. Puisque les méthodes per-
ceptuelles actuelles basent leur analyse sur des propriétés géométriques, sans
signification perceptuelle formellement justifiée, il est donc difficile d’adapter le
résultat de ces méthodes aux différents facteurs affectant la perception des mail-
lages 3D (taille, densité, illumination, affichage, ...).

Différent de toutes les méthodes actuelles, on a décidé d’adopter une approche
qui se base sur une analyse perceptuelle où on cherche à modéliser le fonction-
nement interne du système visuel humain relatif à la visibilité des stimuli visuels
afin d’atteindre notre but. Ce type de méthodes a été prouvé être efficace en
traitement d’image [Dal93, LK11]. D’une manière simplifiée, les rayons lumineux
provenant d’un objet arrivent dans l’œil puis passent au cerveau à travers la ré-
tine et le nerf optique [Wan95]. Ce qui est intéressant et important dans ce proces-
sus concernant notre but est ce qui se passe au niveau de la rétine. Plus précisé-
ment, la structure physiologique des cellules ganglionnaires de la rétine fait en
sorte que le système visuel humain soit plutôt sensible aux stimuli visuels ayant
une large variation de luminance. Cette variation de luminance est généralement
exprimée en matière de contraste. Donc plus le contraste est fort, plus les détails
d’un stimulus visuel seront visibles. Cela fait que l’étude des propriétés reliées
à la perception du contraste est essentielle au calcul du seuil de visibilité. En
particulier, on se base sur les deux aspects suivants du système visuel humain :

• La sensibilité au contraste (CSF) qui indique le seuil de contraste à partir
duquel un stimulus visuel devient visible [CK66]. Notamment, le seuil de
visibilité dépend principalement de la fréquence spatiale et la luminance
globale du stimulus observé.

• Le masquage visuel qui reflète la capacité du système visuel humain de
distinguer entre deux stimuli visibles. Cela est principalement en fonction
de la valeur du contraste de ces stimuli [LF80] et leur régularité visuelle
[WBT97].

Une distorsion géométrique locale consiste à faire déplacer un sommet du mail-
lage dans une certaine direction. Ce déplacement cause un changement de la
direction des normales des faces adjacentes ce qui provoque un changement des
propriétés perceptuelles locales, à savoir le contraste et la fréquence spatiale sur
un maillage. En se basant sur l’analyse des aspects du système visuel humain
présentés ci-dessus, on a proposé dans cette thèse une analyse perceptuelle qui
a pour but de calculer le seuil de visibilité d’une distorsion géométrique. En
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d’autre terme, on a présenté un algorithme qui a pour but de calculer le déplace-
ment maximal qu’un sommet peut tolérer avant que ce déplacement devienne
visible. Notre méthode se résume de la manière suivante :

1. On évalue les attributs perceptuels (contraste, fréquence, luminance globale
et régularité visuelle) relatifs à l’étude de la visibilité d’un stimulus visuel
sur un maillage (Sections 4.2.1 et 4.3.1).

2. Les attributs perceptuels ainsi calculés, sont utisés comme entrés à un mod-
èle perceptuel qui calcule le seuil de visibilité et qui est obtenu suite à une
étude expérimentale (Sections 4.2.3 et 4.3.4). Le modèle perceptuel proposé
prend en considération la sensibilité au contraste et le masquage visuel.

3. Ayant calculé le seuil de visibilité, on a proposé un algorithme efficace afin
d’évaluer le déplacement maximal qu’un sommet peut tolérer (Chapitre 5).
Le seuil de déplacement d’un sommet ainsi calculé s’adapte aux différents
facteurs pouvant affecter la visibilité des distorsions dans un environnement
3D (distance au point de vue, illumination,...).

Ayant réussi à calculer le seuil à partir duquel le déplacement d’un sommet de-
vient visible, on a ensuite intégré l’analyse perceptuelle proposée dans différents
algorithmes de traitement géométrique afin de montrer son potentiel (Chapitre
6). Premièrement, on a utilisé le seuil de visibilité calculé pour étudier la visi-
bilité d’un "edge collapse" lors de la simplification d’un maillage 3D. Ceci nous a
permis de proposer un coût perceptuel de simplification qu’on a utilisé pour priv-
ilégier la simplification des arêtes n’ayant pas un effet perceptuel sur la qualité
visuelle du maillage. En plus, ceci a encore permis de proposer un critère d’arrêt
automatique à l’opération de simplification ce qui a un large potentiel dans la ges-
tion des différents niveaux de détails d’un objet 3D. Deuxièmement, on a utilisé le
modèle perceptuel proposé pour définir un critère de subdivision adaptative de
maillage 3D. L’idée ici est de subdiviser une face seulement si le contraste local de
celle-ci est visible. Vue la visibilité d’un contraste est en fonction de la fréquence
spatiale, notre méthode est capable d’adapter le degré de subdivision en fonction
de la distance au point de vue et de l’illumination d’une manière automatique.

Pour résumer, dans cette thèse, nous avons proposé une méthode perceptuelle
qui permet de calculer le déplacement maximal qu’un sommet puisse tolérer
avant qu’il ne devienne visible pour un observateur humain. Différent de toutes
les méthodes existantes en informatique graphique, notre approche se base sur
un modèle perceptuel provenant d’une étude expérimentale sur le système vi-
suel humain lors de l’observation d’un maillage 3D. Nous avons ensuite intégré
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ce modèle dans plusieurs algorithmes de traitements géométriques pour montrer
l’utilité d’une telle analyse perceptuelle en informatique graphique. Cependant,
dans son état actuel, notre méthode est limitée à l’étude de la visibilité des distor-
sions géométriques locales se trouvant sur des maillages éclairés par une lumière
simple et affichés à l’aide d’un rendu "flat" ou "smooth" basique. Cela est dû aux
algorithmes simplifiés utilisés pour estimer les propriétés perceptuelles locales
sur un maillage comme le contraste ou la fréquence. L’extension de notre analyse
perceptuelle pour les cas complexes nécessite donc une généralisation des méth-
odes d’évaluation des propriétés perceptuelles. Un autre point important est que
notre modèle perceptuel proposé est plutôt adapté à l’étude de la visibilité des
distorsions locales et n’est pas capable d’évaluer son impact perceptuel une fois
cette distorsion est au-dessus du seuil de visibilité. Cela vient du fait que notre
analyse perceptuelle se base sur des propriétés de bas niveau du système visuel
humain comme la sensibilité au contraste et le masquage visuel. Il serait donc
intéressant d’étendre notre modèle aux aspects perceptuels de haut niveau pour
permettre une analyse plus rigoureuse des distorsions visibles.
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